Sharp Interpolation Inequalities on the Sphere: New Methods and Consequences*

Jean DOLBEAULT ${ }^{1}$ Maria J. ESTEBAN ${ }^{1}$
Michal KOWALCZYK ${ }^{2}$ Michael LOSS ${ }^{3}$
(In honor of the scientific heritage of Jacques-Louis Lions)

Abstract

This paper is devoted to various considerations on a family of sharp interpolation inequalities on the sphere, which in dimension greater than 1 interpolate between Poincaré, logarithmic Sobolev and critical Sobolev (Onofri in dimension two) inequalities. The connection between optimal constants and spectral properties of the Laplace-Beltrami operator on the sphere is emphasized. The authors address a series of related observations and give proofs based on symmetrization and the ultraspherical setting.

Keywords Sobolev inequality, Interpolation, Gagliardo-Nirenberg inequality,
Logarithmic Sobolev inequality, Heat equation
2000 MR Subject Classification 26D10, 46E35, 58E35

1 Introduction

The following interpolation inequality holds on the sphere:

$$
\begin{equation*}
\frac{p-2}{d} \int_{\mathbb{S}^{d}}|\nabla u|^{2} \mathrm{~d} \mu+\int_{\mathbb{S}^{d}}|u|^{2} \mathrm{~d} \mu \geq\left(\int_{\mathbb{S}^{d}}|u|^{p} \mathrm{~d} \mu\right)^{\frac{2}{p}}, \quad \forall u \in \mathrm{H}^{1}\left(\mathbb{S}^{d}, \mathrm{~d} \mu\right) \tag{1.1}
\end{equation*}
$$

for any $p \in\left(2,2^{*}\right]$ with $2^{*}=\frac{2 d}{d-2}$ if $d \geq 3$, and for any $p \in(2, \infty)$ if $d=2$. In (1.1), $\mathrm{d} \mu$ is the uniform probability measure on the d-dimensional sphere, that is, the measure induced by Lebesgue's measure on $\mathbb{S}^{d} \subset \mathbb{R}^{d+1}$, up to a normalization factor such that $\mu\left(\mathbb{S}^{d}\right)=1$.

Such an inequality was established by Bidaut-Véron and Véron [21] in the more general context of compact manifolds with uniformly positive Ricci curvature. Their method is based on the Bochner-Lichnerowicz-Weitzenböck formula and the study of the set of solutions to an elliptic equation, which is seen as a bifurcation problem and contains the Euler-Lagrange equation associated to the optimality case in (1.1). Later, in [12], Beckner gave an alternative proof based on Legendre's duality, the Funk-Hecke formula, proved in [27, 31], and the expression of

[^0]some optimal constants found by Lieb [33]. Bakry, Bentaleb and Fahlaoui in a series of papers based on the carré du champ method and mostly devoted to the ultraspherical operator showed a result which turns out to give yet another proof, which is anyway very close to the method of [21]. Their computations allow to slightly extend the range of the parameter p (see [7-8, 14-20] and $[34,37]$ for earlier related works).

In all computations based on the Bochner-Lichnerowicz-Weitzenböck formula, the choice of exponents in the computations appears somewhat mysterious. The seed for such computations can be found in [28]. Our purpose is on one hand to give alternative proofs, at least for some ranges of the parameter p, which do not rely on such a technical choice. On the other hand, we also aim at simplifying the existing proofs (see Section 3.2).

Inequality (1.1) is remarkable for several reasons as follows:
(1) It is optimal in the sense that 1 is the optimal constant. By Hölder's inequality, we know that $\|u\|_{\mathrm{L}^{2}\left(\mathbb{S}^{d}\right)} \leq\|u\|_{\mathrm{L}^{p}\left(\mathbb{S}^{d}\right)}$, so that the equality case can only be achieved by functions, which are constants a.e. Of course, the main issue is to prove that the constant $\frac{p-2}{d}$ is optimal, which is one of the classical issues of the so-called $A-B$ problem, for which we primarily refer to [30].
(2) If $d \geq 3$, the case $p=2^{*}$ corresponds to the Sobolev's inequality. Using the stereographic projection as in [33], we easily recover Sobolev's inequality in the Euclidean space \mathbb{R}^{d} with the optimal constant and obtain a simple characterization of the extremal functions found by Aubin and Talenti [5, 36-37].
(3) In the limit $p \rightarrow 2$, one obtains the logarithmic Sobolev inequality on the sphere, while by taking $p \rightarrow \infty$ if $d=2$, one recovers Onofri's inequality (see [25] and Corollary 2.1 below).

Exponents are not restricted to $p>2$. Consider indeed the functional

$$
\mathcal{Q}_{p}[u]:=\frac{p-2}{d} \frac{\int_{\mathbb{S}^{d}}|\nabla u|^{2} \mathrm{~d} \mu}{\left(\int_{\mathbb{S}^{d}}|u|^{p} \mathrm{~d} \mu\right)^{\frac{2}{p}}-\int_{\mathbb{S}^{d}}|u|^{2} \mathrm{~d} \mu}
$$

for $p \in[1,2) \cup\left(2,2^{*}\right]$ if $d \geq 3$, or $p \in[1,2) \cup(2, \infty)$ if $d=2$, and

$$
\mathcal{Q}_{2}[u]:=\frac{2}{d} \frac{\int_{\mathbb{S}^{d}}|\nabla u|^{2} \mathrm{~d} \mu}{\int_{\mathbb{S}^{d}}|u|^{2} \log \left(\frac{|u|^{2}}{\int_{\mathbb{S}^{d}}|u|^{2} \mathrm{~d} \mu}\right) \mathrm{d} \mu}
$$

for any $d \geq 1$. Because $\mathrm{d} \mu$ is a probability measure, $\left(\int_{\mathbb{S}^{d}}|u|^{p} \mathrm{~d} \mu\right)^{\frac{2}{p}}-\int_{\mathbb{S}^{d}}|u|^{2} \mathrm{~d} \mu$ is nonnegative if $p>2$, nonpositive if $p \in[1,2)$, and equal to zero if and only if u is constant a.e. Denote by \mathcal{A} the set of $\mathrm{H}^{1}\left(\mathbb{S}^{d}, \mathrm{~d} \mu\right)$ functions, which are not a.e. constants. Consider the infimum

$$
\begin{equation*}
\mathcal{I}_{p}:=\inf _{u \in \mathcal{A}} \mathcal{Q}_{p}[u] \tag{1.2}
\end{equation*}
$$

With these notations, we can state a slight result more general than the one of (1.1), which goes as follows and also covers the range $p \in[1,2]$.

Theorem 1.1 With the above notations, $\mathcal{I}_{p}=1$ for any $p \in\left[1,2^{*}\right]$ if $d \geq 3$, or any $p \in[1, \infty)$ if $d=1,2$.

As already explained above, in the case $\left(2,2^{*}\right]$, the above theorem was proved first in $[21$, Corollary 6.2], and then in [12], by using the previous results of Lieb [33] and the Funk-Hecke formula (see $[27,31]$). The case $p=2$ was covered in [12]. The whole range $p \in\left[1,2^{*}\right]$ was covered in the case of the ultraspherical operator in [19-20]. Here we give alternative proofs
for various ranges of p, which are less technical and interesting in themselves, as well as some extensions.

Notice that the case $p=1$ can be written as

$$
\int_{\mathbb{S}^{d}}|\nabla u|^{2} \mathrm{~d} \mu \geq d\left[\int_{\mathbb{S}^{d}}|u|^{2} \mathrm{~d} \mu-\left(\int_{\mathbb{S}^{d}}|u| \mathrm{d} \mu\right)^{2}\right], \quad \forall u \in \mathrm{H}^{1}\left(\mathbb{S}^{d}, \mathrm{~d} \mu\right)
$$

which is equivalent to the usual Poincaré inequality

$$
\int_{\mathbb{S}^{d}}|\nabla u|^{2} \mathrm{~d} \mu \geq d \int_{\mathbb{S}^{d}}|u-\bar{u}|^{2} \mathrm{~d} \mu, \quad \forall u \in \mathrm{H}^{1}\left(\mathbb{S}^{d}, \mathrm{~d} \mu\right) \quad \text { with } \bar{u}=\int_{\mathbb{S}^{d}} u \mathrm{~d} \mu
$$

See Remark 2.1 for more details. The case $p=2$ provides the logarithmic Sobolev inequality on the sphere. It holds as a consequence of the inequality for $p \neq 2$ (see Corollary 1.1).

For $p \neq 2$, the existence of a minimizer of

$$
u \mapsto \int_{\mathbb{S}^{d}}|\nabla u|^{2} \mathrm{~d} \mu+\frac{\mathrm{d} \mathcal{I}_{p}}{p-2}\left[\|u\|_{\mathrm{L}^{2}\left(\mathbb{S}^{d}\right)}^{2}-\|u\|_{\mathrm{L}^{p}\left(\mathbb{S}^{d}\right)}^{2}\right]
$$

in $\left\{u \in \mathrm{H}^{1}\left(\mathbb{S}^{d}, \mathrm{~d} \mu\right): \int_{\mathbb{S}^{d}}|u|^{p} \mathrm{~d} \mu=1\right\}$ is easily achieved by variational methods, and will be taken for granted. The compactness for either $p \in[1,2)$ or $2<p<2^{*}$ is indeed classical, while the case $p=2^{*}, d \geq 3$ can be studied by concentration-compactness methods. If a function $u \in \mathrm{H}^{1}\left(\mathbb{S}^{d}, \mathrm{~d} \mu\right)$ is optimal for (1.1) with $p \neq 2$, then it solves the Euler-Lagrange equation

$$
\begin{equation*}
-\Delta_{\mathbb{S}^{d}} u=\frac{\mathrm{d} \mathcal{I}_{p}}{p-2}\left[\|u\|_{\mathrm{L}^{p}\left(\mathbb{S}^{d}\right)}^{2-p} u^{p-1}-u\right] \tag{1.3}
\end{equation*}
$$

where $\Delta_{\mathbb{S}^{d}}$ denotes the Laplace-Beltrami operator on the sphere \mathbb{S}^{d}.
In any case, it is possible to normalize the $\mathrm{L}^{p}\left(\mathbb{S}^{d}\right)$-norm of u to 1 without restriction because of the zero homogeneity of \mathcal{Q}_{p}. It turns out that the optimality case is achieved by the constant function, with value $u \equiv 1$ if we assume $\int_{\mathbb{S}^{d}}|u|^{p} \mathrm{~d} \mu=1$, in which case the inequality degenerates because both sides are equal to 0 . This explains why the dimension d shows up here: the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$, satisfying

$$
u_{n}(x)=1+\frac{1}{n} v(x)
$$

with $v \in \mathrm{H}^{1}\left(\mathbb{S}^{d}, \mathrm{~d} \mu\right)$, such that $\int_{\mathbb{S}^{d}} v \mathrm{~d} \mu=0$, is indeed minimizing if and only if

$$
\int_{\mathbb{S}^{d}}|\nabla v|^{2} \mathrm{~d} \mu \geq d \int_{\mathbb{S}^{d}}|v|^{2} \mathrm{~d} \mu
$$

and the equality case is achieved if v is an optimal function for the above Poincaré inequality, i.e., a function associated to the first non-zero eigenvalue of the Laplace-Beltrami operator $-\Delta_{\mathbb{S}^{d}}$ on the sphere \mathbb{S}^{d}. Up to a rotation, this means

$$
v(\xi)=\xi_{d}, \quad \forall \xi=\left(\xi_{0}, \xi_{1}, \cdots, \xi_{d}\right) \in \mathbb{S}^{d} \subset \mathbb{R}^{d+1}
$$

since $-\Delta_{\mathbb{S}^{d}} v=\mathrm{d} v$. Recall that the corresponding eigenspace of $-\Delta_{\mathbb{S}^{d}}$ is d-dimensional and is generated by the composition of v with an arbitrary rotation.

1.1 The logarithmic Sobolev inequality

As the first classical consequence of (1.2), we have a logarithmic Sobolev inequality. This result is rather classical. Related forms of the result can be found, for instance, in [9] or in [3].

Corollary 1.1 Let $d \geq 1$. For any $u \in \mathrm{H}^{1}\left(\mathbb{S}^{d}, \mathrm{~d} \mu\right) \backslash\{0\}$, we have

$$
\int_{\mathbb{S}^{d}}|u|^{2} \log \left(\frac{|u|^{2}}{\int_{\mathbb{S}^{d}}|u|^{2} \mathrm{~d} \mu}\right) \mathrm{d} \mu \leq \frac{2}{d} \int_{\mathbb{S}^{d}}|\nabla u|^{2} \mathrm{~d} \mu
$$

Moreover, the constant $\frac{2}{d}$ is sharp.
Proof The inequality is achieved by taking the limit as $p \rightarrow 2$ in (1.2). To see that the constant $\frac{2}{d}$ is sharp, we can observe that

$$
\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{S}^{d}}|1+\varepsilon v|^{2} \log \left(\frac{|1+\varepsilon v|^{2}}{\int_{\mathbb{S}^{d}}|1+\varepsilon v|^{2} \mathrm{~d} \mu}\right) \mathrm{d} \mu=2 \int_{\mathbb{S}^{d}}|v-\bar{v}|^{2} \mathrm{~d} \mu
$$

with $\bar{v}=\int_{\mathbb{S}^{d}} v \mathrm{~d} \mu$. The result follows by taking $v(\xi)=\xi_{d}$.

2 Extensions

2.1 Onofri's inequality

In the case of dimension $d=2$, (1.1) holds for any $p>2$, and we recover Onofri's inequality by taking the limit $p \rightarrow \infty$. This result is standard in the literature (see for instance [12]). For completeness, let us give a statement and a short proof.

Corollary 2.1 Let $d=1$ or $d=2$. For any $v \in \mathrm{H}^{1}\left(\mathbb{S}^{d}, \mathrm{~d} \mu\right)$, we have

$$
\int_{\mathbb{S}^{d}} \mathrm{e}^{v-\bar{v}} \mathrm{~d} \mu \leq \mathrm{e}^{\frac{1}{2 d} \int_{\mathbb{S}^{d}}|\nabla v|^{2} \mathrm{~d} \mu}
$$

where $\bar{v}=\int_{\mathbb{S}^{d}} v \mathrm{~d} \mu$ is the average of v. Moreover, the constant $\frac{1}{2 d}$ in the right-hand side is sharp.

Proof In dimension $d=1$ or $d=2$, (1.1) holds for any $p>2$. Take $u=1+\frac{v}{p}$ and consider the limit as $p \rightarrow \infty$. We observe that

$$
\int_{\mathbb{S}^{d}}|\nabla u|^{2} \mathrm{~d} \mu=\frac{1}{p^{2}} \int_{\mathbb{S}^{d}}|\nabla v|^{2} \mathrm{~d} \mu \quad \text { and } \quad \lim _{p \rightarrow \infty} \int_{\mathbb{S}^{d}}|u|^{p} \mathrm{~d} \mu=\int_{\mathbb{S}^{d}} \mathrm{e}^{v} \mathrm{~d} \mu
$$

so that

$$
\left(\int_{\mathbb{S}^{d}}|u|^{p} \mathrm{~d} \mu\right)^{\frac{2}{p}}-1 \sim \frac{2}{p} \log \left(\int_{\mathbb{S}^{d}} \mathrm{e}^{v} \mathrm{~d} \mu\right) \quad \text { and } \quad \int_{\mathbb{S}^{d}}|u|^{2} \mathrm{~d} \mu-1 \sim \frac{2}{p} \int_{\mathbb{S}^{d}} v \mathrm{~d} \mu
$$

The conclusion holds by passing to the limit $p \rightarrow \infty$ in (1.1). Optimality is once more achieved by considering $v=\varepsilon v_{1}, v_{1}(\xi)=\xi_{d}, d=1$ and Taylor expanding both sides of the inequality in terms of $\varepsilon>0$ small enough. Notice indeed that $-\Delta_{\mathbb{S}^{d}} v_{1}=\lambda_{1} v_{1}$ with $\lambda_{1}=d$, so that

$$
\|\nabla u\|_{\mathrm{L}^{2}\left(\mathbb{S}^{d}\right)}^{2}=\varepsilon^{2}\left\|\nabla v_{1}\right\|_{\mathrm{L}^{2}\left(\mathbb{S}^{d}\right)}^{2}=\varepsilon^{2} d\left\|v_{1}\right\|_{\mathrm{L}^{2}\left(\mathbb{S}^{d}\right)}^{2}
$$

$\int_{\mathbb{S}^{d}} v_{1} \mathrm{~d} \mu=\bar{v}_{1}=0$, and

$$
\int_{\mathbb{S}^{d}} \mathrm{e}^{v-\bar{v}} \mathrm{~d} \mu-1 \sim \frac{\varepsilon^{2}}{2} \int_{\mathbb{S}^{d}}|v-\bar{v}|^{2} \mathrm{~d} \mu=\frac{1}{2} \varepsilon^{2}\left\|v_{1}\right\|_{\mathrm{L}^{2}\left(\mathbb{S}^{d}\right)}^{2} .
$$

2.2 Interpolation and a spectral approach for $p \in(1,2)$

In [10], Beckner gave a method to prove interpolation inequalities between the logarithmic Sobolev and the Poincaré inequalities in the case of a Gaussian measure. Here we shall prove that the method extends to the case of the sphere and therefore provides another family of interpolating inequalities, in a new range: $p \in[1,2)$, again with optimal constants. For further considerations on inequalities that interpolate between the Poincaré and the logarithmic Sobolev inequalities, we refer to $[1-2,9-10,23-24,27,33]$ and the references therein.

Our purpose is to extend (1.1) written as

$$
\begin{equation*}
\frac{1}{d} \int_{\mathbb{S}^{d}}|\nabla u|^{2} \mathrm{~d} \mu \geq \frac{\left(\int_{\mathbb{S}^{d}}|u|^{p} \mathrm{~d} \mu\right)^{\frac{2}{p}}-\int_{\mathbb{S}^{d}}|u|^{2} \mathrm{~d} \mu}{p-2}, \quad \forall u \in \mathrm{H}^{1}\left(\mathbb{S}^{d}, \mathrm{~d} \mu\right) \tag{2.1}
\end{equation*}
$$

to the case $p \in[1,2)$. Let us start with a remark.
Remark 2.1 At least for any nonnegative function v, using the fact that μ is a probability measure on \mathbb{S}^{d}, we may notice that

$$
\int_{\mathbb{S}^{d}}|v-\bar{v}|^{2} \mathrm{~d} \mu=\int_{\mathbb{S}^{d}}|v|^{2} \mathrm{~d} \mu-\left(\int_{\mathbb{S}^{d}} v \mathrm{~d} \mu\right)^{2}
$$

can be rewritten as

$$
\int_{\mathbb{S}^{d}}|v-\bar{v}|^{2} \mathrm{~d} \mu=\frac{\int_{\mathbb{S}^{d}}|v|^{2} \mathrm{~d} \mu-\left(\int_{\mathbb{S}^{d}}|v|^{p} \mathrm{~d} \mu\right)^{\frac{2}{p}}}{2-p}
$$

for $p=1$. Hence this extends (1.1) to the case $q=1$. However, as already noticed for instance in [1], the inequality

$$
\int_{\mathbb{S}^{d}}|v|^{2} \mathrm{~d} \mu-\left(\int_{\mathbb{S}^{d}}|v| \mathrm{d} \mu\right)^{2} \leq \frac{1}{d} \int_{\mathbb{S}^{d}}|\nabla v|^{2} \mathrm{~d} \mu
$$

also means that, for any $c \in \mathbb{R}$,

$$
\int_{\mathbb{S}^{d}}|v+c|^{2} \mathrm{~d} \mu-\left(\int_{\mathbb{S}^{d}}|v+c| \mathrm{d} \mu\right)^{2} \leq \frac{1}{d} \int_{\mathbb{S}^{d}}|\nabla v|^{2} \mathrm{~d} \mu
$$

If v is bounded from below a.e. with respect to μ and $c>-\underset{\mu}{\operatorname{ess} \inf } v$, so that $v+c>0 \mu$ a.e., and the left-hand side is
$\int_{\mathbb{S}^{d}}|v+c|^{2} \mathrm{~d} \mu-\left(\int_{\mathbb{S}^{d}}|v+c| \mathrm{d} \mu\right)^{2}=c^{2}+2 c \int_{\mathbb{S}^{d}} v \mathrm{~d} \mu+\int_{\mathbb{S}^{d}}|v|^{2} \mathrm{~d} \mu-\left(c+\int_{\mathbb{S}^{d}} v \mathrm{~d} \mu\right)^{2}=\int_{\mathbb{S}^{d}}|v-\bar{v}|^{2} \mathrm{~d} \mu$,
so that the inequality is the usual Poincaré inequality. By density, we recover that (2.1) written for $p=1$ exactly amounts to Poincaré inequality written not only for $|v|$, but also for any $v \in \mathrm{H}^{1}\left(\mathbb{S}^{d}, \mathrm{~d} \mu\right)$.

Next, using the method introduced by Beckner [10] in the case of a Gaussian measure, we are in the position to prove (2.1) for any $p \in(1,2)$, knowing that the inequality holds for $p=1$ and $p=2$.

Proposition 2.1 Inequality (2.1) holds for any $p \in(1,2)$ and any $d \geq 1$. Moreover, d is the optimal constant.

Proof Optimality can be checked by Taylor expanding $u=1+\varepsilon v$ at order two in terms of $\varepsilon>0$ as in the case $p=2$ (the logarithmic Sobolev inequality). To establish the inequality itself, we may proceed in two steps.

Step 1 (Nelson's Hypercontractivity Result) Although the result can be established by direct methods, we follow here the strategy of Gross [29], which proves the equivalence of the optimal hypercontractivity result and the optimal logarithmic Sobolev inequality.

Consider the heat equation of \mathbb{S}^{d}, namely,

$$
\frac{\partial f}{\partial t}=\Delta_{\mathbb{S}^{d}} f
$$

with the initial data $f(t=0, \cdot)=u \in L^{\frac{2}{p}}\left(\mathbb{S}^{d}\right)$ for some $p \in(1,2]$, and let $F(t):=\|f(t, \cdot)\|_{L^{p(t)}\left(\mathbb{S}^{d}\right)}$. The key computation goes as follows:

$$
\begin{aligned}
\frac{F^{\prime}}{F} & =\frac{\mathrm{d}}{\mathrm{~d} t} \log F(t)=\frac{\mathrm{d}}{\mathrm{~d} t}\left[\frac{1}{p(t)} \log \left(\int_{\mathbb{S}^{d}}|f(t, \cdot)|^{p(t)} \mathrm{d} \mu\right)\right] \\
& =\frac{p^{\prime}}{p^{2} F^{p}}\left[\int_{\mathbb{S}^{d}} v^{2} \log \left(\frac{v^{2}}{\int_{\mathbb{S}^{d}} v^{2} \mathrm{~d} \mu}\right) \mathrm{d} \mu+4 \frac{p-1}{p^{\prime}} \int_{\mathbb{S}^{d}}|\nabla v|^{2} \mathrm{~d} \mu\right]
\end{aligned}
$$

with $v:=|f|^{\frac{p(t)}{2}}$. Assuming that $4 \frac{p-1}{p^{\prime}}=\frac{2}{d}$, that is,

$$
\frac{p^{\prime}}{p-1}=2 d
$$

we find that

$$
\log \left(\frac{p(t)-1}{p-1}\right)=2 d t
$$

if we require that $p(0)=p<2$. Let $t_{*}>0$ satisfy $p\left(t_{*}\right)=2$. As a consequence of the above computation, we have

$$
\begin{equation*}
\left\|f\left(t_{*}, \cdot\right)\right\|_{\mathrm{L}^{2}\left(\mathbb{S}^{d}\right)} \leq\|u\|_{\mathrm{L}^{\frac{2}{p}}\left(\mathbb{S}^{d}\right)}, \quad \text { if } \frac{1}{p-1}=\mathrm{e}^{2 d t_{*}} \tag{2.2}
\end{equation*}
$$

Step 2 (Spectral Decomposition) Let $u=\sum_{k \in \mathbb{N}} u_{k}$ be a decomposition of the initial datum on the eigenspaces of $-\Delta_{\mathbb{S}^{d}}$, and denote by $\lambda_{k}=k(d+k-1)$ the ordered sequence of the eigenvalues: $-\Delta_{\mathbb{S}^{d}} u_{k}=\lambda_{k} u_{k}$ (see for instance [20]). Let $a_{k}=\left\|u_{k}\right\|_{\mathrm{L}^{2}\left(\mathbb{S}^{d}\right)}^{2}$. As a straightforward consequence of this decomposition, we know that $\|u\|_{\mathrm{L}^{2}\left(\mathbb{S}^{d}\right)}^{2}=\sum_{k \in \mathbb{N}} a_{k},\|\nabla u\|_{\mathrm{L}^{2}\left(\mathbb{S}^{d}\right)}^{2}=\sum_{k \in \mathbb{N}} \lambda_{k} a_{k}$ and

$$
\left\|f\left(t_{*}, \cdot\right)\right\|_{\mathrm{L}^{2}\left(\mathbb{S}^{d}\right)}^{2}=\sum_{k \in \mathbb{N}} a_{k} \mathrm{e}^{-2 \lambda_{k} t_{*}}
$$

Using (2.2), it follows that

$$
\frac{\left(\int_{\mathbb{S}^{d}}|u|^{p} \mathrm{~d} \mu\right)^{\frac{2}{p}}-\int_{\mathbb{S}^{d}}|u|^{2} \mathrm{~d} \mu}{p-2} \leq \frac{\left(\int_{\mathbb{S}^{d}}|u|^{2} \mathrm{~d} \mu\right)-\int_{\mathbb{S}^{d}}\left|f\left(t_{*}, \cdot\right)\right|^{2} \mathrm{~d} \mu}{2-p}=\frac{1}{2-p} \sum_{k \in \mathbb{N}^{*}} \lambda_{k} a_{k} \frac{1-\mathrm{e}^{-2 \lambda_{k} t_{*}}}{\lambda_{k}}
$$

Notice that $\lambda_{0}=0$ so that the term corresponding to $k=0$ can be omitted in the series. Since $\lambda \mapsto \frac{1-\mathrm{e}^{-2 \lambda t_{*}}}{\lambda}$ is decreasing, we can bound $\frac{1-\mathrm{e}^{-2 \lambda_{k} t_{*}}}{\lambda_{k}}$ from above by $\frac{1-\mathrm{e}^{-2 \lambda_{1} t_{*}}}{\lambda_{1}}$ for any $k \geq 1$. This proves that

$$
\frac{\left(\int_{\mathbb{S}^{d}}|u|^{p} \mathrm{~d} \mu\right)^{\frac{2}{p}}-\int_{\mathbb{S}^{d}}|u|^{2} \mathrm{~d} \mu}{p-2} \leq \frac{1-\mathrm{e}^{-2 \lambda_{1} t_{*}}}{(2-p) \lambda_{1}} \sum_{k \in \mathbb{N}^{*}} \lambda_{k} a_{k}=\frac{1-\mathrm{e}^{-2 \lambda_{1} t_{*}}}{(2-p) \lambda_{1}}\|\nabla u\|_{\mathrm{L}^{2}\left(\mathbb{S}^{d}\right)}^{2}
$$

The conclusion follows easily if we notice that $\lambda_{1}=d$ and $\mathrm{e}^{-2 \lambda_{1} t_{*}}=p-1$, so that

$$
\frac{1-\mathrm{e}^{-2 \lambda_{1} t_{*}}}{(2-p) \lambda_{1}}=\frac{1}{d}
$$

The optimality of this constant can be checked as in the case $p>2$ by a Taylor expansion of $u=1+\varepsilon v$ at order two in terms of $\varepsilon>0$ small enough.

3 Symmetrization and the Ultraspherical Framework

3.1 A reduction to the ultraspherical framework

We denote by $\left(\xi_{0}, \xi_{1}, \cdots, \xi_{d}\right)$ the coordinates of an arbitrary point $\xi \in \mathbb{S}^{d}$ with $\sum_{i=0}^{d}\left|\xi_{i}\right|^{2}=1$. The following symmetry result is a kind of folklore in the literature, and we can see $[5,33,11]$ for various related results.

Lemma 3.1 Up to a rotation, any minimizer of (1.2) depends only on ξ_{d}.
Proof Let u be a minimizer for \mathcal{Q}_{p}. By writing u in (1.1) in spherical coordinates $\theta \in[0, \pi]$, $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{d-1} \in[0,2 \pi)$ and using decreasing rearrangements (see, for instance, [24]), it is not difficult to prove that among optimal functions, there is one which depends only on θ. Moreover, the equality in the rearrangement inequality means that u has to depend on only one coordinate, i.e., $\xi_{d}=\sin \theta$.

Let us observe that the problem on the sphere can be reduced to a problem involving the ultraspherical operator as follows:
(1) Using Lemma 3.1, we know that (1.1) is equivalent to

$$
\frac{p-2}{d} \int_{0}^{\pi}\left|v^{\prime}(\theta)\right|^{2} \mathrm{~d} \sigma+\int_{0}^{\pi}|v(\theta)|^{2} \mathrm{~d} \sigma \geq\left(\int_{0}^{\pi}|v(\theta)|^{p} \mathrm{~d} \sigma\right)^{\frac{2}{p}}
$$

for any function $v \in \mathrm{H}^{1}([0, \pi], \mathrm{d} \sigma)$, where

$$
\mathrm{d} \sigma(\theta):=\frac{(\sin \theta)^{d-1}}{Z_{d}} \mathrm{~d} \theta \quad \text { with } Z_{d}:=\sqrt{\pi} \frac{\Gamma\left(\frac{d}{2}\right)}{\Gamma\left(\frac{d+1}{2}\right)}
$$

(2) The change of variables $x=\cos \theta$ and $v(\theta)=f(x)$ allows to rewrite the inequality as

$$
\frac{p-2}{d} \int_{-1}^{1}\left|f^{\prime}\right|^{2} \nu \mathrm{~d} \nu_{d}+\int_{-1}^{1}|f|^{2} \mathrm{~d} \nu_{d} \geq\left(\int_{-1}^{1}|f|^{p} \mathrm{~d} \nu_{d}\right)^{\frac{2}{p}}
$$

where $\mathrm{d} \nu_{d}$ is the probability measure defined by

$$
\nu_{d}(x) \mathrm{d} x=\mathrm{d} \nu_{d}(x):=Z_{d}^{-1} \nu^{\frac{d}{2}-1} \mathrm{~d} x \quad \text { with } \nu(x):=1-x^{2}, Z_{d}=\sqrt{\pi} \frac{\Gamma\left(\frac{d}{2}\right)}{\Gamma\left(\frac{d+1}{2}\right)} .
$$

We also want to prove the result in the case $p<2$, to obtain the counterpart of Theorem 1.1 in the ultraspherical setting. On $[-1,1]$, consider the probability measure $\mathrm{d} \nu_{d}$, and define

$$
\nu(x):=1-x^{2},
$$

so that $\mathrm{d} \nu_{d}=Z_{d}^{-1} \nu^{\frac{d}{2}-1} \mathrm{~d} x$. We consider the space $\mathrm{L}^{2}\left((-1,1), \mathrm{d} \nu_{d}\right)$ with the scalar product

$$
\left\langle f_{1}, f_{2}\right\rangle=\int_{-1}^{1} f_{1} f_{2} \mathrm{~d} \nu_{d}
$$

and use the notation

$$
\|f\|_{p}=\left(\int_{-1}^{1} f^{p} \mathrm{~d} \nu_{d}\right)^{\frac{1}{p}}
$$

On $\mathrm{L}^{2}\left((-1,1), \mathrm{d} \nu_{d}\right)$, we define the self-adjoint ultraspherical operator by

$$
\mathcal{L} f:=\left(1-x^{2}\right) f^{\prime \prime}-d x f^{\prime}=\nu f^{\prime \prime}+\frac{d}{2} \nu^{\prime} f^{\prime}
$$

which satisfies the identity

$$
\left\langle f_{1}, \mathcal{L} f_{2}\right\rangle=-\int_{-1}^{1} f_{1}^{\prime} f_{2}^{\prime} \nu \mathrm{d} \nu_{d}
$$

Then the result goes as follows.
Proposition 3.1 Let $p \in\left[1,2^{*}\right], d \geq 1$. Then we have

$$
\begin{equation*}
-\langle f, \mathcal{L} f\rangle=\int_{-1}^{1}\left|f^{\prime}\right|^{2} \nu \mathrm{~d} \nu_{d} \geq d \frac{\|f\|_{p}^{2}-\|f\|_{2}^{2}}{p-2}, \quad \forall f \in \mathrm{H}^{1}\left([-1,1], \mathrm{d} \nu_{d}\right) \tag{3.1}
\end{equation*}
$$

if $p \neq 2$; and

$$
-\langle f, \mathcal{L} f\rangle=\frac{d}{2} \int_{-1}^{1}|f|^{2} \log \left(\frac{|f|^{2}}{\|f\|_{2}^{2}}\right) \mathrm{d} \nu_{d}
$$

if $p=2$.
We may notice that the proof in [21] requires $d \geq 2$, while the case $d=1$ is also covered in [12]. In [20], the restriction $d \geq 2$ was removed by Bentaleb et al. Our proof is inspired by [21] and also $[14,17]$, but it is a simplification (in the particular case of the ultraspherical operator) in the sense that only integration by parts and elementary estimates are used.

3.2 A proof of Proposition 3.1

Let us start with some preliminary observations. The operator \mathcal{L} does not commute with the derivation, but we have the relation

$$
\left[\frac{\partial}{\partial x}, \mathcal{L}\right] u=(\mathcal{L} u)^{\prime}-\mathcal{L} u^{\prime}=-2 x u^{\prime \prime}-d u^{\prime}
$$

As a consequence, we obtain

$$
\begin{aligned}
\langle\mathcal{L} u, \mathcal{L} u\rangle & =-\int_{-1}^{1} u^{\prime}(\mathcal{L} u)^{\prime} \nu \mathrm{d} \nu_{d}=-\int_{-1}^{1} u^{\prime} \mathcal{L} u^{\prime} \nu \mathrm{d} \nu_{d}+\int_{-1}^{1} u^{\prime}\left(2 x u^{\prime \prime}+d u^{\prime}\right) \nu \mathrm{d} \nu_{d} \\
\langle\mathcal{L} u, \mathcal{L} u\rangle & =\int_{-1}^{1}\left|u^{\prime \prime}\right|^{2} \nu^{2} \mathrm{~d} \nu_{d}-d\langle u, \mathcal{L} u\rangle
\end{aligned}
$$

and

$$
\begin{equation*}
\int_{-1}^{1}(\mathcal{L} u)^{2} \mathrm{~d} \nu_{d}=\langle\mathcal{L} u, \mathcal{L} u\rangle=\int_{-1}^{1}\left|u^{\prime \prime}\right|^{2} \nu^{2} \mathrm{~d} \nu_{d}+d \int_{-1}^{1}\left|u^{\prime}\right|^{2} \nu \mathrm{~d} \nu_{d} \tag{3.2}
\end{equation*}
$$

On the other hand, a few integrations by parts show that

$$
\begin{equation*}
\left\langle\frac{\left|u^{\prime}\right|^{2}}{u} \nu \mathcal{L} u\right\rangle=\frac{d}{d+2} \int_{-1}^{1} \frac{\left|u^{\prime}\right|^{4}}{u^{2}} \nu^{2} \mathrm{~d} \nu_{d}-2 \frac{d-1}{d+2} \int_{-1}^{1} \frac{\left|u^{\prime}\right|^{2} u^{\prime \prime}}{u} \nu^{2} \mathrm{~d} \nu_{d} \tag{3.3}
\end{equation*}
$$

where we have used the fact that $\nu \nu^{\prime} \nu_{d}=\frac{2}{d+2}\left(\nu^{2} \nu_{d}\right)^{\prime}$.
Let $p \in(1,2) \cup\left(2,2^{*}\right)$. In $H^{1}\left([-1,1], \mathrm{d} \nu_{d}\right)$, now consider a minimizer f for the functional

$$
f \mapsto \int_{-1}^{1}\left|f^{\prime}\right|^{2} \nu \mathrm{~d} \nu_{d}-d \frac{\|f\|_{p}^{2}-\|f\|_{2}^{2}}{p-2}=: \mathcal{G}[f]
$$

made of the difference of the two sides in (3.1). The existence of such a minimizer can be proved by classical minimization and compactness arguments. Up to a multiplication by a constant, f satisfies the Euler-Lagrange equation

$$
-\frac{p-2}{\mathrm{~d}} \mathcal{L} f+f=f^{p-1}
$$

Let β be a real number to be fixed later and define u by $f=u^{\beta}$, such that

$$
\mathcal{L} f=\beta u^{\beta-1}\left(\mathcal{L} u+(\beta-1) \frac{\left|u^{\prime}\right|^{2}}{u} \nu\right)
$$

Then u is a solution to

$$
-\mathcal{L} u-(\beta-1) \frac{\left|u^{\prime}\right|^{2}}{u} \nu+\lambda u=\lambda u^{1+\beta(p-2)} \quad \text { with } \lambda:=\frac{d}{(p-2) \beta}
$$

If we multiply the equation for u by $\frac{\left|u^{\prime}\right|^{2}}{u} \nu$ and integrate, we get

$$
-\int_{-1}^{1} \mathcal{L} u \frac{\left|u^{\prime}\right|^{2}}{u} \nu \mathrm{~d} \nu_{d}-(\beta-1) \int_{-1}^{1} \frac{\left|u^{\prime}\right|^{4}}{u^{2}} \nu^{2} \mathrm{~d} \nu_{d}+\lambda \int_{-1}^{1}\left|u^{\prime}\right|^{2} \nu \mathrm{~d} \nu_{d}=\lambda \int_{-1}^{1} u^{\beta(p-2)}\left|u^{\prime}\right|^{2} \nu \mathrm{~d} \nu_{d}
$$

If we multiply the equation for u by $-\mathcal{L} u$ and integrate, we get

$$
\int_{-1}^{1}(\mathcal{L} u)^{2} \mathrm{~d} \nu_{d}+(\beta-1) \int_{-1}^{1} \mathcal{L} u \frac{\left|u^{\prime}\right|^{2}}{u} \nu \mathrm{~d} \nu_{d}+\lambda \int_{-1}^{1}\left|u^{\prime}\right|^{2} \nu \mathrm{~d} \nu_{d}=(\lambda+d) \int_{-1}^{1} u^{\beta(p-2)}\left|u^{\prime}\right|^{2} \nu \mathrm{~d} \nu_{d}
$$

Collecting terms, we find that

$$
\int_{-1}^{1}(\mathcal{L} u)^{2} \mathrm{~d} \nu_{d}+\left(\beta+\frac{d}{\lambda}\right) \int_{-1}^{1} \mathcal{L} u \frac{\left|u^{\prime}\right|^{2}}{u} \nu \mathrm{~d} \nu_{d}+(\beta-1)\left(1+\frac{d}{\lambda}\right) \int_{-1}^{1} \frac{\left|u^{\prime}\right|^{4}}{u^{2}} \nu^{2} \mathrm{~d} \nu_{d}-d \int_{-1}^{1}\left|u^{\prime}\right|^{2} \nu \mathrm{~d} \nu_{d}=0
$$

Using (3.2)-(3.3), we get

$$
\begin{aligned}
& \int_{-1}^{1}\left|u^{\prime \prime}\right|^{2} \nu^{2} \mathrm{~d} \nu_{d}+\left(\beta+\frac{d}{\lambda}\right)\left[\frac{d}{d+2} \int_{-1}^{1} \frac{\left|u^{\prime}\right|^{4}}{u^{2}} \nu^{2} \mathrm{~d} \nu_{d}-2 \frac{d-1}{d+2} \int_{-1}^{1} \frac{\left|u^{\prime}\right|^{2} u^{\prime \prime}}{u} \nu^{2} \mathrm{~d} \nu_{d}\right] \\
& +(\beta-1)\left(1+\frac{d}{\lambda}\right) \int_{-1}^{1} \frac{\left|u^{\prime}\right|^{4}}{u^{2}} \nu^{2} \mathrm{~d} \nu_{d}=0
\end{aligned}
$$

that is,

$$
\begin{equation*}
\mathrm{a} \int_{-1}^{1}\left|u^{\prime \prime}\right|^{2} \nu^{2} \mathrm{~d} \nu_{d}+2 \mathrm{~b} \int_{-1}^{1} \frac{\left|u^{\prime}\right|^{2} u^{\prime \prime}}{u} \nu^{2} \mathrm{~d} \nu_{d}+\mathrm{c} \int_{-1}^{1} \frac{\left|u^{\prime}\right|^{4}}{u^{2}} \nu^{2} \mathrm{~d} \nu_{d}=0 \tag{3.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{a}=1 \\
& \mathrm{~b}=-\left(\beta+\frac{d}{\lambda}\right) \frac{d-1}{d+2} \\
& \mathrm{c}=\left(\beta+\frac{d}{\lambda}\right) \frac{d}{d+2}+(\beta-1)\left(1+\frac{d}{\lambda}\right)
\end{aligned}
$$

Using $\frac{d}{\lambda}=(p-2) \beta$, we observe that the reduced discriminant

$$
\delta=\mathrm{b}^{2}-\mathrm{ac}<0
$$

can be written as

$$
\delta=A \beta^{2}+B \beta+1 \quad \text { with } A=(p-1)^{2} \frac{(d-1)^{2}}{(d+2)^{2}}-p+2 \text { and } B=p-3-\frac{d(p-1)}{d+2}
$$

If $p<2^{*}, B^{2}-4 A$ is positive, and therefore it is possible to find β, such that $\delta<0$.
Hence, if $p<2^{*}$, we have shown that $\mathcal{G}[f]$ is positive unless the three integrals in (3.4) are equal to 0 , that is, u is constant. It follows that $\mathcal{G}[f]=0$, which proves (3.1) if $p \in(1,2) \cup\left(2,2^{*}\right)$. The cases $p=1, p=2$ (see Corollary 1.1) and $p=2^{*}$ can be proved as limit cases. This completes the proof of Proposition 3.1.

4 A Proof Based on a Flow in the Ultraspherical Setting

Inequality (3.1) can be rewritten for $g=f^{p}$, i.e., $f=g^{\alpha}$ with $\alpha=\frac{1}{p}$, as

$$
-\langle f, \mathcal{L} f\rangle=-\left\langle g^{\alpha}, \mathcal{L} g^{\alpha}\right\rangle=: \mathcal{I}[g] \geq d \frac{\|g\|_{1}^{2 \alpha}-\left\|g^{2 \alpha}\right\|_{1}}{p-2}=: \mathcal{F}[g]
$$

4.1 Flow

Consider the flow associated to \mathcal{L}, that is,

$$
\begin{equation*}
\frac{\partial g}{\partial t}=\mathcal{L} g \tag{4.1}
\end{equation*}
$$

and observe that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|g\|_{1}=0, \quad \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|g^{2 \alpha}\right\|_{1}=-2(p-2)\langle f, \mathcal{L} f\rangle=2(p-2) \int_{-1}^{1}\left|f^{\prime}\right|^{2} \nu \mathrm{~d} \nu_{d}
$$

which finally gives

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{F}[g(t, \cdot)]=-\frac{d}{p-2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|g^{2 \alpha}\right\|_{1}=-2 d \mathcal{I}[g(t, \cdot)]
$$

4.2 Method

If (3.1) holds, then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{F}[g(t, \cdot)] \leq-2 d \mathcal{F}[g(t, \cdot)] \tag{4.2}
\end{equation*}
$$

and thus we prove

$$
\mathcal{F}[g(t, \cdot)] \leq \mathcal{F}[g(0, \cdot)] \mathrm{e}^{-2 d t}, \quad \forall t \geq 0
$$

This estimate is actually equivalent to (3.1) as shown by estimating $\frac{\mathrm{d}}{\mathrm{d} t} \mathcal{F}[g(t, \cdot)]$ at $t=0$.
The method based on the Bakry-Emery approach amounts to establishing first that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{I}[g(t, \cdot)] \leq-2 d \mathcal{I}[g(t, \cdot)] \tag{4.3}
\end{equation*}
$$

and proving (4.2) by integrating the estimates on $t \in[0, \infty)$. Since

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(\mathcal{F}[g(t, \cdot)]-\mathcal{I}[g(t, \cdot)]) \geq 0
$$

and $\lim _{t \rightarrow \infty}(\mathcal{F}[g(t, \cdot)]-\mathcal{I}[g(t, \cdot)])=0$, this means that

$$
\mathcal{F}[g(t, \cdot)]-\mathcal{I}[g(t, \cdot)] \leq 0, \quad \forall t \geq 0
$$

which is precisely (3.1) written for $f(t, \cdot)$ for any $t \geq 0$ and in particular for any initial value $f(0, \cdot)$.

The equation for $g=f^{p}$ can be rewritten in terms of f as

$$
\frac{\partial f}{\partial t}=\mathcal{L} f+(p-1) \frac{\left|f^{\prime}\right|^{2}}{f} \nu
$$

Hence, we have

$$
-\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{-1}^{1}\left|f^{\prime}\right|^{2} \nu \mathrm{~d} \nu_{d}=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\langle f, \mathcal{L} f\rangle=\langle\mathcal{L} f, \mathcal{L} f\rangle+(p-1)\left\langle\frac{\left|f^{\prime}\right|^{2}}{f} \nu, \mathcal{L} f\right\rangle
$$

4.3 An inequality for the Fisher information

Instead of proving (3.1), we will established the following stronger inequality, for any $p \in$ $\left(2,2^{\sharp}\right]$, where $2^{\sharp}:=\frac{2 \mathrm{~d}^{2}+1}{(d-1)^{2}}$:

$$
\begin{equation*}
\langle\mathcal{L} f, \mathcal{L} f\rangle+(p-1)\left\langle\frac{\left|f^{\prime}\right|^{2}}{f} \nu, \mathcal{L} f\right\rangle+d\langle f, \mathcal{L} f\rangle \geq 0 \tag{4.4}
\end{equation*}
$$

Notice that (3.1) holds under the restriction $p \in\left(2,2^{\sharp}\right]$, which is stronger than $p \in\left(2,2^{*}\right]$. We do not know whether the exponent 2^{\sharp} in (4.4) is sharp or not.

4.4 Proof of (4.4)

Using (3.2)-(3.3) with $u=f$, we find that

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \int_{-1}^{1}\left|f^{\prime}\right|^{2} \nu \mathrm{~d} \nu_{d}+2 d \int_{-1}^{1}\left|f^{\prime}\right|^{2} \nu \mathrm{~d} \nu_{d} \\
= & -2 \int_{-1}^{1}\left(\left|f^{\prime \prime}\right|^{2}+(p-1) \frac{d}{d+2} \frac{\left|f^{\prime}\right|^{4}}{f^{2}}-2(p-1) \frac{d-1}{d+2} \frac{\left|f^{\prime}\right|^{2} f^{\prime \prime}}{f}\right) \nu^{2} \mathrm{~d} \nu_{d}
\end{aligned}
$$

The right-hand side is nonpositive, if

$$
\left|f^{\prime \prime}\right|^{2}+(p-1) \frac{d}{d+2} \frac{\left|f^{\prime}\right|^{4}}{f^{2}}-2(p-1) \frac{d-1}{d+2} \frac{\left|f^{\prime}\right|^{2} f^{\prime \prime}}{f}
$$

is pointwise nonnegative, which is granted if

$$
\left[(p-1) \frac{d-1}{d+2}\right]^{2} \leq(p-1) \frac{d}{d+2}
$$

a condition which is exactly equivalent to $p \leq 2^{\sharp}$.

4.5 An improved inequality

For any $p \in\left(2,2^{\sharp}\right)$, we can write that

$$
\begin{aligned}
& \left|f^{\prime \prime}\right|^{2}+(p-1) \frac{d}{d+2} \frac{\left|f^{\prime}\right|^{4}}{f^{2}}-2(p-1) \frac{d-1}{d+2} \frac{\left|f^{\prime}\right|^{2} f^{\prime \prime}}{f} \\
= & \alpha\left|f^{\prime \prime}\right|^{2}+\frac{p-1}{d+2}\left|\frac{d-1}{\sqrt{d}} f^{\prime \prime}-\sqrt{d} \frac{\left|f^{\prime}\right|^{2}}{f}\right|^{2} \geq \alpha\left|f^{\prime \prime}\right|^{2}
\end{aligned}
$$

where

$$
\alpha:=1-(p-1) \frac{(d-1)^{2}}{d(d+2)}
$$

is positive. Now, using the Poincaré inequality

$$
\int_{-1}^{1}\left|f^{\prime \prime}\right|^{2} \mathrm{~d} \nu_{d+4} \geq(d+2) \int_{-1}^{1}\left|f^{\prime}-\overline{f^{\prime}}\right|^{2} \mathrm{~d} \nu_{d+2}
$$

where

$$
\overline{f^{\prime}}:=\int_{-1}^{1} f^{\prime} \mathrm{d} \nu_{d+2}=-d \int_{-1}^{1} x f \mathrm{~d} \nu_{d}
$$

we obtain an improved form of (4.4), namely,

$$
\langle\mathcal{L} f, \mathcal{L} f\rangle+(p-1)\left\langle\frac{\left|f^{\prime}\right|^{2}}{f} \nu, \mathcal{L} f\right\rangle+[d+\alpha(d+2)]\langle f, \mathcal{L} f\rangle \geq 0
$$

if we can guarantee that $\overline{f^{\prime}} \equiv 0$ along the evolution determined by (4.1). This is the case if we assume that $f(x)=f(-x)$ for any $x \in[-1,1]$. Under this condition, we find that

$$
\int_{-1}^{1}\left|f^{\prime}\right|^{2} \nu \mathrm{~d} \nu_{d} \geq[d+\alpha(d+2)] \frac{\|f\|_{p}^{2}-\|f\|_{2}^{2}}{p-2}
$$

As a consequence, we also have

$$
\int_{\mathbb{S}^{d}}|\nabla u|^{2} \mathrm{~d} \mu+\int_{\mathbb{S}^{d}}|u|^{2} \mathrm{~d} \mu \geq \frac{d+\alpha(d+2)}{p-2}\left(\int_{\mathbb{S}^{d}}|u|^{p} \mathrm{~d} \mu\right)^{\frac{2}{p}}
$$

for any $u \in \mathrm{H}^{1}\left(\mathbb{S}^{d}, \mathrm{~d} \mu\right)$, such that, using spherical coordinates,
$u\left(\theta, \varphi_{1}, \varphi_{2}, \cdots, \varphi_{d-1}\right)=u\left(\pi-\theta, \varphi_{1}, \varphi_{2}, \cdots, \varphi_{d-1}\right), \quad \forall\left(\theta, \varphi_{1}, \varphi_{2}, \cdots, \varphi_{d-1}\right) \in[0, \pi] \times[0,2 \pi)^{d-1}$.

4.6 One more remark

The computation is exactly the same if $p \in(1,2)$, and henceforth we also prove the result in such a case. The case $p=1$ is the limit case corresponding to the Poincaré inequality

$$
\int_{-1}^{1}\left|f^{\prime}\right|^{2} \mathrm{~d} \nu_{d+2} \geq d\left(\int_{-1}^{1}|f|^{2} \mathrm{~d} \nu_{d}-\left|\int_{-1}^{1} f \mathrm{~d} \nu_{d}\right|^{2}\right)
$$

and arises as a straightforward consequence of the spectral properties of \mathcal{L}. The case $p=2$ is achieved as a limiting case. It gives rise to the logarithmic Sobolev inequality (see, for instance, [34]).

Figure 1 Plot of $d \mapsto 2^{\sharp}=\frac{2 d^{2}+1}{(d-1)^{2}}$ and $d \mapsto 2^{*}=\frac{2 d}{d-2}$.

4.7 Limitation of the method

The limitation $p \leq 2^{\sharp}$ comes from the pointwise condition

$$
h:=\left|f^{\prime \prime}\right|^{2}+(p-1) \frac{d}{d+2} \frac{\left|f^{\prime}\right|^{4}}{f^{2}}-2(p-1) \frac{d-1}{d+2} \frac{\left|f^{\prime}\right|^{2} f^{\prime \prime}}{f} \geq 0
$$

Can we find special test functions f, such that this quantity can be made negative? Which are admissible, such that $h \nu^{2}$ is integrable? Notice that at $p=2^{\sharp}$, we have that $f(x)=|x|^{1-d}$, such that $h \equiv 0$, but such a function or functions obtained by slightly changing the exponent, are not admissible for larger values of p.

By proving that there is contraction of \mathcal{I} along the flow, we look for a condition which is stronger than one of asking that there is contraction of \mathcal{F} along the flow. It is therefore possible that the limitation $p \leq 2^{\sharp}$ is intrinsic to the method.

References

[1] Arnold, A., Bartier, J. P. and Dolbeault, J., Interpolation between logarithmic Sobolev and Poincaré inequalities, Commun. Math. Sci., 5, 2007, 971-979.
[2] Arnold, A. and Dolbeault, J., Refined convex Sobolev inequalities, J. Funct. Anal., 225, 2005, 337-351.
[3] Arnold, A., Markowich, P., Toscani, G., et al., On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Part. Diff. Eq., 26, 2001, 43-100.
[4] Aubin, T., Problèmes isopérimétriques et espaces de Sobolev, J. Diff. Geom., 11, 1976, 573-598.
[5] Baernstein, A. and Taylor, B. A., Spherical rearrangements, subharmonic functions, and *-functions in n-space, Duke Math. J., 43, 1976, 245-268.
[6] Bakry, D., Une suite d'inégalités remarquables pour les opérateurs ultrasphériques, C. R. Acad. Sci. Paris Sér. I Math., 318, 1994, 161-164.
[7] Bakry, D. and Bentaleb, A., Extension of Bochner-Lichnérowicz formula on spheres, Ann. Fac. Sci. Toulouse Math., 14(6), 2005, 161-183.
[8] Bakry, D. and Émery, M., Hypercontractivité de semi-groupes de diffusion, C. R. Acad. Sci. Paris Sér. I Math., 299, 1984, 775-778.
[9] Bakry, D. and Émery, M., Diffusions hypercontractives, séminaire de probabilités, XIX, 1983/1984, Lecture Notes in Math., Vol. 1123, Springer-Verlag, Berlin, 1985, 177-206.
[10] Beckner, W., A generalized Poincaré inequality for Gaussian measures, Proc. Amer. Math. Soc., 105, 1989, 397-400.
[11] Beckner, W., Sobolev inequalities, the Poisson semigroup, and analysis on the sphere S^{n}, Proc. Nat. Acad. Sci. U. S. A., 89, 1992, 4816-4819.
[12] Beckner, W., Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math., 138(2), 1993, 213-242.
[13] Bentaleb, A., Développement de la moyenne d'une fonction pour la mesure ultrasphérique, C. R. Acad. Sci. Paris Sér. I Math., 317, 1993, 781-784.
[14] Bentaleb, A., Inégalité de Sobolev pour l'opérateur ultrasphérique, C. R. Acad. Sci. Paris Sér. I Math., 317, 1993, 187-190.
[15] Bentaleb, A., Sur l'hypercontractivité des semi-groupes ultrasphériques, séminaire de probabilités, XXXIII, Lecture Notes in Math., Vol. 1709, Springer-Verlag, Berlin, 1999, 410-414.
[16] Bentaleb, A., L'hypercontractivité des semi-groupes de Gegenbauer multidimensionnels - famille d'inégalités sur le cercle, Int. J. Math. Game Theory Algebra, 12, 2002, 259-273.
[17] Bentaleb, A., Sur les fonctions extrémales des inégalités de Sobolev des opérateurs de diffusion, séminaire de probabilités, XXXVI, Lecture Notes in Math., Vol. 1801, Springer-Verlag, Berlin, 2003, 230-250.
[18] Bentaleb, A. and Fahlaoui, S., Integral inequalities related to the Tchebychev semigroup, Semigroup Forum, 79, 2009, 473-479.
[19] Bentaleb, A. and Fahlaoui, S., A family of integral inequalities on the circle \mathbf{S}^{1}, Proc. Japan Acad. Ser. A Math. Sci., 86, 2010, 55-59.
[20] Berger, M., Gauduchon, P. and Mazet, E., Le spectre d'une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin, 1971.
[21] Bidaut-Véron, M. F. and Véron, L., Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., 106, 1991, 489-539.
[22] Bolley, F. and Gentil, I., Phi-entropy inequalities and Fokker-Planck equations, Progress in Analysis and Its Applications, World Sci. Publ., Hackensack, NJ, 2010, 463-469.
[23] Bolley, F. and Gentil, I., Phi-entropy inequalities for diffusion semigroups, J. Math. Pures Appl., 93(9), 2010, 449-473.
[24] Brock, F., A general rearrangement inequality à la Hardy-Littlewood, J. Inequal. Appl., 5, 2000, 309-320.
[25] Carlen, E. and Loss, M., Computing symmetries, the logarithmic HLS inequality and Onofri's inequality on S^{n}, Geom. Funct. Anal., 2, 1992, 90-104.
[26] Chafaï, D., Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities, J. Math. Kyoto Univ., 44, 2004, 325-363.
[27] Funk, P., Beiträge zur Theorie der Kegelfunktionen., Math. Ann., 77, 1915, 136-162.
[28] Gidas, B. and Spruck, J., Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34, 1981, 525-598.
[29] Gross, L., Logarithmic Sobolev inequalities, Amer. J. Math., 97, 1975, 1061-1083.
[30] Hebey, E., Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, Vol. 5, New York University Courant Institute of Mathematical Sciences, New York, 1999.
[31] Hecke, E., Über orthogonal-invariante Integralgleichungen., Math. Ann., 78, 1917, 398-404.
[32] Latała, R. and Oleszkiewicz, K., Between Sobolev and Poincaré, Geometric aspects of functional analysis, Lecture Notes in Math., Vol. 1745, Springer-Verlag, Berlin, 2000, 147-168.
[33] Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118(2), 1983, 349-374.
[34] Mueller, C. E. and Weissler, F. B., Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere, J. Funct. Anal., 48, 1982, 252-283.
[35] Rosen, G., Minimum value for c in the Sobolev inequality $\phi^{3}\|\leq c \nabla \phi\|^{3}$, SIAM J. Appl. Math., 21, 1971, 30-32.
[36] Talenti, G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110(4), 1976, 353-372.
[37] Weissler, F. B., Logarithmic Sobolev inequalities and hypercontractive estimates on the circle, J. Funct. Anal., 37, 1980, 218-234.

[^0]: Manuscript received October 10, 2012.
 ${ }^{1}$ Ceremade, Université Paris-Dauphine, Place de Lattre de Tassigny, 75775 Paris Cédex 16, France.
 E-mail: dolbeaul@ceremade.dauphine.fr esteban@ceremade.dauphine.fr
 ${ }^{2}$ Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS),
 Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile. E-mail: kowalczy@dim.uchile.cl
 ${ }^{3}$ Skiles Building, Georgia Institute of Technology, Atlanta GA 30332-0160, USA.
 E-mail: loss@math.gatech.edu
 *Project supported by ANR grants CBDif and NoNAP, the ECOS project (No. C11E07), the Chilean research grants Fondecyt (No. 1090103), Fondo Basal CMM-Chile, Project Anillo ACT-125 CAPDE and the National Science Foundation (No. DMS-0901304).

