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TWO ESSAYS ON DYNAMIC CONTRACTS

Esta tesis consta de dos artículos en Teoría de Contratos. El primero es un análisis 
teórico de las consecuencias de suponer un agente con preferencias aversas a las pérdidas en un 
modelo de riesgo moral dinámico, usando como base Rogerson (1985). Existe amplia evidencia 
empírica, tanto en economía como en psicología cognitiva, que demuestra que las preferencias 
se caracterizan por presentar aversión a las pérdidas. El análisis muestra diferencias relevantes 
en las predicciones respecto del modelo clásico. En particular, los esquemas óptimos de pagos 
son no decrecientes pero no estrictamente crecientes en los resultados. En efecto, puede haber 
segmentos planos en la función de pagos con respecto a los resultados, e incluso puede que en 
algunos periodos no haya dependencia alguna en éstos. Adicionalmente, se obtiene
consecuencias sobre las decisiones de consumo intertemporal del agente. A diferencia de lo que 
ocurre en Rogerson (1985) se muestra que el agente puede decidir ahorrar, pedir prestado o 
consumir el pago que recibe si se le otorga acceso al crédito. 

Desde el punto de vista metodológico, la aversión a las pérdidas induce una 
discontinuidad en la utilidad marginal, lo que corresponde a una no diferenciabilidad de la 
función de utilidad. Luego, para derivar el contrato óptimo se utiliza herramientas de análisis 
convexo, las que fueron extendidas en este trabajo, introduciendo una nueva regla de la cadena,
con el fin de enfrentar el carácter intertemporal del problema. En este trabajo se supone que el 
punto de referencia se adapta dinámicamente en función del consumo del periodo anterior. Se 
planifica en trabajo futuro analizar las consecuencias de otras formas de puesta al día de dicha 
referencia.

El segundo artículo es una aplicación de un modelo agente principal modificado para 
representar y optimizar acuerdos que se observan entre compañías grandes de servicios IT y sus
grandes clientes. Estos contratos son llamados SLA (Service Level Agreements o Acuerdos de 
Nivel de Servicio) y representan un acuerdo entre un proveedor y un consumidor, que explicita 
objetivos con el fin de garantizar la calidad de servicio. Estos contratos especifican tanto un 
precio por servicio como penalidades en caso de no cumplimiento. Para la modelación se utiliza
conceptos de riesgo moral y selección adversa. El riesgo moral proviene del hecho de que el 
proveedor, a través de un esfuerzo costoso (inversión, uso de recursos escasos o capital humano,
por ejemplo) puede aumentar la calidad del servicio, pero ésta depende además de una 
componente estocástica. La selección adversa proviene del hecho de que el proveedor puede 
enfrentar distintos tipos de clientes. La diferencia con el modelo clásico de agente principal 
redunda en que quien realiza un esfuerzo no verificable es a su vez quien debe determinar el 
contrato óptimo. En este caso, se incluye una restricción análoga a una de compatibilidad de 
incentivos, la cual es denominada restricción de credibilidad. Ésta representa el hecho de que el 
cliente no estaría dispuesto a aceptar un contrato que define un nivel de esfuerzo que no sea 
óptimo para el proveedor. 

Se caracteriza numéricamente el contrato lineal óptimo en un escenario en el que las 
condiciones están basadas en medidas del tiempo de respuesta de un servicio informático. 
Adicionalmente, se realiza un análisis de sensibilidad con respecto a parámetros del problema. 
Se encuentra que los contratos óptimos varían de manera intuitiva al variar parámetros como la 
aversión al riesgo, la apreciación que tiene el cliente del servicio y otros.



Abstract

This thesis contains two articles on Contract Theory. The first article is a 
theoretical analysis of the consequences of assuming that the preferences of the agent 
are risk averse in the context of a dynamic moral hazard model, using as a benchmark 
the model in Rogerson (1985). There is considerable empirical evidence, in economics 
and cognitive psychology that suggests that individual preferences present loss aversion. 
In this context, the optimal payment scheme has considerable differences with the 
classical model. In particular, the optimal payment schemes are non-decreasing but not 
necessarily strictly increasing in outcomes. In fact, the payment scheme can have flat 
segments that may extend for the entire support of the outcome distribution. In the latter 
case, the payment scheme is independent of the current period’s outcomes. Unlike our 
benchmark, we find that if given the possibility the agent may decide to save, borrow or 
consume his allocation under the optimal contract.

Loss aversion induces a discontinuity of marginal utility. Therefore, in order to 
derive the optimal contract, given the intertemporal properties of the model, it is 
necessary to use tools from Convex Analysis, and extend them, introducing a new chain 
rule. 

In this work an assumption is that the reference adapts dynamically to the 
payment received in the last period. Future work could analyze the consequences of 
other types of update of reference level.

The second article is an application of a modified principal agent model to 
represent and optimize agreements observed between IT services providers and large 
clients. These contracts are referred to as SLA (Service Level Agreements) and they are 
an agreement between a provider and a consumer containing objectives intended to 
guarantee a quality of service. They specify as well a price for the service and penalties 
in case of violations. The model of SLA’s uses concepts of moral hazard and adverse 
selection. Moral hazard is identified in the fact that the provider exerts an unobservable 
costly effort (investment, scarce resources, human capital, for instance) that relates 
stochastically to the quality of service. The difference between this model and the 
classical model is that the provider who decides the effort level also determines the 
contract agreement. In this case, a constraint, analogous an incentive compatibility 
constraint, is considered, the so-called “credibility constraint”. It represents the fact that 
the client would not be willing to accept an implicit level of effort that is not optimal for 
the service provider. Adverse selection arises from the different clients the provider may 
face. The optimal linear contracts are characterized numerically in a scenario in which 
the terms of the contract are based on measures of response time of an IT service. 
Additionally, a sensibility analysis is carried out finding that optimal contracts vary as 
predicted by intuition when modifying parameters such as the risk aversion of the 
provider or the client, the appreciation the client has of the service and others.
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Introduction

This thesis contains two articles, independent of each other, regarding issues of

Contract Theory. The first article is a theoretical treatment of the consequences of

introducing Loss Averse Preferences with a dynamic update of the reference level in

Dynamic Moral Hazard models using as a benchmark the model in Rogerson (1985).

Preferences that present loss aversion, as first introduced by Kahneman and Tversky’s

Prospect Theory (1979), depend on a reference level such that the dislike that con-

sumption below the reference point generates is greater than the elation produced by

a gain in the same amount. There is considerable evidence in empirical literature that

suggests that references influence individual decisions in economics as well as in cogni-

tive psychology. It is, therefore, relevant to characterize the optimal payment scheme

under moral hazard if the Principal is facing an agent whose preferences are reference

dependent and this is the objective of the first part of this thesis.

loss aversion induces a discontinuity in marginal utility. Therefore, the optimality

conditions that are obtained in classical models are not valid since utility functions

are non-differentiable. We derive optimality conditions using convex analysis tools. In

summary, the methodology is the following; we show that the program the Principal

faces has a concave objective function and the feasible set is convex, therefore, the opti-

mum can be characterized by a subdifferential equals zero condition (Rockafellar, 1974).

The computation of the subdifferential in this case is not exempt of mathematical dif-

ficulty. It is derived inductively and, in order to so, we must obtain a new chain-rule

that applies to the problem at hand. Note that several chain-rule formulas have been

described in subdifferential calculus, but none of them applies to the functional forms

of our model. Therefore, as a byproduct of this paper we introduce a new chain rule,

which allow us to characterize the solutions to an optimization problem of this sort.
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The second article is an application of a modified one Principal-Agent Model to a

represent and optimize the agreements that a big IT services company contracts with

large clients. These contracts are referred to as SLA Contracts. An Service Level

Agreement (SLA/Contract) is an agreement between a provider and a consumer which

is comprised of Service Level Objectives that guarantee quality of service (such as avail-

ability, performance and reliability), a promise of payment and penalties to impose in

case the objectives are not met. The study of such contracts has become increasingly

important with the increasing use of IT outsourcing procedures, which had reached

$56 billion in 2000 and was expected to reach $100 by 2005 (Dermikan et al. (2005)).

While the original practice of IT outsourcing contracts involved complicated measures

to safeguard the client’s interest against the many potential mishaps, a more modern

approach has focused on a system of penalties and rewards based on observed quality of

service, serving as a monetary compensation that insures the client in case the service

is suboptimal (Dermikan et al. (2005)).

In this work we focus on the problem of offering optimal (revenue maximizing) con-

tracts from the Service Providers’ (SP) point of view. In particular, we are interested in

contracts offered by IT providers, that offer service guarantees in terms of performance,

availability, security and reliability constraints. These contracts specify the pricing for

the service guarantees and the penalties that are due in case of violations. We model

SLA/Contracts using the concepts of Moral Hazard and Adverse Selection.

The Moral Hazard comes from the fact that the provider, through some costly ef-

fort (investment, use of scarce resources such as number of CPU’s, number of engineer

hours, etc.), can increase the quality of the service, but that there is also an additional

stochastic component to it. The effort level cannot be monitored by the client, and the

actual performance of the system (that the client can observe) is just a noisy signal of

effort. In an IT context, better infrastructure on average provides better performance,

but some unforeseen incidents (unforeseen demand increase, breakdown of a system,

etc.) may still lead to poor quality. Since effort is not observable, the only way to

induce a high level of effort is through a compensation system that is “steep” i.e. with

higher payments when observed quality is better, or equivalently with penalties if the

providers does not meet his end of the deal. Nonetheless, this affects the provider, since

she may sometimes be punished for low quality even if the effort put in the process was

high. Given her risk aversion, she will demand higher expected payments when the

payment system is steeper. The basic trade-off is then set: “steeper” compensation

6



systems will induce higher effort, but they will shift more risk (in terms of earnings) to

the provider, who is risk averse and will charge more for the service. We introduce then

the “credibility constraints”: a contract must promise a level of effort that is optimal

given the penalties imposed in case of non-compliance with the quality level promised.

Any other effort level would not be credible and the client would not accept such a

contract.

At the same time, the service provider is faced with an adverse selection problem:

clients differ in their valuation of the service, in their risk aversion and in other char-

acteristics. Moreover, their particular characteristics are private information, and the

service provider only knows the distribution of possible clients. In order to deal with

this issue, the service provider must offer different contracts (one for each type of client

he can potentially face) and design them in such a way that clients choose the contract

that was designed for them. Such constraints (called the self-selection constraints) de-

crease the revenue an SP may obtain from clients, since they extract an informational

rent due to asymmetric information. We construct a general model incorporating both

the credibility and self-selection constraints, and allowing for risk averse clients and

service provider. Since we are interested in the practical application of such a model

to the case of a service provider in the IT sector, we allow for a general shape of the

stochastic relation between effort and quality, and proceed to numerically solve for the

optimal pricing policy in a particular case. This optimal policy includes different con-

tracts (tailored to be selected by the different types of clients), each one specifying a

fixed payment and a bonus based on the quality delivered.
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Chapter 1

Dynamic Contracts under loss aversion

Alejandro Jofré Sofia Moroni Andrea Repetto

1.1. Introduction

The classical principal-agent model is often interpreted as the relationship between

an employer, the principal, and an employee, the agent. The agent has private infor-

mation about the amount of work (or effort) he or she devotes to the task assigned.

The outcome obtained, in terms of profits for the principal, relates stochastically to the

effort exerted by the agent. In order to induce a desirable level of effort, the employer

offers a payment scheme that is contingent on outcomes. Grossman and Hart (1983)

and Hölmstrom (1979) canonical papers show that under weak assumptions the opti-

mal payment schemes are strictly increasing in outcomes.

In this paper we analyze the consequences of introducing reference dependent pref-

erences that exhibit loss aversion to the canonical model of dynamic moral hazard, as

in Rogerson (1985) and Chiappori et al. (1994). Preferences with loss aversion were

presented in Kahneman and Tversky’s Prospect Theory (1979). Under these prefer-

ences the dislike that consumption below the reference point generates is greater than

the elation produced by a gain in the same amount. There is a large body of literature,

in economics and cognitive psychology, that supports that references affect individual

decisions (see for example Bateman et al. (1997)).

De Meza and Webb (2007) first introduced loss aversion in a one period principal-
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agent model to find that optimal wage schedules might pay the reference income for

different outcomes. In other words, it is possible to observe flat segments at the refer-

ence in the optimal payment scheme. The intuition behind this result is that the cost

of inducing effort on the reference point through a strictly increasing payment scheme

is high due to the sudden decrease in marginal utility for payments below the reference.

In this paper we study a dynamic set up in which the agent’s reference is updated

endogenously. This type of update is analogous to the one presented in Bowman et

al. (1999) and Munro and Sugden (2003). Specifically, we assume that the agent’s

reference is equal to the previous period’s consumption. This new framework modifies

some of the predictions of the classical dynamic moral hazard models, as presented in

Chiappori et al. (1994), while maintaining others.

We start analyzing the full-commitment case with no access to credit markets, as in

Rogerson (1985). In this case, the optimal payment scheme exhibits some characteristics

that distinguish it from the classical case. The assumption that each period’s reference

corresponds to the previous period payment implies that the cost of a payment is not

just be the payment itself; it affects the references of later periods and therefore the cost

of providing utility to the agent later in the relationship. In our model this effect will

tend to lower each period’s payment and the slope of the optimal payment scheme, in

order to reduce the reference in the following periods, thus, reducing the present value

of the cost of inducing incentives.

As in De Meza and Webb (2007), the loss averse preferences of the agent imply that the

optimal payment scheme may have a flat segment at the reference. Furthermore, for all

periods after the first, the optimal wage schedule must pay the reference for an interval

of outcomes. The flat segment may even extend for the whole support of the outcomes

distribution. Thus incentives may be optimally provided, not by rewards and punish-

ments that are contingent in the period’s results, but by promises of future income.

The fact that payment schemes exhibit flat segments in each period implies, under

weak assumptions, that there is a positive probability that two consecutive payments

are equal. In the canonical model, the same assumptions imply that different outcomes

must give different payments to the agent. If the outcomes distribution is continuous

no particular payment is given with positive probability. A particular prediction of

this model is that in spite of the presence of moral hazard, the optimal schemes of
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each period may not depend on the period’s outcomes. Only the last period must be

contingent on the outcomes realized throughout the relationship. The shape of the

optimal contracts obtained in our model may be more easily reconciled with the shape

of a variety of contracts that are common in some contexts. For example, contracts

that stipulate the same payment for N − 1 periods, with a performance evaluation in

period N that may derive in a bonus or promotion. Executives that receive options of

the firm to be exercised if the firm fares well, in addition to a fixed salary. A “tenure

track” type of contract, in which the agent receives a fixed payment for a number of

periods in each of which if he excels he is rewarded.

Next we analyze how the agent will allocate resources over time if allowed to save

or borrow. We find that the agent can have a somewhat higher incentive to consume

the allocation that he was given in a manner consistent with a “status quo bias”, as was

first described by Samuelson and Zeckhauser (1988). This is because in some situations

the agent would experience a loss in utility by both saving and borrowing. loss aversion

implies that the marginal utility of savings may not be equal to minus the marginal

utility of borrowing and they may be both be negative simultaneously. Also, as long

as the agent is consuming his reference in one period or there is positive probability

of being paid the reference in the next period, we find a gap between the willingness

to lend (or save) and willingness to borrow. The smallest interest rate at which the

agent would be willing to accept lending part of his income is strictly higher than the

rate he is willing to pay to increase his income. In other words, there is a gap between

the price at which he is willing to lend part of his income and the price at which he is

willing to borrow. This gap between willingness to accept and willingness to pay has

been described in other economical contexts (Bateman et al. (1997)).

The classical result by Rogerson (1985) asserts that in the canonical model, if allowed

to save or borrow the agent would want to save after the each period will not necessar-

ily be true in our model. The agent may have incentives to borrow or save after each

period depending on the parameters of the problem. This is partly due to the fact that

savings and borrowing not only modifies the inter-temporal allocation of consumption

but also changes the future references of the agent. In the classical model the opti-

mal payment scheme required the agent to consume more than he would like in order

to facilitate the provision of incentives in future periods. In our model, this effect is

also present, however, there are other effects at stake that can make the agent want
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to borrow or consume his allocation after some periods. First, the fact that the agent

has a relatively higher loss in utility towards losses may make it too costly to provide

incentives with payments below the reference and thus the optimal payment scheme

may pay below the reference for few or no outcomes. Knowing that there is a small

likelihood to receive payments below the reference the agent may have incentives to

consume his allocation or to borrow. Second, the principal also has incentives to reduce

the payment of the agent in each period in order to increase the utility in the following

period, again providing incentives to borrow. Finally, for two consecutive periods, if

payments are at the reference, the agent faces a high marginal loss in the present that

is not compensated by the marginal gain due to savings in the future.

Nevertheless, the agent may also have incentives to save under some circumstances.

It is less costly to provide incentives with payments below the reference because of

the relatively higher marginal utility; therefore, an optimal payment scheme may give

payments below the reference for a large set of outcomes. This would favor a desire

of saving after some periods. Also, the agent realizes that a high consumption will

decrease his future utility thus giving incentives to save. Finally, as in the classical

case the Principal has incentives to provide higher payments at the beginning of the

relationship in order to facilitate the provision of incentives in future periods.

The fact that the optimal payment scheme does not always require constrained sav-

ings is an important improvement over the canonical model. In the classical case full-

commitment requires constrained savings, and lifting the assumption of constrained

credit implies that renegotiation proofness is broken. Also, a renegotiation-proof long-

term contract with free access to credit cannot provide incentives to exert an effort over

the minimum after the first period. Since it is unlikely that a court of law would hinder

renegotiation towards a Pareto improving agreement and constraining savings may be

implausible in most contexts, the classical theory cannot explain the existence of long-

term commitment contracts (see Chiappori et al. (1994)). Therefore, the fact that loss

aversion and a dynamic update of the reference does not require to constrain savings

in some cases, and is ex-post efficient, might give a rationale for the ubiquity of com-

mitment contracts. For instance, under borrowing constraints a contract that doesn’t

constrain savings is ex-post efficient. Empirical literature suggests that constrained

borrowing is, in fact, present in many different contexts (see for instance Carroll and

Kimball (2001)).
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Next we analyze under which conditions the optimal contract is over the reference

in every period. When this happens the payment scheme presents a ratchet effect.

Once the principal gives the agent a payment the following period’s scheme must be

greater or equal than that payment. From the optimality conditions it is clear that the

shape of the optimal payment scheme relates to the marginal costs of the constraints

faced by the principal, identified by the corresponding multipliers. We find that for any

given marginal cost of the incentive compatibility constraints there is a threshold for

the marginal cost of the participation constraint over which payments are always above

the reference. Thus, if the participation constraint is very costly for the principal, the

optimal payment schemes do not venture into the loss area and incentives will be cre-

ated either with gains for good outcomes or promises of future income. Later we show

that the agent does not have incentives to save under that kind of payment schemes.

We analyze other scenarios under the loss averse preferences of our model. We char-

acterize the optimal sequence of spot contracts and show that will not be memoryless

as in the classical case and it will not coincide with the full-commitment optimum in

general. It is straightforward to show that the full-commitment optimum is ex-post

efficient and therefore renegotiation proof. We show that in the monitorable access

to credit case the classical results are maintained. The contract will be renegotiation-

proof, implementable via spot contracts and will coincide with the no-access optimum.

It is worth emphasizing that it has been noted in empirical work that contracts ob-

served in reality have some characteristics that cannot be explained by the dynamic

principal-agent models. In particular, payment schemes in which different outcomes im-

ply equal reward are always theoretically suboptimal, although flat payment contracts

are often observed in reality (Chiappori and Salanié (2000)). The systematical finding

of downward wage constancy in empirical literature is also not explained either and

the history dependence of multi-period contracts is not as strong as it is predicted by

the classical theory (Bolton and Dewatripont , 2005). The predictions that our model

presents as opposed to the classical models might be able to shed some light on some

of this findings.

Finally, loss aversion induces a discontinuity in marginal utility. Therefore, the optimal-

ity conditions that are obtained in classical models are not valid since utility functions
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are non-differentiable. We derive optimality conditions using convex analysis tools. In

summary, the methodology is the following; we show that the program the Principal

faces has a concave objective function and the feasible set is convex, therefore, the opti-

mum can be characterized by a subdifferential equals zero condition (Rockafellar, 1974).

The computation of the subdifferential in this case is not exempt of mathematical dif-

ficulty. It is derived inductively and, in order to so, we must obtain a new chain-rule

that applies to the problem at hand. Note that several chain-rule formulas have been

described in subdifferential calculus, but none of them applies to the functional forms

of our model. Therefore, as a byproduct of this paper we introduce a new chain rule,

which allow us to characterize the solutions to an optimization problem of this sort.

The following section presents the base model. Section 3 presents the optimality condi-

tions in the full-commitment case and results that characterize the shape of an optimal

payment scheme in our model. An analysis regarding the inter-temporal allocation of

resources under the full-commitment is also carried out in Section 3, as well as a prop-

erty regarding the shape of the optimal contract depending on the cost to the principal

of the Participation Constraint. Section 4 focuses on the monitorable access to credit

case. Section 5 presents a numerical example for two period optimal payment schemes,

Graphical representations that illustrate how the optimal schemes vary with respect to

parameters can be found in Section 5 as well. Section 6 presents the conclusions and

discussions regarding our work.

1.2. The Base Model

The model is analogous to the dynamic moral hazard problem presented by Roger-
son (1985) with the modification of the utility function to account for the reference
dependent preferences. It consists in a repeated principal-agent problem with indepen-
dent realizations of the outcome variable each period.

We assume that the relationship between the principal and the agent lasts T peri-
ods. In each period the exerts an unobservable action ai ∈ {aL, aH} with aL < aH . The
outcome in period i is denoted xi ∈ [xi, x̄i] with a differentiable distribution function
f i(xi|ai), where ai denotes the action chosen by the agent in period i. The distributions
of outcomes are independent of each other. We assume that the distributions f i(xi|ai)
have the MLRP property, that is, denoting f iai

(xi|ai) = f i(xi|aH) − f i(xi|aL), we must

have
f i

ai
(xi|ai)

f i(xi|ai)
is increasing in xi. We let the wage schedule in period i depend on the
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outcomes obtained in all periods, denoted ωi(x0, x1, . . . , xi) or ωi(xi) to simplify nota-
tion. The agent’s utility function in period i if she consumes ci and exerts the action
ai is

Ũ(ci, Ri) − ψi(ai) (1.1)

Ri is the reference point in period i, and ψi(·) is an increasing cost function. We denote
∆ψi = ψi(aH) − ψi(aL) We assume that Ũ is continuous.

Moreover, we assume the agent’s preferences have the following property

lim
t→0+

Ũi(R+ t, R) − Ũi(R,R)

t
< lim

t→0+

Ũi(R− t, R) − Ũi(R,R)

−t

That is the left-sided derivative of Ũi is higher than its right-sided derivative. If the

reference point is R the marginal utility of payments over R will be lower than the

marginal loss in utility of an income that is below R in the same amount. We assume

that the agent’s utility function is concave and that it is differentiable in all points

other than R. In other words, the utility function presents loss aversion as introduced

by Kahneman and Tversky’s Prospect Theory (1979). In addition, since the utility

function is non-differentiable at the reference point the classical analysis based on the

first order conditions is no longer valid and in order to find optimality conditions one

has to make use of convex analysis tools. In deriving the solution we use the concept

of subdifferential and several of its properties as presented in Rockafellar (1974) and

Bertsekas (2003).

We assume that the reference level depends dynamically on the consumption that took

place in the previous period. The reference in each period corresponds to the consump-

tion that took place in the previous period. This type of update is analogous to the

one presented in Bowman et al. (1999) and Munro and Sugden (2003).1

Without loss of generality, following De Meza and Webb (2007) we assume the util-

ity of period 0, Ũ0, takes the following form for ℓ0 > 0 and a smooth, concave and

strictly increasing function U(·),

Ũ0(c0, R0) = U(c0) − ℓ0θ(c0, R0) (U(R0) − U(c0))

1Other papers assume a different formation process of the reference level. For instance, Köszegi and
Rabin (2006) use the rational expectation of consumption. Gul (1991) takes the certainty equivalent
as the reference. The issue of reference formation is still an understudied problem.
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where

θ(x,R) =





1 if x < R

0 otherwise.
(1.2)

The reference in period 0, R0 is exogenously given. A graphical representation of the

first period utility fuction is given in Figure 1.2. As the reference increases from R′ to

R the utility above R remains unaffected, while it drops below R.2

In the classical models of Dynamic Moral Hazard the agent has the same utility function

in all periods. In our model, the utility of each period depends on the reference level

of the agent, and at the same time, retains its functional form in order to represent the

utility of the same agent across periods. We assume that the functional form of the

utility for consumption levels above the reference remains the same from one period to

the next. For consumptions under the reference the utility is decreasing in the refer-

ence. The reference level in period i + 1 corresponds to ci. The utility in period i + 1

takes the following form,

Ũi+1(ci+1, Ri) = Ũi+1(ci+1, ci) = U(ci+1) − ℓi+1θ(ci+1, ci) (U(ci) − U(ci+1))

with θ(ci+1, ci) defined as (1.2) and ℓi+1 > 0. We assume that ℓiδ < 1 in order to assure

that the total utility of two consecutive periods is increasing in the consumption of the

first of the two periods. 3

The principal is risk neutral and therefore for a given outcome xi her utility will be

xi−ωi(xi). The agent and the principal discount the future at factor δ. Also, we make

the standard assumption that unlimited transfers of utility from the principal to the

agent are possible in every period. This last assumption is necessary to prove a result

in the monitorable access to credit section.
2Any function Ũ that presents a kink can be rewritten, for some differentiable, increasing and

concave function U and positive constant ℓ, as

Ũ(c,R) = U(c) − ℓθ(c,R) (U(R) − U(c))

θ(c,R) = 1 if c ≤ R and θ(c,R) = 0 otherwise.
3For generality we let ℓi vary across periods. For instance, in Harrison and List (2004) it is noted

that loss aversion is mitigated by market experience, suggesting that ℓi might decrease over time.
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Figure 1.1: Utility function for different levels of reference.

1.3. Dynamic contracts with no access to credit mar-

kets

In the first part of this section we find optimality conditions for the dynamic moral

hazard problem under full-commitment and no-access to credit. In order to do this we

define a utility provision cost function hi(v0, v1, . . . , vi) that represents the cost to the

principal of providing a value of utility vi in period i if the utility provisions in the

previous periods were {v0, v1, . . . , vi−1}. Because of the reference dependent preferences

and dynamic update assumptions, the utility provision cost function in each period

depends on the utility provisions of all previous periods. We show that hi is convex

in R
i which implies the concavity of the objective function of the principal. Next we
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find the subdifferential of the function hi, by writing it as a composition of functions.

A chain rule for this particular case is derived to compute the subdifferential of the

compositions. Finally, a general formula for the subdifferential is obtained inductively.

Using the computations described and results of subdifferential calculus, we obtain the

subdifferential of the Lagrangian pertaining to the optimization problem that the princi-

pal faces. The optimality conditions are thus derived by making the latter equal to zero.

The second part of this section describes some characteristics of the optimal payment

scheme that are implied by the optimality conditions. The payment scheme has a flat

segment in every period after the first one. This flat segment may extend for the entire

support of outcomes in periods before the last one. In the last period, for every set of

outcomes in previous periods, the payment scheme must be contingent on the results

of all periods.

Next we analyze the inter-temporal properties of the optimal payment schemes. We

emphasize that in addition to the fact that payments schemes are not be strictly in-

creasing with respect to xi in any period i > 0, they may not be strictly increasing (as

functions) in periods after i with respect to period i’s outcome xi. This suggests that

our model may predict a smaller dependence on payments schemes on outcomes across

and within periods in comparison with the canonical model. We find a relationship

between a period’s payment and future period’s payment. We explain why it differs to

the analogous relationship from the canonical model in Rogerson (1985).

We next analyze whether in any period i the agent would like to borrow or save for the

next period. We note first that the preferences present a “status quo bias”. Situations

may arise that the agent would lose utility either by saving or borrowing and the agent

is compelled to consume his allocation. Furthermore, for any set of payments in two

consecutive periods the smallest interest rate at which he is willing to lend part of his

income is strictly higher than the interest rate at which he is willing to borrow. This is

not the case in the canonical model since, indifference between lending and borrowing,

for any set of payments schemes for two consecutive periods, can be attained for a single

interest rate. This gap between willingness to accept and willingness to pay has been

described in other economical contexts (Bateman et al. (1997)).

We then determine whether the agent would like to borrow or save for some possi-
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ble shapes of payment schemes that can be obtained in our model. We find that if the

payment scheme is such that the agent is paid the reference for low outcomes and is

rewarded for good outcomes the agent will not have incentives to save.

Finally, we show that as in the canonical model the optimal payment scheme is renegotiation-

proof and is not spot implementable. The optimal sequence of spot contracts exhibits

memory and does not coincide with the full-commitment optimum in general.

1.3.1. Full commitment case

If there is no access to credit markets the agent’s consumption in period each period
will equal the payment the agent receives. Therefore, the principal faces the following
program,

max
(ωi(·))i,(ai)i

T
∑

i=0

δi
E (xi − ωi(x0, x1, . . . , xi)|a0, a1, . . . , ai)

subject to

T
∑

i=0

δi
(

E

(

Ũi(ωi(x0, x1, . . . , xi), ci−1)|a0, a1, . . . , ai

)

− ψi(ai)
)

≥ U∗ (PC)

a = (a0, a1(x1), . . . aT (x0, x1, . . . , xT )) ∈ argmaxa

T
∑

i=0

δi
(

E

(

Ũi(ωi(x0, x1, . . . , xi), ci−1)|a0, a1, . . . , ai

)

− ψ(ai)
)

(IC)

Where E(·|a0, a1, . . . , ai) is the expectation of given that the agent chooses the actions
(a0, a1, . . . , ai), and for any function g is given by,

E (g(x0, x1, . . . , xi)|a0, a1, . . . , ai) =

∫ ∫

· · ·
∫

g(x0, x1, . . . , xi)f
1(x0|a0)f2(x1|a1) · · · f i(xi|ai)dx0dx1 . . . dxi.

The objective function represents the expected payment the principal will get from the
contract, the first constraint (PC) is the participation constraint (PC) and it requires
that the agent gets an expected utility of a at least U∗ from the relationship with the
principal. The constraint (IC) states that the effort chosen maximizes the expected
utility of the agent, and is henceforth referred to as the incentive compatibility con-
straint (IC).

If the Principal wants to implement the high effort in each period the last constraint
will be,

T
∑

j=i

δj(E
(

Ũj(ωj(x0, x1, . . . , xj), cj−1)|ai = aH, . . . , aj

)

−

E

(

Ũj(ωj(x0, x1, . . . , xj), cj−1)|ai = aL, . . . , aj

)

) − ∆ψi = 0 ∀(x0, x1, . . . , xi−1) (1.3)
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that is

T
∑

j=i

δj

∫

Ũj(ωj(x0, x1, . . . , xj), cj−1)f i
ai

(xi|ai) · · · fj(xj |aj)dx0dx1 . . . dxj − ∆ψi = 0 ∀(x0, x1, . . . , xi−1) (ICi)

1.3.1.1. Characterization of the optimal payment scheme

We find that for all periods there may be an interval of outcomes for which the op-
timal payment corresponds to the period’s reference. Since the utility function presents
loss aversion, for an outcome in which the optimal payment is at the reference it can
be costly for the Principal to give a payment strictly over or under the reference for
outcomes slightly better or worse. A payment over the reference will provide a rela-
tively low marginal utility and therefore create low incentives. A payment under the
reference will decrease the agent’s utility quickly, providing incentives, but straining
the PC. Therefore, a payment scheme that gives the reference for an outcome, pays
the reference for close outcomes as well. Consumption smoothing requires that the
reference be reached from period 1 on. In those periods, the optimal payment scheme
must indeed have a flat segment.

The utility function is non-differentiable and therefore we must derive the optimal
payment scheme using tools from convex analysis. In particular, we use the concept of
subdifferential, which is an extension of the common concept of the differential that is
commonly used to solve economic problems. In order to find optimality conditions, it
is convenient to rewrite the program the principal faces as follows,

max
(vi(·))i,(ai)i

T∑

i=0

δi
E (xi − hi(v0(x0), v1(x0, x1), . . . , vi(x0, x1, . . . , xi))|a0, a1, . . . , ai) (1.4)

subject to

T∑

i=0

δi (E (vi(x0, x1, . . . , xi)|a0, a1, . . . , ai) − ψi(ai)) ≥ U∗ (PC’)

a = (a0, a1(x1), . . . aT (x0, x1, . . . , xT )) ∈ argmaxa

T∑

i=0

δi (E (vi(x0, x1, . . . , xi)|a0, a1, . . . , ai) − ψ(ai))

(IC’)

where hi(v0, v1, . . . , vi) represents the cost of providing utility vi in period i. This cost depends

on the previous utility provisions because of the reference dependence of the agent’s utility

and is an increasing and continuous function given by,4

4hi is obtained inverting the utility provision vi = U(hi) − ℓiθ(hi, hi−1) (U(hi−1) − U(hi)) with
respect to the payment hi.
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hi(v0, v1, . . . , vi) =




U−1(vi) if vi ≥ U(hi−1(v0, v1, . . . , vi−1))

U−1
(

vi+ℓiU(hi−1(v0,v1,...,vi−1))
1+ℓi

)
if vi < U(hi−1(v0, v1, . . . , vi−1))

(1.5)

where U(h−1) = R0.

Convexity, subdifferential and optimality conditions

Property 1 (Convexity). Under the assumptions of the model the utility provision cost

functions hi : R
i → R for i ∈ 1, . . . , T are strictly convex and therefore the optimization

problem given by (1.4)-(PC’)-(IC’) has a strictly concave objective function and the

feasible set is convex.

Proof. Let’s see that hi(v0, v1, . . . , vi) is strictly convex. In order to do that, let’s first
note that hi(v0, v1, . . . , vi) = U−1(U(hi(v0, v1, . . . , vi))), we prove that U(hi(v0, v1, . . . , vi))

is strictly convex and increasing and we conclude by the strict convexity of U−1 (implied
by the strict concavity of U).5 Let (v0, . . . , vi) and (v′0, . . . , v

′
i) be two utility provision

vectors, we prove that

U(hi(λ(v0, . . . , vi)+(1−λ)(v′0, . . . , v
′
i))) < λU(hi(v0, v1, . . . , vi))+(1−λ)U(hi(v

′
0, v

′
1, . . . , v

′
i)) ∀λ ∈ (0, 1)

(1.6)
Note that for i = 0, by (1.5) U(h(v0)) is linear by parts, increasing and convex. Let’s
prove (1.6) assuming true for i− 1.

If λvi + (1 − λ)v′i < U(hi−1(λ(v0, . . . , vi−1) + (1 − λ)(v′0, . . . , v
′
i−1))) then

U(hi(λ(v0, . . . , vi) + (1 − λ)(v′0, . . . , v
′
i))) =

(

λvi + (1 − λ)v′i + ℓiU(hi−1(λ(v0, . . . , vi−1) + (1 − λ)(v′0, . . . , v
′
i−1)))

1 + ℓi

)

≤ λ

(

vi + ℓiU(hi−1(v0, v1, . . . , vi−1))

1 + ℓi

)

+

(1 − λ)

(

v′i + ℓiU(hi−1(v′0, v
′
1, . . . , v

′
i−1))

1 + ℓi

)

≤ λU(hi(v0, v1, . . . , vi)) + (1 − λ)U(hi(v
′
0, v

′
1, . . . , v

′
i))

Where the first inequality is implied by the induction hypothesis and the second is

justified noting that if vi > U(hi−1(v0, v1, . . . , vi−1)) then vi >
(
vi+ℓiU(hi−1(v0,v1,...,vi−1))

1+ℓi

)

and if vi ≤ U(hi−1(v0, v1, . . . , vi−1)) then vi =
(
vi+ℓiU(hi−1(v0,v1,...,vi−1))

1+ℓi

)
.

A similar argument proves (1.6) for the case in which λvi+(1−λ)v′i ≥ U(hi−1(λ(v0, . . . , vi−1)+

5Note that the composition of a convex increasing function with a convex function is convex.
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(1−λ)(v′0, . . . , v
′
i−1))). Finally it is straightforward to verify the convexity of the feasible

set.

Property 2 (subdifferential). The subdifferential6 of hi(v0, v1, . . . , vi) is given by

∂hi(v0, v1, . . . , vi) =


 1

U ′(ωi)




i∏

t=j+1

kt(x0, x1, . . . , xt)ℓt
1 + kt(x0, x1, . . . , xt)ℓt


 1

1 + kj(x0, x1, . . . , xj)ℓj




i

j=0

(1.7)

where

kt(x0, x1, . . . , xt) ∈





{1} if ωt(x0, x1, . . . , xt) < Rt

[0, 1] if ωt(x0, x1, . . . , xt) = Rt

{0} otherwise

(1.8)

Proof. We have
hi(v0, v1, . . . , vi) = U−1(U(hi(v0, v1, . . . , vi)))

where

U(hi(v0, v1, . . . , vi)) =




vi if vi ≥ U(hi−1(v0, v1, . . . , vi−1)

vi+ℓiU(hi−1(v0,v1,...,vi−1))
1+ℓi

if vi < U(hi−1(v0, v1, . . . , vi−1)
(1.9)

By Proposition 4.2.5 in Bertsekas (2003) we know that

∂hi(v0, v1, . . . , vi) =
(
U−1

)′
((U ◦ hi) (v0, v1, . . . , vi))) · ∂ ((U ◦ hi) (v0, v1, . . . , vi))

.

Now, note that from (1.9) we have U(hi(v0, v1, . . . , vi)) = Fi((U ◦ hi−1) (v0, v1, . . . , vi−1), vi)

where Fi(x, y) =




y if y ≥ x

y+ℓix
1+ℓi

if y < x

Let (d0, . . . , di−1) ∈ ∂ (U ◦ hi−1) (v0, v1, . . . , vi−1) and (d̃0, d̃1) ∈ ∂Fi((U ◦ hi−1) (v0, v1, . . . , vi−1), vi)

let’s see that that (d0 · d̃0, d1 · d̃0, . . . , di−1 · d̃0, d̃1) ∈ ∂ (U ◦ hi) (v0, v1, . . . , vi). In fact, we

6By definition we know that for a generic convex function f : R
n+1 → R the subdifferential at

x ∈ R
n+1 will be given by the set of vectors d = (d0,d1, . . . , dn+1) ∈ R

n+1 such that for any vector
α ∈ R

n+1

f(x+ α) ≥ f(x) + d · α
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have

(U ◦ hi) (v0 + α0, v1 + α1, . . . , vi + αi) =

Fi((U ◦ hi−1) (v0 + α0, . . . , vi−1 + αi−1), vi + αi) ≥ Fi((U ◦ hi−1) (v0, v1, . . . , vi−1) + d0α0 + · · · + di−1αi−1, vi + αi)

≥ Fi((U ◦ hi−1) (v0, v1, . . . , vi−1), vi) + d0d̃0α0 + · · · + di−1d̃0αi−1 + d̃1αi

Where the first inequality is due to (d0, . . . , di−1) ∈ ∂ (U ◦ hi−1) (v0, v1, . . . , vi−1) and Fi

increasing in its first variable. The second inequality is implied by

(d̃0, d̃1) ∈ ∂Fi((U ◦ hi−1) (v0, v1, . . . , vi−1), vi)

. We see now that the reverse is also true.

Let’s compute ∂Fi(x, y). In the points x 6= y Fi is differentiable and therefore its
subdifferential coincides with the derivative.

Otherwise, y = x and the elements of the subdifferential of ∂Fi(x, y) will be the pairs
(d̃0, d̃1) such that,

Fi(x+ α0, y + α1) ≥ F (x, y) + α0d̃0 + α1d̃1 ∀α0, α1 ∈ R (1.10)

If α0 ≤ α1 then x + α0 ≤ y + α1 and (1.10) becomes (1 − d̃1)α1 ≥ d̃0α0 which is true for
all α1 ≥ α0 if and only if (1 − d̃1) = d̃0 > 0.

If α0 > α1 then x + α0 > y + α1 and (1.10) becomes
(

ℓi
1+ℓi

− d̃0

)
α0 ≥

(
d̃1 − 1

1+ℓi

)
α1

which is true for all α0 < α1 if and only if
(

ℓi
1+ℓi

− d̃0

)
=

(
d̃1 − 1

1+ℓi

)
> 0. Therefore,

d̃0 ∈
[
0, ℓi

1+ℓi

]
, d̃1 ∈

[
1

1+ℓi
, 1

]
and d̃0 = 1 − d̃1.

We conclude that,

∂Fi(x, y) =





(
kiℓi

1 + ℓiki

,
1

1 + ℓiki

)
; where ki(x0, x1, . . . , xi) ∈





{1} if ωi(x0, x1, . . . , xi) < Ri

[0, 1] if ωi(x0, x1, . . . , xi) = Ri

{0} otherwise





Suppose that (d̄0, . . . , d̄i) ∈ ∂ (U ◦ hi) (v0, . . . , vi), let’s see that (d̄0, d̄1, . . . d̄i−1, d̄i) = (d0 ·
d̃0, d1 · d̃0, . . . , di−1 · d̃0, d̃1) for some vectors (d0, . . . , di−1) ∈ ∂ (U ◦ hi−1) (v0, . . . , vi−1) and

(d̃0, d̃1) ∈ ∂Fi((U ◦ hi−1) (v0, . . . , vi−1), vi).

From Fi((U ◦ hi−1) (v0, . . . , vi−1), vi + αi) ≥ Fi((U ◦ hi−1) (v0, . . . , vi−1), vi) + αid̄i ∀αi we

must have d̄i = 1
1+ℓiki

with ki defined by (1.8) (subdifferential in one variable). We know
that in points in which Fi is differentiable its subdifferential coincides with the derivative
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which will be (0, 1) if (U ◦ hi−1) (v0, . . . , vi−1) < vi and ( ℓi
1+ℓi

, 1
1+ℓi

) if (U ◦ hi−1) (v0, . . . , vi−1) >
vi. Therefore, using Proposition 4.2.5 Bertsekas (2003) we must have that ∂U(hi(v0, . . . , vi)) =(
(1 − d̄i) · ∂ (U ◦ hi−1) (v0, . . . , vi−1), d̄i

)
.

If F is not differentiable we have (U ◦ hi−1) (v0, . . . , vi−1) = vi. Let (α0, α1, . . . , αi−1) ∈ R
i, we

define α̂i = (U ◦ hi−1) (v0 + α0, . . . , vi−1 + αi−1) − vi. Since (d̄0, . . . , d̄i) in ∂U(hi(v0, . . . , vi))

we have

vi + α̂i ≥ vi + d̄0α0 + · · · + d̄i−1αi−1 + d̄iα̂i

=⇒ α̂i(1 − d̄i) ≥ d̄0α0 + · · · + d̄αi−1

=⇒ (U ◦ hi−1) (v0 + α0, . . . , vi−1 + αi−1) − (U ◦ hi−1) (v0, . . . , vi−1) ≥
(
d̄0α0 + · · · + d̄i−1αi−1

) 1

(1 − d̄i)

=⇒ (d̄0, . . . , ¯di−1)
1

(1 − d̄i)
∈ ∂ (U ◦ hi−1) (v0, . . . , vi−1)

We conclude for (d0, . . . , di−1) = (d̄0, . . . , d̄i)
1

(1−d̄i)
∈ ∂ (U ◦ hi−1) (v0, . . . , vi−1) and (d̃0, d̃1) =

(
(1 − d̄i), d̄i

)
∈ ∂F ((U ◦ hi−1) (v0, . . . , vi−1), vi) that (d̄0, d̄1, . . . d̄i−1, d̄i) = (d0·d̃0, d1·d̃0, . . . , di−1·

d̃0, d̃1).

We deduce inductively ∂U(hi(v0, . . . , vi)). For the functions ki defined by (1.8) we have

∂U(h(v0)) =

{
1

1 + k0ℓ0

}

therefore

∂U(h(v0, v1)) =

(
k1ℓ1

1 + ℓ1k1
· 1

1 + k0ℓ0
,

1

1 + ℓ1k1

)

and

∂U(h(v0, v1, v2)) =

(
k2ℓ2

1 + ℓ2k2
· k1ℓ1

1 + ℓ1k1
· 1

1 + k0ℓ0
,

k2ℓ2

1 + ℓ2k2
· 1

1 + k1ℓ1
,

1

1 + ℓ2k2

)

and inductively, (1.7) is obtained.

Property 3 (Optimality Conditions). There is a unique optimal wage schedule that

solves the program faced by the principal and it is characterized by the following opti-

mality conditions,

1

U ′(ωi(x0, x1, . . . , xi))
= (1 + ki(x0, x1, . . . , xi)ℓi)

(
λi + µi

f i
ai

(xi|ai)

f i(xi|ai)

)
+

−δℓi+1

∫

ωi+1≤ωi

ki+1(x0, x1, . . . , xi+1)(λi+1+µi+1

f i+1
ai+1

(xi+1|ai+1)

f i+1(xi+1|ai+1)
)f i+1(xi+1|ai+1)dxi+1. ∀i < T

(1.11)
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and
1

U ′(ωT (x0, x1, . . . , xT ))
= (1 + kT (x0, x1, . . . , xT )ℓT )

(
λT + µT

fT
aT

(xT |ai)

f i(xi|ai)

)
(1.12)

where

λi = λ +
∑i−1

k=0 µk
fk

ek
(xk|ak)

fk(xk|ak)
, with λ the multiplier associated to (PC’) and µi =

µi(x0, . . . , xi−1) the multiplier associated to 1.3.

The function ki(x0, x1, . . . , xi) is associated to the kink in the utility function and

is given by,

ki(x0, x1, . . . , xi) ∈





{1} if ωi(x0, x1, . . . , xi) < Ri

[0, 1] if ωi(x0, x1, . . . , xi) = Ri

{0} otherwise

Proof. We assume that the principal is looking for optimal utility provisions (vi(·))Ti=0

in the function spaces
(
L1([x0, x̄0] × [x1, x̄1] × · · · × [xi, x̄i])

)T
i=0

. By Karush-Kuhn-Tucker
conditions the optimal payment scheme will be the maximum of the the Lagrangian
function L given by7

L =

T∑

i=0

δi
E (xi − hi(v0(xo), v1(x0, x1), . . . , vi(x0, x1, . . . , xi))|a0, a1, . . . , ai) +

λ

(
T∑

i=0

δi (E (vi(x0, x1, . . . , xi)|a0, a1, . . . , ai) − ψi(ai)) − U∗

)
+

T∑

i=0




T∑

j=i

δj (∆ai
E (µi(x0, x1, . . . , xi) · vj(x0, x1, . . . , xj)|a0, a1, . . . , aj)) − ∆ψi




Where we denote

∆ai
E (µi(x0, x1, . . . , xi) · vj(x0, x1, . . . , xj)|ai, . . . , aj) =

E (µi(x0, x1, . . . , xi) · vj(x0, x1, . . . , xj)|ai = aH, . . . , aj) +

−E (µi(x0, x1, . . . , xi) · vj(x0, x1, . . . , xj)|ai = aL, . . . , aj) =∫
µi(x0, x1, . . . , xi) · vj(x0, x1, . . . , xj)f

i
ai

(xi|ai) · · · f j(xj |aj)dx0dx1 . . . dxj

L, although non-differentiable, is concave in (vi(·))i and the set of constraints is con-
vex (Property 1), therefore a necessary and sufficient condition for a wage schedule to
be optimal is that it makes a subdifferential of −L (denoted ∂ (−L)) equal to 0. Since
from Property 1 we have that E (hi(v0(xo), v1(x0, x1), . . . , vi(x0, x1, . . . , xi))|a0, a1, . . . , ai)

7Note that there is an infinite number of contraints since 1.3 must be fullfilled ∀(x0, x1, . . . , xi). See
Rockafellar (1974) for details on how to derive a Lagrangian in this case.
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are convex in (vi(·))i, from proposition 4.2.4 in Bertsekas (2003). 8

∂ (−L) =

T∑

i=0

δi∂E (hi(v0(xo), v1(x0, x1), . . . , vi(x0, x1, . . . , xi))|a0, a1, . . . , ai) +

− λ

(
T∑

i=0

δi∂E (vi(x0, x1, . . . , xi)|a0, a1, . . . , ai)

)
+

−
T∑

i=0




T∑

j=i

δj∂ (∆ai
E (µi(x0, x1, . . . , xi) · vj(x0, x1, . . . , xj)|a0, a1, . . . , aj))




From Theorem 22 of Rockafellar (1974), we know that a subdifferential of −L is the ex-
pectation of the subdifferential of the integrand.

∂ (−L) =
T∑

i=0

δi
E (∂hi(v0(xo), v1(x0, x1), . . . , vi(x0, x1, . . . , xi))|a0, a1, . . . , ai) +

− λ

(
T∑

i=0

δi
E (∂vi(x0, x1, . . . , xi)|a0, a1, . . . , ai)

)
+

−
T∑

i=0




T∑

j=i

δj (∆ai
E (µi(x0, x1, . . . , xi)|∂vj(x0, x1, . . . , xj)|a0, a1, . . . , aj))




Therefore from Property 2 making ∂ (−L) equal 0 by components corresponds to,

0 =

T
∑

i=j

δi−j
E





1

U ′(ωi(x0, x1, . . . , xi))





i
∏

t=j+1

kt(x0, x1, . . . , xt)ℓt

1 + kt(x0, x1, . . . , xt)ℓt





1

1 + kj(x0, x1, . . . , xj)ℓj
· g(x0, x1, . . . , xj)|a0, a1, . . . , ai



+

− λE (g(x0, x1, . . . , xj)|a0, a1, . . . , aj)+

−
j
∑

i=0

(∆ai
E (µi(x0, x1, . . . , xi)g(x0, x1, . . . , xj)|a0, a1, . . . , aj))

for every g ∈ L1
(
[x0, x̄0] × [x1, x̄1] × · · · × [xj , x̄j ]

)
, which implies

1

U ′(ωj)
· 1

1 + kjℓj
+

T
∑

i=j+1

δi−j
E





1

U ′(ωi)





i
∏

t=j+1

ktℓt

1 + ktℓt





1

1 + kjℓj
|aj+1, . . . , ai



 = λ+

j
∑

i=0

µi

f i
ai

(xi|ai)

f i(xi|ai)
(1.13)

= λj + µj

f
j
aj

(xj |aj)

fj(xj |aj)

For every j ∈ {1, . . . , T}. Multiplying the equation for j+1 by kj+1ℓ+1 taking expectation

with respect to f j+1(xi+1|aj+1) we obtain

8Note that the subdifferential of a constant equals 0
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E

(
1

U ′(ωj+1)

kj+1ℓj+1

1 + kj+1ℓj+1
|aj+1

)
= −

T∑

i=j+2

δi−j−1
E


 1

U ′(ωi)




i∏

t=j+2

ktℓt

1 + ktℓt


 kj+1ℓj+1

1 + kj+1ℓj+1
|aj+1, . . . , ai


 +

E

((
λj+1 + µj+1

f j+1
aj+1

(xj+1|aj+1)

f j+1(xj+1|aj+1)

)
kj+1ℓj+1|aj+1

)

Replacing this last expression in the j + 1 term of the sum in (1.13), 1.11 and 1.21

are obtained.

Making ℓi = 0 ∀i we obtain the optimality condition with a differentiable utility

function, which we refer to as the “classical case”. The optimality condition for a spot

contract will be given by (1.21), with T = 0, as obtained by De Meza and Webb (2007).

Shape of the optimal payment scheme

The following property gives a further characterization of the optimal payment schemes

in our model,

Property 4 (Shape of the optimal payment scheme). If ℓi−1 ≥ ℓi ≥ ℓi+1 and δℓi ≤ 1,

then ωi(x0, x1, . . . , xi) is continuous and non-decreasing in xi and,

1. For i ∈ {1, . . . , T}, if ωi−1(x0, x1, . . . , xi−1) > Ri−1 then for any value of

(x0, x1, . . . , xi−1) we must have ωi(x0, x1, . . . , xi) = Ri for some outcome xi ∈
[xi, x̄

i] . Furthermore the payment scheme has a flat segment at the reference and

therefore, ωi is not be strictly increasing.

2. For i ∈ {1, . . . , T − 1}, if (ℓi− ℓi+1)δ ≥ ℓi−1 − ℓi and ωi−1(x0, x1, . . . , xi−1) ≤ Ri−1

then, for any value of (x0, x1, . . . , xi−1), ωi(x0, x1, . . . , xi) = Ri for some outcome

xi ∈ [xi, x̄
i] . Furthermore the payment scheme has a flat segment at the reference

and, therefore, ωi is not be strictly increasing.

3. If ωT−1(x0, x1, . . . , xT−1) ≤ RT−1 then, for any value of (x0, x1, . . . , xT−1),

ωT (x0, x1, . . . , xT ) = RT for some outcome xT ∈ [xT , x̄
T ]. The payment scheme

has a flat segment at the reference but it cannot be flat in xT .

Proof. The payment scheme must be continuous and non-decreasing, in fact. The

multipliers (µi)i are strictly positive (same al canonical model). It can be seen that the
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right side of (1.26) has slope with respect to xi of at least d
dxi

(
(1 − δℓi+1)µi

f i
ai

(xi|ai)

f i(xi|ai)

)

and therefore, ωi must be non-decreasing. A flat segment will arise whenever the

payment scheme reaches the first period reference level. (1.20) and (1.21) imply that,

as xi increases and reaches the reference if the scheme were to continue increasing it

would enter the gain area and the right side of (1.20) and (1.21) would jump downwards,

therefore contradicting that it increased after reaching the reference income. Something

analogous happens when the reference level is reached from above (as xi decreases), if

the optimal scheme were to go below the reference, the optimality characterization

would require it to jump upwards. This contradicts that it decreased after reaching the

reference from above.

Now, let’s see whether the reference will be reached. The following equality must

be fulfilled,

1

U ′(ωi(x0, x1, . . . , xi))
= (1 + ki(x0, x1, . . . , xi)ℓi)

(
λi + µi

f i
ai

(xi|ai)

f i(xi|ai)

)
+

− δℓi+1

∫
ki+1(x0, x1, . . . , xi+1)(λi+1 + µi+1

f i+1
ai+1

(xi+1|ai+1)

f i+1(xi+1|ai+1)
)f i(xi+1|ai+1)dxi+1. (1.14)

The i− 1 period’s payments fulfills the following equation,

λi(1 + ki−1(x0, x1, . . . , xi−1)ℓi−1) =
1

U ′(ωi−1(x0, x1, . . . , xi−1))
+

δℓi

∫
ki(x0, . . . , xi)

(
λi + µi

f i
ai

(xi|ai)

f i(xi|ai)

)
f i(xi|ai)dxi.

Suppose ωi(x0, x1, . . . , xi) < ωi−1(x0, x1, . . . , xi−1) ∀xi (except in one point). Then

ki(x0, x1, . . . , xi) = 1 ∀xi and (1.15) becomes λi = 1
U ′(ωi−1)(1+ki−1ℓi−1−δℓi) . Therefore,

since δℓi+1

∫
ki+1(x0, x1, . . . , xi+1)(λi+1 + µi+1

f i
ai+1

(xi+1|ai+1)

f i(xi+1|ai+1)
)f i(xi+1|ai+1)dxi+1 ≤ δℓi+1λi+1

we obtain

1

U ′(ωi)
≥ (1 + ℓi − δℓi+1)

(
1

U ′(ωi−1)(1 + ki−1ℓi−1 − δℓi)
+ µi

f i
ai

(xi|ai)

f i(xi|ai)

)

Therefore, if (ℓi−ℓi+1)δ ≥ ki−1ℓi−1−ℓi and
f i

ai
(xi|ai)

f i(xi|ai)
> 0 we conclude 1

U ′(ωi)
≥ 1

U ′(ωi−1)

which contradicts ωi < ωi−1. If ℓi−1 = ℓi, (ℓi − ℓi+1)δ ≥ ℓi−1 − ℓi or ki−1 = 0 then

(ℓi − ℓi+1)δ ≥ ki−1ℓi−1 − ℓi will be fulfilled.

Suppose ωi(x0, x1, . . . , xi) > ωi−1(x0, x1, . . . , xi−1) ∀xi (except in one point). Then
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ki(x0, x1, . . . , xi) = 0 ∀xi and (1.15) becomes λi = 1
U ′(ωi−1)(1+ki−1ℓi−1)

. Therefore, we

obtain

1

U ′(ωi)
≤

(
1

U ′(ωi−1)(1 + ki−1ℓi−1)
+ µi

f i
ai

(xi|ai)

f i(xi|ai)

)

Therefore, if
f i

ai
(xi|ai)

f i(xi|ai)
< 0 we conclude 1

U ′(ωi)
≤ 1

U ′(ωi−1)
for which contradicts ωi >

ωi−1. We conclude that the reference must be reached on an interval for all the cases

stated above.

The previous property states that the payment scheme will also be non-decreasing

and that the reference point must be paid for some outcome. Furthermore, the refer-

ence must be paid for an interval in the outcomes support. If we assume a continuous

distribution function, the only payment the agent will receive with non-zero probability

will be the reference. The size of the flat segment will depend on the parameters of the

model. Figure 1.3.1.1 is an schematic representation of the monotonicity of possible

payment schemes. According to Property 4 (a) is possible in periods {0, . . . , T − 1},
(b) is possible only in period 0, and (c), (d) and (e) are possible in all periods.

There are two properties that distinguish the shape of optimal payment scheme

from the classical case. First, the optimal payment scheme can have flat segments.

This is explained by the multiplicative term (1 + ki(x0, x1, . . . , xi)ℓ) in 1.20 and 1.21.

At the reference level of the agent, ki(x0, x1, . . . , xi) is allowed to take any value in [0, 1].

Therefore, the right hand side of 1.20 and 1.21 can remain constant in an interval, as

xi increases, ki(x0, x1, . . . , xi) decreases and ωi(x0, x1, . . . , xi) remains at the reference

level R.

The second difference with the classical relates to the fact that the Principal takes

into account that the each period’s payment affects the reference level of the following

period. The last term of the right side of 1.20 represents this effect. It is strictly positive

if the i + 1th period payment scheme has an interval of results for which the payment

is lower or equal than the reference of the agent. From Property 4 we know that this

will be the case in every period. This term will tend to lower the payment scheme and
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Figure 1.2: Schematic representation of monotonicity of contracts

reduce its growth rate as xi grows. It represents the benefit of a lower reference level

when the i + 1th wage schedule pays below the reference for some outcomes, which is

a higher utility function of the agent.

This result is analogous to De Meza and Webb (2007). The existence of flat seg-

ments on the reference level of the payment schedule is optimal and is a consequence

of a kinked utility function. For an outcome that pays the reference level to the agent,

it might be costly to give a payment over or under the reference for close results. If the

payment goes slightly below the reference the agent will have a relatively high loss in

utility, because of the higher marginal utility below the reference, thus straining (PC).

Similarly, if the payment goes slightly over the reference the increased incentive will be

low because the agent will experience a relatively high fall in the marginal utility for

payments over the reference level.

Inter-temporal Properties

Just as in the classical case, consumption smoothing requires that a higher payment
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in one period implies, ceteris paribus, a higher payment in all subsequent periods. As

stated earlier, in our model in every period two different outcomes may pay the agent’s

reference level. This implies, ceteris paribus, that the wage schedules in later periods

are greater or equal (as functions) and they may overlap for outcomes that pay the

reference level. In the classical model the wage schedules are strictly increasing as

functions. This is discussion is summarized in the following property.

Property 5 (Dependence across periods). Let x′i < x′′i two possible outcomes in period

i.

1. If ωi(x0, x1, . . . x
′
i) = ωi(x0, x1, . . . x

′′
i ) = Ri then

ωj(x0, x1, . . . x
′
i, xi+1, . . . , xj) ≤ ωj(x0, x1, . . . x

′′
i , xi+1, . . . , xj) ∀j > i ∀xj ∈ [xj , xj ]

.

2. If ωi(x0, x1, . . . x
′
i) < ωi(x0, x1, . . . x

′′
i ) then

ωj(x0, x1, . . . x
′
i, xi+1, . . . , xj) < ωj(x0, x1, . . . x

′′
i , xi+1, . . . , xj) ∀j > i ∀xj ∈ [xj , xj ]

.

Proof. It follows directly from 1.20 and 1.21 since µi > 0 ∀i

Property 5 implies that pictures (a) and (b) in Figure 1.3.1.1 are possible in our

model. Note also that only (a) is possible in the canonical model.

In Rogerson (1985) a relationship between the wage schedules of two consecutive

periods. The inverse of the marginal utility of income must equal the conditional ex-

pected value of the inverse of the marginal utility. In mathematical terms, the following

must be fulfilled,

1

u′(Yi−1(x0, x1, . . . , xi−1))
=

∫ s̄1

s1

1

u′(Yi(x0, x1, . . . , xi))
f i(xi|ai)dxi (1.15)

where u(·) is a differentiable utility function, Yi−1(x0, x1, . . . , xi−1) and Yi(x0, x1, . . . , xi)

are the optimal payment schemes of period’s i− 1 and period i respectively.

30



Figure 1.3: Schematic representation of monotonicity of contracts

This condition is no longer valid in our model. However, an extended condition can

be derived as is stated in the following property,

Property 6 (Two consecutive periods relationship). The following relationship between

two consecutive periods must be fulfilled,

1

U ′(ωi−1(xi−1))(1 + ki−1(xi−1)ℓi−1)
=

∫
1

U ′(ωi(xi))(1 + ki(xi)ℓi)
f i(xi|ai)dxi + c(xi−1)

where

c(xi−1) = − ℓiδ

1 + ki−1(xi−1)ℓi−1

∫

ki(xi)

(

λi + µi

f i
ai

(xi|ai)

f i(xi|ai)

)

f i(xi|ai)dxi + (1.16)

ℓi+1δ

∫ ∫

ki+1(xi+1)

1 + ki(xi)ℓi

(

λi+1 + µi+1

f i+1
ai+1

(xi+1|ai+1)

f i+1(xi+1|ai+1)

)

f i+1(xi+1|ai+1)f i(xi|ai)dxi+1dxi

9

Proof. Follows directly from 1.20 and 1.21.

9Some outcome variables have been omitted for simplicity.
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Property 6 implies that the inverse of the marginal utility of income might be greater

or smaller than than the conditional expectation of the marginal utility. If the payment

is always strictly over the reference in period i+1 and period i+2 the classical equality

maintains.10

In the canonical model, consumption smoothing and incentive provision requires the

principal to give relatively higher payments in each period with respect to the next one.

This facilitates the provision of incentives in later periods. Therefore, after each period,

if allowed to save or borrow, the agent has incentives to save. In our model, this will not

be the case, the agent may have incentives to save, borrow or consume his allocation.

Furthermore, he faces a somewhat higher incentive to consume the allocation that he

was given. To see this, suppose the loss averse agent of our model faces the possibility

of allocating resources between two consecutive periods, i and i + 1. If the payment

scheme in period i+ 1 pays the reference in a set of results with measure greater than

0 he faces the following conundrum. If he ponders borrowing he takes into account the

increased utility in the current period and the decrease in utility in the following period,

when he returns what he was borrowed. The increase in utility in the current period

will depend whether his allocation is over or under the reference. It will be relatively

higher strictly under the reference. The decrease in utility in period i+ 1 will be high

on and under the reference, which by assumption is a set with positive probability.

Furthermore, the reference in period i+ 1 is increased thus reducing the utility of that

period. This effects may make borrowing unattractive to the agent. For instance, if

the agent were paid the reference in one period the increase in utility will be low with

respect to the decrease in utility of paying back when receiving a payment equal to the

reference in the following period. Similarly, when deciding whether or not to save he

realizes that under the reference the loss in utility would be high with respect to the

gain in utility on or over the reference in the following period, which can make saving

unattractive. This implies that the agent will face situations in which he would face a

loss in utility by saving or by borrowing, and decides to consume the allocation that he

was given.

10There is some abuse of language here since we refer as marginal utility of Ũi to the term
U ′(ωi(xi))(1 + ki(xi)ℓi) since both quantities are equal for all incomes except the reference. At
the reference level the marginal utility is not computable and could take any value between
[U ′(ωi(xi)), U

′(ωi(xi))(1 + ℓi)].
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The previous discussion describes a result that can be interpreted as a a “status quo

bias”, as was first described in Samuelson and Zeckhauser (1988). Imagine the agent

is in a situation in which he would lose if the decides either to save or to borrow at

interest rate 1/δ−111. If facing the possibility of lending a part of his income at interest

rate rl and borrowing at interest rate rb, indifference between lending and borrowing,

i.e. the marginal utility of borrowing and savings is zero, requires rl > 1
δ
− 1 > rb.

This means that the smallest price at which he is willing to lend part of his income is

strictly greater than the greatest price at which he is willing to borrow. This is not

the case in the canonical model since, indifference between lending and borrowing, for

any set of payments schemes for two consecutive periods, can be attained for a sin-

gle interest rate12. This gap between willingness to accept and willingness to buy has

been described in other economical contexts (Bateman et al. (1997)). If the market

has interest rates such that rb ≥ rl, the agent will find himself inclined to consume

his allocation. A formalization of the previous discussion is presented in the following

property.

Property 7 (Status quo bias). If the payment in period i is y and is at the

reference and the payment in period i + 1 is constant such that yi+1(xi+1) =

y ∀xi+1 ∈ [xi+1, x̄i+1], then the agent will neither want to save nor borrow at

rate 1
δ
− 1 and if rl is the rate that makes marginal utility of saving equal to zero

and rb the rate that makes the marginal utility of borrowing is equal to zero, we

must have rl >
1
δ
− 1 > rb.

Let yi be the payment in period i and yi+1(xi+1) the payment scheme in period i+1.

If yi+1 pays the reference with positive probability or yi is at the reference, then

the rate that makes marginal utility of saving equal to zero rl is strictly greater

than the rate that makes the marginal utility of borrowing, rb, equal to zero.

Proof. The marginal utility of saving in period i at rate rl and consuming the savings

11Under the assumption that both principal and agent have discount factor δ, 1
δ
− 1 is the market’s

interest rate.
12As long as we let the interest rate be negative.
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in period i+ 1 is given by,

−(1 + 1{ωi≤Ri}ℓi)U
′(ωi) + δ(1 + rl)

∫
(1 + ℓi+11{ωi+1<ωi})U

′(ωi+1(xi+1))fi+1(xi+1|ai+1)dxi+1(1.17)

+ℓi+1δU
′(ωi)

∫

ωi+1<ωi

fi+1(xi+1|ai+1)dxi+1

and the marginal utility of borrowing in period i at rate r and paying back in period

i+ 1 is given by,

(1 + 1{ωi<Ri}ℓi)U
′(ωi) − δ(1 + rb)

∫
(1 + ℓi+11{ωi+1≤ωi})U

′(ωi+1(xi+1))fi+1(xi+1|ai+1)dxi+1(1.18)

−ℓi+1δU
′(ωi)

∫

ωi+1≤ωi

fi+1(xi+1|ai+1)dxi+1

By (1.17) the marginal utility of saving at rate 1
δ
− 1 is −(1 + ℓ)U ′(y) + U ′(y) < 0. By

(1.18) the marginal utility of borrowing at rate δ is U ′(y)−(1+ℓi+1)U
′(y)−δℓi+1U

′(y) <

0. Therefore the rate at which the agent would be willing to borrow is smaller than
1
δ
− 1 and the rate at which he would be willing to save must be greater than 1

δ
− 1.

The second point is justified subtracting (1.17) and (1.18) with rl = rb = r and noting

that what is obtained is strictly negative.

A more technical explanation for the previous property is that if the agent is allowed

to save or borrow after one period he will decide to save if the marginal utility of savings

is strictly positive and to borrow if the marginal utility of borrowing is strictly positive.

The loss averse preferences of our model imply that in each period the marginal util-

ity of savings does not coincide with the minus the marginal utility of borrowing and,

therefore, they may be both negative simultaneously.

Under the optimal payment scheme the agent may have incentives to save or to borrow

in our model. There are several effects at stake. First the ones described above, that

relate to the the fact that marginal utility varies depending on whether the payments

are under or over the reference and the nature of the set of outcomes for which the ref-

erence is paid. Also to the fact that while saving or borrowing the agent influences his

own reference for the following period. The optimality of the payment scheme will also

affect the willingness to save or borrow. The Principal wants to decrease each period’s

payment in order to increase the agent’s utility in the following period, thus favoring
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borrowing in the current period. The agent will want to increase savings in order to

increase utility in the second period, thus giving incentives to save. Finally, in order

to facilitate the provision of incentives in the future, just as in the classical case, the

optimal payment may be higher than the agent would like thus giving incentives to save.

The following property analyzes whether the agent would like to save or borrow

at interest rate 1
δ
− 1 if allowed to do so under some possible shapes of the payment

schemes in our model.

Property 8 (Inter-temporal allocation of resources). If the interest rate is 1
δ
− 1 in

period i then the agent may have incentives to save for period i+ 1, to borrow and pay

back in period i + 1 or to consume exactly its income depending on the parameters of

the problem. Moreover,

If period’s i+1 payment scheme is over the reference for all results, then the agent

does not have incentives to save in period i.

If period’s i+ 1 payment scheme is below the reference for all outcomes in period

i+ 1 then

• if period’s i payment is strictly above the reference then the agent has incen-

tives to save in period i.

• If period’s i payment is at the reference, the agent will not have incentives

to borrow in period i.

• If period’s i payment is strictly below the reference the agent may have in-

centives to save, to borrow or to consume his allocation.

Proof. Suppose that ωi+1(xi+1) ≥ ωi for all xi+1. By (1.17) the marginal utility of

saving would be

−(1 + 1{ωi≤Ri}ℓi)U
′(ωi) +

∫
U ′(ωi+1(xi+1))fi+1(xi+1|ai+1)dxi+1 (1.19)

By assumption we will have that
∫
U ′(ωi+1(xi+1))fi+1(xi+1|ai+1)dxi+1 < U ′(ωi) and

therefore the agent will not have incentives to save. By 1.18 the marginal utility of
borrowing is

(1 + 1{ωi<Ri}ℓi)U
′(ωi) −

∫
(1 + ℓi+11{ωi+1=ωi})U

′(ωi+1(xi+1))fi+1(xi+1|ai+1)dxi+1

−ℓi+1δU
′(ωi)

∫

ωi+1=ωi

fi+1(xi+1|ai+1)dxi+1
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it may be positive or negative depending on the parameters of the problem

Now, suppose that ωi+1(xi+1) ≤ ωi for all xi+1. The marginal utility of saving is be

−(1 + 1{ωi≤Ri}ℓi)U
′(ωi) +

∫
(1 + ℓi+11{ωi+1<ωi})U

′(ωi+1(xi+1))fi+1(xi+1|ai+1)dxi+1

+ℓi+1δU
′(ωi)

∫

ωi+1<ωi

fi+1(xi+1|ai+1)dxi+1

We must have
∫
U ′(ωi+1(xi+1))fi+1(xi+1|ai+1)dxi+1 > U ′(ωi), therefore, if ωi > Ri

or ℓi is sufficiently small then the marginal utility would be positive and therefore the
agent will have incentives to save. The marginal utility of borrowing is,

(1 + 1{ωi<Ri}ℓi)U
′(ωi) −

∫
(1 + ℓi+11{ωi+1≤ωi})U

′(ωi+1(xi+1))fi+1(xi+1|ai+1)dxi+1

−ℓi+1δU
′(ωi)

∫

ωi+1≤ωi

fi+1(xi+1|ai+1)dxi+1

The previous property states, among other things, that if the payment scheme is

flat for lower outcomes and then increasing for greater outcomes, then the agent will

not have incentives to save. Later in this section we show that observing a payment

scheme that does not venture under the reference is possible as long as the cost to the

principal of the participation constraint λ is sufficiently high.

1.3.2. Renegotiation-proofness and spot-implementability

The optimal contract scheme will be renegotiation-proof just as in the classical case.

This is because we are assuming that the agent is able to predict how her utility func-

tion updates in each period. If this weren’t the case the renegotiation-proofness could

be broken. 13

However, the optimal sequence of spot contracts will exhibit memory, unlike the clas-

sical case, because the assumption we make on the dynamical update of the reference

level. The utility function of the agent changes from period to period, and given that

we make this assumption the reservation utility from period to period may change too.

However the optimal commitment contract may not be implemented by spot contracts.

13For a reference note that the proof the renegotiation-proofness property in Chiappori et al. (1994)
does not rely on the differentiability of the utility function.
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Suppose that the reservation utility of the agent in each period i is given by Ū(Ri). In

summary we will have,

Property 9 (Optimal spot contracting). The optimal sequence of spot contracts exhibits

memory and it will not implement the full-commitment optimum in general.

Proof. By backwards induction, the optimal spot contract in period T must give the
agent the reservation utility Ū(ωT−1) and will depend on ωT−1 since it represents the
reference in period T . Thus, the optimal sequence of spot contracts has memory. The
optimal spot contract in period T − 1 solves

max
ωT−1(·)

∫ (
(xT−1 − ωT−1(xT−1))f

T−1(xT−1|aT−1) + δV (ωT−1(xT−1))f(xT |aT )
)
dxT−1

∫ (
ŨT−1(ωT−1(xT−1)) + δŪ(ωT−1(xT−1))

)
fT−1(xT−1|aT−1) ≥ Ū(cT−2)

aT−1 ∈ argmaxa

∫ (
ŨT−1(ωT−1(xT−1)) + δŪ(ωT−1(xT−1))

)
fT−1(xT−1|aT−1)

where V (ωT−1(xT−1)) represents the profits of the principal under the optimal spot

contract in period T . Therefore, unless Ū(ωT−1(xT−1)) coincides with the expectation

of the last period contract under the full-commitment optimum the optimal sequence

of spot contracts does not implement the full-commitment optimum.

1.3.3. The shape of the optimal contract and the multiplier λ

In a three period context we analyze how the optimal payment schemes changes if we

change the multiplier λ which represents the cost for the principal of the participation

constraint (PC). We have the following property,

Property 10 (Cost of (PC) and shape of optimal contract). There is a value λ̄ such

that the if λ ≥ λ̄ the optimal payment scheme is over the reference in all three periods

(letting the other multipliers be fixed).

Proof. See appendix

This property can be extended to any number of periods. It suggests that the cost of

the participation constraint to the principal is closely related to whether incentives are

to be created through rewards or punishments. This result is highly intuitive. Providing

incentives through punishments in the loss area creates a great loss in utility for the
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agent whose PC is already very costly. The principal is better off generating incentives

by rewards only.

1.4. Monitorable access to credit

If there is monitorable access to credit, savings can be contracted upon. The pro-

gram that the principal faces is the following,

max
(ωi(·))i(ai)i,(si)i(Si)i

T
∑

t=0

δt
E (xt − ωt(x0, x1, . . . , xt) − St(x0, x1, . . . , xt)|a0, a1, . . . , at)

subject to

T
∑

t=0

δt
(

E

(

Ũt(ωt(x0, x1, . . . , xt) − st(x0, x1, . . . , xt), ct−1)|a0, a1, . . . , at

)

− ψi(ai)
)

≥ U∗ (PC)

(a0, a1(x1), . . . aT (x0, x1, . . . , xT )) ∈ argmax−→a

T
∑

t=0

δt
(

E

(

Ũt(ωt(x0, x1, . . . , xt) − st(x0, x1, . . . , xt), ct−1)|a0, a1, . . . , at

)

− ψ(ai)
)

(IC)

where st are the agent’s accumulated savings in period t. That is the net savings

of the agent in period t once the endowment derived from previous savings is taken

into account. St are the accumulated savings of the principal. It is easy to see that

the previous program is equivalent to one in which the optimization variables are the

consumptions of the agent in each period, given by ct(x0, x1, . . . , xt) = ωt(x0, x1, . . . , xt)−
st(x0, x1, . . . , xt), and the total accumulated savings, given by st+St, and constraint sT =

− sT−1

δ
. Since we are assuming that the principal is risk neutral the optimality conditions

will be similar to (1.20) and (1.21) with ci replacing the payments ωi. Therefore, the

optimality conditions for consumptions with monitorable access to credit will be the

following,

1

U ′(ci(x0, x1, . . . , xi))
= (1 + ki(x0, x1, . . . , xi)ℓi)

(
λi + µi

f i
ai

(xi|ai)

f i(xi|ai)

)
+

− δℓi+1

∫
ki+1(x0, x1, . . . , xi+1)(λi+1 + µi+1

f i
ai+1

(xi+1|ai+1)

f i(xi+1|ai+1)
)f i(xi+1|ai+1)dxi+1. ∀i < T (1.20)

and
1

U ′(cT (x0, x1, . . . , xT ))
= (1 + kT (x0, x1, . . . , xT )ℓT )

(
λT + µT

fT
aT

(xT |ei)

f i(xi|ei)

)
(1.21)

where ki(x0, x1, . . . , xi) is given by,
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ki(x0, x1, . . . , xi) ∈





{1} if ωi(x0, x1, . . . , xi) < Ri

[0, 1] if ωi(x0, x1, . . . , xi) = Ri

{0} otherwise

This result is similar to what is obtained in the classical case. There is a strong

relationship between the monitorable access to credit case and the full-commitment with

no credit access case. Furthermore, just as in the classical case, monitoring borrowing

and savings introduces memory to the principal-agent relationship and therefore the

optimal long-term contract will be spot-contractible.

Property 11 (Spot contractibility under monitorable credit). Suppose the reservation

utility U∗
i (si−1, Ri) in period i depends on the savings that the agent has in period i− 1

and the reference level Ri and that it is continuous, increasing in si−1 then, under

monitorable savings the long-term optimal contract will be spot contractible.

Proof. By backward induction, if in the last period the contract requires consumptions

cT (x0, x1, . . . , xT ) and sT−1 is such that the reservation utility in period T equals the

agent’s expected utility under the optimal contract. That is, if U∗(sT−1, cT−1) is the

reservation utility of the agent with accumulated savings sT−1 and reference cT−1 =

ωT−1 − sT−1 and the following equality is fulfilled,

E(ŨT (c(xT )) |aT ) − ψ(aT ) = U∗(sT−1, cT−1)

Then, since the long-term contract is ex-post efficient, the last period spot contract will

implement the last period contract of the optimal long-term contract. Note that under

the assumptions of continuity of U∗ and unlimited transfers there will be a value for

sT−1 that will satisfy the equality given the consumption plan c(xT ) and effort level aT .

Now in period T − 1 the principal knowing (xT , sT , aT ), will be accepted in the fol-

lowing period, offers contract (xT−1, sT−1, aT−1) which is spot contractible if sT−2 is

such that U∗(sT−2, cT−2) = E(Ũ (c(xT−1)) + δŨ (c(xT )) |aT−1, aT ) − ψ(aT−1) − δψ(aT ).

This contract will be accepted by the agent since he knows what spot contract he will

be offered in period T and is optimal for the principal by ex-post efficiency of opti-

mal long-term contract. Inductively one concludes that the long-term contract can be

implemented by spot-contracting.
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1.5. Two period example

In this section we compute numerically the optimal payment schemes in a two

period setting in order to illustrate the possible shapes the optimal contracts can take.

The distribution function of outcomes xi ∈ [0, 1] in period i ∈ {1, 2}, for effort level

aj ∈ {aL, aH} is a triangular given by

f i(xi|aj) =





2xi

aj
xi ≤ aj

2(1−xi)
1−aj

xi > aj
(1.22)

and U(Y ) =
√
Y and therefore

Ũi(Yi, Ri) =
√
Yi − θ(Yi, Ri)ℓi(

√
Ri −

√
Yi)

Note that in this case
f i

ai
(xi|ai)

f i(xi|ai)
may not be strictly increasing with respect to out-

comes xi. In what follows we assume aH = 1 and aL = 0.1 in which case
f i

ai
(xi|ai)

f i(xi|ai)
is

constant in [0, 0.1].
The optimality conditions are,

1

U ′(ω0(x0))
= 2

√
ω0(x0) = (1 + k0(x0)ℓ0)

(
λ0 + µ0

f0
a0

(x0|a0)

f0(x0|a0)

)
+

− δℓ1

∫

ω1≤ω0

k1(x0, x1)(λ1 + µ1

f1
a1

(x1|a1)

f1(x1|a1)
)f1(x1|a1)dx1. (1.23)

1

U ′(ω1(x0, x1))
= 2

√
ω1(x0, x1) = (1 + k1(x0, x1)ℓ1)

(
λ1 + µ1

f1
a1

(x1|a1)

f1(x1|a1)

)
(1.24)

1.5.1. Case 1: First period payment independent of outcomes

The first example illustrates a case in which the first period payment does not

depend on the outcomes that take place in first period (see Figure 1.5.1). That is the

first period payment stays constant at the reference level. The second period payment

scheme is contingent on outcomes obtained on the first and second period and can be

seen in Figure 1.5.1.14 The values of parameters used in this simulation are given in

14Note that the flat segments for small values of first and second period outcomes is due to
fi

ai
(xi|ai)

fi(xi|ai)

constant in [0, 0.1]
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Figure 1.4: Case 1. First Period Payment Scheme

the following table,

λ µ0 µ1 ℓ0 ℓ1 aH aL 1/U ′(R0)

46.1 0.5 2 1 1 1 0.1 37

Note that the second period payments fall below the reference for the low outcomes

in the first period. For outcomes in the first period that are greater than a threshold,

the agent will face a payment scheme in the following period that is greater or equal

than the payment received in the first period. Consequently, according to Property 8,

he will not have incentives to save for outcomes above a threshold.

1.5.2. Case 2: First period payment greater or equal than R0

The next example illustrates a case in which the first period payment reaches the

reference for low values of the first period outcome (see Figure 1.5.2). The second

period payment scheme is shown in Figure 1.5.2. The values of parameters used in this

simulation are given in the following table,

λ µ0 µ1 ℓ0 ℓ1 aH aL 1/U ′(R0)

30.1 1 1 1 1 1 0.1 15
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Figure 1.5: Case 1. Second Period Payment Scheme

1.5.3. Case 3: Second period payment over reference for all

outcomes

This example illustrates a case in which payments are over the reference for all

outcomes in the first and second period (see Figure 1.5.3). The parameters used are

the same as in Case 2, except that λ is greater, thus illustrating Property 10. The

second period payment scheme is contingent on outcomes obtained on the first and

second period and can be seen in Figure 1.5.3. According to Property 8, the agent does

not have incentives to save for any outcome in the first period. The payment scheme

shown in Figures 1.5.3 and 1.5.3 is efficient, renegotiation-proof and implements the

high level of effort in both periods if the agent is restricted to borrow. The values of

parameters used in this simulation are given in the following table,

λ µ0 µ1 ℓ0 ℓ1 aH aL 1/U ′(R0)

40.1 1 1 1 1 1 0.1 15
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Figure 1.6: Case 2. First Period Payment Scheme

Figure 1.7: Case 2. Second Period Payment Scheme
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Figure 1.8: Case 1. First Period Payment Scheme

Figure 1.9: Case 1. Second Period Payment Scheme
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1.6. Conclusions and Final Remarks

We introduce loss aversion to the canonical dynamic moral hazard model introduced

by Rogerson (1985). We make the assumption that the reference level corresponds to

the consumption that took place in the previous period. We find differences and simil-

itudes in terms of predictions with the canonical model. In particular, we find that

payment schemes may have flat segments in outcomes in the first period and must have

flat segments from the second period on. The flat segment may extend for the entire

support of the outcomes distribution. We find that in comparing with the canonical

model, payments schemes will exhibit a smaller dependence in outcomes within and

across periods.

We derive an extended relationship between the optimal payment schemes of two con-

secutive periods. We find that the result of the canonical model that requires that

after each period the agent is inclined to save some of his earnings may not be valid

depending on the parameters of the model. This, together with ex-post efficiency of the

full-commitment optimum, implies that efficiency and high incentive provision may be

attained under no savings constraints, or no credit constraints altogether. The latter

being justified by the presence of a “status quo bias” in the inter-temporal preferences

defined by our model, that we identify as a gap between the lowest interest rate at which

the agent is willing to save and the highest interest rate at which he is willing to borrow.

By introducing loss aversion into a dynamic principal-agent model with endogenous

update of the reference level, we provide an explanation for a number of deviations of

observed contracts from the theoretical predictions of the canonical model. In particu-

lar, it allows us to explain the existence of contracts that are not strictly increasing in

outcomes and the weak history dependence of contracts found in the empirical litera-

ture.

Finally, the derivation of the optimality conditions is not exempt of mathematical dif-

ficulty given that the objective function is non-differentiable. subdifferential analysis is

required to find the solution. A “chain rule” not previously described in subdifferential

calculus that applies to the problem at hand is derived. As a consequence, this paper

also represents a methodological guide to tackle this or other similar problems that

may involve loss aversion or not. It is important to note that in many contexts, the
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results and insights of models might substantially change once the assumption of non-

differentiability is included, since the usual first order conditions are no longer valid.

1.7. Appendix

1.7.1. Proof of property 10

Using the fact that for any period i at the reference Ri (i.e. when ki ∈ [0, 1]) we

must have

ki(x0, x1, . . . , xi)

(
λi + µi

f i
ai

(xi|ai)

f i(xi|ai)

)
=

1

U ′(Ri)
−

(
λi + µi

f i
ai

(xi|ai)

f i(xi|ai)

)

This implies that the three period optimality conditions are the following,

1

U ′(ω0(x0))

(

1 + δP(ω1 = ω0(x0)|a1) + δ2P(ω2 = ω0(x0)|a2)P(ω1 = ω0(x0)|a1)
)

=

(1 + k0(x0)ℓ0 + δP(ω1 = ω0(x0)|a1) + δ2P(ω2 = ω0(x0)|a2)P(ω1 = ω0(x0)|a1)+

− δℓ1P(ω0(x0) > ω1|a1) − δ2ℓ2P(ω0(x0) > ω1|a1)P(ω0(x0) > ω2|a2))

(

λ+ µ0

f0
a0

(x0|a0)

f0(x0|a0)

)

+

+ −δ2ℓ2
∫

ω1=ω0,ω2<ω0

(

µ1

f1
a1

(x1|a1)

f1(x1|a1)
+ µ2

f2
a2

(x2|a2)

f2(x2|a2)

)

f1
a1

(x1|a1)f2
a2

(x2|a2)dx1dx2+

+ δ2
∫

ω1=ω0,ω2=ω0

(

µ1

f1
a1

(x1|a1)

f1(x1|a1)
+ µ2

f2
a2

(x2|a2)

f2(x2|a2)

)

f1
a1

(x1|a1)f2
a2

(x2|a2)dx1dx2

− δµ1ℓ1

∫

ω0<ω1

fa1 (x1|a1)dx1 + µ1δ

∫

ω0=ω1

fa1 (x1|a1)dx1 (1.25)

1

U ′(ω1(x0, x1))
(1 + δP(ω2 = ω1(x0, x1)|a2)) = (1 + k1(x1)ℓ1 + δP(ω1(x0, x1) = ω2|a2)+

− δℓ1P(ω1(x0, x1) > ω2))

(

λ1 + µ1

f1
a1

(x1|a1)

f1(x1|a1)

)

+

− δµ2ℓ2

∫

ω2<ω1

fa2 (x2|a2)dx2 + µ1δ

∫

ω2=ω1

fa1 (x1|a1)dx1 (1.26)

1

U ′(ω2(x0, x1, , x2))
= (1 + k2(x0, x1, x2)ℓ2)

(
λ2 + µ2

f2
a2

(x2|a2)

f2(x2|a2)

)
(1.27)
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From (1.25) it can be seen that for whatever value of the first period’s reference a λ
high enough will insure that right hand side is greater than 1/U ′(R0) for k0 = 0. Now,
replacing in (1.26) and (1.27) the following,

(
λ+ µ0

f0
a0

(x0|a0)

f0(x0|a0)

)
=

1

U ′(ω0(x0))
+

−δ2
∫

ω1=ω0,ω2=ω0

(
µ1

f1
a1

(x1|a1)

f1(x1|a1)
+ µ2

f2
a2

(x2|a2)

f2(x2|a2)

)
f1

a1
(x1|a1)f

2
a2

(x2|a2)dx1dx2 +

−µ1δ

∫

ω0=ω1

fa1(x1|a1)dx1

we conclude that if 1/U ′(ω0(x0) is big enough the right hand sides of both equations

will be greater than 1/U ′(ω0(x0)) which implies that the payment schemes will be over

the reference in periods 1 and 2.
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Chapter 2

Contract Theory applied to

On-demand IT Services Contracting

Nicolas Figueroa Alejandro Jofre Sofía Moroni

Akhil Sahai Yuan Chen Subu Iyer

2.1. Introduction

An Service Level Agreement (SLA/Contract) is an agreement between a provider

and a consumer which is comprised of Service Level Objectives that guarantee qual-

ity of service (such as availability, performance and reliability), a promise of payment

and penalties to impose in case the objectives are not met. The study of such con-

tracts has become increasingly important with the increasing use of IT outsourcing

procedures, which had reached $56 billion in 2000 and was expected to reach $100 by

2005 (Dermikan et al. (2005)). While the original practice of IT outsourcing contracts

involved complicated measures to safeguard the client’s interest against the many po-

tential mishaps, a more modern approach has focused on a system of penalties and

rewards based on observed quality of service, serving as a monetary compensation that

insures the client in case the service is suboptimal (Dermikan et al. (2005)).

In this work we focus on the problem of offering optimal (revenue maximizing) con-

tracts from the Service Providers’ (SP) point of view. In particular, we are interested in

contracts offered by IT providers, that offer service guarantees in terms of performance,

availability, security and reliability constraints. These contracts specify the pricing for
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the service guarantees and the penalties that are due in case of violations. We model

SLA/Contracts using the concepts of Moral Hazard and Adverse Selection.

The Moral Hazard comes from the fact that the provider, through some costly ef-

fort (investment, use of scarce resources such as number of CPU’s, number of engineer

hours, etc.), can increase the quality of the service, but that there is also an additional

stochastic component to it. The effort level cannot be monitored by the client, and the

actual performance of the system (that the client can observe) is just a noisy signal of

effort. In an IT context, better infrastructure on average provides better performance,

but some unforeseen incidents (unforeseen demand increase, breakdown of a system,

etc.) may still lead to poor quality. Since effort is not observable, the only way to

induce a high level of effort is through a compensation system that is “steep” i.e. with

higher payments when observed quality is better, or equivalently with penalties if the

providers does not meet his end of the deal. Nonetheless, this affects the provider, since

she may sometimes be punished for low quality even if the effort put in the process was

high. Given her risk aversion, she will demand higher expected payments when the

payment system is steeper. The basic trade-off is then set: “steeper” compensation

systems will induce higher effort, but they will shift more risk (in terms of earnings) to

the provider, who is risk averse and will charge more for the service. We introduce then

the “credibility constraints”: a contract must promise a level of effort that is optimal

given the penalties imposed in case of non-compliance with the quality level promised.

Any other effort level would not be credible and the client would not accept such a

contract.

At the same time, the service provider is faced with an adverse selection problem:

clients differ in their valuation of the service, in their risk aversion and in other char-

acteristics. Moreover, their particular characteristics are private information, and the

service provider only knows the distribution of possible clients. In order to deal with

this issue, the service provider must offer different contracts (one for each type of client

he can potentially face) and design them in such a way that clients choose the contract

that was designed for them. Such constraints (called the selfselection constraints) de-

crease the revenue an SP may obtain from clients, since they extract an informational

rent due to asymmetric information. We construct a general model incorporating both

the credibility and self-selection constraints, and allowing for risk averse clients and

service provider. Since we are interested in the practical application of such a model
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to the case of a service provider in the IT sector, we allow for a general shape of the

stochastic relation between effort and quality, and proceed to numerically solve for the

optimal pricing policy. This optimal policy includes different contracts (tailored to be

selected by the different types of clients), each one specifying a fixed payment and a

bonus based on the quality delivered.

The literature on SLA/Contracts has addressed many issues: the type of quality mea-

surements that can be used to define SLA agreements and the type of verification that

must be used to satisfy both parties (M.J. Buco et al. (2004)), the necessity of imposing

penalties as a way to insure the client against bad performance (Dermikan et al. (2005))

and the optimal software design for a SP serving multiple clients and allocating scarce

resources (K. Appleby et al. (2001)). However, the literature has been silent on two

critical issues. First, the use of penalties to induce credible levels of effort from the SP

since effort is non observable. Second, and even more important: the optimal design

of such penalties, as a function of the client and SP’s risk aversion, and the stochastic

relationship between effort and quality. There has also been work on optimal pricing,

in the case of a monopolist who faces clients with private information (Chone et al.

(2001)), but this issue has not addressed the penalties issue, since it is assumed that

clients are “small” and are provided with a generic quality level for which they cannot

complain. That approach is correct for many markets (for example cellphones, where

a client is never compensated when the network does not perform as expected), but

is clearly unrealistic in the case of IT outsourcing, where the SP and the client are of

similar size and have similar bargaining power.

The paper is organized as follows. In section two we present a single-client model

and an extension to a multi-client scenario. Section tree discusses some practical ques-

tions for finding an SLA/Contract using our approach. Section four and five analyzes

SLA determination in a n-tier IT service scenario, including numerical results.

2.2. Mathematical Model

In this section we present a basic model to price SLA/Contracts for IT services, in

which there is one client and a service provider, and an extension in which there are

different types of clients. In both cases, we let the contract depend on the realized
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quality of service. This contract, in turn, must give incentives to the service provider

to put in the effort level (infrastructure, servers, labor, etc) that is implicitly agreed

upon.

2.2.1. Basic Model

The provider delivers a quality of service q∈Q ⊆ R
nq to the client. This quality level

can be throughput, availability, response time, etc, and depends stochastically on the

effort level e ∈ E ⊆ R
ne that the provider assigns to the client. In this setting, clients

are not able to observe the level of effort (for example, servers which could internally

allocated to another task )that the SP has assigned to each one of them. We assume

that the distribution function of quality, given a level of effort e is fq(q|e) with cumu-

lative function Fq(q|e), and its support will be a cube in R
nq , Π

nq

p=1[qp, q̄p], independent

of e. We assume that it is possible to transform the observable and verifiable variable

q into a quality of service in monetary terms qm. This transformation is represented

by a function g : Q→ QM which is non-decreasing and concave in each component of q.

Since the level of effort is not observable by the client, a contract can only specify a

payment contingent on quality, that is observable and verifiable. We assume that the

payment will be a function of monetary quality of service, which is observable since it

is a deterministic function of quality. We will denote this payment rule as p(qm). As

we will see there is no loss of generality in considering contracts that depend on qm

and not on q. Notice that e being non-observable introduces a “moral hazard” problem,

the provider must carry out a hidden action, which is beneficial to the client, and

non-contractible.

We denote by V the utility function of a client. For a realized level of monetary quality

qm, his utility will be V (qm − p(qm)). On the other hand, we assume that the provider

has a utility function that depends on effort and money, so for a given level of effort e

and quality qm, her utility is U(p(qm), e). As usual, we assume V ′ > 0 and V ′′ ≤ 0 and

that ∂U
∂p

> 0, ∂U
∂e

< 0, ∂2U
∂2p

≤ 0 and ∂2U
∂2e

≥ 0 (see figure 2.1). This assumptions imply

that both the service provider and the client are risk-averse.

Under these assumptions, and based on the tools of contract theory, we are able to

state the problem of finding a utility maximizing contract for the service provider as a

constrained optimization problem.
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There are two constraints. The participation constraint (2.2 from now on “PC”),

states that the utility level of the client has to be above a certain exogenous level V̄ ,

reflecting the opportunity cost of the resources involved. The credibility constraint (2.3,

from now on “CC”) states that the promised effort level has to be optimal (for the ser-

vice provider) given the contract, since otherwise the client would not trust her.

Therefore, the provider chooses e and p(qm) to solve

max
p(),e

∫
U(p(qm), e)fqm(qm|e)dqm (2.1)

subject to ∫
V (qm − p(qm))fqm(qm|e) ≥ V̄ (2.2)

e ∈ argmaxe′

∫
U(p(qm), e′)fqm(qm|e′)dqm (2.3)

For future use, we also write the problem in terms of q:

max
p(),e

∫
U(p(g(q)), e)fq(q|e)dq (2.4)

subject to ∫
V (g(q) − p(g(q)))fq(q|e)dq ≥ V̄ (2.5)

e ∈ argmaxe′

∫
U(p(g(q)), e′)fq(q|e′)dq (2.6)

2.2.2. The General Model

We can enrich the model to take into account that the SP could have different

clients, that can be classified in “types”. The agents that belong to a particular type

will differ from the other types because they can have different valuations of the service,

and utility functions. The Service Provider will offer a menu of contracts, to satisfy the

different necessities of the clients and therefore extract more payments.

The main constraint is that Service Provider does not know which client is which, since

the particular valuation for the service is private information of the client, or that he has
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Figure 2.1: One Client Model

to offer all contracts to all clients for legal reasons. Given this constraint, the contracts

have to satisfy a self-selection property: each client selects the contract that was de-

signed for his particular type because is the one that gives him the greatest utility level.

For the model, let’s suppose that there are N clients, which can be classified in k types.

We denote by θj the “type” of agents in the class j, and we assume that there is an

amount µj of those agents. The Service Provider will offer a menu of contracts, each of

them designed for one type of client. As before the contracts will offer a payment given

the realized monetary quality qim that client i receives. We will denote the contract

intended for agents of type θj as pθj
(qm). The Service Provider will devote independent

efforts for each client, which we will denote {ei,θj
}i∈{1,...µj},j∈{1...k}, that is, the effort that

the i’th client of type θj will be assigned, will be ei,θj
. The utility function of the Service

Provider will take the form U({pθj
(·)}j,

∑
i ei), that is, it will depend on payments and

the sum of efforts dedicated to each client, with ∂U
∂pi

> 0, ∂U
∂ei

< 0, ∂2U
∂2pi

≤ 0 and ∂2U
∂2ei

≤ 0

(see figure 2.2)

Clients of the same type, say θj will have the same utility function V (·|θj), the same gθj

function and reservation utility V̄ (θj), that will relate true quality to monetary quality

of service, and distribution function of quality qθj
∈ Π

nqθj

p=1 [q
p,θj
, q̄p,θj

] ⊂ R
nθj 1 contingent

on effort, fθj
(qθj

|e). The distribution function of monetary quality will depend on the

effort level that each client receives, and will be independent of the effort given to other

clients. The optimization problem that the Service Provider will face is,

1Notation analogous to Basic Model
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Figure 2.2: Multi-Client Model

max
{pθj

(·)}j ,{ei,θj
}j,i∈{1,...,µj}

∫
U({pθj

(gθj
(qi,θj))}i,j,

∑

i,j

ei,θj
)
∏

j,i

fθj
(qi,θj |ei,θj

)d−→q (2.7)

subject to

∫
V (gθi

(q)−pθi
(gθi

(q))|θi)fθi
(q|er,θi

)dq ≥
∫
V (gθi

(q)−pθj
(gθj

(q))|θi)fθi
(q|et,θj

)dq ∀j 6= i,∀r, t
(2.8)∫

V (gθi
(q) − pθi

(gθi
(q))|θi)f(q|ei) ≥ V̄ (θi) (2.9)

{ei,θj
}j,i∈{1,...,µj} ∈ argmax{e′

i,θj
}

∫
U({pθj

(gθj
(qi,θj))}i,j,

∑

i,j

e′i,θj
)
∏

j,i

fθj
(qi,θj |e′i,θj

)

(2.10)

As before the objective is to maximize the expected utility of the service provider. (2.8)

is the Self Selection Constraint, it states that in the optimal contract each client type

will prefer their own contract to the ones intended for other client types. (2.9) and

(2.10) are the Participation Constraint and Credibility Constraint, respectively.

The optimization problem presented above is complicated. If we introduce a num-

ber of assumptions on the utility functions and the distributions of quality given the

efforts the framework will be much simplified (details in appendix).
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For simplicity and in order to illustrate the economic intuitions of the results, in this

work we focus in optimizing over functions p(·) that are linear. That is, we are looking

for contracts that are linear in monetary quality of service. This contracts are simple

and could easily be implemented in real applicatons. With the assumptions made

(2.7)-(2.10) and it will become,

max
{pθj

(·)}j ,{eθj
}j

∫
U({pθj

(gθj
(qθj))}j,

∑

j

µjeθj
)
∏

j

fθj
(qθj |eθj

) (2.11)

subject to

∫
V (gθi

(q)−pθi
(gθi

(q))|θi)fθi
(q|eθi

)dq ≥
∫
V (gθi

(q)−pθj
(gθj

(q))|θi)fθi
(q|eθj

)dq ∀j 6= i

(2.12)∫
V (gθi

(q) − pi(gθi
(q))|θi)f(q|ei) ≥ V̄ (θi) (2.13)

{eθj
}j ∈ argmax{e′

θj
}

∫
U({pθj

(gθj
(qθj))}j,

∑

j

µje
′
θj

)
∏

j

fθj
(qθj |e′θj

) (2.14)

That is, all clients of the same type will have the same amount of effort assigned and

the expected utility of the provider will be simplified to an integral over
∑k

j=1 nqθj

variables. In the framework above we assumed that the utility of the SP and the client

could be computed as an expected utility. Now we want to allow for the possibility that

the utility of the agents doesn’t have that form, that is, it is not a Bernoulli Utility

Function. Our framework will remain the same, except that now the utilities of the

agents will not be written as an expected utility, and they will be a function of the

random variable of profits, that will, in turn, depend on the level of effort. If X is a

random variable that describes the behavior of uncertain profits, with pdf fX(x) and cdf

FX(x) an example of a function of the sort is what we refer to the expectation-variance

utility function given by the formula U(X) = IE(X) − τ
∫

(x − IE(X))2fX(x)dx, with

τ a non-negative constant. The first term is the expected profits and the second term

is the variance of profits. Since the variance is a measure of how volatile profits can

be, the second term implies that agents utility decreases with risk. Another example

is what we will the CVaR utility, U(X) = IE(X) − τ(−IE(Xα)) where Xα is the r.v.

known as the lower α-tail of X, with distribution function FXα
= min{α,FX}

α
, α ∈ [0, 1],

and τ a non-negative constant. −IE(Xα) is known as the CVaR and it is a measure of

risk. For instance, if FX(·) is continuous, the CVaR will be the mean of the lowest α%
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of the profits.

2.3. Optimal Contract

Solving (2.4)-(2.6) is, in general, difficult, because of the last constraint. However,

under certain conditions, if the maximization problem in (2.6) has an interior solution

which is its unique stationary point2, the last constraint can be simplified to an equality

constraint which corresponds to the First Order Condition of the Optimization Problem

in (2.3).3This will happen, in particular, when the expected utility of the SP is concave

in effort at the optimal contract.

Replacing the (2.6), in the basic model, or (2.10), in the multi-client case, by a first

order condition is known as the first order approach (FOA). The conditions under which

it is valid will depend on U and fq(q|e). In this section we study conditions that allow

us, in the context of SLAs, to apply such a method.

2.3.1. First Order Approach

A sufficient condition to be able to use the FOA is that the objective function be concave

in e. If q is uni-dimensional we have the following results. From Jewitt (1988),

Lemma 1. If Fq(q|e) satisfies (2.15)-(2.16), then, for every function ũ(·) : R → R in

C1 concave and non-decreasing,
∫
ũ(q)fq(q|e)dq, will be concave in e and therefore, if

U(p(qm), e) = u(p(qm))− φ(e), with u concave and φ(·) convex in e, then the optimiza-

tion problem (2.1)-(2.3), solved for p(·) of linear form with positive slope, will satisfy

FOA. ∫ y

−∞
Fq(q, e)dq is nonincreasing convex in e for each value of y (2.15)

∫ ∞

−∞
qfq(q, e)dq is nondecreasing and concave in e (2.16)

Corollary 1. If Fq(q|e) is convex in e for each q, then, if U(p(qm), e) = u(p(qm))−φ(e)

with u concave and φ(·) convex in e,
∫
u(p(g(q)))fq(g(q)|e)dq, will be concave in e,

and therefore, the optimization problem (2.1)-(2.3), solved for p(·) of linear form with

positive slope, will satisfy FOA.

2An stationary point is one in which the gradient of the SP’s utility with respect to e becomes 0
3Note that this applies also for the case in which the set of efforts is not R

ne : the first order
condition will correspond to the gradient of a Lagrangian.
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This results can be extended to the case in which we have multi-dimensional q =

(q1, q2, . . . , qnq
), if there are separability conditions of the utility function U(p(g(q)), e)

in the components of the vector q. This also applies to the multi-client case. Conditions

(2.15)-(2.16) can guarantee the validity of the first order approach in some contexts.

Therefore it is useful to study the distributions f(x|e) that will satisfy them. Next we

present some examples of contexts in which they will be satisfied.

Example 1. Let F (q, µ, σ) be the cdf of the normal distribution with mean µ(e) and

variance σ2(e). If R(y−µ
σ

) · σ is convex and non-increasing in effort for every R such

that R′ ≥ 0 and R′′ ≥ 0, then F (x, µ, σ) will satisfy condition (2.15). The same applies

for the log-normal distribution. A proof of this result can be found in the appendix.

A similar result can be derived for a truncated normal. In fact if q has pdf,

fq(q|e) =





e
− (t−µ)2

σ

σ
√

2π

d(e)
if t ∈ [−cσ + µ, cσ + µ]

0 ∼

Where d(e) =
∫ r(e)−µ
−r(e)−µ

e
(x+µ)2

2σ2

σ
√

2π
=

∫ r(e)
σ

− r(e)
σ

e
x2

2√
2π

, µ(e) and σ(e) depend on e and c is a con-

stant.

If R(y−µ
σ

) · σ is convex and non-increasing in effort for every R such that R′ ≥ 0

and R′′ ≥ 0 and cσ + µ is concave, then F (x, µ, σ) will satisfy condition (2.15).

Example 2. Analogously as in the previous example, we will have the following result.

If a random variable X that depends on a parameter θ, with cdf F (x, θ), has the property

that through a change of variable we have that F (x, θ) = F (r(θ)x, 1), then, if X depends

on e only through θ and R(y ·r(θ))/r(θ) is convex and non-increasing in effort for every

R such that R′ ≥ 0 and R′′ ≥ 0, then

F (x, θ) will satisfy condition (2.15).

For any number of independent realizations of X, n, the distribution of the kth

percentile as defined in (2.18), will satisfy condition (2.15).

The “CVaR” non-Bernoulli utility function defined in section 2.2.2 will be concave

in e if (2.16) is satisfied.
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If conditions for the First Order Approach to be valid cannot be verified analitically,

a heuristic to solve the optimization problem would then be to pose the problem assum-

ing that FOA is valid, find the corresponding payment schedule p∗(·) and effort e∗ that

maximize the providers utility and then verify the uniqueness of the stationary point

in e ex-post, given the payment schedule p∗(·). In fact, even if there is not a unique

stationary point one needs only to verify that the value of e∗ is the global maximum of

the utility of the provider, given p∗(·).

2.4. SLA determination in a n-tier IT Service Scenario

SLA/contracts for IT Services often contain clauses regarding desired levels of response

time. To provide a certain level of response time, a service provider has to use costly

resources. The response time obtained as a result will still be stochastic around an

average value. In our framework an optimal menu of contracts has to take into account

the randomness of any particular measure of response time, and the characteristics of

the different types of clients. Consider a context in which to meet a prescribed metric of

Response Time a Service Provider has to provision computing resources, in the form of

computer servers. This is frequently the case for Application Service Providers such as

e-commerce sites). In this article, we look at single tiered services (e.g. Database ser-

vices, web server utilities, Application server utilities etc.) The Response Time of such

a single-tiered IT Service is modelled using a simple analytic queuing theory model.

We suppose we have an IT Service that receives requests, that arrive according to a

Poisson process of parameter λ. Servers handle the requests and their service time will

also behave as a r.v. If at any given time all servers are occupied with requests, all

requests that arrive thereafter will wait in queue to be serviced. If we suppose that the

requests, that one server receives, behave as a Poisson of parameter λ̃ and the service

time of the server is exponential of parameter µ, it is a known result from queuing

theory that the total Response Time will be exponentially distributed with parameter

µ − λ̃. If the workload is shared equally among the compute servers, then each server

will receives requests at a rate λ/e, where e, the effort variable, is the number of servers,

then the Response Time will distribute exponentially with parameter λ̄(e) = µ − λ
e

.

This derivations is valid as long as µ > λ/e.

SLA/contracts vary, in terms of the performance metric of response time that is used.
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The quality variable that is appropriate to use in the developed framework will depend

on the particular performance metric in which any particular contract is written. For

example, if a contract specifies, that the hourly average Response Time is lower or equal

than 25 ms, the quality variable we propose for this case would be the realized hourly

Response Time. This quality variable will follow a probability distribution that can

be derived under this framework in which each Response Time behaves exponentially.

In general, a befitting quality variable will be one that appears explicitly in the SLA

to specify a determined level of service, and in terms of which penalties will depend.

In the previous example, the clause could specify penalties such as, the SP will pay a

penalty of 10,000 if the average response time is between 25 and 35 ms and 20,000 if

the average response time is between 35 and 45 ms.

In this work we focus on some likely SLA clauses: (a) contracts that specify a de-

sired average of response time lower than t, over a period of length T̄ ; (b) contracts

that are in terms of percentiles, such as 95% of the requests have a response time lower

than t, over a period of length T̄ ; (c) combinations of the two previous types, such as

95% of the hourly averages have to be lower or equal than t, over a period of length T̄ .

2.4.1. Mean Response Time

If an SLA is written in terms of the Average Response Time, computed during a length

of time T̄ . If the total number of requests is n and the respective realized Response

Times are t1, t2, t3, . . . , tn, a possible Quality Variable, to fit this context, would be

−t̄n = −
∑n

i=1 ti
n

, that is, minus the Average of Response Time 4. The distribution of the

average as an statistic depends on the original distribution of the sample.

2.4.1.1. Distribution of the Mean if Response Times are Exponentially Dis-

tributed

If we assume that the Response Times are exponentially distributed, the distribution

of the mean Response Time, conditional on the total number of requests, n, will be a

Gamma(n, 1
nλ̄

)

f−t̄n(t) =
(λ̄n)ntn−1e−λ̄nt

Γ(n)
(2.17)

4Note that utility has to be increasing in quality
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If we know that the process of arrival of requests is also exponentially distributed, we

can determine the distribution of the Average Response Time as

f−t̄(t) =
∞∑

n=0

e−λeλ̄ntln
(
λ̄n

)n
t−1+n

Γ(n)Γ(1 + n)

However, for the sake of computational simplicity, we could estimate the quantity of

requests by its mean, λT̄ , in which case to determine the distribution of t̄ we would

have to replace n = λT̄ in (2.17).

This quality variable satisfies the conditions to use the FOA approach as it can be

seen in Example 2.

2.4.1.2. Normally Distributed Mean

If the sample is big enough, from the Central Limit Theorem, we can assume that the

mean has a Normal Distribution. This is useful if we are not sure of the underlying

distribution of each response time or of any other quality variable that we are analyzing.

In this case, since each response, has mean µ = 1
λ̄(e)

and variance σ2 = 1
λ̄(e)2

, a normally

distributed mean will be a N( 1
λ̄
, 1
nλ̄2 ). However, assuming normality of response time

might not be so appropriate for this particular case because the Normal distribution

takes on any value in the real line, and response time is positive. An alternative would

be to use a truncated normal distribution, that is for some positive function r(e) with

−r(e) + µ ≥ 0 we will have that

f−t̄(t) =





e
− (t+µ)2

σ

σ
√

2π

d(e)
if t ∈ [−r(e) − µ, r(e) − µ]

0 ∼

Where d(e) =
∫ r(e)−µ
−r(e)−µ

e
(x+µ)2

2σ2

σ
√

2π
=

∫ r(e)
σ

− r(e)
σ

e
x2

2√
2π

. Note that if r(e) = constant ·σ(e), d(e) = d

will not depend on e. In that case −t̄will satisfy conditions (2.15)-(2.16) as it is shown

in the appendix, using Example 1.

62



2.4.2. Percentiles

It is common that a Service Level Requirement is in terms of the quantile of response

time, such as “95% of the realizations of Response Time have to be less than 5 seconds”.

A quality variable for this type of contract could then be related to the realized 95

percentile of response time, measured during a time period.

We will use the following definition of the kth percentile, Pk. If n is the number of

requests, and x1, x2, . . . , xn represent the ordered values of Response Time.

Pk = xj , where j = round((n− 1) · k

100
+ 1) (2.18)

Let T nk be the RV of the kth percentile given that there were n requests during the

measurement period. Let’s assume that the distribution of Response Times are iid

and if F (t) is the cumulative distribution function of each Response Time. The kth

percentile is an order statistic, therefore its distribution will be,

fTn
k
(t) =

d

dt

n∑

i=j

P(t1 ≤ t, t2 ≤ t, . . . , ti ≤ t, ti+1 ≥ t, . . . , tn ≥ t) =
n!

(j − 1)!(n− j)!
F (t)j−1(1−F (t))n−jf(t).

(2.19)

where j is given by (2.18).

2.4.2.1. Distribution of the Percentile if Response Times are Exponentially

Distributed

If we assume that the Response Time of the servers system is exponentially distributed.

In (2.19), we would have that ti i ∈ {1, 2, . . . . , n} are r.v. iid, exponentially dis-

tributed, with parameter λ̄ = µ − λ
e
. This is not consistent with the fact that we are

assuming that only n events took place, however if n is much bigger than the quantity

of people in queue at any given time, the assumption becomes reasonable.

The probability distribution function of T nk will be:

fTn
k
(t) =

n!

(j − 1)!(n− j)!
(1 − e−λ̄·t)j−1(e−λ̄·t)n−jλ̄e−λ̄·t.

where j is defined by (2.18).
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We will take n to be the mean of arrivals, that is n = λT̄ , where T̄ is the length

of the measurement period.

If we take the quality variable to be minus the kth percentile of response time, we

would have that the utility of the client is increasing in quality. Under this conditions,

from Example 2 it can be verified that the FOA conditions (2.15)-(2.16) will be fulfilled.

2.4.3. Contracts that are in terms of means and percentiles

Using what has been discussed above, we can easily derive the probability distributions

for quality variables that have to be in terms of percentiles and means.

1. If a contract is in terms of percentiles of averages, such as 95% of the hourly

averages have to be lower or equal than t, over a period of length T̄ , its probability

distribution will be given by (2.19), where F will be a Gamma or a Normal,

depending on which distribution we choose to represent the mean. Later, using

Examples 1 and 2, FOA conditions can be verified.

2. If a contract is in terms of averages of percentiles, such as the average of the

hourly 95 percentiles have to be lower or equal than t, over a period of length

T̄ , we know what the probability distribution of the percentiles will be and the

distribution of the average of percentiles has to be determined. However, in this

case, the Central Limit Theorem will tell us that if the average is taken over a

big sample of percentiles, the average will be Normal, in which case we will need

only to determine the mean and variance of the percentiles.

2.5. A Numerical Example

We computed optimal menus of contracts for different scenarios. The utility function

that was used is known as the CARA (constant risk aversion) utility function. That

is given a random variable X, that describes the behavior of uncertain profits, with

probability density function fX(x) the utility of outcome x will be u(x) = (1 − e−αx)

the Expected Utility will then be U(X) =
∫
u(x)fX(x)dx. The CARA Utility Function

has constant risk aversion equal to α. In figure 2.3, it can be seen that the greater the

parameter α the more concave the CARA function is and the more the agent dislikes
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risk. In our example we will have U(p(g), e) = u(p(g) − φ(e)) where φ(e) is convex in

e.

Figure 2.3: CARA Utility Function

2.5.1. Scenario: Mean Response Time and CARA Utility Func-

tion

We considered a case in which the quality variable is q = −t̄, where t̄ is the the realized

Average Response Time, and is Gamma distributed. The g function, which represents

the monetary valuation that a client gives to the quality variable, was taken to be of

the following form

gk,m,t(x) =

{
m(x− t) + k; if x ≤ t

k if x ≥ t

Different types of clients are parameterized by having different values k,m and t. The

g function will increase linearly in −t̄, with slope m, until a point in which it becomes

constant and equal to k. The reason to assume this form of g function is that we as-

sume that the clients value more quality up to a certain point in which they “saturate”:

greater quality does not increase his monetary utility any further. In this scenario we

assume that the clients and the SP have CARA utility functions.
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We will let the parameter of risk aversion α to vary for all agents. The value of T̄

was taken to be 0.5 and we assume there is the same proportion of clients from each

client type. The optimization problem was solved using the First Order Approach al-

though conditions given in Lemma 1 were not verified. The validity of the approach

was verified ex-post. The set of efforts per client will be bounded below. For practical

reasons in the numerical computations, for each client type θj, eθj
was taken such that

eθj
∈ [

λθj

µθj

+ ε,∞), with ε small. We don’t include the multipliers that correspond to

the lower bounds of effort in the First Order Condition that represents (2.10), because

we assume that the solution of (2.10) will be interior, which is later verified in practice.

2.5.1.1. Varying Risk Aversions

As a first analysis let’s suppose that the SP is facing clients that have the same valua-

tions of the service, that is, the same g function, that is shown in figure 2.4, but they

differ in the risk aversion parameters α. Clients of type 1, 2 and 3 will have risk aversion

equal to 3, 1.5 and 0.1, respectively. The values of V̄ were varied with α keeping the

certainty equivalent fixed. In tables 2.1 and 2.2 we present the parameters used for the

computation of the optimal menu of contracts and in table 2.3 we present the optimal

menu of contracts obtained. Parameters µ and λ didn’t change across client types and

were 5 and 100 respectively.

Figure 2.4: Example of "g function” (m=10, k=150000, t=-2.5)
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Table 2.1: Parameters Service Provider
Cost Parameter of SP

2200 1.5

Table 2.2: Parameters Clients
Type of Client V̄ Risk Parameter of Clients

Type 1 0.78 3

Type 2 0.53 1.5

Type 3 0.049 0.1

In figure 2.5 we present a plot of the contracts obtained. The dashed lines represent the

mean payments that each client type will make. The clients of type 1 who are the most

risk averse will pay more for qualities that are above the mean than the other client

types, and will pay less for qualities under the mean. That is,the more averse clients

are better insured to variatons of quality. The opposite is true for clients of type 3 who

are the least risk averse.

Figure 2.5: Different Risk Aversions

If now we change the risk aversion parameter of the service provider from 1.5 to 0.5,

the slopes of the linear contracts become higher for all three client types, as it is shown

in figure 2.6. It becomes more costly to generate the right incentives to the SP when

she is less risk averse, and in order to induce effort penalties must be more stringent.

In order to assess the optimality of the menu of contracts presented we pose ourselves the

question of what the profits would be if the SP offered a different menu of contracts.

If the SP offers only one contract to all clients, the self-selection constraints will be
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Table 2.3: Optimal Menu of Linear Contracts
Type of Client Level of Effort Slope Intercept

Type 1 23.46 0.75 -0.13

Type 2 23.39 0.64 0.04

Type 3 23.27 0.44 0.34

Figure 2.6: Changing Risk Parameter of Service Provider

satisfied trivially. If we were to offer only one of the contracts of the three presented

in table 2.3 it would have to be the contract offered to the clients of type 1, because

the contract intended for their own type is the only contract that clients of type 1 are

willing to accept. In figure 2.7 (left) we present the losses that the SP would experience

if she offered such contract, with respect to the optimal menu of contracts in table 2.3.

Profits made from payments of clients of type 1 will remain constant, while profits from

the other two client types will be lower. In table 2.4 we present the optimal contract

that the SP would offer to each client type if she could know which type is which, we

refer to this as the “perfect discrimination case”. If the SP were to offer one of the three,

as before, the only contract that would be accepted by type 1 clients would be the one

that is optimal for their client type. In figure 2.7 (right) we present the differences

between this contract and the optimal menu of contracts in table 2.3. The losses are

lower in this case, but they are positive. Note also that these client types are identical

in every respect except for their risk aversion factors.
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Table 2.4: Optimal Contracts with Perfect Discrimination
Type of Client Level of Effort Slope Intercept Profits per Client Type

Type 1 23.44 0.70 -0.05 48350.25
Type 2 23.37 0.59 0.12 48443.54
Type 3 23.28 0.44 0.34 48573.78

Figure 2.7: Comparisons with Optimal Menu of Contracts
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2.5.1.2. Gold, Bronze and Silver Clients

The framework presented above allows us to compute optimal menu of contracts for

clients who were different in many dimensions. In figure 2.8 we present the g function

for three hypothetical types of clients, the first type will have parameters m = 1, k =

1, t = −2, the second, m = 2, k = 3
2
, t = −1, and the third, m = 1

2
, k = 0.8, t = −3.

We will refer to them as type “Gold”, “Silver” and “Bronze”, respectively, and we will

assume that there is the same amount of clients of each type.

The second type values high quality of service more than the other two (higher k),

however, his profits decrease faster as quality goes down, also his saturation point is

higher. The third type requires lower levels of service, he has a low saturations point,

and his profits don’t decrease very fast if quality becomes lower, he also values the

highest quality less. The first one would be the “middle” type. We will give each client

type a different parameter α and a different value of V̄ .

Figure 2.8: Gold, Silver and Bronze Clients

In tables 2.5 and 2.6 we present the parameters for the SP and for each client type.

The Gold clients will have a higher risk aversion parameter and V̄ , and the Bronze

clients will have the lowest value for those two parameters.

In figure 2.9 we present the optimal linear contract and the respective levels of effort

and in dashed lines, the mean payments. The SP will make more more profits from

clients of type Gold, as it can be seen in figure 2.10.
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Table 2.5: Parameters Service Provider
Cost Parameter of SP

1000 0.1

Table 2.6: Parameters Clients
Type of Client V̄ mu lambda Risk Parameter of Clients

Gold 0.1 5 100 0.3

Silver 0.08 5 100 0.2

Bronze 0.05 5 100 0.1

Figure 2.9: Optimal Contract 1

The contracts have to be translated into (true) quality. In figure 2.11 we present the

contracts in terms of (true) quality, and in dashed lines the mean payments for each

client type. Note that the mean payments will be very close to the highest payments

possible. This is because the efforts assigned to each client, for this example, will deliver

a quality inside the area of saturation with high probability.

2.5.2. Scenario: Mean Response Time and Exp-Var Utility Func-

tion

Very similar results are obtained when the Exp-Var utility function is used. For this

function we didn’t verify sufficient conditions for the FOA approach, but its validity

is confirmed ex-post. The value of T̄ was taken to be 2 and we assume there is the

same proportion of clients from each client type. The “g” function that was used is the

same as in the first part of the previous scenario, and is showed in figure 2.4. In tables
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Figure 2.10: Profits from each client type

Figure 2.11: Quality vs Payment

2.7 and 2.8 and in figure 2.12 we represent graphical representations of the contracts

obtained.

Table 2.7: Parameters Service Provider
Cost Parameter of SP

2200 6

Note that it is not straightforward to make comparisons between the contracts obtained

using the CARA utility function and the Exp-Var. If the agents have different utility

functions, their preferences will be different, even if both utility functions were appro-

priate to represent their preferences, a calibration of the parameters has to be made.

However, we can see from the results obtained (see table 2.9 and figure 2.12) that we
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Table 2.8: Parameters Clients
Type of Client V̄ mu lambda Risk Parameter of Clients

Type 1 0.5 5 100 3

Type 2 0.5 5 100 1.5

Type 3 0.5 5 100 0.1

Table 2.9: Optimal Contracts
Type of Client Level of Effort Slope Intercept

Type 1 23.02 5.95 -7.93

Type 2 22.99 4.78 -6.17

Type 3 22.89 1.66 -1.49

get analogous interpretations for the contracts for different clients given their risk pa-

rameter.

If now we decrease the risk parameter of SP from 6 to 2, we can see in figure 2.13

that the slopes of the contracts for every client will increase, this has a similar inter-

pretation as in the previous case.
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Figure 2.12: Optimal Contract 2

Figure 2.13: Optimal Contract 3
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2.6. Conclusions

In this paper we have applied contract theory to find an optimal SLA/Contract

given the characteristics of the client and service provider. We also extended the basic

model to take into account the possibility that the service provider will offer different

contracts to different client types,in order to cover varied necessities and to extract more

profits. We demonstrated this through a model of single-tiered IT services. Through the

numerical example,in which a number of insights, that were consistent with economical

intuition, were developed. We also analyzed the conditions under which a First order

Approach can be used, based on the literature of the principal-agent problem. In

practice, the usefulness of our model, if calibrated correctly, is to give benchmarks for

future contracts, in each stage of an eventual negotiation process. For calibrations

purposes, information of past contracts can be used. It is important to note that there

still are aspects of the determination of SLA/Contracts that are not tackled here. For

instance, our framework requires that the agents have a great deal information about

each other. This is not generally the case, since, in reality, there might exist a gap

of information between the agents. A possible line for future research that could be

accounted for, and in turn, this could also give us a greater understanding on how the

bargaining (negotiation) process takes place.
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