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obtaining reliable estimates over large areas from remote sensing data. Currently, such estimates are obtained
with a variety of data sources, statistical methods and prediction standards, and there is no agreement on
what are best practices for this task.

To improve our understanding of how these different methods affect prediction quality, we first conducted a

gfgnvzgggisﬂmaﬁon systematic review of the available literature to identify the most common sensor types and prediction methods.
ANOVA Based on the review, we identified sample size of the reference points on the ground, prediction method (step-
Sample size wise linear regression, support vector machines, random forest, Gaussian processes and k-nearest neighbor), and
Prediction method sensor type as the main differences that could potentially affect predictive quality. We then compared those fac-
LiDAR tors in two case study areas in Germany and Chile, for which airborne discrete return Light Detection And Rang-
EO1-Hyperion ing (LiDAR) and airborne hyperspectral as well as airborne discrete return LiDAR and spaceborne hyperspectral
Egg‘;‘;pectral data were available. For each factor combination, we calculated Pearson's coefficient of correlation between

observations and predictions (r%) and root mean squared error (RMSE) for bootstrapped estimates using k-fold
cross-validation with a varying number of folds. Finally, Analysis of Variance (ANOVA) was used to quantify
the influence of the factors on the predictive error of the biomass models.
Our results confirm previous findings that predictor data (sensor) type is the most important factor for the accu-
racy of biomass estimates, with LiDAR being preferable to hyperspectral data. In contrast to some previous
studies, complementing LiDAR with hyperspectral data did not improve predictive accuracy. Also the prediction
method had a substantial effect on accuracy and was generally more important than the sample size. In most
cases, random forest performed best and stepwise linear models worst, judging from r? and RMSE under cross-
validation. Additional results suggested that r? may deliver unrealistically large values when the hold-out sample
during the cross-validation is too small.
In conclusion, our literature review revealed that different methods for biomass estimation are currently used,
with no general agreement on best practices. In our case studies, we found substantial accuracy differences be-
tween those methods, with LiDAR data, in combination with a random forest algorithm and a large number of
reference sample units on the ground yielding the lowest error for biomass predictions. The comparatively
high importance of the statistical prediction method seems particularly relevant, as they suggest that choosing
the appropriate statistical method may be more effective than obtaining additional field data for obtaining
good biomass estimates. Considering the costs of improving accuracy of global and regional biomass estimates
by ground measurements, it seems sensible to invest in further comparative studies, preferably with a wider
range of sites and including also RADAR sensors, to establish robust best-practice recommendations for obtaining
regional and global biomass estimates from remote-sensing data.
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1. Introduction

Forest ecosystems account for the dominant share of terrestrial bio-
mass stocks (Houghton, Hall, & Goetz, 2009). There is a strong interest
in estimating these stocks with sufficient resolution across larger spatial
scales, for example for bioenergy production, sustainable forest man-
agement, detection of land-use change and the assessment of carbon
stocks for initiatives such as REDD and REDD + (Hartig et al., 2012;
Koch, 2010; Treuhaft, Asner, & Law, 2003). The wall-to-wall estimation
of forest biomass over large areas by ground-based measurements re-
quires a dense network of inventory plots to reach good accuracies. In
many regions, this is infeasible due to high costs and required man
power. This limitation is particularly evident in many sparsely-
populated areas with notable portion of natural forest ecosystems that
are considered crucial for climate and biodiversity. Using remote sens-
ing data is therefore the only practical option to predict biomass on
these scales with affordable effort.

Many previous studies have evaluated the possibility to estimate bio-
mass by means of remote sensing information. Practically all major data
sources have been used, including RAdio Detection And Ranging
(RADAR) (e.g., Li et al., 2007; Saatchi, Marlier, Chazdon, Clark, &
Russell, 2011; Sun et al., 2011; Tanase et al., 2014; Tsui, Coops, Wulder,
& Marshall, 2013), Light Detection And Ranging (LiDAR) (e.g. Clark,
Roberts, Ewel, & Clark, 2011; Dubayah et al., 2010; Hudak et al., 2012;
Laurin et al, 2014; Nasset et al., 2013) and optical multi and
hyperspectral data (e.g., Laurin et al., 2014; Morel, Fisher, & Malhi,
2012). Study areas range across all major forest ecosystems, including
the boreal (Hyyppa et al., 2008); temperate (Latifi, Nothdurft, & Koch,
2010; Tsui, Coops, Wulder, Marshall, & McCardle, 2012) and tropical
(Drake, Dubayah, Knox, Clark, & Blair, 2002; Treuhaft et al., 2010)
zones as well as particular ecosystems in the sub-tropical zones and
the mangroves (Li et al., 2007; Proisy, Couteron, & Fromard, 2007).
Most studies follow an approach in which field-measured biomass
values are used to train statistical or machine-learning methods in
predicting biomass by remote sensing predictors, and the majority
report favorably on the accuracy of their biomass predictions. Unfortu-
nately, the diversity of data sources and study locations is matched by
an equal diversity of statistical methods and modeling standards. There-
fore, it is difficult to compare studies, and there is still no agreement on
best practices to estimate biomass from remote sensing data.

In this study, we compare the performance of statistical methods for
estimating biomass while varying the remote sensing sensor as well as
the reference data size. We first conduct a literature review to identify
the five most widely-used statistical prediction methods, and then
apply the identified methods to airborne LiDAR and hyperspectral
datasets from two study areas in southern Germany and central Chile.
Using Analysis of Variance (ANOVA), we rank the impact of data type,
statistical prediction method, and the size of the reference data accord-
ing to their influence on model performance, and give recommenda-
tions for the most suitable algorithms for biomass estimation from
remote sensing data.

2. Literature review

We explored Thomson Reuter's ISI web of knowledge database to
access the relevant studies of the last 13 years (2000-2013) by
searching for keywords “REMOTE SENSING” AND “BIOMASS” AND
“RADAR” OR “LIDAR” OR “ALS” OR “SAR”. From the total 474 returned
results, we first eliminated all studies that were either not directly deal-
ing with biomass, or were not conducted in forest biomes. From the
remaining 213 studies, 113 were finally identified as relevant since
they were either using forest biomass as the target variable in a case
study, or focusing on the estimation of forest biomass from remote sens-
ing data in the form of a review. The 113 studies were reviewed with
regard to reference measurements (type and number), predictor data
(sensor) type and prediction method. To keep the systematically

reviewed literature to a manageable number of studies, we decided to
exclude studies focusing on other response variables such as growing
stock volume, as for example applied by McRoberts, Gobakken, and
Nasset (2012), McRoberts, Nasset, and Gobakken (2013), Steinmann,
Mandallaz, Ginzler, and Lanz (2013) and Ureyen et al. (2014).

2.1. Reference measurements

Most of the reviewed studies used local reference measurements to
establish a statistical relationship between biomass and remote-sensing
predictors. For understanding the statistical problems that may arise in
this setting, three considerations are important. Firstly, local biomass
measurements are relatively labor-intensive. Therefore, the sample
sizes of the reference sets that were used in the reviewed studies
were often small compared to the total number of predictor variables
available from remote sensing data. Typical were a few tens to a few
hundreds of reference plots (Fig. 1). It should be noted though that
plot sizes differed among different studies, so that the number of plots
is only a proxy for the information available for model calibration. Sec-
ondly, biomass was usually not measured directly, but predicted with
allometric models based on other variables such as tree diameter and
tree height (e.g. Zianis, Muukkonen, Mdkipdd, & Mencuccini, 2005). In
some of the reviewed studies site-specific allometries were developed
from individual tree measurements, other applied allometries were
from the literature (e.g., Carreiras, Vasconcelos, & Lucas, 2012; Latifi,
Fassnacht, & Koch, 2012; Morel et al., 2012). In both cases, significant
deviations from the true biomass values can occur due to individual dif-
ferences between trees as well as different site conditions. Finally, when
correlating the resulting biomass values with remote sensing data, we
should keep in mind that the remote sensing data provide variables
such as height that are correlated with biomass, but there is no sensor
that is able to directly measure biomass (Woodhouse, Mitchard,
Brolly, Maniatis, & Ryan, 2012). Care should therefore be taken when
extrapolating the identified correlations between local reference values
and the remote sensing signal to different conditions (see Dormann
et al., 2012, e.g., for a general discussion of extrapolation problems).

Overview over sample sizes of the reviewed studies
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Fig. 1. Frequency distribution of the sample sizes of the reference measurements in the
reviewed studies.
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Fig. 2. Frequency distribution of the data sources (sensors) employed in the reviewed
studies. (AL = airborne LiDAR, SL = spaceborne LiDAR, AMS = airborne multispectral,
SMS = spaceborne multispectral, AR = airborne RADAR, SR = spaceborne RADAR,
AHS = airborne hyperspectral, comb = studies using data from at least two of the afore-
mentioned data sources.)

2.2. Data types (sensors)

The reviewed literature used a variety of remote sensing data types
including optical, LiDAR, and RADAR (mostly Synthetic Aperture RADAR
(SAR)) to estimate biomass. The most frequently applied sensors were
discrete return airborne LiDAR, spaceborne multispectral, and airborne
or spaceborne RADAR-systems (Fig. 2).

RADAR data can be obtained with a variety of wavelengths and tech-
nologies. One common option is correlating SAR backscatter intensity
with biomass (Balzter et al., 2003; Santos et al., 2003 ). However, the sig-
nal usually saturates at low biomass values (ca. 50-100 t/ha) (Imhoff,
1995; Koch, 2010). As an alternative to SAR backscatter intensity,
the interferometric and polarimetric coherence have been often
employed to predict biomass (Askne & Santoro, 2005; Eriksson,
Santoro, Wiesmann, & Schmullius, 2003; Tansey et al., 2004;
Wagner et al., 2003). Coherence saturation levels are generally
higher than those reported for backscatter intensity. Under favorable
conditions, correlations exist for values of up to 250-300 t/ha
(Koskinen, Pulliainen, Hyyppd, Engdahl, & Hallikainen, 2001; Santoro,
Shvidenko, McCallum, Askne, & Schmullius, 2007). Provided that prob-
lems concerning saturation can be solved, RADAR data would be a very
interesting source of information for biomass estimates at global scales
due to its independence from clouds and therefore the possibility to obtain
continuous global coverage (Kurvonen, Pulliainen, & Hallikainen, 1999;
Rauste, 2005; Santoro, Beer, et al., 2007).

LiDAR systems actively emit high-frequency pulses of (laser-) light
and the corresponding echoes are received by the sensor to scan the ter-
rain for height information (Goodwin, Coops, & Culvenor, 2006; Nelson,
Krabill, & Tonelli, 1988). When using pulse-form laser scanning systems
in forested environments, the LiDAR signal is partially reflected by the
top of the canopy (first returns), while other parts are reflected from
the intermediate- and understories as well as the ground vegetation
(last returns). Hence, the time interval that the LiDAR pulse needs to re-
turn to the sensor (Zimble et al., 2003) and the intensity of the reflected
energy (Blair, Rabine, & Hofton, 1999; Bortolot & Wynne, 2005) are ap-
propriate to infer forest height as well as horizontal and vertical forest
structure. Height and structural information from LiDAR data is typically

summarized in form of descriptive statistical attributes such as mean
height, height percentiles and comparable derivatives (Tsui et al.,
2012) which have been successfully applied to estimate forest biomass
(e.g., Clark et al,, 2011; Latifi et al., 2010; Naesset et al., 2011; Tian et al,,
2012).

Reflectance of forests with dense canopy cover as measured by
passive multi- and hyperspectral optical sensors mostly originates
from reflections of the sunlight in the topmost part of the canopy. It
has therefore been suggested that single-look optical data do not deliver
detailed information on the vertical stand structure and are barely
sensitive to forest biomass (Steininger, 2000). In general, one would
expect passive optical data to be less sensitive to biomass than active
sensors (Koch, 2010; Rahman, Csaplovics, & Koch, 2007), since the latter
source is normally available in 3D form such as LiDAR-based or interfer-
ometric height models or LiDAR point clouds. Nevertheless, some
studies have been using multi-spectral information to estimate forest
biomass (e.g., Chopping et al., 2011; Zheng et al., 2004) with mixed
results. It is assumed that the wide availability of multispectral data in
combination with low or even no acquisition cost increased the number
of studies using these data (exclusively or in combination with data
from an active sensor). While the direct estimation of biomass with
multi- and hyperspectral data is hampered by its low potential to gather
structural information, optical data can unfold its full potential by
estimating other forest attributes which are potentially related to forest
biomass. For example accurate tree species information (e.g., Carleer &
Wolff, 2004; Ghosh, Fassnacht, Joshi, & Koch, 2014) may serve as a com-
plement to structural information estimated from an active sensor
system, since tree biomass is related to the height and diameter of a
tree, combined with the species-dependent wood density.

In summary, model performances and errors reported in the
reviewed studies suggest a superiority of the active over the passive
sensor systems when modeling forest biomass from remote sensing.

2.3. Prediction methods
2.3.1. Common modeling approaches
The reviewed studies showed that different prediction methods are

applied for the estimation of forest biomass (Fig. 3). By far the largest
number of studies applied different types of linear models (e.g., Morel
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Fig. 3. Frequency distribution of the prediction methods of the reviewed studies.
(lin = linear models, SVM = support vector machines, NN = nearest neighbor-
based methods, RF = random forest, GP = Gaussian processes.)
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et al.,, 2012; Straub & Koch, 2011). A second group of frequently-used
models was based on nonparametric nearest neighbor approaches
(e.g., Karjalainen, Kankare, Vastaranta, Holopainen, & Hyyppa, 2012;
Nothdurft, Soborowski, & Breidenbach, 2009; Straub, Weinacker, &
Koch, 2010). Some studies used other machine learning methods such
as support vector machines (SVM) (e.g., Chen, Hay, & Zhou, 2010;
Zhao, Popescu, Meng, Pang, & Agca, 2011) and random forest (RF)
(e.g., Latifi & Koch, 2012; Yu, Hyyppa, Vastaranta, Holopainen, &
Viitala, 2011). Finally, there was a sizable group of approaches that
were often only implemented in single studies. In studies working
with RADAR data, also physically-based (e.g., Wang & Qi, 2008) and
semi-empirical models (e.g., Carreiras et al., 2012) have been applied.

The use of methods is related to the date of publication. In recent
years, more flexible, often nonparametric methods from fields of
geostatistics and machine learning have become more prevalent.
Methods such as geostatistical smoothing, SVM, nearest neighbor as
well as classification-and regression tree (CART)-based methods per-
form often better than standard linear regression models at identifying
local relationships between remote sensing predictors and reference
measurements based on a limited number of sample units (Gibbons &
Chakraborti, 2003). This is relevant, since field measurements are
often limited in studies focusing on biomass estimations.

The observed trend in modeling towards more flexible spatial
models can be interpreted as an evidence of a genuine methodical ad-
vancement as well as simply a result of ongoing technical improve-
ments in performing expensive statistical computations. In addition,
one may note the shortage of prior knowledge about correlation struc-
tures for complex data (Bright, Hicke, & Hudak, 2012; Carreiras et al.,
2012), which contributes to an increased application of machine learn-
ing methods. This lack of knowledge is particularly evident when com-
bining numerous remote sensing predictors originating from differing
sensors (i.e. ranging from spectral indices to predictors related to
LiDAR height and intensity). However, it may also be that existing
prior knowledge is available (e.g. for fully managed boreal/temperate
stands) (see e.g. Breidenbach, Nasset, Lien, Gobakken, & Solberg,
2010; Karjalainen et al., 2012; Packalen & Maltamo, 2006; Packalen &
Maltamo, 2007; Straub et al., 2010), but the inclusion of this prior
knowledge requires new statistical approaches, for example Bayesian
statistics (e.g., Hartig et al., 2012).

2.3.2. Model diagnostics

A general insight from statistics and machine learning is that more
complex models will usually fit better to any given dataset. However,
a more complex model is neither necessarily more likely to identify
the essential mechanisms, nor does it necessarily lead to improved pre-
dictions when applied to new datasets. The reason is that going towards
more complex models increases the risk of overfitting, i.e. explaining
variance through a large number of redundant variables, which may
lead to undesirably high variance on parameter estimates and unreli-
able predictions (see e.g. Hawkins, 2004). Finding the appropriate
model complexity across this so-called bias-variance trade-off is a cru-
cial topic in spatial statistics (Burnham & Anderson, 2002; Johnson &
Omland, 2004).

There are multiple mechanisms to avoid overfitting. Some are based
on fixed penalties for model complexity, such as the Akaike Information
Criterion (AIC). Another common method is to split the data in two
parts, one for model calibration, and one for evaluating the predictive
error. Methods that use this approach include leave-one-out cross-
validation, k-fold cross-validation, as well as repeated splits in training
and validation samples (Kuhn & Johnson, 2013). Moreover, resampling
methods (e.g. via jackknife or bootstrapping) are helpful by providing
explicit estimates on mean and standard deviation of non-parametric
estimates. Some methods mentioned in Section 2.3 already include
one of these safeguards. In particular, machine learning algorithms
such as RF or SVM typically split the data in training and validation
sets to avoid overfitting.

To assess model performance, the most common measures in the
reviewed studies by far were r? (correlation between observations
and predictions), root mean squared error (RMSE) and mean residual
deviation (many authors called this “bias”). However, one should note
that not all the reviewed literature included cross-validations, or similar
analyses of predictive error and mean residual deviation. Thus, some
studies report model performance measures for the data that were
used to fit the model, while others report it for independent validation
data, for which generally a larger error is to be expected.

3. Case study methods

Our literature review revealed a high diversity of sensor types and
methods used for predicting forest biomass. So far, however, only few
studies have conducted a comparative analysis of those methodological
differences (e.g., Garcia-Gutierrez, Gonzalez-Ferreiro, Mateos-Garcia,
Riquelme-Santos, & Miranda, 2011; Gleason & Im, 2012; McRoberts
et al., 2013; Tian et al., 2012). A possible effect of sample size or the ap-
plied validation procedure on the model performance has to the best of
our knowledge not yet been addressed. To address those issues, we con-
ducted two case studies, in which we examine the effect of reference
data (number of reference sample units), the remote sensing datasets
(predictor data (sensor) type), the prediction method and the valida-
tion procedure. We varied all these factors in a factorial experiment to
assess their impact on the selected model diagnostics. The different op-
tions included for each factor were based on our literature review (pre-
diction methods), with some constraints imposed by the available
datasets (predictor data types and sample sizes).

3.1. Study areas

3.1.1. Karlsruhe, Germany

The study site in Karlsruhe (8° 25’ 00” E and 49° 02’ 20” N) covers an
area of about 900 ha managed forest in the southwestern German fed-
eral state of Baden-Wiirttemberg. The site consists of stands of native
coniferous and deciduous species spreading along a topographically-
gentle terrain. The dominating tree species include Scots Pine (Pinus
sylvestris, L), European Beech (Fagus sylvatica L.), Sessile Oak (Quercus
petraea Liebl.) and Pedunculate Oak (Quercus robur L.). Other species
(Picea sp., Abies sp., and Pseudotsuga menziesii) occasionally occur in
the stands. Stand ages range from approximately 30 to 130 years.
Young stands are often composed of pure pine or pure oak trees and
tend to be dense. In the old stands, pine is normally the dominating spe-
cies. The density of the old stands varies from stand to stand but is often
rather low, particularly in the very old stands. In many cases, there is a
second tree layer consisting of Beech and Hornbeam below the old
Pines.

3.1.2. Monte Oscuro, Chile

The second test site is located in the Maule region of central Chile
(35° 7' 0” S, 70° 55’ 26" E) and covers an area of approximately
1260 ha. Forest vegetation is dominated by roble beech (Nothofagus
oblique (Mirb.) Oerst.). Other species include Mafiio de hojas largas
(Podocarpus salignus D. Don), Naranjillo (Citronella mucronata (Ruiz &
Pav.) D. Don), Pifiol (Lomatia dentata (Ruiz et 176 Pavén) R. Br.),
Peumo (Cryptocarya alba (Mol.) Looser) and Olivillo (Aextoxicon
punctatum Ruiz et Pavén.) which occur in smaller numbers on the site.
The area is in a quasi-natural state and can be considered as a second
growth native forest with a very low management impact. The terrain
is rough and ranges from altitudes of 700 m to 1400 m above sea
level. Most parts of the area consist of naturally regrowing secondary
forest that reestablished itself after harvesting activities for construction
wood in the 1950s (large impact) and 1990s (only 30 ha was affected).
The intensity of the harvesting activities depended on the location with-
in the site and resulted in an unsystematic pattern of stands with differ-
ing ages. Furthermore, individual trees in inaccessible areas might reach
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ages of up to several hundred years. The vegetation density in undis-
turbed regrowing areas is generally very high, due to the lack of man-
agement activities and shows very pronounced horizontal and vertical
structural diversity.

3.2. Field measurements and remote sensing datasets

3.2.1. Karlsruhe, Germany

Aboveground biomass values for 297 inventory plots were collected
in 2006. The inventory consisted of concentric circular plots in a 200 m
x 100 m sampling grid. Trees with DBH >7 cm, 10 cm, 15 cm and 30 cm
were measured in rings with 2 m, 3 m, 6 m and the (full) 12 m radii of
each plot, respectively. Individual tree biomass values were obtained by
applying species-specific allometric models (Zell, 2008). Subsequently,
expansion factors (e.g., expansion factor ring 1 = 1 ha/area of ring 1)
were applied to the individual tree biomass values depending on the
DBH. The expanded biomass values were finally summed up to obtain
total biomass values in tons per hectare (details see Latifi et al., 2012).

The remote sensing dataset used here is described in detail in Latifi
et al. (2012). The dataset includes metrics extracted from pre-
processed, full waveform LiDAR data collected by Toposys GmbH with
a Harrier56 system and a Riegl LMS-Q560 laser scanner launched on a
helicopter. The fullwave data were transformed into a multi pulse-
form point cloud, from which only the first pulse data were utilized in
the study. The point cloud with an average point density of 16 points/
m? was normalized using a Digital Terrain Model (DTM) as calculated
in the TreesVis software (Weinacker, Koch, & Weinacker, 2004).

As a second data source, a hyperspectral scene from the airborne
HyMap sensor was used. The scene was acquired during the HyEurope
campaign of the German Aerospace Center (DLR) in August 2009
under nearly perfect weather conditions. The image was processed in
a standard processing chain of the DLR to correct for atmospheric and
terrain effects. The resulting image had a pixel size of 4 m. The HyMap
sensor produces images with 125 spectral channels featuring a spectral
resolution of 13 to 17 nm between 0.45 and 2.48 um of the wavelength
range (Cocks, Jenssen, Stewart, Wilson, & Shields, 1998). For further
technical details of the LiDAR and hyperspectral data we refer to Latifi
etal. (2012).

3.2.2. Monte Oscuro, Chile

Data on the Chilean study site were collected in early 2011. The
sampling design used a systematic sampling grid with 200 m x 200 m
grid size containing 150 clusters, consisting of five sub-plots with 8 m
radius each (one central plot and four surrounding plots located 30 m
apart from the central plot in the four cardinal directions). Trees with
DBH >5 cm, 10 cm and 20 cm were measured in rings with 2 m, 4 m
and the (full) 8 m radii of the sub-plot, respectively. Tree height was
measured for selected trees within each cluster. Missing heights were
estimated from an allometric model relating DBH to tree height
(Eq. (S1) in Supplementary data 1). Uncertainties in these model
based height predictions were ignored and were assumed to be obser-
vations without errors.

Single tree biomass values were obtained by a second allometric
model (Eq. (S2) in Supplementary data 1) developed for roble beech
by Gayoso, Guerra, and Alarcén (2002). This model was applied to all
tree species. A correction factor for the tree density was applied for
tree species other than roble (Eq. (S3) in Supplementary data 1).

Following the estimation of the single tree biomass values, plot-
specific values in tons per hectare were calculated using expansion
factors for the three defined rings with differing areas and then sum-
ming up the biomass values of the individual trees. The biomass values
of the 5 sub-plots of each cluster were aggregated into a single mean
reference value, which was used to calibrate the remote-sensing
models. The variability of biomass among the individual sub-plots was
not considered explicitly. The rationale was that the mean value of a
cluster is expected to correspond well to the available 30 m pixel size

Table 1
Summary of the biomass values of test sites Karlsruhe and Monte Oscuro. All values are in
tons per hectare (t/ha).

Test site Minimum 1st Median Mean 3rd Maximum N

Quant. Quant. samples
Karlsruhe 9.02 114.00 165.70 167.80 216.40 372.90 297
Monte 11.61 86.72 11540 12320 151.90 296.50 150
Oscuro

of Hyperion data, since it reduces the effects of positioning errors raised
from the rough terrain. Furthermore, using the clusters instead of the in-
dividual sub-plots was assumed to marginally smooth the substantial
structural diversity within the study area.

A summary of the biomass values of test sites in Karlsruhe and
Monte Oscuro is provided in Table 1. The distributions of biomass values
for Karlsruhe and Monte Oscuro are illustrated in Figs. S1 and S2 of
Supplementary data 2.

In Monte Oscuro, a laser scanner identical to the system used in
Karlsruhe was applied to collect LiDAR data from a Piper PA-24 Coman-
che in February 2011. The LiDAR data had an average point density of
4.6 points/m?. LIDAR data processing was identical to the procedure de-
scribed for test site Karlsruhe.

The hyperspectral data originate from the Hyperion sensor on board
of the EO-1 platform. The image was acquired during the peak of the
vegetation period on February 25, 2011 under cloud-free conditions.
Noisy bands were manually removed (see Datt, McVicar, Van Niel,
Jupp, & Pearlman, 2003). The Hyperion tools 2.0 plug-in for the ENVI
software package (White, 2011) was used to prepare the dataset for
subsequent atmospheric correction which was conducted with the
“Fast Line of sight Atmospheric Analysis of Spectral Hypercubes”
(FLAASH) implementation in ENVI (ITT, Visual Information Solutions,
2009). As a final processing step, the Hyperion scene was georectified
to an ortho-photograph which had been acquired simultaneous to the
recorded LiDAR data. The RMSE obtained by the georectification using
evenly distributed pass-points and a second-order polynomial was
0.9 pixels (equivalent to 27 m).

3.3. Feature space set-up

We selected predictors based on previous experiences across these
and other test sites as well as based on the conducted literature review.
An alternative would have been to select predictors with an automated
feature selection algorithm (e.g. Latifi et al., 2012; Tomppo & Halme,
2004), which was not performed to avoid the possible confounding of
the analysis with potential uncertainties of an additional statistical
algorithm.

For LiDAR data, we selected mean height, maximum height, 10th,
70th, and 90th height quantiles of the first-pulse points as predictor var-
iables. These predictors were selected based on the literature review
(e.g., Tonolli et al., 2011; Tsui et al., 2012) as well as earlier experiences,
partly with a similar dataset (e.g., Latifi et al., 2012).

For the hyperspectral predictors, we hypothesized that the associa-
tion between optical data and biomass would originate mostly from
species information, vegetation density and leaf water content. There-
fore, we selected 8 hyperspectral predictors that have been linked to
those three factors in earlier studies. The 8 predictors consisted of
three vegetation indices (VI) including normalized difference vegeta-
tion index (NDVI, as a measure of vegetation density), the normalized
difference water index (NDWI, as a measure of leaf water content)
and an additional Chlorophyll-VI proposed by Gitelson, Gritz, and
Merzlyak (2003) (as a measure of vegetation density), as well as of
five heuristically-selected original hyperspectral bands, located at
518 nm, 681 nm, 1235 nm, 1477 nm and 2032 nm (in the case of the Hy-
perion dataset). These bands have been reported to carry important in-
formation on forest biomass (Latifi et al., 2012; Thenkabail, Enclona,
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Ashton, Legg, & Jean De Dieu, 2004) and species information (Fassnacht
et al.,, 2014; Thenkabail, Enclona, Ashton, & Van Der Meer, 2004). For the
HyMap sensor, the corresponding closest bands were selected

3.4. Biomass modeling

The following gives an overview over the applied modeling set-up.
The set-up consisted of 5 main processing steps:

I) After preparing an initial matrix of response and predictor vari-
ables, the dataset of size n was ordered according to ascending
biomass values and was subdivided in five equal-size subgroups
of size ns = n/5 (analogous to splitting the dataset into 20% per-
centiles).

II) From the resulting stratified dataset, we created subsamples for
each stratum via bootstrapping (Efron & Tibshirani, 1994). That
is we drew 500 datasets with replacement for each of the 4
desired sample sizes per each of the 3 sensor types. The
bootstrapping procedure incorporates effects of sampling
variability which is a requirement for the ANOVA analysis
described in step V. The stratification ensures that samples
from the full range of available biomass values were included in
each bootstrapped input dataset. To generate the 4 desired
sample size classes the number of sample units x drawn from
each of the five subgroups was varied four times (X = ns/4,
X = ns/3, X = ns/2, x = ns). Input datasets of class 1 (x = ns/4)
contained the fewest number of sample units, while those of
class 4 (x = ns) contained the most.
For each combination of sample size and sensor, the 500 input
datasets were fit by 5 prediction methods including k-nearest
neighbor (KNN), SVM, Gaussian processes (GP), RF and stepwise
linear regression (LMSTEP). More details on the prediction
methods are provided in Supplementary data 3.
For each prediction method as well as each input dataset, a cross-
validation was applied which resulted in 1) obtaining the best
model parameters (indicated by the model with lowest RMSE)
and 2) retrieving diagnostics of RMSE and r2. We applied the
cross-validation with three different settings: 10-fold, 5-fold and
3-fold, each with 5 repetitions.

Subsequently, we used an ANOVA to estimate the contribution of

each of the varied factors (sensor, sample size, method and cross-

validation setting) and their corresponding interactions to de-
scribe the variance reflected in the computed model diagnostics

(r? and RMSE) of the model runs.
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The results from the runs that applied the 5-fold cross-validation
with 5 repetitions will be presented in Section 4.2, while the effects of
a varying number of folds is included in the ANOVA results of
Section 4.1. A link to the R-script containing our source code is enclosed
in Supplementary data 4. In addition to the model diagnostics, we show
spatial biomass predictions and their coefficient of variation (CV) for the
entire study sites. For the maps, we calculated the predictors described
in Section 3.3 on a grid over the study area with cell sizes corresponding
to the field plots described in Section 3.2.

4. Results
4.1. ANOVA

In Karlsruhe, the highest ANOVA sum of squares values (ssv) (which
indicate an important contribution to the explained variance of r?) were
reported for predictor data type (968.6) and prediction method (473.0)
as well as for their interaction (247.6) (Table 2). The number of sample
units seems to be less important as indicated by the smaller ssv (116.1).
ANOVA results for RMSE as dependent variable show the same pat-
tern, with predictor data type and prediction method as well as
their interaction having the highest ssv (2,182,360, 1,203,330 and

Table 2
Results of ANOVA conducted to explain the variance of r> and RMSE as obtained for the dif-
ferent experiments on test site Karlsruhe (KA) and Monte Oscuro (MO).

Test site KA MO
Response variable RMSE r? RMSE r?
Df SumSq SumSq SumSq SumSq
PredMeth 4 1,203,330 473.0 977,606 409.7
NumSamp 3 465,024 116.1 348,625 62.1
PredData 2 2,182,360 968.6 1,150,474 648.7
Folds 2 82,518 71.8 190,116 445.9
PredMeth:NumSamp 12 155898 64.3 228,013 1179
PredMeth:PredData 8 566,076 247.6 294,817 1369
PredMeth:folds 8 7341 19 26,868 1.6
NumSamp:PredData 6 7590 2.6 34,072 30.2
NumSamp:folds 6 652 5.8 22,539 108.7
InData:folds 4 506 2.7 5978 9.9
PredMeth:NumSamp: 24 19,691 129 93,467 165
PredData
PredMeth:NumSamp:folds 24 4006 0.8 44,785 2.8
PredMeth:PredData:folds 16 1144 1.2 21,931 1.8
NumSamp:PredData:folds 12 119 0.3 7575 1.5
PredMeth:NumSamp: 48 173 0.1 31,675 0.7
PredData:folds
Residuals 89,820 1,237,038 408.5 17,211,248 829.9

PredMeth = prediction method, NumSamp = number of input sample units,
PredData = predictor data (sensor) type/sensor, folds = number of folds in the k-fold
cross-validation.

566,076, respectively, see Table 2). For Karlsruhe, the number of
folds in the k-fold cross-validation settings did not have a notable effect
on the model diagnostics (ssv of 71.8 and 82,518 for r? and RMSE,
respectively).

Regarding variance in r2, Monte Oscuro showed a largely identical
trend as shown in Karlsruhe (Table 2). Predictor data type and predic-
tion method showed high ssv (648.7 and 409.7, respectively), while
the number of sample units reached only low ssv (ssv = 62.1). A strik-
ing difference was the large effect of the number of folds (ssv = 445.9)
being the second most important factor for explaining the variance in r?
on the test site in Monte Oscuro.

The results for RMSE for Monte Oscuro (Table 2) follow the
patterns of the abovementioned results for Karlsruhe. Largest con-
tribution to the explained variance was returned for the predictor
data type (ssv = 1,150,474) followed by the prediction method
(ssv = 977,606) and the number of sample units (ssv = 348,625).
The number of folds were not of great importance to explain variance
in RMSE (ssv = 190,116).

4.2. Model performances

Figs. 4 and 5 summarize the model performances obtained for all
model runs conducted on the study areas Karlsruhe (results for Monte
Oscuro are provided in Supplementary data 5). In Karlsruhe, the
presence of LiDAR metrics generally led to smaller RMSE and higher r2
values compared to the hyperspectral-only results. An exception was
the kNN model applied on the combined LiDAR and hyperspectral
dataset, where RMSE values increased and r? values decreased
compared to the sole LiDAR models. For all other prediction methods,
only marginal differences in RMSE and r? were observed when running
models on either the sole LiDAR or the combined LiDAR and
hyperspectral datasets. Concerning the number of sample units a rela-
tively stable increase in accuracy and decrease in RMSE were observed
along with increasing sample size (colored horizontal lines from left to
right). Exceptions were the r? values of SVM and KNN applied on
hyperspectral metrics, where a slight decrease in r?> was observed
when switching from class 1 with smallest number of sample units to
class 2.

Comparisons across the five prediction methods indicated that RF
outperformed all other tested methods, especially when many sample
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Fig. 4. Results for test site Karlsruhe. The beanplots illustrate the distribution of the mean r? values from the 500 bootstrapped models as obtained by the 5-fold-cross validation for each
prediction method (LMSTEP = stepwise linear models, SVM = support vector machines, KNN = k-nearest neighbor, RF = random forest, GP = Gaussian processes) and predictor data
(sensor) type. Furthermore, the median values of the corresponding accuracy measures for each of the four sample size classes are given with the colored horizontal stripes (class 1 to class
4 from left to right in colors red, blue, yellow and green).
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Fig. 5. Results for study area Karlsruhe. The beanplots illustrate the distribution of the mean RMSE values from the 500 bootstrapped models. Explanations follow those from Fig. 4.

units were available. The absolute differences in lowest RMSE and LMSTEP) to about 10 t/ha and 0.175 (class 4, next best model GP). The
highest r? between RF and the next best model for the LiDAR models absolute differences in RMSE and r? between RF and the worst models
reached from approximately 2 t/ha and 0.03 (class 1, next best model (LMSTEP and KNN) reached values of 17 t/ha and 0.21. A downside is
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that RF showed highest variances in the obtained accuracy measures,
which were particularly large when solely applying the hyperspectral
data. LMSTEP, in most cases, turned out slightly higher RMSE and
lower r? values as compared to all other methods. Results indicated
symmetric distributions for all accuracy diagnostics for the entire
methods for the 500 bootstrap runs. However, RF was an exception, in
which more or less bi-modal distributions were observed in all present-
ed cases (Figs. 4, 5).

The results for Monte Oscuro showed similar qualitative patterns as
Karlsruhe. Models incorporating LiDAR data produced greater accura-
cies than those built solely based on hyperspectral data. Similarly, the
differences between model diagnostics of LiDAR-only and combined
LiDAR/hyperspectral data were marginal. For models based on the

Mean biomass [t/ha]
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combined LiDAR and hyperspectral data, the notable low performance
of KNN was again observed. The beanplots (provided in Supplementary
data 5) show symmetric distributions of the RMSE values for all predic-
tion methods, while depicting positively skewed distributions of r?
values for RF.

Concerning the varying number of sample units, notable dissimilar-
ities occurred in Monte Oscuro compared to Karlsruhe. The r? values
were mostly high when the predictor dataset consisted of fewer sample
units. In the case of the hyperspectral dataset, the values then decreased
along with increasing number of sample units. When LiDAR data were
available, the r? values in most cases decreased when going from class
1 to class 2 and started to increase again. For RMSE this trend was virtu-
ally not existent.

CV of biomass estimates
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0.3

0.2
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Fig. 6. Wall-to-wall map of mean biomass estimates for test site Karlsruhe. Left map shows mean biomass predictions as obtained from the 500 bootstrapped model runs, using LiDAR data,
random forest and largest sample size (class 4). Additionally, the coefficient of variation (CV) of the biomass estimates is given on the right.
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Fig. 7. Wall-to-wall map of mean biomass estimates for test site Monte Oscuro. Explanations follow those from Fig. 6.

All in all, the observed variances of the model diagnostics were
higher and the RMSE values smaller in Monte Oscuro when compared
to Karlsruhe. Selected residual plots for the study area Karlsruhe are
provided in Supplementary data 6.

4.3. Wall-to-wall predictions

Fig. 6 and 7 illustrate the exemplified wall-to-wall predictions for
test sites Karlsruhe and Monte Oscuro as obtained from the LiDAR
runs with the highest number of sample units and RF model.

For test site Karlsruhe, the mean biomass estimates often show ho-
mogenous patterns within stand borders, which is plausible due to the
typically identical management within those stands. The estimates are
reasonably well spread over the original range of reference biomass
values (Table 1), although extreme biomass values are less frequently
observed. This is in agreement with the distribution of the residuals
displayed and discussed in the Supplementary data 6. Nonforested
areas can be identified as homogeneous areas of low predicted biomass
estimates. In the forested areas CV of the biomass estimates indicates
reasonably low values.

For Monte Oscuro, large areas show medium predicted biomass
values, with only two regions in the Northwest and Southeast reaching
higher biomass estimates. This agrees fairly well with the known situa-
tion on the site. The two mentioned areas showing high biomass esti-
mates are located on relatively hard accessible high altitudes and have
therefore been less affected by wood exploitation. As in Karlsruhe,
extreme values are less frequent.

Further maps of biomass estimates as obtained from other predic-
tion methods, sample sizes and predictor data type are provided in
the Supplementary data 8.

5. Discussion

Our literature review revealed a large diversity in the methods that
are used to estimate forest biomass from remote sensing data, with no
clear agreement on what methods perform best. We therefore set
up two case studies, in which we analyzed the effect of sample size

(4 cases), predictor data (sensor) type (3 cases), prediction method
(5 cases) and cross-validation (3 cases) on the accuracy of forest bio-
mass estimates from LiDAR and hyperspectral data. We generated
resampled datasets by stratified bootstrapping, and used ANOVA to
rank the importance of the four factors on the accuracy of the bio-
mass predictions, measured by cross-validated RMSE and r2.

Biomass estimates of Monte Oscuro had generally lower RMSE
values than Karlsruhe but showed a slightly increased variance. We
conjecture that the greater structural complexity of the forest in
the unmanaged Monte Oscuro stands hampers finding reliable re-
mote sensing predictors and therefore increased the variance of the
RMSE. The generally lower RMSE values are most probably due to
the smaller range of reference biomass values in Monte Oscuro com-
pared to Karlsruhe (Table 1). As RMSE is an absolute measure of the
deviation between model and data, larger ranges of the reference
values create the potential for larger deviances when the model fit
is unsatisfactory.

Our ANOVA results indicate that the predictor data type is the most
important factor for the accuracy of biomass predictions. This is in line
with other studies (e.g., Clark et al., 2011; Latifi et al., 2012) as well as
a recent meta-analysis (Zolkos, Goetz, & Dubayah, 2013), which report-
ed that LiDAR has a notably higher information content than optical
data for modeling forest biomass. The sole use of hyperspectral data
resulted in relatively low model performances at both test sites. This is
in accordance with earlier findings (e.g., Chaidez, 2009; Clark et al.,
2011; Latifi et al,, 2012; Laurin et al., 2014). The combination of
hyperspectral and LiDAR information did not improve results compared
to the LiDAR-only models. This is in line with earlier findings (e.g., Clark
et al,, 2011; Hyde, Nelson, Kimes, & Levine, 2007; Nelson et al., 2007),
although other studies reported more positive results (e.g., Anderson
et al., 2008; Tsui et al., 2012). We stress that our results are based on
forest data. Optical data may be more suitable to predict vegetation
biomass in other biomes such as grasslands.

The prediction method turned out to be the second most important
factor for the accuracy of biomass prediction in most cases. Although
also earlier studies reported notable differences in the performance of
prediction methods (Garcia-Gutierrez et al., 2011; Gleason & Im,
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2012; Latifi et al,, 2010), we were somewhat surprised that the effect
was so pronounced.

Among the considered methods, random forest (RF) outperformed
the other tested approaches, especially when many sample units were
used. We attribute the good performance, that was also found in other
studies (e.g., Garcia-Gutierrez et al,, 2011; Latifi et al., 2010), to the flex-
ibility of the RF approach, which notably differs from all other tested
methods due to its conceptual design. A problem with RF may be that
the applied subsampling in the algorithm may result in considerable
variance of the estimates when applied to a small number of sample
units (compare results regarding sample size; see also Latifi et al., 2012).

Stepwise linear regression (LMSTEP) in most cases performed worse
than other tested models, particularly when using hyperspectral data.
We explain this by the fact that relationships between hyperspectral
predictors and observed biomass are likely nonlinear and therefore
not well modeled by LMSTEP. In contrast, LiDAR metrics (e.g. mean
tree height) can be expected to show a more linear association to bio-
mass due to the relationship between height and volume. This agrees
with our results in which LMSTEP performed similar to most other test-
ed prediction methods when LiDAR data were applied.

A striking observation concerning the prediction methods was the
substantially worse performances of KNN for the combined LiDAR and
hyperspectral datasets. We assume that this is related to the lack of an
effective procedure to weight the prediction strength of the predictors
in our implementation of KNN.

Somewhat surprisingly, the number of sample units was of lower
importance than the prediction method for explaining the variance in
r? and RMSE on both test sites. Nevertheless, Figs. 4 and 5 show that a
practically relevant effect on r? and RMSE can be attributed to sample
size (compare colored stripes), especially for RF. Furthermore, the im-
portance was higher for Monte Oscuro compared to Karlsruhe. We
explain this by the generally-smaller available sample size for the
Chilean test site, and the observation that model performance reacts
particularly sensitive when the sample size falls below a minimum
number of samples.

Small sample size is also related to a further issue. For Monte Oscuro,
the number of folds was found to have a notable effect on the explained
variance of r? For example, for model runs with a 10-fold cross-
validation with 5 repetitions (results in Supplementary data 7), we
observed that the models with smallest sample size (class 1) produced
very high r? values on test site Monte Oscuro, which obviously did not
match the predictive power of the models. Further analysis revealed
that the very small sample size of the hold-out sample (3-4 samples)
during the cross-validation caused this result. Reducing the number of
folds in the cross-validation settings mitigated this effect, as it is also
apparent in the eventually-presented results. We conclude that r?
values (calculated as Pearson's correlation coefficient between observed
and predicted samples) can be strongly influenced by the applied num-
ber of folds within the cross-validation when the sample size is small. In
Karlsruhe, where the samples size was generally bigger, the influence of
the cross-validation settings was marginal. RMSE values were not
notably influenced by the validation settings on both test sites, which
suggest that RMSE is more robust to this problem. The discussed issue
is interesting because a substantial number of the reviewed studies
used a very limited sample size (Fig. 1) and therefore, might have
been affected by similar problems. Zolkos et al. (2013) conducted a
meta-analysis on LiDAR-based estimation of forest biomass and found
a negative relationship between model errors and the size of inventory
plots. Although other explanations are possible, one reason may simply
be that larger inventory plots are often correlated with smaller sample
sizes due to the increased workload. Studies with larger plots may
therefore face an increased risk to suffer from statistical artifacts due
to small sample size.

Regarding the generality of our results, it should be noted that our
ranking of the five prediction methods was based on their r? and
RMSE values. It is known that methods that perform well considering

those criteria may have weaknesses when considering other aspects of
the model-data fit. Powell et al. (2010), for example, compared RF and
two other prediction methods (reduced major axis regression, gradient
nearest neighbor imputation) for predicting field biomass values from
Landsat time series. Similar as in the present study, RF outperformed
the other tested methods in terms of lowest RMSE values; however,
the results of the other methods outperformed RF in maintaining the
observed variance of the reference biomass values which, depending
on the application, can be a major criteria for model selection.

Another consideration regarding the generality of the ranking is that
we selected relatively simple algorithms as representations of regression
(LMSTEP) and nearest neighbor approaches (KNN with an unweighted
Euclidean distance as distance metric). The use of non-linear regression
(as e.g. applied in Neesset et al. 2013; McRoberts et al., 2013), as well as
the further optimization of the KNN approach by applying efficient
weighting procedures of the predictor variables (e.g., with a genetic al-
gorithm or an optimized distance metric) could change the ranking of
these methods compared to RF.

Concerning the ANOVA results, it has to be considered that the
amount of residual variance in the ANOVA originates from the variance
in r? and RMSE that is created by the bootstrapping. Because of potential
larger-scale environmental effects, and also because of potential obser-
vation uncertainties, we would expect that the within-sample variance
used by the bootstrap tends to be lower than the out-of-sample variance
that would originate from repeating this analysis over multiple study
areas. It can therefore be expected that the reported ANOVA uncer-
tainties are slightly too optimistic, while the estimated effects of the dif-
ferent factors should be unbiased by this consideration.

We also concede that our reports have to be interpreted cautiously,
as they are limited to two sites as well as to two remote sensing sources
of information and a limited number of prediction methods. We think
that, among those three, the choice of sites is least likely to substantially
change our conclusions: although the two test sites differ notably in
terms of tree species, topography and forest structure, the observed
trends were still relatively stable. Extending our research to more di-
verse datasets, potentially also integrating RADAR information, would
be of high interest. Further studies could also investigate whether
other prediction methods, such as nonlinear regression or optimized
nearest neighbor approaches alter our findings. In addition, the meth-
odology used here could be improved in the future by attempting to
correct prediction bias, as well as by exploring the uncertainty on larger
area estimates (see hints given by Naesset et al. (2011) and McRoberts
et al. (2013)).

Finally, there is the possibility of improving model estimates in other
ways than improving the statistical algorithm. Examples of this would
be methods to select the predictor variables; incorporating additional
environmental covariates such as topography, soil or climate informa-
tion; or creating separate estimates for different forest types.

6. Conclusions

Our study showed that the prediction method had a considerable
impact on the accuracy of the biomass estimates, nearly equally
important as data type, and more important than sample size. This
indicates that collecting more reference data is not necessarily the
most effective option for improving the accuracy of biomass
estimates. Yet, our results also indicate the need for a minimum
number of reference samples (per remote sensing dataset) and a
sound selection of the validation methods to avoid overly optimistic
r? values. In addition, the overall best algorithm, RF, benefited
strongly from a larger sample size.

Within the limitations of the applied datasets and tested prediction
methods, our recommendation for minimizing predictive error of forest
biomass estimates is therefore to use LIDAR data with a preferably large
number of reference samples in combination with RF. Moreover, when
reporting model performance, we do not recommend using the
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correlation between predictions and observations as the sole indicator
of performance, as we saw considerable dependence of Pearson's r? on
the selection of sample units and the sample size. RMSE was more
stable, but does not consider the variability within the data that the
model has to predict. Therefore, multiple performance measures, at
least RMSE and one measure of correlation, should be ideally reported.

For the future, expanding our results to a larger number of datasets
(more test sites, more sensor systems and especially the inclusion of
Radar information) would further increase our understanding of the
role of the statistical model set-up in the estimation of forest biomass
from remote sensing. We invite other researchers to repeat our analysis
on new datasets, using the code we provide. The integration of addition-
al predictors (e.g., topographic information or the pre-stratification into
forest types) would be a further possible extension of our work.
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