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Abstract This paper is devoted to various considerations on a family of sharp interpo-
lation inequalities on the sphere, which in dimension greater than 1 interpolate between
Poincaré, logarithmic Sobolev and critical Sobolev (Onofri in dimension two) inequalities.
The connection between optimal constants and spectral properties of the Laplace-Beltrami
operator on the sphere is emphasized. The authors address a series of related observations
and give proofs based on symmetrization and the ultraspherical setting.
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1 Introduction

The following interpolation inequality holds on the sphere:

-9 ;
b /|Vu|2du+/ |u|2du2(/ |u|pdu) . Vue H(SY dp) (1.1)
d Sd Sd Sd

for any p € (2,2*] with 2* = d2_d2 if d > 3, and for any p € (2,00) if d = 2. In (1.1), du is
the uniform probability measure on the d-dimensional sphere, that is, the measure induced by
Lebesgue’s measure on S € R4t up to a normalization factor such that p(S%) = 1.

Such an inequality was established by Bidaut-Véron and Véron [21] in the more general
context of compact manifolds with uniformly positive Ricci curvature. Their method is based
on the Bochner-Lichnerowicz-Weitzenbock formula and the study of the set of solutions to an
elliptic equation, which is seen as a bifurcation problem and contains the Euler-Lagrange equa-
tion associated to the optimality case in (1.1). Later, in [12], Beckner gave an alternative proof
based on Legendre’s duality, the Funk-Hecke formula, proved in [27, 31], and the expression of
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some optimal constants found by Lieb [33]. Bakry, Bentaleb and Fahlaoui in a series of papers
based on the carré du champ method and mostly devoted to the ultraspherical operator showed
a result which turns out to give yet another proof, which is anyway very close to the method of
[21]. Their computations allow to slightly extend the range of the parameter p (see [7-8, 14-20)]
and [34, 37] for earlier related works).

In all computations based on the Bochner-Lichnerowicz-Weitzenbock formula, the choice of
exponents in the computations appears somewhat mysterious. The seed for such computations
can be found in [28]. Our purpose is on one hand to give alternative proofs, at least for some
ranges of the parameter p, which do not rely on such a technical choice. On the other hand,
we also aim at simplifying the existing proofs (see Section 3.2).

Inequality (1.1) is remarkable for several reasons as follows:

(1) It is optimal in the sense that 1 is the optimal constant. By Holder’s inequality, we know
that [lull2(say < |lullLrse), so that the equality case can only be achieved by functions, which
are constants a.e. Of course, the main issue is to prove that the constant ? ;2 is optimal, which
is one of the classical issues of the so-called A-B problem, for which we primarily refer to [30].

(2) If d > 3, the case p = 2* corresponds to the Sobolev’s inequality. Using the stereographic
projection as in [33], we easily recover Sobolev’s inequality in the Euclidean space R? with the
optimal constant and obtain a simple characterization of the extremal functions found by Aubin
and Talenti [5, 36-37].

(3) In the limit p — 2, one obtains the logarithmic Sobolev inequality on the sphere, while
by taking p — oo if d = 2, one recovers Onofri’s inequality (see [25] and Corollary 2.1 below).

Exponents are not restricted to p > 2. Consider indeed the functional

p—2 fsd |Vu|2du
2
o (falulPdu)” = [ Jul2du

forpe[1,2)U(2,2*]ifd>3,0orpe[l,2)U(2,00) if d =2, and

Qplu] =

Qolu] := 2 Joa IVufdp
d fgd ul? log (j'gdlrﬂ‘zdu)d/ﬁ

2
for any d > 1. Because du is a probability measure, (fsd |u|pdu) P de |u|?dpu is nonnegative
if p > 2, nonpositive if p € [1,2), and equal to zero if and only if u is constant a.e. Denote by
A the set of HY(S?, du) functions, which are not a.e. constants. Consider the infimum

I, := 1}1615 Qplu] . (1.2)

With these notations, we can state a slight result more general than the one of (1.1), which
goes as follows and also covers the range p € [1,2].

Theorem 1.1 With the above notations, I, = 1 for any p € [1,2*] if d > 3, or any
peE[l,o0) ifd=1, 2.

As already explained above, in the case (2,2*], the above theorem was proved first in [21,
Corollary 6.2], and then in [12], by using the previous results of Lieb [33] and the Funk-Hecke
formula (see [27, 31]). The case p = 2 was covered in [12]. The whole range p € [1,2*] was
covered in the case of the ultraspherical operator in [19-20]. Here we give alternative proofs
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for various ranges of p, which are less technical and interesting in themselves, as well as some
extensions.

Notice that the case p = 1 can be written as

2
/ Vul?dp > df / juPays— / uldu) ], Ve H (S ap),
Sd Sd Sd

which is equivalent to the usual Poincaré inequality

/ |Vu|>dp > d/ lu —ul®dy, VueH (S du) withu= / udp .

sd sd sd

See Remark 2.1 for more details. The case p = 2 provides the logarithmic Sobolev inequality
on the sphere. It holds as a consequence of the inequality for p # 2 (see Corollary 1.1).

For p # 2, the existence of a minimizer of
d7,
2 D 2 9
U — /Sd |[Vul“dp + oo 2[||u||L2(Sd) — HUHLP(Sd)]

in {u € H'(S%,dp) : [o |u[Pdp = 1} is easily achieved by variational methods, and will be
taken for granted. The compactness for either p € [1,2) or 2 < p < 2* is indeed classical, while
the case p = 2%, d > 3 can be studied by concentration-compactness methods. If a function
u € HY(S?, dp) is optimal for (1.1) with p # 2, then it solves the Euler-Lagrange equation

~Bgau= T8 [l v = ), (1.3)
where Aga denotes the Laplace-Beltrami operator on the sphere S%.

In any case, it is possible to normalize the L?(S%)-norm of u to 1 without restriction because
of the zero homogeneity of Q,. It turns out that the optimality case is achieved by the constant
function, with value u = 1 if we assume de |u|Pdp = 1, in which case the inequality degenerates
because both sides are equal to 0. This explains why the dimension d shows up here: the
sequence (U, )nen, satisfying

with v € HY(S?, dp), such that fsd vdp = 0, is indeed minimizing if and only if

[ vePanza [ oPan
sd sd

and the equality case is achieved if v is an optimal function for the above Poincaré inequality,
i.e., a function associated to the first non-zero eigenvalue of the Laplace-Beltrami operator
— Aga on the sphere S?. Up to a rotation, this means

’U(f):fd, sz(go, 517"' 7£d)€SdC]Rd+lv

since — Agav = dv. Recall that the corresponding eigenspace of — Aga is d-dimensional and is
generated by the composition of v with an arbitrary rotation.
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1.1 The logarithmic Sobolev inequality

As the first classical consequence of (1.2), we have a logarithmic Sobolev inequality. This
result is rather classical. Related forms of the result can be found, for instance, in [9] or in [3].

Corollary 1.1 Letd > 1. For any u € Hl(Sd, dp) \ {0}, we have

Moreover, the constant 3 s sharp.

Proof The inequality is achieved by taking the limit as p — 2 in (1.2). To see that the
constant 3 is sharp, we can observe that

|1+€U|2 2
hm 1+¢ev]?lo ( )d =2 v —ol|°d
sd | | & de |]. +€’U|2d,LL H §d| | H

with v = [i, vdp. The result follows by taking v(€) = &4.

2 Extensions

2.1 Onofri’s inequality

In the case of dimension d = 2, (1.1) holds for any p > 2, and we recover Onofri’s inequality
by taking the limit p — oco. This result is standard in the literature (see for instance [12]). For
completeness, let us give a statement and a short proof.

Corollary 2.1 Letd=1 ord=2. For any v € Hl(Sd, dp), we have
/ e’ dp < e 24 Jsa [VvI?du
N - )

where v = fsd vdp is the average of v. Moreover, the constant 21(1 in the right-hand side is
sharp.

Proof In dimension d =1 or d =2, (1.1) holds for any p > 2. Take u = 1+ ; and consider
the limit as p — oo. We observe that

1
/|Vu|2du: 2/ |Vol?dy and  lim |u|pdu=/ e'dp,
Sd pT Jsd p—o0 Jgd sd

, 2 2
(/ |u|pdu) —1~ " log (/ e”du) and / lu|?dp — 1 ~ / vdp
Se p S Se P Jsd

The conclusion holds by passing to the limit p — oo in (1.1). Optimality is once more achieved

so that

by considering v = e v1, v1(§) = &4, d = 1 and Taylor expanding both sides of the inequality in
terms of € > 0 small enough. Notice indeed that —Agav; = A\; v1 with A\; = d, so that

HVUH?ﬁ(sd) = ¢’ ||VU1||i2(sd) =ed HUlH%?(Sd)’

Jsa v1dp = v1 =0, and

1~ o — of2du = &2 oy 2
. H 2 Ju M= 9 1Lz (sd)-
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2.2 Interpolation and a spectral approach for p € (1, 2)

In [10], Beckner gave a method to prove interpolation inequalities between the logarithmic
Sobolev and the Poincaré inequalities in the case of a Gaussian measure. Here we shall prove
that the method extends to the case of the sphere and therefore provides another family of
interpolating inequalities, in a new range: p € [1,2), again with optimal constants. For further
considerations on inequalities that interpolate between the Poincaré and the logarithmic Sobolev
inequalities, we refer to [1-2, 9-10, 23-24, 27, 33] and the references therein.

Our purpose is to extend (1.1) written as

1 Pdp)? — [ ul?d
d/Sd|Vu|2du2 (o Il ‘Q_QIW ey e (st dp) (2.1)

to the case p € [1,2). Let us start with a remark.

Remark 2.1 At least for any nonnegative function v, using the fact that u is a probability
measure on S?, we may notice that

2
/ v — vf2dp = / oy ( / vy
Sd Sé Sd

2
v]Adp — vPdp)”
/|v—v|2d,u=fgd|| 2 (fsd|| M)
sd 2—p
for p = 1. Hence this extends (1.1) to the case ¢ = 1. However, as already noticed for instance

2 1
2d—/ d < / 2d
/Sd'”' p= ([ wian) < ) [ 1voPan

also means that, for any ¢ € R,

2 1
/ |v+c|2du—(/ |v+c|du) < d/ |Vol2dp.
sd sd sd

If v is bounded from below a.e. with respect to p and ¢ > —essinf v, so that v +¢ > 0 p a.e.,
n

and the left-hand side is

2 2
/ v+ c|2du—(/ |v —|—c|du) = 02—1—20/ vdu—i—/ lv|?dp— (c+/ vdu) :/ lv — v|?dp,
sd sd sd sd sd sd

so that the inequality is the usual Poincaré inequality. By density, we recover that (2.1) written

can be rewritten as

in [1], the inequality

for p = 1 exactly amounts to Poincaré inequality written not only for |v|, but also for any
v e HY(S, du).

Next, using the method introduced by Beckner [10] in the case of a Gaussian measure, we
are in the position to prove (2.1) for any p € (1,2), knowing that the inequality holds for p = 1
and p = 2.

Proposition 2.1 Inequality (2.1) holds for any p € (1,2) and any d > 1. Moreover, d is

the optimal constant.

Proof Optimality can be checked by Taylor expanding u = 1 + v at order two in terms
of £ > 0 as in the case p = 2 (the logarithmic Sobolev inequality). To establish the inequality
itself, we may proceed in two steps.
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Step 1 (Nelson’s Hypercontractivity Result) Although the result can be established by
direct methods, we follow here the strategy of Gross [29], which proves the equivalence of the
optimal hypercontractivity result and the optimal logarithmic Sobolev inequality.

Consider the heat equation of S?, namely,

of

o = Dsif

with the initial data f(t=0, - )=u € L» (S?) for some p € (1, 2], and let F(t):=|[f(t, - )llro (sa)-
The key computation goes as follows:

F’ d
= pt)
= oe PO = g [ ee( [ 16 p0an)]

/

_pQPFp[/SdU 1og(f8d )du+4 p,1 /Sd|Vv|2du}

with v := |f|p(2t>. Assuming that 4 p;1 = 3, that is,

we find that
t)—1
log (p( ) ) = 2dt,
p—1
if we require that p(0) = p < 2. Let ¢, > 0 satisfy p(t.) = 2. As a consequence of the above
computation, we have

: 1 _ A2dt.
£ Msiony Sl 3 3 ) = (22)

Step 2 (Spectral Decomposition) Let v = Y uy be a decomposition of the initial datum
kEN
on the eigenspaces of —Agas, and denote by A\, = k(d + k — 1) the ordered sequence of the

eigenvalues: —Agaur = A\ uy, (see for instance [20]). Let aj, = ”uk”L?(sd As a straightforward

consequence of this decomposition, we know that ||u||L2(Sd) = > a, ”v“”m(sd > Ak ag
kEN EEN

and

£ty Moy = Y awe 22t

keN
Using (2.2), it follows that
(o [ulPdn) * = Ji uPdp _ (foa lulPdp) = fou £ (b, )Pdp_ 72kt
Z /\k ak .
p—2 2-p Ak

kEN*

Notice that Ay = 0 so that the term corresponding to k = 0 can be omitted in the series. Since

A — 1_e;ﬂt* is decreasing, we can bound 17 A " from above by ! ,\2 ' for any k> 1.
This proves that
2
(fsd |u|pdu)p _ fsd |u|2du _ 12Xt ) 1 —e 2Nt HV Hz
< LQr = u .
p—2 (2-p) M (2-p)N\ e

keN*
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The conclusion follows easily if we notice that \; = d and e 22 % = p — 1, so that

1—e 2Mts 1
(2-p) M S d

The optimality of this constant can be checked as in the case p > 2 by a Taylor expansion of
u =1+ ev at order two in terms of £ > 0 small enough.

3 Symmetrization and the Ultraspherical Framework

3.1 A reduction to the ultraspherical framework
d

We denote by (&, &1, -+, &) the coordinates of an arbitrary point & € S¢ with Y |&]? = 1.
i=0
The following symmetry result is a kind of folklore in the literature, and we can see [5, 33, 11]

for various related results.
Lemma 3.1 Up to a rotation, any minimizer of (1.2) depends only on &4.

Proof Let u be a minimizer for Q,. By writing u in (1.1) in spherical coordinates 6 € [0, 7],
01, P2, ,pd—1 € [0,27) and using decreasing rearrangements (see, for instance, [24]), it is
not difficult to prove that among optimal functions, there is one which depends only on 6.
Moreover, the equality in the rearrangement inequality means that u has to depend on only
one coordinate, i.e., £ = sinf.

Let us observe that the problem on the sphere can be reduced to a problem involving the
ultraspherical operator as follows:
(1) Using Lemma 3.1, we know that (1.1) is equivalent to

P o+ [Torar= ([ opas)’

for any function v € H!([0, 7], do), where

: d—1 T d
do(@) = T g with 2y = v (3)

Zq F(d;rl)

(2) The change of variables = cos€ and v(0) = f(z) allows to rewrite the inequality as

_9 rt 1 1 2
P d / |f/|2 vdyy +/ |f|2dl/d > (/ |f|pdl/d) ,
_1 1 1

where dvy is the probability measure defined by
—1_ 4d_1 . 2 F((Qi)
va(z)de = dvg(z) :== Z; ' v2"'de  with v(z):=1—-2°, Zg=+/m P
2
We also want to prove the result in the case p < 2, to obtain the counterpart of Theorem 1.1
in the ultraspherical setting. On [—1, 1], consider the probability measure dv,, and define

v(z) :=1-—2a?,

so that dvg = 7 v2~ldz. We consider the space L2((—1,1),dry) with the scalar product

1
(f1, f2) = [1f1 Jadvyg,



106 J. Dolbeault, M. J. Esteban, M. Kowalczyk and M. Loss

1= ( [ 7).

and use the notation

On L2((—1,1),dvy), we define the self-adjoint ultraspherical operator by
2 " / " d /gl
Lfm(=a?) [ —duf =v [+ 0 ]

which satisfies the identity
1
(e h) == [ g3 vava
-1

Then the result goes as follows.

Proposition 3.1 Let p € [1,2*], d > 1. Then we have

1 2 _ 2
~ten= [ ez a TR v ewcuan,
if p#2; and .
B _d 2 f1?
ifp=2.

We may notice that the proof in [21] requires d > 2, while the case d = 1 is also covered in
[12]. In [20], the restriction d > 2 was removed by Bentaleb et al. Our proof is inspired by [21]
and also [14, 17], but it is a simplification (in the particular case of the ultraspherical operator)
in the sense that only integration by parts and elementary estimates are used.

3.2 A proof of Proposition 3.1

Let us start with some preliminary observations. The operator £ does not commute with
the derivation, but we have the relation

8 — / ! " !
[ax,E}U—(Lu) —Lu =-2zu" —du.

As a consequence, we obtain

1 1

u L' vdyy —|—/ u (2zu” + du') vdu,

-1

(Lu, Lu) = —/1 u' (L) vdyg = _/

-1 -1

1
(Lu, Lu) :/ [u"|> v3dvg — d {(u, L u)

-1
and

1

1 1
/ (Lu)?dvg = (Lu, Lu) = / |u"|* v3dvg + d/ [u' | vdyg. (3.2)
1 1

1 — —

On the other hand, a few integrations by parts show that

|u/|2 d /1 |’U,/|4 ) d—1 /1 |ul|2u/l )
Lu) = dvg — 2 d 3.3
< v d+2 J_; u? vard d+2 /), wu v (33)
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where we have used the fact that v/ vy = di2 (2 vg).
Let p € (1,2) U (2,2%). In H'([-1,1],dvy), now consider a minimizer f for the functional
1 f 2 _ f 2
f’_’/ |f/|2 VdVd—dH Hp H HQ :Ig[f],
—1 p— 2

made of the difference of the two sides in (3.1). The existence of such a minimizer can be proved
by classical minimization and compactness arguments. Up to a multiplication by a constant, f
satisfies the Euler-Lagrange equation

-2
T
d
Let 3 be a real number to be fixed later and define u by f = v?, such that

/12
Lf=pul! (Eu—l—(ﬁ—l) |uu| V).

Then u is a solution to

/|2

_Eu_(ﬁ_l) ]/+)\u:>\u1+ﬁ(p72) with \ :=

(r—2)8
If we multiply the equation for u by |u7;‘2 v and integrate, we get
P L ! 1
—/ Lu vdvg — (8 — 1)/ , Vidug + )\/ |u'|? vdrg = A / u? P72 |02 vduyg.
-1 u -1 u -1 -1

If we multiply the equation for v by —L u and integrate, we get
1

1 1 "2 1
/ (Lu)*dvg + (B — 1)/ Lu |uu| vdyg + )\/ |u'|? vdvg = (X + d)/ uP P72 [0 ? vduyg.
_ —1 -1

1 -1
Collecting terms, we find that
1 1 2 1 114 1
d || d ||
Lu)*d /c d -1)(1 / 2d —d/ |2 vdyy=0.
/_1( u) Vd—i—(b’—i—)\) B u v vat+(3 )( +/\) o vidyy _1|u| vdyg
Using (3.2)—(3.3), we get

/14
(.

1 1 1 2,1
d d |u d—1 [w/]* u
mz .2 ) 2
/_1|u| Vdud—l—(ﬁ—l—)\){d_’_Q/_l w2 vidyg d—|—2/_1 " ydyd}

+(B-1) (1 + d) /1 |UI2|4 vidvg =0,

AN J1 u
that is,
1 1 2,1 1 14
a/ lu"|? 1/2d1/d+2b/ [ V2dud+c/ |u2| V2 dug =0, (3.4)
-1 -1 U -1 U
where
a=1,
d\ d—1
(et
%3 dre

SR )
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Using ;\1 = (p — 2) 3, we observe that the reduced discriminant
§=b%>—ac<0

can be written as

d(p—1)

12
§=AB*+Bp+1 WithA:(p—l)Q(d L —p+2and B=p—-3— 442

(d+2)?
If p < 2%, B2 — 4 A is positive, and therefore it is possible to find 3, such that § < 0.

Hence, if p < 2*, we have shown that G[f] is positive unless the three integrals in (3.4) are
equal to 0, that is, u is constant. It follows that G[f] = 0, which proves (3.1) if p € (1,2)U(2,2%).
The cases p = 1, p = 2 (see Corollary 1.1) and p = 2* can be proved as limit cases. This
completes the proof of Proposition 3.1.

4 A Proof Based on a Flow in the Ultraspherical Setting

1

Inequality (3.1) can be rewritten for g = f?, i.e., f = ¢% with a = N
(pen) = -t g = alg) 2 | I
4.1 Flow
Consider the flow associated to £, that is,
gj - Ly, (4.1)

and observe that
d d 2a ! /12
g llle=0, g™l =-2-2){(fLH=2(p-2) | [f] v,
-1

which finally gives

d d d

Flot )l ==, 3 1°°lh =~ 2T[g(t. ).

4.2 Method
If (3.1) holds, then

d

dt}—[g(t’ )] < _Zd}—[g(tv )]a (4'2)

and thus we prove
Flg(t, )] < Flg(0, )]e™ >, vi>o0.

This estimate is actually equivalent to (3.1) as shown by estimating Cft}' [g9(t, -)] at t = 0.
The method based on the Bakry-Emery approach amounts to establishing first that

d

Tl ] < —24T(g(t, )] (43)
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and proving (4.2) by integrating the estimates on ¢t € [0, 00). Since

(Flg(t, )] = Zlg(t, -)]) = 0
and tlirgo(f[g(t, )] = Z[g(t, -)]) = 0, this means that

Flg(t, )] = Z[g(t, )] <0, Vt>0,

which is precisely (3.1) written for f(¢, -) for any ¢ > 0 and in particular for any initial value

The equation for g = fP can be rewritten in terms of f as
of f?
Hence, we have
b e 1d P
2 dt/_1|f| vdvg = 2 dt (LLf) = <£f,£f>+(p—1)< ¥ V,£f>.

4.3 An inequality for the Fisher information
Instead of proving (3.1), we will established the following stronger inequality, for any p €

2
(2,2%], where 2 := (2;7'1")2:

f'?
f

Notice that (3.1) holds under the restriction p € (2,2%], which is stronger than p € (2,2*]. We
do not know whether the exponent 2 in (4.4) is sharp or not.

heh+e-0(" " vepy+den=o. (4.4)

4.4 Proof of (4.4)
Using (3.2)—(3.3) with u = f, we find that
d ! 712 ! 712
[f'1* vdvg + 2d [f'|* vdvg
dt J 4 —1
1 14 12 g1
d |f'] d—11f*f
=—2 "2 -1 —2(p—1 2duyg .
[ reew-v 0,100 - 2e-05 v

The right-hand side is nonpositive, if

"2 I d—1|f']f"
-1 - 2(p—-1
17+ (e )d+2f2 =1, f
is pointwise nonnegative, which is granted if
d—172 d
—1 <(p-1
P=1) o] =D

a condition which is exactly equivalent to p < 2.
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4.5 An improved inequality
For any p € (2, 2’1), we can write that

2 |1t d—11[f"]f"
o "2 p_ld_l " |f/|22 12
=alfPa ol gy I VAT | zell
where )
d—1
6“21_@_1%&d+g

is positive. Now, using the Poincaré inequality
1 1
[ 15 avasa= @2 [ 15 pPdvas
—1 -1
where
1 1
f/ = / fldl/d+2 = —d/ J?fdl/d,
-1 -1

we obtain an improved form of (4.4), namely,

|2
f

LhLh+e=-0(" vLf)+d+a@d+2)] (L >0,

if we can guarantee that f/ = 0 along the evolution determined by (4.1). This is the case if we
assume that f(z) = f(—=) for any « € [—1,1]. Under this condition, we find that

171~ 1713

1
/_1|f'|21/d1/d2[d+a(d+2)] b2

As a consequence, we also have

d+a(d+2 ’
[vaan+ [ qupaz O Guran)
S S p sd

for any u € H*(S%,du), such that, using spherical coordinates,
u(@, P1,P2, 750d71):u(7r_0a Y1, P2, 7906171); V(G, P1,P2, 750d71) € [Oa ’/T] X [Oa 271—)(1_1 :

4.6 One more remark

The computation is exactly the same if p € (1,2), and henceforth we also prove the result
in such a case. The case p = 1 is the limit case corresponding to the Poincaré inequality

/11 |f/|2d1/d+2 > d(/l1 |f|2dVd — ‘/11 ded‘Q)

and arises as a straightforward consequence of the spectral properties of £. The case p = 2 is
achieved as a limiting case. It gives rise to the logarithmic Sobolev inequality (see, for instance,
[34]).
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4.7

or p

50

0 2 4 6 8 10

i 2d%+1 * 2d
Figure 1 Plot of d + 2* = (e andde— 27 = 2.

Limitation of the method

The limitation p < 2¢ comes from the pointwise condition

/|14 _ 12 ¢n
1, d=11fPf"

d+2 f2 =1y oy 20

hi= 2+ (- 1)

Can we find special test functions f, such that this quantity can be made negative? Which are
admissible, such that hv? is integrable? Notice that at p = 2% we have that f(z) = |z|'7¢,
such that h = 0, but such a function or functions obtained by slightly changing the exponent,

are not admissible for larger values of p.

By proving that there is contraction of Z along the flow, we look for a condition which is

stronger than one of asking that there is contraction of F along the flow. It is therefore possible

that the limitation p < 2! is intrinsic to the method.

References

(1]

2]
(3]

(4]
(5]

6]
7
]
9
[10]
[11]

(12]

Arnold, A., Bartier, J. P. and Dolbeault, J., Interpolation between logarithmic Sobolev and Poincaré
inequalities, Commun. Math. Sci., 5, 2007, 971-979.

Arnold, A. and Dolbeault, J., Refined convex Sobolev inequalities, J. Funct. Anal., 225, 2005, 337-351.

Arnold, A., Markowich, P., Toscani, G., et al., On convex Sobolev inequalities and the rate of convergence
to equilibrium for Fokker-Planck type equations, Comm. Part. Diff. Eq., 26, 2001, 43—-100.

Aubin, T., Problémes isopérimétriques et espaces de Sobolev, J. Diff. Geom., 11, 1976, 573—-598.

Baernstein, A. and Taylor, B. A., Spherical rearrangements, subharmonic functions, and *-functions in
n-space, Duke Math. J., 43, 1976, 245-268.

Bakry, D., Une suite d’inégalités remarquables pour les opérateurs ultrasphériques, C. R. Acad. Sci. Paris
Sér. I Math., 318, 1994, 161-164.

Bakry, D. and Bentaleb, A., Extension of Bochner-Lichnérowicz formula on spheres, Ann. Fac. Sci.
Toulouse Math., 14(6), 2005, 161-183.

Bakry, D. and Emery7 M., Hypercontractivité de semi-groupes de diffusion, C. R. Acad. Sci. Paris Sér. I
Math., 299, 1984, 775-778.

Bakry, D. and Emery, M., Diffusions hypercontractives, séminaire de probabilités, XIX, 1983/1984, Lecture
Notes in Math., Vol. 1123, Springer-Verlag, Berlin, 1985, 177-206.

Beckner, W., A generalized Poincaré inequality for Gaussian measures, Proc. Amer. Math. Soc., 105,
1989, 397-400.

Beckner, W., Sobolev inequalities, the Poisson semigroup, and analysis on the sphere S™, Proc. Nat. Acad.
Sci. U. S. A., 89, 1992, 4816-4819.

Beckner, W., Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math.,
138(2), 1993, 213-242.



112
[13]
[14]
[15]
[16]
[17]
18]
[19]
[20]
[21]
[22]
[23]

[24]
[25]

(26]

27]
(28]

29]
(30]

(31]
32]

(33]
(34]
(35]

(36]
(37)

J. Dolbeault, M. J. Esteban, M. Kowalczyk and M. Loss

Bentaleb, A., Développement de la moyenne d’une fonction pour la mesure ultrasphérique, C. R. Acad.
Sci. Paris Sér. I Math., 317, 1993, 781-784.

Bentaleb, A., Inégalité de Sobolev pour 'opérateur ultrasphérique, C. R. Acad. Sci. Paris Sér. I Math.,
317, 1993, 187-190.

Bentaleb, A., Sur ’hypercontractivité des semi-groupes ultrasphériques, séminaire de probabilités, XXXIII,
Lecture Notes in Math., Vol. 1709, Springer-Verlag, Berlin, 1999, 410-414.

Bentaleb, A., L’hypercontractivité des semi-groupes de Gegenbauer multidimensionnels — famille d’iné-
galités sur le cercle, Int. J. Math. Game Theory Algebra, 12, 2002, 259-273.

Bentaleb, A., Sur les fonctions extrémales des inégalités de Sobolev des opérateurs de diffusion, séminaire
de probabilités, XXXVI, Lecture Notes in Math., Vol. 1801, Springer-Verlag, Berlin, 2003, 230-250.

Bentaleb, A. and Fahlaoui, S., Integral inequalities related to the Tchebychev semigroup, Semigroup Forum,
79, 2009, 473-479.

Bentaleb, A. and Fahlaoui, S., A family of integral inequalities on the circle S', Proc. Japan Acad. Ser. A
Math. Sci., 86, 2010, 55-59.

Berger, M., Gauduchon, P. and Mazet, E., Le spectre d’une variété riemannienne, Lecture Notes in Math-
ematics, Vol. 194, Springer-Verlag, Berlin, 1971.

Bidaut-Véron, M. F. and Véron, L., Nonlinear elliptic equations on compact Riemannian manifolds and
asymptotics of Emden equations, Invent. Math., 106, 1991, 489-539.

Bolley, F. and Gentil, I., Phi-entropy inequalities and Fokker-Planck equations, Progress in Analysis and
Its Applications, World Sci. Publ., Hackensack, NJ, 2010, 463-469.

Bolley, F. and Gentil, I., Phi-entropy inequalities for diffusion semigroups, J. Math. Pures Appl., 93(9),
2010, 449 473.

Brock, F., A general rearrangement inequality & la Hardy-Littlewood, J. Inequal. Appl., 5, 2000, 309-320.

Carlen, E. and Loss, M., Computing symmetries, the logarithmic HLS inequality and Onofri’s inequality
on 8™, Geom. Funct. Anal., 2, 1992, 90-104.

Chafal, D., Entropies, convexity, and functional inequalities: on ®-entropies and ®-Sobolev inequalities,
J. Math. Kyoto Univ., 44, 2004, 325-363.

Funk, P., Beitrdage zur Theorie der Kegelfunktionen., Math. Ann., 77, 1915, 136-162.

Gidas, B. and Spruck, J., Global and local behavior of positive solutions of nonlinear elliptic equations,
Comm. Pure Appl. Math., 34, 1981, 525-598.

Gross, L., Logarithmic Sobolev inequalities, Amer. J. Math., 97, 1975, 1061-1083.

Hebey, E., Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in
Mathematics, Vol. 5, New York University Courant Institute of Mathematical Sciences, New York, 1999.

Hecke, E., Uber orthogonal-invariante Integralgleichungen., Math. Ann., 78, 1917, 398-404.

Latata, R. and Oleszkiewicz, K., Between Sobolev and Poincaré, Geometric aspects of functional analysis,
Lecture Notes in Math., Vol. 1745, Springer-Verlag, Berlin, 2000, 147-168.

Lieb, E. H., Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math.,
118(2), 1983, 349-374.

Mueller, C. E. and Weissler, F. B., Hypercontractivity for the heat semigroup for ultraspherical polynomials
and on the n-sphere, J. Funct. Anal., 48, 1982, 252-283.

Rosen, G., Minimum value for ¢ in the Sobolev inequality ¢3| < cV¢||3, STAM J. Appl. Math., 21, 1971,
30-32.

Talenti, G., Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110(4), 1976, 353-372.

Weissler, F. B., Logarithmic Sobolev inequalities and hypercontractive estimates on the circle, J. Funct.
Anal., 37, 1980, 218-234.



