Contents

List of Figures 10

1 Introduction 2

2 Active Objects 6

2.1 Active Objects 7

2.2 Reflection 8

2.2.1 Reflective Architecture 9

2.3 ProActive 10

2.3.1 Distribution model 11

2.3.2 Active Objects implementation for ProActive 12

2.3.3 Message Passing for Actives Objects in ProActive 13
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.4 Synchronisation: Wait-by-necessity</td>
<td>15</td>
</tr>
<tr>
<td>2.3.5 ProActive: Environment and implementation</td>
<td>16</td>
</tr>
<tr>
<td>2.3.6 ProActive Meta-Object Protocol</td>
<td>19</td>
</tr>
<tr>
<td>3 Networks for parallelism</td>
<td>24</td>
</tr>
<tr>
<td>3.1 History of parallel computing</td>
<td>25</td>
</tr>
<tr>
<td>3.1.1 Cluster of computers</td>
<td>25</td>
</tr>
<tr>
<td>3.1.2 Computer Grids</td>
<td>27</td>
</tr>
<tr>
<td>3.1.3 A model overview for Project Grids</td>
<td>28</td>
</tr>
<tr>
<td>3.2 Peer-to-Peer Infrastructure of ProActive</td>
<td>29</td>
</tr>
<tr>
<td>3.2.1 Bootstrapping: First Contact</td>
<td>31</td>
</tr>
<tr>
<td>3.2.2 Discovering and Self-Organising</td>
<td>31</td>
</tr>
<tr>
<td>3.3 Theory of Networks</td>
<td>33</td>
</tr>
<tr>
<td>3.3.1 Generating random graphs</td>
<td>34</td>
</tr>
<tr>
<td>3.3.2 Natural Networks</td>
<td>35</td>
</tr>
<tr>
<td>4 State of the Art on Load-Balancing</td>
<td>39</td>
</tr>
<tr>
<td>4.1 Static Load-Balancing</td>
<td>40</td>
</tr>
</tbody>
</table>
4.2 Dynamic Load-Balancing ... 41

4.3 Components of a Load-Balancing Algorithm 44

4.3.1 Load Index .. 45

4.3.2 Information-Sharing Policy 46

4.3.3 Transfer Policy ... 47

4.3.4 Location Policy .. 49

4.4 Related Work ... 49

4.4.1 Condor ... 49

4.4.2 Legion ... 52

4.4.3 Cilk .. 55

4.4.4 Satin .. 58

5 Setting foundations for Load-Balancing of Active-Objects 61

5.1 Active-Objects and Processing Idleness 62

5.2 Location policy for load-balancing of active-objects 64

5.3 Information and transfer policies for load-balancing of active-objects 65

5.3.1 Modelling ProActive behaviour to test algorithm policies 65
5.3.2 Implementing the Information-Sharing Policies 66
5.3.3 Hardware and Software ... 69
5.3.4 Results Analysis ... 70
5.3.5 Testing the impact of Information-Sharing Policies 74
5.4 Exploiting the Peer-to-Peer infrastructure: Information on-demand 75
 5.4.1 Robin-Hood Load-Balancing Algorithm 76
 5.4.2 Robin-Hood over ProActive’s Peer-to-Peer Infrastructure 77
5.5 Robin-Hood and the Nottingham Sheriff ... 79
5.6 Testing algorithms in a real environment .. 80

6 Models, Simulations and Deployment on Large-Scale Networks 83
 6.1 Simulating Desktop Grids ... 84
 6.1.1 Characterising nodes of Desktop Grids 84
 6.1.2 Modelling Desktop Grids ... 85
 6.1.3 Finding the best processor .. 87
 6.1.4 Scaling towards the “infinite network” 95
 6.2 Simulating Project Grids ... 103
6.2.1 Characterising a Project Grid ... 106
6.2.2 Modelling a Project Grid ... 108
6.2.3 Environment-aware Algorithms ... 110
6.2.4 Experimental Setup .. 111
6.2.5 Simulation Results ... 112
6.2.6 Results Confidence .. 114
6.3 Where to run parallel applications? .. 118
6.3.1 Problematic of Applications and Descriptors 118
6.3.2 Clauses in ProActive Descriptors ... 119
6.3.3 Clauses in ProActive Applications 121
6.3.4 Constraints .. 121
6.4 The real world .. 124
7 Conclusions and Future Work ... 129
A Matrices for Robin-Hood algorithm working alone 133
B Matrices for Robin-Hood + Nottingham-Sheriff algorithm 138
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The reflection process, featuring levels of data, reification and reflection.</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Parallelisation and distribution with active objects</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Execution of an asynchronous and remote method call</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Base-level and meta-level of an active object</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Migration and tensioning</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Grids divided by objective</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>(a) step two of Watts and Strogatz model with $n = 12$ and $k = 2$; (b) step three with small p_e</td>
<td>36</td>
</tr>
<tr>
<td>4.1</td>
<td>A supermarket</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>Examples of information-sharing policies</td>
<td>47</td>
</tr>
<tr>
<td>4.3</td>
<td>Matchmaking process of Condor</td>
<td>50</td>
</tr>
</tbody>
</table>
6.2 Final distribution for the Robin-Hood algorithm only, for $RB = 0.5$ and $T = 0.5$.

6.3 Final distribution for the Robin-Hood + Nottingham Sheriff.

6.4 Tuning for RS considering: a) number of active-objects in (9, 9) per total of active-objects; and b) Number of total migrations reaching a stable state.

6.5 Tuning for RS considering: a) number of active-objects in (9, 9) per total of active-objects; and b) Number of total migrations reaching a stable state. Because the results using 3 to 6 acquaintances were similar, only those for 3 are shown.

6.6 Tuning for RS considering: a) mean number of total migrations until each time-step; and b) mean number of overloaded nodes in each time-step. Using $RB = 0.7$, acquaintances subset size = 3, $|x - y| \leq 3$, $\lambda = 0.1, 0.2, 0.3$ and $T = 0.7$.

6.7 Tuning the value of RS considering: a) mean number of active objects on a node with $\mu \geq 1$ per total number of active objects; and b) mean number of active objects on a node with $\mu > 1 + \frac{1}{3}$ per total number of active objects. Using $RB = 0.7$, acquaintances subset size = 3, $|x - y| \leq 3$, $\lambda = 0.1, 0.2, 0.3$ and $T = 0.7$.

6.8 Scalability for a network using $RS = 0.9, 1.0, 1.1$, $RB = 0.7$.

6.9 Scalability in terms of number of processors used, having $RS = 1.0$.

6.10 Scalability in terms of number of migrations, having $RS = 1.0$. The plot presents, for an active object, the (mean) number of accumulated migrations performed until a time-step $t \in [0; 1,000]$.

6.11 Scalability, having the number of active objects proportional to the number of nodes.

6.12 Latency between nodes from the PlugTest project grid.

6.13 Total number of pending requests in all active-objects using message-size $C = 0.1$ and object size $M = 1$, without synchronisation.
6.14 Total number of pending requests in all active-objects using message-size $C = 1$ and object size $M = 10$, without synchronisation. .. 115

6.15 Total number of pending requests in all active-objects using message-size $C = 0.1$ services, object size $M = 1$ services and synchronisation each 10 time-steps. 116

6.16 % of confidence of load-balancing algorithms, increasing object size (M) 117

6.17 Example of clauses in descriptor. .. 120

6.18 Example of clauses in application. ... 122

6.19 Integer Constraint Schema Grammar. .. 123

6.20 Institutional clusters on Grid5000: Bordeaux, Grenoble, Lille, Lyon, Nancy, Orsay, Rennes, Sophia-Antipolis and Toulouse. .. 124

6.21 Speed of Jacobi parallel application in iterations per milliseconds. 126

6.22 Mean number of cumulated migrations that an active object performs during the experience. .. 127

A.1 Final distribution for the Robin-Hood algorithm only, for $RB = 0.5$ and $q = 3$ 134

A.2 Final distribution for the Robin-Hood algorithm only, for $RB = 0.5$ and $q = 4$ 135

A.3 Final distribution for the Robin-Hood algorithm only, for $RB = 0.5$ and $q = 5$ 136

A.4 Final distribution for the Robin-Hood algorithm only, for $RB = 0.7$ and $q = 4$ 137

B.1 Final distribution for the Robin-Hood + Nottingham Sheriff algorithm, for $RB = 0.5, RS = 0.5$ and $q = 3$.. 139
B.2 Final distribution for the Robin-Hood + Nottingham Sheriff algorithm, for $RB = 0.5$, $RS = 0.5$ and $q = 5$... 140

B.3 Final distribution for the Robin-Hood + Nottingham Sheriff algorithm, for $RB = 0.7$, $RS = 0.7$ and $q = 3$... 141

B.4 Final distribution for the Robin-Hood + Nottingham Sheriff algorithm, for $RB = 0.9$, $RS = 0.9$ and $q = 3$... 142