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Abstract Alzheimer’s disease (AD) is a progressive neurode-
generative disorder characterized by synaptic dysfunction and
accumulation of amyloid-beta (Aβ) peptide, which are responsi-
ble for the progressive loss ofmemory. Themechanisms involved
in neuron dysfunction in AD remain poorly understood. Recent
evidence implicates the participation of adaptive responses to
stress within the endoplasmic reticulum (ER) in the disease
process, via a pathway known as the unfolded protein response
(UPR). Here, we review the findings suggesting a functional role
of ER stress in the etiology of AD. Possible therapeutic strategies
to mitigate ER stress in the context of AD are discussed.
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Abbreviations
Aβ Amyloid beta
AD Alzheimer’s disease
AICD APP intracellular domain
ALS Amyotrophic lateral sclerosis
APH1 Anterior pharynx defective 1
APP Amyloid precursor protein
ATF4 Activating transcription factor 4
ATF6 Activating transcription factor 6
BACE1 β-site APP cleaving enzyme-1
BiP/Grp78 Glucose-related protein at 78 kDa
Cdk5 Cyclin-dependent kinase 5
CHOP/GADD134 C/EBP-homologous protein
eIF2α Eukaryotic translation initiator

factor 2α
ER Endoplasmic reticulum
ERAD ER-associated degradation
FAD Familial AD
GCN2 General control nonderepressible-2
GSK-3β Glycogen synthase kinase 3β
HD Huntington’s disease
HRI Hemin-regulated inhibitor kinase
Hsp70 Heat-shock protein at 70 kDa
IP3-R IP3 receptors
IRE1 Inositol-required 1
JNK c-Jun N-terminal kinases
NCSTN Nicastrin
NMDA-R N-methyl-D-aspartate receptor
PEN-2 or PSENEN Enhancer of presenilin-2
PERK Protein kinase RNA-like ER kinase
PD Parkinson’s disease
PDI Protein disulfide-isomerase
PKR Double-stranded RNA-dependent

protein kinase
PMDs Protein misfolding disorders
PSEN Presenilin
RyRs Ryanodine receptors
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SAD Sporadic AD
UPR Unfolded protein response
XBP1 X box-binding protein 1

Introduction

Most neurodegenerative diseases share a common feature
which is characterized by the presence of abnormal protein
aggregates and inclusions mainly composed of misfolded pro-
teins. The search for common pathogenic mechanisms leading
to neurodegenerative diseases has received much attention in
the last decade. Parkinson’s disease (PD), Huntington’s dis-
ease (HD), prion-related disorders, amyotrophic lateral scle-
rosis (ALS), Alzheimer’s disease (AD), and other related
diseases, share transversal neuropathological events highlight-
ing the deposition of misfolded proteins in specific regions of
the central nervous system [1]. This group of pathologies are
now classified as protein misfolding disorders (PMDs) [2].

A large body of literature during the last decade suggests
a complex scenario wherein PMD-related protein aggregates
may alter different aspects of neuronal physiology, generat-
ing major dysfunction of synapses, axonal transport, and
protein degradation systems, among other pathological
events [3, 4]. Several lines of evidence have underlined
the importance of stress in specific subcellular organelles
as a pathophysiological mechanism. Perturbations in the
function of mitochondria, lysosomes/autophagy vesicles
and the endoplasmic reticulum (ER) are emerging as rele-
vant factors that drive neurodegeneration in many PMDs. In
this review, we focus on the major findings relating ER
stress with the etiology and progression of AD.

Many distinct alterations in the function of the ER can
trigger general disturbances in protein homeostasis (also
known as proteostasis [5]), representing an interesting target
for disease intervention. The ER is a critical compartment
involved in metabolic processes, such as gluconeogenesis
and lipid biosynthesis, operates as a central compartment for
the initiation of diverse signaling events, and represents the
major intracellular calcium reservoir in the cell. One of the
major functions of the ER is the synthesis and folding of
proteins that traffic through the secretory pathway, which in-
volves one third of the total proteome [6]. Disturbance of ER
function is emerging as a relevant factor driving
neurodegeneration in diverse neurodegenerative diseases [3],
in addition to affecting the physiology of other organs includ-
ing the liver, pancreas, and other tissues [7]. The mechanisms
associated with ER stress in PMDs are diverse and complex
and involves alterations in almost every aspect of the secretory
pathway. Genetic and pharmacological manipulation of the
unfolded protein response (UPR) has demonstrated a clear
impact of ER stress in diseases such as HD [8], PD [9], and
ALS [3] in vivo. However, despite being the most important

neurodegenerative disease, functional data relating ER
stress to AD are largely correlative and based mostly
on studies in cell culture models. In the next section,
we will summarize most relevant aspects of AD and
describe the best characterized ER stress signaling path-
ways. Then, we will focus on discussing themajor evidence
linking ER stress to AD.

Alzheimer’s disease, an overview

AD is the most common form of dementia and current
epidemiology suggests it affects more than 25 million in-
dividuals worldwide. Aging is the major risk factor associ-
ated with development of this disease, and in the USA, AD
prevalence is near 2 % of the population between the ages of
65 and 74 years. Furthermore, there is an increase of tenfold
in the incidence of AD in the age group between 75 and
84 years, and near half of the population over 85 years old is
affected by this disorder. There is no cure for AD, which
worsens as it progresses, and eventually can lead to the
death of the patient. AD is a progressive neurodegener-
ative disorder characterized by cognitive alterations,
memory loss, and behavioral changes. This dementia is
associated with synaptic impairment and loss of neu-
rons. This is thought to be caused by the formation of neuro-
fibrillary tangles consisting of hyperphosphorylated Tau
protein and senile plaques comprising amyloid-β (Aβ) pep-
tide in specific brain regions in association with enhanced
astrogliosis, brain inflammation, and microglial proliferation
[10–12].

One of the major neuropathological hallmarks of AD is
the accumulation of Aβ peptide in specific brain regions
such as neocortex, hippocampus and the limbic system.
Progressive accumulation of Aβ peptide results in synaptic
loss and neuronal death. Aβ peptide is generated by the
successive proteolysis of the amyloid precursor protein
(APP) by two proteases, β- and γ-secretases [13]. Mutations
in three genes are linked to the development of rare familial
and early forms of AD. These genes encode for APP,
presenilin (PSEN) 1 and 2, and account for only 1 % of
cases of AD. Other risk factors include the ε4 allele of
Apolipoprotein E [14]. The mechanisms of overproduction
of Aβ peptide in familial AD (FAD) cases are starting to be
elucidated, but little is known about etiology of the most
common sporadic forms of the disease (SAD). However,
given the similarity between the clinical and histopathology
observations obtained from the analysis of FAD and SAD
cases, it is proposed that similar pathological mechanisms
are involved in both forms of the disease.

SAD is the most common form of the disease where the
production and clearance of Aβ is probably imbalanced.
This promotes the accumulation of oligomeric and aggre-
gated species of amyloid, which may trigger synaptic
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dysfunction and neuronal loss. Gradual changes in the
steady-state levels of Aβ peptide in the brain are thought
to initiate the amyloid cascade [11, 15]. Aβ monomers are
not neurotoxic; however, the local accumulation of peptides
causes self-association and oligomerization generating sol-
uble oligomers and Aβ fibrils with neurotoxic properties
[16]. Aβ oligomers associate with synapses [17, 18] and
alter their function; they can impair calcium homeosta-
sis, and trigger detrimental processes such as Tau
hyperphosphorylation, excitotoxicity, oxidative stress, and in-
flammation [14, 19, 20]. In addition, Aβ oligomers have been
demonstrated to reduce synaptic plasticity and to inhibit long-
term potentiation [21, 22]. The identification of FAD-related
genes has allowed the generation of several mouse models of
AD, which only partially recapitulate a subset of disease
features [23]. This issue has been a major drawback in the
field especially because most AD mouse models do not de-
velop neuronal loss or neurofibrillary tangles. Dozens of
clinical trials have been performed in the last decade with
poor success, highlighting the need for a better understanding
of the molecular basis of AD pathogenesis.

Mechanism of APP proteolysis, multiple components

The generation of Aβ peptide is a highly regulated and
multistep process involving different components and mac-
romolecular complexes. In this section we summarize most
of the relevant components mediating the processing of
APP. Aβ peptide is generated by the proteolysis of APP
by β- and γ-secretases [10] (Fig. 1). The β-secretase is a
transmembrane aspartate protease, also termed β-site APP
cleaving enzyme-1 (BACE1) [24]. The γ-secretase is also
an aspartate protease composed of at least four subunits:

PSEN, nicastrin (NCSTN), anterior pharynx defective 1
(APH1), and enhancer of presenilin-2 (PEN-2 or PSENEN)
[25]. The γ-secretase is an enzyme complex where the
catalytic core is PSEN, a protein with eight transmembrane
domains and hydrophobic loop domain located between the
6th and 7th transmembrane domain. After translation of
PSEN, the hydrophobic loop is cleaved, producing an N-
terminal fragment and a C-terminal fragment which are
stabilized by cofactors including APH1, PEN-2, and
NCSTN which form the active γ-secretase complex [26]
(Fig. 1).

The generation of Aβ peptide also involves different
compartments and the trafficking of APP. APP is synthe-
sized in the ER and is N- and O-glycosylated before final
movement to the plasma membrane via the Golgi apparatus.
APP is found in most cell membranes and is preferentially
located in the plasma membrane, where it may function in
cell adhesion and cell movement. APP is also found in the
Golgi apparatus membrane, mitochondria, lysosome and
endosomal membrane [27]. APP processing is a highly
complex and regulated process. Aβ peptide can be produced
not only at the plasma membrane, but also in endosomes
with subsequent release into the extracellular space [28].
APP traffics from the plasma membrane to the endosomes
as part of a recycling mechanism. In the late endosomes and
post-Golgi compartments, APP is probability more efficient-
ly processed because of the acidification of these compart-
ments, which is an optimal environment for the activity of
β- and γ- secretases [29].

β-secretase cleaves APP at the N-terminal domain of Aβ
peptide producing a membrane fragment called C99 and
also a secreted ectodomain called sAPPβ. Subsequently,
the C99 fragment is cleaved by γ-secretase to generate Aβ

Fig. 1 APP processing. APP is
cleaved by β-secretase (β) on
the luminal side of APP
generating two fragments,
APPsβ and C99. The C99
fragment is cleaved by the γ-
secretase in the intramembrane
region to generate two
fragments, the Aβ peptide (red)
and the fragment AICD (black).
The γ-secretase complex is
composed by at least four
proteins: PSEN, NCSTN,
APH1, and PEN-2
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peptide and another protein fragment called APP intracellu-
lar domain (AICD) [29] (Fig. 1). The cleavage by this
enzyme is not precise, giving rise to Aβ peptide fragments
ranging from 38 to 43 amino acids, where the peptide
of 42 amino acid is the most amyloidogenic and neuro-
toxic [29]. Furthermore, the AICD fragment has important
roles in cell signaling and could modulate the expression of
APP itself.

The unfolded protein response

Although many distinct pathological events at the cellular
and molecular level have been described in AD models, it
remains unclear how the different pathways described so far
relate to the disease. Interestingly, although very different in
their nature, neurofibrillary tangles [14], neuroinflammation
[30], altered calcium signaling [31], mitochondrial energy
misbalance [32], exitotoxicity, and proteosomal dysfunction
have been linked to the occurrence of pathological ER stress
(Fig. 2) (reviewed in [29] and [33]). In addition to representing
a downstream pathological mechanism, recent evidence also
suggests that ER stress responses may also modulate meta-
bolic pathways that generate Aβ. This suggests ER stress may
also have a direct role in the etiology of disease (see below).
Thus ER stress may be associated with a self-reinforcing cycle
of amyloid production and its downstream pathogenic conse-
quences. In this section, we summarize the key events that are
triggered in cells experiencing ER stress in order to understand
how these pathways link to AD.

The ER is a fundamental compartment in protein synthe-
sis, folding and maturation. Signaling events emerging from
the ER membrane are key in buffering fluctuations that
affect the efficiency of protein folding. Several perturbations
can alter homeostasis of the ER, leading to the accumulation
of misfolded or unfolded proteins in its lumen; a cellular
condition referred to as “ER stress.” These alterations can
include decreased ER calcium content, altered vesicular
trafficking in the secretory pathway, impaired ER-
associated degradation (ERAD), altered chaperone function,
among other events [34]. ER stress triggers a complex
network of signaling events and cellular processes that as a
whole is known as the UPR [35]. The UPR orchestrates
adaptation of cells to the stress associated with improper
protein folding by modulating almost every aspect of the
secretory pathway. Conversely, under chronic or irreversible
ER stress, the UPR triggers cell death by apoptosis to
eliminate damaged cells [36]. To cope with ER stress, the
UPR controls the expression of genes involved in protein
folding, quality control, ER and Golgi biogenesis, and pro-
tein degradation pathways. In doing so, the UPR transmits
information about the protein folding status in the ER to the
cytosol and nucleus, by controlling a series of specialized
transcription factors [37].

ER stress stimulates at least three parallel signaling path-
ways initiated by the activation of the stress sensors inositol-
required 1 (IRE1, α and β), protein kinase RNA-like ER
kinase (PERK) and activating transcription factor 6 (ATF6,
α and β). The IRE1α branch is the most conserved arm of
the UPR. IRE1α is a kinase and endoribonuclease, that upon
activation catalyzes the processing of the mRNA encoding
the transcription factor X box-binding protein 1 (XBP1),
removing a 26 base-pair intron [38–40]. This splicing
changes the coding reading frame of the mRNA resulting
in the expression spliced XBP1 (XBP1s), a potent transcrip-
tion factor that regulates a subset of UPR targets [41, 42].
IRE1α also activates other signaling branches through the
binding of adapter proteins such as TNFR-associated factor-2,
triggering the activation of c-Jun N-terminal kinases (JNK)
and apoptosis signal kinase-1 which have been implicated in
processes such as autophagy and apoptosis [43]. In addition,
IRE1α can degrade a subset of mRNAs and miRNAs through
its RNAse domain, which can contribute to both adaptation to
stress by decreasing protein translation and synthesis, or the
induction of apoptosis [44–46].

Upon act iva t ion, PERK dimer izes and auto-
transphosphorylates, leading to the phosphorylation of eu-
karyotic translation initiator factor 2α (eIF2α), which ar-
rests protein synthesis, contributing to the alleviation of the
overload of proteins inside the ER [47]. In addition, phos-
phorylation of eIF2α allows the specific translation of the
mRNA encoding activating transcription factor 4 (ATF4).
ATF4 is a key transcription factor involved in the regulation
of genes related to redox balance, amino acid metabolism,
protein folding and apoptosis [47]. Of note, at least three
additional kinases can phosphorylate eIF2α independent of
ER stress including general control nonderepressible-2
(GCN2), double-stranded RNA-dependent protein kinase
(PKR) and hemin-regulated inhibitor kinase (HRI) [48].
Finally, under stress conditions, the cytoplasmic tail of ATF6
is proteolyticaly processed by site-1 protease and site-2 pro-
tease in the Golgi apparatus. This releases an active cytosolic
fragment (ATF6f) that operates as a bZIP transcription factor
[34]. ATF6f regulates a subset of UPR target genes involved
in ERAD and protein quality control [49].

Since the UPR controls both adaptation to stress and the
activation of apoptosis programs in cells undergoing ER
stress, it is important to define the components of the path-
way that participate in both processes and that mediate the
transition between them. Many different mediators of ER
stress-induced cell death have been described. One of the
most well characterized proteins is C/EBP-homologous pro-
tein (CHOP/GADD134), whose transcription is controlled
by ATF4 [50]. The pro-apoptotic activity of CHOP involves
the transcriptional upregulation of several pro-apoptotic pro-
teins of the BCL-2 family, known as BH3-only proteins
including BIM, PUMA and NOXA [51]. CHOP also
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down-regulates the expression of the anti-apoptotic protein
BCL-2 [52]. Expression of GADD34 may also sensitize
cells to cell death since it resumes protein synthesis in
stressed cells, resulting in the accumulation of misfolded
proteins in the ER [50]. Many other mechanisms are in-
volved in the induction of apoptosis by ER stress and are
reviewed elsewhere (see [36, 53]).

Evidence of UPR signaling in AD

Several reports have described manifestations of ER stress
in postmortem brain samples from AD patients (Fig. 2;
Table 1). These studies demonstrate the occurrence of XBP1
mRNA splicing in AD temporal cortex and hippocampal

tissue [54]. In addition, enhanced expression of ER chaper-
ones including the 78-kDa glucose-related protein
(BiP/Grp78), 94-kDa glucose-related protein, 70-kDa heat-
shock protein (Hsp70), protein disulfide-isomerase (PDI),
and/or the transcription factor CHOP in AD postmortem brain
tissue [54–62]. The UPR target-gene HERP1 participates in
ERAD and is upregulated in the frontal cortex derived from
AD patients, and its induction is observed in brain areas
containing amyloid plaques [63]. Moreover, the phosphoryla-
tion of the UPR stress sensor PERK and its downstream
substrate eIF2α are observed in the brains of AD patients
[64–67] (Fig. 2). Likewise, the activation of a related kinase
PKR correlates with ER stress levels in brain of AD-derived
samples [68].

BiP/Grp78a b

Non-demented AD

c Non-demented AD

PDI

p-Tau

d

p-PERK

p-eIF2

p-IRE1

HERP and A

Fig. 2 Evidence implicating ER stress and UPR activation in AD
pathogenesis. a Examples of in vivo co-localization between Aβ
peptide aggregates (red) with HERP (green) in human frontal cortex
tissue derived from AD patients. Scale bar, 50 μm. b BiP/Grp78
expression in AD hippocampal samples. Scale bar, 30 μm. c PDI
expression and phosphorylated Tau protein are increased in cortical

AD neurons. Scale bar, 20 μm. d Brain areas presenting senile plaques
and neurofibrillary tangles exhibit activation of UPR sensors and
regulators PERK, IRE1α and eIF2α. Scale bars, 200 and 20 μm for
insets. Images were modified from Refs. [54, 58, 63, 66]. Copyright
authorization was obtained from each journal
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Table 1 Evidence linking ER stress to AD

Component Human samples Animal models In vitro models

PERK/eIF2α Increase phosphorylation
of PERK and eIF2α in
AD brains [64, 65, 67]

Increased eIF2α phosphorylation
in 5XFAD mouse model [64]

eIF2α phosphorylation in cells
treated with Aβ [98, 111]

Knock-down of PERK enhances
Aβ toxicity [113]

PSEN1 mutation inhibits activation
of PERK [82, 84]

eIF2α phosphorylation in
cell overexpressing APP with
E693Δ mutation [95]

ATF4 ATF4 regulates the activity of
γ-secretase [120, 121]

IRE1α PSEN1 mutation inhibits
IRE1α activation [84]

XBP1 Nonconvetional XBP1
splicing in temporal cortex
of AD brains [54]

Protective role of XBP1s in flies
overexpressing Aβ [101]

XBP1 splicing upon treatment
with Aβ [101, 102, 112]

XBP1 promoter polymorphism
is associated with risk to
develop AD [130]

Knock-down of XBP1
enhances neurotoxicity on
a fly model of taupathies [76]

Protective role of XBP1s in PC12
treated with oligomeric Aβ [101]

XBP1s binds to the promoter region
of AD-related genes [42]

ATF6 PSEN1 mutation inhibits activation
of ATF6 [84]

CHOP CHOP is upregulated in the temporal
cortex of AD brains [54]

CHOP is unaltered in Tg2576
AD mouse model [54]

AICD associates with promoter
region of CHOP gene [118]

Enhanced expression of
CHOP in a rabbit model
of Aβ toxicity [114].

Increased CHOP expression in
cells treated with Aβ [97, 113]

BiP/GRP78 Increased BiP in cytologically
normal neurons [59] and
associated with amyloid
deposits [55] in AD brains

Enhanced expression of BiP
in a rabbit and mouse model
of Aβ toxicity [103, 114]

Unaltered BiP expression in fibroblast
from FAD-linked PSEN1 mutation [81]
and null mutant [84]

Unaltered BiP expression in
temporal cortex of
AD brains [54]

BiP expression is unaltered
on Tg2576 mouse model
of AD [54]

Activation of BiP upon treatments with
Aβ peptide [98–100, 106, 107, 113]

Enhanced expression of BiP in
cell lines and induced pluripotent
stem cells expressing APP with
E693Δ mutation [95, 105]

ER stress triggers the binding
of BiP to APP [60, 85]

PDI Decrease PDI activity by
S-nitrosylation in sporadic
AD brains [128]

PDI expression is unaltered
in Tg2576 mice [54]

Unaltered PDI in fibroblasts expressing
FAD-linked PSEN1 mutation [81]

PDI is increased in neurons
and inclusions of temporal
cortex of AD brains [54, 61]

Pharmacological activation
of PDI improves AD in
5XFAD mice [142]

PDI interacts with Aβ in
cerebrospinal fluid [141]

Others components HSP72 is increased surrounding
neuritic plaques and neurofibrillary
tangles from AD brains [59]

HRD1 is involved in the degradation
of APP [56]
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Interconnection between ER stress and Tau pathology

Neurons contain Tau protein, which serves to stabilize mi-
crotubules. Neurodegeneration associated with tauopathies,
such as AD and frontotemporal dementias, are characterized
by the presence of intraneuronal inclusions containing
hyperphosphorylated Tau [69]. ER stress markers are ob-
served in neurons and glia exhibiting Tau pathology [70].
IRE1α and PERK phosphorylation were described in pa-
tients affected with AD and as well as a wide range of
frontotemporal dementias [69]. In vitro studies suggest that
the induction of ER stress by the exposure of cells to Aβ
oligomers correlates with the induction of Tau phos-
phorylation [71], placing ER stress as an interesting
connection between Aβ-mediated neurotoxicity and Tau
hyperphosphorylation [72].

It has been suggested that phosphorylation of Tau is unable
to trigger ER stress and thus an UPR. Conversely, stimulation
of UPR signaling can induce Tau phosphorylation [73], pos-
sibly through the activation of glycogen synthase kinase 3β
(GSK-3β) [74]. Interestingly, neurons exhibiting activated
PERK co-express active GSK-3β in affected neurons of AD
brain [66]. More importantly, genetic variants associated with
single nucleotide polymorphisms in the PERK gene have been
suggested to represent a risk factor for the development of
sporadic tauopathies [75]. An elegant study has shown that
decreasing XBP1 expression enhances the neurotoxicity in-
duced by overexpression of human Tau protein in a fly model
of tauopathies, suggesting a functional connection between
the UPR and Tau in vivo [76]. This fly model recapitulates
many aspects of Tau-related neurodegeneration, including
age-dependent degeneration, oxidative stress, and apoptotic
neuronal loss, in addition to the activation of XBP1 mRNA
splicing in affected neurons [76].

A function for PSEN in the ER stress response?

Accumulating evidence suggest that PSEN participates in
the maintenance of calcium homeostasis in the ER and
cytosol. In addition, a few studies indicate that PSEN may
also affect the susceptibility of cells to ER stress. However,
the mechanistic relationship between the UPR and PSEN
function is unclear [77]. Two studies have shown that PSEN
deficiency results in delayed activation of PERK and IRE1α
signaling, as well as a reduction in the proteolytic process-
ing of ATF6 under ER stress conditions [78, 79]. However,
in other studies, the levels of BiP/Grp78 and CHOP where
observed to be unaltered in PSEN-deficient cells undergoing
ER stress [80, 81]. In contrast, the overexpression of the
AD-associated mutant of PSEN alters the activation of the
UPR in different experimental systems [81–86].

PSEN regulation of the UPR may have functional con-
sequences for cell viability. For example, cortical neurons

that are transgenic for mutant PSEN are more sensitive to
ER stress [83, 87]. These cells also exhibit altered transla-
tional regulation mediated by PERK signaling [82]. Expres-
sion of mutant PSEN increases calcium release from the ER,
enhancing the sensitivity of cells to ER stress-mediated
apoptosis [77]. PSEN has been detected in complex with
the ER calcium ATPase SERCA and with other ER-resident
calcium channels (i.e., IP3 receptors (IP3-R) and ryanodine
receptors (RyRs)) which contribute to the effects of mutant
PSEN on ER dysfunction [86, 88, 89]. PSEN was also
suggested to modulate IRE1α cleavage and release of its
cytosolic domain [78]. Although the link between PSEN
and UPR activation is well described, the precise mechanisms
governing this interconnection remains to be elucidated.

ER stress as a driver for neuronal cell loss in AD

Several reports have claimed a function for ER stress-
mediated apoptosis in response to Aβ peptide (Fig. 3)
(reviewed in Ref. [90]). More than a decade ago, a pioneer
study in the UPR field found that treatment of cells with Aβ
peptides leads to the activation of an ER-specific caspase
(caspase-12 in mice and possibly caspase-4 in humans), that
correlates with the induction of apoptotic cell death [91]; a
finding which has been confirmed by other groups [92, 93].
Although processing of caspase-12 is an accepted marker of
ER stress, its functional contribution to apoptosis is debated
[94], and it may operate in pro-inflammatory pathways.

Several studies have demonstrated that exposure of cells
to Aβ oligomers or fibrils in different experimental models,
such as cell lines, primary neuronal cultures, or organotypic
hippocampal brain slices, trigger ER stress [90, 95–103].
For example, evidence has been provided for the activation
of eIF2α and PERK phosphorylation, XBP1 mRNA splic-
ing, and upregulation of CHOP and several ER chaperones
in such studies. The effects of Aβ peptide in the function of
the ER may be indirect since treatment of primary neuronal
cultures with Aβ induces the collapse of microtubules that
ultimately affects the dynamic architecture of the ER [98].
Similar correlations have been shown in transgenic animal
models of AD and brain samples derived from AD patients
[104]. Remarkably, a recent report detected the spontaneous
induction of ER stress (BiP/Grp78 and Caspase-4) in neu-
ronal cultures derived from induced pluripotent stem cell
from sporadic and familial AD cases [105]. In this new
model of AD, intracellular accumulation of Aβ oligomers
was observed, and treatment of cells with antioxidants re-
duced the ER stress response of AD-neuronal cells.

Additional associations between Aβ, ER stress and cell
death are proposed through free-radical oxygen species and
mitochondrial dysfunction [99, 106–108] (reviewed in Ref.
[109]). A recent report also demonstrates that Aβ oligomers
can induce ER stress through a N-methyl-D-aspartate
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receptor (NMDA-R)-dependent mechanism which involves
GluN2A and GluN2B receptor subunits [94]. In this model,
NMDA-R alterations trigger an imbalance in cytosolic cal-
cium which stimulates excessive reactive oxygen species
and, as a consequence, ER stress-mediated cell death [94].
Finally, a recent report also suggested that Aβ oligomers also
trigger an ER stress response in astrocytes both in vitro and in
mouse models of AD, associated with altered calcium signal-
ing and astrogliosis [103]. Many other reports have linked
calcium disturbances and ER stress in cellular models of Aβ
neurotoxicity (reviewed in [103, 110]).

It is still a mater of debate whether or not ER stress is a
consistent signature of Aβ-mediated responses. For example,
some groups have reported that treatment of cells with extra-
cellular Aβ peptide does not induce ER stress, as measured by
XBP1 mRNA splicing, PERK phosphorylation, or by moni-
toring CHOP expression in cortical primary cultures [111].
Furthermore, in another study the treatment of a neuronal cell
line with Aβ caused only “mild” ER stress [112]. Another

study suggested that the selective activation of PERK, and not
IRE1α/XBP1 signaling, is an early event triggered by Aβ
peptide [113]. In this study PERKwas demonstrated to have a
function as a protective factor, controlling the expression of
BiP/Grp78 which functioned in the attenuation of apoptosis
by cells exposed to Aβ peptide aggregates [113].

The E693Δ mutation in APP localizes within the Aβ
sequence and is observed in some Japanese pedigrees af-
fected by AD [95]. This mutation leads to a marked reduc-
tion in Aβ peptide secretion, leading to enhanced
oligomerization of Aβ peptide but not its fibrillization
[95]. The E693Δ mutation affects the trafficking of APP
and causes ER stress and Golgi apparatus dysfunction pos-
sibly due to intracellular Aβ oligomerization [95, 105]. In
contrast, using a neuroblastoma cell line that produces en-
dogenous Aβ peptide it was shown that ER stress is not
induced at basal levels [97]. However, when the cells are
challenged with an ER stress agent, these E693Δ expressing
cells are hypersensitive to ER stress-mediated toxicity and

Fig. 3 ER stress-mediated cell death in AD models. Aβ peptide
aggregates engage and inhibit NMDA-R, causing an influx of calcium
into the cytoplasm. In addition, change in levels of IP3-R and RyRs
channels can also alter calcium homeostasis and trigger cell death
through the mitochondrial apoptosis pathway (apoptosome dependent).

Mitochondrial dysfunction may also trigger the generation of oxidative
stress, which may impact the ER by altering PDI function. All these
cellular events can generate chronic ER stress leading to the activation
of pro-apoptotic events controlled by the UPR including the
upregulation of BIM and CHOP
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exacerbated UPR signaling [97]. Similarly, a potentiation in
neurotoxicity between Aβ peptide and exogenous ER stress
stimulation (pharmacological induction) is observed in other
systems using organotypic hippocampal slice cultures [96].

In animal models of AD, the neurotoxicity of Aβ has also
been correlated with the occurrence of ER stress. Ectopic
expression of spliced XBP1 protects neuronal cells against
the overexpression of Aβ peptide in a model of AD in
Drosophila melanogaster [101]. In this study, XBP1s was
shown to directly regulate ER calcium homeostasis by
downregulating RyR expression [101]. This work showed
for first time a direct functional relationship between the
UPR and AD in vivo [101]. Other correlative studies in a
rabbit model of AD indicated that ER stress is induced by
the hippocampal injection of Aβ [114]. The glial cell line-
derived neurotrophic factor was identified as a protective
factor against the intra-brain injection of Aβ, which also
attenuated ER stress levels [114]. A functional study in the
an AD mouse model expressing mutant APP (Tg2576 mice)
demonstrated that treatment of animals with the chemical
chaperone 4-PBA decreased ER stress levels and alleviated
the pathology [115]. In contrast, another study using
Tg2576 transgenic mice showed no signs of UPR activation,
although ER stress markers were confirmed in human AD
samples [54]. 5XFAD transgenic mice containing mutations
in APP and PSEN1, exhibit signs of ER stress including the
presence of phosphorylated eIF2α and JNK [64, 116]. Re-
markably, depletion of JNK activity improves memory de-
fects, neuronal viability and reduces the content of amyloid
plaques in the brain in models of AD [116]. In contrast, a
recent study suggested that Aβ peptide may also induce the
hyperactivation of the sodium and calcium exchanger
NCX3, increasing ER calcium levels, delaying apoptosis
responses [117]. Thus, all these in vivo studies highlight
the need for generating more understanding in this area in
order to define the actual contribution of ER stress to dif-
ferent aspects of AD pathogenesis.

APP may also operate as a regulator of ER stress-
mediated apoptosis responses. Mechanistic analysis of
the AICD has revealed that it can promote CHOP
transcription and may enhance cell death after treatment
of cells with an ER stress-inducing agent [118]. Inter-
estingly, this mechanism is dependent on γ-secretase
activity release of AICD. However, this model is widely
debated in the literature [118, 119]. Overall, very little
validation is available in linking ER stress to AD in
vivo through genetic or pharmacological manipulation
of the UPR, and most of the studies available so far
are correlative. The mechanisms explaining how Aβ
peptide triggers ER stress/UPR activation and what is
the exact consequence of this particular process to neu-
ronal loss and cognitive dysfunction in AD still remains
an important open question.

The UPR as component of the etiology of AD

Accumulating evidence suggests that UPR signaling events
may actually control the expression of diverse AD-related
proteins (Fig. 4). For example, Vassar and collaborators
demonstrated a direct regulation of BACE1 translation by
eIF2α [64], wherein amyloidogenesis is enhance by this
pathway [64]. Furthermore, ER stress increases the activity
of γ-secretase through ATF4 [120, 121]. Under ER stress
conditions, ATF4 promotes the transcription of PSEN gene,
a component of γ-secretase [120].

In an effort to define the universe of XBP1s-target
genes, a genome-wide screening using a chromatin
immunoprecipitation-on-chip strategy identified a regulatory
network governed by XBP1 involving a subset of major AD-
related genes [42] (Fig. 4). In this work, in addition to iden-
tifying classical XBP1s target genes involved in ER stress
mitigation, unexpected targets were identified including genes
encoding for (1) γ-secretase components (PSEN1, NCSN,
and PEN-2), (2) proteins involved in APP trafficking and
processing (UBQLN1, MINT3, and FE65-3), (3) a
chaperone-regulator linked with neurodegenerative diseases
(BAP/Sil1), (4) ERAD components modulating APP degra-
dation (HERP1), and (5) two candidate genes that may con-
tribute to Tau phosphorylation (cyclin-dependent kinase 5,
Cdk5 and Cdk5rap3) [42]. Although this study places XBP1s
as possible master modulator of a full cluster of genes related
to AD, no functional studies are available to validate this
model, and so far with the data available, it is not possible to
predict what is the effect of XBP1 in gene expression (positive
or negative) or the downstream consequences of this regula-
tion in terms of Aβ peptide production.

Data are also available suggesting that UPR signaling
events could control early steps of APP maturation and
processing. For example, altered processing and subcellular
distribution of APP has been observed in cells undergoing
ER stress [122]. APP can redistribute from late to early
compartments of the secretory pathway thus reducing Aβ
peptide secretion as a result of interactions with the ER
chaperone BiP/Grp78 [85]. This interaction may alter APP
maturation and processing, and the enzymatic reactions
associated with secretases in late secretory compartments,
such as the Golgi apparatus and endo-lysosomal system
[85]. In addition, Aβ peptide production has been suggested
to occur in the ER [123]. Like many other proteins produced
through the secretory pathway, APP is susceptible to
misfolding in the ER, resulting in targeting to the ERAD
[124]. HRD1 is a specific UPR target gene that regulates
degradation of APP in steady-state conditions through
ERAD pathways [56]. HRD1 also modifies the metabolism
and processing of APP to generate Aβ peptide in a mecha-
nism that is dependent on ATF6 and XBP1 through the
upregulation of HRD1 expression [56].
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Cdk5 also phosphorylates APP affecting its processing and
metabolism, and the cleavage of Cdk5 activator p35 to p25 by
calpain is involved in neuronal loss in certain models of AD
(reviewed in Ref. [125]). ER stress can activate Cdk5 contrib-
uting to the induction of apoptosis [126]. A recent study
provided evidence suggesting the occurrence of a general
translational block in animal models of AD and possibly in
human postmortem brains involving the mTOR pathway
[116]. Of note, this process generates ER stress which is
associated with JNK3 activation [116] and phosphorylation
of APP, which facilitates its amyloidogenic processing [116].

Other components of the ER machinery may represent
primary targets of AD pathogenesis. PDI is an ER foldase
and chaperone that assists the formation of disulfide bonds
in the early synthesis of proteins in the ER [127]. The S-
nitrosylation of PDI has been observed in brain samples
derived from sporadic forms of AD. S-nitrosylation of PDI
inhibits it enzymatic activity triggering ER stress [128].
Thus, the generation of oxidative stress in AD brain may
be a direct cause of ER stress in this disease by disrupting
the protein folding process. PDI has also been suggested to
induce neuronal loss in AD models since a high throughput

Fig. 4 Modulation of AD-related genes by the UPR. Distinct UPR
signaling events have been shown to affect the expression of AD-
related genes and also alter the processing of APP. ATF6 traffics to
the Golgi apparatus and cleaved to stimulate the transcription of ERAD
components like HRD1 and HERP1. Also, ATF6 and IRE1α cleavage
could be modulated by PSEN. XBP1 transcription factor binds to

putative targets involved in APP trafficking and degradation. PERK
can also promote translation of BACE1 and transcription of γ-
secretase component. JNK3 may also modulate APP processing under
ER stress conditions. All of these pathways are modulated by ER
stress, affecting APP metabolism and Aβ peptide production. In addi-
tion, AICD acts as a transcription factor that binds the CHOP promoter
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pharmacological screen identified PDI inhibitors as power-
ful compounds that decrease neurodegeneration in models
of AD, and also HD [129]. In this study it was suggested
that PDI, and also its orthologue ERp57, may trigger a
mitochondrial apoptosis pathway. Many other studies have
linked PDI family members to neurodegeneration in diverse
diseases (reviewed in [127]). Together, these findings sug-
gest that improper PDI function (either increased or de-
creased) may contribute to neurodegeneration.

Remarkably, a recent report demonstrated for the first
time a genetic association between alteration in UPR com-
ponents and AD. The 116C/G polymorphism in the XBP1
promoter was associated with risk to develop AD in the
Chinese population [130]. Moreover, the genotypes −116CG
and −116GG were significantly associated with increased AD
risk in females, and in conjunction with the APOE є4 a strong
cognitive impairment was observed. This polymorphism was
initially identified as a risk factor to develop bipolar disorders
[131] and later on linked to schizophrenia in the Japanese
population [132] and personality alterations in woman [133].
In vitro experiments demonstrated that this polymorphism
reduces the expression of XBP1s, having a functional conse-
quence on downstream UPR responses [131]. In contrast, this
polymorphismwas not associated with bipolar disorders in the
Chinese population [134] or in subjects with European origin
[135]. So far, no studies have investigated the possible role of
the UPR in cognition and memory-related processes. Of note,
phosphorylation of eIF2α and expression of ATF4 have been
linked to learning and memory through kinases not related to
ER stress [136–138], suggesting that fine-tuning of ER protein
homeostasis is a relevant contributor to cognitive processes. It
remains to be determined what is the actual contribution of
XBP1 to AD.

In summary, increasing evidence suggests the existence
of a complex regulatory network wherein the UPR modu-
lates essential molecular events involved in the etiology of
AD. Additional integrative and functional studies are nec-
essary to define the actual contribution of the UPR network
to AD pathogenesis.

Conclusions

In this article, we have reviewed the relevant evidence
supporting a connection between ER stress and AD
(Table 1). Most of the data available are based on cellular
models of AD where ER stress is proposed to operate as a
relevant factor driving neuronal degeneration. In contrast, a
few recent studies also suggest that ER stress may actually
modulate the expression of a full network of genes involved
in APP processing and the generation of Aβ peptide. More
importantly, the recently identified association between an
XBP1 polymorphism and the development of AD suggests a

causal role of ER stress in the etiology of the disease.
However, most of data available lack functional testing
necessary to define the actual impact of ER stress on AD
in vivo. Only a few studies have manipulated the UPR in
animal models of AD. It is clear that more research is needed
to solve this relevant question and move forward in defining
novel targets for disease intervention. It is striking to notice
that the field of ER stress and neurodegeneration has moved
much faster in other less frequent diseases such as HD, ALS,
spinal cord injury, and PD, where solid evidence has defined a
functional impact of ER stress in disease pathogenesis
(reviewed in [3, 8, 9, 139]). Part of the difficulty in the
AD field is the lack of solid animal models that reca-
pitulate the integral aspects of the human pathology. In
recent years many novel pharmacological modulators
and genetic strategies (mouse models and gene therapy
tools) have been made available to manipulate the UPR in a
disease context [6, 140]. We believe these resources are going
to provide important clues in the near future about the actual
impact of ER stress on AD, the most prevalent neurodegen-
erative disease in the human population.
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