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The need to store and query a set of strings – a string dictionary – arises in many kinds of
applications. While classically these string dictionaries have accounted for a small share of
the total space budget (e.g., in Natural Language Processing or when indexing text col-
lections), recent applications in Web engines, Semantic Web (RDF) graphs, Bioinformatics,

of the whole data. In these cases, string dictionary management is a scalability issue by
itself. This paper focuses on the problem of managing large static string dictionaries in
compressed main memory space. We revisit classical solutions for string dictionaries like
hashing, tries, and front-coding, and improve them by using compression techniques. We
also introduce some novel string dictionary representations built on top of recent
advances in succinct data structures and full-text indexes. All these structures are
empirically compared on a heterogeneous testbed formed by real-world string diction-
aries. We show that the compressed representations may use as little as 5% of the original
dictionary size, while supporting lookup operations within a few microseconds. These
numbers outperform the state-of-the-art space/time tradeoffs in many cases. Further-
more, we enhance some representations to provide prefix- and substring-based searches,
which also perform competitively. The results show that compressed string dictionaries
are a useful building block for various data-intensive applications in different domains.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

A string dictionary is a data structure that maintains a
set of strings. It arises in classical scenarios like Natural
Language (NL) processing, where finding the lexicon of a
text corpus is the first step in analyzing it [56]. They also
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arise as a component of inverted indexes, when indexing NL
text collections [79,19,6]. In both cases, the dictionary
comprises all the different words used in the text collec-
tion. The dictionary implements a bijective function that
maps strings to identifiers (IDs, generally integer values)
and back. Thus, a string dictionary must provide, at least,
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two complementary operations: (i) string-to-ID locates
the ID for a given string, and (ii) ID-to-string extracts
the string identified by a given ID.

String dictionaries are a simple and effective tool for
managing string data in a wide range of applications.
Using dictionaries enables replacing (long, variable-
length) strings by simple numbers (their IDs), which are
more compact to represent and easier and more efficient
to handle. A compact dictionary providing efficient map-
ping between strings and IDs saves storage space, pro-
cessing and transmission costs, in data-intensive applica-
tions. The growing volume of the datasets, however, has
led to increasingly large dictionaries, whose management
is becoming a scalability issue by itself. Their size is of
particular importance to attain the optimal performance
under restrictions of main memory.

This paper focuses on techniques to compress string
dictionaries and the space/time tradeoffs they offer. We
focus on static dictionaries, which do not change along the
execution. These are appropriate in the many applications
using dictionaries that either are static or are rebuilt only
sparingly. We revisit traditional techniques for managing
string dictionaries, and enhance them with data com-
pression tools. We also design new structures that take
advantage of more sophisticated compression methods,
succinct data structures, and full-text indexes [62]. The
resulting techniques enable large string dictionaries to be
managed within compressed space in main memory. Dif-
ferent techniques excel on different application niches. The
least space-consuming variants operate within micro-
seconds while compressing the dictionary to as little as 5%
of its original size.

The main contributions of this paper can be summar-
ized as follows:

1. We present, as far as we know, the most exhaustive
study to date of the space/time efficiency of compressed
string dictionary representations. This is not only a
survey of traditional techniques, but we also design
novel variants based on combinations of existing tech-
niques with more sophisticated compression methods
and data structures.

2. We perform an exhaustive experimental tuning and
comparison of all the variants we study, on a variety of
real-world scenarios, providing a global picture of the
current state of the art for string dictionaries. This
results in clear recommendations on which structures
to use depending on the application.

3. Most of the techniques outstanding in the space/time
tradeoff turn out to be combinations we designed and
engineered, between classical methods and more
sophisticated compression techniques and data struc-
tures. These include combinations of binary search,
hashing, and Front-Coding with grammar-based and
optimized Hu-Tucker compression. In particular, unco-
vering the advantages of the use of grammar compres-
sion for string dictionaries is an important finding.

4. We create a Cþþ library, libCSD (Compressed String
Dictionaries), implementing all the studied techniques.
It is publicly available at https://github.com/migumar2/
libCSD under GNU LGPL license.
5. We go beyond the basic string-to-ID and ID-to-

string functionality and implement advanced searches
for some of our techniques. These enable prefix-based
searching for most methods (except Hash ones) and sub-
string searches for the FM-Index and XBW dictionaries.

The paper is organized as follows. Section 2 provides a
general view of string dictionaries. We start describing var-
ious real-world applications where large dictionaries must
be efficiently handled, then define the notation used in the
paper, and finally describe classical and modern techniques
used to support string dictionaries, particularly in com-
pressed space. Section 3 provides the minimal background in
data compression necessary to understand the various
families of compressed string dictionaries studied in this
paper. Section 4 describes how we have applied those
compression methods so that they perform efficiently for the
dictionary operations. Sections 5–9 focus on each of the
families of compressed string dictionaries. Section 10 pro-
vides a full experimental study of the performance of the
described techniques on dictionaries coming from various
real-world applications. The best performing variants are
then compared with the state of the art. We find several
niches in which the new techniques dominate the space/
time tradeoffs of classical methods. Finally, Section 11 con-
cludes and describes some future work directions.
2. String dictionaries

2.1. Applications

This section takes a short tour over various example
applications where handling very large string dictionaries
is a serious issue and compression could lead to con-
siderable improvements.

NL APPLICATIONS: It is the most classic application area of
string dictionaries. Traditionally, the size of these diction-
aries has not been a concern because classical NL collec-
tions were carefully polished to avoid typos and other
errors. On those collections, Heaps [44] formulated an
empirical law establishing that, in a text of length n, the
dictionary grows sublinearly as OðnβÞ, for some 0oβo1
depending on the type of text. β Value is usually in the
range 0.4–0.6 [6], so the dictionary of a terabyte-size col-
lection would occupy just a few megabytes and easily fit in
any main memory. Heaps' law, however, does not model
well the dictionaries used in other NL applications. The use
of string dictionaries in Web search engines or in Machine
Translation (MT) systems are two well-known examples:

� Web collections are much less “clean” than text collec-
tions whose content quality is carefully controlled.
Dictionaries of Web crawls easily exceed the gigabytes,
due to typos and unique identifiers that are taken as
“words”, but also due to “regular words” from multiple
languages. The ClueWeb09 dataset4 is a real example
that comprises close to 200 million different words

http://github.com/migumar2/libCSD
http://github.com/migumar2/libCSD
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obtained from 1 billion Web pages on 10 languages.
Such a dictionary uses well above a gigabyte of memory.

� The success of a statistical MT system depends on the
information stored in its “translation table”. This table
stores the translation data for two given languages:
each entry records pairs of word sequences conveying
the same meaning in each language (and also some
statistical information). Using longer sequences leads to
better translation quality, but the combination of large
collections and long sequences quickly renders the table
unwieldy [20]. Therefore, in practice the dictionary is
limited to storing segments of up to q words, for some
small value q. The work of Pauls and Klein [65], about
compression and query resolution in N-gram language
models, is a good example of the need to compress
string dictionaries in MT applications.

WEB GRAPHS: It is another application area where the size
of the URL names, traditionally neglected, is becoming
very relevant thanks to the improvements in the com-
pression of the graph topology. The nodes of a Web graph
are typically the pages of a crawl, and the edges are the
hyperlinks. Typically there are 15–30 links per page.
Compressing Web graphs has been an area of intense
study, as it permits caching larger graphs in main memory,
for tasks like Web mining, Web spam detection, and
finding communities of interest [49,24,72]. In several
cases, the URL names are used to improve the mining
quality [80,61].

In an uncompressed graph, 15–30 links per page would
require 60–120 bytes if represented as 4-byte integers.
This posed a more serious memory problem than the
name of the URL itself once some simple compression
procedure was applied to those names (such as Front-
Coding, see Section 6). For example, Broder et al. [17]
report 27.2 bits per edge (bpe) and 80 bits per node (bpn),
which means that each node takes around 400–800 bits to
represent its links, compared to just 80 bits used for
storing its URL. Similarly, an Internet Archive graph of 115M
nodes and 1.47 billion edges required 13.92 bpe plus
around 50 bpn [76], so 200–400 bits are used to encode
the links and only 50 for the URL. In both cases, the space
required to encode the URLs was just 10–25% of that
required to encode the links. However, the advances in
edge compression have been impressive in recent years,
achieving around 1–2 bits per edge [12,5,2,11,40]. At this
rate, the edges leaving a node require on average 2–8
bytes, compared to which the name of the URL certainly
becomes an important part of the overall space.

SEMANTIC WEB: The so-called Web of Data is the modern
materialization of the basic principles of the Semantic Web
[10]. It interconnects RDF [57] datasets from diverse fields
of knowledge into a cloud of data-to-data hyperlinks. As
the Web of Data grows in popularity, more data are linked
together and larger datasets emerge. String dictionaries
are massively used in this scenario for reducing storage
and exchange costs [28], but also to simplify query pro-
cessing [63]. Semantic data management involves hand-
ling three specific dictionaries, one for each term class in
RDF: URIs, blank nodes, and literal values. A recent paper
[58] analyzes the impact of RDF dictionaries, reporting that
their plain representation takes up to 3 times more space
than the inner dataset graph structure.

BIOINFORMATICS: Another application of string dictionaries
is Bioinformatics. Popular alignment softwares like BLAST
[43] index all the different substrings of length k (called k-
mers) of a text, storing the positions where they occur in
the sequence database. The information on all the k-mers
is also used for genome assembly. Common values of k are
11 or 12 for DNA sequences, whereas for proteins they use
k¼3 or 4. Over a DNA alphabet of size 4, or a protein
alphabet of size 20, this amounts to up to 200 million
characters. Managing such dictionaries within limited
space is challenging [66,70], and prevents the use of larger
k values.

NOSQL DATABASES: The relational model has proven
inadequate to address the requirements posed by Big Data
management, and NoSQL (Not only SQL) databases have
gained momentum in recent years. NoSQL encompasses a
wide range of architectures and technologies, most of
which use distributed computing. Therefore, query reso-
lution depends much on transmission time. To reduce such
time, data is returned as IDs instead of strings to reduce
delays, which requires a centralized string dictionary that
translates the final ID-based results to strings. Very large
dictionaries are required for managing Big Data in NoSQL.
Urbani et al. [77] study this problem in a MapReduce
scenario managing Big Semantic Data, reporting sig-
nificative scalability improvements on large scale RDF
management by applying compression techniques.

Column-oriented databases use independent tables to
store each different attribute, so very similar data records
tend to be put together. This arrangement enables effective
compression techniques for integers when data are
represented as ID-sequences. Abadi et al. [1] report sig-
nificant performance gains in C-Store by implementing
lightweight compression schemes and operators that work
directly on compressed data.

INTERNET ROUTING: It poses another interesting problem on
dictionary strings. Domain Name Servers map domain
names to IP addresses. They may handle large dictionaries
of domain names or IP addresses, and must serve request
very fast. Another case is that of routers, which map IP
addresses to physical addresses using extremely limited
configurations in storage and processing power. Thus,
space optimizations have a significant impact. For
instance, mask-based operations could be resolved
through specific prefix-based lookup within a compressed
dictionary of IP addresses. Rétvári et al. [69] address this
scenario by introducing a couple of compressed variants
for managing the IP Forwarding Information Base (FIB).
They report that FIBs are highly compressible, encoding
440K prefixes in 100–400 KBytes of memory, while lookup
performance remains competitive.

GEOGRAPHIC INFORMATION SYSTEMS (GIS): Finally, GIS are
another application managing a large number of strings.
Managing, for example, the set of street names of a region
for searching and displaying purposes, is a complex task
within a limited-resource navigation system such as a
smartphone or a GPS device, which in addition must
download large amounts of geographic data through
wireless connections.
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2.2. Basic definitions

A string dictionary is a data structure that represents a
sequence of n distinct strings, D¼ 〈s1; s2;…; sn〉 and pro-
vides a mapping between numbers i and strings si. More
precisely, string dictionaries provide two primitive
operations:

� string-to-ID transformation: locate(p) returns i if
p¼ si for some iA ½1;n�; otherwise it returns 0.

� ID-to-string transformation: extract(i) returns the
string si, for iA ½1;n�.

In addition to these primitives, some other operations
can be useful in specific applications. When possible, we
will enhance our dictionaries with location/extraction by
prefix and by substring. Prefix-based operations are useful,
for example, to handle stemmed searches [6] and auto-
completions [7] in NL dictionaries, or to find the text
sequences starting with a given sequence of words in
statistical machine translation systems [51]. Substring
searches arise, for example, in SPARQL regex queries [67],
mainly used for full-text purposes in Semantic Web
applications [3]. They are also useful on GIS, when
searching entities by name. The operations can be for-
malized as follows:

� locatePrefix(p) returns fi; (y; si ¼ pyg, that is, the IDs
of the strings starting with p. Note that this set is a
contiguous ID range for lexicographically sorted dic-
tionaries, which are particularly convenient for
this query.

� extractPrefix(p) returns fsi; (y; si ¼ pyg, that is,
returns the strings instead of the IDs. It is equivalent to
composing locatePrefix(p) with individual extract
(i) operations, but it can be carried out more efficiently
on lexicographically sorted dictionaries.

� locateSubstring(p) returns fi; (x; y; si ¼ xpyg, that is,
the IDs of strings that contain p. It is very similar to the
problem solved by full-text indexes.

� extractSubstring(p) returns fsi; (x; y; si ¼ xpyg, and
is equivalent to running locateSubstring(p) fol-
lowed by individual extract(i) operations.

Substring-based operations can be generalized to more
complex ones, such as regular expression searching and
approximate searching [14]. Other related search problems
arise in Internet routing, where we want to find the
longest si in the dictionary that is a prefix of a given
address p.

We conclude with a few technical remarks. We will
assume that the strings si are drawn from a finite alphabet
Σ of size σ. We serialize D as a text T dict , which con-
catenates all the strings appending a special symbol $ to
them ($ is, in practice, the ASCII zero code, the natural
string terminator), that is T dict ½1;N� ¼ s1$s2$…sn. Since the
ID values are usually unimportant, T dict is assumed to be in
lexicographic order unless otherwise indicated. Thus, we
can speak of the ith string in lexicographical or positional
order, indistinctly, and this arrangement is convenient in
many cases.
The previous concepts are illustrated using the set of
strings {alabar,a,la,alabada,alabarda}, with n¼5
words. These strings are reordered into D¼ {a,alabada,
alabar,alabarda,la}, serialized into the text
T dict ¼ a$alabada$alabar$alabarda$la$, of length
N¼29.

Finally, all the logarithms used in this paper are in
base 2.

2.3. Related work

The most basic approach to handle a string dictionary
of n strings of total length N over an alphabet of size σ is to
store T dict plus an array of n pointers to the beginnings of
the strings. This arrangement requires N log σþnlog N bits
of space and supports locate(p) in Oðplog nÞ time,
whereas extract(i) is done in optimal time OðjsijÞ. Clas-
sical hashing schemes increase the space to
N log σþOðn log NÞ bits, and in exchange reduce locating
time to OðpÞ on average. Perfect hashing makes that time
worst-case. Another classical structure, using OðN log σþ
nlog NÞ bits, is the trie [50]. The trie is a digital tree where
each string si can be read in a root-to-leaf path, and
therefore one can locate p by following its symbols
downwards from the root.

Those classical structures, all designed for use in main
memory, use too much space when the dictionary
becomes very large. A solution is to resort to secondary
memory, where the best data structure is the String B-tree
[30]. While it searches in optimal I/O time Oðp=Bþ logBnÞ,
where B is the disk block size, any access to secondary
memory multiplies main memory access times by orders
of magnitude. In this paper we explore the alternative path
of compressing the dictionary, so that much larger dic-
tionaries can be maintained in main memory and the
access times remain competitive.

One relatively obvious approach to reducing space is to
compress the strings. To be useful for implementing string
dictionaries, such compression must allow for fast
decompression of the individual strings. An appropriate
compressor for this purpose is Huffman coding [46];
another is a grammar compressor like Re-Pair [52]. When
the strings are sorted in lexicographic order, another
powerful compression technique is Front-Coding [79], in
which each string omits the prefix it shares with the
previous one.

Throughout the paper, we combine, engineer and tune
several variants of those ideas. In Section 5 we explore the
combination of hashing with Huffman or grammar com-
pression of the strings. In Section 6 we combine Front-
Coding with binary-searchable Huffman or grammar
compression. In Section 7 we combine plain binary search
with grammar compression. In Section 8 we adapt a
compressed full-text index [62] for dictionary searches.
Finally, in Section 9 we use a compressed data structure
[32] for representing tries.

There has been some recent research on the specific
problem of compressing string dictionaries for main
memory, mostly related to compressing the trie. Grossi
and Ottaviano [42] introduce a new succinct data structure
inspired in the path decomposition approach [31]. In short,
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it transforms the trie into a new tree-shaped structure in
which each node represents a path in the original trie. This
solution excels in space, while remaining highly competi-
tive for locate and extract. Arz and Fischer [4] adapt
the LZ78 parsing [81] to operate on string dictionaries, and
use the resulting LZ-trie as a basis for building a com-
pressed structure. The basic idea is to re-parse the strings
for obtaining a more compact trie in which phrases can be
used multiple times. The structure includes an additional
trie for the phrases. This proposal is implemented in two
complementary ways, one using path decomposition and
another performing Front-Coding compression. Both
techniques are also implemented on an inverted parsing,
where they run LZ78 from right to left and then perform a
left-to-right parsing with a trie built on the inverted
phrases. These techniques display better space/time tra-
deoffs on highly repetitive dictionaries. In these cases, they
often achieve better compression ratios and, in general,
report competitive times.
5 https://github.com/fclaude/libcds
3. Data compression and coding

Data compression [74] studies the way to encode data
in less space than that originally required. We consider
compression of sequences and focus on lossless compres-
sion, which allows reconstructing the exact original
sequence. We only cover the elements needed to follow
the paper.

STATISTICAL COMPRESSION: A way to compress a sequence is
to exploit the variable frequencies of its symbols. By
assigning shorter codewords to the most frequent symbols
and replacing each symbol by its codeword, compression
is achieved (more with increasingly biased symbol dis-
tributions). To be useful, it must be possible to distinguish
the codewords from their concatenation, and to be effi-
cient, it must be possible to tell where the first codeword
ends as soon as we read its last bit. Such codes are called
instantaneous. To be instantaneous, it is necessary and
sufficient that the code is a prefix code, that is, no code is a
prefix of another. Huffman [46] gave an algorithm for
obtaining optimal (i.e., minimizing the average code
length) prefix codes given a frequency distribution. There
are many possible Huffman codes for a given distribution,
all of which are optimal. One of those, the Canonical
Huffman codes [75], can be decoded particularly efficiently
[53]. We use such codes in this paper.

Huffman coding does not retain the lexicographic order
of the symbols in the resulting codes. The Hu-Tucker code
[45,50] is the optimal among those that do. That is, if
symbol x precedes y, the binary codeword for x must be
lexicographically smaller than that for y. This feature
allows two Hu-Tucker encoded sequences to be efficiently
compared bytewise in compressed form.

VARIABLE-LENGTH AND DIRECT-ACCESS CODES: Variable-length
codes, as explained above, are key for statistical data
compression. Albeit using bit-sequences for the codes
yields the minimum space, using byte sequences is a
competitive choice on large alphabets. Such byte-codes are
faster to handle because they avoid expensive bit
manipulations.
Variable-length byte sequences are also used to encode
integers of varying sizes, so as to use fewer bytes for the
smaller numbers. Variable byte (Vbyte) coding [78] is a
folklore byte-oriented technique used in information
retrieval applications. In this paper we use byte-sized
chunks (b¼8 bits per chunk) in which the highest bit
(called the flag bit) indicates if the chunk is the last in the
represented number, and the remaining b�1 bits encode
the binary representation of the number. For instance, the
binary encoding of 824 takes ⌈log 824⌉¼ 10 bits
(1100111000). Its Vbyte representation uses 2 chunks: the
first one starts with 1 (because it is not the final chunk)
and stores the most significant bits (10000110), whereas
the second chunk (starting with 0 since it is the last chunk)
stores the least significant bits (00111000). Vbyte can be
generalized to use an arbitrary number of bits b, to best fit
the distribution of the numbers.

A problem with variable-length representations is how
to access the code of the ith symbol directly (i.e., without
decoding the previous i�1 symbols). Brisaboa et al. [16]
introduce a chunk reordering technique called Directly
Addressable Codes (DACs), which allows such direct access.
DACs use a tiered representation of the chunks. The first
level concatenates the first chunks of all the codes into a
sequence A1, concatenating separately the flag bits into a
bit sequence B1. The second level stores A2 and B2 for the
codes that have two or more chunks, and so on. To retrieve
the ith code, one finds its first part in A1½i�. If B1½i� ¼ 0, we
are done. Otherwise, the process continues accessing the
second level, and so on. To navigate across levels one
needs to perform rank operations (see below) on the bit
sequences Bk.

BITSEQUENCES: Binary sequences (bitsequences) are the
basic block of many succinct data structures and indexes. A
bitsequence B½1;n� stores a sequence of n bits and provides
two basic operations:

� ranka (B,i) counts the occurrences of the bit a in B½1; i�.
� selecta (B,i) locates the position of the ith occurrence

of a in B.

Bitsequence representations must also provide direct
access to any bit; access(B,i) returns B[i].

In this paper we will use three different bitsequence
representations (their implementations are available in
the Compact Data Structures Library libcds5). The first
one, that we refer to as RG [38], pays an additional over-
head x on top of the original bitsequence size, so its total
space is ð1þxÞn bits. It performs rank using two random
accesses to memory plus 4/x contiguous (i.e., cached)
accesses, whereas select requires an additional binary
search. The second one, referred to as RRR [68], com-
presses the bitsequence to about log n

m

� �þ 4
15þx
� �

n bits,
where m is the number of 1s in B. It answers rank within
two random accesses plus 3þ8=x accesses to contiguous
memory, and select with an extra binary search. In
practice, RRR achieves compression when the proportion
of 1s in the bitsequence is below 20% or above 80%.

https://github.com/fclaude/libcds
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Finally, we consider the SDArray from Okanohara and
Sadakane [64]. It needs nH0ðBÞþ2mþoðmÞ bits, and sup-
ports select queries very efficiently, in constant time,
and rank queries in time Oðlogðn=mÞÞ. The SDArray
achieves compression when the proportion of 1s in B is
below 10%.

COMPRESSED TEXT SELF-INDEXES: A compressed text self-index
takes advantage of the compressibility of a text T ½1;N� in
order to represent it in space close to that of the com-
pressed text. Self-indexes support, at least, two basic
operations:

� locate(p) returns all the positions in T where pattern
p occurs.

� extract(i,j) retrieves the substring T ½i; j�.

Therefore, a self-index stores the text and supports
indexed searches on it, within a space proportional to its
statistical entropy. Although there are several self-indexes
[62,29], in this paper we focus on the FM-index family
[33,34]. As described in Section 8, it takes advantage of the
Burrows-Wheeler transform (BWT) [18] to build a highly
compressed self-index.

GRAMMAR-BASED COMPRESSION: Grammar compression is a
non-statistical method to compress sequences. The idea is
to find a small context-free grammar that generates the
text to compress [21]. These methods exploit repetitions in
the text to derive good grammar rules, so they are parti-
cularly suitable for texts containing many identical sub-
strings. Finding the smallest grammar for a given text is
NP-hard [21], but there exist several grammar-based
compressors that achieve OðlogNÞ approximation factors
or less [71,73,59,47], where N is the text length. We use
Re-Pair [52] as our grammar compressor. Despite offering
only weak approximation guarantees [21], Re-Pair
achieves very good compression ratios in practice and
builds the grammar in linear time. Like many other
grammars-compression algorithms, Re-Pair guarantees
convergence to the statistical entropy of the text [48].

Re-Pair finds the most repeated pair of symbols xy in
the text, adds a new rule R-xy to the grammar, and
replaces all of the occurrences of xy in the text by the
nonterminal R. The process iterates (nonterminals can in
turn form pairs) until all the pairs that remain in the text
are unique. Then Re-Pair outputs the set of r rules and the
reduced text, C. Each value (an element of a rule or a
symbol in C) is represented using ⌈logðσþrÞ⌉ bits.
4. Compressing the dictionary strings

To reduce space, we represent the strings of the dic-
tionary, T dict , in compressed form. We cannot use any
compression method, however, but have to choose one
that enables fast decompression and comparison of indi-
vidual strings. We describe three methods we will use in
combination with the dictionary data structures. Their
basics are described in Section 3. An issue is how to know
where a compressed string si$ ends in the compressed
T dict . If we decompress si, we simply stop when we
decompress the terminator $. In the sequel we consider
other cases, such as when comparing strings without
decompressing them.

HUFFMAN COMPRESSION: After gathering the frequencies of
the characters to be represented, we assign each character
an optimal variable-length bit code. To simplify the
operations we need on the dictionary structures, we make
sure that the encoding of each new string starts at a byte-
aligned boundary (padding with 0-bits), so that each string
uses an integral number of bytes. When we compress a
string si, we include its terminator symbol, so we compress
si$.

Although the zero-padding wastes some space, it
allows pointers to the compressed strings to be byte-
aligned, which in some cases recovers much of the space
lost. It also permits faster processing. In particular, if we
have compressed the search pattern p$ into a sequence of
bytes p0 (using zero-padding as well), we only need to
compare the strings p0½1 ..jp0j� with s0i½1‥jp0j� bytewise. If
they are equal, this means that s0i½1‥jp0j� encodes a string
that starts with p$, since the underlying bit-wise Huffman
code is prefix free. Thus, the terminator indicates that the
string encoded is precisely p. If, on the other hand,
p0½1‥jp0j�as0i½1‥jp0j�, this means that s0i encodes a string
that does not start with p, due to the zero-padding. Such a
bytewise comparison is much faster than decompressing s0i
and comparing si with p.

HU-TUCKER COMPRESSION: This compression will be used
similarly to Huffman, including the zero-padding.
Although slightly less space-efficient, Hu-Tucker com-
pression has the advantage of permitting a bytewise lex-
icographical comparison, determining whether posi,
p¼ si, or p4si.

If the strings p0 and s0i coincide in their first jp0j bytes,
then they are equal, just as for Huffman coding. Otherwise
a difference occurs before and we can use the lexico-
graphic comparison. Note that, in the Hu-Tucker coding,
the symbol $ is encoded as a sequence of 0-bits (because $
is the smallest character and thus it is assigned the lex-
icographically smallest code), thus a byte-based compar-
ison works correctly even when one string is a prefix of
the other.

Both Huffman and Hu-Tucker compressors require
additional structures for fast encoding and decoding. For
encoding, a simple symbol-codeword mapping table M is
used. For decoding, we use two structures: (1) a pointer-
based tree (i.e., a binary trie where each root-to-leaf path
is a codeword and the leaf stores the corresponding
symbol) that supports bit-wise decompression, and (2) a
table H that supports chunk-based decompression [53].
Table H enables highly optimized decoding, by processing
k bits at a time (we use k¼16 in practice). The table has 2k

rows, so that row x stores the result of Huffman or Hu-
Tucker decoding binary string x: a sequence of decoded
symbols, H½x�:dec, and the number of unused bits at the
end, H½x�:u. The table allows decoding by reading k con-
secutive bits into a k-bit number x, outputting H½x�:dec, and
advancing the reading pointer by k�H½k�:u. The tree is
used when H½x�:u¼ k, indicating that the first symbol to
decode is already longer than k. In this case H½x�:dec points
to the part of the decoding tree where decoding should
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continue at depth k. In fact, only those parts of the tree are
stored.

RE-PAIR COMPRESSION: In the case of Re-Pair, we make sure
that each string spans an integral number of symbols in C
(the sequence of terminals and nonterminals into which
T dict is compressed). To do so, we add unique separators
after each terminator $, to prevent Re-Pair from forming
pairs that include them. The special symbols are removed
after compression finishes.

We use a public implementation of Re-Pair6 to obtain
the set of r rules and the compressed sequence C. The
grammar is encoded in plain form in an array R½1;2r�, in
which each cell uses ⌈logðσþrÞ⌉ bits. More precisely,
nonterminals will be identified with numbers in
½σþ1;σþr�. Thus, a rule X-YZ will be stored as
R½2ðX�σÞ�1� ¼ Y and R½2ðX�σÞ� ¼ Z. Sequence C will be
regarded as a sequence of integers in ½1;σþr� comprising n
variable-length subsequences (i.e., the encodings of
s1; s2;…; sn).

Compressing p$ in order to compare it directly with a
string is not practical with Re-Pair. We have to ensure that
the rules are applied in the order they were created;
otherwise a differently compressed string may result.
Doing this requires a complicated preprocessing of
p, so we instead decompress si before comparing it with
p. Re-Pair is very fast at decompressing, so this is
affordable.
5. Compressed hashing dictionaries (Hash)

Hashing [23] is a folklore method to store a dictionary
of any kind (not only strings). In our case, a hash function
transforms a given string into an index in a hash table,
where the corresponding value is to be inserted or sought.
A collision arises when two different strings are mapped to
the same array cell.

In this paper, we use closed hashing: if the cell corre-
sponding to an element is occupied by another, one suc-
cessively probes other cells until finding a free cell (for
insertions and unsuccessful searches) or until finding the
element (for successful searches). We use double hashing7

to determine the next cells to probe when a collision is
detected at cell x. Double hashing computes another hash
function y that depends on the key and probes xþy, xþ2y,
etc. modulo the table size. Our main hash function is a
modified Bernstein's hash.8 The second function for double
hashing is the “rotating hash” proposed by Knuth.9

Let n be the number of elements stored and m the table
size. The load factor α¼ n=m is the fraction of occupied
cells, and it influences space usage and time performance.
Using good hash functions, insertions and unsuccessful
6 http://www.dcc.uchile.cl/gnavarro/software.
7 We also considered linear probing, but it was outperformed by

double hashing in our experiments [15].
8 http://burtleburtle.net/bob/hash/doobs.html We replace the value

33 by 63 to reduce hashing degradation on long strings, see https://gist.
github.com/hmic/1676398.

9 The variant at http://burtleburtle.net/bob/hash/examhash.html. We
also initialize h as a large prime.
searches require on average 1=ð1�αÞ probes with double
hashing, whereas successful searches require ð1=αÞ ln1=
ð1�αÞ probes.

Another alternative on a static set of strings is perfect
hashing [37], which guarantees no collisions. In particular,
it is possible to achieve minimum perfect hashing, which
uses a table of size m¼n to store the n strings. Repre-
senting a minimum perfect hash function requires at least
n=ln 2� 1:44n bits [37]. There are practical implementa-
tions of minimal perfect hash functions achieving at most
2.7n bits [8,13]. For our dictionaries, a problem of perfect
hashing is that strings that do not belong to the set are
hashed to arbitrary positions, and therefore we cannot
avoid performing one string comparison to determine if
the string p is present in the set or not. In Section 10 we
show that our engineered double-hashing structures
achieve basically the same performance of state-of-the-art
perfect hashing implementations.

We propose four different hash-based techniques for
managing string dictionaries, each of which can be com-
bined with Huffman or with Re-Pair compression of the
strings. First, T dict is scanned string-by-string, and each
string is stored in its corresponding cell in the hash table,
H. Now we reorder the original text T dict into a new text
T �

dict , in which the strings are concatenated in the same
order they are stored in the hash table. The IDs are then
assigned following this new ordering instead of the
lexicographic one.

The process for Huffman compression is illustrated in
Fig. 1. Note that Huffman encoding of the strings is applied
before hashing. For instance, the Huffman code of “alabar
$” (referred to as Huff(alabar$) in the figure) is hashed
to the position 1, “alabada$” to the position 2, and so on.
This same order holds in T �

dict , so “alabar$” is now
identified as 1, “alabada$” as 2, etc. Fig. 2 illustrates the
process when Re-Pair is used for string compression. In
this case, the hash function is applied to the original
strings. For instance, “alabar$” is now hashed to the
position 9, and “alabada$” to the position 6. T �

dict is
always built according to the hash ordering.

Finally, string T �
dict is Huffman- or Re-Pair compressed,

as described in Section 4. The resulting compressed
sequence is called S, of jSj bytes in case of Huffman or
jSj ¼ jCj symbols in case of Re-Pair. What we encode inH is
the offset in S of the corresponding strings. In Fig. 1,
H½2� ¼ 3, because the Huffman-compressed representation
of “alabada” starts from S½3�. In Fig. 2, H½6� ¼ 4 because
the Re-Pair compressed representation of “alabada”

starts from S½4� ¼ C½4�.
The search algorithm for locate(p) depends on the

way we compress the strings. In the case of Huffman, we
first compress the search key p$ into p0, padding it with 0-
bits so that it occupies an integral number of bytes, jp0j.
Then we use the hash functions to compute the corre-
sponding positions to look for in H. When H points to
offset k in S, we perform a direct byte-wise comparison
between p0 and S½k; kþjp0j�1�, as described in Section 4. In
case of Re-Pair, we decompress from S½k…� the string we
need to compare p with. We can stop decompression as
soon as the comparison with p is defined. In most cases,
just probing one cell of H suffices to complete the search.

http://www.dcc.uchile.cl/gnavarro/software
http://burtleburtle.net/bob/hash/doobs.html
https://gist.github.com/hmic/1676398
https://gist.github.com/hmic/1676398
http://burtleburtle.net/bob/hash/examhash.html


Fig. 1. T dict encoding based on hashing and Huffman compression.

Fig. 2. T dict encoding based on hashing and Re-Pair compression.
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For extract(i) we simply decompress the string
pointed from some cell of H, with either method, until we
decompress the terminator $. The techniques relying on
Huffman use the decoding table (see Section 4) to speed
up extraction. None of these hash-based techniques pro-
vide prefix nor substring based searches.

The main difference between our four hash-based dic-
tionaries is the way H is actually encoded. The simplest
one, referred to as Hash (Section 5.1), stores H as is. The
second technique, HashB (Section 5.2), removes the empty
cells and stores H compactly. The third, HashBB (Section
5.3), introduces additional compression on the pointers
stored in table H. Finally, HashDAC (Section 5.4) uses DACs
(Section 3) to provide a directly-addressable representa-
tion of S and get rid of the pointers. Variants of the ideas
behind Hash and HashB can be found in the literature [8],
whereas HashBB is implicit in the encoding of Elias and
Fano [25,26]. Instead, our use of DACs in the variant
HashDAC is novel.

5.1. Plain-table encoding (Hash)

The first technique stores the table in classical form, as
an array H½1;m� in which each cell uses ⌈logjSj⌉ bits. For
locate(p) we proceed as above, until we find that k¼H½j�
points to the compressed string si ¼ p. To complete the
operation, we need a way to obtain the desired identifier i.
Since we have reordered the IDs tomatch the order of the
strings in H; i is the number of nonempty cells of H up to
position j.

To obtain i fast, we store a bitsequence B½1;m� in which
B½i� ¼ 1iffH½i� is nonempty. We compute i¼ rank1ðB; jÞ to
complete the operation. This bitsequence is also useful for
operation extract(i): we decompress the sequence
starting at position k¼H½select1ðB; iÞ� in S.

The Hash dictionary requires, in addition to the com-
pressed strings in S;m⌈logjSj⌉ bits for H, and mð1þxÞ
additional bits for the bitsequence B (using RG with
x¼ 0:05 in our implementation).
5.2. Compressing the table (HashB)

The technique HashB stores the table in compact form
(i.e., removing the empty cells) in a new table H0½1;n�. The
necessary mapping is provided by the same bitsequence B.
Now each access to H½j� during the execution of locate(p)
must be remapped toH0½rank1ðB; jÞ�. To be precise, we first
have to check whether H½j� is empty: if B½j� ¼ 0 we
immediately know that p is not in the set. At the end, we
simply return i when we find p pointed from H0½i�. For
extract(i) we just decompress from S½H0½i�…�.

The space requirements are reduced with respect to
those of Hash. In this case, table H is implemented in
n⌈logjSj⌉ bits, instead of m⌈logjSj⌉.
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5.3. Further compression (HashBB)

HashBB further reduces the space used by HashB. It
exploits that offset values, within H, are increasing.
HashBB replaces the array H0½1;n� by a bitsequence
Y ¼ ½1; jS�, where Y½k� ¼ 1 iff S½k� stores the beginning of a
compressed string (i.e., if H0½i� ¼ k for some i). For instance,
in Fig. 1 the values are 1, 3, 6, 7, 10, and thus
Y ¼ ½1010011001�, whereas in Fig. 2 the values are 1, 3, 4,
6, 8 and Y ¼ ½101101010�.

For locate(p) we proceed as before, simulating the
access to H0½i� ¼ select1ðY; iÞ. Similarly, for extract(i)
we start decoding from S½select1ðY; iÞ…�.

The bitsequence Y is implemented differently when
HashBB is combined with Huffman or RePair compression.
In the first case, Y turns out to be sparser, because the
compressed strings are still long enough. In this case,
SDArray turns out to be a good encoding for Y, and in
addition it is fast for the required select operation. In the
second case, RePair reduces each string to a very short
sequence of terminals and nonterminals, thus the resulting
bitvectors are much denser. We choose RG for this case,
ensuring a limited overhead of 0.05 bits per element in Y.

5.4. Using direct access (HashDAC)

Bitsequence Y is used to mark the positions in S where
the encoded strings si begin. We can get rid of this bitse-
quence by regarding the encoding s0i of each si$ as a
variable-length sequence (of bytes in case of Huffman, of
symbols in case of Re-Pair), and use DACs (Section 3) to
provide access to those variable-length sequences. In
exchange for the space reduction, DACs introduce some
redundancy in the compression. Some of the redundancy
can be removed thanks to the fact that, since DACs indicate
where the encoded string ends, we do not need to com-
press si$, but just si. This fact is exploited by the HashDAC

variant using Re-Pair compression, but we keep the $ for
the one using Huffman because the terminator is neces-
sary for efficient use of the decoding table.

A note on minimal perfect hashing: With such a hash
function we can have table H0 directly, without the use of
bitsequence B. On the other hand, a table similar to B is
nevertheless stored internally in most implementations of
minimal perfect hashing [8].
6. Front-Coding: differentially encoded dictionaries

Front-Coding [79] is a folklore compression technique
for lexicographically sorted dictionaries, for example it is
used to compress the set of URLs in the WebGraph fra-
mework [12]. Front-Coding exploits the fact that con-
secutive entries are likely to share a common prefix, so
each entry in the dictionary can be differentially encoded
with respect to the preceding one. More precisely, each
entry is represented using two values: an integer that
encodes the length of the prefix it shares with the previous
entry, and the remaining characters of the current entry. A
plain Front-Coding representation, although useful for
compression purposes, does not provide random access to
arbitrary strings in the dictionary: we might have to
decode the entire dictionary from the beginning in order
to recover a given string.

To allow for direct access, we use a bucketed Front-
Coding scheme. We divide the dictionary into buckets
encoding b strings each. A bucket is represented as
follows:

� The first string (referred to as header) is explicitly
stored.

� The remaining b�1 strings (referred to as internal
strings) are differentially encoded, each with respect to
the previous one.

Now operation extract(i) is carried out as follows.
First, we initialize the answer with the header of bucket
t ¼ ⌈i=b⌉. Second, we sequentially decode the internal
strings of the bucket, until obtaining the ðði�1ÞmodbÞ th
internal string (the 0th string is the header). The decoding
effort can be made proportional to the size of the
differentially-encoded bucket, not to its uncompressed
size: if the current entry shares m characters with the
previous one, we just rewrite its explicit characters start-
ing at position mþ1 of the string where we are computing
the answer.

Operation locate(p) is carried out as follows. First, we
binary search for p in the set of headers, obtaining the
bucket where the answer must lie. Second, we sequen-
tially decode the internal strings of the bucket, comparing
each with p. A practical speedup is obtained as follows
[60]. After having processed string si, we remember the
length 0rℓo jpj of the longest common prefix between
p and si (so they differ at p½ℓþ1�asi½ℓþ1�). Now, if the
encoding of siþ1 indicates that it shares m characters with
si, we do as follows: ðiÞ if m4ℓ we simply skip siþ1, as it is
equal to si in the area of interest; ðiiÞ if moℓ we return
that p is not in the dictionary, as the strings si are sorted
and we now have p½1;m� ¼ si�1½1;m� ¼ si½1;m� and
p½mþ1� ¼ si�1½mþ1�osi½mþ1�; (iii) if m¼ ℓ, we compare
p½mþ1…� with siþ1½mþ1…�, which are the characters of
siþ1 that are explicitly coded. We compute the new value
of ℓ, and also return that p is not in the dictionary if
p½ℓþ1�osi½ℓþ1�.

We propose two different Front-Coding based techni-
ques for managing string dictionaries in compressed
space: Plain Front Coding (PFC, Section 6.1) is an efficient
byte-oriented implementation of the original technique,
and Hu-Tucker Front Coding (HTFC, Section 6.2) uses Hu-
Tucker coding on the headers and Huffman or Re-Pair
compression on the buckets, in order to reduce the space
requirements of PFC. The variant HTFC is novel, as far as
we know.

6.1. Plain Front Coding (PFC)

PFC is a straightforward byte-oriented Front-Coding
implementation. It encodes the data as follows.

� It uses VByte [78] to encode the length of the common
prefix.



Fig. 3. T dict encoding with PFC (b¼4) and the resulting dictionary.
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� The remaining string is encoded with one byte per
character, plus the terminator $.

� The header string is followed by the internal strings
(each concatenating the VByte-coded length of the
shared prefix and the remaining string), consecutively
in memory.

� The buckets are laid consecutively in memory, and an
array ptrs stores pointers to the beginning of each
bucket.

Fig. 3 shows how our example T dict is encoded
usingPFC with a bucket size of b¼4 strings. The resulting
encoded sequence (renamed T pfc) comprises two buckets:
the first contains the first four words and the second
contains only the fifth word. In this case, T pfc takes N

0 ¼ 20
bytes, whereas the original T dict took N¼29, so the com-
pression ratio is N0=N� 69%. The entries of ptr use
⌈log N0⌉ bits.

PREFIX-BASED OPERATIONS: The PFC representation enables
prefix-based operations to be easily solved. All the strings
prefixed by a given pattern hold a contiguous range of
positions (and IDs) in the dictionary, so we only need to
determine the first and last strings prefixed by the pattern
p.

Operation locatePrefix(p) begins by determining
the range of buckets ½c1; c2� containing the p-prefixed
strings. This process involves a binary search (similar to
that performed in locate) that, at some moment, may
split into the search for c1 and the search for c2. The pro-
cess finishes with a sequential scan of c1 and c2.

Operation extractPrefix(p) first locates the corre-
sponding range using locatePrefix, and then scans the
range extracting the strings one by one. Extraction is
speeded up thanks to the shared prefix information.

6.2. Hu-Tucker Front Coding (HTFC)

HTFC is algorithmically similar to PFC, but it takes
advantage of the redundancy of T pfc to achieve a more
compressed representation at the price of slightly slower
operations. We obtain the Hu-Tucker (HT) code for the set
of bucket headers. For the rest of the contents of the
buckets (which include the VByte representations of the
lengths used in PFC) we either build a Huffman code (a
single one for the whole dictionary) or a Re-Pair set of
rules (a single one for the whole dictionary). Then we
encode T pfc into a new string T htfc, which is also divided
into buckets of b strings. Each original bucket of T pfc is
encoded as follows.

� The original header string is compressed with Hu-
Tucker code, and the last encoded byte is padded with
0-bits in order to pack the header representation in an
integral number of bytes.

� The rest of the bucket is compressed using Huffman or
Re-Pair. In this case, it is convenient to avoid the zero-
padding of the Huffman codes, as well as allowing Re-
Pair rules spanning more than one string in the bucket.
Only the last encoded byte of the last internal string is
zero-padded, so that the resulting encoded bucket is
also byte-aligned.

� As for PFC, the encoded buckets are concatenated (into
string T htfc) and array ptrs points to the bucket
beginnings.

BASIC OPERATIONS: Both locate and extract follow the
same algorithms described for PFC, but their imple-
mentation performs additional encoding/decoding opera-
tions to deal with the compressed representation.

For locate(p) we Hu-Tucker encode p$ into p0 (using
M) and pad it with 0-bits to use an integral number of
bytes. Thus p0 is directly binary searched for among the
Hu-Tucker encoded headers of the buckets, T htfc½ptrs½i�…�.

Once the candidate bucket c is determined, it is
sequentially scanned as in PFC (unless the header was the
string p). Each internal string is decompressed in turn. The
decompressed data include the VByte representation of
the length of the shared prefix with the previous entry and
the remaining characters. Once decompressed, these data
are used exactly as in PFC.

Operation extract(i) also performs as in PFC: the
bucket ⌈i=b⌉ is identified, and i mod b strings are then
decompressed to obtain the desired answer.

PREFIX-BASED OPERATIONS: These operations implement the
same PFC algorithms, but are tuned for dealing with the
compressed representation.
7. Binary searchable Re-Pair (RPDAC)

If we remove the bitsequence B in Section 5, and
instead sort T �

dict in lexicographic order, we can still binary
search S for p, using either bitsequence Y (Section 5.3) or
DAC codes (Section 5.4). In this case, it is better to replace
Huffman by Hu-Tucker compression, so that the strings
can be lexicographically compared bytewise, without
decompressing them (as done in Section 6).

This arrangement corresponds to applying compression
on the possibly simplest data organization for a dictionary:
binary searching an array of strings. While this usually
saves much space compared to a classical hash-based
dictionary, the difference with our compressed hashing
schemes is only the size of B. As we will see in the
experiments, this yields an almost negligible space gain,
whereas in exchange the time of a binary search is much
higher than when using hashing. Therefore, we anticipate
that a binary searchable array will not be competitive with
hashing in the compressed scenario.

However, as a proof of concept of this simple dictionary
organization, we will develop its most promising variant,
RPDAC, and include it in the experiments. RPDAC uses a
lexicographically sorted T dict , which is compressed with
Re-Pair ensuring that each string comprises an integral
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number of symbols in C. In this way, the Re-Pair encoding
of each string si can be seen as a variable-length substring
of C. We use DACs to represent each such variable-length
string, so that the Re-Pair encoding of each string si can be
directly accessed and binary search is possible. In addition,
we do not need to represent the terminators $, as
explained in Section 5.4.

BASIC OPERATIONS: The RPDAC representation operates
essentially as a binary searchable concatenation of the
strings. For locate(p) we binary search the n strings,
using DACs to extract the consecutive Re-Pair non-
terminals that represent any string si, then we use R to
expand those nonterminals, and finally compare the
decompressed string si with p. In practice, the non-
terminals are only extracted and expanded up to the point
where the lexicographical comparison with p can be
decided. The cost is linear in the sum of the lengths of the
extracted strings. For extract(i) we access the ith ele-
ment in the DAC structure and decompresses it using R.
The cost is proportional to the output size.

PREFIX-BASED OPERATIONS: Since strings are lexico-
graphically sorted in RPDAC, we can again carry out prefix-
based operations by determining the left and right range
of the strings prefixed by the pattern. For locatePrefix

(p) we the binary searches for the strings prefixed by p
splits into two at some point, one for the first and the
other for the last such strings. For extractPrefix(p) we
first locate the corresponding range using locatePrefix

(p), and then scan the range to extract the strings.
10 http://pizzachili.dcc.uchile.cl
8. Full-text dictionaries (FM-Index)

A full-text index is a data structure that, built on a text
T ½1;N� over an alphabet of size σ, supports fast search for
patterns pinT , computing all the positions where p occurs.
A self-index is a compressed full-text index that, in addi-
tion, contains enough information to efficiently reproduce
any text substring [62]. A self-index can therefore replace
the text.

Most self-indexes emulate a suffix array [55]. This
structure is an array of integers A½1;N�, so that A½i� repre-
sents the text suffix T ½A½i�;N� and the suffixes are lexico-
graphically sorted in A. Therefore, the positions of all the
occurrences of pinT , which correspond to the suffixes
starting with p, form a lexicographic interval in the set of
suffixes of T, and thus an interval in the suffix array,
A½sp; ep�. The limits sp and ep can be found with two bin-
ary searches in Oðjpj log NÞ time [55].

In order to use a suffix array for our dictionary problem,
we consider a slight variant of T dict , where we prepend a
symbol $, that is, T dict ½1;N� ¼ $s1$s2$…$sn. Since the
strings si are concatenated in lexicographic order in T dict ,
and symbol $ is smaller than all the others, we have an
important property in the suffix array: A½1� ¼N, pointing
to the final $, and for all 1r irn;A½iþ1� points to the
suffix $si$siþ1$…$sn$ . Now, if we search for pattern p, we
will find an occurrence iff p¼ siAD, and moreover it will
hold A½sp; ep� ¼ A½iþ1; iþ1�, so we just return sp-1 to solve
a locate(p) query.
A self-index emulating a suffix array can find the
interval A½sp; ep� given the pattern $p$, thus we solve the
locate(p) query with it. Most self-indexes can also
extract any text segment T½l; r� provided one knows the
suffix array cell k such that A½k� ¼ l (or A½k� ¼ r, depending
on the self-index). In our case, we can easily perform
extract(i) because we know that the first character of
$si$ is pointed to by A½iþ1�, and the last character is
pointed to by A½iþ2�.

The self-index we will use is the FM-Index [33,34], as it
was found to be the most space-efficient in practice [29].
The FM-index computes sp and ep in time Oðjpjlog σÞ, and
extracts si in time Oðjsijlog σÞ (it starts from A½iþ2�, which
points to the end of $si$). We use two variants of the FM-
Index, available at PizzaChili.10 The one we call RG (version
SSA_v3.1 in PizzaChili) is faster but uses more space, and
the one we call RRR (version SSA_RRR in PizzaChili) is
slower but uses less space. Variant RG corresponds to the
so-called succinct suffix array [34], which achieves zero-
order compression of T, whereas variant RRR uses the
implicit compression boosting idea [54], which reaches
higher-order compression. We note that the use of the FM-
index to handle dictionaries is not new, and it has indeed
been extended to more powerful searches, where one
looks for strings starting with a pattern p and simulta-
neously ending with a pattern s [35].

PREFIX-BASED OPERATIONS: If, instead of searching for $p$,
we search for $p, we find the area A½sp; ep� of all the strings
si that start with p, and can output the range of IDs
½sp�1; ep�1� as the result of query locatePrefix(p). For
operation extractPrefix(p) we apply extract(i) to each
sp�1r irep�1.

SUBSTRING-BASED OPERATIONS: If we search for p, we will find
all the occurrences of p within any string si of the dic-
tionary. In order to find the ID i corresponding to an
occurrence, we use the ability of self-indexes to extract
T ½l…� if one knows the k such that A½k� ¼ l. In the case of
the FM-index, we can extract T ½…r� in reverse order if one
knows the k such that A½k� ¼ r. Moreover, at any time
during this text extraction, the FM-index knows which cell
of A points to each symbol T ½j� it displays. In the first case,
let A½sp; ep� be the interval that results from searching for
p, and let sprkrep be any cell in the range. Then we
know that p is inside some si in T dict , and that A½k� ¼ r
points to the position where p starts. Then we extract the
area T ½l; r� ¼ $…p½1�, one by one until extracting the symbol
$. At this point we know that this symbol is pointed from
A½iþ1� and hence reveal i.

Thus, the mechanism to solve query locateSub-

string(p) is to find A½sp; ep� for p and apply the process
described for each kA ½sp; ep�. A further complication is
that p could occur several times within the same string si,
thus we have to remove duplicates before reporting the
resulting set of IDs. For extractSubstring(p), we apply
extract(i) on each ID reported by locateSubstring(p)
(this can be slightly optimized because a part of si has been
already recovered in order to reveal each ID).

http://pizzachili.dcc.uchile.cl
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As described, a problem is that operation locate-

Substring(p) may take time proportional to the sum of
the lengths of the located strings. Compressed suffix arrays
provide a worst-case guarantee by choosing a sampling
step s, regularly sampling T at all positions j � s, marking
the corresponding positions A½i� ¼ j � s by setting B½i� ¼ 1 in
a bitsequence B½1;N�, and recording the sampled values A½i�
at another array S½rank1ðB; iÞ� ¼ j. Then the location of any
occurrence A½k� ¼ r is obtained in at most s steps by tra-
versing, with the FM-index, the text positions
r; r�1; r�2;… while knowing the suffix array position
A½ki� from where the position r� i is pointed. As soon as it
holds B½ki� ¼ 1, we have the answer r¼ S½rank1ðB; kiÞ�þ i.

We use that scheme, with the only differences that
(1) we store the ID of the string, instead of the position, in
S, and (2) we make sure that the symbols $ of T dict are also
sampled, so that we do not confuse one string ID with
another. Therefore, using ðN=sÞ log n bits for S, we ensure a
locating time of Oðs log σÞ per located string using an FM-
index.
9. Compressed trie dictionaries (XBW)

A trie (or digital tree) [36,50] is an edge-labeled tree
that represents a set of strings, and thus a natural choice to
represent a string dictionary. Each path in the trie, from
the root to a leaf, represents a particular string, so those
strings sharing a common prefix also share a common
subpath from the root. The leaves are marked with the
corresponding string IDs.

Our basic operations are easily solved on tries. For
locate(p) we traverse the trie from the root, descending
by the edges labeled with the successive characters of p. If
we end in a leaf, its stored ID is the answer. For extract
(i), we start from the leaf labeled i (so we need some way
to find it directly) and traverse the trie upwards to the
root, finding si in reverse order at the labels of the tra-
versed edges. Tries also naturally support prefix-based
searches: if we descend from the root following the char-
acters of p and end in an internal trie node, then the IDs
stored at all the leaves descending from that node are the
answer to query locatePrefix(p), and for extractPrefix
(p) we traverse the trie upwards from each of those leaves.

The main problem of tries is that, in practice, they use
much space, even if such space is linear. While there are
several compressed trie representations [9,42,4] (some of
which we compare in our experiments), we focus on
representing a compressed trie using the so-called XBW

[32], because this will support substring searches as well.
The XBW is an extension of the FM-index to handle a
labeled tree instead of a linear string.

Let τ be a trie with N nodes, I of which are internal. By
analogy with the string case, call a suffix of τ any string
formed by reading the labels from an internal node to the
root. Now assume that we sort all those I suffixes into an
array A½1; I�. Then, given a pattern p, two binary searches
on A (for p read backwards) are sufficient to identify the
range A½sp; ep� of all the internal nodes that are reached by
following a path labeled with p. This is the basic idea
behind the powerful subpath search operation of the XBW.
The XBW structure consists of two elements: (1) a
sequence Sα½1;N� storing the labels of the edges that lead
to the children of each internal node, considering the
internal nodes in the order of A, and (2) a bitsequence
Slast ½1;N� marking the last child of each of those I internal
nodes in Sα. Ferragina et al. [32] show that this is sufficient
to simulate downward and upward traversals on τ, and to
support subpath searches. The space required is, at most,
ð1þ log σÞN bits, where we note that here N is the number
of nodes in the trie, usually significantly less than the
length of the string T dict .

To use the XBW for our purposes, we insert the strings
$si$ into τ, instead of just si. Further, we renumber the IDs
so that they coincide with the positions of the $ labels in
Sα: the node corresponding to the ith occurrence of $ in Sα
(i.e., the leaf that is the target of such edge labeled $) will
correspond to the string called si. In addition, we use a
wavelet tree structure [41] to represent Sα. It uses at most
N log σ bits of space (and less if D is compressible) and
supports operations rank and select on Sα in Oðlog σÞ
time. The subpath search operation is carried out in
Oðjpj log σÞ time, and it identifies the area Sα½sp; ep� of all
the children of the resulting nodes. The bitsequences, both
those of the wavelet tree and Slast , can be represented in
uncompressed or compressed form (variants RG or RRR,
respectively). While there is little novelty in the use of the
XBW to represent a set of strings, our implementation of
the data structure is new, as we could not find it publicly
available.

BASIC OPERATIONS: For locate(p), instead of traversing
the trie from the root to a leaf (which is possible, but slow
on the XBW representation), we use the subpath search
operation for pattern $p$. As a result, a single position Sα½k�
is obtained if p¼ siAD. The corresponding ID is obtained
as i¼ rank$ðSα; kÞ. For extract(i), we find the corre-
sponding leaf k¼ select$ðSα; iÞ, and traverse the trie
upwards from Sα½k�.

PREFIX-BASED OPERATIONS: For locatePrefix(p) we search
as above, this time for $p, and end up in a range Sα½sp; ep�
corresponding to (the children of) the internal node vAτ
whose path from the root spells out p. Now we perform a
downward traversal from v towards every possible leaf
descendant. Unfortunately this is relatively slow and the
resulting leaves (and their IDs) are not consecutive. We can
recall the labels followed in this recursive traversal so that,
when we arrive at each leaf, we can output the corre-
sponding string (prepending p), in order to solve operation
extractPrefix(p).

SUBSTRING-BASED OPERATIONS: Although prefix-based opera-
tions are not so fast, they are easily generalized to the
powerful substring-based operations. For locateSub-

string(p) we search as above, this time just for p, then
proceed as for locatePrefix(p) (now range Sα½sp; ep� may
include the children of many different internal nodes v). For
extractSubstring(p), we must in addition recover the
symbols that label the edges in the path from the root to
each corresponding node v.



Table 1
Description of the datasets.

Dictionary Size(MB) strings Avg. length σ H0 Trie nodes Front-Coding Re-Pair

Geographic names 81.62 5,455,163 15.69 123 4.96 45.74% 51.82% 44.87%
Words 257.07 25,671,285 10.50 38 4.75 37.78% 47.33% 60.50%
Word sequences (en) 983.32 36,677,283 28.11 136 4.32 24.86% 28.41% 25.39%
Word sequences (sp) 1127.87 39,180,899 30.18 138 4.35 24.59% 27.90% 24.16%
URIs 1311.91 26,948,638 51.04 81 5.07 5.45% 7.41% 10.96%
URLs 1372.06 18,520,486 77.68 101 5.29 21.08% 22.40% 11.61%
Literals 1590.62 27,592,059 60.45 206 5.27 � 84.45% 15.10%
DNA 114.09 9,202,863 13.00 6 2.27 20.08% 27.51% 35.50%
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10. Experimental evaluation

This section analyzes the empirical performance of our
techniques, in space and time, over dictionaries coming
from various real-world scenarios. We first consider the
basic operations of locate and extract, comparing our
techniques in order to choose the most prominent ones,
and then comparing those with other relevant approaches
from the literature. Then, we consider the prefix and
substring based operations on those dictionaries where
those operations are useful in practice. At the end, we
discuss the construction costs of our techniques.

10.1. Experimental setup

Our experiments were performed on two different
computational configurations, which differ mainly in the
RAM size. The lookup and extraction tests were performed
on an Intel-Core i7 3820 @3.6 GHz, 16 GB RAM, running
Debian 7.1. The construction, instead, was carried out on a
more powerful configuration: Intel Xeon X5675
@3.07 GHz, 48 GB RAM, running Ubuntu 14.04.2 LTS.

Datasets: We consider a variety of dictionaries from
different application domains.

Geographic names comprises all different names for the
geographic points in the geonames dump.11 We choose
the “asciiname” column and delete all duplicates. The
dictionary contains 5,455,164 geographic names and
occupies 81.62 MB.

Words comprises all the different words with at least
3 occurrences in the ClueWeb09 dataset.12 It contains
25,609,784 words and occupies 256.36 MB.

Word sequences is obtained from the phrase table of a
parallel English-Spanish corpus13 of 1,353,454 pairs of
sentences. It results in two word sequence dictionaries:

(en) It comprises 36,677,283 different English word
sequences, and occupies 983.32 MB.
11 http://download.geonames.org/export/dump/allCountries.zip
12 http://lemurproject.org/clueweb09
13 This corpus was obtained by combining Europarl, http://www.

statmt.org/europarl/v7/es-en.tgz, and News Commentary corpus from
the WMT Workshop 2010, http://www.statmt.org/wmt10/. The resulting
bitext was tokenized and bilingual phrases were discarded if the phrase
in a language contained 9 times more words than its counterpart in the
other language, or if the phrase was longer than 40 words.
(sp) It comprises 39,180,899 different Spanish word
sequences, and occupies 1127.87 MB.

URIs comprises all different URIs used in the Uniprot
RDF dataset.14 It contains 26,948,638 different URIs
taking 1311.91 MB of space.

URLs corresponds to a 2002 crawl of the .uk domain
from the WebGraph framework.15 It contains
18,520,486 different URLs and 1372.06 MB.

Literals comprises an excerpt of 27,592,013 different
literals from the DBpedia 3.9 RDF dataset.16 It takes
1590.62 MB of space.

DNA contains all subsequences of 12 nucleotides found
in the sequences of S. Paradoxus published in the para
dataset.17 It contains 9,202,863 subsequences and occu-
pies 114.09 MB.

Table 1 summarizes the most relevant statistics for each
dictionary: the original T dict size (in MB), number of dif-
ferent strings, average number of characters per string
(including the special $ terminator), number of different
characters used in the dictionary (σ), and the zero-order
entropy (H0) in bits per character. In addition, the three
last columns provide basic details about potential sizes of a
trie-based representation (expressed as the number of
nodes in the trie as a percentage of n), a front-coded one
(expressed as the number of characters required for a
Front-Coding with infinite bucket size, as a percentage of
n), and a Re-Pair one (expressed as the number of bytes
needed by a plain representation of the rules and C array,
as a percentage of n). For some dictionaries, we were
unable to build the corresponding tries in our computa-
tional setup, due to excessive memory usage during
construction.

Prototypes: All our structures are implemented in Cþþ ,
and use facilities (when necessary) from the libcds

library.18 Prototypes are compiled using gþþ (version
4.7.2) with optimization �O9. Below, we describe the
different parameterizations studied for each technique:
14 ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/rdf
15 http://law.dsi.unimi.it/webdata/uk-2002
16 http://downloads.dbpedia.org/3.9/en
17 http://www.sanger.ac.uk/Teams/Team71/durbin/sgrp
18 https://github.com/fclaude/libcds

http://download.geonames.org/export/dump/allCountries.zip
http://lemurproject.org/clueweb09
http://www.statmt.org/europarl/v7/es-en.tgz
http://www.statmt.org/europarl/v7/es-en.tgz
http://www.statmt.org/wmt10/
http://ftp.uniprot.org/pub/databases/uniprot/current_release/rdf
http://law.dsi.unimi.it/webdata/uk-2002
http://downloads.dbpedia.org/3.9/en
http://www.sanger.ac.uk/Teams/Team71/durbin/sgrp
https://github.com/fclaude/libcds
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ash: The four hash-based techniques (Hash,
HashB, HashBB, and HashDAC) are combined
with Huffman (referred to as huff) and Re-
Pair (referred to as rp) compression. In all
cases, they implement their respective bitse-
quences using RG with 5% of overhead (para-
meter 20). Space/time tradeoffs are obtained
by varying the load factor α¼ n=m. We con-
sider m¼1.1n (i.e., the hash table has 10%
more cells than strings in the dictionary),
m¼1.25n, m¼1.5n, m¼1.75n, and m¼2n.

ront-Coding: We consider several variants of the two
Front-Coding based techniques (PFC and
HTFC). On the one hand, we analyze PFC as
described in Section 6.1, but also consider
the use of Re-Pair for compressing the inter-
nal strings (referred to as PFC-rp). On the
other hand, we test HTFC in combination
with Huffman (HTFC-huff) and Re-Pair
(HTFC-rp).

PDAC: We implement the technique following its
description. We also tested how the dic-
tionary performs when the Re-Pair grammar
is also compressed [39], but this was never
competitive with the basic technique in
our case.

M-Index: Two FM-indexes prototypes are tested. FMI-
rg uses RG bitsequences for implementing
the aforementioned SSA_v3.1, and FMI-rrr

uses compressed RRR bitsequences for build-
ing SSA_RRR. We parameterize RG using
sample values of 20 (5% of overhead), 5 (20%
of overhead), and 2 (50% of overhead), and
RRR using sample values 16, 64, and 128. The
additional sampling structure, required for
substring lookups, is built according to the
specific dictionary features and is described
for each particular test.

BW: Two variants are tested, using RG or RRR bit-
sequences (XBW-rg and XBW-rrr, respec-
tively). Their parameters are as for the FM-
index.
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Fig. 4. locate and extract performance compa
10.2. Basic operations

The first test analyzes locate and extract perfor-
mance. For locate, we choose 1 million strings at random
from each dataset in order to measure response times. In
addition, we tested unsuccessful searches, that is, for strings
not in the dataset. These results are not shown because they
gave times similar to those obtained for successful searches.
For extract, we look for the IDs corresponding to the
strings located before, running 1 million operations. All the
results reported for each experiment are averaged user
times over 10 independent runs.

The results for these experiments are presented
through pairs of plots reporting space/time tradeoffs for
locate and extract. Each plot represents dictionary
sizes in the x-axis and query times in the y-axis (in logs-
cale). Space is reported as the percentage of the size of the
dictionary encoding with respect to the size of the original
T dict string using one byte per character. Times are
expressed in microseconds per operation.

We first identify the most relevant alternatives of
compressed hashing and of Front-Coding. These will then
be compared with our other proposed techniques. For
succinctness, in this stage we only show two dictionaries
to draw conclusions about each family of techniques,
choosing the plots where the conclusions show up most
clearly. All the other plots for all the datasets in the setup
are shown in the Appendix.

Compressed hash dictionaries: Regardless of the specific
hash-based technique, the use of Re-Pair for string com-
pression clearly outperforms Huffman, except for DNA,
which has the lowest zero-order entropy among the
datasets. This result shows that string repetitiveness in
dictionaries generally offers better compression opportu-
nities than bias in the symbol frequencies. Figs. 4 and 5
show the results on DNA and URLs, respectively.

Huffman effectiveness is lower-bounded by the zero-
order entropy of the dictionary strings, which is generally
over 4 bits per character (see Table 1). On top of this space,
Hash-huff adds a table of pointers with a percentage of
empty cells, HashB-huff replaces the empty cells by a
bitsequence marking which are empty, HashBB-huff
replaces the nonempty cells by another bitsequence, and
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finally HashDAC-huff changes this last bitsequence for a
DAC encoding of the compressed strings. It is not sur-
prising that the space of HashB-huff is very close to that of
Hash-huff when the latter uses the minimum number of
empty cells (only 10%). In turn, HashBB-huff sharply
improves on that space, using between 6% (URIs) and 30%
(DNA) of space on top of the zero-order entropy. Moreover,
HashDAC-huff demands more space than HashBB-huff, and
the difference increases for longer strings. With respect to
locate time, Hash-huff is slightly faster than HashB-huff,
as it saves a rank operation in the intermediate steps of
the search (i.e., those where the value is rehashed to a new
cell, which may happen zero times); HashB-huff is in turn
faster than HashBB-huff, as it saves a select operation on
a longer bitsequence. However, this difference is minimal
for dictionaries with shorter strings like DNA. HashDAC-
huff competes with HashBB-huff on dictionaries with
shorter strings (for instance, DNA), but the space/time
performance of DAC degrades for longer strings (as for
URLs). For extract, it is now Hash-huff the one needing a
select operation that is unnecessary on HashB-huff,
which is the fastest choice. HashBB-huff is close to HashB-
huff, but only outperforms it on DNA, while HashDAC-huff
never competes. The comparison among them is as for
locate.

The use of Re-Pair compression shows to be an excel-
lent choice. The comparison among the different hash
techniques conveys to the same conclusions reported for
Huffman compression, except for HashDAC-rp. Since it
uses symbols wider than bytes, the space overhead is
lower and fewer rank operations are needed to extract the
compressed strings, compared to the byte-aligned Huff-
man codes. This variant always achieves the most com-
pressed dictionaries and reports competitive performance
for both locate and extract. In each case, it performs
close to the fastest variant: Hash-rp for locate and
HashB-rp for extract.

We conclude that HashDAC-rp is the best positioned
technique among the hash-based ones. It achieves com-
pression ratios around 12–60%, and requires 0.5–3.2 μs to
locate and 0.4–2 μs to extract. We will also promote
HashB-huff for the next experiments. Although its com-
pression effectiveness is not competitive (60–100%), it
reports the best overall time performances: 0.5–1.7 μs for
locate and 0.2–1 μs for extract.

Perfect hashing: An interesting experiment is to com-
pare our double-hashing technique with minimum perfect
hashing, considering space and locate speed (the
extraction process is the same for both schemes). Mini-
mum perfect hashing maps all the strings to the interval
H0½1;n� without collisions, and thus saves the space for
bitsequence B used in our hashing schemes. In exchange, it
needs in practice about 2.7n bits of extra space, which is
similar to that of double hashing with a table of m� 2:57n
entries and a load factor of α¼ n=m� 0:39. Even with
perfect hashing, since we cannot ensure that the string p is
actually in the dictionary, operation locate(p) must also
extract the string found and compare it with p.

For the comparison between double and perfect hash-
ing, we choose the representation HashDAC-rp, which has
emerged as generally the best choice in our experiments.
This means that we hash the uncompressed string p, and
that for each string found si we must decompress its
DACþRe-Pair representation and then compare it with p.

We choose an efficient minimal perfect hash imple-
mentation from the Sux4J19 library. We add up the time to
compute the hash function on pwith Sux4J and the time to
extract the string si and compare it with p in our
implementation.

Fig. 6 shows the results achieved on DNA and URIs.
Each plot represents, in the x-axis, the amount of addi-
tional bits used on top of the compressed strings. The y-
axis shows the query times in μs. We remind that Hash-
DAC-rp adds 1.05 bits per cell in the hash table, that is, if
the hash table has 25% more cells than strings, it adds
1:05 � 1:25¼ 1:3125 bits per string. We consider table sizes
up to m¼2n for double hashing, which requires 2.1 bits
per string. This is still well below the � 2:7 bits of minimal
perfect hashing. As shown in our experiments, the impact
of these bits in the total space used by the index is low
anyway; we only want to emphasize that the use of perfect
hashing does not involve a space reduction.

http://sux.di.unimi.it/
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The differences in time slightly favor double hashing
over perfect hashing in the figures, and the difference
decreases on longer strings. These results are not con-
clusive, however, because the perfect hashing imple-
mentation is in Java and that of double hashing is in Cþþ ,
and there is much discussion about up to what extent one
can compare implementations in those languages.

As a platform-independent comparison, double hash-
ing produces about 30% collisions when using about
2.7 bits per string (theory predicts 27% with an ideal hash
function). Each such collision involves 2 cache misses to
compute rank and 2–5 to extract the string and compare
it (only up to the point where one can see that there is a
difference). This amounts on average to about 130%�
2þ30%� 2–5� 3:2–4:1 cache misses on top of the cost of
comparing the key with the right string. Inspection of the
perfect hash in Sux4J shows that 4 cache misses are to be
expected in function MinimalPerfectHashFu-

nction.getLong. The time spent by both schemes to
extract and decompress the final string further blurs those
differences. This explains why no noticeable differences
should be expected between double and perfect hashing in
our application.
Front-Coding dictionaries: This family of techniques
draws comparable patterns for all datasets in our setup.
Lookup times increase gradually from small (b¼2) to
medium-size bucket sizes (b¼32), but from these to larger
sizes (b¼1024) their performance degrades sharply. Thus,
we consider as competitive configurations those ranging
from b¼2 to b¼32: the former achieve better time and the
latter obtain better space. This can be seen in Figs. 7 and 8,
where results for URIs and Literals are shown,
respectively. They are, respectively, the best and the worst
datasets for Front-Coding, as shown in Table 1.

PFC is the fastest choice in all cases, both for locate

and extract, at the price of being the least effective
compression technique. Extraction is always faster because
it only needs to traverse a bucket, whereas locate firstly
locates the corresponding bucket with a binary search and
then traverses it. The variant compressing the buckets
with Re-Pair, PFC-rp, achieves some improvement for
URIs, but its improvement is huge on Literals, where
Re-Pair exploits repeated substrings within the buckets.
Obviously, PFC-rp is slower than PFC because it must
perform Re-Pair decompression within the buckets, but
this difference is acceptable for bucket sizes up to b¼32.
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Fig. 8. locate and extract performance comparison for Literals using Front-Coding.
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PFC-rp performs similar to HTFC-rp. Their lookup times
are almost equal from buckets of 32 strings and their dif-
ferences in space are negligible. Only for small bucket sizes
is HTFC-rp more space-effective, although it is also slightly
slower than PFC-rp (mainly for string location), and the
latter takes over in the space/time tradeoff. HTFC-rp is also
the most effective choice for the dictionaries Geographic
names, Word sequences (English and Spanish), URLs, and
Literals. However, HTFC-huff leads on Words, URIs,
and DNA. Fig. 7 shows this last case. HTFC-huff reports
compression ratios as low as 4.2%, compared to 5.3%
achieved by HTFC-rp, and it also offers better time per-
formance on the interesting range of space usage. The
comparison changes completely on Literals (Fig. 8),
where the space usage of HTFC-huff makes it
uninteresting.

Therefore, we use HTFC-huff for the upcoming experi-
ments on DNA, Words, and URIs, and HTFC-rp for the
remaining datasets. We will also include PFC, as it reaches
the maximum speed.

Overall comparison: Finally, we compare in Figs. 9 and
10 the best performing members from the hashing family
(HashB-huff and HashDAC-rp), the best performing
members of the Front-Coding family (PFC, and HTFC-rp or
HTFC-huff), and our remaining techniques: RPDAC, FM-

Index, and XBW. A number of general facts can be con-
cluded from the performance figures:

� As anticipated, RPDAC and HashDAC-rp reach similar
compression performance for all datasets, and also
show similar extract times. However, HashDAC-rp
outperforms RPDAC by far for locate because hashing
is always faster than binary string searching.

� The FM-Index variants reach 20–50% of compres-
sion, which is never competitive with the leading
techniques. They are also slower than the most efficient
variants by an order of magnitude or more, for both
operations.

� The XBW variants have not been built for Literals

because their construction complexity exceeds the
memory resources of our computational configuration.
For the remaining datasets, their time performance is
evenworse than that of FM-Index, but XBW-rrr achieves
the best compression of all the techniques, reaching 3–
20% of space. It takes 20–200 μs for locate and 50–
500 μs for extract.

� The variant of HTFC we chose for each dictionary
achieves the best space after XBW (4–30%), but much
better time: Using 5–35% of space it solves locate in
1–6 μs and extract in 0.4–2 μs. It is the dominant
technique, in general, unless one spends significatively
more space.

� HashDAC-rp is faster than HTFC for locate, and per-
forms similarly for extract. It compresses to 12–65%,
much worse than HTFC, but solves locate in 0.5–3.2 μs
and extract in 0.4–2 μs.

� PFC also takes over HTFC for both operations when
sufficient space is used: 8–55% (except on Literals,
where PFC uses more than 80%). PFC obtains 1–2 μs for
locate and 0.2–0.4 μs for extract. The relation
between PFC and HashDAC-rp varies depending on the
dataset: sometimes one completely dominates the
other, sometimes each has its own niche.

� Finally, HashB-huff obtains the best locate times
(albeit sometimes by a small margin) but not the best
extract times, at a high price in space: 60–100%. Its
locate times are in the range 0.5–2 μs.

Let us analyze the particularities of the collections:

� The best compression performance is obtained on URIs:
up to 3%, while obtaining competitive performance with
just 5%. This dataset contains very long shared prefixes
(Table 1), which is exploited by front-coded representa-
tions, and also by Re-Pair. However, the fact that HTFC-
huff is preferred over HTFC-rp indicates that most of the
redundancy is indeed in the shared prefixes. As a
consequence, HashDAC-rp is completely dominated by
PFC in this dataset.

� URLs and both Word sequences dictionaries are the
next most compressible datasets: HTFC-rp reaches
around 10% of space. They also contain long shared
prefixes, yet not as long as URIs (see Table 1). In this
case, the number of repeated substrings is a more
important source of compressibility than the shared
prefixes, as witnessed by the fact that HashDAC-rp
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Fig. 9. locate and extract performance comparison for Geographic names, Words, and Word sequences.
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(which applies only Re-Pair) outperforms PFC (which
applies only Front-Coding) in space. The effect is most
pronounced in URLs, where HashDAC-rp achieves
almost the same space as HTFC-rp. In both Word

sequences datasets, HashDAC-rp completely domi-
nates PFC regarding locate times.
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Fig. 10. locate and extract performance comparison for URIs, URLs, Literals, and DNA.
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� In DNA, a low entropy is combined with fairly long shared
prefixes. No further significant string repetitiveness arises,
as witnessed by the fact that HashDAC-rp does not
dominate PFC in space (yet it is faster). Added to the low
entropy, it is not surprising that HTFC-huff is the preferred
variant of HTFC, reaching almost 10% of space.



20 http://www.openlinksw.com
21 Precisely, the prefix lengths used are 9, 10, 12, 13 and 15 on

Geographic names; 6, 7, 8, 9 and 11 on Words; 16, 19, 22, 25 and 28 on
Word sequences (en); 18, 21, 24, 27 and 30 on Word sequences (es);
30, 35, 40, 45, and 51 on URIs (for extractPrefix, 45, 51, 56, 61 and 66);
46, 54, 62, 70 and 78 on URLs; and 7, 8, 9, 10 and 12 on DNA.
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� It may be surprising that Literals also reaches around
10% of space, given that Table 1 shows that very short
consecutive prefixes are shared, and thus PFC fails to
compress this dataset. As in URLs, however, there is a
large degree of substring repetitiveness, which makes Re-
Pair based approaches succeed in compressing. As
expected, HashDAC-rp gets very close in space to HTFC-
rp.

� Finally, Geographic names and Words achieve much
worse compression, close to 30% with HTFC. This results
owes to the fact that they do not share long prefixes nor
have much string repetitiveness (see Table 1). Shared
prefixes are a better source of compressibility in Words,
and string repetitiveness is in Geographic names, as
witnessed by the relation between the space of PFC and
HashDAC-rp.

To summarize, we have that, depending on the degree of
shared prefixes and repeated substrings in the dictionaries,
compression ratios of 5%, 10%, and 30% can be achieved.
Within those spaces, operation locate can be solved in 1–
6 μs, and extract in 0.4–2 μs, basically depending on the
average string length in the dictionaries. Those performances
correspond to the HTFC data structure. Faster operations and
larger spaces can be obtained by using other structures like
HashDAC-rp, PFC, and HashB-huff.

10.3. Comparison with the state of the art

Now we compare our most prominent approaches with
the most relevant techniques in the literature. We test the
centroid (Cent) path-decomposed trie and the path
decomposition with lexicographic order (Lex) [42]. Both
techniques are compared with and without label com-
pression (these are referred to as CentRP and LexRP,
where the labels are Re-Pair compressed). We also com-
pare the LZ-dictionaries [4]: one using path decomposition
(LZ-pd) and other based on Front-Coding compression
(LZ-fc) with bucket size 16. Additionally, we study their
variants performing on the inverted dictionary parsing:
LZ�1T-pd and LZ�1 T-fc. From our techniques, we
include PFC, HTFC, and HashDAC-rp for all datasets. As
before, we use HTFC-huff on Words, URIs and DNA, and
HTFC-rp on the other datasets.

Figs. 11 and 12 summarize the results obtained for the
basic operations. In general, LZ-dictionaries report competi-
tive tradeoffs, but all their variants are dominated by the
centroid-based approaches that use Re-Pair. The only
exception is on URLs, where LZ-pd achieves less space (but
is slower) than the centroid-based schemes. Nevertheless, all
the LZ-dictionaries are systematically dominated by the cor-
responding variant of HTFC. This is not surprising, since the
LZ-dictionaries are based on variants of LZ78 compression,
and this is weaker than Re-Pair compression.

From the centroid-based approaches, which can be
seen as representatives of data structures based on tries
(as our XBW approaches), CentRP clearly dominates the
others. It is, however, dominated by HTFC when operation
extract is considered, in almost all cases. The exceptions
are URIs (where CentRP outperforms HTFC only
marginally), URLs (where CentRP is anyway dominated
by HashDAC-rp), and Literals. On the other hand,
CentRP does dominate on a niche of the space/time map
of operation locate. Generally, CentRP cannot achieve as
little space as HTFC, but it achieves more speed for the
same space, and then HashDAC-rp outperforms it by using
more space. Some exceptions are URLs (where HashDAC-
rp needs less space and similar time than CentRP), and
DNA (where HTFC dominates CentRP). CentRP achieves
4–35% compression and 1–3 μs for both operations.

The fact that our techniques dominate in almost all
cases for operation extract is very relevant, as in many
scenarios one carries out many more extract than
locate operations. For example, when a dictionary is
used to tokenize a NL text [19,6], query words are con-
verted into IDs using locate, once per query word. Most
queries contain just 1–5 words. However, if a text snippet
or a whole document is displayed, tens to thousands of
extract operations are necessary, one per displayed
word. Similarly, RDF engines like RDF3X [63] or Virtuoso20

use a dictionary transformation to rewrite the original data
as IDs, and these are used for indexing purposes. The
words within SPARQL queries [67] are then converted into
IDs using locate. In practice, the most complex queries
(rarely used) involve at most 15 different patterns [3].
Once the engine retrieves a set of IDs, these must be
translated to their corresponding strings in order to pre-
sent them to the user. Although highly-restrictive queries
can return a few results, the most common ones obtain
hundreds or thousands of results. The situation is also
similar in most applications of geographic names and
URLs, whereas the weight of both operations is likely to be
more balanced in word sequences for translation systems
and in DNA k-mers.

10.4. Prefix-based operations

Except possibly for Literals, prefix-based searches
are useful in the applications where our dictionary data-
sets are used. For example, prefix searches are common on
geographic names and words for autocompletion, they are
used on MT systems (word sequences) to find the best
translation starting at a given point of a text, to retrieve
RDF descriptions for all URIs published under a given
namespace, to retrieve all URLs under a specific domain or
subdomain, and to retrieve all k-mers with a given prefix.

For each dataset except Literals, we obtain five sets
of 100,000 valid prefixes (returning, at least, one result per
prefix) of different lengths: prefixes lengths are 60%, 70%,
80%, 90%, and 100%, of the average string length. The
exception is URIs, where these prefixes are not sufficiently
selective, so for extractPrefix we use prefix lengths of
90%, 100%, 110%, 120%, and 130% of the average string
length.21

http://www.openlinksw.com
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Fig. 11. locate and extract performance comparison for Geographic names, Words, and Word sequences.

M.A. Martínez-Prieto et al. / Information Systems 56 (2016) 73–108 93
Hashing-based techniques do not support prefix-based
searches, so we use HTFC (with the variant chosen as
before) and PFC in these experiments. In both cases we
use bucket size b¼8, which is generally the turning point
in space vs time of both techniques. We also include
RPDAC in these tests, but discard FM-Index and XBW
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because their performance is far from competitive in
these tests.

The time measured for operation locatePrefix con-
sists of the time required to determine the range of con-
tiguous IDs [a,b] in which the strings prefixed by the pat-
tern are encoded. On the other hand, the time for
extractPrefix comprises both the time required to
determine the range [a,b], and the time required for
extracting those b�aþ1 strings in the range.

Figs. 13 and 14 illustrate the prefix-based experiments
for Word sequences (en) and URIs, respectively,
showing locatePrefix (left) and extractPrefix (right).
The times, on the y-axis, are expressed as μs per query in
the case of locatePrefix, whereas for extractPrefix

they are expressed in nanoseconds (ns) per extracted
string. The x-axis represents the prefix length for loca-

tePrefix, while for extractPrefix it represents the
number of elements retrieved, on average, from each
pattern (it is logarithmic on URIs). Obviously, longer pat-
terns are more selective than shorter ones, thus they
retrieve fewer results.

Two opposite effects arise when increasing the pattern
length in locatePrefix. On the one hand, string com-
parisons may be more expensive, especially when long
prefixes are shared among the strings. On the other hand,
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the search is more selective and the resulting range is
shorter, which reduces the number of binary comparisons
needed to find it. Different dictionaries are affected dif-
ferently by these two effects. For Geographic names,
Words and both Word sequences datasets, times remain
stable as the patterns grow. The times slightly increase
with the prefix length on URLs and URIs, as the strings
sought are longer and long prefixes are shared. Finally, the
times decrease with longer prefixes on DNA. This decrease
owes to the fact that the strings are short and compres-
sible, so the increase in selectivity is more relevant than
the increase in length. In all cases, PFC is always the fastest
choice (yet in several cases it uses more space), followed
by HTFC and finally RPDAC. PFC times are around 1–2.5 μs
per query, being URLs and URIs the worst case.

On the other hand, extractPrefix times (per
retrieved result) decrease with prefix selectivity, reaching
a stable value at about 50 extracted strings (for URIs, up to
1000 results must be retrieved to reach stability). This
means that the cost of prefix location is quickly amortized,
and from then on the time of extractPrefix is mainly
due to string extraction. This time is roughly 50–100 ns per
string for PFC, which is again the fastest choice, followed
by HTFC and then by RPDAC, which is the least competitive
choice.
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10.5. Substring-based operations

We have chosen two datasets where substring searches
are most clearly used. On the one hand, it is common to
use substrings when searching a collection of Geo-

graphic names, as many official names are longer than
the names actually used, or in order to write, say
“museum”, and get suggestions. On the other hand,
substring-based searching is the most frequently used
form of the SPARQL regex query over RDF Literals [3].
For each dataset, we obtain five sets of 100,000 substrings
of different lengths, returning at least one result. We
consider substrings lengths from 25% to 60% of the average
string lengths.22

FM-Index and XBW are the only structures that support
substring searching. Nevertheless, XBW dictionaries are
only analyzed for Geographic names because we could
not build them on Literals. Considering the reported
tradeoffs for locate and extract, we build FMI-rg and
22 Precisely, the substring lengths used are 4, 5, 6, 8 and 10 on
Geographic names; and 18, 21, 24, 30 and 36 on Literals.
XBR-rg with sampling value 20, while FMI-rrr and XBR-

rrr are built with sampling value 64.
FM-Index sampling: We remind that the FM-Index

uses a sampling step s to efficiently locate the strings.
Before comparing it with others, we study how this sam-
pling impacts on the FM-Index tradeoffs. We consider five
different sampling values, s¼ 8;16;32; 64;128.

Fig. 15 compares space requirements for each sampling
value and also without sampling (bar “original”). For FMI-
rg, the space used with s¼8 doubles the original
requirements in both datasets. This overhead progressively
decreases with larger samplings, requiring 25–60% for
sZ16. On FMI-rrr, the original space is doubled already
for s¼16, but the overhead also reaches reasonable values
for larger values of s.

We study locateSubstring times, since the perfor-
mance of extractSubstring is independent of how the
strings were found. Figs. 16 and 17 show the performance
for Geographic names and Literals, respectively,
showing the results for FMI-rg (left) and for FMI-rrr

(right). The x-axis represents the length of the substring
sought, and the y-axis (logarithmic) is the time required
per located ID, in μs. This time includes finding the range
A½sp; ep� in which the substrings are represented, obtaining
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the corresponding string IDs (this requires at most s steps
per ID), and removing duplicate IDs.

On Geographic names, the times are relatively stable
as the pattern lengths grow, because the strings are not too
long. As expected, the sampling step has a significant
impact on times. For instance, FMI-rg takes about 1 μs
per located ID with s¼8, 3 μs with s¼32, and more than
4 μs for s¼128. FMI-rrr reports higher times: 4 μs for
s¼8, 10 μs for s¼32, and 13 μs for s¼128. However, FMI-
rg uses much more space than FMI-rrr to achieve
these times.

On Literals, times clearly worsen for longer search
patterns, as the strings sought are longer. This effect is
blurred for larger s values, where the locating cost
becomes more relevant than the cost of finding A½sp; ep�.
Comparisons between values of s are similar as before, but
in this case FMI-rrr is closer to FMI-rg.

Comparing FM-Index and XBW: Fig. 18 compares these
structures on Geographic names. For clarity, we only
include the FM-index structures with the extreme sam-
plings s¼8 and s¼128. When using little space (i.e.,
sampling steps sZ128), the XBW variants are clearly better
than the FM-Index, using much less space and the same
time or less. By decreasing the sampling step, FM-Index
structures can become several times faster, however, but
this comes at a steep price in space. As a matter of fact,
FMI-rrr is not really attractive compared to XBW-rg: it
needs to reach s¼8 in order to reduce the time by 25%, but
at the cost of increasing the space 2.5 times. On the other
hand, FMI-rg uses twice the space of XBW-rg already
with s¼128, and to become significantly faster (5 times
with s¼8) it uses 130% of space. These numbers endorse
XBW-rg as a good alternative for substring lookups in a
general scenario, but FMI-rgwith a small sampling step is
the choice when space requirements are more flexible.

10.6. Construction costs

Our techniques focus on compressing and querying
static dictionaries. Thus, their contents do not change
along time, or changes are sufficiently infrequent to allow
a reconstruction from scratch. Although we have not
engineered the construction process of our dictionaries, it
is important to have a rough idea of the construction time
and space of each structure, because large variations may
favor one over another.

Fig. 19 compares construction space and time on DNA

andURIs (similar conclusions are drawn from the other
datasets). Each plot represents, in the x-axis, the peak
memory used for construction (in MB). The y-axis shows
construction times in seconds. The most prominent choice
is PFC, which is so fast that it could be used for online
dictionary building. It processes more than 9 million DNA

sequences in just 0.5 s, and almost 27 million URIs in just
2.5 s. PFC uses an amount of memory proportional to the
dictionary size because it is fully loaded in memory (by
default) before processing. Combining HTFC with Huffman
could also be considered for online dictionaries, but it
requires 2–4 times more time than PFC for building
competitive dictionary configurations. Regarding memory,
it uses similar space than PFC because we previously build
the plain front coding representation and then perform Hu-
Tucker and Huffman compression. PFC and HTFC on Re-
Pair compression obtain moderate times, similar to those
reported by Hash-based techniques using Huffman com-
pression. For DNA, building times range from 4 to 10 s,
while they need 1–2 min for URIs. These techniques also
demand more memory because of RePair requirements
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and the need of reserving space for managing the
(uncompressed) hash table, respectively.

Finally, the least efficient techniques are self-indexes
and Hash-based dictionaries using Re-Pair compression.
The latter need between 10 and 24 min for DNA, and up to
3 h for URIs. Such a result may discourage the use of Re-
Pair compressed hashing schemes in applications where
the time for construction is limited. The responsible for
this high construction cost, in the first case, is the Re-Pair
compression algorithm, which is linear-time but still
rather slow. Note that its high construction time loses
importance when combined with Front-Coding, as it has to
work on the much shorter sequences that are output by
this encoder. On the other hand, the amount of memory
used in self-indexes increases due to the need of building
the suffix array of the dictionary.
11. Conclusions and future work

String dictionaries have been traditionally imple-
mented using classical data structures such as sorted
arrays, hashing or tries. However, these solutions are fall-
ing short in facing the new scalability challenges brought
up by modern data-intensive applications. Managing
string dictionaries in compressed storage is becoming a
key technique to handle the large datasets that are emer-
ging within fast main memory.

This paper studies the problem of representing and
managing string dictionaries from a practical perspective.
By combining in various ways classical techniques (sorted
arrays, hashing, tries) with various compression methods
(such as Huffman, Hu-Tucker, Front-Coding and Re-Pair)
and compressed data structures (such as bit and symbol
sequences, directly addressable codes, full-text indexes,
and compressed labeled trees), we derive five families of
compressed dictionaries, each with several variants. These
approaches are studied with thorough experiments on a
heterogeneous testbed that comprises dictionaries arising
in real-life applications, including natural language, URLs,
RDF data, and biological sequences.

The results display a broad range of space/time trade-
offs, enabling applications to choose the technique that
best suits their needs. Depending on the type of dictionary,
our experiments show that it is possible to compress them
up to 5%, 10%, or 30% of their original space, while sup-
porting within a few microseconds the most basic opera-
tions of locating a string in the dictionary and extracting
the string corresponding to a given ID. The best techni-
ques, dominating the space/time tradeoff map, turn out to
be variants of binary searching that compress the dic-
tionary using combinations of Hu-Tucker, Front-Coding,
and/or Re-Pair. A variant combining hashing with directly
addressable codes and Re-Pair generally achieves better
times while using more space. We also compared our
techniques with the few compressed dictionary data
structures available in the literature [42,4], showing that a
compressed variant of the trie data structure combined
with Re-Pair [42] is also competitive and shows up in the
map of the dominant techniques.

We have also studied more sophisticated prefix and
substring-based searches, which are supported only by
some of the proposed techniques. These operations open
the door to more complex uses of dictionaries in appli-
cations. For instance, substring-based lookups (within the
dictionary) have been proposed for pushing-up filter
evaluation within SPARQL query processors [58], redu-
cing the amount of data to be explored in the query and
thereby improving the overall query performance. While
prefix-based searches only exclude hashing-based tech-
niques, only full-text indexing data structures (on strings
and trees) are able to cope with substring-based searches.
While these structures achieve good space usage, they are
an order of magnitude slower than our best approaches
that handle the basic operations and prefix searches.
Finding more efficient data structures for these more
complex operations is an interesting open problem. It is
also interesting to study other complex searches that can
be supported. For example, full-text indexes can be
modified to allow for simultaneous prefix- and suffix-
searching [35].

We plan to incorporate the proposed techniques in
different types of applications. Currently, our results have
been successfully used for word indexes [27] and RDF-
based solutions [28], as well as for speeding up biological
indexes [22]. Besides these, compressed string dictionaries
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could be a powerful tool for restricted computational
configurations such as mobile devices. We are currently
considering their use for applications running on smart-
phones or GPS devices.
Appendix A. Experimental results

The following subsections comprise locate and
extract graphs (i) for compressed hash dictionaries, (ii)
for Front-Coding dictionaries, (iii) locatePrefix and
extractPrefix (except for Literals), and (iv) loca-

tePrefix and extractPrefix (only for Geographic

names and Literals).
A.1. Geographic names

See Figs. 20–22.
A.2. Words

See Figs. 23–25.
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A.3. Word sequences (English)

See Figs. 26–28.

A.4. Word sequences (Spanish)

See Figs. 29–31.

A.5. URIs

See Figs. 32–34.

A.6. URLs

See Figs. 35–37.

A.7. Literals

See Figs. 38 and 39.

A.8. DNA

See Figs. 40–42.
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Fig. 30. locate and extract performance comparison for Word sequences (sp) using Front-Coding.
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Fig. 31. locatePrefix and extractPrefix performance comparison for Word sequences (sp).
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Fig. 32. locate and extract performance comparison for URIs using hash-based techniques.
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Fig. 33. locate and extract performance comparison for URIs using Front-Coding.
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Fig. 34. locatePrefix and extractPrefix performance comparison for URIs.
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Fig. 35. locate and extract performance comparison for URLs using hash-based techniques.
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Fig. 36. locate and extract performance comparison for URLs using Front-Coding.
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Fig. 37. locatePrefix and extractPrefix performance comparison for URLs.
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Fig. 38. locate and extract performance comparison for Literals using hash-based techniques.

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 0  10  20  30  40  50  60  70  80  90  100

lo
ca

te
 ti

m
e 

(m
ic

ro
se

cs
)

total space (% of original)

Literals

PFC
PFC-rp

HTFC-huff
HTFC-rp

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 0  10  20  30  40  50  60  70  80  90  100

ex
tra

ct
 ti

m
e 

(m
ic

ro
se

cs
)

total space (% of original)

Literals

PFC
PFC-rp

HTFC-huff
HTFC-rp

Fig. 39. locate and extract performance comparison for Literals using Front-Coding.
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Fig. 40. locate and extract performance comparison for DNA using hash-based techniques.
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Fig. 41. locate and extract performance comparison for DNA using Front-Coding.
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Fig. 42. locatePrefix and extractPrefix performance comparison for DNA.
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