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Resumen 

El manejo de incerteza es de gran importancia en el campo de la Robótica Móvil. La 

correcta estimación y reducción de la incerteza respecto al estado de un robot y su entorno 

pueden tener un tremendo impacto en el nivel de éxito del robot al realizar una tarea. Esta 

tesis aborda los problemas de la correcta estimación y la reducción de esta incerteza. 

El problema de estimar correctamente la incerteza es abordado a través del desarrollo de un 

método innovador, llamado Heteroscedastic-Gaussian-Process Extended Kalman Filter 

(HGP-EKF), el cual es una mejora del método existente llamado Gaussian-Process 

Extended Kalman Filter (GP-EKF). Las principales contribuciones de HGP-EKF en 

comparación con GP-EKF son las siguientes: la regresión y uso de la varianza expresada en 

los datos de entrenamiento como una función del estado que se está estimando, la habilidad 

de aprender matrices de covarianza no diagonales, y el uso de parámetros adicionales que 

pueden entregar pistas para mejorar los modelos observacional y del proceso. 

El problema de reducir la incerteza mencionada es abordado mediante el desarrollo de un 

método de visión activa, llamado Task-Oriented Active Vision (Visión Activa Orientada a 

la Tarea). La principal contribución del paradigma de la visión activa orientada a la tarea, 

en comparación con otros métodos probabilísticos existentes en la literatura, es que ella 

intenta explícitamente reducir los componentes de la incerteza acerca del estado más 

relevantes para la ejecución de la tarea actual. Esta reducción focalizada de la incerteza 

acerca del estado se logra a través de la consideración de una función de valor relacionada 

con la tarea que se está ejecutando. Los resultados obtenidos muestran que los métodos de 

visón activa orientados a la tarea tienen un mejor rendimiento que aquellos basados en la 

teoría de la información cuando la tarea no es la reducción de la incerteza en sí misma. 

En conclusión, se ha demostrado que el correcto uso de la incerteza puede mejorar el 

rendimiento de un robot en términos de estimar el estado y ejecutar la tarea actual. 
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Abstract 

Handling the existence of uncertainty is a key issue in the field of mobile robotics. Both 

correctly estimating and reducing the amount of uncertainty about the state of a robot and 

its environment  can potentially have a tremendous impact on the performance of the robot 

in a determined task. 

This thesis addresses precisely these problems of correctly estimating and reducing this 

uncertainty. 

The problem of correctly estimating uncertainty is addressed by developing a novel 

method, called Heteroscedastic-Gaussian-Process Extended Kalman Filter (HGP-EKF), 

which is an improvement over the existent Gaussian-Process Extended Kalman Filter  

(GP-EKF) method. The main contributions of HGP-EKF in comparison to GP-EKF are the 

following: the regression and use of the variance expressed in the training data as a function 

of the state being estimated, the ability to learn non-diagonal covariance matrices, and the 

use of additional parameters that can offer clues to improve both the process and the 

observational models. 

The problem of reducing the aforementioned uncertainty is addressed by developing an 

active-vision method. This active-vision method is called Task-Oriented Active Vision. The 

main contribution of the paradigm of Task-Oriented Active Vision in comparison with 

other probabilistic methods discussed in the literature is that it explicitly intends to reduce 

the components of the uncertainty in the state that are most relevant to the task being 

executed. This focused reduction of the uncertainty in the state is achieved by considering a 

value function that is related to the task being executed. The results obtained show that 

Task-Oriented Active Vision methods have a better performance than the information-

theory based ones when the task is not the reduction of uncertainty itself. 

In conclusion, it has been shown that the correct handling of uncertainty can improve the 

performance of a robot in terms of both estimating the state and executing the selected task. 
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Chapter 1. Introduction 

1.1 General Motivation 

There has been a great deal of research in the field of mobile robotics in recent decades and 

today it continues to be the subject of increasing interest. The reason for this intense 

research activity is clear: robots are expected to become a very important part of human life 

in the next decades. Analogously to what happened with computers in the eighties and 

nineties, the expectation is that robots change from being a very expensive piece of 

laboratory equipment with few practical applications to having a more mainstream presence 

in homes, offices, and industries, with thousands of applications. Of course, there is still a 

gap that must be filled before this hypothetic situation becomes a reality. This gap has 

several components, including many hardware and software features that will need to be 

improved. 

1.2 Definition of the Problem  

This work addresses the problem of handling uncertainty in a mobile robot that is 

performing a non-trivial task in a complex and dynamic world. Most real robots’ controllers 

are based on digital computer and thus they must make decisions in discrete time. 

World

Action

Reward

Observation

Mobile Robot
 

Figure 1. Interaction between a mobile robot and its environment. 
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Therefore, a natural approach for executing a task is the sequential decision-making 

approach. In the sequential decision-making approach, time is discretized and in every 

instant, the robot: (i) executes an action which influences the world, then (ii) senses an 

observation from the world, and finally (iii) receives an immediate reward depending on 

how successfully the robot is performing the task. This interaction is illustrated in Figure 1. 

While the world is infinite dimensional, there is often a finite set of variables that can 

define the most relevant part of the world from the viewpoint of the task being executed. 

This set of variables is known as the state. The state evolves through time in a manner that 

might be partially or totally unknown to the robot. The evolution of the state is influenced 

by the robot’s actions, while at each instant the observation measured and reward received 

by the robot are influenced by the state. 

In order to understand the sources of uncertainty, we will first conduct a brief review of the 

information that the robot uses to model the world and make decisions and the way this 

information is used. 

The most obvious sources of information for a robot are its sensors. Sensors gather 

information from the world and make it available for the robot. If the sensors were perfect, 

no additional information or uncertainty treatment would be necessary. Unfortunately, 

sensors are far from being perfect and the sensorial information is: 

 Limited: The information collected by sensors is limited for several reasons. From a 

theoretical point of view, the world is infinite dimensional while sensorial 

information is always finite dimensional. In most mobile robotics applications, the 

sensors are embedded in the robot itself. Thus, severe weight, space, and energy 

consumption constraints may be imposed on the sensors. Additionally, most sensors 

have a limited range in terms of distance and their resolution decays with distance. 

Several families of sensors also have a limited angle range (for example laser, sonar 

and visual sensors). Moreover, most sensors are affected by occlusions. Of course, 

there are always cost considerations in the design of a mobile robotic system that 

also restrict the sensing capabilities of the robot. There are also computational 

limitations that restrain the quantity of sensorial information the robot can process 

in real time.  
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 Indirect: The sensorial information does not necessarily contain the state and there 

is not necessarily a map from the sensorial information to the state. Therefore, many 

times the sensorial information only gives incomplete clues about the state and the 

latter must be inferred from the former. 

 Noisy: The sensorial information is naturally noisy. Each kind of sensors has its 

own sources of noise. 

Other key information sources are the models that the robot has related to its interaction 

with the world. These models usually include: (i) a process model that describes the 

dynamics of the evolution of the state and, therefore, the influence of the action on the 

state, (ii) an observational model that depicts the influence of the state on the observations, 

and (iii) a reward model that quantifies the immediate gain that the robot will get from a 

given state. Most of the time, these models are only partially known and there is a great 

amount of uncertainty stemming from this lack of knowledge. Furthermore, generally the 

observational and process models do not only depend on known variables, such as the 

previous action, or partially known variables, such as the state, but also on totally unknown 

variables that cannot be measured or inferred in any way. These sets of variables are 

respectively called the observational noise and process noise. 

While handling uncertainty in a mobile robot is a very complex topic with several aspects 

to be considered, this thesis addresses the problem from two viewpoints. 

The first viewpoint relates to model learning and characterization of uncertainty. As it was 

already stated, most of the time, the observational and process models are unavailable 

and/or their theoretical versions are too inaccurate. Furthermore, the noise statistics are 

often assumed to have arbitrary values or learned from data but with stationarity 

assumptions. From this viewpoint, this thesis work presents a method for simultaneously 

learning the models and the noise statistics conditioned on the state, the action and possibly 

other variables. 

The second viewpoint is that of task-oriented uncertainty reduction using active vision. The 

main idea behind this approach is to modify the optimality criterion in an active-vision 

system so that the system minimizes the most relevant components of the uncertainty in the 

state for the task being performed. 
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1.3 Notation and Basic definitions 

In time step k, the world state, 
kx , is the set of the relevant variables that describe the 

current condition of the world in order for the robot to make decisions. Let 
ku  denote the 

robot’s action, and 
kz  the robot’s observation. Let us define  1, ,k kU  u u  and 

 1, ,k kZ  z z  as the respective sets of actions and observations up to instant k. Then, we 

can define the state belief, or simply the belief,    ,k k k k kb p U Zx x , as the pdf of 
kx  

given all the observations and actions up to time step k.  

The state is typically expected to fulfill the Markov property, which means that it contains 

all the information provided by the past observations and actions. In other words, given the 

state 
kx  at time k, the actions’ and observations’ sets, 

kU  and 
kZ , do not provide 

information about the next state, 
1kx . Put in equations, 

   1 1 1 1, , ,k k k k k k kp U Z p   x x x x u . (1) 

In order to model the dynamics of the state and the observations, we define two 

probabilistic models: the process model,  1 1,k k kp  x x u , which models the effect of the 

robots’ actions in the state transitions, and the observation model,  ,k k kp z x u , which 

models the relationship between the current state and the current observation.  If the next 

state and the observation do not depend on additional known variables, the process and 

observation models become functions, respectively:  1 1, ,k k k kf x x u w  and 

 , ,k k k khz x u v  with 
kw  and 

kv  respectively the process and observational noises. In the 

Gaussian case, 
kw  and 

kv  are zero-mean Gaussian noises with their respective covariance 

matrices 
kQ  and 

kR . The Jacobians, with respect to the state, of f  and h  functions are 

noted as 
kF  and 

kH , and we can refer to them as the process and observation Jacobians. 

For any task that the robot is performing, we should be able to define a task value function, 

 k kV x , which tells the robot how convenient the state 
kx  is for the accomplishment of this 

task. Depending on the complexity of the task,  k kV x  might be obtained from simple ad-

hoc heuristics or calculated from popular methods like Markov Decision Processes or 
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Reinforcement Learning [39]. Note that the function  k kV x  is, in general, dependent on k
1
. 

In the case when  k kV x  does not depend on k, the subscript can be omitted. 

1.4 Objectives 

1.4.1 General Objective 

The general objective of this thesis is to study the relevance of handling uncertainty in the 

performance of a mobile robot while it is executing a determined task. This performance 

will be measured as the mean in time of a reward function that is adequate to the task being 

executed. 

1.4.2 Specific Objectives 

The specific objectives of this thesis are the following: 

 To evaluate the utility of making a characterization of the uncertainty in the 

observations and actions as a means to achieve a better performance of the robot’s 

state estimation and decision making. 

 To develop an active-vision system for mobile robots that can reduce the robot 

uncertainty in order to maximize the robot’s performance on an arbitrary task. 

 To study the feasibility of developing a robot control system that handles 

uncertainty in real time. 

1.5 Hypotheses 

The hypotheses of this thesis are the following: 

 It is possible and convenient for an active vision system to explicitly consider the 

task that the robot is performing in order to direct the uncertainty reduction to the 

most relevant components. 

                                                 

 

 

1
 An example of tasks in which kV  depends on k is when the task has a finite time horizon, because kV  might 

depend on how much time is still available for the task execution. 
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 By making the process and observational noises, instead of fixed statistics, 

functions of the current estimated state, action and observation, it may be possible 

to improve the performance of the state estimation process. 

 It is convenient for the state estimation process to collect and consider some 

additional parameters in the perception and actuation processes. These additional 

parameters can be collected from additional sensors in the robot, and from 

intermediate variables in the perception process that are not considered in the 

observation itself. 

1.6 Background 

1.6.1 Two-Dimensional Reference-System Transformations 

Every position or pose
2
 is referred to a determined reference system (RS). It is of great help 

for the state estimation methods in mobile robotics to define operations of RS 

transformation. First, let us note that a RS itself can be defined by a pose with respect to an 

implicitly defined absolute RS, where the position corresponds to the origin of the RS and 

the orientation corresponds to the rotation of the RS. Then, given any arbitrary pose, 

 , ,
T

x yp p pp , we can define transformations between the absolute RS and any arbitrary 

RS,  , ,
T

x ys s ss . The transformations go in both directions: 

 
 

, pos pos

rel abs

Rot s
T

s p



 



  
  

 

s p
s p , (2) 

 
  

,
pos pos

abs rel

Rot s
T

p s



 



  
  

  

p s
s p .

 
(3) 

                                                 

 

 

2
 A pose is defined as the position and orientation of an object. 
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Where  ,pos x yp pp  and   ,pos x ys ss  are the positions of respectively p  and s , and 

 Rot   is the rotation matrix for angle  . It is also interesting to calculate the Jacobians 

of these functions with respect to the RS and the parameter pose: 

   2 2

1 2

,
0 1

rel abs pos
T I Rot s 



 
 

   

p
s p

s
, (4) 

 
 

1 2

0
,

0 1

rel abs
Rot sT 



 
  

  
s p

p
,
 

(5) 

      

1 2

,

0 1

abs rel pos pos
T Rot s Rot s 



      
   

s p
s p

s
,
 

(6) 

 
 

1 2

0
,

0 1

abs rel
Rot sT 



 
  

  
s p

p
,
 

(7) 

where N NI   is the N N

 

identity matrix, 0N M  is the N M  zero-valued matrix, and 

 Rot   is the element-wise derivative of  Rot   with respect to  .

 
1.6.2 Approximated Integration 

In general, an integral of the form    p a q a da , where  p a  is a continuous pdf and 

 q a  is any function of the 
aD -dimensional random variable a , is not computable. One 

obvious approximation consists of discretizing the space of a  and summing the integrand 

over all the discretization points,  ia , yielding    i i

i

p a q a . This approximation is, in 

general, inefficient since most of the points  ia  may be in regions of the space where p  is 

zero or too small. A more efficient technique is to use sampling techniques for 

approximating these integrals. If it is possible to sample 
aN  weighted samples from  p a : 

  ,a a

i iχ , with 1a

i

i

  . Then, the former integral can be approximated to: 
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     a a

i i

i

p a q a da q χ . (8) 

In many practical applications the pdf’s are considered to be Gaussians. Furthermore, as is 

argued in [28], almost any continuous pdf can be approximated by a sum of Gaussians, and 

then it is possible to obtain samples from them using Gaussian sampling. We consider two 

alternatives for sampling from a Gaussian’s pdf  ,a aN   : random sampling and 

deterministic sampling. In the following subsections we will detail these procedures. 

1.6.2.1 Random sampling 

This method is also known as Monte Carlo, and it has been widely used over the last 

decades for several applications, including active vision [11], [28], [29]. There are several 

methods for obtaining a random sample from a Gaussian (see for example [42]). If the 

sampling procedure is repeated 
aN  times, then  a

iχ  is obtained. The weights are set all 

equal: 1a

i aN   

1.6.2.2 Deterministic Sampling 

1.6.2.2.1 Mean 

This is a trivial and widely used procedure, most of the times without making it explicit. It 

consists of considering only one sample, in the mean of the pdf, i.e., 1aN  , and 

     , ,1a a

i i a χ . This great simplicity comes at the price of a poor representation of 

the pdf. 

1.6.2.2.2 Sigma Points 

In a sigma point scheme,   ,a a

i iχ  are sampled following some deterministic pattern that 

conserves the pdf’s two first moments. A common procedure for achieving this property is 

to obtain a square root, 
aS , of the covariance matrix 

a , i.e., a matrix 
aS  that fulfills the 

property: 
T

a a aS S  . If 
j

as  is the j
th

 column of 
aS , then the following selection of 

  ,a a

i iχ  ensures the two first moments conservation: 
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0

1,

1,2a

a

a i

i a a a a

i D a a
a a a

i

D i D

i D D
D



 

  





   
  

 

χ s

s

. (9) 

The corresponding weights are: 

 

 

0
0

1 ~

2

aa

i

a

D i

D










  

 

 

. (10) 

Where   is a scaling’s parameter that determines the spread of the samples. In our 

particular implementation, we have set the scaling parameter   to 1. Note that in this case, 

2 1a aN D  . 

Two methods for obtaining 
aS  from 

a , which derive in two different sigma-point 

methods, are mentioned: The first one is called the Unscented Transform (UT) [43], and in 

this case, 
aS  is selected as the Cholesky decomposition [42] of 

a . In this case, 
aS  is a 

triangular square root of 
a . The second one is based on the Singular Value Decomposition 

(SVD) [42], which for a covariance matrix is equivalent to the Eigenvalue Decomposition
3
. 

Then, from the SVD, we get a decomposition of the form 
T

a a a aV ΛV   where 
aΛ  is a 

diagonal matrix with the eigenvalues of 
a  in its diagonal. There is a trivial square root 

aL  

of 
aΛ  which is a diagonal matrix where each diagonal element is the square root of the 

corresponding eigenvalue in 
aΛ . Thus, 

aS  may be selected as 
a a aS V L  which is obviously 

a square root of 
a . 

                                                 

 

 

3
 Since the covariance matrix is symmetric and positive semi-definite, SVD and the eigenvalue decomposition 

are equivalent. 
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1.6.3 Bayesian Estimation 

As previously stated, one of the main uncertainties a mobile robot must deal with when 

solving non-trivial tasks in a complex and dynamic world is the state uncertainty. This 

uncertainty comes from the fact that the main variables that influence the robot 

performance may be only partially observable. 

Several state-estimation methods have been used to solve different problems in robotic 

applications. The most successful known methods for solving the state-estimation problem 

are the so-called Bayesian state-estimation methods. This subsection introduces Bayesian 

state-estimation methods while the related literature is reviewed in subsection 3.1.1. An 

excellent survey for Bayesian state estimation can be found in [48]. 

Bayesian filters are probabilistic state estimators that recursively maintain an estimate of 

the state belief. Bayesian filters rely heavily on the Markov assumption. Given this fact, 

Bayesian filters execute two stages in every instant: prediction and correction. These stages 

are depicted in figure 2. 

 

Figure 2. Bayesian filters for state estimation: predictive and corrective stages. 

 

In the predictive stage, the filter calculates the prior belief, which is the result of modifying 

the posterior belief of the previous instant by adding the effect of the inputs. The prediction 

stage is performed in accordance with the process model. In the corrective stage, the filter 

calculates the posterior belief by conditioning the prior belief on the observations. The 

correction stage is performed in accordance with the observational model. There is an exact 

analytic solution for the Bayesian filtering problem with arbitrary models and pdf’s. 

Prediction Corrección Prior Belief 

Inputs Observations 

Posterior 

Belief 

Posterior 

Belief 
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Unfortunately, this solution is computationally intractable since it contains integrals over 

the state and observational spaces. 

There are specific situations in which the state estimator can be implemented 

computationally. For example, if both the process and the observational models are linear, 

the system is called linear. The state estimator for linear systems is much simpler than the 

general case. The state estimators also become significantly simpler when the spaces of the 

belief and of the pdf’s of the noises are restricted. For instance, if the state and 

observational spaces are finite, then the integrals over the state space become computable 

sums. Another restriction of the pdf’s that might lead to simplifications is when they belong 

to any family of parametric functions from which Gaussian pdf’s are a notable case. 

Sometimes these restrictions over the models and/or the pdf’s are assumed to be held by the 

system even when they are not. These assumptions lead to approximate solutions that, 

depending on how far the real system pdf’s are from the assumed ones, could result in the 

poor performance of the state estimator. The so-called Kalman Filter (KF) estimates the 

mean and covariance matrix of the state when the models are linear. There are at least two 

relevant KF-based approximations for the non-linear case: the Extended Kalman Filter 

(EKF), based on the linearization of the models, and the Unscented Kalman Filter (UKF), 

which is based on the Unscented Transform (see subsection 1.6.2.2.2). A different approach 

is that of the Particle Filters (PF), where the pdfs are approximated by using random 

sampling. Due to its relevance to this Thesis, only the KF and EKF will be further 

described in this subsection. 

1.6.3.1 The Kalman Filter 

The Kalman Filter is suitable for systems with linear models with additive noise, i.e., 

1k k k k k k  x
x F x B u w  and k k k k z H x v . If the models are linear and the two first 

moments of the noises are known, the KF is the minimum mean squared error (MMSE) 

estimator for the mean and the variance of the state. The KF has the following predictive 

stage: 

1k k k k k 

 x x x
F B u , (11) 
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T

k k k k k

   x x
F F Q .

 

(12) 

While corrective stage is the following: 

 k k k k k     x x x
K z H , (13) 

 k k k k

   x x
I K H , (14) 

where 
kK  is known as the Kalman gain: 

 
1

T T

k k k k k k k


    x x

K H H H R . 
(15) 

1.6.3.2 The Extended Kalman Filter 

For the non-linear and non-additive case, the Jacobians of the models, k kf  F x , 

k kf  W w , k kh  H x , and k kh  V v , can be used to make a first-order Taylor 

approximation of the solution. The EKF has the following predictive stage: 

 1, ,0k k kf 

x x x
u

, 

(16) 

T T

k k k k k k k

   x x
F F W Q W

. 
(17) 

While corrective stage is the following: 

  k k k k kh     x x xK z , 
(18) 

 k k k k

   x x
I K H , (19) 

where the Kalman gain, 
kK , is now defined as: 

 
1

T T T

k k k k k k k k k


    x x

K H H H V R V . 
(20) 

See a description of the Jacobian and covariance matrices in section 1.3. 

1.6.4 Gaussian Processes for Regression 

Gaussian Processes (GPs) are a non-parametric tool for non-linear regression and 

classification. In this subsection, we will provide a brief summary of GPs from a practical 
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viewpoint. An excellent summary that includes both theoretical and practical aspects and 

references to deeper theoretical insights can be found in [32]. Although we are only 

interested in the regression capabilities of GPs, they can also solve classification problems 

as is also shown in [32]. 

The regression problem can be defined as the problem of learning a function f  from finite 

data samples   ,i iyx .
4,5

. We are interested in the case when these samples have an output 

noise, i.e.,  i i iy f  x . GPs are able to solve this kind of regression problems at least 

when the noise i  is assumed to be Gaussian with zero mean and arbitrary variance 2

n . 

Furthermore, for any arbitrary input test, GPs are able to give a predictive mean and 

variance of the output. 

1.6.4.1 Covariance Functions 

Covariance functions are a key component of GPs for regression and classification. 

Covariance functions encode the information of the kind of functions that a GP can learn. 

They also restrict the possible measures of proximity that are necessary for the regression 

mechanism to operate. Usually covariance functions have parameters, called 

hyperparameters and denoted θ , but the GPs theory brings a method to calculate them 

from data and that is why GPs are said to be non-parametric (even when the selection of the 

covariance function itself is a parameter). 

There are several kinds of covariance functions examined in the literature and some of them 

are described in [32]. The covariance function is defined as the covariance of the outputs of 

f  for two input points: 

      , cov ,k f f x x x x .  (21) 

                                                 

 

 

4
 Even though the state (contextualized in the state estimation problem) is noted by x  in the rest of the 

document, in subsections 1.6.4 and 1.6.6, x  will stand for a regression input. 

5
 Note that in this definition, the output iy  is one-dimensional. This restriction will remain valid up to 

subsection 1.6.4.3. The multiple-output problem is mentioned in subsection 1.6.4.4. 
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The selection of an adequate covariance function is crucial for the correct resolution of a 

determined problem. Since the focus of this thesis work is not in the theoretical aspects of 

GPs, we will only make use of the most common covariance function, which is the squared 

exponential covariance function: 

     2 1
, exp

2

T

fk W
 

      
 

x x x x x x . (22) 

Where W  is a diagonal matrix with scaling factors in its diagonal. Then, for the squared 

exponential covariance function, the hyperparameters are the so-called signal variance, 
2

f , 

the scaling factors in the diagonal of W , and the noise variance 2

n . 

1.6.4.2 Prediction 

Given a covariance function and a set of values for its hyperparameters, a GP can predict 

the output mean and variance for any arbitrary input point set.  

For convenience, given a set of input vectors,  ix , we will define its aggregated matrix 

as: 

    1i nAgg   x x x . (23) 

Then, let X  denote the aggregated matrix of the training input set,  ix , and y  denote the 

transposed of the aggregated matrix of the training output set,  iy . Note that, since the 

output is one-dimensional, y  is actually a vector. If we have a set of test inputs,  *ix , then 

let *X  denote the aggregated matrix of  *ix . Additionally, let us define 

    * * * *, vari i i if f N f f x , which of course is a random variable. Finally, let *f  denote 

the aggregated matrix of  *if , 
*f  its mean and  *cov f  its covariance matrix. 

Given two aggregated matrices X   and X   of respectively the input sets  ix
 
and  ix , 

we can define the covariance matrix between X   and X  ,  ,K X X  , as the matrix 

whose components are defined by: 

   
,

, ,i ji j
K X X k    x x . (24) 
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Let us define  ,XK K X X  and call it simply the covariance matrix, and let us define 

 * *,K K X X . Then, the predictive mean and covariance of *f , given the input vector set 

 *ix , are [32]: 

 
1

2

* *

T

X nK K I


 f y , (25) 

     
1

2

* * * * *cov , T

X nK X X K K I K


  f . (26) 

If there is only one test point *x , we can write  * *,K Xk x  and then the predictive mean 

and variance of the output *f , given the input *x , are: 

 
1

2

* *

T

X nf K I


 k y , (27) 

     
1

2

* * * * *var , T

X nf K K I


  x x k k . (28) 

Finally, let us note  *iy  the output set for the test input set  *ix  and *y
 
its aggregated 

matrix. Then, given the assumptions on i , *y  has mean f  and covariance matrix 

  2

*cov n If . For convenience, we will define the functions  *GP x  and  *GP x
 
as 

respectively the predictive mean and predictive variance of *y at input point *x . Put in 

equations, 

   
1

2

* *

T

X nGP K K I 


 x y , (29) 

     
1

2 2

* * * * *, T

X n nGP K K K I K 


    x x x . (30) 

1.6.4.3 Learning 

As it was stated before, there are automatic methodologies to learn the hyperparameters 

from the training data. The main idea behind this process is the maximization of the log 

marginal likelihood, which corresponds to (see [32] for derivation): 

   
1

2 21 1
log log log 2

2 2 2

T

X n X n

n
p y X K I K I  



     y y . (31) 
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Then, the learning process consists of finding the hyperparameter vector that maximizes 

 log p y X . Note that the hyperparameters vector contains a set of parameters for the 

covariance function, that will influence  log p y X  through XK , and 
2

n  that influences 

 log p y X  directly. A convex optimization algorithm may be employed for finding the 

maximum. A useful expression for the maximization algorithm is the marginal likelihood 

gradient: 

 
    2

1
2

log , 1
tr

2

X nT

X n

j j

K Ip y X
K I




 

  
   
  
 

θ
αα , (32) 

where 
j  is the j

th
 element of θ , i.e., the j

th
 hyperparameter, and  

1
2

X nK I


 α y . 

The calculus of the matrix derivatives  2

X n jK I     is detail ed in the following 

element-wise equations: 

 
     

2
2

2

,
,

1 1
exp

2 2

TX n

f j k j k j ki
i i

j k

K I
W

W




    
              

x x x x x x , (33) 

 
   

2

2

1
exp

2

TX n

f

K I
W





   
     

  
x x x x

, 

(34) 

 2

2

X n

n

K I
I





 



, 

(35) 

1.6.4.4 Multiple Outputs 

When the output is multidimensional, a multiple-output GP (MOGP) may be defined. 

Although there are formal methods for treating GPs with correlated multiple outputs (e.g. 

[33]), the most common practice is to assume them as independent one-dimensional GPs. 

To do so, given a finite set of data samples   ,i ix y , a set of one-dimensional GPs  jGP  

is defined, where jGP  will perform the regression of the 
thj  dimension of iy . Then, jGP  
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will be a one-dimensional GP that will use as training data the set   ,,i i jyx  where ,i jy  is 

the 
thj  component of vector iy . Then, the predictive mean of the MOGP will be a vector 

formed by the predictive means of each of the one-dimensional GPs, while the predictive 

covariance matrix of the MOGP will be a diagonal matrix containing in each diagonal 

element the predictive variance of the respective one-dimensional GP. Put in element-wise 

equations: 

   * *

j

j
GP 

   MOGP x x , (36) 

 
 *

* , 0

j

i j

GP i j



 
   


x
MOGP x . (37) 

It is also possible to write matrix equations:  

 

   

   

1
1 2 1

1, *

*

1
2

, *

j X n

N N

N j X n

Agg y K I K

Agg y K I K











 


 
 
 
 


  

y y

y

MOGP x , (38) 

 

 

 

1

*

2

* ,

*

0 0

0 0

0 0

n N Ni j

N

GP

I

GP





 



 
 

     
 
 

y y

y

x

MOGP x

x

, (39) 

where        
1

2

* * * * *,
T

j j j j j

X nGP K K K I K


   x x x , N
y  is the dimensionality of the 

output and the superscripts in the covariance matrices stand for the fact that each one-

dimensional GP has its own hyperparameters and consequently different covariance 

function parameters. 

1.6.5 Gaussian-Process Bayesian Estimation 

It is a very common assumption in the Bayesian estimation literature that the observational 

and process models are given. Most of the time, this assumption does not hold and often 

theoretical models do not accurately approximate the behavior of the system in practice. 

Recently, a set of methods that combine GPs and Bayesian estimation has been developed 
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[89][90]. The so-called GP-BayesFilters use the regression techniques provided by GPs to 

build the observational and process model from real data. Furthermore, they make the 

noises’ variances functions of the state. GP-BayesFilters were tested on the estimation of a 

robotic blimp’s 3D kinematic state, which has twelve dimensions [89]. While algorithms 

for instantiating this idea to EKF, UKF, and PF have been developed and published, the 

EKF instantiation will be the only one explained in this document. The reason for this 

selection is that the EKF instantiation, called Gaussian Process EKF (GP-EKF), will serve 

as a base to one of the methods proposed in section 3.1. 

In GP-EKF, training samples are used to predict the process and observational models. The 

observational model GP, noted GPh
, can be learned from a training set   ,i i

h hx y
 
where 

each pair consists of the state and the observation in a determined instant. Analogously, the 

process model GP, noted GPf
, can be learned from a training set   ,i i

f fx y
 
consisting in 

triplets state-action-resulting state. In this case, the input 
i

f
x  is a vector that concatenates 

the state and the action, while the output 
i

f
y  corresponds to the resulting state. 

Additionally, the Jacobians of these models must be calculated in order to use them in the 

EKF linear operations. The Jacobian of the predictive mean of a GP can be directly derived 

from equation (29): 

 
 

1* 2*

* *

T

X n

GP K
K I




 
 

 

x
y

x x
. (40) 

The resulting Bayesian estimation method is summarized in Algorithm 1. Steps 1 to 4 

correspond to the predictive stage, where the predicted mean 
k


x  and variance 

kP  of the 

state are calculated from the estimations obtained in the previous iteration, 1kx , 1kP  , and 

the action ku . Steps 1 and 4 are the standard EKF prediction steps, while in steps 2 and 3 

the process noise covariance, kQ , and the process Jacobian, kA , are calculated. Steps 5 to 

10 correspond to the correction stage, where the corrected mean kx  and covariance matrix 

kP  are calculated from the predicted ones and the new observation, kz . In steps 5 to 7, the 

expected observation, kh , the observation covariance matrix, kR , and the observation 
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process Jacobian, kH , are calculated. Steps 8 to 10 are the standard EKF correction 

equations, including the calculation of the Kalman gain matrix, kK , in step 8. 

Algorithm 1. GP-EKF 
1.   1,k k kGP



 f
x x u  

2.   1,k k kQ GP  f
x u  

3.   1

1

,k k k

k

GP
A











f

x u
x

 

4. 
1

T

k k k k kP A P A Q

   

5.  k kGP
 h

h x  

6.  k kR GP 

 h
x  

7.  k k

k

GP
H

 





h

x
x

 

8.  
1

T T

k k k k k k kK P H H P H R


    

9.  k k k k kK  x x z h  

10.  k k k kP I K H P   

 

GP-EKF uses the independent MOGP algorithm described in subsection 1.6.4.4. 

Consequently, the covariance matrices kQ  and kR  are diagonal, i.e., no correlation between 

the noise components are considered. Furthermore, no information from the training data is 

used to infer the values of kQ  and kR  over the different regions of the state and state-action 

spaces. These covariance matrices ( kQ  and kR ) will increase in some regions only due to 

the lack of training data. 

1.6.6 Heteroscedastic Gaussian Processes for Regression 

The GPs that consider an input-dependent noise are called Heteroscedastic Gaussian 

Processes (HGPs). Because of its relevance for the Thesis, a HGP method that estimates 

the noise variance using a different GP is described in the next subsection, while the HGP 

literature is reviewed in subsection 2.1. 

1.6.6.1 Most-Likely Heteroscedastic Gaussian Processes 

In this subsection, we will briefly describe the HGP method proposed in [36], called Most-

Likely HGP (abbreviated ML-HGP in the present document). The basic idea behind ML-
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HGPs is having two independent GPs, one for the mean and other for the variance. We will 

call them respectively mean-GP and variance-GP and note them respectively mGP  and 

vGP . To guarantee the positivity of the variance predictions, variance-GP actually 

performs a regression not on the variance itself but on its logarithm. Then, for any input 

test, the variance is obtained from the exponential of the log-variance predicted by 

variance-GP. Let   ,m m

i iyx  and   ,v v

i iyx  denote the training sample sets of respectively 

mean-GP and variance-GP. Naturally, the training samples for mean-GP are the same as the 

HGP training samples, i.e.,      , ,m m

i i i iy yx x . For convenience, the training inputs of 

variance-GP are selected to be equal as those of mean-GP, i. e.    v m

i ix x . 

1.6.6.1.1 Prediction 

In ML-HGPs the predictive mean of the variance-GP is used as the noise variance by the 

mean-GP. In other words, for mean-GP, the term 
2

n I  in equations (27) and (28) is 

replaced by     exp v v

n idiagMat GP x  , where  diagMat v  is a diagonal matrix 

with the elements of the vector v  in its diagonal. Additionally, the last term in equation 

(28),
 

2

n , which is related to the observational noise (which in the case of regular GPs is 

assumed stationary) is replaced by an input-dependent value,   *exp vGP x , whose 

estimation is the objective of the regression performed by variance-GP.  

Consequently, the predictive equations are the following: 

       
1

* * *_
T

m m m m

X n iML HGP GP K y 



  x x k , (41) 
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Note the superscripts m  and v  in the covariance function and covariance matrices. They 

specify that the hyperparameters and the training data are selected from respectively mean-

GP and variance-GP.
 6

 

1.6.6.1.2 Learning 

The predictive distribution of the mean-GP is used to generate the training samples of the 

variance-GP. Therefore, both GPs are interdependent. This suggests that a possible training 

procedure alternates between learning the variance-GP hyperparameters with fixed mean-

GP noise variances and vice versa. This is the main idea behind Most-Likely HGPs. The 

hyperparameters learning procedure used in Most-Likely HGPs is summarized in 

Algorithm 2. 

In step 1 of Algorithm 2, the standard GP learning procedure, described in subsection 

1.6.4.3, is used to learn the hyperparameters of mean-GP. Steps from 2.a to 2.d are repeated 

until convergence. 

Algorithm 2. Most-Likely HGP hyperparameters learning. 
1. Learn mean-GP from data using the standard GP learning procedure. 

2. While not converged 

a. Estimate the training samples  v

iy  for variance-GP. 

b. Learn new hyperparameters for variance-GP. 

c. Use variance-GP to predict the noise variance values of mean-GP. 

d. Learn new hyperparameters for mean-GP 

 

In step 2.a, the output training samples for variance-GP are generated using an estimation 

of the process variance. This variance is estimated by sampling from the predictive 

distribution of mean-GP. For each variance-GP training input, v

ix , the corresponding 

training output is calculated as: 

                                                 

 

 

6
 mean-GP and variance-GP have different hyperparameters and training sets and, thus, we must specify 

which sets of hyperparameters and training samples we are considering even when we are using the same 

covariance function. 
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where  ijs  is a set of sN  random values sampled from the predictive distribution, 

    _ , _v v

i iN ML HGP ML HGP x x , at v

ix . 

In step 2.b, new hyperparameters for variance-GP are learned by means of the standard GP 

learning procedure, described in subsection 1.6.4.3. 

In step 2.c, the noise variances for the training points of mean-GP are replaced by the 

variance that variance-GP predicts using the standard GP prediction procedure described in 

subsection 1.6.4.2. In other words, in the next step, the term 
2

n I
 
in equations (27) and (28) 

will be replaced by n . 

In step 2.d, new hyperparameters are learned for mean-GP. The hyperparameter 
2

n  is not 

learned because it is not used anymore. Consequently, the hyperparameter-learning 

equations (31) and (32) are replaced by the following: 
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ML-HGPs are only defined for one-dimensional outputs and there is no suggested 

procedure for expanding them to correlated multidimensional outputs. 

1.7 Contributions 

The present section outlines the original contributions made by this thesis work, as well as 

the publications on which I worked while being a doctorate student. The contributions of 

this work can be divided into those related to the correct estimation of the uncertainty in the 

models and those related to the convenient reduction of uncertainty in the state. 

1.7.1 Estimation of the Uncertainty 

This thesis work presents several original contributions regarding the correct estimation of 

the uncertainty in a mobile robot and, in addition, some of them are applicable to more 
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general scenarios. Given that the contributions in this area make it possible to better 

characterize the uncertainty in the actions and observations of a state estimator, they also 

improve the estimations of both the mean and the variance of the state. 

The first contribution is an original HGP learning method. In contrast with the existent 

HGP learning methods, the one presented in this thesis simultaneously performs the 

estimation of the variance and its regression. This innovative method, called Simultaneous 

Estimation and Regression of the Variance HGP (SERV-HGP) not only extends ML-HGP 

to multiple dimensions but also presents a faster training procedure in the one-dimensional 

case with a comparable performance. 

The second, and most important, contribution is the development of an innovative method 

for state estimation called Heteroscedastic Gaussian Process Extended Kalman Filter 

(HGP-EKF), which is an improvement as compared with the existent GP-EKF method. The 

main advantages of HGP-EKF over GP-EKF are: 

 While GP-EKF is only able to estimate the variance of the noises from the 

uncertainty in the models coming from the lack of training data, HGP-EKF also 

conducts a variance regression using the variance expressed in the training data as a 

function of the state. 

 In contrast with GP-EKF, HGP-EKF is able to learn the crossed components of 

covariance matrices and, therefore, HGP-EKF does not assume diagonal covariance 

matrices. 

 HGP-EKF allows the use of additional parameters that can offer clues regarding 

how to improve both the process and observational model. 

Finally, a specialized GP learning procedure is developed for angle outputs. 

1.7.2 Convenient Reduction of the Uncertainty 

The problem of reducing uncertainty is addressed by developing an active-vision method. 

This active-vision method is called Task-Oriented Active Vision. The main contribution of 

the task-oriented active-vision paradigm over other probabilistic methods discussed in the 

literature is that it explicitly intends to reduce the uncertainty components that are most 
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relevant to the task being executed. This focused reduction of uncertainty is achieved by 

taking into account a value function that is related to the task being executed. 

1.7.3 Related Publications 

There are two publications related to this thesis work (1 ISI and 1 LNCS). Both of them are 

related to the active vision system proposed in Chapter 3. In the following paragraphs, these 

publications are briefly presented. 

In [15] an original active vision system called task-oriented active vision was presented for 

the first time. In this publication, an intuition-based optimality criterion (the minimum 

value variance) was discussed as a means to solve the problem of active vision. 

In [16] task-oriented active vision was more formally presented. Additionally, an original 

optimality criterion (the maximum expected value) was introduced. Finally, in that work 

task-oriented active vision methods were compared to those based on information-theory, 

leading to the conclusion that the former methods outperform the latter ones when the task 

is not uncertainty reduction itself. 

1.7.4 Other Publications 

I contributed to several projects during my doctorate studies. In particular, I was a part of 

the Robotic Soccer Team of the Universidad de Chile. Several publications emerged from 

this work, and they are summarized in the following paragraphs, separated by topic. 

1.7.4.1 Color Segmentation 

In [17], a real time system to segment images using color segmentation is presented. The 

main innovation of this system is the use of the pixel’s context to determine its color class 

from a set of a priori classes that were determined from the pixel color value. 

An automatic color-calibration system is presented in [18]. This system has the ability to 

learn the mapping from color values to color classes with no a priori information using the 

spatial relationships among color classes in the color space. 

1.7.4.2 Use of Context in Robot Vision 

In [19] an original vision system that probabilistically integrates information from the 

spatiotemporal context to improve the detection and tracking of objects was presented. The 
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system is able to integrate information from the current image and previous images and 

commands. For each object, the past information is summarized in a Bayesian state 

estimator. These ideas were further developed in [20][21]. 

1.7.4.3 Localization and Tracking of Objects 

A method for estimating the odometric error of a mobile robot was outlined in [22]. The 

system has many similarities to some Simultaneous Localization and Mapping (SLAM) 

systems. For instance, the system has independent Bayesian estimators for the odometry 

error and each object. The article proposes an egocentric viewpoint of the state estimation 

problem in a mobile robot. 

1.7.4.4 Robot-Soccer Decision Making 

A probabilistic decision-making method for robot soccer was proposed in [23]. The article 

presented a formal derivation of a decision-making system for a robot that must kick the 

ball. The system is able to work in real time and has the natural ability to select between 

kicking to the goal, making direct passes, passes in advance or clearing the ball. These 

decisions are made without the need of explicitly defining these actions. Additionally, the 

proposed system makes it possible to smoothly between offensive and defensive concerns. 

An MDP-based integrated robot-soccer decision-making system was presented in [24]. This 

work proposed several improvements over [23], such as the following: (i) by using an MDP 

model this system is able to take into account several steps in advance instead of just one or 

two, and (ii) this system integrated the whole decision-making problem (kicking and not-

kicking robots) instead of just considering the kicking-robot problem. 

1.7.4.5 Evaluation of Methods 

With the purpose of bringing tools for the evaluation and comparison of vision and state-

estimation methods, the following two works were carried out. First, a benchmark for 

robot-soccer vision systems was introduced in [26]. Then, a ground-truth system for mobile 

robots was presented in [27]. This ground-truth system was used in this thesis to generate 

the ground-truth data used for evaluation of methods in real experiments.  
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1.8 Structure of the Document 

The thesis is organized as follows. First, the present Chapter introduces the reader to the 

topic being addressed and to the thesis work itself. In particular, the objectives and 

hypotheses of this thesis are presented. Additionally, the background necessary for the 

reader to understand the methods discussed in this thesis is introduced.  At the end of this 

Chapter, both the main contributions of the thesis, as well as the publications that helped to 

build the body of work in this thesis are discussed. Then, Chapter 2 presents an innovative 

method for estimating Heteroscedastic Gaussian Processes and the related literature in 

which this method is contextualized. Chapter 3 presents the methods that were developed in 

this thesis to estimate the partially-observable state of a system by learning the models and 

noise statistics from training data sets. In Chapter 4, an innovative task-oriented active-

vision system is outlined. Chapter 5 presents the experimental results for the proposed 

methods and explains the discussion that arises from these results. Finally, Chapter 6 offers 

conclusions based on the methodologies developed and results obtained. 
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Chapter 2. Heteroscedastic Gaussian 

Processes 

Some GPs cannot be assumed to have stationary noise. As such, it is convenient to have a 

regression method with input-dependent noise. The input-dependent-noise version of the 

GPs is the Heteroscedastic Gaussian Processes (HGPs). Section 2.1 reviews the existent 

HGP literature. 

A novel procedure for the estimation of an HGP is presented in section 2.2. This procedure 

is based on ML-HGPs and with the purpose of making it suitable to multidimensional 

outputs and non-diagonal covariance matrices, several modifications to the original method 

are introduced. 

2.1 Literature Review 

There are a large number of publications regarding different theoretical and practical 

aspects of GPs. However, we will only mention some articles related to the problem of 

regression with input-dependent noises. The input-dependent noise regression problem 

involves the estimation of the noise mean and variance. In the literature, there are solutions 

in which this estimation is made separately for the mean and the variance and other 

solutions in which both are estimated jointly. 

One idea belonging to the first group is that of having an independent GP for the noise 

variance. This idea was introduced in [34]. In that work, Markov-chain Monte Carlo 

methods are used to estimate the posterior distribution of the noise variance. Most recently, 

an iterative procedure to estimate alternately the mean and variance GPs was proposed in 

[36]. In this thesis, we propose an HGP method that is based on [36]. 

Examples of joint estimation of the mean and variance can be found in [35] and [37]. 
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It is also worth mentioning the Gaussian Copula Process Volatility model [38], which is 

used to predict the variance in the future of a timed signal from past observations of that 

signal. 

2.2 Simultaneous Estimation and Regression of the Variance HGP 

HGPs are able to produce an estimation of a non-stationary stochastic process and, for each 

input, give an estimation of the output’s mean and variance. In this subsection, an 

innovative HGP estimation procedure called Simultaneous Estimation and Regression of 

the Variance HGP (SERV-HGP) is presented. This procedure is based on ML-HGPs [36], 

where, as it was already proposed in [34], an independent GP is used for the variance. 

SERV-HGP includes several modifications to ML-HGP with the purpose of enabling the 

method to handle multidimensional and correlated outputs. In order to allow the 

multidimensionality of the outputs, the main modification is that in SERV-HGP both mean-

GP and variance-GP are MOGPs (see subsection 1.6.4.4). Thus, we will denote mean-GP 

and variance-GP as  *

m
MOGP x  and  *

v
MOGP x

 
respectively, and their one-

dimensional component GPs as ,GPm j
 and  ,GPv j

 
respectively. 

SERV-HGPs are able to estimate the crossed components of the predictive covariance 

matrix. However, the correlation between output variables is not considered in the mean-

GP, which is a potential improvement in relation to the method presented. 

As described above, the procedure followed by ML-HGP and other related methods in 

order to solve the dependent-noise regression problem is to separately: (i) calculate the 

variance estimate for each training point, and (ii) solve the regression problem for the log of 

the variance. One of the main features of SERV-HGP, from which it derives its name, is its 

ability to simultaneously perform the estimation and regression of the process variance. The 

proposed procedure for accomplishing this task is based on the observation that the 

variance (or the covariance matrix, in the case of multidimensional outputs) itself can be 

defined as an expectation: 

        cov
T

E E E  y y y y y . (46) 

The idea behind SERV-HGP is to use the GP inference capabilities over the training data to 

simultaneously estimate this variance at each point and perform the regression process. As 



29 

such, in SERV-HGP, the random variable whose mean is being estimated by variance-GP 

is the squared deviation of the output y  from its mean: 

     
T

E E y y y y . (47) 

Additionally, SERV-HGP extends ML-HGPs to multidimensional correlated outputs by 

defining an ML-HGP for each dimension and additionally estimating the crossed 

components of the covariance matrix. For any test point, 
*x , we can define a function with 

matrix output,  *
 y

x , as a by-entry regression of the covariance matrix of the 

correspondent output y : 

    * *

v

SymR 
 y

vecx MOGP x , (48) 

where  SymM R 
vec

v  is the M MN N  symmetric matrix resulting from reshaping the 

vector v  into a triangular matrix and then copying the non-diagonal elements to the empty 

triangle to ensure M  being symmetric. Note that the dimension of v  must be 

 1 2N N 
v v . An inverse function,  SymR M

vec
v , can be also defined. Figure 3 

illustrates the reshaping pattern used by these functions. 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 3. Example of the reshaping pattern of functions  SymR vec
v  and 

SymR vec
 for a 3x3 matrix. (a) The 

elements of the vector are copied from/to the upper triangle in the symmetric matrix. (b) In the case, of 

 SymR vec
v , the elements of the lower triangle are copied to the upper one maintaining the symmetry. 

Note that  *
 y

x
 
is not guaranteed to be positive definite and, consequently, it is not a 

well-defined covariance matrix. With the purpose of having a well-defined covariance 
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matrix that is close to  *
 y

x  (or equal if possible) we define the predicted-from-data 

covariance matrix,  *y
x , as: 

    * * minmax ,   y y
x x , (49) 

with min  an arbitrary small positive value and the function max  defined as: 

  1

minmax ,A V V    , (50) 

where 1A V V    is the eigenvector decomposition of A  and 

   min,diagMat diag   max , (51) 

with  diag M  a vector containing the diagonal of the squared matrix M , and  ,max v  

a function that returns a vector with the same dimensionality as v , with coordinates:  

    , max ,ii
   max v v . (52) 

Note that  *y
x  is ensured to be positive definite and, provided  *

 y
x  is positive 

definite and min  is small enough,    * *
  y y

x x . 

2.2.1.1 Prediction 

Analogously to ML-HGP, in SERV-HGP the predictive mean of the variance-GP is used as 

the noise variance by the mean-GP. In other words, for 
,GPm j

, the term 
2

n I  in equations 

(38) and (39) is replaced by   ,

v

diag j iy x , where   ,diag j iy
x  is a diagonal matrix whose 

diagonal elements are defined by: 

    , ,,
diag j i k j jk k

       
y y

x x . (53) 

Additionally, in equation (39), the observational noise term, 
2

n N NI y y
, (which is assumed to 

be stationary and does not consider the crossed components of the covariance matrix) is 

replaced for the input-dependent covariance term,  *y
x , which does consider the crossed 

components of the covariance matrix. 

Consequently, the predictive equations are the following: 
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The term          
1

, , , , ,

* * * * , *,
T

m j m j m j m j v m j

X diag j iGP K X X K K K


   y
x x  accounts for the 

component of the covariance matrix provided by the lack of training data in the vicinity of 

*x . 

2.2.1.2 Learning 

Algorithm 3 summarizes the resulting learning method. Step 1 of Algorithm 3 is analogous 

to that of Algorithm 2, i.e., the standard GP learning procedure, described in subsection 

1.6.4.3, is used to learn the hyperparameters of each of the one-dimensional component 

GPs of mean-GP. Steps from 2.a to 2.d are repeated until convergence. 

 

Algorithm 3. SERV-HGP hyperparameters learning. 
1. Learn mean-GP from data using the standard GP learning procedure. 

2. While not converged 

a. Calculate the training samples  v

iy  for variance-GP. 

b. Learn new hyperparameters for variance-GP. 

c. Use variance-GP to predict the noise variance values of mean-GP. 

d. Learn the hyperparameters of mean-GP 

 

In step 2.a, the output training samples for variance-GP are generated. Differing from ML-

HGP, the training samples are set to: 

      _ _
T

v v v

i Sym i i i iR SERV HGP SERV HGP   vecy y x y x . (56) 

Where  _ v

iSERV HGP x , the predictive mean at v

ix , is used to approximate  iE y . 
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Analogously to ML-HGP, in step 2.b, new hyperparameters for each of the one-

dimensional component GPs of variance-GP are learned by means of the MOGP learning 

procedure, described in subsection 1.6.4.4. 

In step 2.c, the noise variances for the training points of mean-GP are replaced by the 

variance that variance-GP predicts using the standard GP prediction procedure described in 

subsection 1.6.4.2. If necessary, these values are fixed to be positive. In other words, the 

term 
2

n I
 
in equations (25) and (26) is replaced by   ,

v

diag j iy x . 

In step 2.d, the hyperparameters of mean-GP are relearned without varying the noise 

variance. 
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Chapter 3. HGP-Extended Kalman Filter 

As Ko et al. already suggested in [89], one of the main flaws of GP-BayesFilters is that 

they do not learn the variances of the noises from the data. Instead, they just use the 

prediction variance from GP’s to build the variances of the noises. Furthermore, they do not 

take into consideration the crossed components of the noises’ covariance matrices, i.e., they 

assume them to be diagonal. 

Section 3.2 describes the core of the proposed methodology, which is a Bayesian filtering 

methodology that is based on GP-EKF. The main improvement over GP- EKF proposed in 

this work is the use of an HGP to estimate the means and covariance matrices of the 

observational and process noises. By using an HGP instead of a GP, the system has the 

ability to learn not only the component of the variance that comes from the lack of data, but 

also the component that is expressed in the data. Furthermore, the system is able to learn 

the crossed components of the covariance matrix. Additionally, section 3.3 proposes an 

innovative methodology that takes into consideration additional information in order to 

reduce the inherent uncertainty in the process and observational models. Finally, a novel 

GP-based regression methodology for the learning functions with angle outputs is presented 

in section 3.4. 

3.1 Literature Review 

3.1.1 Bayesian State Estimation 

For the general case, all the Bayesian filters reviewed in this section constitute 

approximations that lead to suboptimal estimations that are practically implementable in a 

computer. There are two main categories that have dominated the literature on Bayesian 

state estimation in the last decades: Kalman filters and particle filters. There are some other 

methods that are based on combinations of filters from these two categories. They can be 

called hybrid filters. Finally, the Markov grids do not fit in any of these categories. 

Therefore, they will be described separately. 
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3.1.1.1 Markov Grids 

The Markov Grids [58] method consists of discretizing the state space in a grid. The 

selected grid must be fine enough to represent the state space. The grid is fixed and usually 

equispaced; thus, some regions of the space are not able to be explored and the method 

remains with a fixed resolution. For high dimensional state spaces, this method has 

significant requirements regarding computational memory and processing in order to 

achieve a reasonable resolution. This undesirable feature is known as the dimensionality 

curse [59]. A better state space discretization is provided by random sampling methods 

since they can adjust the representation of the state space to have more resolution in the 

most probable regions. 

3.1.1.2 Kalman Filters 

Kalman filters are state estimators based on linear operations of the state mean and 

covariance estimators. By construction, the original Kalman filter (KF) [49] minimizes the 

mean squared error (MSE) in the state estimation for linear systems. For this reason, the 

Kalman filter is theoretically optimal using the criterion of minimal MSE (MMSE). One of 

the strongest criticisms that the KF has received is that it assumes gaussianity of the noises, 

which is often not the case. Actually, the lack of gaussianity of the noises is not a problem 

for the KF, but rather, for interpretations of its estimates. The KF is able to estimate the 

mean and variance of the belief without bias even when the noises are not gaussian. The 

problem appears when the belief is multimodal. In such cases, the mean offers poor 

information about the belief, especially if one is interested in the most probable state or 

maximum a posteriori (MAP). Some methods described in the next subsections deal better 

with multimodal beliefs. Given the assumed linearity of the models, the Kalman filter is 

inapplicable for non-linear systems. To apply the linear operatory of the Kalman filter to 

non-linear systems, it is possible to make a linearization of the non-linear models around 

the state estimate. This technique is known as the Extended Kalman Filter (EKF) [50] and 

has been successfully applied to diverse state estimation problems over the last decades. 

The linearization of the models made by the EKF derives into a linear propagation of the 

mean and covariance of the random variables. This linear propagation may cause 

divergences on non-linear systems. For that reason, some methods that try to propagate in 
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different ways these statistics have been developed. One of these methods is the Iterative 

Extended Kalman Filter (IEKF) [51], which make several iterations of the corrective stage 

updating in every iteration the point the linearization is made around. There are also 

methods that propagate the covariances using a discrete representation of the pdf’s obtained 

by deterministic sampling. These methods have been called Linear Regression Kalman 

Filters (LRKF) [52] or Sigma-Point Kalman Filters (SPKF) [53]. Currently, the most 

popular SPKF are: the Unscented Kalman Filter (UKF) [54], which is based on the 

Unscented Transform (UT), the Central Difference Filter (CDF) [55], and the Divided 

Difference Filters (DD1 y DD2) [56]. A SPKF based on Singular Value Decomposition 

(SVD) [48] has also been proposed. Square Root Unscented Kalman Filter (SR-UKF) [57] 

constitutes an efficient implementation of UKF. In an effort to reduce computational 

complexity, SR-UKF maintains the square root of the covariance matrix of the estimator. 

3.1.1.3 Particle Filters 

Particle filters are state estimators that approximate the pdf’s through random sampling. By 

means of maintaining pdf samples instead of a parametric representation, the task of 

propagating a random variable through arbitrary functions, which can be hard for some 

parametric representations, becomes trivial. It is possible to obtain a representation of the 

propagated pdf by applying the desired function to each sample. The particle filters have 

been developed independently in various fields with different names, such as Bootstrap 

Filter [60], CONDENSATION [61][62] and Monte Carlo Filter [62]-[66]. There are 

different techniques for updating the posterior distribution from an observation. Of these, it 

is worth mentioning Rejection Sampling [67], Importance Sampling [68], 

Sampling/Importance Resampling [69] and MCMC [70][71]. In contrast with Markov grids, 

particle filters do not suffer from the curse of dimensionality, but they can converge very 

slowly in high dimensional spaces. Thus, they offer a tradeoff between convergence speed 

and computational complexity that can be easily balanced through the number of particles. 

3.1.1.4 Hybrid Filters 

Hybrid Filters intend to obtain the advantages of the Kalman and particle filters by 

combining them in different ways. Examples of hybrid filters are: Rao-Blackwellized 



36 

Filters (RBF), the particle filters that use Kalman to obtain the proposed distribution and 

the Gaussian Sum Kalman Filters. 

The Rao-Blackwellized filters [72] exploit the model structure with the purpose of 

improving the efficiency and reducing the variance of the estimator. Some Rao-

Blackwellized filters decompose the state space dimensions into two parts. One of them,  

which is assumed to be linear, is calculated using the Kalman Filter, while the other is 

inferred using particle filters. 

Some particle filters use Kalman filters to estimate the proposed distribution. In particular, 

an EKF or UKF can be used to generate and propagate the proposed distribution [73]. In 

the first case, the resulting filter is known as Extended Kalman Particle Filter (EKPF) and, 

in the second case, as Unscented Particle Filter (UPF). There is an efficient variant of the 

UPF, which uses an SR-UKF to generate the proposed distribution. This method is known 

as Square-Root Unscented Particle Filter (SRUPF) [74]. 

The Gaussian Sum Kalman Filters intend to overcome the poor performance of Kalman 

filters when facing multimodal pdf’s. The Gaussian Sum Filter [75][76] uses several 

independent EKF’s to face multimodality by means of letting each mode of the belief be 

tracked by a different EKF. As an output, the Gaussian sum filter offers a linear 

combination of the outputs of these EKF’s. 

3.1.1.5 Applications in Mobile Robotics 

There are diverse applications of state estimators in mobile robotics. Among these 

applications, those that have been investigated the most are Self-Localization and 

Simultaneous Localization And Mapping (SLAM). There are also works in which the static 

and/or kinematic state of other objects are estimated. 

In mobile robotics, self-localization is the process of determining the pose of the robot, 

which is defined as its position and orientation relative to a fixed reference system in the 

environment. There is a huge body of publications regarding mobile localization using 

Bayesian filters. Some of these methods are compared in [77]. There are examples of self-

localization systems based on Markov grids [58], EKF [78][80], particle filters [81]-[83] 

and combinations of the two [84]. 
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SLAM is a very important problem for mobile robotics and it is the extension of the self-

localization problem in cases where there is no previously known map of the environment. 

In this case, the robot must simultaneously estimate two variables: the robot pose and the 

environment map. There is also a large number of publications that outline solutions to the 

SLAM problems that are based on Bayesian filters. The approach presented in [85], which 

uses EKF to solve the SLAM problem, has been followed by several works. It is worth 

mentioning the methods FastSLAM [86] and FastSLAM 2.0 [87], which use Rao-

Blackwellized particle filters to solve the SLAM problem. 

The tracking of moving objects is a very important problem in mobile robotics because it 

greatly influences the ability of a mobile robot to navigate and interact with the 

environment. An example of tracking system for moving objects is discussed in [88]. In 

that work, a Rao-Blackwellized particle filter is applied by dividing the state into a linear 

and a non-linear part. 

3.1.2 Gaussian Process Bayesian Filtering 

Ko et al. proposed Gaussian-Process Bayes Filters (GP-BayesFilters) [89][90] for state 

estimation. The main idea behind GP-BayesFilters is the use of the regression abilities of 

GPs to learn the models used in a Bayesian filter. The main limitation of GP-BayesFilters, 

which was already pointed out by Ko et al., is that they do not learn the covariance matrices 

of the noises from the dispersion of the training data. Instead, they only take into 

consideration the prediction variance provided by the GPs, which correspond to the 

uncertainty in the models. This prediction variance depends only the lack of training data in 

the vicinity of the tested point and not on the variability of the training data. Furthermore, 

GP-BayesFilters assume that the covariance matrices of the noises are always diagonal. 

This assumption may lead to a poorer performance. 

In this thesis, a novel set of methods called HGP-BayesFilters is proposed. HGP-

BayesFilters overcome the previously mentioned flaws of regular GP-BayesFilters by using 

HGPs for both the observational and process models instead of regular GPs. 

Recently, Analytic Moment-based Gaussian Process Filtering (GP-ADF) [91] was 

proposed, where exact expressions for the mean and the covariance matrix are provided for 

both the prediction and the correction steps. 
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3.2 HGP-EKF 

This thesis proposes a method that uses the non-linear regression capabilities of GPs for 

learning the models used in Bayes filters. This method is called HGP-EKF and it is an 

improvement in comparison with the existent GP-EKF method. In contrast with GP-EKF, 

HGP-EKF uses an HGP to represent the observational and process models. By doing so, it 

is able to consider not only the component of the noises’ variance coming from the lack of 

training data, but also the component that is expressed in the training data. 

The SERV-HGP method is selected for handling the required HGPs. The resulting method 

is summarized in Algorithm 4. 
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The calculation of the Jacobians is trivial from equation 54: 
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3.3 Additional Model Parameters 

Sometimes, the robot can sense variables that are not directly part of the observation of the 

action, but can offer some information regarding the statistics of the observational and/or 
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process noises. We will call these variables additional model parameters or simply 

additional parameters. Additional parameters for the process model could include several 

measurements from sensors in the actuators such as current, temperature, pressure or 

position sensors. Additional parameters for the observational model could include 

information from the sensors that could be relevant to estimate the observational noise 

parameters. For instance, the velocity of a robot’s neck could help to estimate the accuracy 

of a measurement made from the robot’s head. 

In order to better characterize the inherent uncertainty in the models, this thesis proposes a 

methodology for using the additional model parameters in the process and observational 

models. 

Then, we can define f

ka  and h

ka  as respectively the process and the observational additional 

vectors at instant k . Consequently, the process and observational models may be redefined 

as: 

 , , ,f

k k k kf x u a w , (58) 

 , ,h

k k kh x a v . (59) 

It is expected that the relationship between the additional parameters and the noise 

parameters will be learned by an HGP. In the HGP-EKF algorithm, this can be easily 

achieved by augmenting the input of the GPs by adding the additional parameters to the 

training and testing inputs. 

In Chapter 5, examples of additional parameters for both the process and the observational 

models are tested on simulated and real robots. 

3.4 Angle Gaussian Processes 

In this section, a modification to regular GPs is introduced that leads to an improvement of 

the performance of the regression when the output is an angle. Let us call a GP modified in 

such a way an Angle Gaussian Process (Angle-GP). Although the case of an output 

variable being an angle is very particular when contextualized on the general regression 

problem, in the context of mobile robotics this case is relevant. This relevance stems from 
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the fact that the orientation of a robot and other objects is a key variable in the processes of 

estimating the robot’s localization and the poses of other objects. 

The motivation for this procedure is that regular GPs perform poorly when solving a 

regression problem with an output variable that corresponds to an angle. The reason for this 

poor performance appears to be the fact that GPs always bring as an output a linear 

combination of the training outputs. However, the linear combination of angles is not a 

good way to combine them. The methodology proposed here intends to overcome this 

problem by emulating a common strategy for combining angles: (i) getting the sine and 

cosine of each angle, (ii) linearly combining the obtained sine and cosine values 

independently, and, (iii) use the arctangent function to get the combined angle form the 

combined sine and cosine. 

Before introducing the Angle-GP methodology, we will introduce an intermediate step, 

which we will call SinCos-GP. SinCos-GP tries to solve the aforementioned angle 

regression problem by separating it into two independent regression problems: one for the 

sine and the other for the cosine of the angle. Two independent regular GPs are trained 

using the standard GP training procedure: one, sinGP , for the sine of the angle and other, 

cosGP , for the cosine. Then, for each test input SinCos-GP will predict independently the 

sine and the cosine of the output angle and will bring as a predictive output for the angle the 

result of the atan2 function applied to the predicted sine and cosine. 

Angle-GP is an improvement over SinCos-GP in the sense that it contemplates the 

correlation between the sine and the cosine of the angle. For this purpose, the same 

hyperparameters are learned for both sinGP  and cosGP  for considering the influence of both 

the sine and the cosine in the learning process, a modification in the log marginal likelihood 

definition in equation (31) is introduced. The new definition of the log marginal likelihood 

is the following: 
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Where sy  and cy  are vectors with the respective sines and cosines of the elements of y , 

i.e.: 

 
    cosc ii
y y ,

 

(61) 

 
    sins ii
y y .

 

(62) 

And  
 c i

y ,  
 s i

y  and  i
y are respectively the i

th
 element of cy , sy  and y . 

Just like SinCos-GP, when a test input x  is presented, Angle-GP uses sinGP  and cosGP   to 

independently predict outputs for the sine and cosine of the angle and then the predicted 

output is calculated applying the atan2 function to them. 

3.5 Composite Models 

Sometimes it can be useful to learn not the models themselves, but rather some related 

functions. In particular, we will explore the situation in which it is convenient to define the 

model as composite functions: 

    1 1 2, , , , , ,k k k k k k k k kf f f  x x u w x u w x u  ,

 

(63) 

    1 2, , , , , ,k k k k k k k k kh h h z x u v x u v x u .

 

(64) 

In this case, the relevant Jacobians of the models can be calculated as: 
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Given these definitions, it is possible to define modified versions of GP-EKF and HGP-

EKF, where the process model and/or the observational model are defined as composite 

functions. In this case the GP or HGP functions take the place of the 2f  and 2h  functions 

in equations (63) to (66). 

3.5.1 Special Cases 

There are some special cases in which the use of composite functions is interesting. One of 

them, already mentioned in [89], is when a theoretical model exists that can be integrated 

into the GP-EKF method. This integration is realized by permitting the GPs to learn the 

error in the theoretical models instead of learning the models themselves. In this case, the 

models take the form: 

      , , , , ,thf f GP
  f

x u w x u w x u ,

 

(69) 

      , , , , ,thh h GP
  h

x u v x u v x u .

 

(70) 

Where thf  and thh  are respectively the process and observational theoretical models whose 

respective errors are learned by the GPs, GP
f

 and GP
h

, which are trained with samples 

of the error of the theoretical models. The Jacobians can be calculated using equations (65) 

and (66). 

For the problems of robot localization and/or local tracking, it is interesting to use the GPs 

to learn the robot dynamics in a relative form instead of directly making them learn the 

process model. This simplification makes sense when the environment is homogeneous 

enough to allow that the behavior of the robot dynamics be reasonably independent of the 

robot position. The robot dynamics can be defined as a function (see subsection 1.6.1 for 

the definition of  T   and the derivation of its Jacobians): 

   1 1, ,dyn k k abs rel k kf T  u w x x .

 

(71) 
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Then, the process model for the localization, Locf , and the process model for the object 

tracking, OTf , can be defined as: 

    , , , ,Loc rel abs dynf T fx u w x u w ,

 

(72) 

    , , , ,OT abs rel dynf T fx u w u w x .
  

(73) 

Consequently, the process Jacobians have the form: 
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Chapter 4. Active Vision 

In this chapter, an explicitly task-oriented approach to the active vision problem is 

presented. The system tries to reduce the most relevant components of the uncertainty in 

the world model for the task the robot is currently performing. It is task oriented in the 

sense that it explicitly considers a task-specific value function. As test-bed for the presented 

active vision approach, we selected a robot soccer attention problem: goal-covering by a 

goalie player. The proposed system is compared with information-based approaches. 

Experimental results show that it surpasses them in the tested application. We conclude that 

the minimization of the belief entropy is not a useful optimality criterion when the goal is 

not the reduction of uncertainty itself, and that for such cases, task-oriented optimality 

criteria are better suited. 

Since this uncertainty may have a tremendous negative impact on the performance of the 

task that the robot is executing, one important issue is how the robot can select actions to 

reduce it. Active vision basically consists of executing control strategies with the purpose 

of improving the perception performance by focusing on the most relevant parts of the 

sensor data. An active vision system may control physical variables, such as gaze direction, 

camera parameters, etc., and/or the way data is processed such as the considered vision 

methodology, region of interest (ROI), resolution, and parameters, etc. The relationship 

between perception and action has been studied in several fields apart from robotics, such 

as neurosciences, psychology and cognitive science. For instance, experiments have shown 

that the task that a human is executing has a strong influence on his/her gaze selection [1]. 

In robotics, this suggests that the selection of the most relevant information must be based 

on the task the robot is performing.  

An autonomous mobile robot must estimate the state of a complex and dynamic world. It 

must pay attention to landmarks in order to self-localize, and to other relevant objects it 

must interact with, like obstacles to avoid, objects to manipulate, targets to pursuit, etc. The 

process of estimating the absolute pose of the robot from landmark observations is known 

as self-localization, while the process of estimating a mobile object position from 
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observations of the object is known as object tracking. Often, a mobile robot must perform 

self-localization and object tracking simultaneously, which is a problem because these two 

processes require the observation of different objects. Self-localization requires the 

observation of landmarks, while object tracking requires the observation of other objects 

defined by the current task. 

In this work, we present a task-oriented approach to the active vision problem, which tries 

to reduce the most relevant components of the uncertainty in the world model for the 

execution of the current task the robot is performing. The proposed approach is task 

oriented because it intends to minimize some statistics that depend on a task-specific value 

function or simply a task value function. A task value function is defined as a function of 

the world state that increases with the degree of convenience of the world state associated 

with the execution of the current task. The output of the system is a selected sensing control 

action, which will determine the most convenient part of the data to focus on. The proposed 

approach is generally applicable for problems where the following assumptions hold: (i) the 

robot has some degrees of freedom that can directly influence the observations but not the 

state (e.g. neck motors), (ii) there is a world-modeling stage which uses a Bayesian filter to 

estimate the world state, and (iii) the task being performed has a task value function 

defined. The existence of a task value function is held by a wide variety of applications 

since it is difficult to even make decisions without a measurement of the convenience of 

each state. 

The general approach being described was tested on a specific application taken from robot 

soccer: goal covering by a goalie player. Robot soccer is a very interesting platform for 

testing robotic methodologies and algorithms since it presents a challenging environment 

and complex tasks [2]. This problem makes the selected application interesting for testing 

the proposed active vision approach. 

Section 4.1 reviews the relevant literature regarding sequential decision-making and active 

vision. While in section 4.2, the problem and its main variables are defined. Section 4.3, 

describes the main assumptions the proposed system relies on. The sensing action space 

and different alternatives for its definition are presented in Section 4.4. Then, section 4.5 

presents the optimality criteria used for the selection of the sensing action. Approximated 

versions of the optimality criteria are described in section 4.6. Following this description, 
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the procedure for updating the belief is explained in section 4.7. Section 4.8 shows the 

connections of the systems with POMDPs. Finally, a robot soccer case study is examined in 

section 4.9. 

4.1 Literature Review 

4.1.1 Sequential Decision-Making 

An agent faces the sequential decision-making problem when it interacts with its 

environment in a discrete-time fashion. As it was explained in section 1.2, in every instant 

the robot is executing an action, which influences the state evolution. As a result, it obtains 

an observation and a reward, both of which are influenced by the world state. Dynamic 

Programming [59] is a common modeling scheme for the sequential decision-making 

problem. Dynamic programming models the state transitions, and the observations in some 

cases, in a probabilistic fashion. If the observations are assumed to be a deterministic 

function, then the resulting model is called Markov Decision Process (MDP) [92]. On the 

other hand, if the observations are modeled probabilistically, then we are in presence of a 

Partially Observable Markov Decision Process (POMDP) [93][96]. There are different 

approaches to solve the sequential decision-making problem. 

When there is no model available of the process dynamics, the agent must learn to behave 

optimally using only the information provided by the obtained rewards and observations. In 

that case, the agent is facing the Reinforcement Learning [39][97] problem. This thesis does 

not intend to solve the reinforcement learning problem. Thus, a further bibliographical 

revision is not included. 

4.1.1.1 Markov Decision Processes 

An MDP is an elegant mathematical model of the stochastic interaction between a decision 

maker agent and an observable environment. MDPs take into account the predictive 

uncertainty. With this purpose, the state transition is modeled as a pdf conditioned on the 

initial state and the executed action. The reward is a deterministic function of the state. The 

MDPs have their origin in the study of dynamic programming [92]. In [92] the recursive 

equation for the value function, known as the Bellman equation, is identified. MDPs can be 

classified as continuous (CDP) or discrete (DDP), depending on whether the state space is 
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continuous or discrete [98]. For DDP’s, there is an exact solution, while for CDP’s there are 

only computable approximations in the general case. The approximate solutions for CDP 

can be divided in two groups: discrete and parametric (also called smooth). The discrete 

solutions make a discretization of the state space and then solve the resulting DDP. The 

parametric solutions approximate the value function to a parametric function with a finite 

number of parameters. In [99], different alternatives for solving CPD’s are compared. 

MDPs do not take into account the observational uncertainty and they can have a poor 

performance when that uncertainty is relevant. 

4.1.1.2 Partially-Observable Markov Decision Processes 

A POMDP is a model based on an MDP that also considers the observational uncertainty. 

Therefore, at every instant, instead of knowing the state, the agent knows the state belief, 

given the past observations. Some of the first approaches to the POMDP idea can be found 

in [95] and [96]. The value iteration algorithm for POMDPs was introduced in [94] and 

[100]. It solves the POMDP problem for a finite number of states but it consumes a huge 

amount of computational resources, even for a very small number of states (less than 100). 

For this reason, several approximate techniques for the solution of POMDPs have been 

developed. Some of them are reviewed in [101]. 

One technique for approximately solving a POMDP assumes that the uncertainty in the 

state exists at the current instant, but will disappear after executing the next action. This 

approximation, known as QMDP [102][103], simply solves the inherent MDP using value 

iteration, and then, in every instant, the value of any resulting belief is approximated by the 

expected value of the value function given the current belief. The main drawback of QMDP 

is that the agent will never execute actions with the purpose of gaining information. 

Another known technique for solving POMDPs is that of Augmented MDP (AMDP) [104], 

which represents the belief using some subset of its statistics assumed to be statistically 

sufficient: the most probable state and the belief entropy. AMDP solves an MDP with a so-

called augmented state consisting of the already mentioned statistics of the belief. By 

adding the belief entropy to the state, an agent using AMDP is able to make decisions that 

will aim to gain information. There is another approximate technique for solving POMDPs 
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known as MonteCarlo POMDP (MC-POMDP) [105], which represents the belief using a 

state sample set. MC-POMDP is able to work with continuous state spaces. 

4.1.2 Active Vision 

The basic ideas of the active vision paradigm were introduced with different names, such 

as: active vision [3], active perception [4], and animate vision [5]. The contribution of this 

paradigm is that it does not consider perception to be a passive process, but as one that 

could conveniently influence the control actions. Since the creation of the active vision 

paradigm, a wide variety of active vision approaches have been proposed. The applications 

of these approaches include the following: object recognition [6][8], self-localization 

[9][11], robot navigation [9], [12], SLAM [13], among others. The controlled variables in 

active vision approaches include, for example, robot movements [9], sensor direction [6]-

[10], [14][29], camera parameters [6], [28], and the order in which the pixels are analyzed 

in the vision module [30]. 

Currently existing active vision approaches may be classified from different points of view. 

Firstly, they can be classified as probabilistic or non-probabilistic approaches. Probabilistic 

approaches estimate the probability density function (pdf) of the state, often called belief, 

based on the past observations and actions, and try to reduce the belief’s uncertainty. Most 

probabilistic approaches reduce the belief uncertainty regardless of the task being 

performed. As a result, they are well suited for applications where the task is the reduction 

of the uncertainty itself, but they are not generally optimal from the task performance point 

of view. These approaches are often based on information theory (e.g. [6], [7], [10], [13], 

[28]). On the other hand, some active vision systems are focused on the performance of the 

task execution. They have been called behavioral [31]. Typically, they learn a mapping 

between the last observation and the next sensing control action, which intends to maximize 

some measurement of the task execution performance [14]. By doing so, they neglect the 

information contained in the past observations and actions. 

There are works that combine both probabilistic and behavioral features. For example, in 

[9], [12], both a belief is estimated and a task-specific cost function is taken into account. In 

both works, the actions have influence on the task being executed and an observational cost 

function is defined. Finally, the cost function is balanced with the information gain using a 

heuristic combination. In [29] the entropy of the self-localization estimate is linearly 
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combined with the entropy of the estimation of a task-relevant object (a soccer ball), which 

does not influence the localization. 

4.2 Basic Definitions 

Without loss of generality, we assume that for each time step k, the events occur in the 

following chronological order (see figure 4): 

 Based on 
1kb 
, the decision-making module decides the best action 

act

ku , which should 

maximize the expectation of the task value function:   act

k k kE V x u . 
act

ku  is executed 

and according to the process dynamics it moves the state from 
1kx  to 

kx . 

 The world-modeling module makes a prediction about 
kx , 

   1 1, , act

k k k k k kb p U Z

 x x u . 

 From the knowledge of 
kb , the robot decides the optimal sensing action 

sen

ku . This 

decision should be made considering some optimality criterion regarding the resulting 

belief 
kb . 

 The robot executes the sensing action sen

ku  and gets the observation 
kz , which is 

influenced by 
sen

ku . 

 The world-modeling module uses the observation 
kz  to update the belief and thus obtain 

kb . 
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Figure 4. Chronological order of events and information flow for instant k, given the state and the belief for 

instant k-1. 

In practice, these events are generally asynchronous. For example, for a legged robot with a 

neck, 
act

ku  is selected before every robot step, while 
sen

ku  could be modified for every 
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image. The former sequence of events is defined using the frequency of selection of 
sen

ku . If 

sen

ku  must be selected more often than 
act

ku , then, we must decompose 
act

ku  into different 

parts and consider that each part of 
act

ku  corresponds to one 
sen

ku . In addition, in order to 

work in real time, it is often convenient that the world-modeling stages of prediction and 

estimation are asynchronous to this decision-making process. 

Since 
sen

ku  cannot directly influence the future states, its main goal is to reduce the 

uncertainty of the state. If the robot has a set senU  of senN
u

 sensing action possibilities, we 

define the active vision problem as the selection of a sensing action 
*sen sen

k Uu , which is 

optimal according to some criterion. In a probabilistic framework, the optimality criteria 

should be a function of the predicted belief 
kb . Note that in general 

kb  depends on sen

ku  

because some parameters (for instance, the variance of sen

ku ) used in the correction stage of 

the estimation of 
kb  could depend on sen

ku . 

4.3 Main Assumptions 

4.3.1 Sensing-actions existence 

The system needs the existence of a subset of the robot’s degrees of freedom that influences 

the observations but not the state. This assumption holds in many mobile robots, where the 

action at time k, 
ku , can be factorized into two parts: one, 

act

ku , that influences directly 
kx  

and indirectly 
kz  through 

kx , and other, 
sen

ku , that influences directly 
kz  but not 

kx  (See 

figure 4). For example, in a legged robot with a camera mounted on an articulated neck, 

whose movements do not influence the world state, 
sen

ku  corresponds to the selection of 

vision parameters and the movements of the neck and 
act

ku  corresponds to the movements 

of the rest of the robot. The former condition is equivalent to: 

   

   
1 1 1 1, ,

, ,

act

k k k k k k

sen

k k k k k k

p p

p p

   
 





x x u x x u

z x u z x u
. (78) 

In the Gaussian case, the former condition is equivalent to: 
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1 1, , , ,

, , , ,

act

k k k k k k

sen

k k k k k k

f f

h h

 
 




x u w x u w

x u v x u v
. (79) 

When this assumption holds, it makes sense to select sen
u  in order to make more useful 

observations, and that sen
u  is selected in terms of the last selection of act

u . For this 

purpose, the selection of 
act

ku  may be performed before that of 
sen

ku , and then the selected 

act

ku  may be known in the 
sen

ku  selection process. 

4.3.2 Task Value Function Existence 

The proposed approach assumes that the robot is executing a task and it has defined a task 

value function for it. A task value function is defined as the expected accumulated reward 

that the robot will obtain given state 
kx  [39]: 

  k

k k k k

k

V E R
 

  
 
x x . (80) 

With  0,1   a discount factor that makes the rewards weight decay exponentially with 

time. 

For several decision-making schemes in the literature, like Markov Decision Processes 

(MDP) and some kinds of reinforcement learning, the robot is able to estimate the task 

value function. Even when there is not any task value function theoretically defined, it can 

be learned using any appropriate reinforcement learning method such as Q-Learning [39]. 

4.3.3 Functional Modules 

Apart from the active vision module, the proposed approach assumes that the robot control 

system has at least four additional functional modules: (i) vision, where the camera images 

are processed in order to get the observation 
kz , (ii) world modeling, where 

act

ku  and 
kz  

are used to update the belief, (iii) decision making, where the belief is used to select the 

action 
act

ku  that the robot will execute, and (iv) actuation, where 
act

ku  is executed. See a 

block diagram of the complete system in figure 5. 

The following paragraphs contain a short description of these functional modules and the 

particular implementations we have chosen for performing the experiments. The reader 
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should note that the presented active vision method is not restricted to these particular 

implementations of the modules. 

4.3.3.1 Vision 

The vision module processes camera images in order to detect interesting objects. The 

output of the vision module is a vector containing the relative positions of the detected 

objects. This vector is the observation, 
kz . Landmarks and other objects of interest are 

perceived using a color-based vision method. The distances and angles of the perceived 

objects in relation to the robot are estimated using a segmented image that is built using a 

look up table and the a priori knowledge of the field objects colors. Context-dependent 

color segmentation has been included in our library. Our color-based vision system is 

described in detail in [17], [40]. 

4.3.3.2 World Modeling 

The world-modeling module processes the observation and odometry measures in order to 

filter the observation and odometric noise. Bayesian methods are currently the most used 

for this purpose. Among them, Kalman filters and particle filters are the most popular ones. 

Our particular implementation [17] of this module uses Extended Kalman Filters (EKF) for 

estimating both the robot self-localization and the relative position of the objects. 
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Figure 5. Block diagram of a robotic controller in which the proposed active vision system is immersed. 
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4.3.3.3 Decision Making 

The decision-making module processes observations and the state belief in order to 

generate commands that the actuation module should execute. The decision-making system 

must fit with the task being executed. In applications such as robot soccer, where complex 

tasks must be solved, the behavior-based approach is often selected. Our particular 

implementation [41], [23] is based on behaviors of different levels of abstraction. Higher-

level behaviors, such as ―play soccer‖, select and parameterize lower level behaviors such 

as ―go to ball‖, and so on. Finally, the lowest level behaviors, such as ―walk‖, generate 

action commands that are carried out by the actuation module. 

4.3.3.4 Actuation 

This module is in charge of controlling the robot motors according to instructions provided 

by the decision-making module and it is also in charge of generating odometric estimations 

of the robot displacements. The module is able to move independently different subsets of 

the robot motor set (for example the head may be independent of the legs) and eventually 

coordinate different subsets for performing special movements. Of course, this module is 

very dependent on the robot platform. Our actuation [24] for humanoid robots (tested on 

Aldebaran Robotics NAO and Hajime HR-18) uses omnidirectional gaits provided by the 

robot manufacturers. 

4.4 Sensing Action Space 

The sensing action space senU  can be selected from several options, from which we 

mention two: 

4.4.1 Sensing Control Actions 

The action space may be defined as the direct commands that are set to the actuators or the 

vision module. For example, in a gaze selection system, the action space could include tilt, 

pan and/or zoom of the camera. In a ROI selection system, the actions could be defined as 

the parameters of the ROI. If the resulting action space is continuous, it can be discretized 

in order to simplify the resolution of the active vision problem. 
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4.4.2 Object to Focus On 

If there is a limited set of objects that the vision module can focus on, then the action space 

may be defined as the set of observable objects. This alternative is feasible only if the state 

contains enough information to select the control actions that will result in the system 

focusing on some object. In this case, the system relies also on an Object Focusing 

Behavior that must select an adequate control action. 

4.5 Optimality Criteria 

In order to select a sensing action 
*sen

ku  that is considered ―optimal‖, it is necessary to 

define an optimality criterion. The selection of this criterion will strongly determine the 

behavior of the system, and here is where we believe that the task can have an explicit 

influence on the system. If we consider a discrete sensing action space, senU , then 
*sen

ku  can 

be found by iterating over senU  and for each 
sen

ku  calculating the value of the selected 

optimality criterion. 

With the aim of making explicit the influence of 
kz  in  k kb x , we will write the latter as 

 k k kb x z . Additionally, we can define the policy  kb  as a function that, given some 

belief 
kb , returns the following action 1

act

ku  that is optimal for a given criterion. Note that 

the functions  k kb  z  and   kb  correspond respectively to the correction stage of the 

world-modeling module, and the decision-making process in the decision-making module. 

Thus, the active vision module has to simulate the operation of those modules in order to 

evaluate some of the optimality criteria (see examples in subsections 3.8 and 4.4). 

The probability  1,k k kp U Z z  of observing 
kz  given 

kU  (which of course includes 
sen

ku ) 

and 
1kZ 
 may be calculated as: 

     1 1 1, , , ,k k k k k k k k k k kp U Z p U Z p U Z d   z z x x x . (81) 

Since 
sen

ku  does not influence 
kx ,    1,k k k k kp U Z b

 x x . Also, given 
kx , neither 

1kU 
, 

1kZ 
, nor 

act

ku influence 
kz . Then, 



55 

     1, , sen

k k k k k k k k kp U Z p b d

  z z x u x x . (82) 

4.5.1 Information Theory Criteria 

In the literature, two information-based optimality criteria for the active vision problem 

have been proposed. These criteria are the minimum conditional entropy [6] and the 

maximum mutual information (MI) [13][28]. 

The continuous conditional entropy
7
,  , sen

k k kEn x z u , is defined as [6]: 

        1, , logsen

k k k k k k k k k k k k k kEn p U Z b b d d  x z u z x z x z x z . (83) 

The mutual information  ; sen

k k kI x z u  corresponds to: 

     ; ,sen sen

k k k k k k kI En En x z u x x z u , (84) 

where  kEn
x  is the differential entropy of 

kx  before the observation 
kz : 

      logk k k k k kEn b b d   x x x x  (85) 

These criteria have a wide applicability since they do not depend on the task, but they 

intend to reduce the belief entropy. This generality comes at the cost of neglecting the 

important components of the state uncertainty. 

In the following subsections, we will present two task-oriented optimality criteria (TOOC). 

These optimality criteria have the aim of reducing the uncertainty in the most relevant 

components from the point of view of the task being performed. This focused reduction of 

uncertainty is accomplished by means of considering the task value function as a way of 

weighting the uncertainty costs. The use of the task value function, by definition (see Eq. 

(4)), considers the long-term effects of the sensing action. The first TOOC was introduced 

in [15], while the second one was introduced in [16]. 

                                                 

 

 

7
 Note that H is the standard notation for conditional entropy, but we have replaced it to avoid confusions with 

the observation Jacobian. 
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4.5.2 Minimum Expected Task Value Variance 

This criterion is based on the intuition that the most important components of the 

uncertainty are those that make the task value function vary the most. Therefore, it intends 

to minimize the expected variance  var sen

k kV u  of the task value function after the next 

observation: 

      var

1, varsen

k k k k k k k k kV p U Z V d u z x z z , (86) 

with 

        
22var k k k k k k k k kV E V E V x z x z x z , (87) 

and 

      k k k k k k k k kE V b V d x z x z x x ;       2 2

k k k k k k k k kE V b V d x z x z x x . (88) 

Note that another possibility would be using the maximization of the expected mean, 

 E sen

k kV u , of the task value function as an optimality criterion: 

      1,E sen

k k k k k k k k kV p U Z E V d u z x z z . (89) 

This optimality criterion may be tempting at a first glance. However, it aims to be as 

optimistic as possible about the future task values but not to reduce the uncertainty. 

4.5.3 Maximum Expected Action Task Value 

This criterion intends to help the selection of the next action that influences the state, 1

act

ku , 

by minimizing the negative effects that the uncertainty in 
kb  may have on the result of that 

decision. In other words, this criterion intends to maximize the expected value  1

E sen

k kV  u  of 

the task value function  1 1k kV  x  after the next action 1

act

ku : 

           1 1 1 1 1, ,E sen sen

k k k k k k k k k k k k k k k kV b p V p b d d d

       u x z x u x x x z x z x . (90) 

See Appendix 1 for the proof. 
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4.6 Approximated Optimality Criteria 

If the state and observation spaces are discrete, the integrals become sums and then they are 

computable. If some of these spaces are continuous, the integrals are not computable and 

then some approximation techniques must be used. 

In the following subsections, approximated versions of the task-oriented optimality criteria 

are presented. These approximations are based on the deterministic sampling schemes 

called sigma points, which are described in subsection 1.6.2.2.2. An approximated version 

of the MI algorithm using the Monte Carlo sampling scheme is presented in [28]. 

4.6.1 Approximated Minimum Expected Task Value Variance 

For approximating  Var sen

k kV u  the following algorithm may be employed: 

 

1. Sample   ,k k

i i
 

x x
χ  from  k kb

x . 

2. For each  ,k k

i i
 x x

χ  

a. Sample   , ,,k k

j i j iz z
χ  from  ,k sen

k i kp


x
z χ u . 

b. For each  , ,,k k

j i j iz z
χ  

i. Calculate  ,
k

k j ib 
z
χ  

ii. Sample   , , , ,,k k

m j i m j ix x
χ  from  ,

k

k j ib 
z
χ   

iii.     , , , , ,
k k k

k k j i m j i k m j i

m

E V V
z x x

x χ χ  

iv.     2 2

, , , , ,
k k k

k k j i m j i k m j i

m

E V V
z x x

x χ χ  

v.         
2

2

, , ,var k k k

k k j i k k j i k k j iV E V E V 
z z z

x χ x χ x χ  

3.     var

, ,

,

vark k ksen

k k i j i k k j i

i j

V V 



x z z

u x χ  

 

 

4.6.2 Approximated Maximum Expected Action Task Value 

For approximating  1

E sen

k kV  u  the following algorithm may be employed: 



58 

 

1. Sample   ,k k

i i
 

x x
χ  from  k kb

x . 

2. For each  ,k k

i i
 x x

χ  

a. Sample   , ,,k k

j i j iz z
χ  from  ,k sen

k i kp


x
z χ u . 

b. For each  , ,,k k

j i j iz z
χ  

i. Calculate  ,
k

k j ib 
z
χ  

ii.   1, , ,
kact

k j i k j ib  
z

u χ  

iii. Sample   1 1

, , , ,,k k

m j i m j i x x
χ  from  1 1, ,,k act

k i k j ip


 

x
x χ u .  

3.    1 1

1 , , , 1 , ,

, ,

k k k kE sen

k k i j i m j i k m j i

i j m

V V  


 

 
x z x x

u χ . 

 

 

4.6.3 Computational Cost Considerations 

Note that in both approximated TOOC, the algorithm steps up to 2.b.i. are identical.  Since 

the optimality criterion must be calculated for all of the sensing actions in senU , the steps in 

2.b of both approximated TOOC’s must be executed sen
kk

N N N zu x
 times, which may make 

these procedures too computationally expensive. One alternative that would make them 

computationally cheaper is to make 
k

N x
 and/or 

k
N

z  equal to 1 by using the mean sampling 

scheme. For example, in [15], both 
k

N x
 and 

k
N

z are set equal to one, and 
sen

ku  only 

influences in the covariance of  ,
k

k j ib 
z
χ  but not its mean.   

4.7 Belief Update 

The belief update corresponds to the calculation of  k kb  z  from 
kb  and 

kz . As previously 

stated, this step corresponds to the simulation of the correction stage in the world-modeling 

module. This step can be performed using different Bayesian methods such as Kalman 

Filters or Particle Filters. In the Gaussian case, if 
kb / kb

 are Gaussian pdf’s with means k
x
/



59 

k
x
 and covariance matrices k

x
/ k

x
. Then, using Extended Kalman filter (EKF), the update 

step becomes the correction stage of the EKF, shown in equations (18) and (19). 

4.8 Connection to POMDPs 

Partially Observable MDPs (POMDPs) [44] are the subject of much research. Differing 

from regular MDPs, in POMDPs the state is assumed to be only partially observable and it 

must be estimated through noisy observations. In the general POMDP solution, instead of a 

state-value function,  k kV x , a belief-value function   k k kV b x , whose parameter is the 

state belief,  k kb x , is estimated. If   k k kV b x  is known in advance, the active-vision 

problem in the terms we have presented it consists of selecting the sen

ku  that maximizes 

  sen

k k k kV b x u . However, the general solution for the estimation of   k k kV b x  is 

computationally intractable [45]. Several approximations that lead to suboptimal solutions 

of the POMDP problem have been presented in the literature. 

The proposed task-oriented approach is closely related to an approximated solution to 

POMDPs known as QMDP [46]. QMDP approximates the POMDP by assuming that the 

uncertainty will disappear after the next action. So, the next action is selected considering 

only the uncertainties in the current state and in the result of the next action. If the QMDP 

assumption holds for 1

act

ku  (i.e. the state uncertainty will disappear after executing 1

act

ku ), 

then the presented task-oriented approach for active vision appears as the natural solution 

for selecting sen

ku . 

There are several other approximations for solving the POMDP problem. For example, 

approximated solutions with a reasonable performance and time consumption on problems 

with hundreds of states have been developed recently [47]. However, they are based on 

estimating   k k kV b x  only in a subset of the whole  k kb x  space. So, there is no 

guarantee that by using these methods the problem under study can be solved in practice. 

The applicability of those methods must be further studied. 
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4.9 Case Study: Goal-Covering by a Goalie Player 

With the purpose of demonstrating the applicability of the proposed approach, we analyze a 

robot soccer related problem: goal-covering by a goalie player. Basically, this task consists 

of maintaining the robot’s position between the ball and its own goal. For an illustration of 

a robot performing this task, see figure 6. 

,left k

,right k

 , ,max ,k right k left k  

 

Figure 6. Geometry of the goal-covering task. 

4.9.1 State Space 

For the goal-covering task, the state of the world may be defined as  ,
T

k k kx G B , where 

 , ,
T

x y

k k k kG G GG  is the absolute
8
 pose of the goalie and  ,

T
x y

k k kB BB  is the relative
9
 

position of the ball. Note that the ball is mobile and its trajectory is unpredictable for the 

robot. This definition of 
kx  which uses kB  instead of the absolute position of the ball, 

 ,
T

x y

k k kB BB , is convenient from the world-modeling point of view since 
kG  may be 

estimated using observations of the existent landmarks and kB  may be estimated using 

observations of the ball. From these definitions, the self-localization and ball-tracking 

processes are independent, which is not a requisite but is convenient for the simplicity of 

the problem formulation. 

                                                 

 

 

8
 By absolute we mean with respect to a coordinate system which is fixed to the field 

9
 By relative we mean with respect to a coordinate system which is fixed to the robot 
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We consider the beliefs to have a Gaussian form, with  ~ , ,k k

k x xN  x , and we update the 

beliefs following the EKF equations as is shown in subsection 3.8. 

4.9.2 Observation and Sensing Action Spaces 

We selected the ―object to focus on‖ sensing action space (See section 3.4.2). Then, 
sen

ku  

corresponds to an intended object 
ko  to observe. For the sake of simplicity, we will assume 

that the observation 
kz  will always contain the object 

ko  and no other
10

. The zero-error 

observation of 
ko  may be defined as its relative position in polar coordinates pol

kO , 

     , ,0 , ,sen pol r

k k k k k k kh h o O O  x u x O . We also consider that the observational model 

is affected by additive Gaussian noise. Then, the observation model for 
ko  is: 

       
2 2

, , ,arctan

T

x y y x

k k k k k k k kh o O O O O
 

   
 

x v v , (91) 

with 

 
    , , ,, if  is a landmark

,
if  is the ball

i

k k x k y k kx y

k k k

k
k

Rot G G G o
O O

o


  

  


O
O

B

 , (92) 

where 
i

kO  is the fixed and known absolute position of 
ko . Now, given a sample of the state, 

k

i

x
χ , and a sensing action 

sen

ku , we can directly sample   , ,,k k

j i j iz z
χ  from 

  ~ , ,k

k i k kN h o


x
z χ R . 

We will make explicit the dependence between 
kH  and 

ko : 

                                                 

 

 

10
 This assumption can easily be discarded if necessary, with slight modifications to the observation sampling 

procedure. 
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The reader should note that different selections of 
ko  will possibly result in different 

observation Jacobians  koH  and observation noise covariance matrices 
kR , and 

consequently, in different beliefs 
kb . 

4.9.3 Action Space 

Our definition of 1

act

ku  corresponds to the intended robot relative displacement. The robot 

relative displacement  1 1 1 1, ,
T

x y

k k k kG G G

       G  is defined as the resulting pose of the 

robot 
1kG  with respect to its previous pose 

kG . We also assert that the process model is 

affected by additive Gaussian noise. Put in equations, we define 1 1

act

k k k   G u w , and 

then    1 1, , ,act

k k k k kf f  x u w x G , and, 

      1 1 1, , , ,
T

k k G k k B k kf f f     x G G G B G , (94) 

with, 

    1 1 1, ,
T

pos pos

G k k k k k k kf Rot G G G  

      G G G G , (95) 

and, 

    1 1 1, pos

B k k k k kf Rot G

     B G B G , (96) 

where  ,
T

pos x y

k k kG GG  is the position of the robot, and  ,
T

pos x y

k k kG G   G . 

From these definitions, given samples of the state, k

i

x
χ , and action, 1, ,

act

k j iu , we can sample 

  1 1

, , , ,,k k

m j i m j i x x
χ  by first obtaining samples   1 1

, , , ,,k k

m j i m j i  G G
χ  from  1, , 1, ,~ ,act

k j i k j i kN G u Q  

and then directly evaluating  1 1

, , , ,,k k k

m j i i m j if


 


x x G
χ χ χ  and making 1 1

, , , ,
k k

m j i m j i  


x G . 
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4.9.4 Task Value Function and Policy 

For the goal-covering task  kV x  is independent of the instant k and is defined as: 

 
0

min 0,1 k
kV





 
  

 
x , (97) 

where the free goal angle 
k  corresponds to the maximum angle, defining an origin in the 

position of the ball, in which the own goal is not obstructed (see figure 3) and 
0 0.514   is 

a quantity related to the angle variance of the ball velocity after executing one of our 

available kicks. To calculate 
k , it is necessary to previously calculate kB : 

  pos

k k k kRot G B B G . (98) 

Our policy   for this task consists of positioning the robot over the bisector of the goal 

angle from the ball. With this, the potential attacker has two equal free goal angles to each 

side of the robot. The goalie must select then, at what distance *d  from the goal it should 

position itself. There is always a minimum distance min

0k
d 

 from the goal where the goalie 

can position itself to make 0k  . We will call 
max

zoned  the maximum distance to the goal 

where the goalie is still inside its penalty area. Then, we will select  * min max

0min ,
k zoned d d   to 

add the restriction that the goalie should stay inside its penalty area. The policy also intends 

to maintain the robot oriented towards the ball. Then, 1

act

ku  corresponds to the displacement 

that moves the robot towards the desired pose as fast as possible considering the robot 

dynamics’ restrictions. For the evaluation of the policy, we only take into account the mean 

of the belief
11

. 

In the next section, the results of simulated experiments for this application are presented. 

                                                 

 

 

11
 This policy  and the fact that it is only a function of the belief mean are not necessarily 

optimal from the decision-making point of view, but we have selected it because its 

simplicity helps us to show the applicability of the active vision system. 
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Chapter 5. Results and Discussion 

This chapter presents the experiments that were performed to test the methods proposed in 

this thesis. 

5.1 Experimental Setup 

There are two types of experiments that were carried out in this thesis: simulated 

experiments and experiments using a real robot. Some of the simulated experiments were 

performed using synthetic data and others using data obtained from a robot simulator. All 

the experiments that use robot data (simulated or real) were performed using the robotics 

library UChileLib. 

5.1.1 UChileLib 

Our robotic soccer team has developed a robotics software library called UChileLib. The 

library is implemented in C++. UChileLib is multi-platform from the operative-system 

viewpoint (it has been successfully compiled and tested in Windows and Linux) and also 

from the hardware viewpoint (it has been successfully tested on the following robots: 

Aldebaran Nao and Hajime HR-18). UChileLib is not limited to robot soccer applications 

since it has a very flexible modular design. The part of the library that is in charge of 

handling modules, computer processes, threads, inter-process communications and sockets 

is based on boost libraries [107]. An important percentage of UChileLib was developed by 

the author of this thesis to allow the testing of the proposed methods. 

5.1.2 Simulated Experiments 

Simulated experiments with synthetic data are carried out using MATLAB. 

Simulated robot experiments are performed using a simulator that allows the replicability of 

the results and a fair comparison of the tested methods. This simulator is called HLSim 

(from High Level Simulator) because it only simulates realistically the robot-controller’s 

high level –world modeling and decision making– and it abstracts from the low level. 
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HLSim has a simplified 2D model of the robot and its environment, and the robot process 

and observations are modeled using configurable arbitrary noises over the perfect kinematic 

2D model. In other words, HLSim does not model the system dynamics or the camera and 

vision issues. HLSim was developed by our robot soccer team and a significant proportion 

of its functionalities was developed by the author of this thesis. 

5.1.3 Experiments on a Real Robot 

5.1.3.1 Nao 

Experiments using a real robot were performed on the Aldebaran Nao V3 robot. Nao is a 

humanoid robot with 21 degrees of freedom (5 in each leg, 1 in the hip, 3 in each arm and 2 

in the neck). Its main sensors are two cameras in its head, with non-overlapping fields of 

view. Only one camera can be accessed at a time. Nao has also pressure, inertial, 

accelerometers, infrared, and sonar sensors. UChileLib accesses the Nao hardware using a 

firmware provided by the manufacturers called Naoqi [108]. 

5.1.3.2 Experiment Manager 

Experiment Manager is a tool that facilitates experiments in which the robots that are 

performing the experiments must communicate and coordinate with a computer that is 

estimating the ground truth, and the human operator that is conducting the experiment. The 

application has embedded modules for the following: laser-based perception and pose 

estimation of robots and landmarks, ground-truth estimation, and experiment coordination. 

Figure 7 shows a block diagram of the functionality of the Experiment Manager. A laser 

sensor is used to obtain measurements that are then processed in a Ground-Truth module in 

order to get an estimation of the robot pose. The human operator may define desired 

trajectories of the robot and other events that are synchronized by the Experiment 

Coordination module. Finally, a Pose Controller module intends to control the robot pose 

by sending commands to the robot that should move it to the desired pose according to the 

currently set pose. Additionally, the Ground-Truth module logs in a file the whole robot 

trajectory measured. Finally, the robot itself stores all of the observations and odometries 

that occurred during the experiment. This system is described in detail in [27]. 
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Figure 7. Experiment Manager Functionality Block Diagram. 

 

5.2 Noise Parameters Regression 

The objective of the first set of experiments is to validate the methodology presented for 

regression of the noise parameters. 

5.2.1 SERV-HGP 

The proposed methodology for HGP estimation was tested on simulated data as a means to 

measure its performance. The selected test is a one-dimensional regression problem. The 

training data is generated from the following functions: 

 

 0,10iX U , (99) 

 sini i iy X e  , (100) 

  2
0,i ie N X . (101) 

To give a qualitative impression of the methodology’s performance, figures 8 to 15 show 

examples of results obtained from the regression methodology. Figures 8 to 11 show these 
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results using two sample sets (each set consists of 100 samples) with different values for   

(0.05 and 0.15). First, in figure 8, the sample points and the real mean and mean ± standard 

deviation (STD) of the generating pdf are shown. Then, figure 9 shows a comparison of the 

two regression methods in terms of determining the pdf mean and variance. The mean and 

variance regression appear separately in Figures 10 and 11 respectively. Figures 12 to 15 

show the results of applying the regression methodology to two sample sets with different 

number of samples (100 and 300) and with the same value for   (0.3). Again, in figure 12, 

the sample points and the real mean and mean ± STD of the generating pdf are shown. 

Then, figure 13 shows a comparison of the two regression methods in terms of determining 

the pdf mean and variance. The mean and variance regression appear separately in Figures 

14 and 15 respectively. The results shown in figures 8 to 15 are dependent on the training 

sample set extracted from the pdf to estimate. Therefore, these figures are only illustrative 

of the qualitative differences between the results obtained by a GP regression and those 

obtained by the SERV-HGP regression, but they cannot be interpreted as a quantitative 

comparison. 

A quantitative comparison among the performance of GP, ML-HGP and SERV-HGP 

regression on the simulated problem presented can be seen in tables 1 and 2. These tables 

show the MSE in the estimation of the mean and the standard deviation of the random 

variable for training sets with different numbers of samples and values of  . In order to  

approximate the MSE, 20 simulations were run for each set of parameters. Table 1 

compares the MSE in the estimation of the mean, while table 2 compares the MSE in the 

estimation of the standard deviation of the variable. 

The first observation from the data in table 1 is that ML-HGP consistently outperforms GP 

in the estimation of the process mean. SERV-HGP has a performance close to that of ML-

HGP for low noise values and a high number of training samples, but its performance on 

the estimation of the mean tends to decay faster than that of ML-HGP when the number of 

training samples decreases or the noise level increases, even to levels similar to that of GP.  
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(a) 

 

(b) 

Figure 8. Samples (magenta circles) and the y mean (green dashed line) and mean ± variance (green solid 

lines) as a function of x, with (a)   = 0.05 and (b)   = 0.15. 
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(a) 

 

(b) 

Figure 9. Samples (magenta circles) and the y mean (green dashed line) and mean ± variance (green solid 

lines) as a function of x, with (a)   = 0.05 and (b)   = 0.15. HGP stands for SERV-HGP. 
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(a) 

 

(b) 

Figure 10. Samples (magenta circles) and the y mean (green dashed line) and mean ± variance (green solid 

lines) as a function of x, with (a)   = 0.05 and (b)   = 0.15. HGP stands for SERV-HGP. 
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(a) 

 

(b) 

Figure 11. Samples (magenta circles) and the y mean (green dashed line) and mean ± variance (green solid 

lines) as a function of x, with (a)   = 0.05 and (b)   = 0.15. HGP stands for SERV-HGP. 
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(a) 

 

(b) 

Figure 12. Samples (magenta circles) and the y mean (green dashed line) and mean ± variance (green solid 

lines) as a function of x, with (a) 100 training samples and (b) 300 training samples. 
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(a) 

 

(b) 

Figure 13. Samples (magenta circles) and the y mean (green dashed line) and mean ± variance (green solid 

lines) as a function of x, with (a) 100 and (b) 300 training samples. HGP stands for SERV-HGP. 
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(a) 

 

(b) 

Figure 14. Samples (magenta circles) and the y mean (green dashed line) and mean ± variance (green solid 

lines) as a function of x, with (a) 100 and (b) 300 training samples. HGP stands for SERV-HGP. 
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(a) 

 

(b) 

Figure 15. Samples (magenta circles) and the y mean (green dashed line) and mean ± variance (green solid 

lines) as a function of x, with (a) 100 and (b) 300 training samples. HGP stands for SERV-HGP. 
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Table 1. Mean of the MSE in the estimation of the process mean. 

 Method 
Number of Training Samples 

100 150 200 250 300 

0.05 GP 0.0066 0.0054 0.0040 0.0028 0.0025 

 ML-HGP 0.0058 0.0045 0.0035 0.0025 0.0020 

 SERV-HGP 0.0056 0.0047 0.0034 0.0025 0.0020 

0.1 GP 0.0404 0.0177 0.0158 0.0115 0.0146 

 ML-HGP 0.0308 0.0150 0.0130 0.0082 0.0094 

 SERV-HGP 0.0322 0.0152 0.0124 0.0085 0.0079 

0.15 GP 0.0726 0.0591 0.0451 0.0379 0.0189 

 ML-HGP 0.0486 0.0370 0.0256 0.0231 0.0186 

 SERV-HGP 0.0506 0.0367 0.0250 0.0275 0.0159 

0.2 GP 0.1109 0.0857 0.0490 0.0515 0.0555 

 ML-HGP 0.0703 0.0645 0.0346 0.0430 0.0414 

 SERV-HGP 0.0922 0.0828 0.0433 0.0526 0.0484 

0.25 GP 0.1683 0.1315 0.0791 0.0678 0.0566 

 ML-HGP 0.1116 0.0801 0.0604 0.0448 0.0384 

 SERV-HGP 0.1507 0.1028 0.0821 0.0567 0.0390 

0.3 GP 0.2992 0.1593 0.0992 0.1006 0.0799 

 ML-HGP 0.1858 0.1148 0.0767 0.0554 0.0666 

 SERV-HGP 0.3048 0.1698 0.0992 0.0674 0.0824 

 

 

Table 2. Mean of the MSE in the estimation of the process standard 

deviation. 

 Method 
Number of Training Samples 

100 150 200 250 300 

0.05 GP 0.0251 0.0237 0.0239 0.0230 0.0231 

 ML-HGP 0.0037 0.0048 0.0035 0.0042 0.0040 

 SERV-HGP 0.0023 0.0024 0.0018 0.0013 0.0012 

0.1 GP 0.1048 0.1092 0.1131 0.1384 0.0945 

 ML-HGP 0.0163 0.0217 0.0166 0.0195 0.0199 

 SERV-HGP 0.0334 0.0107 0.0071 0.0058 0.0051 

0.15 GP 0.2289 0.2344 0.2220 0.2416 0.2518 

 ML-HGP 0.0362 0.0441 0.0398 0.0392 0.0377 

 SERV-HGP 0.0818 0.0189 0.0166 0.0116 0.0115 

0.2 GP 0.3795 0.3715 0.3754 0.3873 0.3629 

 ML-HGP 0.0608 0.0739 0.0795 0.0533 0.0861 

 SERV-HGP 0.0415 0.0220 0.0192 0.0199 0.0199 

0.25 GP 0.5719 0.5917 0.5821 0.5609 0.5609 

 ML-HGP 0.1786 0.1178 0.1122 0.1267 0.1254 

 SERV-HGP 0.0895 0.0405 0.0264 0.0256 0.0258 

0.3 GP 0.7980 0.8207 0.8105 0.8106 0.8317 

 ML-HGP 0.2199 0.1797 0.1860 0.1952 0.1420 

 SERV-HGP 0.0848 0.0506 0.0322 0.0401 0.0247 
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From the data in table 2, it is possible to observe that both ML-HGP and SERV-HGP 

greatly outperform GP in the estimation of the process standard deviation. It is also possible 

to note, that with some exceptions, SERV-HGP outperforms ML-HGP in the estimation of 

the standard deviation of the process, in some cases by a noticeable ratio (up to 

approximately six times). These exceptions occur in the cases with few training samples 

which suggests that SERV-HGP could be less robust than ML-HGP to such cases. 

Table 3 shows a comparison of the mean time consumption for the learning process of GP, 

ML-HGP and SERV-HGP regression on the simulated problem presented. The first 

observation from this table is that, as expected, GP is faster than both HGP methods. 

SERV-HGP is consistently faster in learning the HGP than ML-HGP. The former 

consumes approximately between 50% and 80% of the time consumed by the latter. For all 

the tested methods, the learning time grows with the number of training samples. GP and 

ML-HGP do not seem to increase significantly their learning time when the level of noise 

increases while SERV-HGP does. This fact suggests the convenience of further study the 

dependence of this time on the level of noise for SERV-HGP. 

     

     

     

Table 3. Mean of the time consumption for the learning process (ms) 

 Method 
Number of Training Samples 

100 150 200 250 300 

0.05 GP 140 338 408 522 843 

 ML-HGP 3,386 5,388 7,679 10,903 13,273 

 SERV-HGP 1,795 2,626 3,6862 5,2078 7,895 

0.1 GP 142 269 365 383 609 

 ML-HGP 2,877 4,612 7,254 16,585 16,834 

 SERV-HGP 1,803 2,549 3,607 6,133 8,831 

0.15 GP 149 233 349 624 810 

 ML-HGP 3,524 4,939 6,957 10,009 14,048 

 SERV-HGP 1,904 2,703 3,990 5,307 7,209 

0.2 GP 149 249 416 482 879 

 ML-HGP 3,341 4,889 6,936 10,928 14,205 

 SERV-HGP 1,776 2,533 3,327 5,238 9,241 

0.25 GP 117 311 358 558 897 

 ML-HGP 3,380 4,969 6,710 10,535 13,652 

 SERV-HGP 1,827 2,985 4,098 4,583 7,959 

0.3 GP 165 305 418 655 866 

 ML-HGP 3,364 5,092 7,660 10,047 13,818 

 SERV-HGP 1,996 2,644 4,235 5,101 8,958 
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5.2.2 Angle-GP 

The Angle-GP method is tested using synthetic data generated in MATLAB. Angle-GP 

performance is compared to a regular GP and to SinCos-GP. In this experiment, all the 

previously mentioned methods are used to perform the regression of the following function: 

 2 1atan 2 , 45ºy x x  . (102) 

The atan2 function has a two-dimensional input  ,y xp p  that corresponds to the Cartesian 

coordinates of a point p , and the output is the angle p
 
of the polar coordinates of p . 

Regardless of the definition of the output interval of atan2, the function is discontinuous at 

one point. The definition of the output interval selected for the purposes of this experiment 

is  180º ,180º . The size of the training set varied from 5 to 100 samples, increasing in 

increments of 5. For each training set size, 100 trials were performed, with different 

randomly sampled training sets. For each trial, 400 random test points were used to check 

the regression accuracy of the methods. 

For each trial and for each method, the mean squared error
12

 of the prediction was 

calculated in order to have a global comparison measure. Table 4 and figure 16 show the 

results in terms of comparative performance for the described regression task using: a 

regular GP, a SinCos-GP, and an Angle-GP. From these results, it is clear that Angle-GP 

surpasses the performance of both the regular GP and SinCos-GP. As the number of 

training samples grows, the three methods being compared improve their predictions and 

the accuracy of SinCos-GP becomes closer to that of Angle-GP. However, the regular GP is 

not able to get a low MSE even with a high number of training samples. 

                                                 

 

 

12
 Note that the angular error cannot be obtained by a simple subtraction. Sometimes 360º  must be added to 

the result of the subtraction in order to get an error in the  180º ,180º
 
interval. 
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In order to explore the behavior of the described methods in more detail, their prediction 

performances over different subintervals of the output space were measured. For this 

purpose, the average prediction error was calculated for different subsets of the test sets. 

Table 4. Mean ± STD of the MSE in the described regression 

task for the compared methods. 

Number of 

Training 

Samples 

Regular GP SinCos-GP Angle-GP 

5 1.6741 ± 0.5992 1.1444 ± 0.7371 0.5975 ± 0.5531 

10 1.1941 ± 0.6416 0.2124 ± 0.3031 0.1203 ± 0.1585 

15 1.1104 ± 0.5966 0.0937 ± 0.1603 0.0620 ± 0.0643 

20 0.9142 ± 0.3949 0.0593 ± 0.0601 0.0336 ± 0.0324 

25 0.7804 ± 0.2432 0.0486 ± 0.0482 0.0275 ± 0.0289 

30 0.7626 ± 0.2491 0.0429 ± 0.0463 0.0273 ± 0.0436 

35 0.7027 ± 0.2188 0.0299 ± 0.0277 0.0190 ± 0.0214 

40 0.6562 ± 0.2503 0.0286 ± 0.0319 0.0157 ± 0.0148 

45 0.6317 ± 0.1502 0.0259 ± 0.0290 0.0139 ± 0.0143 

50 0.5978 ± 0.1521 0.0221 ± 0.0233 0.0140 ± 0.0141 

55 0.5998 ± 0.1133 0.0164 ± 0.0172 0.0113 ± 0.0129 

60 0.5428 ± 0.1564 0.0181 ± 0.0230 0.0132 ± 0.0203 

65 0.5417 ± 0.1282 0.0137 ± 0.0163 0.0105 ± 0.0131 

70 0.5331 ± 0.1226 0.0135 ± 0.0135 0.0114 ± 0.0127 

75 0.5325 ± 0.1324 0.0119 ± 0.0106 0.0101 ± 0.0126 

80 0.5054 ± 0.1194 0.0118 ± 0.0125 0.0098 ± 0.0113 

85 0.4876 ± 0.1165 0.0101 ± 0.0110 0.0084 ± 0.0107 

90 0.4817 ± 0.1207 0.0111 ± 0.0120 0.0101 ± 0.0132 

95 0.4523 ± 0.1044 0.0091 ± 0.0103 0.0079 ± 0.0095 

100 0.4533 ± 0.0982 0.0103 ± 0.0134 0.0081 ± 0.0087 

 

 

Each subset corresponds to a subinterval of the output space. Figures 17 and 18 show the 

prediction MSE through the whole experiment for each angle interval, with 5 and 100 

training samples respectively. Figures 18.a and 18.b plot the same information, but in figure 

18.b the regular GP’s results are not shown in order to graphically compare the two other 

methods in more detail. From figures 17 and 18.a, it is possible to infer that the cause of the 

poor performance of the regular GP on the angle regression task is mainly due to the 

discontinuity in 180º. Figures 17 and 18.b show no apparent correlation between the output 

angle and the performances of SinCos-GP and Angle-GP. These figures also confirm the 

consistent superiority of Angle-GP over SinCos-GP, which can be explained by the 

selection of a more adequate log marginal likelihood. 
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Figure 16. Comparison among methods of trial MSE mean and variance for each training set size. 

 

Figure 17. Comparison among methods of whole experiment MSE for 5 training samples. 

  
(a) (b) 

Figure 18. Comparison among methods of whole experiment MSE for 100 training samples. (a) The three 

methods (b) only SinCos-GP and Angle-GP as a means to have more detail. 
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5.2.3 HGP-EKF 

In order to test the proposed HGP-EKF methodology, two similar experiments are 

performed. The first experiment is run in the HLSim simulator while the second one is run 

in a real NAO robot. For each experiment, an HGP-EKF is compared with a regular EKF 

and GP-EKF. The problem to be solved is that of object tracking, the tracked object being a 

ball. The theoretical observational model to be tested is the identity, i.e., for each state of 

the ball, the observation is supposed to be equal to the state. In the simulated case, both the 

observational and process theoretical models are contaminated with synthetic noises that 

make the regular EKF perform poorly. 

5.2.3.1 Training the Models 

The method selected for training the models is divided into two procedures: the training 

procedure for the process model, and the training procedure for the observational model. 

5.2.3.1.1 Process Model Training Procedure 

The main assumption of this procedure is that a differential process model exists. This 

means that the process model can be written in its differential form, without losing much 

relevant information
13

: 

 1 , ,diff f

k k k k k  x x f u a w . (103) 

For a mobile robot, this assumption is valid when the surface over which the robot will 

move is somehow homogeneous in the sense of having similar properties in all of its 

regions. 

Additionally, this training procedure assumes that there is a way to accurately estimate the 

robot’s pose while the training process is being carried out. This estimation is based on the 

observations provided by an external sensor that can perceive the robot’s pose or by a 

                                                 

 

 

13
 Note that in this definition we are already considering the additional parameters defined in subsection 3.3. 

Of course, this definition can be analogously made for the standard case without additional parameters. 
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landmark whose pose can be detected by the robot with high accuracy while the robot is 

moving around the training area. 

5.2.3.1.2 Observational Model Training Procedure 

A training data set has been acquired for the observational model of each object. The data 

set is based on a polar grid over the relative-position space (the space of the positions of the 

object relative to the robot). Since the objects under consideration can be observed in 

different ranges of distances, different grid resolutions and limits have been selected for 

each object. There are errors in the measurements from encoders and in the synchronism 

between them and the acquired images. Therefore, the observational noise parameters 

might depend on the velocity of the head and the body. To account for this source of error, 

for each grid cell the following head behaviors will be executed: 

 Point the camera directly to the object 

 Alternate between pointing to the object and pointing to other position  

 Make a fixed searching movement. 

For each of the three head behaviors, two different body behaviors will be executed at each 

grid cell: 

 Walk in place  

  Stand 

Thus, there are 6 behavior combinations for the head and body behaviors. For each of these 

combinations, and for each cell grid, the data set contains 5 training samples. As such, each 

cell in the grid contains 30 training samples. For this experiment, the only object whose 

observational model is trained is the ball. A 5x3 grid was trained with angles (-80°, -40°, 

0°, 40°, 80°) and distances (1m, 2m, 3m). Since the grid has 15 cells, the number of training 

samples is 450. 

5.2.3.2 Description of the Experiments  

For both experiments (simulated and real), the procedure for training the models described 

in section 5.2.3.1 is performed prior to the experiment and the same training samples are 
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used to train the respective models (a fixed Gaussian for the regular EKF, a GP for GP-

EKF, and a HGP for HGP-EKF). 

Both the simulated and real experiments consist of measuring the performance of the 

estimation of the relative position of an object while the robot is moving according to an 

arbitrary trajectory. The tracked object is a fixed orange ball and the robot’s intended 

trajectory is the one shown in figures 19 and 30. The robot’s body intends to follow the 

mentioned trajectory while the robot’s head intends to look towards the ball when it is 

possible. 

The task that all of the compared methods perform during the experiment is the estimation 

of the relative position of the ball. No other estimation, such as self-localization or the 

relative estimation of another object, is performed. 

While each experiment runs, the robot’s perceptions and odometries and the ground-truth 

data from the simulator are stored. Then, after the execution of the experiment, the 

perceptions and odometries sequences are used to estimate the relative position of the 

object using each of the methods being compared. 

5.2.3.3 Compared Methods 

This subsection describes the methods that are compared in this experiment. 

The first method (denoted EKF) is a standard EKF in which a theoretical model is used for 

both the observational and the process models. The noises are considered additive and 

Gaussian with fixed parameters (mean and covariance matrix) calculated from the training 

data. 

For all the remaining methods, the process model is considered to be composite (see 

subsection 3.5), with the process GP or HGP estimating the robot dynamics (see equations  

(71), (73), (76) and (77)). 

The second method (denoted GP-EKF) under comparison corresponds to the GP-EKF 

method described in section 1.6.5, while the third method being compared (denoted HGP-

EKF) corresponds to the HGP-EKF method described in section 3.1. In both GP-EKF and 
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HGP-EKF, no theoretical information is used but the regression of  ,dynf u w  and 

 , ,h x u v  is performed directly from the data. 

Finally, the fourth and the fifth methods (noted respectively GP-EKF+Model and HGP-

EKF+Model) are modified versions of GP-EKF and HGP-EKF that consider information 

from the theoretical model. This information is considered by means of making  ,dynf u w  

and  , ,h x u v  additive (see equations (70) and (104)): 

      ,, , dyn

dyn dyn thf f GP


 
f

u w u w u .

 

(104) 

Note that equation (104) is analogous to equation (69). 

Finally, with the purpose of testing the utility of additional model parameters (proposed in 

subsection 3.3), each of the tested methods, except for EKF, is tested with and without the 

use of additional model parameters. 

5.2.3.4 Simulated Experiment 

In order to theoretically test the proposed HGP-EKF methodology, a simulated experiment 

is performed. 

 

 

Figure 19. Intended robot trajectory for the HGP-EKF simulated experiment. 

 

The simulator adds a noise to every robot movement or observation. This noise is Gaussian 

with unknown parameters to the robot but the robot gets the odometries and observations 
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with their respective additional parameters. These additional parameters are also generated 

by the simulator using a pdf that is related to the actual robot movement or observation. 

Again, the pdfs of the additional parameters and their relationships with the actual robot 

movement or observation are unknown to the robot. 

Two vectors of latent variables are defined for the robot movements and observations, 

respectively, in order to model the relationship between the additional parameters and the 

observations or movements:  

 0,1w N , (105) 

 0,1v N . (106) 

The observational and process noises are sampled from: 

 ,w wNw μ Σ , (107) 

 ,v vNv μ Σ , (108) 

with 

w wμ A u , (109) 

 , ,

T

w w i w ii
Σ B u B u , (110) 

v v oμ A x , (111) 

 , ,

T

v v i o v i oi
Σ B x B x . (112) 

Where wA ,  ,w iB , vA  and  ,v iB  are matrices whose arbitrary values are shown in 

Appendix 2, and u  and ox  are defined as: 

f

 
  
 

u
u , (113) 

o

o

h

 
  
 

x
x . (114) 
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Figure 20 illustrates the resulting observational noises by plotting the training samples for 

the observational model that the simulated robot obtained (see subsection 5.2.3.1 for 

details). 

 

Figure 20. Training samples for the observational model. The red circles correspond to the actual position of 

the ball while the blue crosses show the perceived positions of the ball.  

While the additional-parameters’ vectors are sampled from: 

 ,f f fN a aa μ Σ , (115) 

 ,h h hN a aa μ Σ , (116) 

With 

f f

f
a a
μ A , (117) 

 , ,

T
f f f

i f i fi
a a aΣ B B , (118) 
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h h

h
a a
μ A , (119) 

 , ,

T
h h h

i h i hi
a a aΣ B B , (120) 

where f

a
A ,  ,

f

iaB , h

a
A  and  ,

h

iaB  are matrices whose arbitrary values are shown in 

Appendix 2. 

  

 

 

Figure 21. Estimated trajectory of the relative position of the ball using a Regular EKF (red) and the 

corresponding GT (blue). 
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Figure 22. Estimated trajectory of the relative position of the ball using a Full Regressive GP-EKF with 

additional parameters (red) and the corresponding GT (blue). 

 

 

Figure 23. Estimated trajectory of the relative position of the ball using a Full Regressive GP-EKF without 

additional parameters (red) and the corresponding GT (blue). 
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Figure 24. Estimated trajectory of the relative position of the ball using an Additive GP-EKF with additional 

parameters (red) and the corresponding GT (blue). 

 

 

Figure 25. Estimated trajectory of the relative position of the ball using an Additive GP-EKF without 

additional parameters (red) and the corresponding GT (blue). 
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Figure 26. Estimated trajectory of the relative position of the ball using a Full Regressive HGP-EKF with 

additional parameters (red) and the corresponding GT (blue). 

 

 

Figure 27. Estimated trajectory of the relative position of the ball using a Full Regressive HGP-EKF without 

additional parameters (red) and the corresponding GT (blue). 
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Figure 28. Estimated trajectory of the relative position of the ball using an Additive HGP-EKF with additional 

parameters (red) and the corresponding GT (blue). 

 

 

Figure 29. Estimated trajectory of the relative position of the ball using an Additive HGP-EKF without 

additional parameters (red) and the corresponding GT (blue). 
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Figures 21 to 29 show the estimated trajectories of the relative position of the ball 

compared to the GT. In all of these figures, both the GT and the estimations start in an 

arbitrary position, (100, 0), and after receiving the first observation they follow a trajectory. 

The first observation for the estimations arrives later than the first observation for the GT 

(because the laser can see the robot from the very beginning of the experiment while the 

ball is visible for the robot only in some fractions of the experiment). That is why the 

estimated trajectories jump to a different point, in the upper part of the plots, from the one 

the GT trajectory jumps to, which is around (-40, -80). 

In figure 21, it is possible to see how a poor model can bring very catastrophic results when 

using a regular EKF. In this case, there is a clear magnification in the estimated trajectory, 

probably due to the existence of a similar phenomenon in the observational model. 

Table 5 shows the mean square error of the estimation with respect to the ground truth. The 

error is calculated as the Euclidian distance between the estimated and the GT positions. 

 

Table 5.Mean square error in the estimation of the ball’s relative position for the simulated 

experiment. 

Method 

Squared error (m2) 

With Additional Model 

Parameters 

Without Additional Model 

Parameters 

EKF - 15.9671 

GP-EKF 0.6976 1.5717 

GP-EKF + Model 0.5892 0.5638 

HGP-EKF 0.5382 0.5100 

HGP-EKF + Model 0.5599 0.5578 

 

The first salient fact detectable in table 5, which was already noticeable in figure 21, is the 

poor performance of a regular EKF. In addition, it is possible to note that HGP-EKFs 

outperform GP-EKFs for all the cases being considered. The use of additional parameters 

does not appear to be a clear improvement. The additional parameters produce a noticeable 

improvement for GP-EKF, yet in the other three cases it causes a decay in the performance 

of the methods. Finally, the use of a GP or HGP to learn the errors of the theoretical model 

appears to be of help for GP-EKFs, but in the case of HGP-EKFs it is better to consider the 

full regression. 
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5.2.3.5 Experiment on the real robot 

The experiment described in subsection 5.2.3.1 was carried out on a real NAO robot using 

the experimental setup outlined in subsection 5.2.1. The intended trajectory is shown in 

figure 30. 

 

 

Figure 30. Intended robot trajectory for the HGP-EKF experiment in the real robot. 

 

Figure 31 plots the training samples for the observational model that the real robot obtained 

(see subsection 5.2.3.1 for details). By comparing figures 20 and 31, it can be easily noted 

that in the real experiment the observational model mean is much more accurate. It is also 

possible to note from figure 31 that the variance of the error increases as the ball is farther 

away. 
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Figure 31. Training samples for the observational and process models. The red circles correspond to the actual 

position of the ball while the blue crosses show the perceived positions of the ball. 

 

The additional model parameters for the observational model are selected as a set of 

variables that should be defined with two known possible sources of error in the 

determination of the pose of the detected ball. These two sources of error are related to two 

different parts of this process: (i) the estimation, from the detected shape of the object in the 

image of its position relative to the camera, and (ii) the transformation of the position from 

the camera system to the robot system, which uses the measurements from the encoders. 

Figure 32 shows a short visual summary of the process of estimating the ball position 

relative to the camera. The original image acquired by the camera (figure 32.a) is 

segmented using previously trained pixel color classes, thereby generating a segmented 

image (figure 32.b). Then, the orange blob is detected and, from its center, several scan 

lines are used to detect border points (figure 32.c). A RANSAC-based method is used for 

estimating the parameters of a circumference from the border points.  
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(a) 

 

(b) 

 
(c) 

Figure 32. Visual summary of the estimation of the position of the ball relative to the camera. (a) Original 

acquired image. (b) Segmented Image. (c) Scan lines (light green radial lines) and detected border points 

(blue circles) 

 

The first subset of additional parameters is intended to detect situations in which the 

circumference is not well-formed (and consequently more likely to have errors). For each 

border point, an error vector  , ,,bp bp bp

i x i y ie ee  is calculated with respect to the theoretical 

position of that border point given the circumference parameters and the angle of the scan 

line that generated the point. Then, the covariance matrix of the error vectors is calculated, 

and its relevant values,       , , , ,var , var ,cov ,
T

bp bp bp bp

x i y i x i y ie e e e , are the first three selected 

additional parameters for the observational model. 

The second subset of additional parameters for the observational model is designed to 

detect situations in which the transformation from the camera-relative to the robot-relative 
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coordinate system can be noisy. One of the sources of noise for this transformation is the 

lack of synchronization between the encoder measurements and the images. This lack of 

synchronization may introduce relevant noise when the coordinate-system transformation 

mentioned above is changing quickly. We now delineate the method for quantifying how 

the current speed of change of the camera-robot coordinate-system transformation may 

affect the estimation of the ball position. A different transformation, obtained from the 

30ms-old encoders measurements, is used to estimate a different relative-to-the-robot 

position  ,x yb b  b
 
of the ball from the same relative-to-the-camera one. Let us denote 

the normally estimated relative-to-the-robot position of the ball
  ,x yb bb . Then, the two 

resulting positions are subtracted,  ,x ye e   b b b
e b b  and the products  , ,

T

x x x y y ye e e e e eb b b b b b  

are used as the second subset of additional parameters. To summarize, the vector of 

additional parameters for the observational model is: 

      , , , ,var , var ,cov , , , ,
T

bp bp bp bp

x i y i x i y i x x x y y ye e e e e e e e e eb b b b b b . 

The additional parameters for the process model are, in general, more related to direct 

measurements of sensors in the robot. The first additional parameter for the process model 

is the elapsed time from the last odometry. Then, for each of the leg motors (11 in the NAO 

robot) the following are added: the electric current, encoder measurement in the last 

odometry instant, and encoder measurement in the current odometry instant (33 variables). 

Finally, the measurements of the 8 pressure sensors (4 per foot) in the robot’s feet are also 

added as additional parameters for the process model. In total, 42 additional parameters are 

considered for the process model. 

Figures 33 to 41 show the estimated trajectories of the relative position of the ball 

compared to the GT. 
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Figure 33. Estimated trajectory of the relative position of the ball using a Regular EKF (red) and the 

corresponding GT (blue). 

 

 

Figure 34. Estimated trajectory of the relative position of the ball using a Full Regressive GP-EKF with 

additional parameters (red) and the corresponding GT (blue). 
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Figure 35. Estimated trajectory of the relative position of the ball using a Full Regressive GP-EKF without 

additional parameters (red) and the corresponding GT (blue). 

 

 

Figure 36. Estimated trajectory of the relative position of the ball using an Additive GP-EKF with additional 

parameters (red) and the corresponding GT (blue). 
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Figure 37. Estimated trajectory of the relative position of the ball using an Additive GP-EKF without 

additional parameters (red) and the corresponding GT (blue). 

 

 

Figure 38. Estimated trajectory of the relative position of the ball using a Full Regressive HGP-EKF with 

additional parameters (red) and the corresponding GT (blue). 
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Figure 39. Estimated trajectory of the relative position of the ball using a Full Regressive HGP-EKF without 

additional parameters (red) and the corresponding GT (blue). 

 

 

Figure 40. Estimated trajectory of the relative position of the ball using an Additive HGP-EKF with additional 

parameters (red) and the corresponding GT (blue). 
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Figure 41. Estimated trajectory of the relative position of the ball using an Additive HGP-EKF without 

additional parameters (red) and the corresponding GT (blue). 

 

Table 6 shows the mean square error of the estimation of the ball relative position with 

respect to the ground truth. 

 

Table 6. . Mean square error in the estimation of the ball relative position for the real 

experiment. 

Method 

Mean square error (m2) 

With Additional Model 

Parameters 

Without Additional Model 

Parameters 

EKF - 2.7008 

GP-EKF 0.2117 0.2117 

GP-EKF + Model 0.2117 0.9357 

HGP-EKF 0.1647 0.1720 

HGP-EKF + Model 0.1720 1.0314 

 

From figures 33 to 41 and table 6, it is possible to see that both GP-EKF and HGP-EKF 

methods outperform the regular GP. This result is consistent with what was observed in the 

simulated experiment. Additionally, the performance of the HGP-EKF methods surpassed 

that of the GP-EKF methods excluding the ones that use an additive theoretical model and 

without model additional parameters. The best results are obtained by the HGP-EKF 
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method, with full regression and additional model parameters. In general, the use of the 

selected additional model parameters improves the results obtained by the methods. For 

instance, for the method with the best performance, HGP-EKF, the use of additional 

parameters make the MSE decrease by about 80cm
2
. 

5.3 Active Vision 

In this section, we will show the applicability of the active-vision method under discussion 

by testing it in the goal-covering task. 

5.3.1 Description of the Experiments  

To show the effect of the selected active-vision method, we only allow the robot to observe 

one object at a time, which is directly selected from 
sen

ku . Additionally, we only allow the 

robot to change 
sen

ku  after 300ms since the last selection. 

The experiments described in this section have been carried out in a high-level simulator, 

which simulates the world-modeling and decision-making processes and takes into account 

process and observation noises, as well as observation probabilities. Only the goalie and the 

ball are inside the field. The goalie executes the goal-covering task for about 3 minutes, 

while the ball rolls cyclically (10 repetitions) among seven fixed positions. The robot has 

no knowledge of the trajectory that the ball will follow. Figure 42.a shows the layout of the 

field and its fixed objects. Figure 42.b shows the initial position of the goalie and the 

intermediate positions of the ball.  

For the purpose of analysis, we consider each of the 10 cycles of the ball movement as one 

separate realization of the experiment. For each experiment we have calculated the mean 

V  of the task value function  kV x  (unknown for the robot) evaluated in the actual state. 

The performance measures are the average and standard deviation of V  over the 10 

experiments. With the aim of making the results being presented easier to interpret, we 

have added two artificial, extreme situations that should serve as a lower and an upper 

boundary for the active vision performance: (i) a situation in which the robot has very high 

uncertainty and then it is not even able to cover any portion of the goal (Lost), and (ii) a 

situation, which is only possible in simulations, without uncertainty (Certain), i.e., in which 
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the robot has a perfect estimate of its state and thus, executed the described policy with 

high accuracy. The reader should note that this upper bound of performance is very 

idealistic and cannot be achieved by any active-vision system with the sensors that 

currently exist. 

In order to compare the computational resources consumed by each of the active-vision 

methods, we have measured the mean time required by each of them to select 
sen

ku . These 

processing times may have considerable variations depending upon the computer on which 

they are executed. Therefore, we pay more attention to the ratios among them than to their 

absolute values. 
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(a) (b) 

Figure 42. Experiment performed: (a) layout of the field and its fixed objects: own goal (G1), opposite goal 

(G2), beacon1 (B1), and beacon 2 (B2), (b) initial position of the goalie and cyclical positions (1 to 7) of the 

ball. 

 

While the robot moves, odometry noise introduces errors in the estimations of both the self-

localization and the relative position of the ball. If the robot only focuses on one object, 

either its self-localization or the estimation of the ball location will diverge because it will 

not receive new observations. Therefore, any reasonable policy for selecting 
sen

ku  should 

alternate between observing the ball and observing the landmarks. In addition, because 

different landmarks can help to reduce different components of the self-localization error, it 

is also expected that the robot alternate between the observations of different landmarks. In 
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theory, all of the compared policies are able to alternate between the ball and different 

landmarks. 

5.3.2 Comparison of Methods and Approximation Schemes  

The first experiment aims to compare the performance of the active-vision methods being 

presented, and their approximation alternatives, for the goal-covering task. The methods to 

be compared are: (i) mutual information (MI), (ii) minimum expected task value variance 

(VV), and maximum expected action task value (EAV). As is common practice in the 

active-vision literature [8][28], these methods will be compared to (iv) a random strategy 

(Ran). The MI method does not need to be approximated
14

, but VV and EAV does, so we 

have tested different combinations of approximation schemes for the state pdf 

approximation and the observation pdf approximation: (i) mean state, mean observation 

(ExEz), (ii) SVD for the state, mean observation (Ez), (iii) mean state, SVD for the 

observation (Ex), and (iv) SVD for the state, SVD for the observation (Full). For the case of 

the EAV, since we only use the mean of  kb   for the policy evaluation, using the mean 

observation does not allow us to discriminate between the different alternatives for 
sen

ku . So, 

we only consider the Ex and Full sampling schemes for EAV. Both VV and EAV have a 

third sampling step (for the calculation of the task value variance in VV and of the mean in 

EAV), which is performed using SVD in all cases. In subsection 5.3 we will analyze 

different sampling strategies. Table 7 shows a comparison of performance among the 

methods being examined and among their respective approximation alternatives. 

As can be seen in table 7, MI performs worse than the random strategy. This result may 

seem contradictory to those obtained in the literature in which MI always performs better 

than a random strategy. Thus, how does this experiment differ from all those previously 

presented? The answer is very simple: in this case, the performance measure is not the 

reduction of entropy itself. In fact, MI achieves the lowest average entropy. Thus, these 

                                                 

 

 

14
 Given that our beliefs are Gaussian, we do not need to approximate the information theory-based methods, 

since the entropy of a multivariate Gaussian is analytically defined. 
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results are actually coherent with those of the literature. On the other hand, TOOC based 

methods perform better than the random strategy. EAV performs better than VV for each of 

the approximation schemes they have in common. Regarding the approximation schemes, 

the better the pdf’s are approximated, the better the performance. This improvement in 

performance comes at the cost of higher computational resources consumption. For our 

application requirements, an interesting tradeoff between performance and computational 

cost is achieved by EAV-Ex. From this application, the performance of TOOC-based 

methods is approximately in the middle between a random strategy and the execution of the 

task without uncertainty. Note that Certain operates under conditions which are 

unreachable for any active-vision system. 

Table 7. Performance comparison among the presented methods and 
approximation schemes for the goal-covering task. 

Method 
Approx. 

Scheme 

Average 

V  

STD 

of 

V  

Average 

Belief 

Entropy 

Active Vision 

Processing 

Time (ms) 

Lost - 0.33 - - - 

Ran - 0.56 0.04 9.56 0.03 

MI - 0.48 0.05 8.21 4.02 

VV 

ExEz 0.58 0.07 9.46 17.92 

Ez 0.59 0.06 8.96 144.83 

Ex 0.61 0.06 8.97 55.34 

Full 0.65 0.10 8.29 1062.49 

EAV 
Ex 0.65 0.06 10.12 65.69 

Full 0.66 0.05 8.78 660.52 

Certain - 0.79 - - - 

 

Table 8 shows the percentage of the time that each method and approximation scheme 

looked at each of the observable objects. From the analysis of table 8, the first noticeable 

fact is that the random behavior has very different time percentages between different 

objects. This is due to the fact that the active vision system is only able to select between 

the observable objects. The ball, for example is always observable given the policy 

explained before.  

On the other hand, the own goal is almost never observable. The opposite goal is 

observable most of the time, while each beacon is observable in a lower percentage of the 

time. A very evident difference between the MI method and all the TOOC based ones is 
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that MI looks a small percentage of the time (12%) to the ball, while TOOC methods look a 

high percentage of the time (35% to 63%) to the ball. 

 

Table 8. Percentage of time that the robot looked at each object using 

each of the presented methods and approximation schemes. 

Method 
Approx. 

Scheme 
Ball 

Own 

Goal 

Opposite 

Goal 

Beacon 

1 

Beacon 

2 

Ran - 36% 1% 26% 18% 19% 

MI - 12% 5% 55% 14% 14% 

VV 

ExEz 40% 2% 23% 17% 18% 

Ez 38% 1% 25% 16% 20% 

Ex 47% 0% 21% 16% 16% 

Full 35% 0% 34% 15% 17% 

EAV 
Ex 63% 0% 8% 16% 13% 

Full 44% 0% 17% 21% 17% 

 

5.3.3 Comparison of Sampling Schemes  

The objective of the second experiment is to compare the different sampling schemes that 

have been presented. For that purpose, we tested all of the presented sampling schemes 

(excepting mean) using the EAV-Ex method. We selected the EAV-Ex method because it is 

the best of the methods in terms of consuming an affordable processor time for our 

application (considering that we select 
sen

ku  every 300ms and other modules need to share 

the same computational resources). The two sampling steps of the EAV-Ex method, namely 

the calculation of   , ,,k k

j i j iz z
χ  and   1 1

, , , ,,k k

m j i m j i x x
χ , were performed using different 

sampling schemes. For the random sampling scheme, we considered three alternatives for 

the number of samples which correspond to approximately the following: {0.5, 1, 2} times 

the number of samples resulting in the sigma-point schemes. 

As can be seen in Table 9, all the sampling schemes presented have a similar performance 

(~0.65), except for UT which performs worse (0.57). It is interesting to note that the 

random strategy performs close to SVD, having the same number of samples. They also 

have very similar computational costs. If the number of random samples is duplicated in 

both sampling stages, the performance does not improve noticeably, but of course the 

computational cost is higher. 
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Table 9. Comparison of performance for the goal-covering task among the 

sampling schemes presented. 

Sampling 

Scheme 

Observation 

Samples 

Number 

Next 

Belief 

Samples 

Number 

Average 

V  

STD of 

V  

Active 

Vision 

Processing 

Time (ms) 

Lost - - 0.33 - - 

Random (.5) 3 4 0.63 0.05 35.29 

Random (1) 5 7 0.65 0.04 60.37 

Random (2) 10 14 0.65 0.04 155.96 

UT 5 7 0.57 0.08 55.98 

SVD 5 7 0.65 0.06 65.69 

Certain - - 0.79 - - 

 

On the other hand, if the number of particles is reduced by approximately one half in each 

sampling stage, then the computational cost is noticeably reduced, with a consequent 

decline in performance. 

Table 10 shows the percentage of the time that each method and approximation scheme 

looked at each of the observable objects. 

Table 10. Percentage of time that the robot looked at each object using each of the 

tested sampling schemes. 

Sampling Scheme Ball 
Own 

Goal 

Opposite 

Goal 
Beacon 1 Beacon 2 

Random (.5) 32% 0% 24% 22% 22% 

Random (1) 34% 0% 23% 20% 22% 

Random (2) 34% 1% 21% 23% 21% 

UT 36% 3% 24% 17% 20% 

SVD 63% 0% 8% 16% 13% 
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Chapter 6. Conclusions 

The present chapter outlines the conclusions that the author draws from the methods and 

results that have been presented. The conclusions are divided into three categories: those 

relative to the model-learning and uncertainty-characterization system, those related to the 

task-oriented active-vision system, and general conclusions. 

6.1 Model Learning and Uncertainty Characterization 

We have presented a state estimation method, HGP-EKF, which is able to learn the models 

and noises from data. In contrast with previous methods that are similar, this method is able 

to use the covariance of the noise that is expressed on the training data in the estimation 

process. HGP-EKFs have shown to perform better than GP-EKFs in the simulated and real 

experiments performed. 

The use of additional parameters has shown a clear advantage in some of the tested cases, 

especially in the real experiment. The cases in which the additional model parameters 

where not helpful seem clearly due to the incorrect selection of the additional parameters. 

The additional complexity that the additional parameters, by augmenting the input space, 

impose to the regression problem could explain the cases in which the additional 

parameters worsen the performance of the methods. Most likely, the result of the use of 

additional parameters is strongly dependent on how much information they offer about the 

correspondent noise parameters. Consequently, the careful selection of these additional 

parameters could be the key to making them useful. 

The method presented for making regression of functions with angle outputs, Angle-GP, 

has shown to have a better performance than a regular regression. This is relevant in mobile 

robotics where the estimation of the orientation of objects, as well as the robot itself, are 

crucial for the understanding of the world. 

SERV-HGP has proven to be a valid alternative to ML-HGP when working with multiple 

dimensions. Additionally, SERV-HGP has showed to require a lower training time than 
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ML-HGP for the presented one-dimensional problem. However, SERV-HGP has not 

demonstrated a superior performance in a one-dimensional problem in comparison with 

ML-HGP. 

Regarding the hypotheses, the results show that it is worthwhile to make the statistics of the 

process and observational noises a function of the current estimated state, action and 

observation. Furthermore, the results confirm that it is beneficial for the state estimation 

process to collect and consider some additional parameters in the perception and actuation 

processes. 

In terms of future work, there are several possibilities to be explored. In relation to Angle-

GPs, other possible ways to take into account the correlation between the sine and the 

cosine could be tested. For SERV-HGP it would be useful to explore other methodologies 

for learning the covariance and the mean of the output together. Additionally, it would be 

interesting to explore the possible use of the crossed terms of the learned covariance matrix 

in the inference of the output mean. Regarding HGP-EKFs, it seems to be valuable to test 

different HGP methodologies from SERV-HGP. In particular, a more straightforward 

generalization of ML-HGP (based on the matrix exponential and matrix logarithm 

functions) could be tested. In addition, it would be valuable to test the HGP proposed 

methodology to other GP-based Bayesian filters such as GP-PF, GP-UKF [89][90] and   

GP-ADF [91]. Regarding the use of additional model parameters, it could be interesting to 

develop an automated procedure to select, using the training data, which subset of them 

would be advisable to use. 

6.2 Active Vision 

A probabilistic and task-oriented active vision system that is able to select which object the 

robot should focus on has been discussed. The system is applicable in a wide variety of 

tasks. A particular robot soccer application, the goal-covering task, is selected to 

demonstrate its applicability.  

Based on the results of the experiments conducted, it is possible to conclude that 

minimizing the belief entropy is not guaranteed to be a useful optimality criterion when the 

task is not the reduction of uncertainty itself. On the one hand, the author believes that the 

poor performance showed by MI for this application is caused by the fact that the entropy-
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based methods are not able to discriminate which components of the uncertainty are more 

relevant for the execution of the task, given the current belief. In other words, they try to 

reduce the uncertainty blindly. On the other hand, TOOC methods explicitly intend to 

reduce the uncertainty in the relevant components from the task execution point of view 

and this explains their superior performance. For example, as might be intuitive, to 

correctly execute the goal-covering task, looking at the ball as well as at the landmarks 

must be reasonably balanced in order to simultaneously track the ball and self-localize. 

Regarding the sampling strategies, for this application, there is no noticeable difference in 

performance between using SVD and the random strategy with any of the tested sample 

numbers, but UT showed a lower performance. 

Regarding the hypotheses, the results show that it is possible and beneficial for an active-

vision system to explicitly consider the task that the robot is performing in order to direct 

the reduction of uncertainty to the most relevant components. 

A potential improvement for the proposed system that could be interesting would be to 

make the implementation of the methods that showed a better performance more efficient. 

One possible option for achieving this purpose would be to use an augmented state that 

includes the state and noises in one single vector, and to make a single sampling step from 

this vector instead of making two or three nested sampling steps. 

Regarding future work, it might be worthwhile to enable the system to consider the 

possibility of focusing on more than one object with the same sensing action, for example, 

when the field of view of the camera is able to show more than one object of interest. In 

that case, the sensing action space should be the gaze direction. It could be also convenient 

to apply a similar reasoning structure inside the decision-making module. Finally, further 

research on the use of different POMDP approximation assumptions and solution methods 

should be carried out in the future. 

6.3 General Conclusions 

The present thesis addresses the problems of reducing and characterizing the uncertainty in 

a mobile robot. In relation to the characterization of the uncertainty in the models, a state 

estimation method that is able to learn the models and noises from data has been presented. 
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For the reduction of the uncertainty in the state, a probabilistic and task-oriented active 

vision system has been detailed. 

It has been demonstrated that the correct handling of uncertainty can improve the 

performance of a robot both in terms of the estimation of the state of its environment and 

on the task being executed. 
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Chapter 7. Appendices 

7.1 Appendix 1 

In this appendix, we will prove Eq. 90. 

From the definition of  1

E

kV   : 

     1 1 1 1 1 1,E sen

k k k k k k k kV V p U Z d      u x x x .

 

(121) 

Applying the total probabilities law, 

     1 1 1 1 1, , , ,k k k k k k k k k k kp U Z p U Z p U Z d     x x x x x .

 

(122) 

Note that 
sen

ku  does not give additional information about kx  given 1kU  , 1kZ  , and 
act

ku , 

then 

   1,k k k k kp U Z b

 x x .

 

(123) 

If the total probabilities law is applied to the first probability inside the integral in (122), 

     1 1 1 1 1 1 1 1, , , , , , ,act act act

k k k k k k k k k k k k k kp U Z p U Z p U Z d        x x x x u u x u .

 

(124) 

Applying the Markov property of the state, 

     1 1 1 1 1 1 1, , , , ,act act act

k k k k k k k k k k k kp U Z p p U Z d       x x x x u u x u .

 

(125) 

The total probabilities law may be applied to the last term: 

     1 1 1 1 1, , , , , , ,act act

k k k k k k k k k k k k k kp U Z p U Z p U Z d     u x u x z z x z .

 

(126) 

Given the current state kx  and sensing action 
sen

ku , the current observation does not depend 

on the past observations or actions. Then, 

     1 1 1, , , , ,act act sen

k k k k k k k k k k k kp U Z p U Z p d   u x u x z x u z .

 

(127) 

The reader should note that 1

act

ku  is selected as a function of the information that the robot 

has about the state after perceiving kz , i.e.  k kb  z , and not as a function of the state itself, 
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because it is unknown to the robot. Thus, given kU  and kZ , kx  does not influence 1

act

ku . In 

a deterministic policy scheme,   1

act

k k kb  u z  and then, 

     
1

1 , , act
k

act

k k k k k kp U Z b 


  
u

u x z .

 

(128) 

Then, 

         
1

1 1 1 1 1, , , ,act
k

act sen act

k k k k k k k k k k k k k kp U Z p b p d d 


       u
x x x x u z z x u z u .

 

(129) 

Reordering and applying the integral of a Dirac delta function: 

       1 1 1, , , ,sen

k k k k k k k k k k k kp U Z p p b d   x x z x u x x z z .

 

(130) 

Replacing all the terms, and reordering, we get (90): 

           1 1 1 1 1, ,E sen sen

k k k k k k k k k k k k k k k kV b p V p b d d d

       u x z x u x x x z x z x .

 

(131) 
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7.2 Appendix 2 

In this appendix, the matrices used for the generation of the noises in the simulated 

experiment for HGP-EKF are shown. 

0 0 0

0 0 0

0 0 0

0.00184784 0.0486883 -0.00434644

-0.0442525 -0.0419647 0.00181666

0.0077776 -0.000575537 0.00414025

0.027588 0.0269114 -0.00128534

-0.000430892 0.0313048 -0.000449276

0.0223764 0.0244104 0.0047718

0.0107611

w A

0.0336207 -0.00003.418

-0.00428381 0.025677 0.00199791

-0.0470645 0.0449157 0.000263378

0.0260617 0.0152622 -0.0000865692

-0.00221957 -0.0377493 -0.000761095

-0.0493921 -0.00583674 0.00336598

0.00993593 -0.0269428 0.000395047

-0.00417493 0.00397914 -0.0000748089

T
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,0

0 0 0

0 0 0

0 0 0

-0.0444721 0.0194856 -0.00463632

0.0356193 -0.0249845 0.000177072

-0.0214058 -0.00680917 -0.00278333

0.0253863 0.00469748 -0.000572097

0.0440163 0.0269437 -0.00416914

-0.0449397 -0.00481488 -0.00394815

-0

w B

.0328821 -0.0340242 -0.00429665

0.0473356 -0.0452361 0.00171903

-0.0255414 -0.0140342 -0.0011094

-0.0148681 0.00386613 0.00211564

-0.0240986 0.0221872 0.00363643

0.0165503 -0.00158195 0.00435242

-0.00756641 0.0161994 -0.000540701

0.0454028 -0.0189831 0.00446045

T

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

,1

0 0 0

0 0 0

0 0 0

0.0313266 -0.0290438 -0.00172772

0.0491533 0.043403 0.00341576

-0.0168825 0.0062602 -0.00339917

-0.0311724 -0.0275199 -0.00376151

-0.0420083 -0.0266309 0.000767759

-0.00103483 -0.0386324 -0.000784213

0.00

w B

199885 -0.0375055 -0.00395031

0.0238959 0.0474252 -0.00418994

0.0195637 -0.012469 0.00302019

-0.0279315 0.0153012 -0.000402372

0.0179332 0.0271944 0.00076173

0.0187414 -0.00322586 -0.00137916

0.0315932 0.0473346 -0.00365961

0.00528621 -0.0464412 0.00213547

T
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,2

0 0 0

0 0 0

0 0 0

0.00423931 0.0114126 -0.00294659

-0.0220488 -0.00635743 -0.00482055

-0.00442484 0.00362668 0.000935457

-0.0349688 -0.0324026 -0.00328621

0.0181164 -0.0334072 -0.000983078

-0.0374067 -0.0470365 0.0011661

-

w B

0.0498343 0.0121046 0.0016882

0.0338102 0.0249252 -0.00236337

-0.00535104 -0.00000446688 -0.00219711

-0.0383429 -0.0170944 -0.00210234

-0.0143075 -0.0446306 -0.00283614

-0.0376363 -0.0245043 -0.0025956

-0.023638 0.00191749 -0.00248472

-0.012245 0.0464851 0.00463476

T

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

1.61481 0.130442

0.32846 1.29184

0.909618 2.35494

2.20392 0.744666

0.180111 0.16559

1.78418 0.215429

0.499008 0.607572

0.125937 0.214927

1.34966 0.68862

1.4446 1.79932

0.262969 0.813034

0.482908 1.27815

1.

v





 

 



 



 











A

32286 0.211044

T
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,0

0.114214 0.0379078

0.04519 0.0859883

0.0576854 0.0862119

0.187342 0.0210084

0.0832262 0.0583743

0.0972179 0.0208783

0.148711 0.0770422

0.00479711 0.0210305

0.0310628 0.00256729

0.0108711 0.0159934

0.0110

v

 



 

 





 



B

21 0.272097

0.0315625 0.21578

0.120146 0.0582386

T

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 









 

,1

0.160435 0.00540103

0.0301122 0.186089

0.0307346 0.0207976

0.0577201 0.0903018

0.0599567 0.121497

0.0571521 0.0506207

0.00812269 0.0426301

0.140168 0.0183013

0.177049 0.018278

0.0726335 0.0542498

0.119118 0.03

v











 

B

5265

0.0480869 0.122924

0.0913286 0.044206

T
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,2

0.0443834 0.112257

0.0791717 0.0568388

0.272815 0.0500298

0.210177 0.037802

0.0269782 0.0141681

0.0768728 0.118712

0.0361155 0.0135977

0.0608904 0.134198

0.0809307 0.0688239

0.158064 0.0290176

0.0328533 0.

v







 

 





 

B

00825043

0.0562919 0.0993173

0.0118177 0.0976889

T

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 










 

0.836854 2.20798 1.09612

0.925709 1.13145 0.925093

0.871673 0.853521 1.43916

2.23105 0.845014 0.400239

0.157581 0.990905 0.488483

0.519206 0.400124 2.03364

0.649426 0.264659 1.17783

2.3968 0.604024 0.2267

0.297

f

  





  



 aA

616 0.58203 0.59399

1.73441 1.53493 0.419548

1.14679 0.0411374 0.166434

0.0863592 1.65465 2.1141

0.535585 0.611868 1.41254

T
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,0

0.187117 0.348305 0.839174

1.53055 2.53379 1.03929

0.332079 1.4206 0.0844056

0.0877757 0.105239 1.97431

0.659809 0.220419 0.260235

0.325304 0.253789 0.952576

1.87727 0.0694806 1.10965

1.69614 0.289689 0.602117

f

 







 





aB

0.190965 0.605211 1.77972

0.457514 1.577 0.105615

1.75454 0.933655 0.287295

0.628562 0.211775 0.171124

0.784261 0.711426 0.298795

T

 







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

,1

0.176774 2.32758 0.500645

0.0514889 0.647281 1.58997

0.169367 1.01762 0.959179

0.286812 1.95946 0.24624

1.16512 1.76419 0.921122

0.871454 0.119492 1.65571

1.68368 0.0943341 0.302924

2.78748 0.268209 0.0836

f

 



  



  

 aB

968

1.75047 0.264141 0.579505

0.767572 1.13393 0.39777

1.23326 0.0546266 0.784715

1.25854 0.24317 0.498266

0.375808 1.17754 0.377823

T
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,2

0.546364 0.0741737 0.272275

1.22616 1.02021 1.3604

0.295643 0.548881 0.664477

1.10391 1.42608 0.997151

0.817815 1.81922 1.20141

0.00988832 0.594701 0.00215018

0.145749 0.981545 0.461642

0.104824 0.619294 0.0275

f



  

 



aB

598

0.953632 0.00658556 0.680106

0.91147 0.807789 0.322516

1.78737 0.15242 2.1924

0.420092 0.490136 0.426788

0.218086 0.29047 1.11785

T

 
 
 
 
 
 
 
 
 
 
 
 
  

 


 
 
 
 
 
 






 







 

0.107901 0.283888

0.609109 1.17299

1.38344 1.49154

1.25195 0.143795

0.73636 1.20127

0.260766 1.03375

0.702819 0.349936

1.0738 0.914147

0.412485 0.137393

0.745477 0.921148

T

h

 
 
 
 
 
 
 

  






 



 

 


 
 
 
 
 
  

a
A  

,0

0.0839882 0.226872

0.766422 1.78732

0.614102 0.18582

2.56068 0.454141

1.83043 0.258832

1.09123 0.0607288

0.471509 0.376947

1.21984 0.183102

2.10741 0.94889

0.0167712 0.142518

h

 
 
 
 
 
 
 

  
 
 
 



 





 

 

 



 

a
B

T
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,1

0.680675 0.73318

1.15584 1.06202

0.773375 0.699824

0.879419 0.381928

0.172145 1.2991

0.212243 0.205641

0.629485 1.04005

1.24175 0.303126

0.86476 0.0418026

0.0180546 1.15025

h

 
 
 
 
 
 
 

  
 
 
 
 
 
 






 





 

 



a
B

T



 

,2

0.137624 0.376343

1.69677 0.259935

0.932938 1.39553

1.94762 0.95171

1.70703 0.145292

0.777626 0.670528

0.0867094 1.17914

2.65515 0.599345

0.858964 1.76782

0.13846 0.862903

T

h

 
 
 
 
 
 
 

  
 
 
 
 
 
 
 











 

a
B  


