UTILIZACIÓN DE IMÁGENES DIGITALES PARA EL MEJORAMIENTO DE LA PRODUCTIVIDAD DE OPERACIONES DE CONSTRUCCIÓN

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL

MIGUEL ALEJANDRO MORA AGUIRRE

PROFESOR GUÍA:
LUIS ALARCÓN CÁRDENAS

MIEMBROS DE LA COMISIÓN:
SEBASTIÁN FUSTER ARACENA
CARLOS AGUILERA GUTIERREZ

SANTIAGO DE CHILE
SEPTIEMBRE 2009
RESUMEN

Diversos estudios demuestran que a nivel mundial la industria de la construcción presenta bajos niveles de productividad. A pesar de que la construcción es un sector considerado tradicionalmente lento para adoptar innovaciones, la aplicación de herramientas que faciliten la captura y el procesamiento de datos para el mejoramiento de procesos, en base a tecnología de información, puede ser una estrategia efectiva para ayudar a mejorar indicadores de productividad.

Este trabajo desarrollado bajo la rama de productividad del proyecto FONDEF D06I1013: “UTILIZACIÓN DE IMÁGENES Y VIDEOS DIGITALES PARA EL MEJORAMIENTO DE LA SEGURIDAD, PRODUCTIVIDAD Y CALIDAD EN PROCESOS DE CONSTRUCCIÓN”. Presenta el diseño de metodologías computacionales que facilitan la captura, el procesamiento y análisis de información para el mejoramiento de la productividad en operaciones de construcción, utilizando videos e imágenes digitales. Se discuten los problemas y necesidades de obra que pueden ser atendidos mediante el uso de imágenes y videos digitales. Se describen las metodologías, su adaptación; las tecnologías disponibles y el diseño de los nuevos métodos que fueron incorporados en un sistema de captura, procesamiento y análisis de información a partir de videos e imágenes digitales. Finalmente se presenta un set de herramientas cuyo uso puede contribuir al mejoramiento significativo de la productividad en proyectos de construcción.
A mis padres, familia y Ceci que me dieron todo su apoyo durante mis estudios.
AGRADECIMIENTOS

En primer lugar, quiero agradecer a Sebastián Fuster y al profesor Luis Fernando Alarcón por haberme dado la posibilidad de realizar mi trabajo de título en el proyecto FONDEF, brindándome todo su apoyo durante este proceso. También, al equipo del Centro de Excelencia en Gestión de la Producción de la Pontificia Universidad Católica de Chile (GEPUC) y a las empresas LyD, Echeverría Izquierdo y BASCO que me ayudaron a llevar a cabo este trabajo.

Quisiera agradecer especialmente a mis padres, mi hermano y familia que me apoyaron incondicionalmente durante toda mi carrera universitaria. Así como también, a la Ceci y su familia que se sumaron a este apoyo incondicional en la mitad del camino. También a mis amigos, que estuvieron en los buenos momentos y en las malas notas. Sin todos ellos el camino hubiera sido mucho más difícil (y aburrido). ¡Muchas Gracias!
INDICE

1 INTRODUCCIÓN

1.1 Objetivos ... 1
1.1.1 Objetivo general .. 1
1.1.2 Objetivos específicos 1
1.2 Descripción .. 1
1.3 Metodología .. 3

2 PROBLEMAS Y SOLUCIONES

2.1 Necesidad de mejoramiento 5
2.2 Definición de Productividad 6
2.3 Problemas específicos detectados 8
2.3.1 Problemas en terreno 8
2.3.2 Problemas que afectan la productividad de las herramientas diseñadas y creadas a partir de tesis y memorias anteriores ... 8
2.4 Metodologías utilizadas para mejorar la productividad de obras constructivas 9
2.4.1 Muestreo del trabajo 10
2.4.2 Cartas de balance 11
2.4.3 Cartas multicuadrilla 12
2.4.4 Control de avance de obra 13
2.4.5 Last Planner System (Sistema del último planificador (SUP)) 13
2.4.6 Realizaciones prácticas 16
2.5 Tecnologías disponibles 16
2.6 Tecnologías aplicadas a la construcción actualmente en uso .. 17
2.7 Soluciones propuestas para los problemas detectados .. 17
2.7.1 Problemas en terreno 18
2.7.2 Problemas que afectan la productividad de las herramientas diseñadas y creadas a partir de tesis y memorias anteriores ... 18
2.7.3 Investigaciones realizadas con videos e imágenes digitales 18
2.7.3.1 Investigaciones con videos 18
2.8 Evolución y factibilidad técnico-económica de la tecnología escogida 20

3 DISEÑO DE HERRAMIENTAS

3.1 Herramientas para problemas en terreno .. 22
3.1.1 Medición de tiempos y rutas de grúa 22
3.1.1.1 Propósito 22
3.1.1.2 Descripción 22
3.1.1.3 Ejemplos de aplicación de la herramienta 25
3.1.1.4 Datos de entrada 25
3.1.1.5 Datos de salida/resultados 26
3.1.1.6 Proceso de medición / Diseño de Software 42
3.1.1.7 Proceso de análisis 42
3.1.1.8 Resumen de utilización de resultados de la herramienta 50
3.1.1.9 Validación .. 50
3.1.1.10 Análisis productivo y de costos 52
3.1.2 Control de avance 54
3.1.2.1 Propósito 54
3.1.2.2 Descripción 55
3.1.2.3 Ejemplos de aplicación de la herramienta 56
3.1.2.4 Datos de entrada 58
1 INTRODUCCIÓN

1.1 OBJETIVOS

1.1.1 OBJETIVO GENERAL

Diseñar herramientas conceptuales en base a softwares computacionales, que utilicen metodologías de análisis de información de imágenes y videos digitales para mejorar la productividad de recursos en obras de construcción.

1.1.2 OBJETIVOS ESPECÍFICOS.

Identificar las posibilidades y oportunidades de extracción de datos y análisis de videos e imágenes digitales en obras de construcción.

Validar las metodologías utilizadas, en el diseño de las herramientas, que permiten mejorar la productividad de obras de construcción rescatando información relevante de los recursos utilizados en obra.

1.2 DESCRIPCIÓN

La investigación se enmarca dentro de la rama de productividad del proyecto FONDEF D06I1013: “UTILIZACIÓN DE IMÁGENES Y VIDEOS DIGITALES PARA EL MEJORAMIENTO DE LA SEGURIDAD, PRODUCTIVIDAD Y CALIDAD EN PROCESOS DE CONSTRUCCIÓN” adjudicado en el año 2006 al profesor Luis Fernando Alarcón, docente de la Pontificia Universidad Católica de Chile.

El proyecto es llevado a cabo por el departamento de Investigación y desarrollo, dirigido por Sebastián Fuster, del Centro de Excelencia en Gestión de la Producción de la Pontificia Universidad Católica de Chile (GEPUC), dirigido por el profesor Luis Fernando Alarcón. Se comienza a desarrollar de manera definitiva a partir del año 2008 y hasta la fecha se han desarrollado 3 tesis en el tema: una aplicada a productividad, otra a productividad y prevención de riesgos y una última a calidad en obras constructivas. A partir de la primera, desarrollada por Pedro Pablo Silva (Silva, 2005), se generó el software computacional CAPCAM que integraba herramientas de análisis aplicadas a la construcción de túneles (análisis de cuadrillas y multicuadrillas) para mejorar la productividad. Las herramientas generadas fueron diseñadas específicamente para este tipo de
obras por lo que presentaban limitaciones al intentar generalizarlas a otro tipo de proyectos. A raíz de esto surge una segunda tesis, esta vez desarrollada por Patrick de St. Aubin (De St Aubin, 2008), que aplicaba ambas herramientas pero a construcciones en general. También, adapta indicadores existentes de prevención de riesgos para utilizarlos con videos digitales. A partir de sus diseños se genera una nueva versión del software para análisis de imágenes y videos digitales: CAPCAM2. La tercera tesis, desarrollada por Hugo Berroeta (Berroeta, 2009), presenta herramientas diseñadas, en base al último software creado, para mejorar la calidad de obras de construcción a partir del análisis de videos digitales. El cuál también es base para el desarrollo de esta investigación. El software cuenta con 3 módulos uno de prevención de riesgos, uno de calidad y otro de productividad. Las herramientas planteadas en esta investigación son diseñadas para ser parte del módulo de productividad del software CAPCAM2.

Desde principios de los 90 el “International Group of Lean Construction” ha desarrollado un nuevo referencial teórico para la construcción denominado “Lean Construction”. Esta filosofía intenta minimizar o eliminar todas aquellas fuentes de pérdidas de los procesos productivos (tiempos de espera, procesos innecesarios, recursos en exceso, etc), que normalmente implican menor productividad, menor calidad, mayores costos, etc. En “Lean Construction” las actividades de producción son concebidas como flujos de materiales e información, los que son controlados con el objetivo de obtener una mínima variabilidad y tiempo de ciclo (Alarcón & Campero, 2003).

Para llevar a cabo la investigación, en la rama de productividad del proyecto, se diseñarán conceptualmente y validarán herramientas de estudio de trabajo para recursos críticos de obras constructivas, cuya productividad puede ser mejorada identificando y reduciendo pérdidas mediante el uso de videos y/o imágenes digitales. Luego, se analizará cuál es el ahorro y la mejora productiva que se obtiene al aplicar cada herramienta. Tal como se planteó anteriormente, las herramientas son proyectadas para ser programadas y agregadas al módulo de productividad de la última versión del software ya creado (CAPCAM2) y utilizan como base metodologías existentes tales como: cartas de balance, cartas multicuadrilla, muestreos del trabajo y Last Planner System. El diseño y especificación de cada uno de estas herramientas y la utilización de las metodologías se presenta más adelante en la sección “diseño de herramientas”. Se acuñará el principio Lean Construction como parte esencial de la investigación y cada una de las herramientas se generará dentro de este marco teórico. Cada una de las herramientas permitirá disminuir fuentes de
pérdidas en los procesos. A su vez estas serán funcionales e intuitivas para no generar pérdidas y trabajo extra al usuario.

1.3 METODOLOGÍA

La metodología utilizada en el desarrollo de la investigación es la siguiente:

i. Revisión bibliográfica

Este es el primer de la investigación. Se realiza una extensa revisión bibliográfica de documentos relacionados con productividad, metodologías y tecnologías de captura de información utilizadas en proyectos de construcción. Se complementa con visitas a terreno con la finalidad de generar las primeras ideas de cuáles son los recursos críticos de obra que pueden ser mejorados mediante el uso de imágenes y videos digitales, y conocer cuáles son las necesidades reales en obras. En esta primera fase se generan los primeros bosquejos de metodologías.

ii. Diseño de herramientas

Una vez generadas las primeras ideas de metodologías y herramientas. Se filtran todas las ideas generadas aceptando unas y descartando otras según su factibilidad técnica y utilidad real a los proyectos de construcción. Luego, se da inicio al diseño conceptual de cada una de las metodologías y herramientas seleccionadas, retroalimentándolas tanto con ideas y sugerencias del equipo profesional de GEPUC, como de profesionales de las diferentes empresas asociadas al proyecto. Posteriormente, cada una de las herramientas es materializada, generando los diseños conceptuales concretos de cada una.

iii. Prueba de metodologías

Cada una de las metodologías es llevada a terreno para comprobar su factibilidad real utilizando videos e imágenes digitales según corresponda. Para esto, se verifica que lo observado a través del video o imagen digital corresponda a lo que es observado en terreno. Se filman y toman los datos necesarios de las metodologías manualmente en terreno. Se observan los videos en oficina y se prueban las metodologías, si los resultados, entre terreno y oficina, son iguales el uso de los videos o imágenes digitales para la toma de datos de la respectiva herramienta queda
validado. Cómo la fase de programación es posterior al diseño y validación de las herramientas. Las mediciones en oficina son realizadas manualmente utilizando planillas de MS Excel.

iv. Evaluación y validación de resultados

Una vez realizada la prueba de la factibilidad de uso de las herramientas se evalúan y validan los resultados. Para esto, primero se genera el total de los resultados de cada herramienta. Luego, se discuten y filtran, en primera instancia con el equipo profesional de GEPUC obteniendo las primeras retroalimentaciones. Finalmente, para conectar la investigación con la realidad de terreno, los resultados son presentados a profesionales de terreno para una nueva retroalimentación y establecer cuáles son los reales usos y prioridades de los resultados.

Cabe destacar que los procesos iii y iv son de continua retroalimentación por lo que el desarrollo de estos no se realizó en una sola etapa, sino que contó con más de una etapa de retroalimentación en pos de afinar y mejorar los alcances de cada una de las metodologías y herramientas.

El ejecutor de la presente investigación realiza la revisión bibliográfica, diseña las herramientas, participa en las reuniones tanto de obra como del equipo de GEPUC y valida cada una de las herramientas revisando los videos y aplicando las metodologías diseñadas, tanto en terreno como en oficina.
2 PROBLEMAS Y SOLUCIONES

2.1 NECESIDAD DE MEJORAMIENTO

La industria de la construcción chilena es el sector económico nacional con la más baja tasa de crecimiento de la productividad. Mientras otros sectores económicos nacionales han mantenido o mejorado su tasa de productividad, la construcción la ha disminuido durante los últimos 15 años. Así queda demostrado en los gráficos 1 y 2 extraídos de estudios del Banco Central de Chile durante el año 2004 (Alvarez & Fuentes, 2004). A raíz de esto surge el siguiente desafío: ¿cómo mejorar la tasa de productividad de un sector económico, estancada por años?

Gráfico 1. Tasa de crecimiento de la productividad por sectores económicos 1987-2003

La respuesta apunta a que se deben mejorar las metodologías y herramientas utilizadas en terreno para controlar y mejorar la productividad. La aplicación de tecnologías de información de control y toma de datos de manera automática, presentan gran utilidad para lograr mejores resultados. Hoy en día, el levantamiento y toma de datos de operaciones en terreno para control de la productividad se realiza en forma manual. Es decir, se necesita de personal en terreno para realizar esta tarea, transformándola en una tarea costosa que se debe realizar en tiempo real. Esto la hace proporcionalmente dependiente del número de operaciones y el tiempo que se quiere observar, ya que para observar una tarea o actividad se necesita un observador, para dos actividades simultáneas, 2 observadores y así sucesivamente. Por lo que la solución, para mejorar la productividad en obras de construcción, debe ser adaptar y aplicar las nuevas tecnologías existentes al levantamiento y manejo de la información de este tipo de proyectos. En pos de convertir la toma de datos en terreno en un mecanismo simple, útil y económicamente viable para analizar las operaciones y mejorar su productividad. Para lograr este objetivo, utilizar videos e imágenes digitales es la opción escogida de las tantas que se verán más adelante.

2.2 **DEFINICIÓN DE PRODUCTIVIDAD**

El significado del término productividad varía de acuerdo a su aplicación en las diferentes áreas de la industria de la construcción. Cada definición y sus parámetros, tiene un propósito único. Existen modelos económicos, específicos de proyectos y orientados a actividad. Además, se
debe tener en cuenta que las definiciones de productividad y estudio del trabajo no son intercambiables. El estudio del trabajo es el estudio sistemático que tiene como propósito determinar y estandarizar costos, determinar tiempos estándar, etc. (Thomas, Maloney, Horner, Smith, Handa, & Sanders, 1990).

Para esta investigación se adoptará el modelo de productividad orientado a actividades que presenta una relación entre el costo y el objeto obtenido (ecuación 1).

\[
Productividad = \frac{Costo\ de\ la\ mano\ de\ obra\ u\ horas\ de\ trabajo\ [HH]}{Objeto\ de\ salida\ [m2,\ m3,\ kg,\ etc]}\]

Ecuación 1 Definición de modelo de productividad orientado a actividades

La productividad también puede definirse en forma más explícita como una medición de la eficiencia con que los recursos son administrados para completar un producto específico dentro de un plazo establecido y con un estándar de calidad dado. Es decir, la productividad comprende tanto la eficiencia como la efectividad, ya que de nada sirve producir muchos metros cuadrados de muros de albañilería si estos presentan serios problemas de calidad (Serpell, 2002). La ilustración 1 indica la relación entre eficiencia (buena utilización de los recursos), efectividad (cumplimiento o logro de las metas deseadas) y productividad.

Ilustración 1 Relación entre eficiencia, efectividad y productividad
2.3 PROBLEMAS ESPECÍFICOS DETECTADOS

En la primera etapa se detectaron dos tipos de problemas: unos asociados directamente a la productividad en terreno y otros asociados a mejorar la productividad y el alcance de las herramientas ya creadas en el software CAPCAM2 ((Silva, 2005) y (De St Aubin, 2008)).

2.3.1 PROBLEMAS EN TERRENO

Falta de control del uso del recurso grúa: Actualmente todas las obras que utilizan el recurso grúa no tienen el suficiente control sobre qué es lo que este transporta o cuáles son las rutas de transporte. Las cuadrillas, muchas veces se excusan en que no pudieron realizar las actividades programadas por no poder utilizar el recurso grúa. Al no existir un registro de cuál ha sido el uso real de la grúa sólo se debe confiar en la excusa del encargado. Además, se tiene que este recurso es uno de los grandes generadores de pérdidas de tiempo en las cuadrillas de moldaje, enfierradura y hormigonado. Ya que por un lado produce pérdidas identificadas como “Pérdidas por uso del recurso grúa” que conllevan “problemas de abastecimiento interno de materiales” y “ausencia de trabajadores en la zona de trabajo”. Estas categorías de pérdida se encuentran en la memoria para optar al título de ingeniero civil de la Pontificia Universidad de Chile de Andrés Caro (Caro, 2008), quien realizó un estudio sobre las pérdidas en procesos constructivos en Chile, controlando un total de 38.000 horas hombre en 11 proyectos de construcción durante el año 2006. Detectó que las pérdidas por uso de grúa correspondían a un 17% del total de las pérdidas ocurridas en las faenas de moldaje, y que a su vez estas acarreaban parte del 8% de los problemas de abastecimiento interno de materiales y parte del 5% de ausencia de la zona de trabajo. Detectó también, que en el hormigonado con capacho el uso de la grúa representa el 5% del total de las pérdidas y que las pérdidas por grúa en las faenas de enfierradura corresponden al 11% del total y que también acarrean parte del 9% de problemas de abastecimiento interno de materiales y parte del 9% de pérdidas por ausencia en la zona de trabajo. Observando estos porcentajes de pérdidas asociadas a la grúa, se aprecia de manera clara que el uso de la grúa generalmente es ineficiente y que debe ser mejorado.

Falta de control del avance real de obra: Todas las obras controlan el avance real de sus proyectos, ya que de esto dependen los planes de acción (programaciones a corto plazo) y los cobros de los estados de pago al mandante. Pero, el que realiza el levantamiento del avance rara
vez corresponde al jefe de terreno, por lo que el flujo de información no siempre es a tiempo ni el correcto. Esto lleva a que se programen tareas y actividades que ya fueron realizadas o que no se realicen cobros al mandante cuando corresponde.

Falta de conciencia de cuál es el trabajo efectivo (productivo) realizado en obra: Existen obras en las que el avance es lento no porque se necesiten ejecutar muchas actividades y falte mano de obra, sino porque el nivel de ocupación de los trabajadores es muy bajo.

2.3.2 PROBLEMAS QUE AFECTAN LA PRODUCTIVIDAD DE LAS HERRAMIENTAS DISEÑADAS Y CREADAS A PARTIR DE TESIS Y MEMORIAS ANTERIORES

Falta de análisis para las herramientas de carta de balance y muestreo del trabajo que ya fueron creadas: En las memorias anteriores se crearon las herramientas para realizar cartas de balance y muestreo del trabajo. Estas guardan los datos pero no generan automáticamente la información requerida para el análisis.

Necesidad de ver los resultados generados en los diferentes niveles administrativos de un proyecto en el que se utilizan las herramientas: Una vez generados los resultados, es necesario ingresar al software, luego a la herramienta utilizada y realizar un procedimiento similar al de medición para lograr encontrarlos y utilizarlos. Esta situación es engorrosa si se considera que la persona que requiere los resultados no siempre es la que realizó las mediciones, por lo que es muy probable que no esté familiarizada con el software transformando la tarea de ver los resultados en una tarea de alto requerimiento de tiempo. Esta falencia del software hace que el uso del resultado final no sea expedito, mermando su utilidad en la toma de decisiones.

2.4 METODOLOGÍAS UTILIZADAS PARA MEJORAR LA PRODUCTIVIDAD DE OBRAS CONSTRUCTIVAS

Existen variadas metodologías para mejorar la productividad. Algunas apuntan a transmitir mejor los objetivos y metas, para disminuir la variabilidad del trabajo propia de una obra constructiva. Otras, son utilizadas para conocer y redistribuir el uso de los recursos. A continuación se detallan las más utilizadas en Chile.
2.4.1 MUESTREO DEL TRABAJO.

El muestreo del trabajo es utilizado para mejorar la productividad observando y clasificando el trabajo de un pequeño porcentaje de los trabajadores de la obra para obtener una representación de todos los obreros. Los resultados de esta metodología dan bases para emitir juicios acerca de problemas de productividad, ya que, permiten tomar conciencia de cómo se distribuye el trabajo dentro de la obra (Oglesby, Parker, & Howell, 1989). Para clasificar el trabajo realizado se tienen tres categorías (Thomas & Daily, 1984):

Trabajo Productivo: Es el proceso en el cual se añade una “unidad” o componente a lo que está siendo construido.

Trabajo Contributorio: Trabajo que no necesariamente agrega un componente a lo que está siendo construido, pero es esencial para completar el trabajo. Esto incluye tareas como transportar materiales a los frentes de trabajo, recibir y dar instrucciones, leer planos, etc.

Trabajo No Contributorio: Es hacer nada o hacer algo que no es necesario para completar el producto final. Esto incluye actividades como caminar sin transportar elementos, tiempos de espera sin explicación, etc.

Con una muestra representativa, de un tamaño lo suficientemente grande para ser estadísticamente válida, ciertas características del proyecto pueden ser predichas. Esta predicción no es exacta, pero sí la muestra es representativa, el resultado está muy cerca de la situación real (Thomas & Daily, 1984). Estadísticamente, la muestra podrá ser validada a partir de tres conceptos: nivel de confianza, límite de error y proporción por categoría. El primero provee la confiabilidad del resultado, el segundo la precisión del valor estimado y el último cuál es la proporción esperada de la muestra, es decir, cómo se distribuyen las respuestas de la muestra. El número de muestras para las condiciones requeridas es calculado con la ecuación 2 (Olomolaiye, Jayawardane, & Harris, 1998).

\[
N = \frac{Z^2 P (1 - P)}{L^2}
\]

Ecuación 2 Número de muestras requerido para muestreo del trabajo
Donde \(N \) es el tamaño de la muestra, \(Z \) el valor obtenido de las tablas estadísticas dependiendo del intervalo de confianza, \(P \) es la proporción por categoría y \(L \) el límite de error requerido. Dado que la distribución esperada entre trabajo productivo y no productivo es de 50:50. Se considerará razonable considerar un nivel de confianza del 90\% y un límite de error del 5\% para representar la distribución del trabajo de una obra completa. De acuerdo a la tabla 1 se necesitarán 384 muestras. Las cuales necesariamente deben ser realizadas en terreno.

<table>
<thead>
<tr>
<th>Proporción por Categoría (%)</th>
<th>95% nivel de confianza</th>
<th>90% nivel de confianza</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Límite de error (%)</td>
<td>Límite de error (%)</td>
</tr>
<tr>
<td></td>
<td>1 2.5 5 10</td>
<td>1 2.5 5 10</td>
</tr>
<tr>
<td>50:50</td>
<td>9604 1537 384 96</td>
<td>6765 1082 271 68</td>
</tr>
<tr>
<td>40:60</td>
<td>9220 1475 369 92</td>
<td>6495 1039 260 65</td>
</tr>
<tr>
<td>30:70</td>
<td>8067 1291 323 81</td>
<td>5683 909 227 57</td>
</tr>
<tr>
<td>20:80</td>
<td>6147 983 246 61</td>
<td>4330 693 173 43</td>
</tr>
<tr>
<td>10:90</td>
<td>3457 553 138 35</td>
<td>2435 390 97 24</td>
</tr>
</tbody>
</table>

Tabla 1 Tamaño de muestra requerido para niveles de confianza de 95\% y 90\% (Olomolaiye, Jayawardane, & Harris, 1998).

Gráfico 3. Ejemplo de resultado de muestreo del trabajo.

2.4.2 CARTAS DE BALANCE

Los ingenieros industriales por muchos años han utilizado “tablas hombre-máquina”, las cuales han sido muy útiles para analizar la eficiencia de las combinaciones trabajador-maquinaria. Estas han sido adaptadas a la construcción bajo el nombre de carta de balance; ofrecen una manera efectiva de mostrar las relaciones entre las actividades de los integrantes de una cuadrilla y los equipos que utilizan. Para poder realizar una carta de balance, el tiempo utilizado por cada trabajador y maquinaria, en cada tarea de una actividad, debe ser observado y medido.
Idealmente, los tiempos deben ser medidos en varios ciclos de trabajo para validar su precisión y variación durante los ciclos (Oglesby, Parker, & Howell, 1989).

La carta de balance muestra barras que representan a cada persona o maquinaria (gráfico 4). El tiempo es mostrado como un porcentaje del tiempo total del ciclo. Cada barra, está dividida para mostrar los tiempos dedicados a cada una de las tareas que se realizaron durante el ciclo, incluyendo tiempos de espera y no productivos. Con este gráfico se pueden reasignar tareas entre los trabajadores o trabajadores para la cuadrilla según las tareas que se deben realizar (Oglesby, Parker, & Howell, 1989).

Cabe destacar que la carta de balance no necesariamente muestra la efectividad o eficiencia de la operación, ya que encontrarse ocupado no es sinónimo de estar utilizando un buen método de trabajo (Oglesby, Parker, & Howell, 1989).

2.4.3 CARTAS MULTICUADRILLA

La carta multicuadrilla (gráfico 5) es semejante a una carta de balance en cuanto a su construcción y análisis, sólo que involucra una visión más global de todo el proceso constructivo y no se enfoca en una sola operación. En este caso, cada barra representa un frente de trabajo, maquinaria o equipo (Fuster, 2004).
2.4.4 CONTROL DE AVANCE DE OBRA

El control de avance consiste en verificar el progreso de la obra según lo planificado en el corto, mediano y largo plazo. Es una práctica que permite reducir la variabilidad de la obra al dar una línea base del avance real. A partir de esta se conocen cuáles son las tareas o trabajos pendientes y cuál es el atraso real de la obra. Además, permite replanificar actividades y ajustar el flujo de materiales para cumplir con plazos.

2.4.5 LAST PLANNER SYSTEM (SISTEMA DEL ÚLTIMO PLANIFICADOR (SUP))

Diseñando por Ballard y Howell en 1997 (Ballard & Howell, 1997) se basa en los principios de Lean Construction; apunta a incrementar la fiabilidad de la planificación y con esto mejorar los desempeños. Para esto, el sistema provee herramientas de planificación y control efectivas para todo tipo de proyectos. El SUP está especialmente diseñado para mejorar el control de la incertidumbre en proyectos aumentando la confiabilidad de los planes (Alarcón & Campero, 2003).

La coordinación en obras es muy difícil cuando el flujo de trabajo es poco confiable y resulta realmente imposible cuando los trabajadores no cumplen sus compromisos, ya que, de no cumplir el trabajo comprometido no afectan sólo su propio desempeño, sino el de todas las
cuadrillas que contaban con el trabajo completado para poder ejecutar el propio (Alarcón & Campero, 2003). El SUP tiene cuatro niveles de planificación donde se va refinando el plan y la incertidumbre se va reduciendo a través de una consideración cuidadosa de lo que DEBERÍA hacerse y lo que efectivamente PUEDE realizarse. Las fases son las siguientes (Alarcón & Campero, 2003):

Programa Maestro: Es la planificación inicial. En este punto se genera el presupuesto y el programa del proyecto proporcionando un mapa de coordinación de actividades que llevan a la realización del proyecto. Debe ser desarrollado con información que represente el verdadero desempeño que posee la empresa en obra, de otra manera el SUP no tiene validez.

Programa de Fase: Los programas de fase representan una subdivisión más detallada del programa maestro para el cumplimiento de los hitos del programa maestro.

Planificación Intermedia (lookahead): La planificación intermedia detalla y ajusta el presupuesto del programa, arrastrando recursos hacia la obra y protegiendo actividades para las que probablemente los recursos no están disponibles. Su principal objetivo es controlar el flujo de trabajo en obra. En este nivel se analizan las restricciones futuras.

Planificación Semanal: Planificación que presenta el mayor nivel de detalle antes de realizar un trabajo. Es realizada por diseñadores, supervisores de terreno, capataces y otras personas que supervisan directamente la ejecución del trabajo. En esta planificación se selecciona lo que DEBE realizarse para completar el trabajo y se decide lo que SERÁ hecho, dentro de este marco se selecciona lo que PUEDE ser hecho a modo de compromiso para la semana siguiente. Semana a semana se revisan los compromisos cumplidos y se genera un índice de porcentaje de programa completado (PPC) calculado con la ecuación 3.

\[
PPC = \frac{\sum \text{tareas completadas}}{\sum \text{tareas programadas}} \times 100
\]

Ecuación 3 Definición de PPC

Con respecto a las tareas no completadas se determinan las causas de no cumplimiento (CNC) y los responsables. Estas, son llevadas estadísticamente para mantener un registro histórico y planear acciones correctivas.
2.5 TECNOLOGÍAS DISPONIBLES

Algunas de las tecnologías disponibles para ser utilizadas o adaptadas en la construcción se muestran a continuación (Navon & Goldschimdt, Monitoring labor inputs: automated-data-collection model and enabling technologies, 2002):

Dead Reckoning (DR): es un proceso matemático que determina la posición basándose en la ruta y la velocidad durante un periodo de tiempo (giroscopios de laser y fibra óptica).

Active beacons (AB): Método basado en tres o más transmisores en posiciones conocidas y una unidad receptora de la que se captura la posición. El sistema opera con 2 principios: triangulación (GPS y RF) y trilateración (sensores ópticos y ultrasónicos).

Artificial Landmark Recognition (ALR): Se determina la posición de la vecindad de un punto a partir de puntos de referencia conocidos mediante dispositivos RFID.

Global Position System (GPS): Provee posición 3D en cualquier lugar del planeta. El sistema consiste en 24 satélites orbitando la tierra cada 21 horas a una altura de 20.200 km sobre la superficie. Cada uno de estos satélites actúa como punto de referencia para los receptores en tierra.

Ground-based Radio Frequency (RF): Los sistemas de Radio frecuencia usan los mismos principios que un GPS con la diferencia de que en vez de utilizar satélites como puntos de referencia usan estaciones en tierra. Su ventaja con respecto al GPS es que puede medir posiciones incluso dentro de edificios.

Sistemas ultrasónicos: Sistemas de alta precisión y bajo costo para calcular posiciones. Aptos para áreas de trabajo pequeñas en las que no existen grandes interferencias.

Radio frequency identification (RFID): Es parte de las tecnologías de identificación automática en que las frecuencias de radio son usadas para capturar y transmitir datos desde una etiqueta o transmisor.
Códigos de Barra: Tecnología de recolección de datos en tiempo real. Los datos en el código de barras actúan como referencia para que el computador analice los registros (Navon R., Research in automated measurement of project performance indicators, 2007).

Laser Detection and Ranging (LADAR): Es una tecnología que permite medir las propiedades del espectro de luz y encontrar el rango de posición u otra información del objetivo (Navon R., Research in automated measurement of project performance indicators, 2007).

Ultra-Wideband (UWB): Tecnología emergente para localizar objetos. Por su carácter de nueva es aún muy costosa (Teizer, 2007).

Handheld computers (HHC): Computadoras de bolsillo para correr pequeños programas que permiten toma de datos en terreno (National cooperative highway research program, 2007).

Cámaras de video: Permiten almacenar información visual de acontecimientos reales en periodos de tiempo. Las más utilizadas son las digitales y las análogas.

Imágenes digitales: Digitalizaciones visuales de la realidad. Es similar a la fotografía tradicional a diferencia es que el almacenamiento es digital.

2.6 Tecnologías aplicadas a la construcción actualmente en uso.

De todas las tecnologías disponibles, sólo algunas son aplicadas comercialmente en obras constructivas. A continuación se detallan las más usadas:

Automated concrete temperature and maturity tracking: Herramienta que usa tecnología para el monitoreo de cemento portland mientras se cura o hidrata en terreno (National cooperative highway research program, 2007).

4D CAD: Dibujos digitales en 3D complementados con la programación de la construcción (cuarta dimensión: el tiempo) que permiten visualizar el avance de la obra en periodos intermedios (National cooperative highway research program, 2007).
Oxblue: Sistema que permite visualizar vía internet imágenes del sitio de trabajo. El sistema se basa en navegación por calendario pudiéndose escoger diferentes días o fechas para observar (www.oxblue.com).

CALIBRE: Herramienta basada en el uso de tecnologías de información para la toma y el procesamiento de datos en terreno para generar información de apoyo a las obra. Los datos en terreno son capturados con PDA’s (HHC) generando información que puede ser directamente utilizada en la toma de decisiones (www.calibre.cl).

2.7 SOLUCIONES PROPUESTAS PARA LOS PROBLEMAS DETECTADOS

Dadas las tecnologías disponibles y el marco de la investigación, la tecnología escogida para el desarrollo de las soluciones a los problemas específicos son los videos e imágenes digitales. La solución específica para cada uno de los problemas planteados se detalla a continuación

2.7.1 PROBLEMAS EN TERRENO

Problema de grúa: Se propone como solución crear una herramienta que filme y guarde diariamente en video todos los movimientos de la grúa, permitiendo realizar análisis sobre los transportes realizados y los tiempos utilizados, es decir, qué se transportó, cuáles fueron las rutas de transporte y cómo se distribuyeron los tiempos de transporte. Esto, con el fin de conocer cómo es utilizado el recurso grúa y si sus movimientos son los adecuados para una óptima productividad del proyecto de construcción.

Falta de control: Se confeccionará una herramienta que permita levantar semanalmente (o cuando se estime necesario en el proyecto) el avance real de la obra observando fotografías de la faena, con esto se obtendrá un respaldo fidedigno del avance real del proyecto por fechas. También, permitirá comparar las fotografías con imágenes CAD-4D para que el avance pueda ser controlado de una manera más visual. Cómo la herramienta permite levantar el avance, y su función es controlar la obra, también podrá usarse como herramienta de planificación utilizando como metodología base el sistema del último planificador.
Falta de conciencia del trabajo efectivo: Existe una metodología alternativa al muestreo del trabajo conocida como five minutes rating que según estudios realizados (Thomas & Daily, Crew performance measurement via activity sampling, 1984) entrega valores similares a los del muestreo del trabajo sobre distribución del trabajo pero, en un tiempo de realización menor. Se estudiará su validez con respecto al muestreo del trabajo. Si se logra validar se diseñará como herramienta para el módulo de productividad.

2.7.2 **PROBLEMAS QUE AFECTAN LA PRODUCTIVIDAD DE LAS HERRAMIENTAS DISEÑADAS Y CREADAS A PARTIR DE TESIS Y MEMORIAS ANTERIORES**

Análisis de carta de balance y muestreo del trabajo: Se creará un módulo que permita ver y analizar los resultados de las mediciones realizadas en los módulos de carta de balance y muestreo del trabajo. Con esto se podrá dar el uso adecuado a los resultados de las herramientas permitiendo observarlos, analizarlos y generar informes de resultados.

Visualización y análisis de resultados: Para analizar y ver los resultados en cualquier nivel del proyecto o empresa, se generará un módulo externo al software CAPCAM2 utilizable vía web, es decir, un visualizador de resultados accesible por internet. Será 100% dependiente del programa pero, en él no se podrán realizar cambios sobre los resultados, ya que, su utilidad sólo es la visualización.

2.7.3 **INVESTIGACIONES REALIZADAS CON VIDEOS E IMÁGENES DIGITALES**

Innovar es clave para mejorar la productividad y muchas investigaciones creativas se han llevado a cabo para mejorar el desempeño de las obras de construcción. Las metodologías y tecnologías utilizadas son variables de acuerdo a las necesidades, usos y costos. A continuación se detallan algunos estudios basados en el uso de videos e imágenes digitales, llevados a cabo por diferentes investigadores en el mundo.

2.7.3.1 **INVESTIGACIONES CON VIDEOS**

2.7.3.1.1 **INVESTIGACIONES EN MEJORAMIENTO DE LA PRODUCTIVIDAD**

Project Navigator: Sistema desarrollado por Saad y Hancher en 1998 que permite seguir el progreso de un proyecto de construcción y su documentación. Es una integración de audio, video,
gráficos y textos. Los archivos de video, grabados con una cámara de video, debían ser digitalizados, editados y mejorados de calidad, por lo que su costo en consumo de tiempo lo hacía inviable (Ibrahim & Kaka, 2008).

Site-web-site: Prototipo desarrollado por Nuntasunti y Bernold en 2002 para ayudar en la planificación y control de proyectos de construcción proveyendo acceso visual continuo a la obra. El objetivo era la comunicación (Ibrahim & Kaka, 2008).

Panorama image database management system (PIDMS): Diseñado por Shih y Lai en 2006 integraba imágenes con tecnología de realidad virtual generando una plataforma de monitoreo de las actividades realizadas en el proyecto. Los autores, argumentaban que, además, el sistema puede ser utilizado como una herramienta educacional para enseñar operaciones de construcción (Ibrahim & Kaka, 2008).

Hydraulic Excavator Idle Time Analysis: Presentado por Zou y Kim en 2007 describían una metodología basada en la medición automática del tiempo de espera de excavadoras hidráulicas. La metodología fue testeada en un video de 3 horas mostrando alta eficacia (Ibrahim & Kaka, 2008).

Neil Eldin en el año 1990 estudia el transporte de paneles de moldaje realizado por la grúa. Realiza mediciones del tiempo, estudia las rutas y las optimiza en la construcción de una cárcel (Eldin, 1990). El estudio es aplicable sólo cuando la grúa realiza sólo movimientos de un tipo o tarea.

Estudio de la grúa con videos: Everett en 1993 desarrollo un sistema de video para mejorar la productividad y seguridad de las operaciones de la grúa. Consistía en una cámara de video montada en el carro de la grúa. La cámara capturaba y transmitía imágenes en directo de la carga y los obreros, invisibles al operador en circunstancias normales. Resultados experimentales mostraron un mejoramiento de la productividad entre un 16% y 21% (Ibrahim & Kaka, 2008).

2.7.3.1.2 INVESTIGACIONES PARA EL MEJORAMIENTO DE LA CALIDAD

Building inspection: Desarrollado por Paterson en 1997 (Paterson, Dowling, & al, 1997). Identificaban y grababan defectos exteriores en torres. Tuvieron problemas graves con sombras y

Detección de óxido en revestimiento de puentes: Sistema diseñado por Lee y Chang en 2000 (Lee & Chang) tenía como objetivo apoyar y asesorar el análisis automático de puentes, basándose en el análisis de imágenes. Pero nuevamente, la no uniformidad de las sombras, el ruido visual y la pintura en las superficies les presentó problemas en el reconocimiento automático de imágenes.

2.7.3.1.3 INVESTIGACIONES CON IMÁGENES.

Digitalizing Construction Monitoring (DCM): Sistema propuesto por AbdMajid y Memon en 2006. Integra dibujo 3D CAD con imágenes digitales. Mediante técnicas fotométricas se extrae un modelo 3D de las imágenes digitales y se compara con el modelo 3D CAD del proyecto para extraer información del avance del proyecto. (Ibrahim & Kaka, 2008).

2.8 EVOLUCIÓN Y FACTIBILIDAD TÉCNICO-ECONÓMICA DE LA TECNOLOGÍA ESCOGIDA

En la actualidad utilizar cámaras para filmar digitalmente tiene grandes ventajas en comparación con el resto de las tecnologías, ya que, el precio de mercado de un sistema para grabación de videos digitales es relativamente económico, fácil de encontrar, de instalar y de utilizar.

Por un lado, el costo de un sistema completo de filmación se ha reducido enormemente en los últimos once años (tabla 2). Además, la tecnología ha cambiado, en 1998 por el valor especificado se obtenían sólo grabaciones en VHS, en cambio hoy en día, por un valor 3 veces
menor se obtienen filmaciones directamente en digital. Esto permite aplicar directamente tecnologías computacionales para el análisis de los videos obtenidos.

<table>
<thead>
<tr>
<th>Item</th>
<th>Valor 1998</th>
<th>Valor 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCR</td>
<td>$449.600</td>
<td>$260.000</td>
</tr>
<tr>
<td>Cámara de video</td>
<td>$843.000</td>
<td>$250.000</td>
</tr>
<tr>
<td>Controlador</td>
<td>$421.500</td>
<td>$40.000</td>
</tr>
<tr>
<td>Monitor</td>
<td>$56.200</td>
<td>$56.200</td>
</tr>
<tr>
<td>Switcher</td>
<td>$140.500</td>
<td>$0</td>
</tr>
<tr>
<td>Total</td>
<td>$1.910.800</td>
<td>$606.200</td>
</tr>
</tbody>
</table>

Tabla 2 Evolución del valor de un sistema de grabación entre los años 1998 y 2009

Por otro lado, la usabilidad del sistema de filmación, hoy en día es mucho más simple, ya que con un sólo sistema (una pantalla y un VCR) se puede observar, grabar directamente en digital y controlar más de una cámara a la vez. No como en antaño, donde para cada cámara se necesitaba un monitor y una videocasetera para grabar en VHS que posteriormente debían ser convertidos uno a uno a digital para almacenarlos y realizar análisis. Esto generaba una situación engorrosa de almacenamiento de material generado (casetes de video), ya que cada casete puede contener como máximo 720 minutos (6 horas) de grabación en la menor calidad, lo que no alcanza a cubrir una jornada completa de trabajo. Considerando una jornada de trabajo de 8 horas durante 5 días a la semana, se necesitan alrededor de 14 casetes de videos para realizar la filmación de un mes completo. Una obra de construcción fácilmente puede durar 10 meses, por lo que se necesitarían 140 casetes de video para filmar toda la obra con una sola cámara. El tamaño se incrementa proporcionalmente a la cantidad de cámaras instaladas. Hoy en día el almacenamiento de las filmaciones se realiza en digital utilizando discos duros de computador. De acuerdo a las pruebas realizadas con el equipo de GEPUC, se estima que para un día de grabación de aproximadamente 8 horas se requiere un 1GB de memoria. Por lo que, nuevamente considerando una jornada de 8 horas de trabajo durante 5 días a la semana, se necesitarían aproximadamente 200GB para almacenar las filmaciones una obra de 10 meses de duración. Los valores aproximados de cada uno de estos métodos de almacenamiento, se puede apreciar en la tabla 2. Cabe destacar, que el espacio físico ocupado por el disco duro es comprable sólo al de 1 casete de VHS.

<table>
<thead>
<tr>
<th>Item</th>
<th>Valor 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disco Duro 250GB</td>
<td>$32.200</td>
</tr>
<tr>
<td>140 Casetes VHS</td>
<td>$155.000</td>
</tr>
</tbody>
</table>

Tabla 3 Comparación de precios de almacenamiento de videos.
3 **DISEÑO DE HERRAMIENTAS**

3.1 **HERRAMIENTAS PARA PROBLEMAS EN TERRENO**

3.1.1 **MEDICIÓN DE TIEMPOS Y RUTAS DE GRÚA**

3.1.1.1 **PROPÓSITO**

La principal motivación de esta herramienta es medir y controlar eficientemente el recurso grúa. En la actualidad no existe un control adecuado sobre su uso por lo que muchas veces actúa como cuello de botella, ya que, su labor de transporte es requerida en diversos frentes y con diferentes tareas al mismo tiempo. Con esta herramienta se obtiene una radiografía del estado actual del uso de la grúa, lo que permite determinar si el problema que se debe solucionar es el uso del recurso o la mala distribución de los centros de acopio, por ejemplo. Los resultados que se obtienen con esta herramienta permiten conocer cuáles son los movimientos realizados y la distribución del uso de la grúa en un determinado periodo de tiempo. Con estos resultados se pretende minimizar las pérdidas por mala planificación y uso de la grúa en los procesos constructivos, siendo el principal interesado, en los resultados la oficina técnica, ya que, la programación de obra se realiza en este nivel.

3.1.1.2 ** Descripción**

Esta herramienta se debe utilizar cuando se tiene poco control o una mala optimización del uso del recurso grúa. Para detectar estas falencias, en terreno, se pueden realizar cartas de balance o muestreos del trabajo en las cuadrillas que la utilizan. Con estas se obtiene el nivel de ocupación de las cuadrillas y se pueden determinar tiempos muertos. Bajos niveles de ocupación, una gran cantidad de tiempos muertos generalmente se ven traducidos en atrasos. Al aplicar la metodología de carta de balance se obtienen los tiempos de uso de recursos en tareas determinadas. Como en este caso el recurso es sólo uno, la grúa, y lo que se quiere obtener son sus tiempos de distribución de esta en determinadas tareas, se realizará una conveniente adaptación de carta de balance para obtener los resultados esperados. Para esto, además de medir el tiempo de uso con la carta de balance, se tomará como dato el lugar físico donde la tarea comienza y termina y la cantidad transportada. El recorrido entre los diferentes sectores de la obra es lo que se denominará “ruta de la grúa”.

22
Conocer y manejar las rutas y la cantidad de material transportado, permite planificar un mejor uso de la grúa de acuerdo a la criticidad de las tareas y frentes de la obra. Además, conociendo la cantidad promedio transportada en un determinado periodo de tiempo, es decir, la capacidad real de transporte de la grúa instalada en obra, se pueden planificar de mejor manera las secuencias de las tareas proyectadas para periodos de tiempo futuros. También ayuda a la planificación, conocer el tiempo total utilizado en cargar y descargar la grúa (tiempos de set-up y descarga), ya que permite considerar, en los estudios y simulaciones de las secuencias constructivas, las pérdidas que se producen por método utilizado (transporte de materiales por grúa). Con esta herramienta, gracias a la adaptación de la carta de balance, para cada grúa se determinará: los usos de la grúa tanto generales como por tarea y por hora, las rutas más solicitadas de transporte, desde que sectores y a que sectores son dirigidos los movimientos, las rutas de cada tarea por hora, el ciclo promedio de transporte y las distribuciones de las tareas por cantidad y distancia recorrida entre otros.

Las mediciones son hechas sobre videos, filmados en obra, en los cuales se ve el campo de acción de la grúa. No es necesario que en el video se vea la grúa entera, ya que, la grúa en raras oportunidades transporta elementos a poca distancia de la pluma; lo que si es necesario, es que dentro del cuadro filmado se vean todos los sectores de carga y descarga dentro de la obra. En caso de no ser así, siempre y cuando se vea por lo menos uno de los sectores, se podrá utilizar la herramienta aplicada a ciclos, un ejemplo de esto son los ciclos de descarga de hormigón de un camión. Dada la posición de la cámara puede ser que el sector visible sea sólo el de carga o descarga de los capachos, en este caso, sólo se mide el ciclo de idea y vuelta del capacho. Para tener un espectro de datos representativos y de esta manera conocer y/o verificar el uso de la grúa, se espera que las mediciones se realicen por lo menos dos veces por semana. De esta manera el benchmarking para planificaciones futuras se estará realizando sobre datos representativos y no sobre días en particular. Además, cómo al utilizar esta herramienta se obtiene una radiografía del uso actual de la grúa, utilizándola continuamente, se puede observar cuál es el resultado de las medidas aplicadas sobre el uso del recurso. La toma de datos y definición de rutas, no es automática, ya que al software no se le pueden otorgar libertades de decisión, dado que con la tecnología existente, en especial la calidad de imagen que se obtiene, aún no es aplicable el total reconocimiento automático de objetos. Lo que sí puede hacer, es mostrar advertencias y sugerencias, pero la decisión final siempre queda a elección del usuario.
3.1.1.3 **EJEMPLOS DE APLICACIÓN DE LA HERRAMIENTA**

Algunos de los usos reales en obra en los que puede ser utilizada la herramienta son:

- **La grúa no mueve lo que es prioridad para llevar a cabo el proyecto**

Muchas veces en terreno, la grúa transporta materiales que no son los que debería transportar para obtener una productividad óptima en obra. Por ejemplo, puede estar transportando moldajes a todos los frentes de trabajo, pero, lo que se necesita realmente en los frentes de trabajo, son fierros. Utilizando esta herramienta, se puede saber que fue lo que realmente transportó la grúa durante el día o periodo de análisis.

- **La grúa está sobrepasada en su capacidad de transporte**

La grúa analizada se está utilizando al 100% durante todo el día, es decir, transporta materiales sin detenerse, pero aún así, las cuadrillas siguen con un gran número de tiempos muertos. Con los resultados de esta herramienta se puede apreciar el nivel de ocupación de la grúa. Si este es muy alto, se debe optar por agregar otra grúa o algún medio de transporte para obtener la productividad esperada.

- **La grúa sólo se ocupa durante un periodo del día**

El recurso sólo se utiliza para realizar tareas durante la mañana, la tarde o un periodo determinado del día, el resto del día está detenida. Esta herramienta es muy útil para superar este problema, ya que entrega los niveles de ocupación de la grúa durante horas específicas o durante periodos como la mañana y la tarde.

- **Todas las tareas están programadas a la misma hora**

Muchas veces en terreno, diversos frentes de trabajo requieren transportes de materiales a la misma hora; generando horas peak, en las cuales el requerimiento de la grúa es superior al esperado. Con los resultados de la herramienta, se pueden apreciar si existen horas peak y aplicar medidas correctivas en pos de coordinar mejor los trabajos en obra.
- **Se está utilizando la grúa, para transportar materiales a frentes de trabajo que no son los críticos del proyecto**

Se da prioridad, de transporte de materiales, a frentes de trabajo que no son los más importantes dentro de la obra. Utilizando la herramienta, se puede apreciar si se está transportando moldaje a un sector de acopio cuando lo necesario es transportarlos a un frente de trabajo.

- **La grúa está siendo utilizada para realizar trabajos dentro de un determinado frente de trabajo; no sólo en el transporte de materiales**

La grúa puede estar siendo utilizada para colocar los moldajes y descimbrar, no dejándola disponible para actividades en otros frentes. En esta situación, el recurso no está utilizándose para su tarea principal: el transporte. Este tipo de acciones, pueden ser detectadas utilizando la herramienta.

- **Necesidad de conocer que materiales se abastecieron entre sectores y los frentes de trabajo**

En determinados periodos de tiempo, se requiere que la grúa mueva materiales entre sectores específicos, como puede ser el centro de acopio del moldaje y el sector donde estos están siendo instalados. Con los resultados de esta herramienta, se tiene la información exacta de qué fue lo transportado y entre qué sectores. Lográndose un seguimiento del trabajo realizado con lo que se puede evaluar si el trabajo realizado es el requerido.

- **Los centros de acopio y bodegas se encuentran muy lejos de los frentes de trabajo**

Muchas veces, la grúa debe realizar viajes muy largos para transportar los materiales. La razón principal es el mal posicionamiento de los centros de acopio o bodegas de los materiales. Si se conocen las distancias a los frentes de trabajo, con esta herramienta, se puede obtener la distancia total recorrida y apreciar si es excesiva en comparación con la cantidad de viajes realizados

- **Cuáles son los ciclos promedio de los movimientos de la grúa para los diferentes materiales**

En numerosas oportunidades, se programan muchas actividades de transporte para la grúa sin considerar cuál es la capacidad real de transporte que posee. Conociendo los ciclos promedio de
transporte, entregados por la herramienta, se puede determinar la cantidad necesarias de grúas que se requieren para llevar a cabo el proyecto dentro del plazo estipulado.

3.1.1.4 Datos de entrada

El primer y básico dato de entrada que se requiere, es un video de la grúa en operación en formato digital para poder ingresar lo a CAPCAM2 y realizar las mediciones correspondientes a la herramienta. La primera fase, para determinar los tiempos y rutas de una grúa, es identificar los sectores de importancia dentro de la obra. Estos pueden ser, por ejemplo, centros de acopio de material, frentes de trabajo, etc. Son variables de acuerdo a la obra y los intereses de los planificadores; pueden variar durante el desarrollo de la construcción. También se debe identificar que cargas son transportadas: hormigón, moldajes, fierros u otras. Nuevamente estas dependen de la faena y de la planificación, ya que, las prioridades pueden variar, por ejemplo, una semana lo crítico es el transporte de fierros y otra la descarga de cerámicas a bodega. También, como dato de entrada opcional, se puede ingresar la distancia existente entre los sectores para determinar la cantidad total de kilómetros recorridos por la grúa, con esto se puede tener una idea de si la ubicación de los centros de acopio es la estratégicamente correcta. Otro dato de entrada opcional, es la cantidad de material transportado. Se ingresa en cada uno de los movimientos medidos con su respectiva cantidad y unidad. Para cada ruta se ingresarán como datos los instantes de tiempo en que ocurren las acciones de carga, transporte y descarga. Los datos de entrada que se ingresan al realizar la medición, se resumen como se indica en la tabla 4.

<table>
<thead>
<tr>
<th>Hora Inicio</th>
<th>Carga</th>
<th>Sector inicio</th>
<th>Material</th>
<th>Cantidad</th>
<th>Hora Fin</th>
<th>Descarga</th>
<th>Sector fin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4. Ingreso de datos al programa

3.1.1.5 Datos de salida/resultados

A partir de las mediciones de tiempo obtenidas, se generarán informes de resultado de: los porcentajes totales de uso de la grúa, las rutas y set-ups de la grúa desglosados en tiempos y/o porcentajes por ruta, sector, material, hora y fecha. Los datos se podrán observar en formato de gráficos y tablas. A continuación se muestra cada gráfico con su respectiva tabla. El orden en que son presentados corresponde a su grado de importancia, siendo el primero el más importante.
A. Uso de grúa por tarea.

El porcentaje de cada tarea corresponde a la suma del tiempo total dedicado a la tarea (carga, transporte y descarga) dividido por el tiempo total sin considerar la hora de almuerzo, ya que, este periodo de la grúa sin movimiento es considerado parte del funcionamiento normal diario de la grúa, es decir, no es una pérdida que se desee controlar.

<table>
<thead>
<tr>
<th>Tarea</th>
<th>Porcentaje de tiempo de transporte</th>
</tr>
</thead>
<tbody>
<tr>
<td>moldaje</td>
<td>34.32%</td>
</tr>
<tr>
<td>nada</td>
<td>28.39%</td>
</tr>
<tr>
<td>s/a</td>
<td>16.77%</td>
</tr>
<tr>
<td>canastillo</td>
<td>8.47%</td>
</tr>
<tr>
<td>capacho</td>
<td>4.70%</td>
</tr>
<tr>
<td>hormigón</td>
<td>2.87%</td>
</tr>
<tr>
<td>mangueras</td>
<td>1.92%</td>
</tr>
</tbody>
</table>

B. Uso de grúa general

Emulando las categorías productivo, contributario y no contributario del muestreo del trabajo, se definen las categorías: movimientos de grúa cargada, movimientos de grúa vacía y grúa sin actividad. Con esto se asume que el movimiento de la grúa cargada es productivo, el movimiento de la grúa vacía desde que descargó es contributivo (se dirige a realizar nuevas tareas siendo este movimiento necesario) y grúa sin actividad, cuando está descargada y sin uso,
es no productivo. El porcentaje corresponde a la suma de los tiempos dividido por el total del tiempo medido.

El gráfico 7 muestra la misma información de uso general de la grúa del resultado anterior, pero desagrupado por periodo del día. La suma de los 3 porcentajes de cada periodo debe ser 100% en cada tramo. Mañana comprende desde las 8:00 hrs hasta las 13:00 hrs y tarde entre las 13:00 hrs y las 19:00. Ninguno de los 2 tramos debe considerar el periodo de almuerzo del operador como tiempo sin actividad.

C. Uso de grúa general diario

El gráfico 8 muestra la misma información de uso general de la grúa del resultado anterior, pero desagrupado por periodo del día. La suma de los 3 porcentajes de cada periodo debe ser 100% en cada tramo. Mañana comprende desde las 8:00 hrs hasta las 13:00 hrs y tarde entre las 13:00 hrs y las 19:00. Ninguno de los 2 tramos debe considerar el periodo de almuerzo del operador como tiempo sin actividad.
D. Uso de grúa general por horas

El gráfico 9 muestra la misma información de uso general de la grúa de los resultados anteriores, pero desagrupando por hora de uso. La suma de los 3 porcentajes debe ser 100% en cada hora de uso. A diferencia de los otros resultados, en este, la hora de almuerzo del operador de la grúa debe ser considerada en este gráfico.
E. Las 3 rutas más solicitadas

En este resultado, se muestran las tres rutas que acumulan los mayores porcentajes del tiempo del uso de la grúa, ordenadas de mayor a menor. El porcentaje acumulado también es graficado (gráfico de Pareto). La tabla debe mostrar cada ruta con su respectivo porcentaje total y acumulado de la ruta. Además junto al gráfico, se presenta una fotografía de la obra con los sectores y rutas solicitadas dibujadas. La simbología es la presentada en la ilustración 2.

<table>
<thead>
<tr>
<th>Sector de inicio</th>
<th>Sector de fin</th>
<th>Tarea</th>
<th>Porcentaje</th>
<th>Acumulado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>nada</td>
<td>9.26%</td>
<td>9.26%</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>moldaje</td>
<td>6.65%</td>
<td>15.91%</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>moldaje</td>
<td>4.45%</td>
<td>20.36%</td>
</tr>
</tbody>
</table>

Tabla 9 Ejemplo de tabla de la ruta más solicitada
Las 3 rutas más solicitadas

<table>
<thead>
<tr>
<th>Ruta y tarea</th>
<th>Porcentaje</th>
<th>Acumulado</th>
</tr>
</thead>
<tbody>
<tr>
<td>nada</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>moldaje</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>moldaje</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>moldaje</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

Gráfico 10 Ejemplo de gráfico de la ruta más solicitada por tarea

F. Transportes desde sectores

El gráfico 11 y la tabla 10 presentan dos valores para cada sector. El porcentaje de tiempo utilizado para realizar tareas dentro del mismo sector (sobre sector) y el porcentaje de tiempo utilizado para realizar tareas hacia otros sectores (otro).
Gráfico 11 Ejemplo de gráfico de transportes desde sectores

<table>
<thead>
<tr>
<th>Desde sector</th>
<th>Hasta sector</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>23.80%</td>
</tr>
<tr>
<td></td>
<td>otro</td>
<td>76.20%</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>45.28%</td>
</tr>
<tr>
<td></td>
<td>otro</td>
<td>54.72%</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5.69%</td>
</tr>
<tr>
<td></td>
<td>otro</td>
<td>94.31%</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>25.35%</td>
</tr>
<tr>
<td></td>
<td>otro</td>
<td>74.65%</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>34.86%</td>
</tr>
<tr>
<td></td>
<td>otro</td>
<td>65.14%</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>otro</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Tabla 10 Ejemplo de tabla de transporte desde sectores

G. Transportes a sectores

Se muestran, tanto en el gráfico como en la tabla, los porcentajes de tiempo utilizados para realizar tareas hacia cada sector y el porcentaje acumulado de estas, ordenados de mayor a menor.
H. Rutas de transporte por tarea

Este gráfico se puede presentar de dos maneras, para una tarea (gráfico 13) o para varias. Se muestra el porcentaje de tiempo utilizado para realizar la tarea entre cada ruta. La tabla 12 presenta los porcentajes con respecto al total del tiempo de medición.
Gráfico 13 Ejemplo de gráfico de transporte de tarea por ruta

Tabla 12 Ejemplo de tabla de transporte de tareas por ruta

<table>
<thead>
<tr>
<th>Ruta</th>
<th>andamios</th>
<th>canastillo</th>
<th>moldaje</th>
<th>nada</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,00%</td>
<td>0,59%</td>
<td>7,30%</td>
<td>15,67%</td>
<td>23,57%</td>
</tr>
<tr>
<td>1</td>
<td>0,00%</td>
<td>0,59%</td>
<td>1,67%</td>
<td>1,43%</td>
<td>3,69%</td>
</tr>
<tr>
<td>2</td>
<td>0,00%</td>
<td>0,00%</td>
<td>1,08%</td>
<td>4,13%</td>
<td>5,21%</td>
</tr>
<tr>
<td>3</td>
<td>0,00%</td>
<td>0,00%</td>
<td>4,55%</td>
<td>0,86%</td>
<td>5,41%</td>
</tr>
<tr>
<td>4</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>2,37%</td>
<td>2,37%</td>
</tr>
<tr>
<td>5</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>6,88%</td>
<td>6,88%</td>
</tr>
<tr>
<td>2</td>
<td>0,00%</td>
<td>0,00%</td>
<td>14,99%</td>
<td>3,83%</td>
<td>18,82%</td>
</tr>
<tr>
<td>1</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>2,51%</td>
<td>2,51%</td>
</tr>
<tr>
<td>3</td>
<td>0,00%</td>
<td>0,00%</td>
<td>11,34%</td>
<td>0,00%</td>
<td>11,34%</td>
</tr>
<tr>
<td>4</td>
<td>0,00%</td>
<td>0,00%</td>
<td>3,65%</td>
<td>0,00%</td>
<td>3,65%</td>
</tr>
<tr>
<td>5</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>1,32%</td>
<td>1,32%</td>
</tr>
<tr>
<td>3</td>
<td>0,00%</td>
<td>6,73%</td>
<td>14,13%</td>
<td>0,00%</td>
<td>20,86%</td>
</tr>
<tr>
<td>1</td>
<td>0,00%</td>
<td>6,73%</td>
<td>6,97%</td>
<td>0,00%</td>
<td>13,70%</td>
</tr>
<tr>
<td>4</td>
<td>0,00%</td>
<td>0,00%</td>
<td>4,26%</td>
<td>0,00%</td>
<td>4,26%</td>
</tr>
<tr>
<td>6</td>
<td>0,00%</td>
<td>0,00%</td>
<td>2,90%</td>
<td>0,00%</td>
<td>2,90%</td>
</tr>
<tr>
<td>4</td>
<td>6,70%</td>
<td>0,00%</td>
<td>19,10%</td>
<td>7,34%</td>
<td>33,15%</td>
</tr>
<tr>
<td>1</td>
<td>0,00%</td>
<td>0,00%</td>
<td>10,79%</td>
<td>7,34%</td>
<td>18,14%</td>
</tr>
<tr>
<td>3</td>
<td>0,00%</td>
<td>0,00%</td>
<td>6,68%</td>
<td>0,00%</td>
<td>6,68%</td>
</tr>
<tr>
<td>4</td>
<td>6,70%</td>
<td>0,00%</td>
<td>1,63%</td>
<td>0,00%</td>
<td>8,33%</td>
</tr>
<tr>
<td>5</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>3,61%</td>
<td>3,61%</td>
</tr>
<tr>
<td>2</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>2,48%</td>
<td>2,48%</td>
</tr>
<tr>
<td>4</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>1,12%</td>
<td>1,12%</td>
</tr>
<tr>
<td>Total</td>
<td>6,70%</td>
<td>7,32%</td>
<td>55,53%</td>
<td>30,45%</td>
<td>100,00%</td>
</tr>
</tbody>
</table>
I. Transportes desde sectores diarios

El gráfico 14 muestra todos los transportes realizados desde un sector, escogido por el usuario, para cada tarea realizada discretizando por periodo del día. Para cada periodo, la suma de los transportes debe ser 100%. Mañana comprende el periodo desde las 8:00 hrs hasta las 13:00 hrs y tarde entre las 13:00 hrs y las 19:00. Ninguno de los 2 periodos debe considerar el periodo de almuerzo del operador como tiempo sin actividad.

<table>
<thead>
<tr>
<th>Periodo del día</th>
<th>canastillo</th>
<th>fierros</th>
<th>mangueras</th>
<th>moldaje</th>
<th>nada</th>
<th>s/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>mañana</td>
<td>14.64%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>18.01%</td>
<td>59.28%</td>
<td>8.07%</td>
</tr>
<tr>
<td>tarde</td>
<td>15.96%</td>
<td>2.07%</td>
<td>4.42%</td>
<td>31.77%</td>
<td>31.69%</td>
<td>14.08%</td>
</tr>
</tbody>
</table>

J. Transportes desde sectores distribuidos por horas

El gráfico 15 muestra todos los transportes de cada tarea realizados desde un sector, escogido por el usuario, discretizando por hora de uso. Para cada hora la suma de los transportes debe ser 100%.
El gráfico 16 muestra el porcentaje de uso de la grúa en cada tarea hacia un sector, determinado por el usuario, discretizando por tramo diario, nuevamente la suma de cada periodo debe ser 100%. Mañana comprende el periodo desde las 8:00 hrs hasta las 13:00 hrs y tarde entre las 13:00 hrs y las 19:00. Ninguno de los 2 periodos debe considerar el tiempo de almuerzo del operador como tiempo sin actividad.
L. Transportes a sector por hora

El gráfico 17 muestra el porcentaje de uso de la grúa en cada tarea, hacia un sector determinado por hora de uso diaria, nuevamente la suma de cada hora debe ser 100%.
Tabla 16 Ejemplo de tabla de transportes a sector por horas

M. Transporte entre sectores diario

El gráfico 18 muestra la distribución de tiempo utilizada en el transporte de cada tarea, entre los sectores escogidos por el usuario, disgregándolos por tramo del día. Para cada periodo los porcentajes deben sumar 100%. Mañana comprende el periodo desde las 8:00 hrs hasta las 13:00 hrs y tarde entre las 13:00 hrs y las 19:00 hrs. Ninguno de los 2 periodos debe considerar el tiempo de almuerzo del operador como tiempo sin actividad.
N. Transporte entre sectores por hora

El gráfico 19 muestra la distribución del tiempo utilizado en transporte, entre los sectores escogidos por el usuario, para cada tarea disgregándolos por hora de trabajo. La tabla 18 presenta estos valores. Para cada hora los porcentajes deben sumar 100%.

![Gráfico 19 Ejemplo de gráfico de transportes entre sectores por horas]

<table>
<thead>
<tr>
<th>Horas</th>
<th>Tareas</th>
<th>canastillo</th>
<th>moldaje</th>
<th>nada</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00-10:00</td>
<td>0.00%</td>
<td>100.00%</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>10:00-11:00</td>
<td>0.00%</td>
<td>100.00%</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>12:00-13:00</td>
<td>0.00%</td>
<td>46.58%</td>
<td>53.42%</td>
<td></td>
</tr>
<tr>
<td>14:00-15:00</td>
<td>0.00%</td>
<td>100.00%</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>16:00-17:00</td>
<td>100.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 18 Ejemplo de tabla de transportes entre sectores por horas

O. Distribución de tareas por ruta, cantidad y distancia recorrida

El gráfico 20 muestra la distancia total recorrida por cada tarea de la grúa. La tabla 19 presenta el resumen de las cantidades y distancias recorridas por cada tarea. No se pueden graficar con cantidades ya que las unidades de medida son diferentes para cada tarea.
El gráfico 21 muestra el ciclo promedio medido para cada una de las tareas medidas. La tabla 20 muestra estos valores promedio. Para calcular el promedio sólo se deben considerar los valores medidos, es decir, si alguno de los tiempos no fue medido no debe ser considerado como 0 para calcular el promedio.

<table>
<thead>
<tr>
<th>Tarea</th>
<th>Promedio de Setup inicio</th>
<th>Promedio de Tiempo de transporte</th>
<th>Promedio de Descarga</th>
</tr>
</thead>
<tbody>
<tr>
<td>andamios</td>
<td>0:02:38</td>
<td>0:05:05</td>
<td>0:00:00</td>
</tr>
<tr>
<td>canastillo</td>
<td>0:01:23</td>
<td>0:01:51</td>
<td>0:02:10</td>
</tr>
<tr>
<td>moldaje</td>
<td>0:00:56</td>
<td>0:01:50</td>
<td>0:02:09</td>
</tr>
</tbody>
</table>
Q. Detalle de distribución de tareas por ruta, cantidad y distancia recorrida

La tabla 21 presenta el resumen de las cantidades totales transportadas durante el día, distribuidas por sector y tarea.

<table>
<thead>
<tr>
<th>Entre Sectores</th>
<th>Tarea</th>
<th>Cantidad [u]</th>
<th>Distancia [km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector1</td>
<td>Sector1</td>
<td>Tarea1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tarea2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tarea3</td>
<td></td>
</tr>
<tr>
<td>Sector1</td>
<td>Sector2</td>
<td>Tarea1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tarea2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tarea3</td>
<td></td>
</tr>
<tr>
<td>Sector1</td>
<td>Sector3</td>
<td>Tarea1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tarea2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tarea3</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 21 Detalle de distribución de tareas por cantidad y distancia entre sectores
El análisis histórico de cada uno de los resultados debe ser mostrado de dos maneras: como un histograma en el tiempo o como porcentajes sobre el total; construidos de la misma manera que cada uno de los resultados.

3.1.1.6 **PROCESO DE MEDICIÓN / DISEÑO DE SOFTWARE**

Para realizar el proceso de medición de forma automatizada se ha diseñado la siguiente herramienta para el módulo de productividad de CAPCAM2, el proceso es el siguiente:

I. **Inicio: Definición de variables**

En esta pantalla (ilustración 3) se ingresan él o los videos a utilizar. Presionando examinar frente a “seleccione video” se puede acceder a una típica pantalla de Windows que permite buscar archivos. Luego, al apretar “Agregar”, el video es agregado en el lado derecho de la pantalla, si el video es externo es necesario ingresar la fecha, hora de inicio y fin de este. Si el video es escogido del servidor de CAPCAM2 los datos se ingresan automáticamente. Al presionar el botón “Snapshot” se abrirá una ventana (ilustración 4) que mostrará 9 frames o imágenes aleatorias del video para rectificar que es el requerido.

También se deben agregar las tareas que se desea medir, para esto se ingresa el nombre de cada tarea en la barra frente a “inserte tareas” y se presiona “agregar”, se agregará en el costado derecho de la pantalla con un color aleatorio para cada una. El color puede ser cambiado presionando sobre él, así como también el nombre de la tarea. Como opcional se pueden agregar unidades de medida de transporte; esto se hace de la misma manera como se agregan las tareas, es decir, escribiendo la unidad de conveniencia frente a “inserte unidades de transporte” y presionando agregar. Se agrega a la derecha en el sector correspondiente; presionando sobre las unidades ingresadas se podrá cambiar el nombre de estas si así lo desea el usuario. Por defecto se agregan las tareas Sin Actividad (S/A) y Vacía.

Después, se ingresan los sectores dentro de los cuales se medirá ingresando el nombre del sector frente a “inserte sector” y presionando agregar. Nuevamente el sector será agregado en el sector correspondiente y su nombre y color aleatorio podrá ser cambiado cuando se requiera.
Como opcional a los sectores se puede agregar la distancia existente entre cada sector escogiendo la unidad correspondiente. Se pueden agregar tantos videos como tareas, unidades, sectores y distancias se requieran. Al presionar el botón cancelar se borra todo lo ingresado y se comienza desde cero el ingreso de datos. Para comenzar la medición se debe presionar el botón aceptar.

Ilustración 3 Pantalla de configuración de herramienta de grúa

Ilustración 4 Snapshot del video seleccionado
II. Proceso de medición: Toma de datos

En esta pantalla (ilustración 5) se ve el video y se toman las mediciones. Donde se aprecia la foto de la grúa con sectores rayados se reproduce el video. Bajo él se encuentran los controladores comunes de video que de derecha a izquierda son play, pause, stop, disminuir velocidad de reproducción, velocidad de reproducción, aumentar velocidad de reproducción y pantalla completa. Bajo los controladores se encuentra la barra de reproducción del video con el tiempo a la derecha. A la derecha del video, a modo de matriz de botones, aparecen las tareas y los sectores ingresados. Dado que el movimiento de la grúa es continuo en el tiempo, se deberá presionar el botón correspondiente a la tarea o actividad que se esté midiendo, es decir, el programa sólo aceptará que un botón esté presionado a la vez. Al presionar el botón se dibujará una barra del color de la tarea bajo la barra de reproducción. En el principio, tendrá el sector en el cual comienza la tarea y en el final, el sector donde termina la tarea. La única combinación de botones que puede estar apretada simultáneamente es carga o descarga con alguna de las tareas definidas por el usuario; esto permite medir los tiempos de carga y descarga de los ciclos de la grúa. Al presionar el botón “agregar” en el sector “Tareas” se pueden agregar tareas extras. Se agregarán bajo las existentes y tendrán por defecto el nombre “tarea” y un color aleatorio. Al igual que en la pantalla inicial el nombre y los colores podrán ser cambiados cuando el usuario lo requiera.

Si en la pantalla inicial se incorporaron unidades de transporte, frente a cada tarea aparecerá una columna llamada “cantidad” y al lado las unidades de medida. En estas casillas el usuario deberá ingresar la cantidad que está siendo transportada y su unidad de medida. En caso de que el usuario sólo quiera ingresar las cantidades totales transportadas en el periodo de tiempo medido, deberá presionar el botón “Totales” para desplegar la ventana (ilustración 6) donde el usuario puede agregar las cantidades totales y unidades de cada tarea. Al finalizar la medición, el módulo, sólo dejará el valor mayor ingresado comparando la suma de los transportes realizados por tarea con la cantidad total ingresada.

En la sección “sectores” están todos los sectores ingresados en la pantalla inicial (ilustración 3). Presionando sobre el botón “agregar” se pueden agregar nuevos sectores, cada nuevo sector tendrá por nombre “sector” con un color será aleatorio. Nuevamente el nombre y color de los sectores podrá ser cambiado cuando el usuario lo requiera. Al presionar sobre el ícono
“lápiz” se podrá dibujar sobre el video el sector el sector escogido. En cada medición se pueden agregar comentarios escribiéndolos en la sección “COMENTARIOS” se podrán guardar tantos como el usuario considere pertinentes. Para guardar la medición realizada sin ver el análisis se debe presionar el botón “Guardar”, para guardar la medición y ver el análisis se debe presionar “Análisis”. Por último para descartar la medición y volver la pantalla de inicio (ilustración 3) se debe presionar el botón “Cancelar”.

Ilustración 5 Pantalla de medición de tiempos y rutas de grúa

Ilustración 6 Pantalla de ingreso de cantidades totales transportadas
III. Análisis: gráficos y tablas de resultados

En esta pantalla (ilustración 7) se pueden ver todas las tablas y gráficos presentados anteriormente en la sección datos de salida. En la esquina superior derecha de la pantalla, debe ir una foto de la grúa correspondiente a la última imagen del video con los sectores dibujados. En los cuadros “Fecha Inicio” y “Fecha Fin” se debe escoger las fechas de inicio y fin del periodo que se quiera analizar. Si se ingresó un solo video, por defecto, ambas corresponderán a la fecha de inicio y fin del video. Si se ingresaron dos o más videos serán la fecha más temprana de comienzo y la más tardía de fin de los videos.

Al presionar sobre el cuadro combinado de opciones aparecerán los nombres de los gráficos presentados anteriormente en la sección datos de salida. El gráfico escogido será mostrado en la parte inferior de la pantalla tal como se muestra en la ilustración 7. Se pueden escoger gráficos de análisis individual, es decir, de análisis de la medición recién realizada o análisis históricos. Para los últimos, sólo se debe variar la fecha de inicio y fin. Si el resultado escogido es “la ruta más solicitada” se deberá mostrar, junto al gráfico, la imagen de los sectores con las rutas dibujadas. Si el gráfico escogido es transporte de tarea por ruta, se deberá mostrar junto al gráfico un menú estilo checklist con todas las tareas realizadas. El usuario puede escoger la tarea a analizar siendo posible escoger una o más tareas. Si el gráfico escogido es el transporte desde sectores o a sectores, también deberá aparecer un menú estilo checklist junto al gráfico pero con los nombres de los sectores. Sólo se podrá elegir un sector a la vez. Por último, si el resultado escogido es el transporte entre sectores, junto al gráfico deberán aparecer 2 menús estilo checklist cada uno con los nombres de los sectores, pero uno con el sector de inicio y el otro con los sectores de fin. Nuevamente sólo se podrá escoger un sector en cada uno de los menús.

Bajo el gráfico, de izquierda a derecha, se encuentran los siguientes botones: Pantalla completa, presionando este botón se amplía el gráfico al tamaño máximo de la pantalla del usuario; guardar, para guardar el gráfico en formato de imagen digital (jpg o png); copiar, que copia como imagen el gráfico; los botones atrás y adelante, que sirven para moverse entre los gráficos de análisis; los botones abajo y arriba, que sirven para mostrar el gráfico equivalente entre las categorías; tabla, invoca la pantalla de la ilustración 8 que muestra la tabla correspondiente al gráfico observado. Finalmente está el botón salir, que permite volver a la pantalla principal del módulo. Bajo los botones se encuentra la sección “Comentarios” en la cual se
muestran todos los comentarios escritos por el usuario mientras realizaba la medición. La pantalla de tablas (ilustración 8) posee botones con las mismas funciones de los anteriormente descritos para gráficos, es decir, pantalla completa, guardar, copiar, moverse entre tablas y entre categorías, la diferencia es que, además, incluye un cuadro combinado que permite escoger las tablas por su nombre por si quiere ver alguna en específico. Presionando el botón “salir”, se vuelve a la pantalla principal de análisis.
3.1.1.7 PROCESO DE ANÁLISIS

El análisis de los resultados de esta herramienta es variable, ya que los usos de los datos de salida pueden ser diversos. A continuación se detallan uno a uno los usos sugeridos para cada resultado.

El resultado de uso de grúa por tarea permite observar fidedignamente que tareas ha realizado la grúa y como se ha distribuido el tiempo de uso de la grúa en ellas. Con esto se toma conciencia del uso real de la grúa en obra y se pueden reasignar tareas si los niveles de inactividad son altos o si no son los esperados. Con los resultados de uso de grúa general se toma conciencia de la distribución de los movimientos de la grúa, de manera similar a lo que se realiza con un resultado de muestreo del trabajo. Por definición la grúa sólo realiza tareas contributivas, pero, el movimiento de la grúa cargada puede considerarse como productivo, los movimientos de la grúa vacía como contributivos (este movimiento es necesario después de una descarga para llegar al lugar de carga). Y, cuando la grúa está sin actividad se considera no productivo, ya que no aporta en la productividad de la grúa. Los resultados de uso general de grúa por hora permiten el mismo análisis anterior, pero de una manera mucho más detallada, ya que, cada categoría está discretizada por hora de uso de la grúa, proporcionando un histograma diario que permite tomar conciencia de cuáles son las horas de mayor y menor uso del recurso.

Por otro lado, también se tiene información de las rutas de transporte de la grúa. Es importante considerar que este análisis sólo sirve si los sectores o divisiones de la obra se
mantienen invariantes durante el proyecto, ya que de no ser así, el resultado histórico es inútil al no ser representativo de un sector determinado. Por lo que el uso más directo de estos resultados es para obras que mantienen invariantes sus frentes de trabajo, en su mayoría, construcciones en alturas. Esto no invalida la herramienta, ya que en construcciones en altura, el uso de la grúa es aún más crítico. Con el resultado de las 3 rutas más solicitadas se obtiene, tal como el nombre lo plantea, las 3 rutas más solicitadas del general de todos los transportes realizados. Este resultado permite tomar conciencia de cuáles son las rutas más redundantes de uso de la grúa, para redistribuirlas de acuerdo a la criticidad, según criterio de oficina técnica, de cada sector de la obra. Además, la imagen de la grúa con los sectores y rutas dibujadas permite ver gráficamente las rutas facilitando la comunicación del resultado. El resultado de transportes desde sectores presenta dos resultados para cada sector. El resultado “sobre sector” indica el porcentaje de los movimientos de la grúa se están realizando sobre el mismo sector. Con esto se puede tomar conciencia de los “viajes cortos” que está realizando la grúa en comparación con los “viajes largos” que van a otros sectores. Si el porcentaje de viajes cortos es muy alto se debe investigar cuales tareas fueron realizadas, ya que el medio de transporte podría ser cambiado por otro y se liberaría la grúa para otras faenas. Con el resultado de transportes a sectores, se toma conciencia de que sectores son los que utilizan más la grúa; con el porcentaje acumulado se aprecia cuáles son los que representan el mayor uso del total del tiempo de uso de la grúa. Con esta información se puede apreciar si el uso de la grúa es el indicado, sino, se puede redistribuir de acuerdo a criticidad e importancia de los sectores. El porcentaje de transporte de tarea por ruta es el detalle de los 4 resultados anteriores, ya que, detalla ruta por ruta el uso de la ruta en cada una de las tareas.

Los resultados de transporte desde sector, a sector y entre sectores, presentan más detalle que los resultados anteriores; muestran la distribución del uso de grúa separando las rutas en cada una de estas categorías y segregan las rutas por hora de uso durante el día. Permite apreciar cuáles son las horas peak de uso de la grúa en los diversos sectores y materiales.

Por último, el ciclo de tareas promedio, el detalle de las tareas por ruta, la cantidad y distancia recorrida aportan datos muy útiles a la simulación de proyectos y estudio de propuestas, ya que, establecen los ciclos típicos de las tareas de la grúa, su capacidad de transporte y distancia que recorre. Estos resultados deben ser guardados como históricos para cada empresa ya que su uso no es inmediato, sino que en el largo plazo.
3.1.1.8 Resumen de utilización de resultados de la herramienta

En la matriz 1, se presenta un resumen del uso de cada uno de los resultados obtenidos con la herramienta.

<table>
<thead>
<tr>
<th>Utilidad del resultado</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conocer y reorganizar las tareas realizadas por la grúa</td>
<td>X</td>
</tr>
<tr>
<td>Saber si se necesita otra grúa o si se está utilizando poco</td>
<td>X X</td>
</tr>
<tr>
<td>Conocer las horas peak de utilización de la grúa</td>
<td>X</td>
</tr>
<tr>
<td>Conocer cuáles son los frentes o sectores de trabajo que más utilizan la grúa</td>
<td>X</td>
</tr>
<tr>
<td>Conocer que frentes o sectores de trabajo que realizan "trabajos" con la grúa</td>
<td>X</td>
</tr>
<tr>
<td>Conocer cuáles son las rutas de la grúa</td>
<td>X</td>
</tr>
<tr>
<td>Conocer que sectores reciben transportes de la grúa</td>
<td>X</td>
</tr>
<tr>
<td>Conocer las tareas realizadas desde un sector</td>
<td>X X</td>
</tr>
<tr>
<td>Conocer como se abastece un sector específico durante el periodo</td>
<td>X X</td>
</tr>
<tr>
<td>Conocer los transportes existentes entre sectores específicos</td>
<td>X X</td>
</tr>
<tr>
<td>Conocer la distancia recorrida por la grúa en el día</td>
<td>X X</td>
</tr>
<tr>
<td>Conocer los ciclos promedio de la grúa</td>
<td>X</td>
</tr>
<tr>
<td>Conocer las cantidades transportadas por la grúa</td>
<td>X</td>
</tr>
</tbody>
</table>

Matriz 1 Resumen de utilización de los resultados de la herramienta de medición de tiempos y rutas de grúa.

3.1.1.9 Validación

La validación de la herramienta se realizó en dos etapas. La primera consistió en validar el uso de videos digitales para ver y medir los movimientos de la grúa y lo que transportaba. Para validar esto, se filmó en terreno con una cámara Nikon Coolpix L10 de 5 megapíxeles el uso del
recurso grúa en obras de las empresas LyD y COMSA, específicamente en los proyectos “ampliación de la clínica Dávila” y “museo de la memoria” respectivamente. En la tabla 22 se presenta un cuadro resumen de las mediciones realizadas.

<table>
<thead>
<tr>
<th>Empresa</th>
<th>Obra día hora de inicio</th>
<th>Total medido</th>
</tr>
</thead>
<tbody>
<tr>
<td>LyD</td>
<td>Clínica Dávila 22-abr-2009 16:00</td>
<td>0:56:22</td>
</tr>
<tr>
<td>LyD</td>
<td>Clínica Dávila 22-abr-2009 11:24</td>
<td>0:56:22</td>
</tr>
<tr>
<td>COMSA</td>
<td>Museo de la memoria 23-abr-2009 11:35</td>
<td>0:56:22</td>
</tr>
<tr>
<td>LyD</td>
<td>Clínica Dávila 28-abr-2009 11:37</td>
<td>0:56:22</td>
</tr>
<tr>
<td>COMSA</td>
<td>Museo de la memoria 30-abr-2009 11:26</td>
<td>0:19:00</td>
</tr>
<tr>
<td>Total</td>
<td>4:04:28</td>
<td>Total medido</td>
</tr>
</tbody>
</table>

Tabla 22 Resumen de mediciones realizadas para validar el uso de video digitales

Durante cada filmación se levantó en terreno, manualmente con reloj, el tiempo entre rutas, el tiempo de carga y descarga y el material que transportaba la grúa (tarea que realizaba). Luego, en oficina, se analizaron los videos obtenidos midiendo los mismos parámetros. Para no sesgar el estudio, las mediciones en terreno y las en video fueron hechas por diferentes medidores. Como resultado se obtuvo que en los videos digitales se puede apreciar tan bien como en terreno las rutas, momentos de carga y descarga y tareas de la grúa. Sólo se obtuvieron diferencias en segundos, siendo más exacta la medición en video, ya que, en esta se puede detener y medir el momento exacto en que la grúa realiza un movimiento. Por otro lado, se encontraron los mismos problemas para realizar la medición en terreno y en video, el más grave de ellos, es que en ambos casos si el observador está mal posicionado existen objetos que pueden interferir la visual con el movimiento de la grúa. Por esta razón, la cámara se debe ubicar en una posición estratégica en la cual se produzcan la menor cantidad de interferencias posibles entre el observador y los frentes de trabajo.

Una vez validado el uso de videos digitales para medir las rutas de la grúa, se procedió a instalar una cámara digital ip marca Panasonic modelo BL-C111A de resolución VGA de 640x480 pixeles en el edificio continuo al proyecto Edificio Arrau de la empresa Echeverría Izquierdo para registrar un día completo y validar los resultados junto con el uso de cada uno. Se filmó en terreno y midió en oficina el día 27 de Abril. A partir de este, se generaron los gráficos presentados en la sección “datos de salida/resultados”. Estos, fueron presentados en una primera instancia a profesionales de GEPUC y luego a profesionales de terreno para filtrar y obtener el uso real y alcance de estos en obra. Los participantes de esta etapa fueron Alejandro Escandar, jefe de
oficina técnica del proyecto de ampliación de la clínica Dávila a cargo de la empresa LyD y Eduardo Pavez, jefe de desarrollo de la empresa Echeverría Izquierdo. Los cuáles luego de ver y analizar los resultados dieron sus apreciaciones e ideas de cómo podrían ser utilizados los resultados. Con estas retroalimentaciones se corrigieron los resultados y se obtuvieron los presentados en la sección “datos de salida/resultados”.

El tiempo de medición requerido para analizar las 8 horas de video de la grúa fue de 4 horas. A pesar de que el video fue reproducido a 8x, es decir a una velocidad 8 veces mayor a la normal. La medición tomó mucho más tiempo del de reproducción porque los tiempos debían ser anotados en una planilla de MS Excel, por lo que para cada movimiento de la grúa se debía: pausar el video, anotar en la planilla, luego volver al video, reproducirlo y pararlo en el siguiente instante en que la grúa realizaba un movimiento. Cómo en la maqueta diseñada no es necesario que los datos de tiempo sean anotados manualmente y sólo se deben presionar los botones correspondientes a cada sector, se espera que la medición para un día laboral de 8 horas de trabajo pueda ser obtenida en una hora.

Considerando un ejemplo sencillo en que a un profesional se paga 1UF por hora trabajada. Para analizar el uso de la grúa con videos digitales durante una semana normal de trabajo, es decir, 45 horas aproximadamente si se realiza de la manera tradicional se deberían cancelar 22.5 UF, ya que por cada hora de toma de datos se necesitan 30 minutos. Aplicando la maqueta de la herramienta diseñada sólo se necesitarían 5.6 horas, debiéndose cancelar sólo 5.6 UF, produciendo una reducción en el costo de obtención de la información de 16.9 UF.

3.1.1.10 ANÁLISIS PRODUCTIVO Y DE COSTOS

Con el uso de esta herramienta se obtienen indicadores de cómo se utiliza la grúa, aplicando mejoras en terreno se disminuirán los tiempos no productivos de la grúa y por ende las pérdidas de tiempo asociadas al uso de la grúa en todas las cuadrillas que utilicen la grúa como medio de transporte asociado. El costo mensual asociado al arriendo de una grúa es de 200UF, considerando, conservadoramente, mejoras de un 3% en los tiempos no productivos, por mes se produce un ahorro mensual de 5.4 UF.
Una mejora productiva de la grúa se traduce en mejoras productivas de las cuadrillas, considerando sólo obra gruesa, es decir, las partidas de hormigón, moldaje y enfierradura, el costo promedio de mercado de cada partida, una cantidad promedio mensual\(^1\) y una mejora conservadora en el uso del tiempo con respecto al total de pérdidas producidas por el uso de la grúa, en la tabla 23 se presenta el impacto estimado en los costos mensuales del proyecto, al utilizar la herramienta y aplicar las debidas acciones correctivas.

<table>
<thead>
<tr>
<th>Partida</th>
<th>Costo promedio</th>
<th>Cantidad promedio mensual</th>
<th>Costo total mensual</th>
<th>Mejora en uso del tiempo</th>
<th>Ahorro mensual [pesos]</th>
<th>Ahorro mensual [UF]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormigón</td>
<td>53.000 $/m³</td>
<td>616 m³</td>
<td>32.648.000</td>
<td>0.5%</td>
<td>163.240</td>
<td>8</td>
</tr>
<tr>
<td>Moldaje</td>
<td>5.000 $/m²</td>
<td>3.888 m²</td>
<td>19.440.000</td>
<td>3.0%</td>
<td>583.200</td>
<td>29</td>
</tr>
<tr>
<td>Enfierradura</td>
<td>680 $/kg</td>
<td>56.558 kg</td>
<td>38.459.440</td>
<td>3.0%</td>
<td>1.153.783</td>
<td>58</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahorro grúa</td>
<td></td>
<td></td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahorro total</td>
<td></td>
<td></td>
<td>100.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 23 Resumen del impacto esperado en los costos al utilizar la herramienta

Considerando las mejoras en el uso del tiempo de cada una de las partidas descritas anteriormente y utilizando la definición de productividad descrita anteriormente se obtienen las nuevas productividades definidas en la tabla 24.

<table>
<thead>
<tr>
<th>Partida</th>
<th>Cantidad promedio mensual</th>
<th>HH semanales</th>
<th>Productividad antes de utilizar la herramienta</th>
<th>Productividad después de utilizar la herramienta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormigón</td>
<td>616 m³</td>
<td>180</td>
<td>3.4 HH/m³</td>
<td>3.4 HH/m³</td>
</tr>
<tr>
<td>Moldaje</td>
<td>3.888 m²</td>
<td>180</td>
<td>21.6 HH/m²</td>
<td>21.0 HH/m²</td>
</tr>
<tr>
<td>Enfierradura</td>
<td>56.558 kg</td>
<td>180</td>
<td>314.2 HH/kg</td>
<td>304.8 HH/kg</td>
</tr>
</tbody>
</table>

Tabla 24 Resumen del impacto esperado en la productividad de las cuadrillas

\(^1\) Datos proporcionados por las empresas Echeverría Izquierdo y LD
3.1.2 CONTROL DE AVANCE

3.1.2.1 PROPÓSITO

Llevar el control del avance real de una obra no es una tarea fácil. Requiere de tiempo y una coordinación eficiente entre oficina técnica, jefe(s) de terreno y capataces. Muchas veces, por falta de tiempo, los programadores de obra, e incluso el jefe de terreno, no dan abasto para visitar la obra y corroborar los avances informados por los capataces. En este escenario sólo se debe confiar en lo que reportan los capataces o se envía a alguien más a realizar el control sobre el avance.

Para simplificar la tarea de controlar el avance real se creó esta herramienta que permite verificar el avance sin tener que visitar la obra y sin necesitar una coordinación excesiva entre los actores generan el avance y los que lo utilizan. El avance es corroborado con fotografías digitales frente a un computador, demandando menos tiempo a los actores que realizan el control de avance, es decir, oficina técnica y/o jefe(s) de terreno. Además, estas fotografías son guardadas como un registro visual confiable y realista del avance real del proyecto, inexistente antes de esta herramienta. Esto ayuda a que se disminuyan las “trampas” típicas de los reportes de avances en que ciertos avances no son informados y son reprogramados para el periodo siguiente. Es decir, en el siguiente periodo se programan tareas que ya se realizaron. La herramienta permite: construir planificaciones utilizando la metodología last planner system, controlar el avance de la obra en un tiempo menor y llevar un registro visual de este. Además entrega que actividades se han programado para el periodo, cuáles se han realizado y cuáles no, las razones del no cumplimiento y sus responsables, así como también un registro visual del avance real de la obra.

La oficina técnica es la principal interesada en los resultados de la herramienta, ya que sus integrantes son los que necesitan controlar el avance y definir y planificar las tareas semanales y la estrategia de desarrollo de las operaciones constructivas. Se espera que la herramienta se transforme en un aporte eficaz al control de proyectos y que el tiempo utilizado en esta labor disminuya considerablemente.
3.1.2.2 DESCRIPCIÓN

Esta herramienta se utiliza cuando existe mala planificación o coordinación de las actividades que se realizan en obra. Formas sencillas de percibir este problema es observar si existen atrasos, si en planes se han programado tareas ya realizadas o si no se han podido cobrar los estados de pago que estaban presupuestados. Las razones principales de estos problemas son la alta variabilidad del trabajo que se debe realizar, el poco control del avance real del proyecto y la falta de una planificación a corto plazo. La herramienta permite visualizar fotografías de la obra, las cuales pueden ser ingresadas manual o automáticamente si es que existe(n) cámara(s) en obra. Además, se pueden mostrar las tareas que deben haber finalizado, comenzado o completadas durante el periodo de tiempo en el cual se tomó la imagen del proyecto. Las tareas pueden corresponder al plan maestro, intermedio o semanal según sea requerido. Para definir las tareas que se visualizarán en el periodo se puede aplicar la metodología SUP y crear un plan de trabajo para el periodo dado.

Para controlar el avance, junto a cada una de las tareas se encuentran las columnas: Fecha de inicio y de fin, nombre del encargado de realizar la tarea, avance acumulado al comienzo del periodo, avance comprometido para el periodo, avance que se logra en el periodo, casilla de sin información y causa de no cumplimiento. Algunos de los valores son definidos al principio, en el set-up de la medición, otros, al observar las fotografías de la obra. Luego de definir los avances el archivo original es actualizado de acuerdo al avance medido. Como opcional se podrá incluir fotografías de avance programadas en CAD 4D para comparar visualmente si el avance real corresponde al programado.

El avance se pretende controlar aplicando la programación semanal del sistema del último planificador (SUP) que, basado en los principios de Lean Construction, apunta a incrementar la fiabilidad de la planificación y con eso mejorar los desempeños. El SUP está especialmente diseñado para mejorar el control de la incertidumbre en los proyectos aumentando la confiabilidad de los planes (Alarcón & Campero, 2003).

Los resultados obtenidos son para la oficina técnica, dado que la planificación es emanada en este nivel. Pero, el uso directo de la herramienta (planificación de las tareas semanales) puede corresponder tanto a oficina técnica como a los jefes de terreno, ya que ambos conocen de
sobremantener la obra y son capaces de juzgar los avances y preparar de manera eficiente programaciones para futuros periodos de tiempo.

El uso recomendado para esta herramienta es de una vez por semana para planificar de manera correcta el plan de acción de la semana siguiente. Requiere de un usuario para identificar los avances, dado que la tecnología existente no es capaz de identificar todos los elementos en una fotografía, menos en construcción donde existe una gran cantidad de interferencias de colores y formas. Además, para realizar el plan semanal es el usuario el que sabe cómo se debe enfrentar la obra.

3.1.2.3 Ejemplos de aplicación de la herramienta

A continuación se presentan algunos de los usos reales, en problemas reales de obra, en los que puede ser utilizada la herramienta:

- **Existe un atraso con respecto al plan maestro, ¿qué actividades se deberían realizar semana a semana en terreno?**

Para esto es necesario crear planificaciones de lo que de verdad se debería realizar. Si se sigue el plan maestro, no se puede apreciar con claridad que actividades se deben ejecutar y cuales realmente se pueden ejecutar en el corto plazo. Utilizando esta herramienta, se pueden crear planes de corto plazo en los que se tiene más claridad que actividades se deben y pueden realizar. Los planes pueden crearse aplicando la metodología Last Planner System, pueden ser impresos y entregados a los capataces, para comunicar de manera correcta las metas semanales.

- **Se deben cobrar los estados de pago. Se genera el cobro, el ITO revisa y se da cuenta de que el cobro es mayor de lo que se ha realizado**

Como no se controla el avance real de la obra, no existe un catastro confiable de lo que realmente se ha realizado. Utilizando esta herramienta, se puede controlar el avance de manera sencilla, generando un registro fotográfico y una lista de actividades completadas.
- **No se cumplen las tareas comprometidas a realizar.**

Cuando no se están cumpliendo las tareas que están planificadas, se debe conocer la razón de porque no se han cumplido. Ya que para mejorar el problema, es importante atacar la causa del problema. Por ejemplo, si los enfierradores no han podido completar sus labores y se sabe que es por falta de material, lo que se debe mejorar es el abastecimiento de materiales y no la cantidad de enfierradores. Cuando se utiliza esta herramienta para controlar el avance, se ingresa como parámetro la causa de no cumplimiento de las actividades que no se han llevado a cabo. Con esto, se conocen las causas más comunes del no cumplimiento lo que permite tomar medidas correctivas para atacar la o las causas específicas.

- **Ciertas tareas llevan a que el resto de las tareas no se puedan llevar a cabo**

En todo proyecto existen actividades que para completarse requieren de múltiples tareas. Por ejemplo, en la obra gruesa de un muro se requiere que se realicen las tareas de: enfierradura, moldaje y hormigonado. Pero si el muro no se hormigonó en el plazo establecido, el problema de falta de cancha puede ser tanto del subcontracto de enfierradores, como del de moldajes o concreteros. Para saber quién no ha cumplido su parte, se debe conocer el origen de la causa de no cumplimiento, conociéndolo, se pueden aplicar acciones correctivas a la división o subcontracto que corresponda. Si el control del proyecto se lleva con esta herramienta, para cada tarea se debe ingresar información del origen de las causas de no cumplimiento. El programa las agrupa y muestra como estadística para conocer quiénes son los que no han cumplido reiterativamente.

- **Muchas veces en las reuniones de planificación semanal, se planifican tareas que ya se han realizado, con el fin de tener menos carga laboral durante la semana**

Si no existe suficiente control de lo que se está realizando, ni se visita obra con periódicamente es difícil conocer que tareas son las que se han realizado. Aprovechándose de esto, muchas veces en las reuniones de planificación, los capataces programan tareas que ya realizaron para tener menos carga laboral durante la semana. Con esta herramienta el programador de la obra no necesita visitar terreno, para saber lo que se ha construido, ya que con “control de avance“ tiene un registro visual de lo que se ha realizado.
3.1.2.4 Datos de entrada

Existen dos tipos de datos de entrada necesarios para el funcionamiento de esta herramienta. Estos son la información de las tareas de la faena y la información visual, es decir las fotografías o videos de la obra. La toma de datos visuales puede ser en directo o no. Al serlo se utiliza una cámara PTZ con un zoom óptico no inferior a 10x, para que se puedan observar con claridad los detalles de avance. En caso de no ser en directo, existen 2 opciones, que existan filmaciones en obra y con la herramienta se extraiga de estas la imagen correspondiente a las 18:00hrs, en verano como en invierno, ya que a esta hora aún hay luz natural (permite una buena definición de los elementos en la fotografía), además, esta hora corresponde aproximadamente al fin de la jornada de trabajo, por lo que el avance es representativo del día. Como segunda opción las fotos o videos se pueden ingresar manualmente en cualquier formato digital. En este caso, el usuario debe definir de qué día se trata, a qué hora se tomó la imagen y a qué sector corresponde. Por otro lado, la información de las tareas de obra puede pertenecer al plan maestro, intermedio o semanal, y puede estar en formato de cualquiera de los software típicos utilizados en obra para llevar programaciones: MS Project, MS Excel o P+C. Como información de las tareas, se debe ingresar el nombre de los encargados de los subcontratos y sus respectivas áreas de trabajo (niveles) en la obra. Además, como opcional, existe la posibilidad de ingresar información gráfica correspondiente a una o varias fotos de programación en CAD 4D. Las fotografías comunes y 4D que se ingresen al módulo deben estar en alguno de los formatos típicos de imágenes de Windows, es decir, BMP, JPG, GIF o PNG o formato 360°. Los videos en formato WMV, AVI, MPEG o MPG.

3.1.2.5 Datos de salida/resultados

Los resultados son los avances temporales de la obra que serán mostrados como una actualización del archivo inicial de entrada. Al archivo se le incorporará una columna correspondiente al avance. En ella, se indicará el avance medido que presentan las respectivas tareas, es decir, que porcentaje de avance presenta cada tarea. En caso de que la programación sea ingresada en formato MS Project o P+C no se incorporará una columna nueva, sino que a la columna de avance de la tarea predefinida se le asignará el porcentaje correspondiente.
identificado en la herramienta. Además, si la programación es un archivo de MS Project, se agregarán 2 columnas definidas por usuario, Texto1 y Texto2, en la primera se agregarán las causas de cumplimiento y en la segunda el responsable de esta. Los nombres para estas columnas son “Causa de No cumplimiento” y “Encargado”. También se entrega el valor de porcentaje de programa completado (PPC) (ecuación 3) para el periodo correspondiente (Ballard & Howell, 1997) y el valor de PPC promedio acumulado para el periodo que el usuario requiera que corresponderá al promedio de los PPC obtenidos. Los siguientes gráficos y tablas son entregados por la herramienta:

A. PPC Histórico semanal

El gráfico 22, de dispersión, muestra los valores de PPC para un periodo de tiempo agrupado en semanas. En la ordenada aparecen los porcentajes y en la abscisa el periodo al cual corresponde.

![PPC histórico semanal](image)

B. PPC Histórico mensual

El gráfico 23, también de dispersión, muestra los valores de PPC para un periodo de tiempo agrupado en meses. El valor del PPC mensual es el promedio de los PPC semanales del mes. En la ordenada aparecen los porcentajes y en la abscisa el periodo al cual corresponde.
C. Causas de no cumplimiento para el periodo

El gráfico 24, de Pareto, presenta la cantidad de causas de no cumplimiento que hay en cada categoría en la medición realizada. En la ordenada primaria (izquierda) aparecen las cantidades (números), en la secundaria (derecha) el porcentaje acumulado y en la abscisa las categorías. Las categorías están ordenadas de mayor a menor, es decir, la con más causas de cumplimiento va primero y así sucesivamente hasta la con menos.
D. Causas de no cumplimiento históricas

El gráfico 25, también de Pareto, presenta la cantidad de causas de no cumplimiento que hay en cada categoría durante un determinado periodo de tiempo definido por el usuario. En la ordenada primaria (izquierda) aparecen las cantidades (números), en la secundaria (derecha) el porcentaje acumulado y en la abscisa las categorías. Las categorías están ordenadas de mayor a menor, es decir, la con más causas de cumplimiento va primero y así sucesivamente hasta la con menos.

![Gráfico 25 Ejemplo de gráfico de causas de no cumplimiento históricas para un periodo de tiempo determinado](image)

E. Origen de causas de no cumplimiento periodo

El gráfico 26, de Pareto, presenta el origen de las causas de no cumplimiento generadas por cada actor del proyecto en el periodo de tiempo en que se controló el avance. En la ordenada primaria (izquierda) aparecen las cantidades (números), en la secundaria (derecha) el porcentaje acumulado y en la abscisa las categorías de origen. Las categorías de origen están ordenadas de mayor a menor, es decir, la con más causas de cumplimiento va primero y así sucesivamente hasta la con menos.
F. Origen de causas de no cumplimiento históricas

El gráfico 27, de Pareto, presenta el origen de las causas de no cumplimiento existentes de cada actor en un determinado periodo de tiempo definido por el usuario. En la ordenada primaria (izquierda) aparecen las cantidades (números), en la secundaria (derecha) el porcentaje acumulado y en la abscisa las categorías de origen. Las categorías de origen están ordenadas de mayor a menor, es decir, la con más causas de cumplimiento va primero y así sucesivamente hasta la con menos.
G. Causas de no cumplimiento por subcontrato.

El gráfico 65, circular, presenta la cantidad de causas de no cumplimiento acumuladas por cada subcontrato para un periodo de tiempo definido por el usuario. En cada uno de los sectores aparece el porcentaje y la cantidad de causas de no cumplimiento del subcontrato.

![Gráfico 28 Ejemplo de gráfico de causas de no cumplimiento por subcontrato](image)

H. Causa de no cumplimiento Recurrentes

La tabla 25 muestra todos los encargados o subcontratos que presentan causas de no cumplimiento ordenados de más a menos, es decir, primero el que más causas presenta y así sucesivamente hasta el de menos. Junto a cada uno se muestra la primera y la segunda causa de no cumplimiento más recurrente.

<table>
<thead>
<tr>
<th>Encargado</th>
<th>1era CNC</th>
<th>2da CNC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcontrato1</td>
<td>……………</td>
<td>……………</td>
</tr>
<tr>
<td>Subcontrato2</td>
<td>……………</td>
<td>……………</td>
</tr>
<tr>
<td>Encargado1</td>
<td>……………</td>
<td>……………</td>
</tr>
<tr>
<td>Encargado2</td>
<td>……………</td>
<td>……………</td>
</tr>
</tbody>
</table>

Tabla 25 Primera y segunda causa de no cumplimiento más recurrente de cada subcontrato

Las causas de no cumplimiento que se utilizan son las definidas en el software P+C: Falta de requisito, falta de material, falta de equipo, falta de mano de obra, diseño de proyecto, mala estimación de rendimiento, mala ejecución, subcontrato de mano de obra, subcontrato de materiales, imprevistos y otros. El origen de estas causas también será el utilizado en el software P+C, es decir, subcontratista, constructora, diseño, mandante, proveedor e inspección. Se escogieron estas causas y orígenes, porque son las típicas y se encuentran previamente filtradas por el equipo de GEPUC. P+C es un software diseñado por ellos para la planificación y el control de...
proyectos utilizando el SUP. Los nombres de los subcontratos o encargados deberán ser ingresados por el usuario, ya que estos, varían por obra.

3.1.2.6 PROCESO DE MEDICIÓN

I. Inicio: definición de variables

En la pantalla de inicio de la herramienta (ilustración 9) el usuario deberá elegir la fuente desde la cual obtendrá la foto de la obra a analizar. Las cuales, como se vio anteriormente, pueden ser fotos o videos. Si provienen de una fuente externa, en ambos casos, el usuario deberá ingresar la fecha, hora y sector correspondiente, de no ser así, sólo deberá incluir el sector al que corresponden. El usuario debe escoger que frame (imagen del video) desea analizar. Para esto, el usuario debe presionar el botón “Play” junto a cada video. Presionándolo se abrirá la ventana (ilustración 10) en donde el usuario podrá ver el video; apretando el botón “Escoger Frame” se escogerá el frame, imagen que se está observando, cómo imagen para controlar el avance. En este cuadro el video puede ser reproducido a velocidad normal o a velocidades mayores cambiando la velocidad presionando sobre “1x”. En caso de que el usuario no escoja un momento el software por default escogerá el frame más cercano a las 18:00 hrs. Como se expuso anteriormente, esta hora es cercana al final de la jornada de trabajo de la mayoría de las obras por lo que se puede considerar representativa del avance diario. Junto a cada fotografía ingresada existe un recuadro con una imagen en miniatura de la foto ingresada, presionando este recuadro se podrá ver la foto como se muestra en la ilustración 11. Como opcional se pueden escoger fotos del modelo en CAD 4D. A estas también se les deberá ingresar la hora y fecha que representan. Se puede ingresar más de una imagen simple, 360° o CAD 4D, para el mismo periodo y sector. También, se debe ingresar la cantidad de sectores y subcontratos presentes en obra. Los sectores serán agregados en el sector inferior derecho con el nombre sector y un número correlativo para el orden de estos. Para los subcontratos o encargados por área se puede cargar un archivo de MS Excel que contenga en la primera columna el nombre del encargado o subcontrato y en la segunda el área u origen (nivel definido anteriormente) al que correspondan. Si el archivo no existe, se pueden agregar uno a uno presionando el botón “agregar”; junto a estos se puede asignar el área. Cada nombre puede ser cambiado presionando sobre el existente.
Ilustración 9 Pantalla de configuración de la herramienta

Ilustración 10 Pantalla para escoger frame representativo del video
También, se debe escoger la planificación de obra que se quiere corroborar o controlar mediante las imágenes digitales. Esta podrá corresponder a un plan maestro, uno intermedio o uno semanal. Podrá ser realizado con o sin SUP. En caso de que se utilice sin SUP sólo se debe ingresar el periodo de inicio y fin que se quiere controlar. Para cada programación el módulo importará las tareas que comienzan, las que terminan, las que se realizan completamente y aquellas que presenten algún avance durante el periodo de tiempo, en la columna de avance. Por otro lado, si se desea aplicar la planificación semanal de SUP se debe presionar el botón junto a cada programación con lo que se abrirá la pantalla de la ilustración 12. En “nombre de archivo” está el nombre del archivo de planificación; se debe ingresar la fecha de comienzo y fin del periodo a controlar avance. En la columna tarea aparecen las tareas (nombres de las tareas) que comienzan, terminan, se realizan completamente durante este periodo o reportan algún avance. En la columna duración aparece la duración total de la actividad. En la siguiente columna se muestran dos líneas verticales que marcan el comienzo y el fin del periodo. También, en esta columna, están dibujadas las duraciones y avances de las tareas. La duración de cada tarea está representada por una barra grande ubicada frente a cada tarea. En su interior se encuentra una barra negra pequeña que marca el avance de la tarea en días. Por ejemplo, si la tarea dura 10 días y su avance es un 60% la barra pequeña debería corresponder a 6 días. En la siguiente columna, avance real, se muestra, en porcentaje, el avance real acumulado que lleva la actividad. En la siguiente, plan, a modo de checklist se debe indicar que actividades se considerarán realizables.
durante el periodo de tiempo. Por default, estarán marcadas las tareas que comienzan, terminan o son realizadas total o parcialmente en el periodo de tiempo. En la siguiente columna, avance esperado, se debe indicar que porcentaje se espera completar de la tarea en el periodo de tiempo indicado. Por default, se mostrará el porcentaje que se debe realizar en el periodo. Como avance esperado, no se podrá indicar un avance menor al acumulado. En la siguiente columna está la programación del período, se presentan los días de la semana que abarcan el total del periodo que se programa. En color negro aparece la duración de cada tarea distribuida de acuerdo a como está planificada en el plan. Los cuadrados se pueden cambiar de día de acuerdo al requerimiento del usuario. En la parte inferior izquierda de esta pantalla se encuentra el recuadro insertar tarea. Introduciendo el nombre de la tarea, fecha de inicio, fin y duración y presionando el botón agregar se agregará la tarea al plan y al archivo original. Presionando el botón “aceptar” se guarda el plan generado y se accede a la ventana principal (Ilustración 9). Presionando el botón “salir” se regresa a la pantalla principal y no se guarda plan alguno. Por otro lado al presionar el botón exportar se exportará el plan a una planilla Excel con el formato de la ilustración 13.
PLANIFICACIÓN

dd/mm/aaaa - dd/mm/aaaa

Obra: nombre obra

Empresa: nombre empresa

JEFE DE TERRENO: NOMBRE

<table>
<thead>
<tr>
<th>Actividad Semanal</th>
<th>Fecha Inicio</th>
<th>Fecha Fin</th>
<th>Avance Previo</th>
<th>Avance Comprometido</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarea1</td>
<td>dd/mm</td>
<td>dd/mm</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea2</td>
<td>dd/mm</td>
<td>dd/mm</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea3</td>
<td>dd/mm</td>
<td>dd/mm</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea4</td>
<td>dd/mm</td>
<td>dd/mm</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea5</td>
<td>dd/mm</td>
<td>dd/mm</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea6</td>
<td>dd/mm</td>
<td>dd/mm</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea7</td>
<td>dd/mm</td>
<td>dd/mm</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea8</td>
<td>dd/mm</td>
<td>dd/mm</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea9</td>
<td>dd/mm</td>
<td>dd/mm</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea10</td>
<td>dd/mm</td>
<td>dd/mm</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea11</td>
<td>dd/mm</td>
<td>dd/mm</td>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>

Ilustración 13 Formato de salida de plan de control de avance generado

Si no se ingresó periodo de tiempo para analizar, por default, el módulo designará como periodo de tiempo el comprendido entre la fecha más temprana de comienzo del programa y el de fin el más tardío de término de este. Además, si la programación fue ingresada de P+C el control de avance se cargará automáticamente.

II. Proceso de medición: Toma de datos

Al presionar el botón “Aceptar” se accede a la siguiente pantalla en la cual se debe corroborar el análisis. En la mitad superior de esta se desplegarán las fotos y en la inferior la programación de tareas. Si se ingresó sólo una foto esta se desplegará centrada (ilustración 14). Si se ingresaron 2 o más fotos se mostrarán de a dos y podrán ser cambiadas con los botones siguiente y anterior (ilustración 15). Cada una de las fotos corresponderá a un tipo, las fotos tomadas con cámaras y videos y las fotos 360° se agruparán en uno de los cuadros y las CAD 4D en el otro. Bajo cada imagen se encuentra la fecha en que fue tomada y el sector al que corresponde.
Ilustración 14 Pantalla de análisis de la herramienta con un tipo de foto ingresado

<table>
<thead>
<tr>
<th>Tareas</th>
<th>Fecha Inicio</th>
<th>Fecha Fin</th>
<th>Encargado</th>
<th>Avance Asignado</th>
<th>Avance Completo</th>
<th>Avance</th>
<th>S/I</th>
<th>Causa de No Cumplimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarea 1</td>
<td>xxx/yyyyyyyy</td>
<td>yyyy/mmm</td>
<td>Encargado</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea 2</td>
<td>xxx/yyyyyyyy</td>
<td>yyyy/mmm</td>
<td>Encargado</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea 3</td>
<td>xxx/yyyyyyyy</td>
<td>yyyy/mmm</td>
<td>Encargado</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea 4</td>
<td>xxx/yyyyyyyy</td>
<td>yyyy/mmm</td>
<td>Encargado</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea 5</td>
<td>xxx/yyyyyyyy</td>
<td>yyyy/mmm</td>
<td>Encargado</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea 6</td>
<td>xxx/yyyyyyyy</td>
<td>yyyy/mmm</td>
<td>Encargado</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea 7</td>
<td>xxx/yyyyyyyy</td>
<td>yyyy/mmm</td>
<td>Encargado</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea 8</td>
<td>xxx/yyyyyyyy</td>
<td>yyyy/mmm</td>
<td>Encargado</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea 9</td>
<td>xxx/yyyyyyyy</td>
<td>yyyy/mmm</td>
<td>Encargado</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>

Ilustración 15 Pantalla de análisis de la herramienta con imágenes 4D ingresadas

Programación xx/xx/xxxx – xx/xx/xxxx

<table>
<thead>
<tr>
<th>Tareas</th>
<th>Fecha Inicio</th>
<th>Fecha Fin</th>
<th>Encargado</th>
<th>Avance Asignado</th>
<th>Avance Completo</th>
<th>Avance</th>
<th>S/I</th>
<th>Causa de No Cumplimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarea 1</td>
<td>xxx/yyyyyyyy</td>
<td>yyyy/mmm</td>
<td>Encargado</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea 2</td>
<td>xxx/yyyyyyyy</td>
<td>yyyy/mmm</td>
<td>Encargado</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea 3</td>
<td>xxx/yyyyyyyy</td>
<td>yyyy/mmm</td>
<td>Encargado</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea 4</td>
<td>xxx/yyyyyyyy</td>
<td>yyyy/mmm</td>
<td>Encargado</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea 5</td>
<td>xxx/yyyyyyyy</td>
<td>yyyy/mmm</td>
<td>Encargado</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea 6</td>
<td>xxx/yyyyyyyy</td>
<td>yyyy/mmm</td>
<td>Encargado</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea 7</td>
<td>xxx/yyyyyyyy</td>
<td>yyyy/mmm</td>
<td>Encargado</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea 8</td>
<td>xxx/yyyyyyyy</td>
<td>yyyy/mmm</td>
<td>Encargado</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea 9</td>
<td>xxx/yyyyyyyy</td>
<td>yyyy/mmm</td>
<td>Encargado</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>
En ambas pantallas de control de avance, lo único que cambia es la distribución de las fotos; la toma de datos es la misma. En la primera columna se encuentran las tareas, en la siguiente la fecha de inicio y en la siguiente la fecha de fin de cada tarea, estas 3 columnas están definidas en el plan ingresado al comienzo. La siguiente es “encargado”, en ella, el usuario deberá ingresar quien es el encargado de cada tarea. Los nombres que se desplegarán para escoger son los ingresados como “subcontratos” en la pantalla inicial. Las siguientes dos columnas son avance acumulado y avance comprometido. La primera está definida en el plan cargado al módulo y corresponde a la columna de avance real. La segunda, fue definida en la pantalla de creación de plan para el periodo (ilustración 12). En caso de que no haya sido incorporado de esta manera, el porcentaje corresponderá a lo que se debe realizar de la tarea según el plan ingresado para el periodo de tiempo. En la siguiente columna, avance, el usuario debe ingresar el avance que se ha realizado y que puede ser apreciado en las fotos, lo puede ingresar manualmente o presionando 0 o 100, si presiona 0 se mostrará y mantendrá el porcentaje acumulado de la tarea, por el contrario si presiona 100 se marcará que la tarea ha sido realizada en un 100%. Este avance no puede ser menor al acumulado ni mayor a 100. La siguiente columna es estilo check-list, sólo se marca si no se puede tener información del avance de la tarea observando las imágenes. Si se ingresó un avance mayor al acumulado no se podrá marcar la tarea como sin información y viceversa. Por otro lado, si el avance acumulado se mantuvo o no se alcanzó el avance esperado se debe ingresar una causa de no cumplimiento que corresponderá a alguna de las presentadas en la sección datos de salida. El ingreso de estas es con menú openbox (ilustración 16) que primero presenta la causa, luego el área y luego el encargado. En esta pantalla, también, se pueden ingresar tareas, ya que el usuario observando las fotos, se puede percatar de tareas no programadas que se están realizando, para esto debe ingresar el nombre, fecha de inicio, de fin y duración total de la tarea y presionar el botón agregar.

Ilustración 16 Openbox de causas de no cumplimiento
III. Análisis: gráficos y tablas de resultados

Terminado el control de avance con las imágenes, se debe presionar el botón “análisis” para ir a la pantalla de análisis (ilustración 17). También se puede presionar el botón “guardar” para volver a la pantalla principal (ilustraciones 14 o 15 dependiendo de la cantidad de fotos ingresadas) y guardar el levantamiento realizado sin ver el análisis. Presionando el botón “salir” se vuelve a la pantalla principal sin guardar ninguno de los datos ingresados.

En esta pantalla de análisis se muestran los resultados obtenidos en formato de tabla y gráfico; en la parte superior una tabla con 6 columnas: en la primera columna se encuentran los nombres de las tareas, en la segunda la fecha de inicio de cada tarea, en la tercera la fecha de fin de las tareas, en la cuarta el porcentaje de avance acumulado total de cada tarea. Si alguna tarea fue marcada como “sin información” en la columna dirá S/I. En la penúltima columna, “causa de no cumplimiento”, aparecerá la causa de no cumplimiento seleccionada para cada tarea que no
haya alcanzado su avance esperado. En la última columna, “encargado”, aparecerá el nombre del encargado de la causa de no cumplimiento de la tarea.

Con los avances se calcula el índice porcentaje programado completado (PPC). Como en la toma de datos pueden existir tareas marcadas como “sin información” o tareas ingresadas en último momento, el PPC será calculado sin considerar estas tareas, tal como se muestra en la ecuación 4.

\[
PPC = \frac{\sum \text{tareas completadas}}{\sum \text{sólo tareas programadas "con información" en el periodo}} \times 100
\]

Ecuación 4 Cálculo de PPC en el periodo.

También se muestra el promedio acumulado de PPC para el periodo especificado por el usuario. En la esquina inferior izquierda de la pantalla de análisis (ilustración 17) se muestra el gráfico correspondiente a las fechas requeridas por el usuario. Bajo el gráfico se encuentran los botones para avanzar y retroceder entre gráficos. Se podrán ver todos los gráficos explicitados en la sección datos de salida en el mismo orden en que fueron listados. Estos se pueden escoger presionando sobre el menú combobox “- Escoja gráfico -”. Al presionar el botón “salir” se regresa a la pantalla inicial (ilustración 9) grabando los resultados obtenidos, presionando guardar se graba el avance. Con “exportar avance” se exporta el avance en formato de MS Excel, es decir, un archivo xls con las columnas y formato de la ilustración 18. Por último presionando “exportar gráfico” se exporta el gráfico que está en pantalla como una foto.

Ilustración 18 Formato de salida de resultados de la herramienta

<table>
<thead>
<tr>
<th>Actividad Semanal</th>
<th>Responsable</th>
<th>Fecha Inicio</th>
<th>Fecha Fin</th>
<th>Avance Previo</th>
<th>Avance Acumulado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarea1</td>
<td>nombre</td>
<td>dd/mm</td>
<td>dd/mm</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea2</td>
<td>nombre</td>
<td>dd/mm</td>
<td>dd/mm</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea3</td>
<td>nombre</td>
<td>dd/mm</td>
<td>dd/mm</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea4</td>
<td>nombre</td>
<td>dd/mm</td>
<td>dd/mm</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea5</td>
<td>nombre</td>
<td>dd/mm</td>
<td>dd/mm</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Tarea6</td>
<td>nombre</td>
<td>dd/mm</td>
<td>dd/mm</td>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>
3.1.2.7 PROCESO DE ANÁLISIS

Esta herramienta ayuda en la planificación, ya que permite llevar al día y controlar el avance de la obra, saber que tareas no se han completado, porque razones y quienes han sido los responsables de estos no cumplimientos. A partir de las tareas programadas completadas se obtiene el porcentaje de PPC con el que se obtiene una estrategia para mejorar la productividad de la unidad productiva. Un PPC alto incrementa la certidumbre del flujo de trabajo permitiendo mejorar la productividad. Con esta herramienta, semana a semana el jefe de terreno debe calcular el PPC del proyecto y las razones de porque el trabajo no ha sido realizado. La meta es incrementar el PPC hasta el 100% eliminando las causas de no cumplimiento. Aumentar el PPC de un proyecto no sólo mejora la productividad ya que, al aumentar el PPC, el rango de variación de la producción decrece (Ballard & Howell, 1997).

Con los gráficos y tablas obtenidos se puede apreciar de manera sencilla cuales son las causas de no cumplimiento más recurrentes y quiénes son los responsables. Con esto y la evolución del PPC es posible tomar medidas correctivas para mejorar los planes de trabajo y disminuir la incertidumbre propia de un proyecto de construcción. Por otro lado, el módulo permite aplicar la planificación semanal de la metodología SUP en una obra ya que permite crear planes de trabajo para periodos determinados y con esto disminuir la incertidumbre propia de obras constructivas.

3.1.2.8 VALIDACIÓN

La validación de esta herramienta se realizó en la obra de ampliación de la clínica Dávila de la empresa LyD. La obra está dividida en 2 edificios, las fotografías fueron tomadas especificamente en el edificio 1. El plan semanal que elaboran está a cargo de Roberto Mardones quien ostenta el cargo de jefe de terreno. En obra utilizan la metodología SUP, por lo que aplican planes semanales, en este caso se revisó con imágenes digitales el plan comprendido entre los días 5 y 11 de Mayo. La metodología fue aplicada en el control de avance de obra gruesa. El día 12 de Mayo se tomaron 15 fotografías al azar sin conocer de antemano el plan de la semana que comprendía 31 tareas de obra gruesa tales como hormigonado, armado de moldaje y enfierradura de muros, pilares, vigas y losas. Al intentar corroborar el plan con las fotografías se pudo apreciar que el avance alcanzado controlado por el staff de oficina técnica, correspondía en un 100% al
tomado por el investigador observando las fotografías en oficina; todos los elementos del plan habían sido fotografiados y se pudo corroborar satisfactoriamente el progreso de la obra, logrando concluir que la herramienta cumple su propósito de poder controlar el avance de una obra constructiva. El plan completo de la semana y las fotografías tomadas se encuentran en la sección anexos.

3.1.2.9 **ANÁLISIS PRODUCTIVO Y DE COSTOS**

Es difícil calcular las mejoras cuantitativas en la productividad de la obra que produce el uso de esta herramienta, ya que lo que se logra es mejorar la comunicación, transmitiendo de mejor manera los objetivos y metas de la programación de obra a todos los actores del proyecto y disminuir la variabilidad de la planificación. Esta mejora de efectividad, tal como lo plantea la definición de productividad, es un factor importante para lograr una productividad alta.

Cuantificar los costos y ahorros producto del uso de la herramienta tampoco se puede realizar, ya que dependen de cómo se generan y comunican los planes en cada obra específica. Siendo posible que en obras que no utilizan la metodología SUP se reduzcan de manera significativa las pérdidas producto de mala coordinación, pero en obras que ya lo utilizaban las pérdidas se mantengan invariantes al utilizar la herramienta.

Si la información es complementada con cubicaciones, se puede conocer la cuantificación de los rendimientos de las cuadrillas, lo que otorga una base para administrar de mejor manera los recursos, es decir, lograr además de mejoras en eficacia, mejoras en eficiencia.
3.1.3 VALIDACIÓN E IMPLEMENTACIÓN DE FIVE MINUTES RATING

3.1.3.1 IDENTIFICACIÓN DEL PROBLEMA

Five minutes rating es una técnica para evaluar las actividades realizadas en obra, menos exacta que el muestreo del trabajo. Aún así, es un método efectivo para realizar una evaluación general del trabajo. Está basada en la suma de observaciones hechas en un periodo de estudio corto, con un número de observaciones muy pequeño como para ofrecer la confianza estadística del muestreo del trabajo (Oglesby, Parker, & Howell, 1989). Su propósito es crear conciencia en los planificadores de obra de los atrasos del proyecto, su orden de magnitud y la efectividad de las cuadrillas (Oglesby, Parker, & Howell, 1989). Existen estudios que dan validez al uso de esta herramienta, como un estimador rápido de la magnitud del uso de la mano de obra, ya que, encuentran cierta correlación de los resultados efectividad de este con la efectividad de la mano de obra del muestreo del trabajo (Thomas & Daily, Crew performance measurement via activity sampling, 1984). En aquel estudio, Thomas, determina un 39.7% de trabajo productivo con muestreo del trabajo y un 32% con five minutes rating sobre una misma muestra; las similitudes entre ambas metodologías son claras.

Se compararán los resultados de five minutes rating y muestreo del trabajo, se analizará si es posible obtener alguna validación. Se espera que esta herramienta, una vez validada, sea utilizada como alternativa del muestreo del trabajo. Su ventaja es que se puede realizar en menos tiempo. Los interesados en los resultados de esta herramienta son los planificadores de obra, ya que con ella, gracias a esta pueden estimar de mejor manera los atrasos inherentes al trabajo en terreno.

La técnica deriva su nombre de la regla por la cual es regida. Ya que la cuadrilla debe ser observada por un tiempo igual al número de personas de la cuadrilla (cada persona equivale un minuto) pero nunca menos de 5 minutos. Por ejemplo, una cuadrilla de 12 personas debe ser estudiada por al menos 12 minutos. Una vez determinado el periodo de estudio, este se divide en intervalos de 30 segundos o lo que considere pertinente (esto es establecido por el medidor). Durante cada intervalo la efectividad de los trabajadores es evaluada. Si el trabajador está ocupado más del 50% del tiempo del intervalo se considera que trabajó durante el intervalo. Cuando la medición se ha completado, la suma del total de los intervalos trabajados por todos los trabajadores es dividida por el total de intervalos de la muestra, obteniendo la eficiencia.
regla general se deben realizar al menos 4 mediciones para obtener un valor de eficiencia representativo (Thomas & Napolitan, Quantitative effects of construction changes on labor productivity, 1995). Además, los intervalos de tiempo utilizados en cada una de las mediciones deben ser completamente aleatorios. Como mínimo se espera que se determine un porcentaje de eficiencia semanal, es decir, que por lo menos se realicen 4 mediciones por semana. Conociendo la efectividad del trabajo, los planificadores de obra pueden proyectar de mejor manera las tareas semanales. Dado el uso de los resultados, el usuario final es la oficina técnica.

3.1.3.2 HIPÓTESIS

Para validar la herramienta la hipótesis es que 5 minutes rating es una metodología válida para medir la distribución de los porcentajes de utilización del tiempo de una cuadrilla y que su resultado, es comparable al de un muestreo del trabajo general.

3.1.3.3 PRUEBA DE HIPÓTESIS

Para probar la hipótesis se analizaron los videos presentados en la tabla 26.

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Hora de Inicio</th>
<th>Hora de Fin</th>
<th>Empresa</th>
<th>Obra</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/11/2008</td>
<td>8:00 hrs.</td>
<td>18:00 hrs.</td>
<td>Mena y Ovalle</td>
<td>Hotel Best Western</td>
</tr>
<tr>
<td>02/12/2008</td>
<td>8:00 hrs.</td>
<td>18:00 hrs.</td>
<td>Mena y Ovalle</td>
<td>Hotel Best Western</td>
</tr>
<tr>
<td>14/04/2009</td>
<td>11:42 hrs.</td>
<td>18:00 hrs.</td>
<td>Mena y Ovalle</td>
<td>Hotel Best Western</td>
</tr>
</tbody>
</table>

Tabla 26 Resumen de videos analizados

Considerando las opciones trabaja y no-trabaja, y además, cumpliendo con el mínimo de 384 mediciones aleatorias para obtener un 95% de confianza con un 5% de error, al realizar un muestreo del trabajo general con la herramienta “muestreo del trabajo” de CAPCAM2, se obtienen las siguientes distribuciones de tiempos:

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Trabaja</th>
<th>No Trabaja</th>
<th>Duración medición</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/11/2008</td>
<td>60%</td>
<td>40%</td>
<td>58 minutos</td>
</tr>
<tr>
<td>02/12/2008</td>
<td>58%</td>
<td>42%</td>
<td>48 minutos</td>
</tr>
<tr>
<td>14/04/2009</td>
<td>60%</td>
<td>40%</td>
<td>38 minutos</td>
</tr>
</tbody>
</table>

Tabla 27 Resumen de resultados de muestreo del trabajo en los videos

En cada uno de los videos se realizaron 6 mediciones de five minutes rating en forma aleatoria, es decir, comenzando la medición en un instante aleatorio del video. Se consideraron
periodos de 30 segundos y cuadrillas de enfiladores para las 18 mediciones. Como las mediciones son realizadas sobre videos, existe la posibilidad de que algunos trabajadores salgan del cuadro filmado por lo que no se puede saber si durante ese periodo de tiempo trabaja o no, por esta razón, el porcentaje de trabajo es el de la ecuación 5. Considerando este porcentaje como válido, para los videos se obtienen los resultados presentados en las tablas 28, 29 y 30. La duración promedio de las mediciones de five minutes rating en oficina, fue 7 minutos.

\[
% \text{ Trabaja} = \frac{\text{Periodos Efectivos} - \text{Periodos fuera de cámara}}{\text{Periodos Totales} - \text{Periodos fuera de cámara}} \times 100
\]

Ecuación 5 Definición de porcentaje de período trabajado

Fecha: 20/11/2008

<table>
<thead>
<tr>
<th>Medición</th>
<th>Trabajadores</th>
<th>Periodos Efectivos</th>
<th>Periodos no trabaja</th>
<th>Periodos fuera de cámara</th>
<th>% Trabaja</th>
<th>% No trabaja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medición 1</td>
<td>3</td>
<td>20</td>
<td>3</td>
<td>7</td>
<td>87%</td>
<td>13%</td>
</tr>
<tr>
<td>Medición 2</td>
<td>4</td>
<td>22</td>
<td>18</td>
<td>0</td>
<td>55%</td>
<td>45%</td>
</tr>
<tr>
<td>Medición 3</td>
<td>4</td>
<td>30</td>
<td>7</td>
<td>3</td>
<td>81%</td>
<td>19%</td>
</tr>
<tr>
<td>Medición 4</td>
<td>3</td>
<td>20</td>
<td>4</td>
<td>6</td>
<td>83%</td>
<td>17%</td>
</tr>
<tr>
<td>Medición 5</td>
<td>4</td>
<td>28</td>
<td>7</td>
<td>5</td>
<td>80%</td>
<td>20%</td>
</tr>
<tr>
<td>Medición 6</td>
<td>4</td>
<td>25</td>
<td>8</td>
<td>7</td>
<td>76%</td>
<td>24%</td>
</tr>
</tbody>
</table>

Tabla 28 Resultados de mediciones de five minutes rating en video del 20/11/2008

Fecha: 02/12/2008

<table>
<thead>
<tr>
<th>Medición</th>
<th>Trabajadores</th>
<th>Periodos Efectivos</th>
<th>Periodos no trabaja</th>
<th>Periodos fuera de cámara</th>
<th>% Trabaja</th>
<th>% No trabaja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medición 1</td>
<td>4</td>
<td>29</td>
<td>5</td>
<td>6</td>
<td>85%</td>
<td>15%</td>
</tr>
<tr>
<td>Medición 2</td>
<td>3</td>
<td>19</td>
<td>1</td>
<td>10</td>
<td>95%</td>
<td>5%</td>
</tr>
<tr>
<td>Medición 3</td>
<td>3</td>
<td>13</td>
<td>5</td>
<td>12</td>
<td>72%</td>
<td>28%</td>
</tr>
<tr>
<td>Medición 4</td>
<td>3</td>
<td>16</td>
<td>7</td>
<td>17</td>
<td>70%</td>
<td>30%</td>
</tr>
<tr>
<td>Medición 5</td>
<td>3</td>
<td>22</td>
<td>5</td>
<td>3</td>
<td>81%</td>
<td>19%</td>
</tr>
<tr>
<td>Medición 6</td>
<td>5</td>
<td>31</td>
<td>2</td>
<td>7</td>
<td>94%</td>
<td>6%</td>
</tr>
</tbody>
</table>

Tabla 29 Resultados de mediciones de five minutes rating en video del 02/12/2009
Fecha: 14/04/2009

<table>
<thead>
<tr>
<th>Medición</th>
<th>Trabajadores</th>
<th>Periodos Efectivos</th>
<th>Periodos no Trabaja</th>
<th>Periodos fuera de cámara</th>
<th>% Trabaja</th>
<th>% No trabaja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medición 1</td>
<td>4</td>
<td>32</td>
<td>6</td>
<td>2</td>
<td>84%</td>
<td>16%</td>
</tr>
<tr>
<td>Medición 2</td>
<td>4</td>
<td>19</td>
<td>10</td>
<td>11</td>
<td>66%</td>
<td>34%</td>
</tr>
<tr>
<td>Medición 3</td>
<td>4</td>
<td>27</td>
<td>13</td>
<td>0</td>
<td>68%</td>
<td>32%</td>
</tr>
<tr>
<td>Medición 4</td>
<td>5</td>
<td>28</td>
<td>4</td>
<td>7</td>
<td>88%</td>
<td>12%</td>
</tr>
<tr>
<td>Medición 5</td>
<td>4</td>
<td>14</td>
<td>14</td>
<td>8</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>Medición 6</td>
<td>4</td>
<td>32</td>
<td>8</td>
<td>0</td>
<td>80%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Tabla 30 Resultados de mediciones de five minutes rating en video del 14/04/2009

3.1.3.4 RESULTADOS

Las comparaciones de distribución de tiempos entre muestreo del trabajo y el promedio obtenido por 5 minutes rating, son las presentadas en la tabla 31. Además, la diferencia entre el mayor y menor porcentaje, obtenido mediante 5 minutes rating en cada día, se presenta en la tabla 32.

<table>
<thead>
<tr>
<th>Fecha</th>
<th>5 MINUTES RATING</th>
<th>MUESTREO DEL TRABAJO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Promedio Trabaja</td>
<td>Promedio No Trabaja</td>
</tr>
<tr>
<td>20/11/2008</td>
<td>77%</td>
<td>23%</td>
</tr>
<tr>
<td>02/12/2008</td>
<td>83%</td>
<td>17%</td>
</tr>
<tr>
<td>14/04/2009</td>
<td>72%</td>
<td>28%</td>
</tr>
</tbody>
</table>

Tabla 31 Comparación de resultados de five minutes rating con Muestreo del trabajo

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Diferencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/11/2008</td>
<td>32%</td>
</tr>
<tr>
<td>02/12/2008</td>
<td>25%</td>
</tr>
<tr>
<td>14/04/2009</td>
<td>37%</td>
</tr>
</tbody>
</table>

Tabla 32 Diferencia promedio entre five minutes rating y muestreo del trabajo

3.1.3.5 ANÁLISIS

Dados los resultados, es claro que los porcentajes de trabaja y no trabaja, obtenidos mediante 5 minutes rating, no son comparables con los de muestreo del trabajo, ya que, empíricamente son diferentes entre un 12% y un 25%. Además, entre las mediciones de five minutes rating sobre un mismo video existen diferencias entre un 25% y un 37%, lo que indica que la variabilidad de la medición es alta, como para que cuatro puedan ser consideradas representativas de la distribución del tiempo de las cuadrillas. Con esto, se concluye que la
La metodología five minutes rating se realiza en menos tiempo que el muestreo del trabajo, pero, por ningún motivo puede ser considerada como reemplazante, ni representativa de las distribuciones de los tiempos de trabajo, ya que al no presentar base estadística, su resultado es muy diferente al encontrado por el muestreo del trabajo y la variabilidad entre las mediciones realizadas sobre una misma cuadrilla es muy alta.

Es claro que las falencias de five minutes rating inducen un error muy alto en el uso del resultado final de un muestreo del trabajo, que es entregar un porcentaje de ocupación para tomar conciencia de la eficiencia del trabajo del proyecto. Por consiguiente, se considera que la metodología no es válida como reemplazante de muestreo del trabajo, por lo que no se desarrollará, ni incluirá como una herramienta del módulo productividad de CAPCAM2.
3.2 PRODUCTIVIDAD DE LAS HERRAMIENTAS DISEÑADAS Y CREADAS A PARTIR DE TESIS Y MEMORIAS ANTERIORES

3.2.1 ANÁLISIS DE CARTA DE BALANCE Y MUESTREO DEL TRABAJO

3.2.1.1 PROPÓSITO

Al utilizar una herramienta o método es necesario que existan resultados válidos para generar análisis. Por sí solos no presentan utilidad; no son capaces de crear juicios lógicos ni de tomar medidas correctivas sobre lo observado. Esta herramienta es un complemento; ayuda en el análisis, y por ende en el uso, de las cartas de balance, cartas multicuadrillas y muestreos de trabajo que se obtienen utilizando las herramientas de muestreo del trabajo y medición de tiempos del módulo de productividad del software CAPCAM2 en videos digitales. Se espera que esta herramienta sea utilizada para observar y analizar cualquiera de los resultados obtenidos por las herramientas anteriormente nombradas. El interesado en el uso de esta herramienta es la oficina técnica, ya que, podrá obtener informes de resultados de manera rápida y eficiente.

Cuando se realizan cartas de balance o muestreos del trabajo, de manera tradicional, se rellenan manualmente planillas en terreno. Luego, en la oficina, deben ser traspasadas a MS Excel para generar los gráficos respectivos. La ventaja de realizar las cartas de balance y los muestreos del trabajo mediante CAPCAM2, es la automatización de los procesos y la rapidez con la que se pueden obtener los resultados e informes. Actualmente los resultados no se generan de manera automática y el usuario debe intervenir en el manejo de los datos, por lo que la herramienta no está aprovechando la ventaja obvia que otorga el computador. Al realizar una carta de balance o un muestreo del trabajo, es necesario que los resultados se generen de forma automática para aprovechar la automatización del sistema.

3.2.1.2 DESCRIPCIÓN

Para hacer una carta de balance el tiempo utilizado en cada actividad por cada persona y máquina debe ser observado y medido. Idealmente estas mediciones deben ser hechas durante más de un ciclo para validar su exactitud y variación durante los ciclos. Mucho se puede aprender estudiando el mejor ciclo o analizando las razones de las variaciones de estos. La ventaja obvia de realizar una carta de balance con videos en vez de en terreno, es que los tiempos de cada trabajador y máquina pueden ser obtenidos de un solo ciclo ya que el video puede ser observado
más de una vez (Oglesby, Parker, & Howell, 1989). En terreno, dado que una sola persona no da abasto para seguir las actividades de cada trabajador, se observan y registran las actividades de cada uno cada periodos de tiempo pequeños (de 2 a 3 minutos).

El muestreo del trabajo está basado en una muestra de observaciones con ciertos principios estadísticos y reglas para obtener un valor representativo de las operaciones. Considerando que la probabilidad de observar trabajo productivo y no productivo está distribuida en 50/50. Para un 95% de confianza y un límite de error de 5% se necesitan 384 observaciones para dar validez estadística a la herramienta (Olomolaiye, Jayawardane, & Harris, 1998).

Las herramientas que realizan éstas mediciones están incluidas dentro del módulo de productividad del software CAPCAM2. Esta herramienta de análisis va incluida dentro de las herramientas existentes por lo que se puede acceder a él cuando el usuario estime conveniente, es decir, una vez que se terminó de realizar la medición, entremedio de la medición o simplemente al finalizar el video. Para muestreo del trabajo se mostrarán las siguientes tablas y gráficos: niveles de actividad de trabajo productivo, contributiorio y no productivo por día, total y por sector, gráficos generales y por sector de tendencias de nivel de actividad. Para carta de balance: gráfico de suma de tiempos totales por tarea, tabla de distribución de tiempos y porcentajes de tareas por trabajador, tabla de nivel de actividad y coeficiente de participación de cada trabajador, tablas y gráficos de tendencias por actividad y rendimiento por trabajador. Utilizando las tablas y gráficos del módulo de carta de balance se puede obtener una mejor distribución de los recursos de la cuadrilla, ya que, esta metodología entrega una visión general del funcionamiento de la cuadrilla y un detalle de los trabajadores. Con los porcentajes de distribución del trabajo se tiene la efectividad del tiempo de trabajo de los obreros.

Nuevamente el usuario es oficina técnica, ya que son los planificadores y los jefes de terreno los que distribuyen los recursos entre las cuadrillas y sectores de la obra. Es recomendable que el análisis se realice cada 1 vez por semana para verificar la buena distribución de los recursos y el buen uso del tiempo. Esto no quiere decir que se realiza una sola medición en la semana, sino que el análisis es realizado una vez por semana. Para ser representativo debe ser realizado sobre más de una medición, de preferencia un mínimo de 2 semanales.
3.2.1.3 **EJEMPLOS DE APLICACIÓN DE LA HERRAMIENTA**

A continuación se presenta un ejemplo de la utilización del módulo. Este ejemplo, es reproducible tanto en una carta de balance como en un muestreo del trabajo.

- **Se realizó una carta de balance con CAPCAM2 pero, realizar el informe toma más tiempo que con el método tradicional en MS Excel**

En este caso es necesario utilizar el módulo de creación de informes, ya que de lo contrario, no se están aprovechando las ventajas de automatización que otorga el software computacional.

3.2.1.4 **DATOS DE ENTRADA**

Los datos de entrada para este módulo de análisis, provienen directamente de sesiones de trabajo de las herramientas de carta de balance y muestreo del trabajo del módulo de productividad de CAPCAM2. En ellos, los videos son cargados directamente de las filmaciones de cámaras en obra o son ingresados de manera independiente por el usuario. En ambos casos el usuario elige el periodo de tiempo sobre el cual medirá. En el módulo de muestreo del trabajo el usuario ingresa los datos de trabajo productivo, contributório y no contributório; en el de carta de balance, el usuario introduce manualmente las tareas que se realizan, quien las realiza (trabajador o recurso), el sector donde se está trabajando, el avance realizado y cantidades logradas en el periodo de tiempo. Para el análisis se pueden elegir mediciones de diferentes sesiones, ya que no es necesario que todas las mediciones de interés que se hayan realizado.

3.2.1.5 **DATOS DE SALIDA/RESULTADOS**

Los datos o resultados de salida entregados por la herramienta son esquematizados y entregados de la siguiente manera:

3.2.1.5.1 **RESULTADOS DE MUESTREO DEL TRABAJO**

A. Nivel de actividades general

Se muestra la tabla 33 y el gráfico 29. En la tabla se encuentra el resumen general de las mediciones, es decir, el día, los porcentajes, la cantidad de muestras medidas de trabajo
producto, contributio y no productivo, observaciones del día, tiempo total del día y los porcentajes totales generales. El gráfico corresponde a un “gráfico de torta”, en el que se muestran los porcentajes totales de trabajo.

<table>
<thead>
<tr>
<th>Día</th>
<th>T.P</th>
<th>T.C.</th>
<th>T.N.C.</th>
<th>Tiempo Total</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N med</td>
<td>N med</td>
<td>N med</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>día 1</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>día 2</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>día 3</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>TOTAL</td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
</tbody>
</table>

Tabla 33 Formato de tabla de nivel de actividades general

![Gráfico de torta de nivel de actividad]

Gráfico 30 Ejemplo de gráfico de nivel de actividad

B. Nivel de producción por sectores

En esta sección también se incluye una tabla y un gráfico (tabla 34 y gráfico 30). La tabla muestra la distribución de tiempos en los trabajos productivos, contributio y no productivo en los sectores de la obra en las cuales se realizaron las mediciones. El gráfico de barras, en la ordenada presenta la distribución de tipo del trabajo (productivo, contributio y no productivo) y en la abscisa los porcentajes correspondiente distribuidos por sectores.
<table>
<thead>
<tr>
<th>Nivel de Actividad por Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.P</td>
</tr>
<tr>
<td>29%</td>
</tr>
<tr>
<td>32%</td>
</tr>
<tr>
<td>30%</td>
</tr>
<tr>
<td>29%</td>
</tr>
<tr>
<td>26%</td>
</tr>
<tr>
<td>24%</td>
</tr>
<tr>
<td>38%</td>
</tr>
<tr>
<td>32%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sector 1</th>
<th>Sector 2</th>
<th>Sector 3</th>
<th>Sector 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
</tbody>
</table>

Tabla 34 Formato de tabla de nivel de producción por manzanas

Gráfico 30 Ejemplo de gráfico de nivel de actividades por sector

C. Tendencias

Se incluyen gráficos de tendencias de nivel de actividad general (gráfico 31) y nivel de actividad por sectores (gráfico 32). En la ordenada está el tiempo, que de acuerdo a la cantidad y distribución de mediciones realizadas puede ser en días, semanas, meses, etc. En la abscisa se encuentran los porcentajes totales. Se grafican 3 líneas de tendencias correspondientes a las distribuciones de trabajo productivo, contribuyente y no productivo en cada uno de los periodos.
3.2.1.5.2 RESULTADOS DE CARTA DE BALANCE

Al contrario de los otros análisis, la carta de balance es realizada sólo sobre una medición y sólo sobre una tarea o ciclo de la medición, idealmente se debe medir más de un ciclo de una misma tarea para validar su precisión (Oglesby, Parker, & Howell, 1989). Para cada carta de balance se identificará obra, empresa, área, supervisor, fecha, hora de inicio y de fin. Se entrega el gráfico 33, de torta, de la distribución del trabajo productivo, contribuyente y no productivo del periodo de tiempo en que se realiza la medición. Y un gráfico de barras (gráfico 34) con la distribución de tiempos totales por actividad de acuerdo a su categoría. Se entrega también la tabla 35 de distribución de tiempos y porcentajes de tiempos relativos por trabajador y por tarea de acuerdo a la categoría de la tarea.
Nivel de Actividad

Gráfico 33 Ejemplo de nivel de actividad para carta de balance

![Gráfico 33](image)

Por Tarea

Gráfico 34 Ejemplo de gráfico de distribución de tiempos totales por actividad

[Diagrama de barras]

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Actividad</th>
<th>T1 hr:mm</th>
<th>T1 %</th>
<th>T2 hr:mm</th>
<th>T2 %</th>
<th>T3 hr:mm</th>
<th>T3 %</th>
<th>Cuadrilla hr:mm</th>
<th>Cuadrilla %</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td>Actividad 1</td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Actividad 2</td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td>Actividad 3</td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Actividad 4</td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
</tr>
<tr>
<td>TNC</td>
<td>Actividad 5</td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Actividad 6</td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub Total</td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
<td>x:xx</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 35 Formato de tabla de distribución de tiempos y porcentajes relativos por trabajador y tarea

86
Además, se incluye la tabla 36 con los de niveles de actividad real, el coeficiente de participación y nivel de actividad relativo de cada trabajador. El nivel de actividad real de cada trabajador corresponde a la suma de los porcentajes de trabajo productivo y contributroyo. El coeficiente de participación es el porcentaje de tiempo total en que el trabajador participa de la medición en escala de 0 a 1, es decir, si el trabajador está en todo momento en cámara se considera que su coeficiente de participación es 1 aunque su contribución a la productividad sea nula. Al multiplicar el nivel de actividad real con el coeficiente de participación se obtiene el nivel de actividad relativo de cada trabajador.

<table>
<thead>
<tr>
<th>Recursos</th>
<th>Niveles de actividad real</th>
<th>Coeficiente de participación</th>
<th>Nivel de actividad relativo</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>T2</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>T3</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Promedio</td>
<td>%</td>
<td>N</td>
<td>%</td>
</tr>
</tbody>
</table>

Tabla 36 Formato de niveles de actividad reales con sus respectivos coeficientes

Comparación con datos históricos.

La tarea medida se compara con otras mediciones de la misma tarea, que pueden o no estar dentro de la misma sesión de mediciones escogidas. La comparación se realiza en utilización de: tiempos (horas), recursos (horas hombre), avance (m²), rendimiento (m²/HH), productividad (m²/HH), velocidad (m²/hora), pérdidas de horas hombre (HH) y porcentajes de trabajo productivo, contributroyo y no contributroyo como se muestra en la tabla 37. También se presentan gráficos de tendencias por categoría de actividad con respecto a las mediciones (gráfico 35) y de las tendencias de rendimiento y productividad (gráfico 36). Ambos tienen el número de medición en la ordenada y los porcentajes de distribución en la abscisa.

<table>
<thead>
<tr>
<th>Medición</th>
<th>Tiempo [Hrs]</th>
<th>Recursos [HH]</th>
<th>Avance [m²]</th>
<th>Rendimiento [HH/m²]</th>
<th>Productividad [m²/HH]</th>
<th>Velocidad [m²/Hrs]</th>
<th>Pérdidas [HH]</th>
<th>TP [%]</th>
<th>TC [%]</th>
<th>TNC [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N°1</td>
<td>x,xx</td>
<td>x,xx</td>
<td>x,xx</td>
<td>x,xx</td>
<td>x,xx</td>
<td>x,xx</td>
<td>x,xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>N°2</td>
<td>x,xx</td>
<td>x,xx</td>
<td>x,xx</td>
<td>x,xx</td>
<td>x,xx</td>
<td>x,xx</td>
<td>x,xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
<tr>
<td>N°3</td>
<td>x,xx</td>
<td>x,xx</td>
<td>x,xx</td>
<td>x,xx</td>
<td>x,xx</td>
<td>x,xx</td>
<td>x,xx</td>
<td>xx</td>
<td>xx</td>
<td>xx</td>
</tr>
</tbody>
</table>

Tabla 37 Formato de tabla de resumen de carta de balance
3.2.1.6 PROCESO DE MEDICIÓN

Para acceder a la pantalla de análisis, tanto en el módulo de carta de balance como en el de muestreo del trabajo, se debe presionar el botón análisis una vez finalizada la medición. Con esto se accede a la pantalla principal de análisis (ilustración 19). En ella aparecen las categorías indicadas anteriormente dentro de las cuales se debe elegir que gráfico o tabla se quiere analizar.
Antes de elegir el tipo de análisis se debe escoger, en la esquina superior derecha, que actividad y que subcontrato se analizará. Las primeras 3 categorías corresponden a análisis de muestreo del trabajo y las últimas 2 a carta de balance o carta multicuadrilla. Si en el video se han realizado las 2 mediciones, todas las opciones deberán estar disponibles, en caso de que sólo se haya realizado una sola, los menús de la otra deberán estar desactivados. Por categoría existen los botones “Ver”, “Exportar” y “Exportar todos”. Al presionar el primero en alguna de las 4 primeras categorías se abre una nueva pantalla con la tabla o gráfico requerido (ilustraciones 20 y 21). En el caso de la categoría “Comparación con datos históricos” también se abre una pantalla nueva para la tabla o gráfico requerido (ilustraciones 22 y 23). La diferencia, es que en el primer caso el análisis mostrado es sólo sobre la medición realizada y en el segundo caso se puede elegir el periodo de tiempo en el cual se realiza la comparación. Al presionar “Exportar” se exporta el gráfico o tabla y se puede elegir si este es guardado como foto o archivo xls en caso de ser tabla. Si en la categoría se presiona “Exportar todos” los gráficos y tablas son exportados a un archivo xls con las tablas como datos y los gráficos como imágenes. Por otro lado, si se presiona el botón “Exportar Todos” todas las tablas y gráficos de las todas categorías son exportados a Excel en un
archivo xls con las tablas como datos y los gráficos como imágenes. En el archivo los datos son ingresados en letra tipo Calibri con tamaño 11 puntos, las columnas y filas son ajustadas por tamaño de la celda. Los gráficos, de tamaño 500x301 píxeles, son insertados a la derecha de las tablas a una celda de distancia, se agrega una hoja con los respectivos gráficos y tablas para cada categoría tal como se muestra en la ilustración 24. En cada una de las pantallas de tablas o gráficos existe una barra común. De izquierda a derecha sus botones son: guardar, para guardar el gráfico o tabla en el formato deseado (xls en caso de ser tabla y jpg o png en caso de ser gráfico); imprimir, para imprimir directamente el análisis observado; copiar, que copia como imagen la tabla o gráfico; los botones atrás y adelante que sirven para moverse entre los gráficos o tablas de la categoría; los botones de abajo y arriba que sirven para moverse entre categorías de análisis y finalmente el botón salir que permite volver a la pantalla principal de análisis.

Ilustración 20 Ejemplo de pantalla de análisis de una tabla
Ilustración 21 Ejemplo de pantalla de análisis de un gráfico

Ilustración 22 Ejemplo de pantalla de análisis de una tabla para un periodo de tiempo
Presionando el botón “salir” se cierra la pantalla de análisis y se regresa a la pantalla principal de CAPCAM2. Presionando el botón “Generar informe” se accede a la pantalla de la ilustración 25. En el lado izquierdo de la pantalla se ve el diseño de página que se está generando con el título y gráfico o tabla correspondiente. Bajo la página aparece el número de página que se
está observando y el total de páginas del documento, además, con los botones atrás y adelante se pueden revisar todas las páginas generadas. En el lado derecho, específicamente en el sector “Seleccionar información”, presionando sobre el cuadro de check-list junto a cada elemento se seleccionan los gráficos y tablas que se incluirán. Los elementos que se hayan seleccionado se agregan en la sección “Orden” ubicada en la esquina inferior izquierda de la pantalla. Seleccionando un elemento y presionando los botones arriba o abajo se cambian las posiciones dentro del informe. También se puede configurar el texto de cada uno de los elementos del informe, se puede seleccionar el tipo de letra, el tamaño, el formato (negrita, cursiva, subrayado), la posición del texto y el color de letra. Los gráficos por defecto son de tamaño 500x301 píxeles y se insertan centrados en la hoja. Presionando el botón “Generar” se genera el informe en formato de MS Word (extensión doc) o Adobe Acrobat (extensión pdf). Por otro lado presionando el botón “Configuración Anterior” se carga la última configuración, tanto de elementos como de formato y orden, de informe realizada. Por último presionando el botón “salir” se vuelve a la pantalla principal (ilustración 19).
3.2.1.7 PROCESO DE ANÁLISIS

Con las tablas y gráfico de nivel de actividad general se obtiene los porcentajes reales del nivel de actividad que presenta la obra o una cuadrilla, esto permite tomar conciencia sobre cuál es el nivel real de ocupación de los trabajadores o cuadrillas en obra. Además, con el gráfico y tabla de nivel de producción por sectores se obtiene el mismo resultado pero, distribuido en los sectores de la obra, lo que permite observar los niveles reales de ocupación por frente de trabajo o sector. Con los gráficos de tendencia para un periodo de tiempo determinado, se obtienen las tendencias de distribución de los tiempos de trabajo de manera general y por sector, lo que permite ver si medidas tomadas o factores específicos han tenido repercusión en la distribución de los tiempos de trabajo. Las distribuciones por sector sólo se pueden obtener de la herramienta si se han diferenciado y designado sectores de medición en el video, si esto no se ha realizado sólo se tendrán gráficos generales. Por otro lado, los gráficos y tablas de carta de balance, permiten ver la distribución de las tareas realizadas por las cuadrillas en general y por trabajador. Esto permite redistribuir las tareas asignadas a cada trabajador o los tipos de trabajadores de las cuadrillas, por ejemplo, se deben agregar jornales si las tareas realizadas de transporte son hechas por enfierradores. Aplicando los coeficientes de participación se obtiene la tabla de participación real de los trabajadores en la medición, ya que si el trabajador sale de cámara no se puede emitir juicio sobre si trabajó o no. Estos coeficientes dan una visión real de la medición al no considerar el tiempo en que la información no es fidedigna. Finalmente, si se incluyó el avance realizado durante el periodo de tiempo medido se obtienen los valores de rendimiento, productividad, velocidad y pérdidas de tiempo. Estos permiten llevar un registro histórico y realizar benchmarkings para planificar actividades futuras basándose en datos reales. Lo que ayuda a disminuir de manera sustantiva la incertidumbre de los trabajos, ya que, lógicamente no se asignarán tareas de extensión superior a lo máximo que se ha realizado históricamente.

3.2.1.8 VALIDACIÓN

Los gráficos y tablas presentados en este módulo se encuentran previamente validados por la oficina de proyectos del Centro de Excelencia en Gestión de la Producción de la Pontificia Universidad Católica (GEPUC); han sido obtenidos de diferentes fuentes como (Alarcón L. F., 2001) y (Serpell, 2002). Ellos utilizan y aplican muestreos de trabajo y cartas de balance de la forma tradicional (muestreando en terreno con cronómetro y planillas) en diferentes obras, por lo que
han filtrado y ordenado los gráficos y tablas útiles y necesarias para estas herramientas. Se revisaron informes tipo de muestreo de trabajo y carta de balance ya generados y se sostuvieron reuniones con el equipo de GEPUC para comprender como son utilizados los resultados obtenidos y definir las aplicaciones y alcances de este módulo en la generación de informes. Se concluyó que los gráficos y tablas necesarias son las mostradas en la sección “datos de salida/resultados” y que es necesario que el módulo por sí mismo genere el informe, razón por la cual se creó la opción “generar informe” que permite generar informes a partir de la información que el usuario considere relevante.

3.2.1.9 Análisis de Costos y Productivo

Para el análisis de costos de esta herramienta se toma como base que el tiempo de creación de un informe es de aproximadamente 2 horas y que el profesional que lo genera tiene un costo de aproximadamente 1 UF la hora. Dado la facilidad que presta la herramienta para crear el informe final, se estima que el tiempo se reduce a 30 minutos, ya que el informe es realizado de manera casi automática pero el análisis debe ser hecho por el profesional, por lo que el consumo de tiempo no puede ser cero. Dado el uso del muestreo del trabajo, las cartas de balance y las cartas multi-cuadrillas en obra, se estima que en un mes se generan 4 informes. Por lo que el costo pasa de 8 UF a 2 UF produciendo un ahorro de un 75% en el costo de generación del informe. Por otro lado, la productividad actual en la generación de informes es 0.5 informe/HH, utilizando esta herramienta la productividad crece a 2 informe/HH, es decir, un 75% superior a la actual.
3.2.2 MÓDULO DE MANEJO DE RESULTADOS E INFORMES GENERADOS POR CAPCAM2

3.2.2.1 PROPÓSITO

La principal tarea de este módulo es crear control sobre los resultados e informes que se generan del uso de las herramientas de CAPCAM2. Estudios indican que a nivel gerencial, en proyectos de construcción, los profesionales utilizan sólo un 5% de su tiempo leyendo documentos pero de este, hasta un 50% se pierde en recolectar la información requerida (Abdelsayed & Navon, 1999). Con esta herramienta se disminuirán los tiempos de búsqueda de resultados e informes generados por CAPCAM2. Cubriendo así la necesidad de contar con información y datos de manera rápida y eficiente cuando sea necesario. Normalmente los resultados e informes son requeridos por oficina técnica y cargos gerenciales de obra para análisis y toma de decisiones. Siendo estos el usuario final de la herramienta. Los resultados de las herramientas (gráficos, tablas, indicadores, etc) son útiles porque ayudan en la toma de decisiones para mejorar la productividad, la prevención de riesgos y la calidad. La utilización y análisis de estos permite evaluar el estado actual y tomar medidas correctivas de acuerdo a lo que se observe. Es por esto que dar con ellos debe ser una tarea fácil y deben estar siempre disponibles de manera rápida para que su uso sea continuo. Muchas veces en obra se tienen muchos, pero no se pueden utilizar por falta de comunicación entre quienes los generan y quienes los necesitan utilizar. Se invierte tiempo y dinero para producir algo que no se utiliza y no se le saca provecho al 100%.

El diseño de la herramienta se encuentra bajo el enfoque de la filosofía lean production, específicamente se aplica la metodología 5S al manejo de informes y resultados. 5S es un sistema que reduce las pérdidas y optimiza la productividad, lo hace manteniendo el orden del lugar de trabajo ayudando visualmente a alcanzar de mejor manera los resultados operacionales. Al implementar este método se limpia y organiza el lugar de trabajo manteniendo las bases de funcionamiento. Los pilares de 5S vienen del japonés Seiri (organización), Seiton (orden), Seiso (limpieza), Seiketsu (estandarizar) y Shitsuke (disciplina), con esta base se provee una metodología para organizar, limpiar, desarrollar y llevar a cabo faenas productivas en el trabajo (www.leaninstitute.com). Esta metodología es aplicada en cadenas productivas de diferentes empresas, siendo la más famosa Toyota pionera y líder en productividad.

Cada resultado e informe presentado en CAPCAM VIEWER, se utiliza para obtener información de productividad, calidad o prevención de riesgos de un determinado proyecto. Los
de prevención de riesgos, buscan disminuir el índice de accidentabilidad de la obra; los de productividad, ser útiles para ayudar en la toma de decisiones que mejoren la productividad en terreno y los de calidad, mejorar la calidad del producto final que se está construyendo. Si en la obra se genera información de alguna de estas categorías, la forma más rápida de acceder a estos es conectarse a internet, entrar al sitio y ver los resultados. Mucho más rápido y sencillo que buscar los informes generados en los archivos impresos y digitales.

El marco teórico de este módulo lo da 5S, pero la aplicación es un poco diferente, ya que, esta metodología está pensada en mejorar lugares de trabajo y en este caso se aplica a un software de manejo de información. Abstractamente se considerará este como el “lugar de trabajo”.

3.2.2.2 DESCRIPCION

Esta herramienta estandariza, administra, maneja y muestra los resultados obtenidos al aplicar las diversas metodologías del software CAPCAM2. Su principal objetivo es que el usuario pueda llegar rápida y eficientemente a estos sin necesidad de ver cómo fueron tomados o como son aplicadas las metodologías. La plataforma web creada, CAPCAM VIEWER, permite buscar información de forma rápida y sencilla. Para esto provee una plataforma visual fácil de utilizar y navegar, qué permite acceder a todos los resultados generados por las herramientas para utilizarlos en la toma de decisiones. Los pilares de 5S son utilizados de la siguiente manera en el funcionamiento de CAPCAM VIEWER:

Seiri (organización): Los resultados se separan por herramientas. Pero, a modo de organización, no se mostrarán indicadores incompletos, por ejemplo, si para cierto indicador se necesitan al menos 4 mediciones y existen sólo 3, el indicador se considera incompleto y no es mostrado en CAPCAM VIEWER.

Seiton (orden): Se establece un orden de categoría y período para los resultados “completos”. Las categorías son: Productividad, Calidad y Prevención de Riesgos. Y los períodos: anuales, mensuales, semanales y diarios.
Seiso (limpieza): Se validan los resultados de acuerdo a sus períodos de tiempo. No se consideran los resultados que no son representativos. Por ejemplo, si sólo se tiene 1 indicador semanal, no se puede decir que este es representativo del mes.

Seiketsu (estandarizar): Se estandariza la forma de mostrar los resultados. Se establecen tamaños, formas, tamaños de letras, etc.

Shitsuke (disciplina): La metodología es aplicada a todos los resultados que se crean de las herramientas de CAPCAM2 manteniendo la organización, orden, limpieza y estandarización de los resultados.

Esta herramienta está diseñada para ser utilizada por oficina técnica y cargos gerenciales de la empresa. Pero, dada su versatilidad para manejar resultados puede ser utilizada por todos aquellos actores de la empresa que requieran ver y/o analizar resultados de productividad, calidad y prevención de riesgos. Se utiliza para reducir la incertidumbre al momento de tomar o analizar decisiones. Por lo que su uso dependerá de cuán incidentes son los resultados en las decisiones, por ejemplo: semanales, mensuales, por proyecto, etc. Siempre es bueno llevar un control sobre la incidencia de las decisiones, por lo que se sugiere que al menos 1 vez cada dos semanas se analicen los resultados. El usuario ingresa a CAPCAM VIEWER con su nombre de usuario y clave asignada y accede a la información correspondiente a su nivel de usuario eligiendo diferentes períodos y formas para ver los resultados adecuados.

3.2.2.3 Ejemplos de aplicación de la herramienta

A continuación se presenta un ejemplo simple, del uso de esta herramienta:

- El gerente de la empresa quiere conocer el nivel de riesgo de una obra y el encargado de generar el indicador está inubicable.

Con esta herramienta, el gerente u otro actor del proyecto, puede acceder de manera fácil y simple al indicador, sin necesitar conocer la herramienta con que se generó el indicador, ni tener que recurrir a revisar todos los informes generados por el proyecto. Para ellos, esta herramienta es la solución, porque pueden encontrar los resultados de manera rápida, sin perder tiempo contactando gente o buscando entre los documentos la información necesaria.
3.2.2.4 DATOS DE ENTRADA

Como se estableció anteriormente los datos de entrada para CAPCAM VIEWER son a los resultados entregados por las herramientas de CAPCAM2 alojados en la base de datos de este. Estos pueden ser: gráficos, tablas, imágenes, videos, indicadores y tarjetas. El tipo de resultado dependerá de cada herramienta, tal como se muestra en la tabla 38.

<table>
<thead>
<tr>
<th>Herramienta</th>
<th>Tipo de resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carta de Balance</td>
<td>Gráfico, Tablas</td>
</tr>
<tr>
<td>Muestreo del Trabajo</td>
<td>Gráfico, Tablas</td>
</tr>
<tr>
<td>Tiempos de grúa</td>
<td>Gráfico, Tablas</td>
</tr>
<tr>
<td>Control de avance</td>
<td>Gráfico, Tablas</td>
</tr>
<tr>
<td>SS+IPA</td>
<td>Tablas, Gráfico</td>
</tr>
<tr>
<td>Muestreo de Seguridad</td>
<td>Gráfico</td>
</tr>
<tr>
<td>Likelihood of accidents</td>
<td>Gráfico, indicador</td>
</tr>
<tr>
<td>Pictogramas</td>
<td>Tablas, gráfico</td>
</tr>
<tr>
<td>Alarma</td>
<td>Tablas, indicador</td>
</tr>
<tr>
<td>Flujos de Circulación</td>
<td>Tarjeta</td>
</tr>
<tr>
<td>Buenas y malas prácticas</td>
<td>Gráficos</td>
</tr>
<tr>
<td>Listas de chequeo</td>
<td>Listas</td>
</tr>
<tr>
<td>Registro</td>
<td>Tarjetas</td>
</tr>
<tr>
<td>Revisión general</td>
<td>Tarjetas</td>
</tr>
</tbody>
</table>

Tabla 38 Tipo de resultados de cada herramienta

3.2.2.5 DATOS DE SALIDA/RESULTADOS

Esta herramienta no genera información extra de la ya existente, sino que permite ordenar los indicadores de cada uno de los módulos de CAPCAM2 para sean visualizados de manera simple y de acuerdo a los diferentes requerimientos de los usuarios, por ejemplo, para el departamento de prevención de riesgos no son necesarios todos los indicadores de calidad y productividad sino solamente los generales. A qué indicadores debe tener acceso cada actor de una obra o empresa no puede ser definido de antemano. Ya que por un lado no es necesario que todos los módulos sean utilizados en la obra y por otro la necesidad de información no será siempre la misma para los actores en los diferentes proyectos. La agrupación de las herramientas se presenta en la tabla 39.
<table>
<thead>
<tr>
<th>Categoría</th>
<th>Herramienta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productividad</td>
<td>Carta de Balance</td>
</tr>
<tr>
<td></td>
<td>Muestreo del Trabajo</td>
</tr>
<tr>
<td></td>
<td>Tiempos de grúa</td>
</tr>
<tr>
<td></td>
<td>Control de avance</td>
</tr>
<tr>
<td>Prevención de Riesgos</td>
<td>5S+IPA</td>
</tr>
<tr>
<td></td>
<td>Muestreo de Seguridad</td>
</tr>
<tr>
<td></td>
<td>Likelihood of accidents</td>
</tr>
<tr>
<td></td>
<td>Pictogramas</td>
</tr>
<tr>
<td></td>
<td>Alarma</td>
</tr>
<tr>
<td></td>
<td>Flujos de Circulación</td>
</tr>
<tr>
<td></td>
<td>Buenas y malas prácticas</td>
</tr>
<tr>
<td>Calidad</td>
<td>Listas de chequeo</td>
</tr>
<tr>
<td></td>
<td>Registro</td>
</tr>
<tr>
<td></td>
<td>Revisión general</td>
</tr>
</tbody>
</table>

Tabla 39 Herramientas asociadas por categoría

En esta herramienta es muy importante como se muestran los indicadores de cada módulo. Aplicando la filosofía de 5S, la estandarización visual de cada elemento es la siguiente:

A. Gráficos

![Gráfico 37 Ejemplo de gráfico estandarizado](attachment:grafico.png)
B. Tablas

<table>
<thead>
<tr>
<th>Columna 1</th>
<th>Columna 2</th>
<th>Columna 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>dato1</td>
<td>dato2</td>
<td>dato3</td>
</tr>
</tbody>
</table>

Ilustración 26 Ejemplo de tabla estandarizada
C. Imágenes

<table>
<thead>
<tr>
<th>Tomadas de video:</th>
<th>Tamaño: 640x480</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imágenes:</td>
<td>Normal: Ajustada a 800x600</td>
</tr>
<tr>
<td>Título:</td>
<td>Posición: Centrado bajo la fotografía</td>
</tr>
<tr>
<td></td>
<td>Orientación: Horizontal</td>
</tr>
<tr>
<td></td>
<td>Tipo de letra: Calibrí</td>
</tr>
<tr>
<td></td>
<td>Tamaño: 11 puntos</td>
</tr>
<tr>
<td></td>
<td>Estilo: Negrita</td>
</tr>
</tbody>
</table>

Tabla 42 Estandarización de imágenes digitales

D. Videos

<table>
<thead>
<tr>
<th>Normal:</th>
<th>Tamaño: 640x480</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pantalla completa:</td>
<td>Normal: Ajustada a 800x600</td>
</tr>
<tr>
<td>Título:</td>
<td>Posición: Centrado bajo el video</td>
</tr>
<tr>
<td></td>
<td>Orientación: Horizontal</td>
</tr>
<tr>
<td></td>
<td>Tipo de letra: Calibrí</td>
</tr>
<tr>
<td></td>
<td>Tamaño: 11 puntos</td>
</tr>
<tr>
<td></td>
<td>Estilo: Negrita</td>
</tr>
</tbody>
</table>

Tabla 43 Estandarización de videos digitales
E. Indicadores

<table>
<thead>
<tr>
<th>Título</th>
<th>Posición: Centrado</th>
<th>Orientación: Horizontal</th>
<th>Tipo de letra: Calibrí</th>
<th>Tamaño: 18 puntos</th>
<th>Estilo: Negrita</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texto</td>
<td>Posición: Centrado</td>
<td>Orientación: Horizontal</td>
<td>Tipo de letra: Calibrí</td>
<td>Tamaño: 11 puntos</td>
<td>Estilo: Negrita</td>
</tr>
</tbody>
</table>

Tabla 44 Estandarización de indicadores

Nombre del indicador

Indicador: Número

Ilustración 28 Ejemplo de indicador estandarizado
Tarjeta IPA, Limpieza y Orden

<table>
<thead>
<tr>
<th>Tamaño:</th>
<th>640x370 pixeles</th>
</tr>
</thead>
</table>
| **Título:** | Posición: Superior Izquierda
Orientación: Horizontal
Tipo de letra: Calibrí
Tamaño: 12 puntos
Estilo: Negrita |
| **Foto:** | Tamaño: 374x278 pixeles
Posición: Izquierda bajo el título
Orientación: Horizontal |
| **Información de revisión y área:** | Posición: Superior Derecha
Orientación: Horizontal
Tipo de letra: Calibrí
Tamaño: 10 puntos
Estilo: Normal |
| **Información de tarjeta:** | Posición: A la derecha de la foto bajo información de área
Orientación: Horizontal
Tipo de letra: Calibrí
Tamaño: 12 puntos
Estilo: Cursiva |
| **Información de mejora:** | Posición: Bajo información de tarjeta
Orientación: Horizontal
Tipo de letra: Calibrí
Tamaño: 11 puntos
Estilo: Cursiva |
| **Datos de recepción:** | Posición: Bajo información de mejora
Orientación: Horizontal
Tipo de letra: Calibrí
Tamaño: 10 puntos
Estilo: Normal |

Tabla 45 Estandarización de tarjetas IPA, limpieza y orden
Ilustración 29 Ejemplo de tarjeta luego de la estandarización

G. Tarjeta Pictograma

Tamaño:	640x370 pixeles
Título:	Posición: Superior Izquierda
	Orientación: Horizontal
	Tipo de letra: Calibrí
	Tamaño: 12 puntos
	Estilo: Negrita
Foto:	Tamaño: 424x318 pixeles
	Posición: Izquierda bajo el título
	Orientación: Horizontal
Información de captura:	Posición: Superior Derecha
	Orientación: Horizontal
	Tipo de letra: Calibrí
	Tamaño: 10 puntos
	Estilo: Normal
Descripción del pictograma:	Posición: A la derecha de la foto bajo información de área
	Orientación: Horizontal
	Tipo de letra: Calibrí
	Tamaño: 12 puntos
	Estilo: Cursiva
Pictograma:	Tamaño: 40x40 pixeles
Datos de recepción:	Posición: Bajo información de mejora
	Orientación: Horizontal
	Tipo de letra: Calibrí
	Tamaño: 10 puntos
	Estilo: Normal

Tabla 46 Estandarización de tarjeta de pictograma
Además, los botones de cada una de las pantallas tienen el siguiente formato (las especificaciones de que y como son la barra izquierda y la barra inferior se detallan más adelante):

H. Botones barra izquierda

<table>
<thead>
<tr>
<th>Botón</th>
<th>Tamaño: 235x150 pixeles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Título</td>
<td>Posición: Centrado</td>
</tr>
<tr>
<td></td>
<td>Orientación: Horizontal</td>
</tr>
<tr>
<td></td>
<td>Tipo de letra: Calibrí</td>
</tr>
<tr>
<td></td>
<td>Tamaño: 12 puntos</td>
</tr>
<tr>
<td></td>
<td>Estilo: Negrita</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grafico</th>
<th>Tamaño: 196x120 pixeles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Posición: Centrado</td>
</tr>
<tr>
<td></td>
<td>Orientación: Horizontal</td>
</tr>
</tbody>
</table>

Tabla 47 Estandarización de botones de la barra izquierda

Ilustración 31 Ejemplo de botón de barra izquierda

Ilustración 30 Ejemplo de tarje de pictograma
I. Botones barra inferior

<table>
<thead>
<tr>
<th>Botón</th>
<th>Tamaño: 130x87 pixeles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Título</td>
<td>Posición: Centrado</td>
</tr>
<tr>
<td></td>
<td>Orientación: Horizontal</td>
</tr>
<tr>
<td></td>
<td>Tipo de letra: Calibri</td>
</tr>
<tr>
<td></td>
<td>Tamaño: 10 puntos</td>
</tr>
<tr>
<td></td>
<td>Estilo: Normal</td>
</tr>
<tr>
<td>Grafico</td>
<td>Tamaño: 66x43 pixeles</td>
</tr>
<tr>
<td></td>
<td>Posición: Centrado</td>
</tr>
<tr>
<td></td>
<td>Orientación: Horizontal</td>
</tr>
</tbody>
</table>

Tabla 48 estandarización de botones de barra inferior

Ilustración 32 Ejemplo de botón de barra inferior

3.2.2.6 PROCESO DE MEDICIÓN

Al abrir la página web de CAPCAM VIEWER, se abre la ventana de la ilustración 33 en la cual el usuario debe ingresar su nombre de usuario y contraseña. Luego, debe presionar "Ingresar" para acceder a la pantalla principal de CAPCAM VIEWER que dependerá del perfil y privilegios del usuario. Existen tres perfiles diferentes para la pantalla principal: proyecto, multi-proyecto y multi-empresa. El primero, permite visualizar los resultados generados para un sólo proyecto, el segundo, en cambio, permite comparar datos entre más de un proyecto de una misma empresa, mientras que el tercero, permite analizar comparativamente resultados generados por más de una empresa y proyecto.

Ilustración 33 Ingreso a CAPCAM VIEWER
I. Perfil Proyecto

Para este perfil se mostrará la pantalla de la ilustración 34. En la parte superior de esta, se encuentran los datos básicos de identificación de un proyecto: empresa, usuario, obra, tipo de informe y sector de la obra. Los primeros tres no podrán ser cambiados, ya que, este perfil está diseñado para ser usado por trabajadores que sólo tienen acceso a una obra específica de una empresa en particular. Sólo si el usuario es del tipo gerencial, podrá cambiar de “obra”, ya que, por el tipo de decisiones que toma, le son necesarios los datos de todos los proyectos de la empresa. Los filtros que si podrán aplicar todos los usuarios son: tipo de informe y sector. Para que puedan obtener información específica de los sectores de la obra. El tipo de informe puede ser: semanal, mensual y general. El primero muestra los indicadores semanales, el segundo los mensuales y el tercero los generales del proyecto. En sector se puede escoger un sector específico de la obra previamente designado o, por defecto, todos los sectores. Bajo estos datos básicos se encuentra la barra de información de los informes que se están analizando, primero está la categoría del informe, luego el nombre de la herramienta y después el nombre del indicador. Además, en esta barra se encuentran las fechas de inicio y fin, que el usuario debe escoger para generar los tipos de informe anteriormente nombrados; más detalle de este filtro en la sección “filtro fecha”.

El resto de la pantalla se encuentra dividida en tres partes que se denominarán: barra izquierda, barra inferior y pantalla principal. En la barra izquierda se encuentran todos los resultados existentes para la obra, filtrados por tipo de informe y sector previamente escogido. Los resultados están agrupados por categorías, en lengüetas o controles de ficha (Productividad, Prevención de riesgos y Calidad). En cada una de las fichas están las herramientas correspondientes (tabla 39). Son mostradas como el botón de la ilustración 31, con su nombre y gráfico principal en miniatura (especificaciones en la tabla 47). Al presionar alguno se desplegará, en la pantalla principal, el informe más importante de la herramienta. En la barra inferior, se muestran todos los indicadores o resultados que se obtienen de la medición realizada. Cada uno de estos es presentado como botón (ilustración 32), al igual que los de la barra izquierda, pero con el formato de la tabla 48. Al presionar alguno, se debe mostrar el informe en la pantalla principal con el formato especificado del resultado.
II. Perfil Multi-proyecto

Para este perfil (ilustración 35), en la barra superior se encuentra: el nombre de la empresa a la cual pertenecen los proyectos, el usuario, el tipo de informe y el periodo de tiempo a evaluar. Sólo los últimos dos son intercambiables por el usuario. Nuevamente el tipo de informe a elegir puede ser semanal, mensual o general. Escogiendo la fecha del informe, se aplica el filtro de fecha para los informes a mostrar. Bajo la información del indicador que se está visualizando, se encuentra la barra de proyectos, en ella, aparecen los nombres de todos los proyectos realizados por la empresa, cada uno con un cuadro checklist para ser escogido. Por default todos los proyectos deben estar seleccionados. Presionando el botón , se oculta la barra de proyectos y sólo se muestra “Proyecto “, que debe ser presionado para desplegar nuevamente el menú. La barra de proyectos actúa como filtro, ya que los resultados que se muestran sólo deben ser comparaciones de los proyectos seleccionados. Tampoco se deben mostrar herramientas que no presenten datos comparativos de todos los proyectos seleccionados. El resto de las barras
mantienen las mismas funciones del perfil proyecto, es decir, en la izquierda se muestran los resultados generales de las herramientas y en la inferior cada uno de los resultados de la herramienta.

Además existe el botón “filtros”, presionándolo abre la pantalla de la ilustración 36, sobre la pantalla. Esta pantalla se encuentra dividida en tres partes: la de la izquierda con las categorías y el periodo de tiempo a analizar, la central con los posibles filtros aplicables para la categoría del filtro y la última de la derecha, indicando cuales han sido los filtros que se han aplicado de cada una de las categorías hasta el momento. Las categorías de filtro son: Proyecto, Subcontrato y Tarea. El filtro proyecto (ilustración 37) permite escoger por tipo de proyecto y por zona geográfica donde el proyecto se lleva a cabo. Por tipo de proyecto existen los filtros de: edificación en altura, edificación en extensión, montaje industrial liviano, montaje industrial pesado, obras civiles y obras viales; por zona geográfica están: norte grande, norte chico, centro, sur austral. El filtro Subcontrato (ilustración 38) permite filtrar por especialidad: carpinteros, enfierradores, concreteros, tabiqueros, porcelanatos, instalaciones eléctricas, instalaciones sanitarias,
instalaciones de ventilación, aluminios, etc. El filtro tarea (ilustración 39), permite filtrar por tareas realizadas en obra pudiéndose filtrar por: hormigonar, armar moldajes, amar enfierradura, instalar artefactos sanitarios, instalar red eléctrica e instalar red de agua potable, etc. Cabe destacar, que estos filtros podrán cambiar de acuerdo a los proyectos que se visualizan, ya que, en tareas deberán aparecer todas las tareas desarrolladas en todos los proyectos y en subcontratos todos los tipos de subcontratos existentes. Nuevamente estos filtros actuarán mostrando sólo las herramientas a las cuales son aplicables. También existe el botón “Buscar”, su uso es común tanto para este perfil, como para el perfil multi-empresa, su descripción competa se encuentra más adelante.

Ilustración 36 Aplicación de filtros
III. Perfil multi-empresa

Este perfil actúa de la misma manera que el perfil multiproyecto, pero a un nivel más alto, es decir, al nivel donde se analizan los resultados generales de las empresas seleccionadas (ilustración 40). A diferencia de los otros perfiles, este no es abierto para todas las empresas y sólo puede ser accedido por la empresa que provee el servicio. Con el fin de investigar o analizar datos generales. Por esta razón, en la parte superior, sólo debe mostrarse el nombre de la empresa proveedora y no de la empresa del proyecto. El usuario es dependiente de la empresa proveedora. Nuevamente se puede elegir el tipo de informe y periodo para filtrar los resultados de las herramientas a mostrar, existe una barra bajo la información general, igual a la de proyectos, pero en vez de filtrar por proyectos se deben escoger las empresas para analizar. El botón funciona para mostrar la barra de empresas, de la misma manera que en el perfil multi-proyecto para mostrar la barra de proyectos. Presionando el botón filtros nuevamente se abre una pantalla encima, como la presentada en la ilustración 36, con la misma distribución (categoría, filtros y filtros aplicados) y funcionalidad. La diferencia es que en la categoría de filtros se agrega la categoría empresa, la cual permite filtrar por rubro y zona geográfica donde se encuentra establecida la empresa. Por rubro existen las categorías: Construcción, Minería y Obras Públicas. Por zonas geográficas: Norte grande, norte chico, centro, sur y austral. El uso del botón buscar se explica más adelante.
Ilustración 40 Pantalla principal de CAPCAM VIEWER perfil multi-empresa

Ilustración 41 Filtro por empresa
IV. Filtro Fecha

El filtro fecha permite escoger la fecha de inicio y fecha de fin del informe, puede ser aplicado en cualquiera de los tres perfiles de informe. Filtra tanto herramientas como informes. Lo primero que hace es filtrar las herramientas para el periodo de tiempo requerido, puede ser que alguna de las herramientas no tenga mediciones asociadas para el periodo de tiempo requerido, y de suceder esto, la herramienta no debe ser mostrada en la barra izquierda. La segunda etapa del filtro es filtrar los informes, ya que cada uno de estos debe mostrar resultados para el periodo de tiempo requerido y con el tipo de informe requerido.

V. Filtro Obra

El filtro obra actúa de la misma manera que lo hace el filtro fecha, ya que primero filtra las herramientas y luego los informes, mostrando sólo los que contienen mediciones e informes asociados a la obra.

VI. Filtro Sector

Al igual que los filtros obra y fecha, filtra las herramientas mostrando sólo las que contienen mediciones asociadas al sector.

VII. Filtro Tipo de informe

Los informes de las herramientas podrán ser mostrados de forma semanal, mensual o general. Por ejemplo, si el tipo de informe escogido es semanal, se mostrará el valor representativo del indicador para cada semana. Cabe destacar, que los filtros semanal y mensual deben ser presentados como registro histórico. Para cada herramienta el filtro se aplicará de la siguiente manera:

A. Semanal

Cuándo se ha aplicado el filtro semanal, los resultados de cada herramienta deben ser mostrados como se detalla en la tabla 49. En la columna herramienta se muestra el nombre de la herramienta y en filtro semana cuándo es válido cada resultado y cómo debe ser mostrado.
<table>
<thead>
<tr>
<th>Herramienta</th>
<th>Filtro Semanal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carta de Balance</td>
<td>Promedio de las de semana, debe existir al menos una medición</td>
</tr>
<tr>
<td>Muestreo del Trabajo</td>
<td>Promedio de las de semana, debe existir al menos una medición</td>
</tr>
<tr>
<td>Tiempos de grúa</td>
<td>Promedio de las de semana, deben existir al menos dos mediciones</td>
</tr>
<tr>
<td>Control de avance</td>
<td>El resultado final de la semana, se realiza una vez por semana el control.</td>
</tr>
<tr>
<td>5S+IPA</td>
<td>Suma de las de semana, deben existir al menos tres mediciones</td>
</tr>
<tr>
<td>Muestreo de Seguridad</td>
<td>Promedio de las de semana, deben existir al menos dos mediciones</td>
</tr>
<tr>
<td>Likelihood of accidents</td>
<td>Promedio de las de semana, deben existir al menos tres mediciones</td>
</tr>
<tr>
<td>Pictogramas</td>
<td>Suma de las tarjetas, deben existir al menos tres mediciones</td>
</tr>
<tr>
<td>Alarma</td>
<td>Suma de las tarjetas, debe existir al menos una medición</td>
</tr>
<tr>
<td>Flujos de Circulación</td>
<td>Una sola tarjeta por semana</td>
</tr>
<tr>
<td>Buenas y malas prácticas</td>
<td>No aplica por semana, i.e. no se debe mostrar en este filtro</td>
</tr>
<tr>
<td>Listas de chequeo</td>
<td>Total de listas de chequeo realizadas en la semana, se filtran por actividad</td>
</tr>
<tr>
<td>Registro</td>
<td>Suma de las tarjetas creadas, se deben filtrar por actividad</td>
</tr>
<tr>
<td>Revisión general</td>
<td>Suma de las tarjetas creadas, se deben filtrar por actividad</td>
</tr>
</tbody>
</table>

Tabla 49 Descripción del filtro semanal de cada herramienta

B. Mensual

A continuación, en la tabla 50, se detalla cómo debe ser aplicado el filtro mensual en cada herramienta. Cabe destacar que como primer filtro, para que el resultado pueda ser visualizado, debe existir a lo menos una medición mensual válida en cada semana, es decir, el filtro mensual debe poder ser cumplido las 4 semanas del mes a analizar.

<table>
<thead>
<tr>
<th>Herramienta</th>
<th>Filtro Mensual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carta de Balance</td>
<td>Promedio de las semanas</td>
</tr>
<tr>
<td>Muestreo del Trabajo</td>
<td>Promedio de las semanas</td>
</tr>
<tr>
<td>Tiempos de grúa</td>
<td>Promedio de las semanas</td>
</tr>
<tr>
<td>Control de avance</td>
<td>PPC promedio de las semanas</td>
</tr>
<tr>
<td>5S+IPA</td>
<td>Suma de las tarjetas semana</td>
</tr>
<tr>
<td>Muestreo de Seguridad</td>
<td>Promedio de las semanas</td>
</tr>
<tr>
<td>Likelihood of accidents</td>
<td>Promedio de las semanas</td>
</tr>
<tr>
<td>Pictogramas</td>
<td>Suma de las tarjetas semana</td>
</tr>
<tr>
<td>Alarma</td>
<td>Suma de las tarjetas semana</td>
</tr>
<tr>
<td>Flujos de Circulación</td>
<td>Se muestran las 4 tarjetas</td>
</tr>
<tr>
<td>Buenas y malas prácticas</td>
<td>Se muestran las buenas y malas prácticas del mes</td>
</tr>
<tr>
<td>Listas de chequeo</td>
<td>Total de listas de chequeo de cada semana</td>
</tr>
<tr>
<td>Registro</td>
<td>Total de las tarjetas de cada semana</td>
</tr>
<tr>
<td>Revisión general</td>
<td>Total de las tarjetas de cada semana</td>
</tr>
</tbody>
</table>

Tabla 50 Descripción del filtro mensual de cada herramienta
C. General

Este filtro presenta los indicadores generales del proyecto, por lo que los resultados deben ser mostrados como se detalla en la tabla 51.

<table>
<thead>
<tr>
<th>Herramienta</th>
<th>Filtro General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carta de Balance</td>
<td>Promedio de los meses</td>
</tr>
<tr>
<td>Muestreo del Trabajo</td>
<td>Promedio de los meses</td>
</tr>
<tr>
<td>Tiempos de grúa</td>
<td>Promedio de los meses</td>
</tr>
<tr>
<td>Control de avance</td>
<td>PPC promedio de los meses</td>
</tr>
<tr>
<td>5S+IPA</td>
<td>Suma de las tarjetas mensuales</td>
</tr>
<tr>
<td>Muestreo de Seguridad</td>
<td>Promedio de los meses</td>
</tr>
<tr>
<td>Likelihood of accidents</td>
<td>Promedio de los meses</td>
</tr>
<tr>
<td>Pictogramas</td>
<td>Suma de las tarjetas mensuales</td>
</tr>
<tr>
<td>Alarma</td>
<td>Suma de las tarjetas mensuales</td>
</tr>
<tr>
<td>Flujos de Circulación</td>
<td>Se muestran el flujo promedio</td>
</tr>
<tr>
<td>Buenas y malas prácticas</td>
<td>Se muestra el total de las buenas y malas prácticas</td>
</tr>
<tr>
<td>Listas de chequeo</td>
<td>Total de las listas de chequeo del proyecto</td>
</tr>
<tr>
<td>Registro</td>
<td>Total de las tarjetas del proyecto</td>
</tr>
<tr>
<td>Revisión general</td>
<td>Total de las tarjetas del proyecto</td>
</tr>
</tbody>
</table>

Tabla 51 Descripción de filtro general de cada herramienta

VIII. Filtro Buscar

Este filtro se muestra sobre la pantalla central de los filtros; muestra todos los filtros de búsqueda para cada una de las categorías (tabla 52, 53 y 54). Se debe buscar por categoría, presionando sobre una aparecen los filtros correspondientes a la categoría que son:

A. Búsqueda Productividad

<table>
<thead>
<tr>
<th>Filtro</th>
<th>Filtro de filtro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trabajo Productivo</td>
<td>es mayor a</td>
</tr>
<tr>
<td></td>
<td>es igual a</td>
</tr>
<tr>
<td></td>
<td>es menor a</td>
</tr>
<tr>
<td>Trabajo Contributivo</td>
<td>es mayor a</td>
</tr>
<tr>
<td></td>
<td>es igual a</td>
</tr>
<tr>
<td></td>
<td>es menor a</td>
</tr>
<tr>
<td>Trabajo no Contributivo</td>
<td>es mayor a</td>
</tr>
<tr>
<td></td>
<td>es igual a</td>
</tr>
<tr>
<td></td>
<td>es menor a</td>
</tr>
<tr>
<td>Grúa sin actividad</td>
<td>es mayor a</td>
</tr>
<tr>
<td>Grúa con actividad</td>
<td>Moldaje</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Enfierradura</td>
</tr>
<tr>
<td></td>
<td>[Deben aparecer todos los transportes realizados]</td>
</tr>
<tr>
<td>Avance Completado</td>
<td>es mayor a</td>
</tr>
<tr>
<td></td>
<td>es igual a</td>
</tr>
<tr>
<td></td>
<td>es menor a</td>
</tr>
<tr>
<td>PPC promedio</td>
<td>es mayor a</td>
</tr>
<tr>
<td></td>
<td>es igual a</td>
</tr>
<tr>
<td></td>
<td>es menor a</td>
</tr>
<tr>
<td>Cantidad a Construir</td>
<td>es mayor a</td>
</tr>
<tr>
<td></td>
<td>es igual a</td>
</tr>
<tr>
<td></td>
<td>es menor a</td>
</tr>
<tr>
<td>Desviación del plazo (%)</td>
<td>es mayor a</td>
</tr>
<tr>
<td></td>
<td>es igual a</td>
</tr>
<tr>
<td></td>
<td>es menor a</td>
</tr>
<tr>
<td>Desviación de avance (%)</td>
<td>es mayor a</td>
</tr>
<tr>
<td></td>
<td>es igual a</td>
</tr>
<tr>
<td></td>
<td>es menor a</td>
</tr>
<tr>
<td>Nombre de proyecto</td>
<td>[nombre]</td>
</tr>
</tbody>
</table>

Tabla 52 Filtros de búsqueda de productividad

B. Búsqueda prevención de riesgos

<table>
<thead>
<tr>
<th>Filtro</th>
<th>Filtro de filtro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trabajo seguro</td>
<td>es mayor a</td>
</tr>
<tr>
<td></td>
<td>es igual a</td>
</tr>
<tr>
<td></td>
<td>es menor a</td>
</tr>
<tr>
<td>Trabajo no seguro</td>
<td>es mayor a</td>
</tr>
<tr>
<td></td>
<td>es igual a</td>
</tr>
<tr>
<td></td>
<td>es menor a</td>
</tr>
<tr>
<td>Trabajo expuesto</td>
<td>es mayor a</td>
</tr>
<tr>
<td></td>
<td>es igual a</td>
</tr>
<tr>
<td></td>
<td>es menor a</td>
</tr>
<tr>
<td>Valor de IPA</td>
<td>es mayor a</td>
</tr>
<tr>
<td></td>
<td>es igual a</td>
</tr>
<tr>
<td></td>
<td>es menor a</td>
</tr>
<tr>
<td>Categoría de IPA</td>
<td>No mantiene orden caja de herramientas</td>
</tr>
<tr>
<td></td>
<td>No usa permanente su EPP básico</td>
</tr>
<tr>
<td></td>
<td>No respeta el entorno de otros trabajadores</td>
</tr>
<tr>
<td></td>
<td>No respeta la señaletica existente</td>
</tr>
<tr>
<td></td>
<td>No usa las cuerdas de vida del arnés</td>
</tr>
<tr>
<td>No controla proyección de partículas</td>
<td>No coopera con orden, limpieza, señal ética</td>
</tr>
<tr>
<td>Trepa por moldajes y no usa escaleras</td>
<td></td>
</tr>
<tr>
<td>Usa en andamios que no cumplen con normas</td>
<td></td>
</tr>
<tr>
<td>No usa los basureros para desechos</td>
<td></td>
</tr>
<tr>
<td>Transito bajo carga suspendida</td>
<td></td>
</tr>
<tr>
<td>Trepa por enfierraduras</td>
<td></td>
</tr>
<tr>
<td>Trabajo en rebalse de loza sin baranda</td>
<td></td>
</tr>
<tr>
<td>Trabajo en rebalse de loza sin amarrarse</td>
<td></td>
</tr>
<tr>
<td>No transita por escalera principal</td>
<td></td>
</tr>
<tr>
<td>Realiza hormigonado sin antiparras</td>
<td></td>
</tr>
<tr>
<td>Trabajo con llama abierta y sin extintor</td>
<td></td>
</tr>
<tr>
<td>No utiliza adecuadamente las herramientas</td>
<td></td>
</tr>
<tr>
<td>Otro</td>
<td></td>
</tr>
</tbody>
</table>

| Orden | es mayor a |
| es igual a |
| es menor a |

| Limpieza | es mayor a |
| es igual a |
| es menor a |

| Condición Subestandar | Áreas obstruidas con material |
| Zonas de peligro sin delimitaciones |
| Shaft descubiertos |
| Rebalse de losa sin barandas |
| Iluminación deficiente |
| Falta de limpieza en las áreas de trabajo |
| Andamios deficientes o fuera de norma |
| Cable de extensión sin accesorio en extremo |
| Cubierta de aislación de cables deteriorada |
| Escaleras sin barandas |
| Escalas en mal estado |
| Falta escalera de acceso a losa |
| Superficie de trabajo deficiente |
| Falta cuartón en tablones |
| Falta pasamanos a escalera |
| Faltan vías de circulación |
| Herramientas en lugar no apropiado |
| Otro |

| LA | es mayor a |
| es igual a |
| es menor a |

| Buenas o Malas Prácticas | Todas |
| Andamios |
Tabla 53 Filtros de búsqueda de prevención de riesgos

<table>
<thead>
<tr>
<th>Carga de trabajo</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuerda de vida</td>
<td></td>
</tr>
<tr>
<td>EPP</td>
<td></td>
</tr>
<tr>
<td>Equipos y herramientas</td>
<td></td>
</tr>
<tr>
<td>Escalas</td>
<td></td>
</tr>
<tr>
<td>Excavaciones</td>
<td></td>
</tr>
<tr>
<td>Limpieza y orden</td>
<td></td>
</tr>
<tr>
<td>Losa</td>
<td></td>
</tr>
<tr>
<td>Muro</td>
<td></td>
</tr>
<tr>
<td>Protecciones y barreras</td>
<td></td>
</tr>
<tr>
<td>Vías de circulación</td>
<td></td>
</tr>
<tr>
<td>Otro</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 54 Filtros de búsqueda de calidad

<table>
<thead>
<tr>
<th>Filtro</th>
<th>Filtro de filtro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lista de chequeo</td>
<td>Tipo de lista</td>
</tr>
<tr>
<td>Lista de chequeo</td>
<td>Fecha</td>
</tr>
<tr>
<td>Registro</td>
<td>Fecha</td>
</tr>
<tr>
<td></td>
<td>Encargado</td>
</tr>
<tr>
<td></td>
<td>Elemento</td>
</tr>
<tr>
<td></td>
<td>Sector de Obra</td>
</tr>
<tr>
<td>Revisión General</td>
<td>Trabajo rehACE</td>
</tr>
<tr>
<td></td>
<td>Incidente de no calidad</td>
</tr>
<tr>
<td></td>
<td>Tarea</td>
</tr>
</tbody>
</table>

C. Búsqueda Calidad

120
Ilustración 42 Esquema de cómo deben ser mostrados los filtros y los resultados

IX. Filtros multi-proyecto y multi-empresa

En la tabla 55 se detalla cómo se deben mostrar los resultados cuando se estén comparando diferentes proyectos o empresas.

<table>
<thead>
<tr>
<th>Herramienta</th>
<th>Multi-proyecto y multi-empresa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carta de Balance</td>
<td>Los valores se comparan directamente para tareas iguales</td>
</tr>
<tr>
<td>Muestreo del Trabajo</td>
<td>Los valores se comparan directamente</td>
</tr>
<tr>
<td>Tiempos de grúa</td>
<td>Los valores se comparan directamente</td>
</tr>
<tr>
<td>Control de avance</td>
<td>Los valores se comparan directamente</td>
</tr>
<tr>
<td>5S+IPA</td>
<td>No se pueden comparar proyectos de categorías distintas</td>
</tr>
<tr>
<td>Muestreo de Seguridad</td>
<td>Los valores se comparan directamente</td>
</tr>
<tr>
<td>Likelihood of accidents</td>
<td>Los valores se comparan directamente para tareas iguales</td>
</tr>
<tr>
<td>Pictogramas</td>
<td>Sólo son comparables por actividad y mismo tipo de proyecto</td>
</tr>
<tr>
<td>Alarma</td>
<td>No se puede comparar entre proyectos o empresas, dependen de</td>
</tr>
<tr>
<td>Flujos de Circulación</td>
<td>No se puede comparar entre proyectos o empresas, dependen de</td>
</tr>
<tr>
<td>Buenas y malas</td>
<td>Se muestran las de cada empresa o proyecto</td>
</tr>
<tr>
<td>Listas de chequeo</td>
<td>Sólo son comparables listas iguales por empresa o proyecto</td>
</tr>
<tr>
<td>Registro</td>
<td>Sólo son comparables registros para tareas iguales por empresa o</td>
</tr>
<tr>
<td>Revisión general</td>
<td>Sólo son comparables registros para tareas iguales por empresa o</td>
</tr>
</tbody>
</table>

Tabla 55 Comparación de resultados multi-empresa y multi-proyecto
3.2.2.7 PROCESO DE ANÁLISIS

Como análisis general, esta herramienta web provee al usuario, en cualquier nivel de la empresa o del proyecto, los resultados obtenidos por CAPCAM2 de una manera rápida, fácil y sencilla; permite al usuario acceder a estos a través de una página web, sin necesidad de saber manipular las herramientas y metodologías con las que fueron generados. Esto lleva a que el uso de los informes sea eficiente y, el acceso a la información disponible sea rápido y expedito.

El análisis individual de los informes depende del que se está visualizando. Los análisis de movimientos de grúa, muestreo del trabajo, carta de balance y control de avance se encuentran en la sección “proceso de análisis” de cada herramienta, el resto de los análisis se escapan al alcance de esta investigación, siendo posibles encontrarlos detalladamente en la tesis para optar al grado de magister de la Pontificia Universidad Católica de Chile de Hugo Berroeta (Berroeta, 2009) y en la memoria para optar al título de ingeniero civil de la Universidad de Chile de Daniela Sossdorf (Sossdorf, 2009).

3.2.2.8 VALIDACIÓN

Las necesidades de los usuario y como los resultados deben ser mostrados, para ser sencillos y eficientes, fueron logrados trabajando en conjunto con los profesionales de GEPUC; se sostuvieron constantes reuniones para encontrar y mejorar los alcances reales de la herramienta y las necesidades como empresa. Además, se contó con la ayuda de profesionales de terreno de la empresa LyD que plantearon la necesidad de que la información debía ser accesible vía web para obtener un uso eficiente de la herramienta. Con todas las retroalimentaciones, se logró diseñar la herramienta final de la manera que es mostrada en este capítulo.

3.2.2.9 ANÁLISIS DE COSTOS Y PRODUCTIVO

Como base para el análisis de costos de la herramienta, se considera que para un ejecutivo, de una empresa o proyecto, lograr acceder a un informe y analizar la información requerida, necesita 2 horas de su tiempo. Dado el uso gerencial de esta herramienta se toma como supuesto que el valor de una hora de trabajo del ejecutivo es 1.5 UF y que en un mes debe leer 8 informes (2 por semana). Con estos supuestos, el costo actual (sin utilizar la herramienta) es 24 UF, utilizando la herramienta se garantiza un acceso más fácil a la información necesaria, por lo
que el tiempo necesario para ver y analizar el informe, queda solamente sujeto al tiempo de análisis, es decir, aproximadamente 0.5 horas, considerando esto, el costo baja a 6 UF generando un ahorro del 75% en el costo de encontrar informes y analizarlos. Con estos valores la productividad actual es 0.5 informe/HH, utilizando CAPCAM VIEWER la productividad crece a 2 informe/HH, es decir, un 75% mejor que la actual. Cabe destacar, que el análisis de costos y productividad es considerando un ejecutivo por proyecto o empresa, en caso de existir más de uno, las mejoras son proporcionales al número de ejecutivos.
4 COMENTARIOS Y CONCLUSIONES

4.1 COMENTARIOS SOBRE EL DESARROLLO DE LA INVESTIGACIÓN

Las herramientas desarrolladas han sido diseñadas para mejorar necesidades reales de proyectos de construcción. El diseño final de cada una de las ideas, fue logrado después de participar en diversas reuniones de coordinación y de planificación, y sostener variadas conversaciones con personal, tanto de obra como de consultoría e investigación en el rubro de la construcción. Las soluciones finales, fueron logradas gracias a la participación y constantes retroalimentaciones de los que conocen las necesidades reales de una obra, conectando la investigación con la realidad en terreno.

La prueba y validación de cada una de las herramientas diseñadas, fue una ardua tarea, ya que, las metodologías se diseñaron para ser utilizadas mediante módulos de software aún no creados, por lo que la automatización de la toma de datos y de la generación de resultados no existió durante el desarrollo de la investigación. Cada uno de los datos, gráficos y tablas de los resultados obtenidos, fue elaborado con planillas simples de MS Excel, ideadas para las necesidades específicas de cada metodología.

Cabe destacar que las maquetas de diseño de software realizadas para cada una de las metodologías (screenshots), puede variar cuando la herramienta se encuentre construida, ya que, el diseño es una idea inicial de cómo debería manejarse la metodología mediante un software, pero, la usabilidad será un factor determinante en la siguiente etapa de implementación, ya que una vez construido el software, debe ser capaz de presentar la metodología al usuario de manera sencilla, sin presentar trabajo extra para el personal de terreno. Con esto se deja abierta la posibilidad de realizar cambios en las maquetas, en pos de mejorar el producto y su uso final.

4.2 CONCLUSIONES POR HERRAMIENTA

4.2.1 CONCLUSIONES DE LA MEDICIÓN DE TIEMPOS Y RUTAS DE GRÚA

La herramienta de medición de tiempos y rutas de grúa, ayuda a mejorar la productividad y reducir las pérdidas de la grúa y de las cuadrillas que la utilizan. La herramienta es útil, porque permite obtener parámetros básicos del uso real del recurso grúa. Al analizarlos, se pueden tomar acciones correctivas sobre el uso óptimo del recurso de acuerdo a las necesidades específicas del
proyecto. Una vez tomadas las acciones, se puede aplicar nuevamente la metodología para apreciar si las acciones correctivas tienen el efecto esperado en el proyecto. Permitiendo la generación de registros históricos que entregan información de las mejoras o pérdidas producidas por las acciones tomadas. Como se puede apreciar, la herramienta permite mejorar la distribución y el uso del recurso grúa, consiguiendo mejorar la productividad mediante la optimización de la eficiencia del uso de los recursos.

4.2.2 CONCLUSIONES DEL CONTROL DE AVANCE

La herramienta de control de avance permite, tal como su nombre lo indica, controlar el avance real de un proyecto de construcción. Con esto se logra disminuir la incertidumbre de las tareas planificadas aumentando la efectividad de la planificación. También ayuda a generar planes de corto plazo que ayudan a mejorar la comunicación de los objetivos y metas requeridos para un determinado periodo de tiempo. Además, como apoyo al control y planificación, permite generar un registro visual de las tareas que se han llevado a cabo.

4.2.3 CONCLUSIONES DE LA VALIDACIÓN E IMPLEMENTACIÓN DE FIVE MINUTES RATING

No fue posible validar la metodología five minutes rating; no fue diseñada. La principal razón es la variabilidad de sus resultados, no siendo posible utilizarla como un reemplazante fidedigno del muestreo del trabajo.

4.2.4 CONCLUSIONES DEL ANÁLISIS DE CARTA DE BALANCE Y MUESTREO DEL TRABAJO

Para las herramientas de carta de balance y muestreo del trabajo, se logró crear un módulo que es capaz de generar informes de resultado a partir de los datos obtenidos por ambas herramientas. Esto es favorable, a un proyecto de construcción, porque ambas en conjunto permiten crear diagnósticos del uso y distribución de los recursos en obra, generando una línea base para realizar mejoras. A su vez, el módulo, genera el informe de manera casi automática, aumentando la productividad de los profesionales que cumplen este rol y disminuyendo el tiempo de respuesta necesario, para el análisis y su posterior toma de decisiones correctivas. Este módulo agrega valor a las herramientas de carta de balance y muestreo del trabajo existentes en CAPCAM2. Antes de la creación de este módulo, las herramientas no presentaban los resultados adecuados, para el análisis, una vez terminadas las mediciones.
4.2.5 CONCLUSIONES DEL MÓDULO DE MANEJO DE INFORMES Y RESULTADOS GENERADOS POR CAPCAM2

CAPCAM VIEWER agrega valor a todas las herramientas y módulos del software CAPCAM2. Esto se debe a que es una herramienta transversal, que permite acceder de manera rápida a revisar diferentes tipos de indicadores (prevención de riesgos, calidad y productividad) de diversos proyectos, en diferentes niveles del proyecto o empresa. Además, permite realizar comparaciones entre los diferentes proyectos y empresas según sean los privilegios del usuario, las que pueden ser muy útiles para generar intercambio y flujo de conocimientos y metodologías para aumentar los desempeños de otros proyectos y/o empresas.

4.3 DESARROLLOS FUTUROS

Como desarrollo futuro para la herramienta de tiempos y rutas de grúa, se presenta la idea de que la cámara siga automáticamente el gancho de la grúa con zoom aplicado sobre este. De esta manera, los movimientos podrán ser observados de manera sencilla sin perder nunca de vista el gancho. Se podrían identificar de mejor manera los sectores y elementos transportados, así como también, las cantidades exactas transportadas en cada movimiento.

También para la herramienta del recurso grúa, se propone encontrar la forma de filmar sólo cuando el gancho de la grúa se encuentra en movimiento, con esto, se ahorraría espacio de almacenamiento de videos y se observarían sólo los momentos en que la grúa se encuentra activa. El software, además, debería detectar automáticamente que es lo que transporta la grúa para automatizar la medición, dejando la función del usuario sólo para el análisis de los resultados.

Para la herramienta de control de avance, se propone idear una metodología simple que permita, de la misma manera como se crean los planes de corto plazo, elaborar planes maestros, programas de fase y lookahead, para que la metodología SUP pueda ser llevada, de manera sencilla con ayuda de un software, en proyectos de construcción.

También se propone, la invención de una nueva forma de creación de programaciones de obra. En ella, el plan debería ser creado a partir de un modelo 3D, del cual se seleccionan los objetos para crear una secuencia constructiva. Es decir, se seleccionan los objetos y las restricciones o secuencias constructivas son establecidas escogiendo otros elementos del dibujo,
la única información necesaria para cada caso serían: el nombre de la tarea y las fechas de
comienzo. Si el modelo es BIM las actividades y duraciones necesarias de cada elemento estarían
integradas a este.

Se propone además, profundizar el estudio de la tecnología RFID para aplicarla en la
construcción de manera íntegra. En la actualidad, es utilizada en otras industrias para el
seguimiento y rastreo de objetos. Estas potenciales utilidades deberían ser investigadas en la
industria de la construcción, por ejemplo, se podrían generar metodologías para el control de
inventarios conectadas a las programaciones, para determinar si los stocks son suficientes para
llevar a cabo los planes; así como también, seguíamientos de ciertas herramientas críticas en
terreno, etc.

4.4 CONCLUSIONES FINALES

Las imágenes y videos digitales obtenidos mediante cámaras instaladas en obra, permiten
la toma de diversos datos de terreno que, entre otras cosas, son utilizados para mejorar la
productividad de proyectos de construcción.

Las metodologías diseñadas para mejorar la productividad de operaciones de construcción
permiten: aplicar metodologías existentes de forma automatizada; tomar datos de terreno, de
una manera simple semi-automática guiada por el usuario, mediante el uso de cámaras de video
instaladas en obra. Esto permite al usuario generar informes y resultados útiles para tomar
medidas correctivas y realizar mejoras productivas en proyectos de construcción.
5 BIBLIOGRAFÍA

De St Aubin, P. (2008). *Tesis para optar al grado de Magíster en Ciencias de la Ingeniería: "Diseño de un sistema de captura de datos de productividad y prevención de riesgos por medio de videos digitales"*. Santiago: Pontificia Universidad de Chile.

Seonhoon, K., & Yong, B. (2007). Development of a real-time productivity measurement system for bridge replacement. Lawrence, KS, USA.

Sossdorf, D. (2009). Memoria para optar al título de ingeniero civil civil de la Universidad de Chile: Utilización de imágenes y videos para el mejoramiento de la seguridad y prevención de riesgos en obras de construcción. Santiago: Universidad de Chile.

6 ANEXOS

A continuación se presentan algunas de las fotografías tomadas el 12 de mayo del 2009, en el edificio 1 de la obra ampliación de la clínica Dávila de la empresa LyD. Fueron utilizadas para validar la herramienta de control de avance.
A continuación se presenta el plan de trabajo programado para el periodo del 5 al 11 de Mayo del 2009, por Roberto Mardones, para la obra de ampliación de la Clínica Dávila de la empresa LyD.

<table>
<thead>
<tr>
<th>Actividad Semanal</th>
<th>Elemento</th>
<th>Responsable</th>
<th>Colaboración por elemento</th>
<th>Unidad</th>
<th>Avance Cumplimentado</th>
</tr>
</thead>
<tbody>
<tr>
<td>PISO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOLDEADO</td>
<td>74-75-76-77-78-80-81</td>
<td>MOLDEADO</td>
<td>HC</td>
<td>132 m²</td>
<td>100%</td>
</tr>
<tr>
<td>EMPAÑADURA</td>
<td></td>
<td>EMPAÑADURA</td>
<td>MS</td>
<td>4327 Kg</td>
<td>100%</td>
</tr>
<tr>
<td>TENSIÓN</td>
<td></td>
<td>TENSIÓN</td>
<td>VBL</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>ARMADO</td>
<td></td>
<td>ARMADO</td>
<td>ROBERTO ORDENES</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>MUROS</td>
<td></td>
<td>MUROS</td>
<td>ROBERTO ORDENES</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>MOLDEADO</td>
<td>2-3-4-5-6-7-10-11-14-15</td>
<td>MOLDEADO</td>
<td>HC</td>
<td>259 m²</td>
<td>100%</td>
</tr>
<tr>
<td>HORMIGÓN</td>
<td></td>
<td>HORMIGÓN</td>
<td>ROBERTO ORDENES</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>ARMADO DE ANCLAJES</td>
<td>(17-18)(20-21)(23-24)(26-28)</td>
<td>ARMADO DE ANCLAJES</td>
<td>HC</td>
<td>191 m²</td>
<td>100%</td>
</tr>
<tr>
<td>ENMAQUINADO</td>
<td></td>
<td>ENMAQUINADO</td>
<td>MS</td>
<td>4277 Kg</td>
<td>100%</td>
</tr>
<tr>
<td>HORMIGÓN</td>
<td></td>
<td>HORMIGÓN</td>
<td>ROBERTO ORDENES</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>CIRCUNVOLUCIÓN</td>
<td></td>
<td>CIRCUNVOLUCIÓN</td>
<td>MS</td>
<td>4277 Kg</td>
<td>100%</td>
</tr>
<tr>
<td>AGUJAS</td>
<td>3a-7a-12</td>
<td>AGUJAS</td>
<td>HC</td>
<td>27 m²</td>
<td>100%</td>
</tr>
<tr>
<td>ARMADO DE ANCLAJES</td>
<td></td>
<td>ARMADO DE ANCLAJES</td>
<td>MS</td>
<td>2694 Kg</td>
<td>100%</td>
</tr>
<tr>
<td>ENMAQUINADO</td>
<td></td>
<td>ENMAQUINADO</td>
<td>MS</td>
<td>2694 Kg</td>
<td>100%</td>
</tr>
<tr>
<td>MOLDEADO</td>
<td>36-41-43-48-50-55-57-63</td>
<td>MOLDEADO</td>
<td>MS</td>
<td>2363 Kg</td>
<td>60%</td>
</tr>
<tr>
<td>HORMIGÓN</td>
<td></td>
<td>HORMIGÓN</td>
<td>ROBERTO ORDENES</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>PILARES</td>
<td>19-25-32</td>
<td>PILARES</td>
<td>ROBERTO ORDENES</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>MOLDEADO</td>
<td>64-65-66-67</td>
<td>MOLDEADO</td>
<td>HC</td>
<td>66 m²</td>
<td>100%</td>
</tr>
<tr>
<td>HORMIGÓN</td>
<td></td>
<td>HORMIGÓN</td>
<td>ROBERTO ORDENES</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>PISCINA</td>
<td>5"piso a 6° piso</td>
<td>PISCINA</td>
<td>ROBERTO ORDENES</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>TUNEL DE CONEXIÓN</td>
<td></td>
<td>TUNEL DE CONEXIÓN</td>
<td>ROBERTO ORDENES</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>LIMPIEZA y MUELISTACIÓN DE TERRENOS</td>
<td>1° SUBTENEDOR (entre 4 pisos)</td>
<td>LIMPIEZA y MUELISTACIÓN DE TERRENOS</td>
<td>ROBERTO ORDENES</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>EMPLANTILLADO FUNDACIONES</td>
<td></td>
<td>EMPLANTILLADO FUNDACIONES</td>
<td>MS</td>
<td>1135 Kg</td>
<td>100%</td>
</tr>
<tr>
<td>HORMIGÓN FUNDACIONES</td>
<td></td>
<td>HORMIGÓN FUNDACIONES</td>
<td>ROBERTO ORDENES</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>OTROS</td>
<td></td>
<td>OTROS</td>
<td>ROBERTO ORDENES</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

135