OPTIMIZACIÓN DE TAREAS Y EQUIPOS EN LÍNEAS PRODUCTIVAS DURANTE UN CAMBIO DE FORMATO: IMPLEMENTACIÓN DE HERRAMIENTA SMED.

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL MECÁNICO
JAVIER ANDRÉS REBOLLEDO ARAYA

PROFESOR GUÍA:
FERNANDO BAEZA ITURRIETA

MIEMBROS DE LA COMISIÓN:
CANEK JACKSON DE CASTRO
FERNANDO ORDOÑEZ PIZARRO

SANTIAGO DE CHILE
ENERO 2010
OPTIMIZACIÓN DE TAREAS Y EQUIPOS EN LÍNEAS PRODUCTIVAS DURANTE UN CAMBIO DE FORMATO: IMPLEMENTACIÓN DE HERRAMIENTA SMED.

Hoy en día las empresas se ven inmersas en un mercado totalmente exigente, en especial las del tipo manufacturero. El cliente demanda constantemente que el producto sea de altísima calidad y entregado a tiempo, lo que pone a prueba la capacidad de flexibilización de la empresa.

El trabajo de título presentado a continuación tiene lugar en la empresa CMPC Tissue S.A, encargada fabricar y comercializar productos tissue (papeles higiénicos, toallas de cocina, servilletas y pañuelos de papel) en Chile y el extranjero. La planta de Talagante consta de un área de fabricación que abastece a dos áreas de producción: Conversión Doblados y Conversión Rollos. Una gran variedad de productos son fabricados en las 5 líneas de producción de Conversión Rollos. Para poder lograr esto, cada línea debe ser modificada físicamente cuando un cambio de producto o formato se presenta, paralizando la producción de ésta.

El trabajo desarrollado está enfocado a disminuir el tiempo improductivo asociado a un cambio de formato. Para ello, la empresa ha decidido implementar una herramienta conocida como SMED (Single Minute Exchange of Die). Este concepto introduce la idea de que en general, cualquier cambio de máquina o inicialización de proceso debería durar no más de 10 minutos. El propósito, como estrategia de planta, es que mediante esta implementación, el tiempo que toma realizar un cambio no demore más de 30 minutos para el departamento de Conversión Rollos. Con esto se busca flexibilizar la producción de la empresa, realizando un mayor número de cambios sin que esto afecte la eficiencia de las líneas.

Tras la primera implementación de SMED en la empaquetadora de la línea 200, se observó una notoria disminución en la duración de los cambios en dicho equipo. En varias ocasiones se logró bajar la barrera de los 30 minutos propuesta por la empresa, lo que propone un auspicioso futuro para el resto de las implementaciones en Conversión Rollos. Además, se comprobó que el aprendizaje obtenido tras la aplicación de la herramienta en la línea 200, sirvió para lograr una segunda implementación en la L160, mucho más rápida que la primera, alcanzando resultados igualmente satisfactorios.

Los resultados obtenidos permitieron la estandarización de la implementación de SMED, definiendo las actividades a realizar y los responsables de llevarlas a cabo.
Agradecimientos

Son muchas las personas que me gustaría citar ahora, pero me quedaré con las más trascendentales, con aquellas que fueron parte importante de esta memoria, y aquellas que lo son en mi vida.

En primer lugar quisiera agradecer a mis padres, Ricardo y Loreto. Por el apoyo incondicional que me han brindado a lo largo de toda mi vida. A mi hermana, la Sole, que más que una hermana la considero una amiga en quien puedo confiar, se que cuento con ella siempre. A la Maca, mi polola, quien ha sido un pilar fundamental en estos últimos años, estando a mi lado siempre, en las buenas y en las malas entregándome todo su amor.

También doy gracias a mis tíos Lucho y Jessica por acogerme en su casa como un hijo mas mientras yo estaba en la U. A mis tatas Lucho y Pedro, a mis abuelitas que ya partieron, Adriana y Fany, porque cada uno de ustedes me entregó su cariño y experiencia de una manera distinta.

No puedo dejar de agradecerle a mis grandes amigos, los de siempre, con los que crecí jugando en Laja y que hasta el día de hoy siguen estando a mi lado. A los nuevos amigos que aparecieron en la universidad, quienes hicieron mi estadía en Santiago mucho más agradable.

Finalmente, doy las gracias a los profesores que integran mi comisión, por la disposición y sabiduría que siempre me brindaron. A todos mis compañeros del departamento de Conversión Rollos de la CMPC Tissue, lugar donde realicé este trabajo, gracias por la ayuda y los consejos entregados, más que compañeros de trabajo los considero mis amigos

Agradezco y dedico este trabajo a todos ustedes, gracias...totales.
Índice General

ÍNDICE GENERAL...I

ÍNDICE DE FIGURAS..IV

ÍNDICE DE TABLAS...VI

ÍNDICE DE ANEXOS...VII

1. INTRODUCCIÓN..1
 1.1. Objetivo General ..2
 1.2. Objetivos Específicos..2
 1.3. Alcances ..2
 1.4. Metodología ..3

2. ANTECEDENTES ..5
 2.1. Introducción ..5
 2.2. Proceso Productivo de la Empresa ..6
 2.3. Conversión Rollos ...7
 2.3.1. Líneas de Producción ..10
 2.3.2. Empaquetadora CMW 425 ...13
 2.3.3. Empaquetadora MW-42 Evolution ...15
 2.4. Cambios de Producto y Formato ...16
 2.5. SMED ..18
 2.6. TPM ..20
 2.6.1. Mantenimiento Autónomo ...22
 2.6.2. Condición Básica ...24
2.7. Sistema de Manejo Diario o DMS .. 25

3. PRIMERA IMPLEMENTACIÓN ... 27

3.1. Introducción .. 27

3.2. Fase Previa ... 28
 3.2.1. Selección de Equipo .. 28
 3.2.2. Selección de la Línea ... 30

3.3. Implementación ... 32
 3.3.1. Filmación de un Cambio ... 32
 3.3.2. Definición de Actividades ... 33
 3.3.3. Carta Gantt ... 33
 3.3.4. Capacitaciones ... 34

3.5. Complemento .. 34

4. SEGUNDA IMPLEMENTACIÓN .. 35

4.1. Introducción .. 35

4.2. Fase Previa ... 36
 4.2.1. Selección de Línea .. 36

4.3. Implementación ... 38
 4.3.1. Filmación de un Cambio ... 38
 4.3.2. Definición de Actividades ... 39
 4.3.3. Carta Gantt ... 39

5. RESULTADOS ... 40

5.1. Introducción .. 40

5.2. Resultados de la Primera Implementación ... 41
 5.2.1. Evolución de la Duración por Cambio ... 41
 5.2.2. Ganancia de Producción .. 43
 5.2.3. Índice de Flexibilidad ... 45
 5.2.4. Rechazo de Papel Asociado a un Cambio ... 46
 5.2.5. Eficiencia de Producción ... 47
 5.2.6. Carta Gantt de un Cambio en CMW-425 ... 48

5.3. Resultados de la Segunda Implementación ... 49
 5.3.1. Evolución de la Duración por Cambio ... 49
 5.3.2. Ganancia de Producción .. 49
 5.3.3. Rechazo de Papel Asociado a un Cambio ... 50
 5.3.4. Carta Gantt de un Cambio en MW 42 Evolution ... 51
Índice de Figuras

Figura 1. Esquema del proceso productivo de la planta... 6
Figura 2. Layout del departamento de Conversión Rollos... 8
Figura 3. Layout de una línea de producción.. 11
Figura 4. Empaquetadora CMW-425. ... 13
Figura 5. Esquema del ciclo operativo de Empaquetadora CMW 425. .. 14
Figura 6. Empaquetadora MW-42 Evolution... 15
Figura 7. Algunas configuraciones posibles de empaquetado.. 17
Figura 8. Etapas de SMED. ... 19
Figura 9. Descripción de un proceso.. 25
Figura 10. Análisis de pareto entre la cantidad de cambios y los tipos de cambios durante el período Octubre 2008 – Marzo 2009... 28
Figura 11. Análisis de pareto entre las duraciones acumuladas de los cambios vs los tipos de cambios durante el periodo Octubre 2008 - Marzo 2009... 29
Figura 12. Tendencia de los IPECF por tipo de cambio durante el periodo Octubre 2008 - Marzo 2009... 30
Figura 13. PEM promedio por línea durante Octubre 2008 - Marzo 2009, desglosada en función de los tipos de cambio. .. 31
Figura 14. PEM promedio por línea, asociada a los cambios tipo1 durante Octubre 2008 - Marzo 2009... 31
Figura 15. Capturas de la filmación de cambio de formato en empaquetadora CMW-425........... 32
Figura 16. PEM promedio por línea durante Junio – Julio de 2009, desglosada en función de los tipos de cambio. ... 36
Figura 17. PEM promedio por línea asociada a los cambios tipo 1 durante Junio – Julio de 2009... 37
Figura 18. Layout de la L160. ... 37
Figura 19. Capturas de la filmación de cambio de formato en empaquetadora MW-42.............. 38
Figura 20. Evolución de las duraciones promedio por cambio en la L200. 41
Figura 21. Evolución de las duraciones por cambio tipo 1, cambios en la
empaquetadora de la L200... 42
Figura 22. Evolución de las duraciones por cambio tipo 2, cambios en la bobinadora
de la L200. .. 43
Figura 23. Ganancia de tiempo tras implementación de SMED en la L200. 44
Figura 24. GP en toneladas tras la implementación de SMED en la L200. 44
Figura 25. Número de cambios realizados en la L200, desglosados por tipo de cambio...... 45
Figura 26. Índice de Flexibilidad para los cambios tipo 1 en la L200. 46
Figura 27. Eficiencia mensual de la L200. .. 47
Figura 28. Evolución de las duraciones por cambio tipo 1, cambios en la
empaquetadora de la L160.. 49
Figura 29. Ganancia de tiempo tras implementación de SMED en la L160. 50
Figura 30. Contador Numérico... 53
Figura 31. Manivela de Contador Numérico.. 53
Figura 32. DMS general de SMED. .. 54
Figura 33. Sub-Procesos del Proceso “Determinar Prioridades”. .. 55
Figura 34. Sub-Procesos del Proceso "Implementación". .. 56
Figura 35. Primera sección del DMS general de SMED... 59
Figura 36. Distinción de PIC y sub-procesos en el DMS de SMED................................. 60
Figura 37. Revisión del DMS general de SMED... 60
Índice de Tablas

Tabla 1. Características generales de la empaquetadora CMW-425. ... 15
Tabla 2. Características generales de la empaquetadora MW-42 Evolution. 16
Tabla 3. Etapas del Mantenimiento Autónomo en el departamento de Conversión Rollos. 23
Tabla 4. Ganancia de producción. .. 45
Tabla 5. Rechazo de papel asociado a un cambio de formato en la L200, antes y después de SMED. ... 47
Tabla 6. Carta Gantt de un cambio en la empaquetadora CMW 425. .. 48
Tabla 7. GP por cambio tras la implementación de SMED en la L200. 50
Tabla 8. Rechazo de papel asociado a un cambio de formato en la L160, antes y después de SMED. ... 50
Tabla 9. Carta Gantt de un cambio en la empaquetadora MW 42 Evolution. 51
Índice de Anexos

Apéndice A. Planilla de Inspección Diaria. ... 63
Apéndice B. Planilla de Inspección Semanal. ... 64
Apéndice C. Planilla de Inspección Mensual. .. 65
Apéndice D. Listado de actividades realizadas durante un cambio en empaquetadora CMW-425. ... 66
Apéndice E. OPL desarrolladas para un cambio de plegador en la empaquetadora CMW-425. ... 72
Apéndice F. Tríptico de la metodología SMED. ... 73
Apéndice G. Registro de evaluaciones. ... 75
Apéndice H. Carta Gantt de un cambio de formato en la ensacadora CMB 150 76
Apéndice I. Identificación de piezas de formato. .. 77
Apéndice J. Check List de Inicio en Empaquetadora CMW-425. 78
Apéndice K. Check List de Pre-Paro en Empaquetadora CMW-425. 79
Apéndice L. Planilla de Incidencias en Empaquetadora CMW-425. 80
Capítulo 1

1. Introducción

Este documento tiene como finalidad presentar el trabajo de título desarrollado en la empresa CMPC Tissue S.A. Talagante, particularmente en el departamento de Conversión Rollos. El profesor guía es el Sr. Fernando Baeza I, profesor de Resistencia de Materiales de la Universidad de Chile, quien a su vez desempeña el cargo de Ingeniero de Procesos en dicho departamento.

El trabajo está enfocado a optimizar el tiempo que demora un cambio de formato (o producto) en las distintas líneas de producción de Conversión Rollos. Mensualmente, las 5 líneas productivas que conforman la totalidad de la sección, son sometidas a un número determinado de cambios de formato, de acuerdo a la demanda del mercado. Estos cambios se traducen en un tiempo improductivo, ya que para realizarlos, es necesario parar en forma parcial o total (dependiendo el tipo de cambio) la línea.

Con el fin de reducir los tiempos a un máximo de 30 minutos por cambio, nace la necesidad de implementar una herramienta conocida como SMED (Single Minute Exchange of Die). Este concepto introduce la idea de que en general, cualquier cambio de máquina o inicialización de proceso debería durar no más de 10 minutos, de ahí la frase single minute (expresar los minutos en un solo dígito).

Mediante un criterio de selección, se establecieron los equipos prioritarios para realizar la las primeras implementaciones en el departamento. De esta manera, se aplicó la herramienta en 2 equipos de líneas diferentes, proyectando su futura implementación al resto de las líneas de Conversión Rollos.

Finalmente, se estableció una estandarización de la implementación de SMED, definiendo los procedimientos a seguir y los responsables de realizarlos. Con esto, se pretende sentar precedente para la implementación de SMED en otros procesos productivos, tanto de la empresa como fuera de esta.
1.1. Objetivo General

El objetivo general de este trabajo consiste en desarrollar una estandarización de la implementación de SMED dentro de un proceso de producción continuo. Esto apunta a que la herramienta pueda ser utilizada de manera permanente en todo el departamento de Conversión Rollos, dejando abierta la posibilidad de ser utilizada en otros procesos productivos.

1.2. Objetivos Específicos

Para poder cumplir con el objetivo general de este trabajo, se plantean los siguientes objetivos específicos.

- Implementar SMED en un equipo de una de las líneas de la planta como implementación primaria.
- Establecer criterios de análisis y puntos comparativos para los resultados obtenidos tras la implementación.
- Analizar los resultados y obtener el aprendizaje para la aplicación de la herramienta en el resto de la planta.
- Una vez validados los resultados y adquirido el aprendizaje, continuar con la implementación de SMED en el siguiente equipo seleccionado.
- Generar un procedimiento paso a paso de la metodología utilizada para la implementación, estableciendo responsables y responsabilidades.

1.3. Alcances

Los objetivos de este trabajo de título están directamente relacionados con la estrategia planteada por la empresa que busca disminuir el tiempo improductivo asociado a un cambio de formato y aumentar el número de cambios mensuales, permitiendo una flexibilización en la producción en base a las necesidades del mercado. Además, se espera que la implementación de SMED sea parte de una serie de factores que aportan en el aumento de la eficiencia, donde el objetivo es alcanzar una eficiencia mayor o igual a 85% para fines del 2011.
1.4. Metodología

El presente trabajo se desarrolla en base a un concepto conocido como “Mejora Enfocada”, el cual forma parte de los pilares fundamentales del modelo TPM\(^1\). La metodología a seguir está inspirada en los 7 pasos que componen la estructura de dicho concepto. Estos pasos se pueden agrupar en 4 categorías; Planear, Hacer, Verificar y Actuar.

PLANEAR

Paso 1: Selección de la oportunidad de mejora, definir el problema.

a) Recolectar la información necesaria para familiarizarse con el proceso.

b) Definir el problema en términos de lo que es y lo que debería ser, documentando el por qué es necesaria la implementación de SMED.

c) Establecer cuáles serán los datos de partida contra los cuales la mejora pueda ser medida.

Paso 2: Estudiar la situación actual.

a) Recolectar datos iniciales utilizando gráficas que provean ayuda visual de la situación actual.

b) Analizar la situación inicial en cuanto a las variables que pueda tener influencia el problema a solucionar.

Paso 3: Análisis de las causas potenciales del problema.

a) Utilizando los datos recolectados en la sección anterior, determinar las causas potenciales de las condiciones actuales.

b) Una vez determinadas las causas, ver cuáles son los efectos que cada tienen en la producción.

Paso 4: Establecer metas.

a) Establecer las metas a las cuales se apunta con la implementación de SMED.

b) Definir la forma de ataque que se necesita para lograr las metas planteadas.

\(^1\) Ver punto 2.6, TPM.
HACER

Paso 5: Implementar.

a) Realizar una implementación piloto de SMED para validar la herramienta.

b) Una vez validados los resultados, continuar con la implementación.

VERIFICAR

Paso 6: Verificar los resultados obtenidos.

a) Determinar los resultados obtenidos con la implementación de SMED. Registrando las diferencias entre la situación inicial y la final.

ACTUAR

Paso 7: Estandarizar la implementación de SMED, establecer acciones de garantía.

a) Desarrollar una estrategia de estandarización de SMED, asignando responsabilidades.

b) Reconocer las mejoras obtenidas tras toda la implementación, difundiendo los resultados obtenidos.

Este último paso sirve para dar pie a que otras áreas productivas de la empresa puedan llevar a cabo la implementación de SMED, propiciando que la mejora continúe y se establezca permanentemente.
Capítulo 2

2. Antecedentes

2.1. Introducción

En este punto se presenta una visión general del proceso productivo de la planta, particularmente del departamento de Conversión Rollos, con sus 5 líneas productivas y los equipos que la componen. Dentro de estos, se describen los equipos en los que se realizará la implementación. Además, se define el concepto de “cambio de formato y/o producto”, esto con el fin de agrupar y clasificar la gran variedad de cambios presentes en las líneas.

Luego de presentar los antecedentes relacionados a la empresa, continua una completa descripción de lo que la herramienta SMED involucra. Esto incluye la clasificación de los tipos de ajustes y las distintas etapas presentes en la implementación. Junto con esto, se describe la metodología japonesa conocida como “Mantenimiento Productivo Total” o “TPM”, ya que existe una gran relación entre SMED y dicha metodología. Además, el desarrollo del presente trabajo se basa en uno de los pilares fundamentales del TPM, la Mejora Enfocada.

Finalmente, se describe la metodología utilizada como herramienta de estandarización, sistema conocido como DMS o Sistema de Manejo Diario.

Estos antecedentes están enfocados a la necesidad de implementar SMED, buscando reducir los niveles de indisponibilidad asociados a los cambios, aumentar la flexibilidad y mejorar la eficiencia que a comienzos del 2009 era de un 74% promedio en el departamento de Conversión Rollos.
2.2. Proceso Productivo de la Empresa

La empresa CMPC Tissue Talagante ha producido en los últimos 2 años cerca de 64.000 [ton/año] promedio en diversos productos y marcas, con una gran participación en el mercado nacional e internacional. Para lograr esto, la empresa posee 3 grandes áreas productivas; Departamento de Fabricación, Departamento de Conversión Doblados y Departamento de Conversión Rollos, como se aprecia en el siguiente esquema del proceso productivo:

![Esquema del proceso productivo de la planta.](image)

El proceso productivo, como se aprecia en la figura 1, se inicia en el departamento de Fabricación, compuesto por 2 máquinas papeleras encargadas de fabricar los jumbos\(^2\). Posteriormente, estos son almacenados en bodega de jumbos y distribuidos hacia los departamentos de Conversión Rollos y Conversión Doblados, donde son utilizados como input de producción. Como sus nombres lo indican, ambos departamentos son los encargados de fabricar los productos tissue en formato de rollos (higienicos y toallas de cocina) y doblados (servilletas, pañuelos, faciales, etc.) respectivamente. Una vez que el producto está terminado, es trasladado hacia las diferentes bodegas de almacenamiento y finalmente despachado.

En el próximo punto se describe en detalle el departamento de Conversión Rollos, lugar donde se llevó a cabo el presente trabajo.

\(^2\) Jumbo: Subproducto de papel rebobinado en rollos de grandes dimensiones. Por lo general, su peso es del orden de 2,2 [ton], bordean los 2 [m] de diámetro y 2,73 [m] de longitud.
2.3. Conversión Rollos

Como se mencionó anteriormente, en este departamento se fabrican productos tissue en formato de rollos. Para ello cuenta con una serie de equipos y líneas productivas que en conjunto elaboraron cerca de 52.000 [ton] de producción durante el 2008. Alrededor de un 74% de los productos terminados en CMPC Tissue Talagante provienen de este departamento, lo que grafica la importancia que tiene Conversión Rollos dentro de la empresa.

En la siguiente figura se presenta un layout con la totalidad de los elementos que componen el departamento, además de la distribución espacial de estos.
Figura 2. Layout del departamento de Conversión Rollos.
Cada uno de los equipos que aparecen en la figura 2 cumple un papel fundamental dentro del proceso productivo del departamento. A continuación se presenta una breve descripción del rol de cada uno de ellos.

- **Sliter 1**: Este equipo se encarga de imprimir el diseño que tendrá el producto final, principalmente del Confort Kids y Toallas de Cocina. Aquí los jumbos provenientes de Fabricación son desenrollados, impresos y finalmente vueltos a rebobinar. Además de esto, los jumbos destinados al departamento de Conversión Dobladados son cortados en este equipo, ya que dicho departamento no es capaz de procesar jumbos de gran tamaño.

- **Sliter 2**: Este equipo cumple una función similar al anterior, cortando los jumbos que son destinados al departamento de Conversión Dobladados, con la diferencia de que no es posible imprimir diseños como en la Sliter 1.

- **Acelli**: Equipo recientemente adquirido, se encarga de duplicar\(^3\) el papel que tendrá el producto. Acá se pueden recibir hasta 2 jumbos como input, los que son desenrollados y rebobinados en 1, 2 o 3 capas según las características del producto a fabricar, obteniendo un solo jumbo como output. Posteriormente es cortado, al igual que en la Sliter 2, y destinado al departamento de Conversión Dobladados.

- **Líneas de Producción\(^4\)**: Es aquí donde se fabrican la mayoría de los productos del departamento, siendo al sector más productivo de Conversión Rollos. Además, como lo muestra el layout de la figura 2, las líneas se encuentran distribuidas a lo largo de todo el departamento.

- **Perini**: Este equipo se encarga de fabricar productos tissue en formato de rollos para uso industrial. Si bien es considerada una línea de producción, debido a su bajo volumen de producción, poca automatización y tamaño reducido, no se incluye en la definición anterior.

- **Enfardadora**: Como su nombre lo indica, este equipo se encarga de enfardar el recorte\(^5\) generado por la Sliter 1, Sliter 2, Acelli, Perini y las líneas de producción. Estos fardos son llevados al patio de materias primas, para luego ser reciclados y reutilizados por el departamento de Fabricación como materia prima.

\(^3\) Duplicar: Corresponde al proceso de establecer si el producto será de 1 hoja, doble hoja o triple hoja.

\(^4\) Descripción detallada en punto 2.3.1.

\(^5\) Recorte: Desechos de papel generados durante un proceso productivo.
2.3.1. Líneas de Producción

Las líneas productivas que actualmente operan en Conversión Rollos son 5: línea 140 (L140), línea 160 (L160), línea 170 (L170), línea 200 (L200) y línea 210 (L210). Entre las 5 se encargan de procesar los jumbos (input) provenientes de las maquinas papeleras y convertirlos en el producto final (output).

A medida que se avanza aguas abajo en el proceso productivo de la línea el producto va tomando su forma final. Se van estableciendo las características del tamaño, diseño, textura, aroma, etc. Es por esto que, cuando se cambia de un producto a otro, se deben realizar modificaciones que permitan definir las características del nuevo producto. Estos cambios pueden llevarse a cabo sobre un solo equipo, o bien, sobre varios equipos. En la figura 3 se presenta el layout de una línea de producción, detallando los equipos involucrados y la ubicación de estos. Cabe destacar que el esquema es muy similar para las 5 líneas, por lo cual, lo que la figura 3 representa es el layout de una línea genérica.
Figura 3. Layout de una línea de producción.
A continuación se hace una breve descripción del rol que cumplen los equipos presentados en el layout de la figura 3.

- **Desenrolladores**: Estos equipos son los encargados de iniciar el proceso productivo en cada línea. Acá se reciben los jumbos y posteriormenete son desenrollados, de manera tal que el papel circule por los siguientes equipos. Las 5 líneas de producción poseen 2 desenrolladores, siendo capaz de procesar 2 jumbos simultáneamente duplicando el papel cuando un producto lo requiera.

- **Unidades de Gofrado y Laminado**: Tras ser desenrollado, el papel pasa por la Unidad de Gofrado, donde mediante rodillos gofradores, se estampa a presión el diseño y textura que tendrá el papel. Posteriormente la Unidad de Laminado se encarga pegar con adhesivo las capas que tendrá el producto (una, doble o triple hoja).

- **Tubera**: Paralelo a lo que ocurre en los equipos ya descritos, se encuentra la Tubera que se encargada de fabricar los tubetes⁶ utilizados para rebobinar el papel que sale de la unidad de gofrado.

- **Rebobinadora**: Una vez definidas las capas, diseño y textura que tendrá el papel, éste es vuelto a enrollar en la Rebobinadora. Acá se establece la compacidad y el diámetro final que tendrá el producto. El rollo que se obtiene en la rebobinadora se conoce como Log⁷.

- **Sellador**: Este equipo, también conocido como Sellador de Coleto, cumple la función de sellar la última hoja del Log. Con esto se evita que el rollo se desarme, perdiendo su compacidad y diámetro aguas arriba.

- **Acumulador**: Su función principal es la de disminuir las diferencias entre las velocidades de operación de los equipos que se ubican antes y después de éste. El Log proveniente del sellador es acumulado en una matriz de receptáculos, estos se desplazan de manera ascendente y descendente hacia la cortadora. De esta manera, se asegura que el proceso productivo de la línea se torne completamente continuo.

- **Cortadora**: Como su nombre lo indica, este equipo cumple la función de cortar el log, obteniéndose rollos con las dimensiones que tendrá el producto final.

- **Empaquetadora⁸**: Una vez obtenidos los rollos, éstos deben ser envueltos en paquetes de diferentes formatos⁹ donde se indiquen las características del producto. Generalmente este es el producto que se encuentra en los puntos de venta.

- **Ensacadora**: Este equipo se encarga de envolver en polietileno un número determinado de paquetes, los sacos obtenidos son llamados bultos. Dependiendo el tamaño del paquete, se define la cantidad de estos que habrá en cada bulto. Esto se realiza con el fin de facilitar el posterior traslado y distribución del producto terminado.

6 Tubetes: Tubos de cartón que van en el interior de un rollo de papel.
7 Log: Rollo de papel con el largo de un jumbo pero con el diámetro del producto final.
8 Este equipo se describe en detalle en los puntos 2.3.2 y 2.3.3.
9 Ver punto 2.4, Cambios de Producto y Formato.
• **Robot:** Este equipo es el último del proceso productivo en cada línea. Consiste en un brazo robótico que apila los bultos en tarimas\(^\text{10}\), facilitando el traslado a bodega y su posterior distribución al mercado.

2.3.2. Empaquetadora CMW 425

Dentro de los equipos que se aprecian en la figura 3, la empaquetadora CMW 425 de la línea 200 juega un rol muy importante, ya que fue escogida\(^\text{11}\) como equipo piloto para la primera implementación de SMED.

![Figura 4. Empaquetadora CMW-425.](image)

La empaquetadora CMW 425 es una máquina automática cuyo fin es envolver los rollos de papel mediante una película de polietileno desenrollada por una bobina. El equipo está compuesto por partes mecánicas, neumáticas, eléctricas, comandadas por un procesador de control de funciones y accionada por diferentes servomotores. La tipología de empaquetado de la máquina comprende una vasta gama de formatos, en función del tipo de producto definido aguas arriba.

El ciclo operativo de la empaquetadora describe el funcionamiento del equipo, partiendo desde la llegada del producto proveniente de la cortadora, hasta concluir con el empaquetado de éste. En la figura 5 se muestra el ciclo operativo de la CMW-425.

\(^{10}\) Tarimas: Conjunto de bultos apilados sobre bases de madera.

\(^{11}\) Ver punto 3.2.1, Selección de Equipo.
La bobina 1 suministra el polietileno del empaquetado.

El polietileno es arrastrado por los rodillos desenrolladores 2 y cortado a la medida por las guillotinas 3.

El producto proveniente de la cortadora entra a la correa de alimentación 4 que lo transporta al grupo de lanzadores 5.

El grupo de lanzadores distancia los productos en función de la configuración a ser efectuada en el grupo de arrastre 6 que los estratifica y los transporta al elevador.

El plato elevador 7 levanta el producto para poder ser envuelto por el polietileno en forma de “U” que se encuentra en las paredes de la tolva.

El plegador móvil 8 efectúa el doblado posterior del polietileno formando un “tubo”.

El producto es trasladado por el trineo de arrastre 9 donde la batería de plegadores 10 termina el doblado lateral del polietileno.

El sellador de fondo 11 efectúa el sellado en caliente del polietileno transversalmente.

Las bandas de sellado 12 efectúan el sellado en caliente de las tapas laterales del polietileno.
La siguiente tabla presenta algunas de las especificaciones técnicas más relevantes de la empaquetadora CMW-425:

<table>
<thead>
<tr>
<th>CARACTERÍSTICAS GENERALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funcionamiento:</td>
</tr>
<tr>
<td>Velocidad máx. Mecánica:</td>
</tr>
<tr>
<td>Consumo de aire comprimido:</td>
</tr>
<tr>
<td>Altura alimentación de rollos:</td>
</tr>
<tr>
<td>Altura salida de paquete:</td>
</tr>
<tr>
<td>Masa:</td>
</tr>
<tr>
<td>Presión de servicio de aire comprimido:</td>
</tr>
<tr>
<td>Potencia instalada:</td>
</tr>
</tbody>
</table>

Tabla 1. Características generales de la empaquetadora CMW-425.

2.3.3. Empaquetadora MW-42 Evolution

Este equipo corresponde a una de las 2 empaquetadoras presentes en la L160 y forma parte de la segunda implementación\(^{12}\) de SMED en Conversión Rollos.

\(^{12}\) Ver el punto 4, Segunda Implementación.

Figura 6. Empaquetadora MW-42 Evolution.
La empaquetadora MW-42 Evolution cumple la misma función que la CMW-425 descrita anteriormente, envolver los rollos de papel mediante una película de polietileno. Además, poseen el mismo ciclo operativo\(^{13}\) y componentes muy similares. Una de las principales diferencias con la de la L200 es que la de la L160 corresponde a un modelo más antiguo, siendo un equipo semi-automático. Esto se debe a que, si bien su accionamiento incluye servomotores, también participan motores y motorreductores de CC dentro de éste, lo que hace que algunas operaciones sean menos automatizadas y con cierta dificultad de regulación.

La tabla 2 presenta algunas de las especificaciones técnicas más relevantes de la MW-42 Evolution. En ella se puede apreciar que sus características son muy similares\(^{14}\) a la CMW-425 de la L200.

<table>
<thead>
<tr>
<th>CARACTERÍSTICAS GENERALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funcionamiento:</td>
</tr>
<tr>
<td>Velocidad máx. Mecánica:</td>
</tr>
<tr>
<td>Consumo de aire comprimido:</td>
</tr>
<tr>
<td>Altura alimentación de rollos:</td>
</tr>
<tr>
<td>Altura salida de paquete:</td>
</tr>
<tr>
<td>Masa:</td>
</tr>
<tr>
<td>Presión de servicio de aire comprimido:</td>
</tr>
<tr>
<td>Potencia instalada:</td>
</tr>
</tbody>
</table>

Tabla 2. Características generales de la empaquetadora MW-42 Evolution.

2.4. Cambios de Producto y Formato

El proceso productivo de Conversión Rollos involucra una gran cantidad de cambios de producto (o formato) con el fin de cumplir con la demanda del mercado. Cada una de las 5 líneas presenta una cantidad variable de cambios mensuales, cambios que se traducen en una detención completa de los equipos involucrados.

Debido a la amplia gama de cambios posibles, se realizó una clasificación de éstos con el fin de facilitar el análisis. La clasificación se basa principalmente en establecer el equipo “cuello de botella” del cambio y determinar si se trata de un cambio de producto o de formato.

\(^{13}\) Ver figura 5, Esquema del ciclo operativo de Empaquetadora CMW 425.
\(^{14}\) Ver tabla 1, Características generales de la empaquetadora CMW-425.
En base a lo anterior, los tipos de cambio presentes en las 5 líneas de producción son los siguientes:

- **Cambios Tipo 0**: Corresponden a aquellos cambios de fabricación en que solo se ven involucradas modificaciones en insumo y no es necesario realizar modificaciones en los equipos.

- **Cambios Tipo 1**: Corresponde a aquellos cambios en que se mantiene el producto pero solo se altera el formato de este. Existen diversas configuraciones para un mismo producto, el equipo encargado de realizarlas es la empaquetadora. Por esta razón, dicho equipo se transforma en el “cuello de botella” de la línea cuando se presenta un cambio de este tipo. La figura 7 representa algunas de las configuraciones posibles.

![Figura 7. Algunas configuraciones posibles de empaquetado.](image)

- **Cambios Tipo 2**: Son aquellos en que se cambia de un producto a otro totalmente diferente. Acá se modifican parámetros y características básicas del producto, siendo el “cuello de botella” la bobinadora. Se le llama bobinadora al conjunto de equipos que operan agua arriba del sellador.

En general, los cambios quedan definidos según las modificaciones que sufren 2 de los equipos principales de la línea de producción; la bobinadora y la empaquetadora. Con este tipo de clasificación, es posible detectar cual equipo posee una mayor cantidad de cambios, o bien, cual posee una mayor pérdida de eficiencia mensual asociada a un cambio.

15 Ver figura 3, Layout de equipos en una línea de producción.
2.5. SMED

Se le atribuye la paternidad del concepto SMED (*Single Minute Exchange of Die*) a Shigeo Shingo, uno de los principales contribuyentes a la consolidación del sistema productivo de Toyota. Este concepto nace como una ramificación del modelo TPM\(^{16}\), apegándose a muchas de las ideas que este modelo plantea. SMED introduce la idea de que en general, cualquier cambio de máquina o inicialización de proceso debería durar no más de 10 minutos, de ahí la frase *single minute* (expresar los minutos en un solo dígito).

Con la implementación de esta herramienta se busca reducir, en un gran porcentaje, la indisponibilidad asociada a un cambio de formato. Se entiende por “indisponibilidad asociada a un cambio” al tiempo que transcurre desde la fabricación de la última pieza válida de una serie hasta la obtención de la primera pieza correcta de la serie siguiente, no únicamente el tiempo del cambio y ajustes físicos de la maquinaria.

Es posible identificar los ajustes en función del momento en que se realizan; de esta forma, se clasifican en 2 tipos:

- **Ajustes Internos**: Corresponde a operaciones que se realizan solamente con la máquina detenida, es decir, fuera de las horas de producción. Estos ajustes son la principal causa de retraso dentro de una paralización.

- **Ajustes Externos**: Corresponde a operaciones que se realizan (o pueden realizarse) con la máquina en marcha, o sea, durante el periodo de producción. La ventaja de estos ajustes es que se pueden hacer antes de parar la máquina, por lo que no se consideran como tiempo improductivo.

La implementación en sí consta de 4 etapas, las cuales permiten llegar a una reducción importante del tiempo de intervención. En la figura 8 se presentan dichas etapas, junto con las respectivas disminuciones de tiempo que se obtiene en cada una de ellas.

\(^{16}\) Ver punto 2.6 donde se describe el modelo TPM.
La cuadricula de color verde indica los tipos de actividades en cada fase, además de simbolizar el tiempo que toma pasar del producto A al producto B. Como se aprecia en la figura, SMED propone que al final de la cuarta etapa es posible alcanzar un valor cercano al 90% en la reducción del tiempo.

- **Fase Mixta:** En esta fase los ajustes externos e internos se encuentran mezclados, lo que podría hacerse externo se hace interno. Se deben estudiar en detalle las condiciones reales del sistema, definiendo las operaciones a realizar en el cambio.

- **Fase División:** Acá se deben distinguir los ajustes internos de los externos, dejando los externos para ser realizados sin la necesidad de detener la máquina.

- **Fase Transferencia:** El objetivo es transformar la mayor cantidad de ajustes internos en externos, por ejemplo; precalentamiento, premontaje, etc.

- **Fase Mejorada:** Su objetivo es reducir al mínimo los tiempos de cambio una vez separados los 2 tipos de ajustes, optimizando las tareas internas.

Figura 8. Etapas de SMED.
2.6. TPM

TPM o Mantenimiento Productivo Total es una metodología desarrollada en Japón para la eliminar pérdidas, reducción de paradas, garantizar la calidad y disminuir costos en empresas con procesos continuos. La sigla TPM fue registrada por el Instituto Japonés de Mantenimiento de Planta JIPM17.

Cada empresa puede darle distintas apreciaciones a los objetivos del TPM, dependiendo del propósito de la implementación. Estos objetivos pueden agruparse en 3 categorías:

- **Objetivos Estratégicos**: La metodología TPM busca construir capacidades competitivas desde las operaciones de la empresa, gracias a su contribución a la mejora de la efectividad de los sistemas productivos, flexibilidad y capacidad de respuesta, reducción de costos operativos y conservación del “conocimiento” industrial.

- **Objetivos Operativos**: El TPM tiene como propósito, en las acciones cotidianas, que los equipos operen sin fallas ni averías, eliminar toda clase de pérdidas, mejorar la fiabilidad de los equipos y fomentar el uso total de la capacidad industrial instalada.

- **Objetivos Organizativos**: El TPM busca fortalecer el trabajo en equipo, un incremento en la moral del trabajador, crear un espacio donde cada persona pueda dar lo mejor de sí. Todo esto, con el propósito de hacer del sitio de trabajo un entorno creativo, seguro, productivo y donde trabajar sea realmente grato.

Dentro de las características más importantes que rigen el modelo TPM destacan las siguientes:

- Acciones de mantenimiento en todas las etapas del ciclo de vida del equipo.

- Participación amplia de todas las personas de la organización.

- Es observado como una estrategia global de la empresa, en lugar de un sistema para mantener equipos.

- Orientado a la mejora global de las operaciones, en lugar de prestar atención solo a mantener los equipos funcionando.

- Procesos de mantenimiento fundamentados en la utilización profunda de los conocimientos que el personal posee sobre los procesos.

- Sugiere la utilización de pilares específicos para acciones concretas diversas, las cuales se deben implementar en forma gradual y progresiva.

17 Instituto creador del TPM, en la actualidad se dedican a compartir información y experiencias comunes a la industria por medio de consultorías y seminarios.
La estructura del TPM está compuesta por una serie de pilares fundamentales. Cada uno de estos tiene un propósito especial y sigue una metodología específica que se debe aplicar disciplinadamente. “Un pilar es una colección de acciones específicas que se deben desarrollar para lograr un propósito específico de mejora”.

Los 8 pilares fundamentales de la metodología TPM son los que se describen a continuación:

- **Mejora enfocada**: La mejora enfocada busca identificar y eliminar pérdidas en los procesos, examinando todos los recursos de entrada (inputs) del proceso de producción (equipos, materiales, personas y métodos). Cualquier deficiencia de los inputs mencionados se considera como pérdida.

- **Mantenimiento autónomo**: Busca que el operario se sensibilice con respecto al mantenimiento del equipo, lo conozca mejor, aumente su capacidad técnica, se responsabilice e involucre constantemente con él para optimizar sus condiciones de funcionamiento, hacer predecible su comportamiento y mejorar la seguridad del puesto de trabajo.

- **Mantenimiento planificado**: Abarca 3 formas de mantenimiento; el de averías, el preventivo y el predictivo. Este pilar involucra las acciones que los técnicos deben desarrollar para mejorar gradualmente la eficacia del sistema de mantenimiento.

- **Formación y adiestramiento**: Hace referencia a la formación de los empleados para lograr altos niveles de desempeño, fortaleciendo sus conocimientos, habilidades y capacidades de desempeño.

- **Gestión temprana de los equipos**: Busca desarrollar de forma rápida y económica, equipos fáciles de utilizar y productos fáciles de fabricar. Se apoya en la obtención de información acerca del comportamiento de los equipos con que se cuenta actualmente en la empresa y de las necesidades de cambio que presentan.

- **Mantenimiento de calidad**: Su propósito es fortalecer el sistema de aseguramiento de calidad, para producir desde el comienzo del proceso productivo con alta calidad, disminuyendo la variabilidad de las condiciones de los “componentes de calidad” del equipo que están relacionados directamente con cada una de las especificaciones de calidad del producto.

- **Actividades en departamentos administrativos y de apoyo**: Estas áreas cumplen un papel importante de soporte a la producción, gracias a que la información que brindan puede ser útil para evitar pérdidas de tiempo o incumplimientos de entrega.

- **Gestión de seguridad y entorno**: Este pilar tiene como propósito crear un sistema de gestión integral de seguridad para lograr “cero accidentes y cero contaminación”.

19 Descripción con mayor detalle del Mantenimiento Autónomo en el punto 2.6.1.
Contribuye significativamente a prevenir riesgos que podrían afectar la seguridad de las personas y efectos negativos al medio ambiente.

2.6.1. Mantenimiento Autónomo

El Mantenimiento Autónomo involucra una serie de actividades que conduzcan a mantener un equipo en las mejores condiciones de funcionamiento. Dentro de estas actividades destacan; la inspección, lubricación, limpieza, intervenciones menores, cambio de piezas, estudio de posibles mejoras, etc.

Los objetivos fundamentales a los que apunta el mantenimiento autónomo son los siguientes:

1. Emplear el equipo como instrumento para el aprendizaje y adquisición de conocimiento.
2. Desarrollar nuevas habilidades en los operadores.
3. Mediante una operación correcta y verificación permanente de acuerdo a los estándares, evitar el deterioro del equipo.
4. Mejorar el funcionamiento del equipo con el aporte creativo del operador.
5. Construir y mantener las condiciones necesarias para que el equipo funcione sin averías y con excelente rendimiento.
7. Lograr un total sentido de pertenencia y responsabilidad de los operadores.
8. Mejorar de la calidad en el trabajo.

Conversión Rollos se rige por una serie de etapas que periten llevar cabo el mantenimiento autónomo de los equipos dentro del departamento. La siguiente tabla muestra estas etapas con sus respectivas descripciones.
<table>
<thead>
<tr>
<th>Etapa</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limpieza</td>
<td>Busca eliminar suciedad, escapes, polvo, óxido o cualquier elemento externo al equipo.</td>
</tr>
<tr>
<td>Acciones Correctivas</td>
<td>Realizar acciones que permitan facilitar la inspección, mejorar el acceso a los sitios que requieren limpieza y control, evitar futuras averías, etc.</td>
</tr>
<tr>
<td>Crear Estándares de Inspección</td>
<td>Consiste en diseñar y aplicar estándares de MA para los procesos de limpieza, lubricación, apriete, etc. Una vez validados se establecen en forma definitiva.</td>
</tr>
<tr>
<td>Aprendizaje</td>
<td>Apunta a lograr el conocimiento del equipo mediante inspecciones, obtener un aprendizaje del MA por parte del operador, creando conciencia de la importancia del éste</td>
</tr>
<tr>
<td>Estandarización</td>
<td>Estandarización de los elementos a ser controlados.</td>
</tr>
<tr>
<td>Control</td>
<td>Consiste en utilizar tableros de gestión visual que contengan los indicadores de cumplimiento de inspecciones, gráficas comparativas, tareas pendientes, oportunidades de mejora, etc.</td>
</tr>
</tbody>
</table>

En el departamento de Conversión Rollos existe un “Líder de Mantenimiento Autónomo”, cuyo rol principal es el de capacitar, entrenar, habilitar a todo el personal formando un equipo de trabajo profesional que minimice las pérdidas de proceso, operación y gestión. Con esto se busca alcanzar y superar los objetivos propuestos a nivel de producción, calidad y seguridad, bajo un sistema de mejora continua.
2.6.2. Condición Básica

Como se mencionó en el punto anterior, el mantenimiento autónomo apunta a que los equipos se encuentren en su condición básica de funcionamiento. La condición básica corresponde a la mínima condición que debe tener un equipo para poder rendir de manera estable para lo cual fue diseñado.

Cualquier elemento mecánico, eléctrico o electrónico puede perder su condición básica a través del tiempo. Cuando se pierde la condición básica de los equipos se denomina deterioro, de los cuales existen 2 tipos:

- **Deterioro Normal**: Corresponde al deterioro causado por el fin de la vida útil del equipo o componente, establecido por diseño del fabricante.

- **Deterioro Forzado**: Corresponde al deterioro inducido por el hombre, causado por una operación incorrecta, un ajuste incorrecto, una mala lubricación del equipo, un mal plan de mantenimiento, etc.

Desde el comienzo del deterioro hasta cuando ocurre la falla, existe un tiempo que permite detectar el inconveniente mediante inspecciones y tomar acciones para mitigar los efectos de la falla. En el departamento de Conversión Rollos existe un riguroso plan de Condición Básica, mediante planillas de inspecciones es posible detectar cualquier componente fuera de estándar o con posibilidades de estarlo.

En base a lo anterior, se establecieron en el departamento 3 tipos de planillas de inspección de equipos:

- **Inspecciones Diarias**: Tienen por finalidad inspeccionar los componentes menores y más visibles del equipo (sensores, lubricación, barras, etc.). No requieren de mucho tiempo de inspección debido al bajo nivel de complejidad y acceso.

- **Inspecciones Semanales**: Son inspecciones que se realizan a componentes que poseen un cierto grado de complejidad (correas, poleas, engranajes, guías, etc.). Se requiere de un mayor tiempo de revisión que en las inspecciones diarias, esto debido a la dificultad para acceder a los componentes mencionados.

- **Inspecciones Mensuales**: Son aquellas que se aplican a los componentes de mayor complejidad y envergadura del equipo (motores, reductores, correas transportadoras, etc.). Son las que requieren de un mayor tiempo de inspección.

Es importante destacar que estas inspecciones se realizan durante todo el día, en los 3 turnos operacionales, siendo el operador del equipo el encargado de llevarlas a cabo. En los apéndices A, B y C, se pueden observar a modo de ejemplo, las 3 planillas de inspección de la empaquetadora MW-42 Evolution de la línea 160. Ahí se puede apreciar que las
inspecciones realizadas con menor frecuencia (semanal y mensual) son aquellas que poseen un mayor grado de complejidad, por lo que no basta con una inspección a simple vista sino que una revisión mucho más exhaustiva.

2.7. Sistema de Manejo Diario o DMS

Con el fin de lograr la estandarización, se utilizó un sistema conocido como “DMS” o “Daily Management System”, Sistema de Manejo Diario. El DMS es una herramienta que se utiliza cuando se requiere mantener o mejorar un resultado o una medida crítica. Mediante la estandarización de procesos, documentos, responsabilidades, es posible definir lo que cada departamento requiere para satisfacer sus necesidades, en este caso, la implementación de SMED.

En la mayoría de los casos, el DMS está compuesto en su estructura por 3 grandes bloques:

1) **DESCRIPCIÓN**: En este bloque se debe especificar claramente quien es el encargado de implementar la mejora, que equipo o procesos son los que se ven involucrados, cual fue la causa que llevó a buscar una mejora, con que indicadores se seguirán los resultados, cuales son los objetivos a los que se apunta con la mejora, etc.

2) **DIAGRAMA DE BLOQUE**: Mediante la utilización de diagramas de bloques se deben establecer, de principio a fin, todos los procesos que participan dentro de la implementación de la mejora. En un diagrama de bloque es posible encontrar:

- **Procesos**: Actividades que siguen cierta secuencia para transformar entradas (inputs) en salidas (outputs) como se ve a continuación:

| Materia prima de un proceso, puede ser el resultado de un proceso previo. | Procedimiento realizado para transformar los inputs en outputs. | Resultado obtenido tras el proceso, puede ser utilizado como input en un proceso posterior. |

![Figura 9. Descripción de un proceso.](image)

- **Subprocesos**: Reciben este nombre el conjunto de procesos que describen a un proceso en general.
• **Puntos Internos de Control PIC:** Los puntos internos de control cumplen la función de mantener un seguimiento de los output obtenidos al final de un proceso. Algunos de los PIC más comunes son; documentos, indicadores, gráficas, etc.

3) **REVISIONES PERIODICAS:** Cada DMS debe tener una sección de revisiones periódicas. Allí se debe especificar el número de revisión y la descripción de esta, además de quien y cuando se realizó. Con esto se busca mantener el DMS actualizado, de manera tal que si durante el transcurso del tiempo algún cambio en un proceso se presenta, este sea modificado también en el DMS.

Es muy importante que en el DMS se deje en claro quién o quiénes son los responsables de realizar cada proceso, los cuales se deben responsabilizar también por los outputs que estos generen.
Capítulo 3

3. Primera Implementación

3.1. Introducción

En este capítulo se detalla la primera implementación de SMED en el área de Conversión Rollos. Se abarcan temas que van desde la metodología utilizada para seleccionar la empaquetadora CMW 425 y la L200 como equipo y línea pilotos para la implementación hasta el desarrollo mismo de ésta. Además, como parte de un complemento, se presenta el avance realizado para la implementación de SMED en la ensacadora de la línea 200.

Los resultados que se obtuvieron tras la primera implementación serían vitales para la validación de la herramienta SMED. Es por esto que el desarrollo que aquí se presenta cobra una gran importancia para la posterior estandarización de la implementación.
3.2. Fase Previa

Antes de partir con la primera implementación de SMED, es necesario determinar el equipo a intervenir junto con la línea a la que pertenece. Con el fin de que la elección sea lo más representativa posible, se estableció un criterio de selección en base al historial de cambios en los meses previos a la implementación.

3.2.1. Selección de Equipo

En primer lugar, conocido el historial de cambios y sus respectivas duraciones, es posible realizar un análisis de pareto entre la cantidad de cambios y los tipos de cambios. Esto con el fin de determinar cuáles son los que se repiten con mayor frecuencia y que equipo es el principal involucrado. El análisis se realizó para el período comprendido entre Octubre del 2008 y Marzo del 2009, donde el resultado se observa en la siguiente gráfica.

![Análisis de pareto entre la cantidad de cambios y los tipos de cambios durante el período Octubre 2008 – Marzo 2009.](image)

Figura 10. Análisis de pareto entre la cantidad de cambios y los tipos de cambios durante el período Octubre 2008 – Marzo 2009.

En la figura 10 se puede observar que los cambios con que ocurren con mayor frecuencia son los tipo 1 y 2 respectivamente, siendo los primeros, los principales candidatos a ser escogidos representando poco más del 60% del total de los cambios realizados para el periodo descrito. Además, del gráfico se desprende de inmediato que los cambios tipo 0 no son representativos, por lo que no se consideran en el análisis.

En cuanto a la duración acumulada por los distintos tipos de cambios, se tiene el siguiente resultado para los 6 meses analizados.
Figura 11. Análisis de pareto entre las duraciones acumuladas de los cambios vs los tipos de cambios durante el periodo Octubre 2008 - Marzo 2009.

En la figura 11 se puede observar que los cambios tipo 2 y 1 son los que mayor duración acumulada tienen respectivamente, por lo que ahora, los cambios tipo 2 también pasan a ser candidatos potenciales para ser seleccionados para la implementación.

En cuanto a los cambios tipo 0, nuevamente son excluidos del análisis, ya que el acumulado no es comparable con los otros 2 tipos.

Es importante destacar que los cambios tipo 1 son aquellos en que el equipo CB corresponde a la empaquetadora, mientras que en los cambios tipo 2 el CB es la bobinadora. De esta forma, existen 2 equipos candidatos para implementar SMED. Para determinar cuál tipo de cambio escoger, se definió el “Índice de Pérdida de Eficiencia por Cambio de Formato” (IPECF) según tipo de cambio.

\[
IPECF_{ij} = \frac{T_{ij}}{N_{ij} \cdot 480}
\]

Donde \(T_{ij}\) corresponde a la duración acumulada en minutos de los cambios tipo \(i\) durante un período \(j\), \(N_{ij}\) es la cantidad de cambios tipo \(i\) realizados en \(j\) y \(n_j\) los turnos trabajados en \(j\). El valor 480 representa la cantidad de minutos que dura 1 turno (8 hrs).

Conceptualmente hablando, el IPECF representa la pérdida de eficiencia, para el período estudiado, que implica la realización de un solo cambio.

20 CB: Cuello de Botella.
Utilizando (1) y graficando el resultado en función de lo obtenido para los meses ya mencionados se tiene:

\[PEM = \frac{T}{n \cdot 480} \]

Donde T corresponde a la duración acumulada en cambios durante 1 mes, n es la cantidad de turnos trabajados en el mes y 480 son los minutos que dura 1 turno. De esta manera, se obtuvo el siguiente gráfico que muestra la PEM por línea durante período Octubre de 2008 - Marzo del 2009.
La figura 13 muestra que para el período analizado, las líneas que presentan un mayor porcentaje de pérdidas por cambio de formato corresponden a la L140 y L200 respectivamente. Como anteriormente se determinó que se analizarán los cambios que involucran a la empaquetadora, solamente se consideraron las pérdidas asociadas a los cambios tipo 1, por lo que el gráfico anterior se reduce al siguiente:

![Gráfico de pérdidas por cambio de formato](image)

Figura 14. PEM promedio por línea, asociada a los cambios tipo1 durante Octubre 2008 - Marzo 2009.

De la figura 14 se desprende que la línea que posee mayores pérdidas mensuales asociadas a los cambios tipo 1 es la L200. Por esta razón se determinó realizar la implementación piloto en la **empaquetadora CMW-425 de la línea 200.**
3.3. Implementación

Una vez seleccionado el equipo y comprobada su condición básica de operación, se puede llevar a cabo la implementación de SMED en éste. La implementación parte con la filmación de un cambio de formato en la empaquetadora CMW-425. Luego, se definen las actividades a realizar en el cambio, estableciendo una carta gantt sobre los responsables de realizarlas y el tiempo que deberían tomar. Finalmente, se capacita el personal involucrado, dejándolo plenamente instruido en lo que cada uno debe hacer.

3.3.1. Filmación de un Cambio

Para poder determinar con precisión las actividades que se realizan en un cambio de formato en la empaquetadora, se decidió realizar una filmación de todo el procedimiento. La grabación se realizó en forma continua, sin cortes ni ediciones, ya que de esta manera queda registrado en su totalidad lo que el operador realiza.

Es posible dividir el video en 2 partes; cambios mecánicos y regulación. Los cambios mecánicos corresponden a las actividades que pueden realizar tanto el operador como una persona capacitada. En cambio, la regulación es un proceso que solamente lo puede realizar el operador del equipo.

Es importante destacar que la filmación fue utilizada también como método de capacitación teórica al personal. La figura siguiente muestra una serie de capturas del video donde se muestra al operador realizando algunas de las actividades del cambio.

Figura 15. Capturas de la filmación de cambio de formato en empaquetadora CMW-425.
3.3.2. Definición de Actividades

Con el análisis del video, se establecieron las actividades a realizar durante un cambio, la duración de estas y las herramientas utilizadas. Posteriormente se separaron las que corresponden a tareas internas de las tareas externas. La finalidad principal de esto es determinar cuáles pueden realizarse con la máquina en marcha y cuáles no. Además, con el listado de herramientas es posible revisar si estas se encuentran en condiciones de operación o no.

Con las actividades definidas, se pudo determinar cuáles eran las de mayor complejidad y las de mayor duración. En base a esto, se seleccionó la actividad cuello de botella durante un cambio de formato, la cual marcará la pauta en la duración de éste.

Finalmente se conformó un equipo de trabajo a participar durante los cambios, asignando las tareas más complejas al operador del equipo. Lo que se busca con esto es que las actividades ya no las realice únicamente el operador, sino que un conjunto de personas que trabaje en forma paralela, emulando en cierta medida lo realizado por los mecánicos en un pit de forma uno. Con esto, los tiempos se acortan considerablemente y la tarea más larga se transforma en la que marca la pauta durante del tiempo durante un cambio.

El listado de actividades se puede observar en detalle en el apéndice D, donde se describen paso a paso las tareas realizadas con las respectivas herramientas utilizadas.

3.3.3. Carta Gantt

Para elaborar la Carta Gantt que regirá los cambios de formato se realizaron los siguientes procedimientos:

1. Se analizó minuciosamente el listado de actividades.

2. Se seleccionaron aquellas actividades (internas y externas) que son imprescindibles a la hora de realizar un cambio, eliminando aquellas que están demás.

3. Se asignó una prioridad a cada tarea en función del grado de dificultad de estas.

4. En función de la dificultad de cada tarea, se asignaron las personas encargadas de llevarlas a cabo.

5. En conjunto con el operador, se impusieron los tiempos máximos en que se deben realizar las actividades. Para llegar a dichos valores, se consideraron las capacidades del personal, los tiempos registrados en la filmación y los tiempos históricos que demora cada tarea. Estos valores corresponden al caso ideal, excluyendo factores externos o imprevistos del momento.

6. Finalmente, se enlistaron las actividades en una Carta Gantt, estableciendo los tiempos y los responsables de llevarlas a cabo.
3.3.4. Capacitaciones

Dentro de la preparación que debe existir para la implementación de SMED destacan las capacitaciones realizadas al personal involucrado. Las capacitaciones se hicieron con el fin de instruir al equipo de trabajo que participa en el cambio, haciendo hincapié en los riesgos asociados y las tareas que cada persona debe realizar.

Junto con las capacitaciones, se desarrollaron OPL’s21 sobre las actividades más importantes involucradas en un cambio en la empaquetadora. Las OPL’s corresponden a una descripción sencilla (con mucho contenido gráfico) de cómo se realizan dichas actividades. La idea es que todos los participantes del cambio tengan conocimiento de cómo realizar su propia tarea y la de los demás. En el apéndice E se puede observar con detalle una de las OPL’s desarrolladas para un cambio de formato en la empaquetadora, específicamente, se puede observar un cambio de plegador22.

Además de las OPL’s, se crearon trípticos explicativos de la metodología SMED, los cuales fueron repartidos a todo el personal. En el apéndice F se presenta el tríptico utilizado para capacitar.

Finalmente, se tomaron una serie de evaluaciones con el fin de comprobar la comprensión de lo que SMED involucra, partiendo desde la metodología hasta las tareas específicas de cada integrante del equipo. En el apéndice G se observa el registro que da cuenta de las evaluaciones tomadas al personal involucrado en el cambio de formato.

3.5. Complemento

Como un complemento de la implementación de SMED en la empaquetadora de la L200, se dejó avanzada la implementación de la herramienta en la ensacadora CMB 150 de esta línea. Si bien no estaba contemplada la implementación en dicho equipo, se decidió realizar un adelanto, básicamente por el hecho de ser el “equipo gemelo” de la CMW-425. Cuando la empaquetadora CMW-425 sufre alguna modificación por cambio de formato, simultáneamente tiene que ser modificada la ensacadora, de ahí el apodo de “equipo gemelo”. Esto se debe principalmente a que cuando se cambia el formato de un producto a otro, el tamaño del paquete varía, obligando a la ensacadora a adecuarse al tamaño del nuevo producto.

Como parte de este avance, se desarrollaron las mismas tareas hechas para la implementación en la CMW 425. En primer lugar se filmó un cambio de formato en la ensacadora, lo que permitió realizar el listado de actividades involucradas. Finalmente se creó una carta Gantt (ver apéndice H) en las que se enlistan las actividades con sus respectivas duraciones y responsables de llevarlas a cabo.

21 OPL: One Point Lessons.
22 Plegador: Pieza de la empaquetadora encargada de realizar los dobleces al polietileno para obtener el empaquetado.
Capítulo 4

4. Segunda Implementación

4.1. Introducción

Con el propósito de continuar con la expansión de SMED en Conversión Rollos, se realizó la segunda implementación de esta herramienta en una nueva línea de producción. Si bien, los resultados que validan o no a SMED son los de la primera implementación, los de la segunda sirven para reafirmarlos o desmentirlos.

Junto con expandir SMED y reafirmar los resultados de la primera experiencia, en la segunda se pretende ver el nivel de aprendizaje de la herramienta con respecto a lo realizado en la implementación de la L200.
4.2. Fase Previa

Antes de comenzar con la segunda implementación de SMED, se determinó la línea en la que se llevaría a cabo. El criterio utilizado fue el mismo con el que se escogió la L200 para la implementación piloto, aquel basado en el historial de cambios por línea. Es importante destacar que se mantiene la empaquetadora como equipo a intervenir, ya que se atacarán solamente los cambios tipo 1.

4.2.1. Selección de Línea

Nuevamente, usando (2), se realizó el análisis de las PEM por línea pero esta vez el período estudiado fue entre Junio y Julio del 2009. El siguiente gráfico muestra las pérdidas de eficiencia mensual promedio por línea durante el período mencionado anteriormente.

![Gráfico de PEM promedio por línea](image)

Figura 16. PEM promedio por línea durante Junio – Julio de 2009, desglosada en función de los tipos de cambio.

Según el gráfico, la línea que posee un mayor porcentaje de pérdida de eficiencia promedio, convirtiéndose en candidata para la implementación, es la L210. Como únicamente interesan los cambios que involucran a la empaquetadora, se consideran solo los cambios tipo1, por lo que de la figura 16 es posible obtener la siguiente gráfica:
El gráfico de la figura 17 muestra que para los cambios tipo 1, la L210 deja de ser la principal candidata, transformándose la L160 en la línea con mayores PEM promedio. Por esta razón, se determinó realizar la segunda implementación en la L160, específicamente en la empaqueadora MW-42 Evolution.

Es importante destacar que esta línea posee 2 empaqueadoras (ver figura 18) que funcionan alternadamente, PW-30 y MW-42 Evolution. Se seleccionó esta última para la implementación debido a su similitud con la CMW-425 de la L200, donde se realizó la implementación piloto.

Figura 17. PEM promedio por línea asociada a los cambios tipo 1 durante Junio – Julio de 2009.

Figura 18. Layout de la L160.

23 Ver especificaciones de las empaqueadoras en puntos 2.3.2 y 2.3.3.
4.3. Implementación

Tras haber seleccionado la empaquetadora la L160, se llevó a cabo la segunda implementación de SMED en Conversión Rollos. Al igual que la primera implementación, se realizó una filmación donde se definieron las actividades, se creó una carta gantt y se capacitó al personal involucrado.

4.3.1. Filmación de un Cambio

Se realizó la filmación de un cambio de formato en la empaquetadora MW-42 Evolution de la L160 con el fin de determinar las tareas (externas e internas) que son requeridas para el cambio.

Cambio que fue realizado por el operador del equipo, quien fue seguido en todo momento por la cámara para no dejar escapar ningún detalle. La siguiente imagen corresponde a un conjunto de capturas del video.

![Figura 19. Capturas de la filmación de cambio de formato en empaquetadora MW-42.](image)

Cabe destacar que esta filmación se utilizó también para realizar capacitaciones y detectar componentes fuera de condición básica que no hayan sido detectados en las planillas de inspección, al igual que para la primera implementación.
4.3.2. Definición de Actividades

Continuando con la implementación, se realizó el análisis del video con el fin de reducir al mínimo posible el número de tareas a ejecutar. Al igual que en la primera implementación, se creó un listado de tareas tanto externas como internas (análogo al listado del apéndice D), detallando la duración de cada una y las herramientas utilizadas.

Si bien la empaquetadora MW-42 Evolution es muy similar a la CMW-425, corresponde a un modelo menos automatizado que esta última. Lo que se tradujo en un listado algo más extenso de tareas, con duraciones mucho más largas que las actividades realizadas en el equipo de la L200. El listado consta de 115 acciones que en total suman cerca de 2 hrs de duración, casi el triple del tiempo que tomó realizar las tareas en la empaquetadora CMW-425.

4.3.3. Carta Gantt

 Debido a la gran cantidad de tiempo que toma realizar un cambio en la empaquetadora, se hace imperiosa la necesidad de reducir al máximo las tareas internas, dejando únicamente aquellas que son imprescindibles. La elaboración de la carta se llevó a cabo utilizando los mismos 6 pasos utilizados en la Carta Gantt de la primera implementación.
Capítulo 5

5. Resultados

5.1. Introducción

En este capítulo se presentan los resultados obtenidos tras la implementación de SMED en el departamento de Conversión Rollos. El capítulo se divide en 4 grandes puntos:

1. Resultados de la primera implementación de SMED.
2. Resultados de la segunda implementación de SMED.
4. Estandarización.

La idea es mostrar resultados concluyentes que permitan resaltar el impacto que ha tenido SMED sobre las líneas de producción, particularmente en los equipos implementados. Para ello, los resultados se presentan destacando siempre la situación antes y después de SMED.

Además, este capítulo finaliza con la presentación del DMS general de SMED como sistema de estandarización. En él se establecen paso a paso las distintas etapas de la implementación, dejando en claro responsables y responsabilidades. El DMS se elaboró basándose en el desarrollo realizado durante el presente trabajo y en la validación de los resultados obtenidos.
5.2. Resultados de la Primera Implementación

Debido a que la primera implementación culminó a principios de abril, todos los meses posteriores sirvieron para la obtención de una gran cantidad de resultados, llegando a analizar más de 100 cambios. De esta forma, debido al gran tamaño de la muestra analizada, es posible asegurar que los resultados son lo suficientemente representativos para validar o no la implementación de SMED.

5.2.1. Evolución de la Duración por Cambio

Tras la primera implementación de SMED se analizaron los tiempos promedio que demora un cambio de formato en toda la L200, desde que se detuvo la línea hasta que salió el primer paquete del nuevo producto.

La figura 20 representa la evolución de las duraciones por cambio para la L200, haciendo una distinción entre antes y después de SMED.

![Figura 20. Evolución de las duraciones promedio por cambio en la L200.](image)

El gráfico anterior puede desglosarse en función de los 2 tipos de cambios analizados, aquellos que involucran a la bobinadora y a la empaquetadora de la L200. La idea de realizar este desglose, es notar cómo evolucionaron los tiempos en los cambios tipo 1 y 2 por separado.

La siguiente gráfica muestra la evolución de los tiempos de cambio que involucran a la empaquetadora, es decir, los cambios tipo 1. Este resultado es muy importante, ya que es en este equipo donde se realizó la implementación de SMED en la L200.
La figura 21 que se muestra a continuación describe la evolución de los tiempos de cambio que involucran a la bobinadora, es decir, los cambios tipo 2. La idea de mostrar esta gráfica es ver si la implementación de SMED en la empaquetadora ha impactado o no en la bobinadora, equipo que no ha sido implementado.
5.2.2. Ganancia de Producción

Luego de obtener los resultados de los tiempos promedio de cambio, se analizó si existe o no ganancia de producción en la L200 asociada única y exclusivamente a la implementación de SMED.

En primer lugar, se calculó el tiempo ganado en la duración promedio de un cambio de formato tras la implementación de SMED en la L200.

\[GT_i = D_i - D \] \hspace{1cm} (3)

\(GT_i \) corresponde a la ganancia de tiempo promedio por cambio durante el mes \(i \), \(D_i \) es el promedio en la duración del cambio durante el mes \(i \), \(D \) corresponde a la duración promedio del cambio antes de la implementación.

La siguiente figura representa los valores de las GT obtenidas luego de la implementación de SMED.
Figura 23. Ganancia de tiempo tras implementación de SMED en la L200.

Todo el tiempo ganado se traduce en tiempo producido, utilizando la siguiente conversión es posible obtener las toneladas ganadas única y exclusivamente con la implementación.

\[
GP_i = GT_i \times N_i \times 0.022
\]

(4)

GPi representa la ganancia de producción en toneladas durante el mes i, Ni es la cantidad\(^{24}\) de cambios realizados en i, y 0,022 son las ton/min que produce la línea. Usando (4), se obtuvo el siguiente gráfico de las GP tras la implementación.

Figura 24. GP en toneladas tras la implementación de SMED en la L200.

\(^{24}\) En el siguiente punto se muestra la cantidad de cambios realizados mensualmente.
La ganancia en toneladas que se aprecia en la figura 24 se traduce a una ganancia económica para la L200 que se ve reflejada en la siguiente tabla:

<table>
<thead>
<tr>
<th>GANANCIA DE PRODUCCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Por Minuto</td>
</tr>
<tr>
<td>0,02 [ton]</td>
</tr>
</tbody>
</table>

Tabla 4. Ganancia de producción.

5.2.3. Índice de Flexibilidad

El siguiente resultado da cuenta del número de cambios realizados antes y después de SMED. Para poder expresar la situación antes de SMED, se consideró el promedio de cambios hechos durante los meses previos de la implementación y se obtuvo la siguiente gráfica:

Figura 25. Número de cambios realizados en la L200, desglosados por tipo de cambio.

Debido a que la implementación se realizó en la empaquetadora de la L200, del gráfico anterior interesa, básicamente, lo obtenido para los cambios tipo 1. En base a esto, se definió un indicador que permite mostrar la flexibilidad del equipo en lo que al número de cambios tipo 1 respecta.
\[IF_i = \frac{\text{# de cambios en período } i}{\text{# de cambios promedio antes de SMED}} \]

El IF corresponde al “Índice de Flexibilidad” de un equipo, representado por la razón entre el número de cambios realizados tras la implementación y antes de ésta.

Utilizando (5) para el período comprendido entre abril y octubre del 2009, considerando que el promedio de cambios tipo 1 antes de SMED era de 9 cambios mensuales, se obtuvieron los siguientes IF para la empaquetadora de la L200:

![Figura 26. Índice de Flexibilidad para los cambios tipo 1 en la L200.](image)

5.2.4. Rechazo de Papel Asociado a un Cambio.

El rechazo de papel corresponde a aquel producto terminado que no cumple las características necesarias para ser vendido, para este caso en particular, el rechazo asociado a un cambio de formato corresponde a los primeros paquetes que se pierden tras poner en marcha el equipo luego del cambio.

Este tipo de rechazo se genera, básicamente, por que los paquetes iniciales salen con defectos, los que son corregidos mediante regulación. La siguiente tabla muestra como varió la cantidad de papel rechazado luego de la implementación en la L200.
RECHAZO PROMEDIO POR CAMBIO

<table>
<thead>
<tr>
<th>Antes de SMED</th>
<th>Actualmente</th>
<th>Ganancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 bultos = 202.24 [kg]</td>
<td>< 24 bultos = 121.34 [kg]</td>
<td>80.9 [kg] = US$ 121.4</td>
</tr>
</tbody>
</table>

Tabla 5. Rechazo de papel asociado a un cambio de formato en la L200, antes y después de SMED.

5.2.5. Eficiencia de Producción

Como se mencionó al inicio de este trabajo, la empresa apunta a lograr un 85% de eficiencia productiva a nivel de planta. Definiendo la eficiencia como:

\[
EF = \frac{\text{Toneladas producidas}}{\text{Capacidad máxima teórica de producción [ton]}}
\]

Utilizando (6) se obtuvo la eficiencia mensual de la L200 a partir de los últimos meses del 2008. En el gráfico se distingue lo ocurrido antes y después de la implementación, haciendo la diferencia entre lo que sucede actualmente con SMED y como sería la eficiencia si no se hubiese implementado la herramienta.

Figura 27. Eficiencia mensual de la L200.
5.2.6. Carta Gantt de un Cambio en CMW-425

<table>
<thead>
<tr>
<th>N°</th>
<th>Actividad</th>
<th>Detalles</th>
<th>Parámetros de Plegador</th>
<th>Formato</th>
<th>Piezas de Formato</th>
<th>Soplar (ace.)</th>
<th>Parámetros de Formato</th>
<th>Plegador(s) lado de Mando</th>
<th>Plegador(s) lado de Accionamiento</th>
<th>Plegador(s) Lado de Operación</th>
<th>Soplar (ace.)</th>
<th>Parámetros de Formato</th>
<th>Facilitador</th>
<th>Soplar (ace.)</th>
<th>Parámetros de Formato</th>
<th>Plegador(s) lado de Mando</th>
<th>Plegador(s) lado de Accionamiento</th>
<th>Plegador(s) Lado de Operación</th>
<th>Soplar (ace.)</th>
<th>Parámetros de Formato</th>
<th>Facilitador</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solicitar Polietileno</td>
<td>Preparar y dejar polietileno listo para ser instalado.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Preparar pzas de Formato y herramientas.</td>
<td>Guardar en memoria de la pólvora del polietileno.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Parámetros de Formato</td>
<td>Guardar en memoria de la pólvora del polietileno.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Soñar (ace)</td>
<td>Guardar en memoria de la pólvora del polietileno.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Soñar (ace)</td>
<td>Guardar en memoria de la pólvora del polietileno.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Parámetros de Formato</td>
<td>Guardar en memoria de la pólvora del polietileno.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Barra de Alimentación</td>
<td>Guardar en memoria de la pólvora del polietileno.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Plegador(s) lado de Mando</td>
<td>Cambiar plegador(s) de polietileno.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Plegador(s) lado de Accionamiento</td>
<td>Cambiar plegador(s) de polietileno.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Plegador(s) Lado de Operación</td>
<td>Cambiar plegador(s) de polietileno.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Polietileno</td>
<td>Guardar en memoria de la pólvora del polietileno.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Realizar Fase: Tara</td>
<td>Realizar cortes del polietileno con guillotina hasta calibrar el sensor de tacas.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Ajustar Guillotina</td>
<td>Realizar cortes del polietileno con guillotina hasta calibrar el sensor de tacas.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Posicionar Sub-Equipo</td>
<td>Realizar cortes del polietileno con guillotina hasta calibrar el sensor de tacas.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Facilitador</td>
<td>Realizar cortes del polietileno con guillotina hasta calibrar el sensor de tacas.</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 6. Carta Gantt de un cambio en la empaquetadora CMW 425.
5.3. Resultados de la Segunda Implementación

Los resultados que se muestran a continuación, a diferencia de los presentados para la primera implementación, son solamente resultados puntuales. No se incluyó el IF ni las eficiencias promedio ya que estos son considerados resultados globales. Básicamente, corresponden a los obtenidos tras los primeros cambios realizados luego de la implementación de SMED en la empaquetadora de la L160.

5.3.1. Evolución de la Duración por Cambio

Con este resultado se pretende mostrar la tendencia que tienen las duraciones en los primeros cambios en la empaquetadora (cambios tipo 1) tras la implementación en la L160. El siguiente gráfico muestra cómo ha ido evolucionando el tiempo de los 3 primeros cambios en comparación a los promedios mensuales antes de SMED.

![Figura 28. Evolución de las duraciones por cambio tipo 1, cambios en la empaquetadora de la L160.](attachment:image.png)

5.3.2. Ganancia de Producción

Al igual que en los resultados de la primera implementación, se calculó la ganancia de producción (GP) asociada únicamente a la aplicación de SMED en la L160. Para ello, en primer lugar se estimó ganancia de tiempo (GT) en la duración promedio de un cambio de formato tras los 3 primeros cambios con SMED. Utilizando (3) caso a caso (y no mensualmente como se utilizó en la primera implementación), se obtuvo el siguiente gráfico:
50

Figura 29. Ganancia de tiempo tras implementación de SMED en la L160.

Modificando la ecuación (4) en función de las ton/min que produce la L160 es posible transformar la ganancia de tiempo en ganancia de producción. La nueva ecuación queda:

\[GP_i = GT_i \times N_i \times 0.02 \]

Donde esta vez, el sub-índice \(i \) representa a un cambio (y no a un mes como era en la primera implementación) y 0.02 corresponde a las ton/min producidas por la línea. Así, las ganancias obtenidas por cambio se muestran en la siguiente tabla.

<table>
<thead>
<tr>
<th>GP [ton]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambio 1</td>
</tr>
<tr>
<td>1,6</td>
</tr>
</tbody>
</table>

Tabla 7. GP por cambio tras la implementación de SMED en la L200.

5.3.3. Rechazo de Papel Asociado a un Cambio.

La siguiente tabla muestra cómo varió el rechazo de papel asociado a un cambio de formato tras la implementación de SMED en la empaquetadora de la L160.

* 1 bulto = 48 rollos = 5,056 [kg] aprox.

<table>
<thead>
<tr>
<th>RECHAZO PROMEDIO POR CAMBIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antes de SMED</td>
</tr>
<tr>
<td>54 bultos = 273.02 [kg]</td>
</tr>
</tbody>
</table>

Tabla 8. Rechazo de papel asociado a un cambio de formato en la L160, antes y después de SMED.
Tabla 9. Carta Gantt de un cambio en la empaquetadora MW 42 Evolution.

<table>
<thead>
<tr>
<th>N°</th>
<th>TAREAS</th>
<th>SUB-TAREAS</th>
<th>Tareas Externas (min)</th>
<th>Tareas Internas (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solicitar Poliet.</td>
<td>Preparar y dejar en pie de máquina poliet.</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td>2</td>
<td>Preparar piezas</td>
<td>Plegador fijo, plegador móvil, plegador de batería, piezas de elevador,</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td>y herramientas</td>
<td>Uses, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Aseo (cepillar)</td>
<td>Señalar piezas de batería</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td>4</td>
<td>Aseo (cepillar)</td>
<td>Sector alimentación de poliet.</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sector formación de paquete</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sector de alimentación</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entorno de equipo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Formatar Cambio</td>
<td>Formatar en panel supervisor</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td>6</td>
<td>Cambiar Helicotes</td>
<td>Cortar paso de aire</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cambiar engranajes según el paso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Sector Elevador</td>
<td>Posicionar barra de fondo</td>
<td>DA</td>
<td>DA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cambio de plato elevador</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cambio de tope</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cambio de nivel *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Regular Subida</td>
<td>Regularización de estranguladores</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td>Elevador</td>
<td>Posicionamiento paquetes laterales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Ajustar Formaciones</td>
<td>Reforzar guias de contención y posicionar formaciones (lado izquierdo)</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reforzar guias de contención y posicionar formaciones (lado derecho)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Regular Alimentación</td>
<td>Posicionar lancetas</td>
<td>FO</td>
<td>FO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ajustar bancas y guias de alimentación primaria *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ajustar bancas y guias de alimentación secundaria *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Posicionar Mesa Especificadora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Cambiar Plegadores</td>
<td>Cambiar Plegador de batería</td>
<td>JM</td>
<td>JM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cambiar Plegador fijo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cambiar paso de plegador móvil</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cambiar Plegador móvil (lado izquierdo)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Polietrino</td>
<td>Montar y alinear polietrino en desenvolviador</td>
<td>FR</td>
<td>FR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Para polietrino por polinas derechada</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Posicionar corneas rígidas traslado</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Posicionar rodillos de anaste</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ayudar alturas de guía de contenido en superior</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ayudar guías de polietrino</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.3.4. Carta Gantt de un Cambio en MW 42 Evolution.
5.4. Mejoras

Tras la primera experiencia de SMED en un cambio de formato, comenzó el análisis de las posibles mejoras y correcciones que se pueden hacer a la implementación. Dentro de estas destacan:

- La definición de personal de reserva para realizar un cambio. Esto permite realizar cambios cuando no se encuentra disponible el personal titular, principalmente en aquellos cambios que se realizan fuera del horario administrativo.

- Las piezas de recambio fueron debidamente marcadas según el formato que se desea obtener. De esta manera es posible distinguir una pieza de la otra dependiendo del cambio que se presenta, reduciendo los tiempos de búsqueda. En el apéndice I se muestra la distinción realizada.

- Se crearon *Check List*\(^\text{25}\) de pre-paro e inicio que permiten evitar posibles errores en estas 2 etapas. Se considera pre-paro a la etapa previa a la detención del equipo, e inicio a la etapa con la que comienza a operar nuevamente una vez realizado el cambio. En los apéndices J y K es posible apreciar ambos *Check List*.

- Se desarrolló una planilla de incidencias (ver apéndice L) con el fin de notificar cualquier situación anómala que aparezca durante un cambio. Esto permite evitar que estas situaciones anómalas se vuelvan a repetir en los cambios futuros.

- Dentro de las actividades presentes en un cambio de formato en la MW-42 Evolution, se encuentra la regulación de la posición de algunos componentes del equipo. Muchas de estas regulaciones se realizan girando, en forma manual, un volante con un indicador numérico que define la posición final del componente. Estos volantes son conocidos como “Contadores Numéricos” y se encuentran ubicados en distintos sectores del equipo. En la siguiente figura es posible observar uno de estos contadores de la empaquetadora de la L160:

\(^{25}\) Listado de actividades que deben ser chequeadas por el operador.
Como estos contadores son girados en forma manual, el tiempo que toma regular la posición de cada componente es muy extenso. Para disminuir este tiempo, se adecuaron los contadores para ser girados mediante una manivela, las cuales se mandaron a hacer de un material polimérico resistente y liviano. En la siguiente figura aparece una de las manivelas fabricadas.

![Figura 30. Contador Numérico.](image)

Con la utilización de las manivelas, el tiempo que toma posicionar los componentes se redujo considerablemente, validando totalmente la mejora instaurada.

![Figura 31. Manivela de Contador Numérico.](image)
5.5. Estandarización: DMS general de SMED

La figura 32 representa el DMS general de SMED desarrollado como herramienta de estandarización para la implementación.

Figura 32. DMS general de SMED.
Las figuras 33 y 34 muestran en detalle los procesos “Determinar Prioridades” e “Implementación” del DMS general de SMED respectivamente, ya que ambos poseen sub-procesos asociados.

Sub-Procesos de Determinar Prioridades

<table>
<thead>
<tr>
<th>DEPARTAMENTO:</th>
<th>CONVERTIÓN ROLLOS</th>
<th>FECHA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Encargado del Sub-Proceso:</td>
<td>DAMIAN ARAYA</td>
<td></td>
</tr>
<tr>
<td>2. Importancia del Sub-Proceso:</td>
<td>DETERMINAR CUAL O CUALES SON LOS EQUIPOS Y LÍNEAS PRIORITARIOS A IMPLEMENTAR</td>
<td></td>
</tr>
<tr>
<td>3. Medidas:</td>
<td>DEFINIR CRITERIOS DE SELECCIÓN</td>
<td></td>
</tr>
</tbody>
</table>

6. Diagrama del Sub-Proceso

![Diagrama del Sub-Proceso]

7. Revisiones

<table>
<thead>
<tr>
<th># Revisión</th>
<th>Fecha</th>
<th>Descripción de Revisión</th>
<th>Realizada por:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 33. Sub-Procesos del Proceso “Determinar Prioridades”.
Sub-Procesos de Implementación

11. Diagrama del Sub-Proceso

Coordinar Filtración del Cambio

Filtración del Cambio

Listado de Papeles y Herramientas Utilizadas

Listado de Actividades Realizadas

Separar Tareas Externas e Internas

Realizar Experiencia en Equipo Seleccionado

¿Personal Capacitado?

SI

Capacitar

Evaluar Resultados de Capacitación

Generar OPL’s

Realizar Experiencia en Equipo Seleccionado

Análisis de Resultados

¿Posibilidades de Mejora?

SI

Impearentar Mejora

NO

¿Posibilidades de Mejora?

Estandarizar Procedimientos

12. Revisiones

<table>
<thead>
<tr>
<th># Revisión</th>
<th>Fecha</th>
<th>Descripción de Revisión</th>
<th>Realizada por</th>
</tr>
</thead>
</table>

Figura 34. Sub-Procesos del Proceso "Implementación".
Capítulo 6

6. Discusiones Generales

6.1. Primera Implementación

1. El gráfico de la figura 20 muestra que tras la primera implementación de SMED, el promedio de la duración de un cambio en la L200 ha tenido una notoria tendencia a la baja a lo largo de los últimos meses. Sin embargo, aun no se ha alcanzado la meta de 30 minutos promedio por cambio. Esto se puede justificar ya que la implementación solo se ha realizado en un equipo de la línea, la empaquetadora.

2. Si se consideran solamente los cambios que involucran a la empaquetadora, la tendencia a la baja en los tiempos es aun más notable. La figura 21 muestra que para los cambios tipo 1, las duraciones son aun más bajas que las de la línea completa, siendo el mejor resultado el alcanzado en el mes de septiembre. En dicho mes se logró un promedio por cambio de 34,8 min., muy cercano a los 30 min. fijados como meta. Es más, en 18 oportunidades se obtuvieron tiempos iguales o inferiores a 30 minutos, para los meses entre Abril y Octubre.

3. Si bien los cambios tipo 2 (cambios en la bobinadora) no fueron implementados directamente con SMED, indirectamente se vieron impactados con lo realizado en la empaquetadora. Esto queda graficado en la figura 22 donde es posible apreciar la grafica de la evolución de las duraciones promedio por cambio tipo 2. Al igual que para la empaquetadora, los tiempos en la bobinadora disminuyeron considerablemente tras la implementación en la CMW-425.

4. La considerable disminución en la duración por cambio en la línea 200 trajo consigo una importante ganancia de producción. En la figura 24 se pueden observar las toneladas ganadas única y exclusivamente con la implementación, llegando a un promedio de 24,4 [ton/mes] (2,7% de la producción mensual) y a un acumulado de 195,3 [ton] (US$ 235.200 en ganancia acumulada) durante el período comprendido entre Abril y Noviembre del 2009. Esto equivale a un promedio aproximado de 1,5 [ton/cambio] de ganancia, que por lo demás, tiende a seguir creciendo como se muestra en el gráfico.
5. El número de cambios realizados tras la implementación en la L200 indica cómo ha
evolucionado la flexibilidad productiva de la línea. Como se ve en la figura 25, el número de
cambios realizados mensualmente ha aumentado con respecto a la situación previa a SMED,
particularmente en los del tipo 1, donde solamente en una ocasión se hicieron menos
cambios. El promedio de cambios tras la implementación es de 11 al mes, 2 más que los
realizados anteriormente. Esto se traduce en que índice de flexibilidad haya sido mayor que
1 durante todos los meses que ha durado la implementación, a excepción de Julio, como se
muestra en la figura 26.

6. Dentro de los resultados destacables destaca la disminución del rechazo asociado a la
regulación, posterior al cambio, del equipo para obtener el nuevo producto. Como lo
muestra la tabla 5, el rechazo de papel pasó de ser de 40 bultos antes de SMED a menos
del 24 bultos actualmente. Esto se traduce en una ganancia de producción de 80,9
[kg/cambio]. A un promedio de 11 cambios mensuales, la ganancia promedio es
alcance a las 890 [kg/mes] (US$ 1.335 ganados mensualmente), única y
exclusivamente por la disminución del papel rechazado.

7. Otro resultado importante es la tendencia al alza que ha tenido la eficiencia mensual de
la línea 200 como se ve en la figura 27. Si bien, el cálculo de la eficiencia involucra una
serie de factores que afectan a la producción, la perdida asociada al tiempo
improductivo por cambio también forma parte de estos. Así, la aplicación de la
herramienta SMED ha aportado a que la eficiencia promedio mensual de la L200 haya
aumentado de un 69% antes de la implementación hasta un 78% en los meses
posteriores.

En la misma gráfica de la figura 27 es posible observar como hubiese sido la eficiencia
si la implementación no se hubiese llevado a cabo. Se observa que la aplicación de
SMED sirvió para que la eficiencia fuese cerca de 3 puntos porcentuales mayor que lo
que se tendría actualmente sin la implementación.

8. La Carta Gantt de un cambio de formato en la CMW-425 muestra las actividades, tanto
internas como externas, con sus respectivas duraciones y responsables de realizarlas. Se
observa con claridad que el número de tareas disminuyó considerablemente con
respecto al listado original de actividades del apéndice D.

6.2. Segunda Implementación

1. En la figura 28 se aprecia como disminuyeron las duraciones por cambio en la
empaquetadora de la L160. Los tiempos obtenidos tras los 3 primeros cambios fueron 40, 60
y 45 min respectivamente, menos de la mitad de lo que promediaba un cambio antes de la
implementación (117 min).

2. La ganancia de tiempo (ver figura 29) obtenida tras la disminución de la duración por
cambio se tradujo, al igual que en la L200, en una ganancia de producción. La tabla 7
muestra que el promedio de toneladas ganadas en los 2 cambios realizados con SMED en la
L160 es de 1,4 [ton/cambio], muy cercanas a las 1,5 [ton/cambio] obtenidas en la primera implementación.

3. Al igual que lo ocurrido en la L200, el rechazo de papel producido por la regulación posterior a un cambio de formato disminuyó considerablemente. Como lo muestra la tabla 8, se rechazaban cerca de 54 bultos antes de la implementación, valor que cayó a menos de 35 tras la aplicación de SMED en la L160. Esta caída del rechazo se tradujo en una ganancia de producción de 96,1 [kg/cambio] promedio, lo que equivale a cerca de US$ 145 ganados por cambio.

4. La Carta Gantt de la tabla 9 muestra como el número de tareas se redujo considerablemente, al igual que la duración de estas. Finalmente, el cambio quedó definido con una duración de 30 minutos como máximo considerando el caso ideal, es decir, que las actividades se lleven a cabo sin ningún contratiempo.

6.3. Estandarización

1. Finalmente, tras la validación de los resultados obtenidos en la primera y segunda implementación, se valida también la metodología utilizada para la aplicación dicha implementación. Con esto, fue posible conformar una estandarización en formato DMS de los distintos procedimientos llevados a cabo durante el transcurso de la implementación. Se generaron documentos y se definieron las distintas responsabilidades que recaen en el personal involucrado.

El DMS general de SMED que se muestra en la figura 32 está compuesto por tres secciones principales. La primera sección es donde se establece quien es el encargado la implementación, el lugar en que se llevará a cabo, cual es el objetivo que persigue, que indicadores medirán el avance, etc. La siguiente figura presenta esta sección del DMS de SMED:

Figura 35. Primera sección del DMS general de SMED.
La segunda sección muestra, mediante diagramas de bloques, los procesos que componen la implementación, además de los encargados de realizarlos. Aquellos procesos compuestos por sub-procesos se encuentran debidamente identificados con un icono distintivo, al igual que los distintos puntos de control. Esta distinción se puede apreciar en la siguiente figura que muestra parte de la segunda sección del DMS de SMED:

![Diagrama de bloques](image)

Figura 36. Distinción de PIC y sub-procesos en el DMS de SMED.

Finalmente, la última sección del DMS general de SMED tiene como propósito llevar un seguimiento de las posibles modificaciones que este pueda sufrir. Mediante revisiones periódicas, se van realizando las actualizaciones correspondientes, dejando en claro la fecha, el detalle de la revisión y quien la realizó. En la figura 36 es posible apreciar la tercera y última sección del DMS.

<table>
<thead>
<tr>
<th>#Revisión</th>
<th>Fecha</th>
<th>Descripción de Revisión</th>
<th>Realizada por</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 37. Revisión del DMS general de SMED.
Capítulo 7

7. Conclusiones

- A lo largo del trabajo fue posible llevar a cabo la implementación de SMED en 2 equipos de diferentes líneas de producción en Conversión Rollos. La primera implementación llevada a cabo en la L200, permitió obtener el aprendizaje de la herramienta para ser replicada en la L160.

- Tras la primera implementación fue posible recopilar una gran cantidad de resultados durante 8 meses, lo que permite decir que son resultados suficientes para validar SMED. Como se aprecia a lo largo del punto 5.2, con la implementación en la empaquetadora se logró reducir considerablemente la duración por con una marcada tendencia a la baja. Esta tendencia a la baja hace pensar que muy pronto se alcanzará la meta propuesta por la empresa de 30 minutos por cambio promedio para el 2011.

- El impacto que tuvo la implementación de la empaquetadora de la L200 sobre la bobinadora fue tan sorpresivo como satisfactorio. Sin haber sido implementada, la bobinadora logró reducir la duración por cambio tipo 2 gracias a que los operadores, espontáneamente, emularon parte de lo realizado en la empaquetadora. Esto puede ser visto como una externalidad positiva de la implementación en la empaquetadora sobre la bobinadora, ya que la “presión” que ejercen los buenos resultados obtenidos en la primera, hacen que la segunda intente evitar transformarse en el equipo CB de la línea.

Lo descrito en el párrafo anterior demuestra la gran capacidad de replicación y expansión que puede alcanzar la herramienta SMED en diferentes equipos.

- La disminución de tiempo obtenida luego de la primera implementación se ha traducido en una serie de beneficios para la L200. Se lograron ganancias de producción y ganancias económicas considerables debido al ahorro de tiempo y la baja en el rechazo de papel. Junto con esto, se logró aumentar el número de cambios mensuales, aumentando así la flexibilidad productiva de la línea. Este último resultado es muy importante, ya que la tendencia al alza que muestra la eficiencia va en directa relación con el propósito de la empresa de alcanzar un 85% de eficiencia promedio a nivel planta para fines del 2011.
Por otra parte, los resultados obtenidos tras la segunda implementación (ver punto 5.3) sirvieron para reforzar y validar los alcanzados en la primera. Si bien estos fueron adquiridos luego de los 3 primeros cambios realizados con SMED, mostraron la misma tendencia que los de la L200.

Algo para destacar fue la rapidez con la que se consiguieron los buenos resultados en la segunda implementación. Se logró una disminución cercana al 50% en la duración por cambio, algo que tomó poco más de 2 meses en la L200, demoró tan solo 3 cambios en la L160. Lo anterior demuestra que el aprendizaje adquirido tras la primera implementación afectó directamente la eficacia que tuvo la segunda, en especial, en la velocidad con la que se obtuvieron los resultados.

Las 5 mejoras implementadas que se describen en el punto 5.4 sirvieron como medidas de estandarización para la implementación. Luego de ser implementadas, las mejoras pasaron a ser parte del proceso productivo, es decir, dejan de ser consideradas como tal y pasan a ser parte activa dentro de la producción de la línea.

En general, todos los resultados que arrojó la implementación de SMED en el Departamento de Conversión Rollos fueron altamente concluyentes y satisfactorios. Fueron tan satisfactorios que dieron paso a la validación de SMED como una herramienta útil para disminuir tiempos improductivos, flexibilizar la producción de una línea sin que esto afecte la eficiencia de esta.

El DMS desarrollado permitió definir las responsabilidades que recaen sobre el personal encargado de llevar a cabo la aplicación y el seguimiento de las implementaciones. Por medio de esta estandarización es posible expandir SMED a hacia las líneas y equipos restantes del departamento de Conversión Rollos, y porque no, hacia diferentes procesos productivos dentro y fuera de la empresa.
8. Apéndices

Apéndice A. Planilla de Inspección Diaria.
Planilla de Inspección Semanal.

Equipo: Empaquetadora MW

- 42 Evolution

Descripción del TITM

<table>
<thead>
<tr>
<th>Núm.</th>
<th>Descripción</th>
<th>Estado</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manómetros y válvulas proporcionales</td>
<td>E</td>
<td>En buen estado, limpias. Sin fugas de aire</td>
</tr>
<tr>
<td>2</td>
<td>Engranajes</td>
<td>E</td>
<td>Tensión y el pie del diente no debe tener barras de polietileno</td>
</tr>
<tr>
<td>3</td>
<td>Bandas de sellado</td>
<td>E</td>
<td>Rotulaciones tirantes de mesa y apretadas</td>
</tr>
<tr>
<td>4</td>
<td>Correa de acción principal de la máquina</td>
<td>E</td>
<td>Debien estar sin restos de polietileno, sin polines tensores</td>
</tr>
<tr>
<td>5</td>
<td>Manómetros y válvulas proporcionales</td>
<td>E</td>
<td>En buen estado, limpias. Sin fugas de aire</td>
</tr>
<tr>
<td>6</td>
<td>Engranajes</td>
<td>E</td>
<td>Tensión y el pie del diente no debe tener barras de polietileno</td>
</tr>
<tr>
<td>7</td>
<td>Bandas de sellado</td>
<td>E</td>
<td>Rotulaciones tirantes de los elevadores y apretadas</td>
</tr>
<tr>
<td>8</td>
<td>Correa de acción principal de la máquina</td>
<td>E</td>
<td>Debien estar sin restos de polietileno, sin polines tensores</td>
</tr>
</tbody>
</table>

Descripción del TITM

<table>
<thead>
<tr>
<th>Núm.</th>
<th>Descripción</th>
<th>Estado</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manómetros y válvulas proporcionales</td>
<td>E</td>
<td>En buen estado, limpias. Sin fugas de aire</td>
</tr>
<tr>
<td>2</td>
<td>Engranajes</td>
<td>E</td>
<td>Tensión y el pie del diente no debe tener barras de polietileno</td>
</tr>
<tr>
<td>3</td>
<td>Bandas de sellado</td>
<td>E</td>
<td>Rotulaciones tirantes de mesa y apretadas</td>
</tr>
<tr>
<td>4</td>
<td>Correa de acción principal de la máquina</td>
<td>E</td>
<td>Debien estar sin restos de polietileno, sin polines tensores</td>
</tr>
</tbody>
</table>

Identificación del TITM

1. [Imágenes de elementos a inspeccionar]

Responsable:

- Manuel Álvarez
- Samuel Dias
| RESPONSABLE | IDENTIFICACIÓN DEL ÍTEM | ÍTEM | DESCRIPCIÓN DEL ÍTEM | INSPECCIÓN A REALIZAR | MÉTODO | TÉRMINO | jun-08 | jul-08 | ago-08 | sep-08 | oct-08 | nov-08 | dic-08 | ene-09 | feb-08 | mar-09 |
|-------------|------------------------|------|----------------------|------------------------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Francisco | 1 | 1 | MOTORES ELECTRÓNICOS | SIN TEMPERATURA, SIN RUIDO Y BIEN ANCLADO | ☐ | 1 | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ |
| | 2 | 2 | CAJAS DE ARRANQUE | SIN RUIDO NORMAL, SIN VIBRACIONES Y SIN DESPLAZAMIENTO | ☐ | 1 | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ |
| | 3 | 3 | CADENAS DE ALIMENTACIÓN | ESTIRAN CON SU TENSIÓN CORRESPONDIENTE, SIN DESPLAZAMIENTO Y SIN DESPLAZAMIENTO DE MATERIAL | ☐ | 1 | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ |
| | 4 | 4 | SEGURAS DE SOBRE CARGA DE ALIMENTACIÓN | SIN FUGA DE AIRE Y AJUSTADAS A LA PRENSA QUE CORRESPONDE A CADA FORMATO | ☐ | 1 | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ |
| | 5 | 5 | REDUCTORES | SIN DESGASTES, TEMPERATURA BAJA, SIN FUGA DE ACEITE Y RUIDOS ANORMALES | ☐ | 1 | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ |
| | 11 | 11 | SERVOMOTOR DE ACERO PRINCIPAL | SIN RUIDO NORMAL, SIN VIBRACIONES Y SIN DESPLAZAMIENTO | ☐ | 1 | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ |
| | 12 | 12 | CORRIDA DE ACERO DE MESA EXTRANJERA | SIN DESPLAZAMIENTO DE MATERIAL, TEMPERATURA Y EL EJE DEL EJE NO DEBE TENER DESPLAZAMIENTO | ☐ | 1 | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ |
| | 13 | 13 | SEGURAS DE SOBRE CARGA DE MEGA EXTRANJERA | SIN FUGA DE AIRE Y AJUSTADAS A LA PRENSA QUE CORRESPONDE A CADA FORMATO | ☐ | 1 | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ |
| | 14 | 14 | CAJAS DE AVANCE DISCONTINUO | SIN DESGASTES, TEMPERATURA BAJA, SIN FUGA DE ACEITE Y RUIDOS ANORMALES | ☐ | 1 | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ |
| | 21 | 21 | MOTOR DE BANDAS | SIN TEMPERATURA, SIN RUIDO Y BIEN ANCLADO | ☐ | 1 | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ |
| | 22 | 22 | PLACAS DE FÁBRICA | ESTIRAN ALREDEDOR, SIN JUEGO Y CON TODOS LOS CALEFACTORES Y TERMOCUPLAS FUNCIONANDO | ☐ | 1 | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ |
| | 23 | 23 | SEGURAS DE SOBRE CARGA DE BANDAS | SIN FUGA DE AIRE Y AJUSTADAS A LA PRENSA QUE CORRESPONDE A CADA FORMATO | ☐ | 1 | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ |
| | 24 | 24 | REDUCTORES | SIN DESGASTES, TEMPERATURA BAJA, SIN FUGA DE ACEITE Y RUIDOS ANORMALES | ☐ | 1 | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ | ☐ |
Apéndice D. Listado de actividades realizadas durante un cambio en empaquetadora CMW-425.

<table>
<thead>
<tr>
<th>Nº</th>
<th>Operaciones</th>
<th>Tipo Actividad</th>
<th>Ref.</th>
<th>Duración [s]</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abrir puertas para generar movimiento de aire.</td>
<td>int g</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Soplar zona de bobinado (desenrollado de polietileno).</td>
<td>int g</td>
<td>44</td>
<td></td>
<td>Usa manguera de soplo y antiparras</td>
</tr>
<tr>
<td>3</td>
<td>Caminar hacia puerta de las barras de alimentación.</td>
<td>int g</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Soplar zona de barras de alimentación.</td>
<td>int g</td>
<td>44</td>
<td></td>
<td>Usa manguera de soplo y antiparras</td>
</tr>
<tr>
<td>5</td>
<td>Caminar a puerta lado mando de bandas de sellado.</td>
<td>int g</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Soplado zona bandas de sellado.</td>
<td>int g</td>
<td>19</td>
<td></td>
<td>Usa manguera de soplo y antiparras</td>
</tr>
<tr>
<td>7</td>
<td>Caminar hacia los transportadores de salida.</td>
<td>int g</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Soplar piezas de cambio de formato.</td>
<td>int g</td>
<td>6</td>
<td></td>
<td>Usa manguera de soplo y antiparras</td>
</tr>
<tr>
<td>9</td>
<td>Caminar y dejar manguera, volver a empaquetadora al panel de supervisión.</td>
<td>ext g</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Guardar en memoria los parámetros de formato procesado.</td>
<td>int c</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Seleccionar los parámetros del nuevo producto.</td>
<td>int c</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Confirmar paso de apertura del trineo</td>
<td>int c</td>
<td>32</td>
<td></td>
<td>Es opcional, el operador lo hace para asegurarse. En este caso se mantiene formación (apertura). En algunos casos esta actividad dura 45 min.</td>
</tr>
<tr>
<td>13</td>
<td>Caminar del panel de supervisión a la zona de las barras.</td>
<td>int c</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Apretar botón de emergencia para desactivar servomotores de empaquetadora.</td>
<td>Int c</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Buscar y posicionar la barra madre en posición cero.</td>
<td>Int c</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Cambiar paso de barras iniciales.</td>
<td>Int c</td>
<td>60</td>
<td></td>
<td>Usa huincha.</td>
</tr>
<tr>
<td>N°</td>
<td>Operaciones</td>
<td>Tipo</td>
<td>Actividad</td>
<td>Ref.</td>
<td>Duración [s]</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>17</td>
<td>Cambiar paso de barras finales.</td>
<td>Int</td>
<td>c</td>
<td>85</td>
<td>Usa huincha.</td>
</tr>
<tr>
<td>18</td>
<td>Dejar barras finales en el suelo a un costado por fuera de la maquina.</td>
<td>Int</td>
<td>g</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Sacar baterías de plegadores de 1 nivel.</td>
<td>Int</td>
<td>c</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ir a dejar batería de plegadores al suelo a un costado de empaquetadora.</td>
<td>Ext</td>
<td>g</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Ir a buscar al piso llave Allen de 8mm.</td>
<td>Ext</td>
<td>g</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Volver a empaquetadora.</td>
<td>Ext</td>
<td>g</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Extraer plegador fijo</td>
<td>Int</td>
<td>c</td>
<td>8</td>
<td>Llave Allen.</td>
</tr>
<tr>
<td>24</td>
<td>Dejar plegador fijo en el suelo a un costado de empaquetadora.</td>
<td>Int</td>
<td>g</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Volver a empaquetadora, tomar la llave Allen 8mm y dar la vuelta hacia plegador de cabeza.</td>
<td>Int</td>
<td>g</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Sacar plegador de de cabeza móvil.</td>
<td>Int</td>
<td>c</td>
<td>12</td>
<td>Llave Allen.</td>
</tr>
<tr>
<td>27</td>
<td>Dejar plegador de cabeza en el piso a un costado de empaquetadora.</td>
<td>Int</td>
<td>g</td>
<td>6</td>
<td>Lado izquierdo.</td>
</tr>
<tr>
<td>28</td>
<td>Caminar a plegador de cabeza móvil.</td>
<td>Int</td>
<td>g</td>
<td>3</td>
<td>Lado derecho</td>
</tr>
<tr>
<td>29</td>
<td>Subir escalerailla y acomodarse para sacar plegador.</td>
<td>Int</td>
<td>c</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1° intento de sacar plegador de cabeza móvil.</td>
<td>Int</td>
<td>c</td>
<td>18</td>
<td>Pieza se encontraba agripada (polvo y aceite).</td>
</tr>
<tr>
<td>31</td>
<td>Baja escalerailla ir a buscar maseta y volver a subir escalerailla.</td>
<td>Ext</td>
<td>g</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Saca plegador</td>
<td>Int</td>
<td>c</td>
<td>6</td>
<td>Maseta de goma.</td>
</tr>
<tr>
<td>33</td>
<td>Bajar escalerailla, dejar plegador en el piso mientras camina hacia la puerta del plegador de batería.</td>
<td>Int</td>
<td>c</td>
<td>20</td>
<td>Lado mando</td>
</tr>
<tr>
<td>34</td>
<td>Saca plegador de batería.</td>
<td>Int</td>
<td>c</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Deja plegador en el piso a un costado de máquina y volver.</td>
<td>Int</td>
<td>g</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>N°</td>
<td>Operaciones</td>
<td>Tipo</td>
<td>Actividad</td>
<td>Ref.</td>
<td>Duración [s]</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>36</td>
<td>Intenta sacar plegador fijo.</td>
<td>Int</td>
<td>c</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Recoge maseta, golpea plegador y losaca.</td>
<td>Int</td>
<td>c</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Baja a deja plegador en el piso y buscar plegador fijo que se va usar, vuelve a la maquina.</td>
<td>Int</td>
<td>g</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Subir escalera, recoger manivela y se posiciona semaforino de guía de techo (se deja en verde)</td>
<td>Int</td>
<td>d</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Volver a posición y colocar plegador fijo.</td>
<td>Int</td>
<td>c</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Ir a buscar a zona de piezas de formato, plegador de batería y volver.</td>
<td>Ext</td>
<td>g</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Intentar colocar plegador de batería.</td>
<td>Int</td>
<td>c</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Levantar pasarela.</td>
<td>Int</td>
<td>c</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Colocar plegador de batería.</td>
<td>Int</td>
<td>c</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Ir a buscar plegador móvil y volver a máquina.</td>
<td>Ext</td>
<td>g</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Colocar plegador móvil.</td>
<td>Int</td>
<td>c</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Bajar pasarela.</td>
<td>Int</td>
<td>c</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Ir a buscar plegador fijo y volver a la maquina.</td>
<td>Ext</td>
<td>g</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Colocar plegador fijo.</td>
<td>Int</td>
<td>c</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Ir a buscar plegador de batería y volver a máquina.</td>
<td>Ext</td>
<td>g</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Colocar plegador de batería.</td>
<td>Int</td>
<td>c</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Ir a buscar plegador móvil y volver a máquina</td>
<td>Ext</td>
<td>g</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Colocar plegador.</td>
<td>Int</td>
<td>c</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Caminar hasta zona de elevador.</td>
<td>Int</td>
<td>c</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Operaciones</td>
<td>Tipo</td>
<td>Actividad</td>
<td>Ref.</td>
<td>Duración [s]</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>55</td>
<td>Retirar placas de elevador (3 placas). Y colocarlas al lado del operador.</td>
<td>Int</td>
<td>c</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Colocar placas del elevador.</td>
<td>Int</td>
<td>c</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Caminar hasta semaforinos de plegadores y paredes laterales del elevador.</td>
<td>Int</td>
<td>c</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Posicionamiento de semaforinos (5 en total).</td>
<td>Int</td>
<td>d</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Abrir puertas y caminar hacia semaforinos de bandas de sellado.</td>
<td>Int</td>
<td>c</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Ajustar semaforinos de bandas de sellado.</td>
<td>Int</td>
<td>d</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Cerrar puertas, caminar hasta semaforinos de plegador de batería.</td>
<td>Int</td>
<td>c</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Ajustar semaforinos de plegador de baterías.</td>
<td>Int</td>
<td>d</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Cerrar puertas y caminar hasta guías de traslado de polietileno.</td>
<td>Int</td>
<td>c</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Ajustar semaforinos.</td>
<td>Int</td>
<td>d</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Caminar a semaforinos de zona de lanzadores (4 en total).</td>
<td>Int</td>
<td>c</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Regular semaforinos.</td>
<td>Int</td>
<td>d</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Cerrar puerta y caminar hasta semaforinos de mesa estratificadora.</td>
<td>Int</td>
<td>c</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Regular semaforinos.</td>
<td>Int</td>
<td>d</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Caminar hasta panel móvil.</td>
<td>Int</td>
<td>c</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Levantar danzarín para extraer polietileno (1° intento).</td>
<td>Int</td>
<td>c</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Ir a cerrar puerta que se encontraba abierta.</td>
<td>Ext</td>
<td>f</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Levantar danzarín.</td>
<td>Int</td>
<td>c</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Caminar y abrir puerta de alimentación de polietileno.</td>
<td>Int</td>
<td>c</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Nº</td>
<td>Operaciones</td>
<td>Tipo</td>
<td>Actividad</td>
<td>Ref.</td>
<td>Duración [s]</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>74</td>
<td>Volver a panel, levantar el danzarín y volver a zona de alimentación de polietileno.</td>
<td>Int</td>
<td>f</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>75</td>
<td>Sacar rollo de polietileno antiguo e ir a dejarlo a tarima para devolución.</td>
<td>Ext</td>
<td>g</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>76</td>
<td>Sacar cubierta plástica (envoltorio) de polietileno a usar.</td>
<td>Ext</td>
<td>g</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>77</td>
<td>Ir a buscar un paquete de producto terminado para amortiguar la caída del rollo de polietileno.</td>
<td>Ext</td>
<td>g</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>78</td>
<td>Bajar rollo y quitar envoltorio inferior.</td>
<td>Ext</td>
<td>g</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>79</td>
<td>Empujar rollo hacia la empaquetadora y posicionarse para abrir guías.</td>
<td>Ext</td>
<td>g</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>80</td>
<td>Abrir guías de polietileno.</td>
<td>Int</td>
<td>c</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>81</td>
<td>Subir polietileno a zona de desenrollado.</td>
<td>Int</td>
<td>c</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>82</td>
<td>Tirar rollo de polietileno y cortar las primeras capas para eliminar daños de transporte.</td>
<td>Int</td>
<td>c</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>83</td>
<td>Pasar rollos por rodillos y cerrar puertas.</td>
<td>Int</td>
<td>c</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>84</td>
<td>Caminar hacia sector de correas lentas (guillotina de corte).</td>
<td>Int</td>
<td>c</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>85</td>
<td>Insertar borde de polietileno en correas lentas.</td>
<td>Int</td>
<td>c</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>86</td>
<td>Regulaciones de fase de polietileno en panel móvil.</td>
<td>Int</td>
<td>d</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>87</td>
<td>Maquina intenta detectar taca para ajustar fase.</td>
<td>Int</td>
<td>c</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>88</td>
<td>Volver al panel y reiniciar fase.</td>
<td>Int</td>
<td>c</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>89</td>
<td>Maquina realiza fase (1er intento).</td>
<td>Int</td>
<td>c</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>90</td>
<td>Desactivar maquina en panel móvil y caminar al desenrollado para centrar polietileno.</td>
<td>Int</td>
<td>c</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>91</td>
<td>Centrar polietileno y cerrar puerta y volver a panel móvil.</td>
<td>Int</td>
<td>c</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>N°</td>
<td>Operaciones</td>
<td>Tipo</td>
<td>Ref.</td>
<td>Duración [s]</td>
<td>Observaciones</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>------</td>
<td>------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>92</td>
<td>Reactivar maquina y dejar que haga fase.</td>
<td>Int</td>
<td>c</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Maquina realiza fase (2do intento).</td>
<td>Int</td>
<td>c</td>
<td>25</td>
<td>Sensor no detecta taca del polietileno.</td>
</tr>
<tr>
<td>94</td>
<td>Desactivar maquina, ir a centrar polietileno y volver a panel móvil.</td>
<td>Int</td>
<td>c</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Reiniciar fase y completar</td>
<td>Int</td>
<td>c</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Reconocimiento de taca y finaliza fase de polietileno.</td>
<td>Int</td>
<td>c</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Caminar hasta zona de alimentación de rollitos.</td>
<td>Int</td>
<td>c</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Posicionar lanzadores.</td>
<td>Int</td>
<td>d</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Posicionar barra inicial.</td>
<td>Int</td>
<td>d</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Posicionar barra final.</td>
<td>Int</td>
<td>d</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Posicionar meza estratificadora.</td>
<td>Int</td>
<td>d</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Posicionar plegadores.</td>
<td>Int</td>
<td>d</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Se posiciona producto frente a elevador para incluir polietileno.</td>
<td>Int</td>
<td>d</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Inclusión de polietileno.</td>
<td>Int</td>
<td>d</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Salida del primer paquete bueno producido.</td>
<td>Int</td>
<td>d</td>
<td>71</td>
<td></td>
</tr>
</tbody>
</table>

Referencia de tipo de actividades

<table>
<thead>
<tr>
<th></th>
<th>Herramientas</th>
<th>a</th>
<th>Descanso</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Piezas</td>
<td>b</td>
<td>Falta de habilidades</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td>Cambio</td>
<td>c</td>
<td>Falta de personal</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>Ajuste</td>
<td>d</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Para colocar plegador fijo de cabeza llevar plegador en esta dirección tal como lo muestra la figura 1.

Llevar plegador fijo en esta dirección tal como lo muestra la figura 2.

Luego girar plegador en 90° tal como lo muestra la figura 3.

Llevar plegador a enclave macho tal como lo muestra la figura 4.

Luego para finalizar la operación se debe presionar enclave macho en la dirección señalada en la figura 5.

¿por qué? Se cambia según el producto a procesar.

¿para qué? Para aumentar o compensar la carrera que debe rendir el plegador fijo de cabeza móvil.

Apéndice E. OPL desarrolladas para un cambio de plegador en la empaquetadora CMW-425.
Apéndice F. Tríptico de la metodología SMED.

Pasos mejora enfocada

Paso 0
Seleccionar la mejora

Paso 1
Comprender la situación

Paso 2
Descubrir y eliminar las anomalías

Paso 3
Análisis de causa

Paso 4
Plan de mejora

Paso 5
Implantar la mejora

Paso 6
Chequear los resultados

Paso 7
Consolidar beneficios

Consultas:
- Asistente de Smed de Conversión Rollos
- Líder Smed Depto. Conversión Rollos

Realizado por: Damián Araya

Chile 2009
¿Qué es SMED?

SMED (Single Minute Exchange Of Die), que significa, cambios menores a 10 minutos. Este concepto introduce la idea que en general cualquier cambio de máquina o partida de proceso, debería durar menos de 10 minutos. Se entiende por cambio de producto el tiempo transcurrido desde la fabricación de la última bolsa válida de una fabricación hasta la obtención de la primera bolsa correcta hacia el área de producción.

Objetivos

- Facilitar la producción en pequeños lotes.
- Mejorar la eficiencia de las líneas disminuyendo el impacto por tiempos de cambio.
- Entrega a tiempo de productos.
- Reducción de niveles de stock.
- Reducción de costos de herramientas.
- Reducción de defectos de calidad por ajustes de cambios.

Misión

Adaptar la flexibilidad de producción sin perder eficiencia

¿Qué buscamos con SMED?

- Lograr un 85% de eficiencia en las líneas, asumiendo que el mercado será cada día más exigente y se tendrán que realizar cada vez una mayor cantidad de cambios de formato.
- Implementar la herramienta en los equipos que presenten mayor frecuencia e impacto de formatos y/o productos.
- Implementar la herramienta en los procesos críticos de fabricación.
- Asegurar equipamiento con un diseño apropiado para cambio rápido.

Etapas de Smed

PASO 0
Realizar filmación y medir tiempos en cambios de formato.

Paso 1
Separar las actividades internas y externas.

PASO 2
Llevar las actividades internas a externas.

PASO 3
Perfeccionar todos los aspectos de la operación de preparación.

¿Qué otras metodologías nos ayudaran en smed para alcanzar el objetivo?

1-Mejora enfocada
2-5s
3-Mantenimiento autónomo
Apéndice G. Registro de evaluaciones.

REGISTRO DE CAPACITACION

FECHA: 24-09-2009

<table>
<thead>
<tr>
<th>ENTRENAMIENTO DE:</th>
<th>SMED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMAS CAPACITADOS:</td>
<td>SE CAPACITA SOBRE LA METODOLOGIA SMED</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DIRIGE: Damian Araya

MATERIAL: Triptico

<table>
<thead>
<tr>
<th>Nº</th>
<th>NOMBRE APELLIDO</th>
<th>RUT</th>
<th>SECCION</th>
<th>FIRMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fernando Bazán</td>
<td>15.049.185-3</td>
<td>Converción Rollos</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Patricio Vargas</td>
<td>14.047.053-8</td>
<td>Converción Rollos</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ramiro Romero</td>
<td>15.402.482-1</td>
<td>Converción Rollos</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Manuel Espinola</td>
<td>9.649.997-3</td>
<td>Converción Rollos</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Segundo Martínez</td>
<td>11.260.782-8</td>
<td>Conv. Rollos</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Fernando Dávila</td>
<td>13.811.366-9</td>
<td>Conv. Rollos</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Carlos Cabeza</td>
<td>11.568.366-5</td>
<td>Conv. Rollos</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Rodrigo Muñoz</td>
<td>9.573.055-2</td>
<td>Conv. Rollos</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Rodrigo Domínguez</td>
<td>7.055.253-8</td>
<td>Conv. Rollos</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Lupe Lucero</td>
<td>16.009.497-2</td>
<td>Conv. Rollos</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Alejandro Zavala</td>
<td>9.557.657-5</td>
<td>C. Rollos</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Nicolás García</td>
<td>8.191.150-2</td>
<td>C. Rollos</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Dey Kevin</td>
<td>9.821.644-9</td>
<td>C. Rollos</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>John Sandford</td>
<td>15.978.807-5</td>
<td>C. Rollos</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Herman Ramos</td>
<td>13.250.870-9</td>
<td>C. Rollos</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Andrés Eduardo</td>
<td>15.778.273-8</td>
<td>C. Rollos</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Luis Muñoz</td>
<td>19.372.186-2</td>
<td>C. Rollos</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Fernando Duarte</td>
<td>18.564.817-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Manuel González</td>
<td>10.556.700-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Ricardo González</td>
<td>11.883.585-9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Apéndice H. Carta Gantt de un cambio de formato en la ensacadora CMB 150

<table>
<thead>
<tr>
<th>Nº</th>
<th>Actividad</th>
<th>Detalle</th>
<th>Tareas Externas (min)</th>
<th>Tareas Internas (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solicitar lámina.</td>
<td>Preparar y dejar lámina lista para ser instalada.</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td>2</td>
<td>Preparar Piezas de</td>
<td>Conjunto de casette, poleas y correas a utilizar.</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td>Formato.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Preparar Herramientas.</td>
<td>Dejar a disposición las llaves y manivelas necesarias.</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td>4</td>
<td>Soplar (aseo).</td>
<td>Ensambladora CMB-150.</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td>5</td>
<td>Desenrollado de</td>
<td>Sacar lámina del formato anterior.</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td>Lámina.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Programa.</td>
<td></td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td>7</td>
<td>Techo de Túnel.</td>
<td>Retirar techo superior e inferior del túnel.</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td>8</td>
<td>Plegador Lado Mando.</td>
<td>Retirar base de techo superior y ajustar altura de plegador.</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td>9</td>
<td>Plegador Lado Accionamiento.</td>
<td>Retirar base de techo superior y ajustar altura de plegador.</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td>10</td>
<td>Túnel.</td>
<td>Ajustar altura lado mando.</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ajustar altura lado accionamiento.</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>11</td>
<td>Túnel.</td>
<td>Poner base y techo superior.</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>12</td>
<td>Desenrollado de</td>
<td>Poner lámina a utilizar en desenrollador.</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td></td>
<td>Lámina.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Estranguladores</td>
<td>Regulación.</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td>14</td>
<td>Acrílico de Entrada.</td>
<td>Ajuste.</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td>15</td>
<td>Desenrollador de</td>
<td>Pusar lámina por polines lado mando.</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td></td>
<td>Lámina.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Regulación.</td>
<td>Regulación final para obtener primer bulto.</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td>17</td>
<td>Casette.</td>
<td>Cambios de casette y polea.</td>
<td>OP</td>
<td>OP</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>OP</td>
<td>OP</td>
</tr>
</tbody>
</table>
Apéndice I. Identificación de piezas de formato.

<table>
<thead>
<tr>
<th>PRODUCTOS</th>
<th>Plegador Fijo</th>
<th>Plegador Movil</th>
<th>Plegador de Batería</th>
<th>Tope</th>
<th>Placas de Elevador</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Hi-Elite Ultra DH 4/48 (Laminado)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2- Hi-Elite Ultra DH 8/48 (Laminado)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3- Hi-Elite Ultra DH 12/48 (Laminado)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4- Hi-Elite Ultra DH 16/48 (Laminado)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5- Hi-Elite Ultra DH 18/72 (Laminado)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6- Hi-Elite Ultra DH 24/48 (Laminado)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7- Hi-Elite DH Perfumado 4/40 50 Mts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8- Hi-Elite DH Perfumado 12/48 50 Mts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9- Hi-Elite DH Perfumado 4/40 60 Mts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10- Hi-Elite DH Perfumado 12/48 60 Mts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11- Hi-Elite Ultra DH 8/48 Perfume</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12- Hi-Elite Ultra DH 8/48 Color</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13- Hi-Elite Premium TH 8/48 22 Mts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15- Hi-Elite UH 8/48 40 Mts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16- Hi-Hoteles TH 24/72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17- Hi-Confort 50 Mts. X 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19- Hi-Confort Blanco 8/48 40 Mts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20- Hi-Confort Blanco 16/48 40 Mts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22- Hi-Confort Celeste 8/48 40 Mts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23- Hi-Confort DH 6/48 50 Mts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24- Hi-Confort DH 8/48 50 Mts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29- Hi-Dualette DH 4/40 50 Mts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30- Hi-Hill Country Fare Manzanilla DH 12/48 23 Mts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31- Hi-Hill Country Fare Manzanilla DH 4/48 40 Mts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40- Hi-Supermaxi DH 4/40 Clas. Premium 60 Mts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41- Hi-Supermaxi DH 12/40 Clas. Premium 60 Mts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Apéndice J. Check List de Inicio en Empaquetadora CMW-425.

CHECK LIST DE INICIO

CAMBIO DE FABRICACIÓN EMPAQUETADORA CMW-425

Línea 200
Fecha: _____________

<table>
<thead>
<tr>
<th>N°</th>
<th>PROCESO</th>
<th>ACTIVIDADES</th>
<th>V°</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Chequear plegador fijo lado mando que este en su correcto posicionamiento y que este bien enclavado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Chequear plegador fijo lado accionamiento que este en su correcto posicionamiento y que este bien enclavado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cambio De Plegadores</td>
<td>Chequear plegador móvil lado mando que este en su correcto posicionamiento y que este bien enclavado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Chequear batería de plegadores lado mando que este en su correcto posicionamiento y que este bien enclavado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Chequear batería de plegadores lado accionamiento que este en su correcto posicionamiento y que este bien enclavado</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Chequear placas de elevador estén en su correcto posicionamiento y que este bien enclavadas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Cambio De Elevador</td>
<td>Chequear que polietileno retirado este en tarima para devolución y no en pie de maquina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Cambio De Polietileno</td>
<td>Chequear que polietileno retirado este en tarima para devolución y no en pie de maquina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Revision Herramientas y Piezas</td>
<td>Chequear que piezas de formato retiradas se encuentren en estante de piezas de formato y no en pie de maquina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Chequear que no se encuentren herramientas en maquina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Chequear que ningún operador se encuentre al interior de la maquina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Revision Pre Arranque De Maquina</td>
<td>Chequear que puertas de maquina estén todas correctamente cerradas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Chequear que posicionamiento de sub-equipos este correcto y no presente alguna anomalía</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cambio de:
a:

Responsable: ____________________________

78
Apéndice K. Check List de Pre-Paro en Empaquetadora CMW-425.

CHECK LIST DE PREPARO

CAMBIO DE FABRICACIÓN EMPAQUETADORA CMW-425

Línea 200

<table>
<thead>
<tr>
<th>N</th>
<th>ACTIVIDADES</th>
<th>V°</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solicitar polietileno según especificaciones técnicas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Chequear aseo de máquina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Chequear polietileno que este preparado y puesto en pie de maquina sea el correcto según especificaciones técnicas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Chequear plegador fijo lado mando que se encuentre en buen estado y que este en su posición para cambiar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Chequear plegador fijo lado accionamiento que se encuentre en buen estado y que este en su posición para cambiar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Chequear plegador móvil lado mando que se encuentre en buen estado y que este en su posición para cambiar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Chequear plegador móvil lado accionamiento que se encuentre en buen estado y que este en su posición para cambiar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Chequear batería de plegador lado mando que se encuentre en buen estado y que este en su posición para cambiar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Chequear batería de plegador lado accionamiento que se encuentre en buen estado y que este en su posición para cambiar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Chequear placas de elevador que se encuentren en condición básica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Chequear que mariposa de fijación de guías laterales de trineo esté en su posición</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Chequear maseta plástica que se encuentre en buen estado y en pie de maquina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Chequear llave Allen de 8mm que se encuentre en buen estado y en pie de maquina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Guardar parámetros de producto que se estaba procesando</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cambio de:

a: __________________________

Responsable:__________________
Apéndice L. Planilla de Incidencias en Empaquetadora CMW-425.

<table>
<thead>
<tr>
<th>N°</th>
<th>INCIDENCIA</th>
<th>HERRAMIENTA O PIEZA INVOLUCRADA</th>
<th>TIEMPO DE RETRASO ESTIMADO</th>
<th>SOLUCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBSERVACIONES GENERALES
Bibliografía

