

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA ELÉCTRICA

MODELACIÓN Y ESTUDIO DE ESTABILIDAD DEL SISTEMA DE DISTRIBUCIÓN ELÉCTRICO EN EL OBSERVATORIO ALMA

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL ELECTRICISTA

CAROLINA ALEJANDRA VÉLEZ KEITH

PROFESOR GUÍA: MARCOS ORCHARD CONCHA

MIEMBROS DE LA COMISIÓN: PABLO MEDINA COFRÉ NELSON MORALES OSORIO

> SANTIAGO DE CHILE OCTUBRE 2012

RESUMEN DE LA MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL ELECTRICISTA POR: CAROLINA VÉLEZ KEITH FECHA: OCTUBRE 2012 PROF. GUÍA: DR. MARCOS ORCHARD

Actualmente el observatorio ALMA se encuentra aún en su etapa de construcción. Por este motivo, el sistema eléctrico con el que cuentan sus instalaciones se considera provisorio y se está migrando paulatinamente a un sistema eléctrico permanente. En este proceso resulta de vital importancia realizar un acucioso análisis de estabilidad con el fin de detectar problemas que pudieran verificarse en la implementación del diseño definitivo. Dicho análisis corresponde al foco de la presente Memoria de Título.

Todo análisis de estabilidad requiere de un modelo. En el caso de este sistema , el modelo se construye usando el software DigSILENT® en base a diagramas unilineales, planos CAD, datos de placa de equipos, estudios de protecciones y estudios de consumo de las antenas instaladas actualmente. Este modelo proporciona los medios para implementar el análisis modal del sistema, el cual consiste en determinar los modos de oscilación, amortiguamiento y la actividad relativa de las variables de estado cuando un modo en particular del sistema es excitado. Específicamente, para este fin se determinan las matrices que se asocian a una representación en variables de estado del sistema linealizado; todo lo anterior mediante el software DigSILENT®.

Los resultados indican que el sistema eléctrico es estable frente a pequeñas perturbaciones y que, en los escenarios de carga estudiados, los cambios en los polos del sistema no son significativos. Tampoco se observan inestabilidades de voltaje o frecuencia o problemas con los niveles en las frecuencias de los modos oscilatorios.

En conclusión, el sistema eléctrico es estable frente a pequeñas perturbaciones. Sin embargo, el tiempo de amortiguamiento es muy alto para los modos oscilatorios, situación que puede ser mejorada con la implementación de un control suplementario como el POD, el cual modifica la parte del modo oscilatorio correspondiente al coeficiente de amortiguamiento.

Agradecimientos

Terminado este trabajo, después de todos estos años, hay mucha gente a la que me gustaría agradecer, no creo poder nombrarlos a todos ni menos uno por uno, pero algo se puede hacer.

Empiezo agradeciendo a mi familia, a mis padres y hermanos, que de una forma u otra han estado apoyándome y creyendo en mi.

A mis amigos, los que estuvieron desde el primer día, los que se fueron haciendo importantes, los que aparecieron después y los que siguen conmigo. Gracias! Creo que muchos no saben lo esencial que fueron en momentos de estrés y colapso mental mientras realizaba este trabajo.

A mi pololo! Que llegó en el momento perfecto. Gracias por estar ahí, apoyarme, escucharme y tratar de entenderme.

A toda la gente de ALMA, OSF y SCO, que estuvo siempre dispuesta a ayudarme cuando lo necesitaba, ya fuera con información para trabajar, una palabra de apoyo o acompañarme cuando necesitaba distraerme.

Quiero agradecer también a mis profesores, en especial a mi profesor guía, Marcos Orchard, que cada vez que quedaba estancada o necesitaba algún consejo para continuar, él tenía las palabras precisas para que pudiera continuar.

En fin, gracias a todos! por acompañarme y ayudarme a lo largo de estos años.

Acrónimos

ACA: Atacama Compact Array AIV: Assembly, Integration, Verification. ALMA: Atacama Large Millimiter-Submillimeter Array. AOS: Array Operations Site ESO: European South Observatory MSNM: Metros Sobre el Nivel del Mar NAOJ: National Astronomical Observatory of Japan NSF: National Science Foundation of the USA NRAO: National Radio Astronomy Observatory OSF: Operations Support Facilities PPS: Permanent Power Supply SCO: Santiago Central Offices SING: Sistema Interconectado del Norte Grande TPS: Temporary Power Supply

Índice de Contenido

Acrónimos	3
Capítulo 1	8
Introducción	8
1.1 ALMA	8
1.2 Fundamentos	. 10
1.3 Objetivos Generales	. 10
1.4 Objetivos Específicos	11
1.5 Alcances de Trabajo y Metodología	11
1.5.1 Metodología	11
Capítulo 2	. 12
Marco Teórico y Contextualización del Problema	. 12
2.1 Sistemas Eléctricos de Potencia	. 12
2.2 Sistemas Aislados v Centralizados	. 12
2.3 Estabilidad Ante Pequeñas Perturbaciones	. 13
2.3.1 Conceptos Básicos de Estabilidad	. 13
2.3.2 Representación de un Sistema Dinámico en Espacio de Estado	. 14
2.3.3 Estabilidad de Sistemas Dinámicos	17
2.3.4 Linealización de Sistemas Dinámicos	. 18
2.3.5 Análisis de Estabilidad en Sistemas Dinámicos	.22
2.3.5.1 Primer Método de Lyapunov Directo	.22
2.3.5.2 Segundo Método de Lyapunov Directo	.23
2.3.6 Propiedades de la Matriz de Estado	.24
2.3.6.1 Valores Propios	.24
2.3.6.2 Vectores Propios	.25
2.3.6.3 Matrices Modales	.26
2.3.6.4 Evolución en el Tiempo de un Sistema Dinámico	.26
2.3.6.4.1 Valores Propios v Estabilidad	.29
2.3.6.4.2 Factores de Participación	. 31
Capítulo 3	.32
Modelación del Sistema Eléctrico de Potencia	.32
3.1 Temporay Power Supply	.32
3.2 Permament Power Supply	.34
3.2.1 Elementos del Sistema	.37
3.2.1.1 Generadores	$\cdot 37$
3.2.1.2 Líneas	.38
3.2.1.3 Transformadores	.38
3.2.1.4 Flywheel	.39
3.2.1.5 Carga	.39
3.2.2 Modelo del Sistema Eléctrico	.40
Capítulo 4	.44
Análisis Modal de Sistema Eléctrico	.44
4.1 Escenario 1: 66 Antenas	.45
4.1.1 Escenario 1.1: Distribución Uniforme	.45
4.1.2 Escenario 1.2: Distribución condensada en ACA y Central Cluster	.49

4.1.3 Escenario 1.3: Distribución condensada fuera del ACA y Central Cluster 5	2
4.2 Escenario 2: 30 Antenas5	5
4.3 Escenario 3: Sin Antenas	8
Capítulo 5	2
Análisis de Resultados6	2
5.1 Curva PV	2
5.2 Modos de Oscilación del Sistema Dinámico	5
Capítulo 6	õ
Conclusiones	0
, 7	2
Anexo A	5
Anexo B	'7
Ánexo C	, 51
Anexo D	4
Anexo Eq	8
Capítulo 6	3

Índice de Tablas

Tabla 1: Datos Generador [15]	
Tabla 2: Líneas del Sistema	
Tabla 3: Transformadores del Sistema	
Tabla 4: Consumo Antenas [19]	
Tabla 5: Consumos por Área [15]	
Tabla 6: Despacho Generadores Escenario 1.1	
Tabla 7: Valores Propios Escenario 1.1	
Tabla 8: Matriz de Participación Escenario 1.1	
Tabla 9: Detalle Modos de Oscilación Escenario 1.1	
Tabla 10: Despacho Escenario 1.2	49
Tabla 11: Valores Propios Escenario 1.2	49
Tabla 12: Matriz de Participación Escenario 1.2	
Tabla 13: Detalle Modos de Oscilación Escenario 1.2	
Tabla 14: Despacho Escenario 1.3	
Tabla 15: Valores Propios Escenario 1.3	
Tabla 16: Matriz de Participación Escenario 1.3	54
Tabla 17: Detalle Modos de Oscilación Escenario 1.3	54
Tabla 18: Despacho Generadores Escenario 2	
Tabla 19: Valores Propios Escenario 2	
Tabla 20: Matriz de Participación Escenario 2	
Tabla 21: Detalle Modos de Oscilación Escenario 2	
Tabla 22: Despacho Generadores Escenario 3	58
Tabla 23: Valores Propios Escenario 3	58
Tabla 24: Matriz de Participación Escenario 3	60
Tabla 25: Detalle Modos de Oscilación Escenario 3	60
Tabla 26: Datos Curva PV	62
Tabla 27: Resumen Valores Propios con Aumento de Carga	65
Tabla 28: Valores Propios con Cambio en la Distribución de la Carga	
Tabla 29: Resumen Frecuencia de Amortiguamiento	68
Tabla 30: Coeficientes de Amortiguamiento	68

Índice de Figuras

Figura 1: Diagrama de Bloque para la representación de un sistema dinámico en Espac	io
de Estados 2	21
Figura 2: Diagrama TPS - AOS (2)	33
Figura 3: Diagrama PPS [14]	35
Figura 4: Modelo en DigSILENT de Power Station4	10
Figura 5: Modelo en DigSILENT del OSF	41
Figura 6: AOS-TB y Flywheel4	12
Figura 7: Simplificación Carga Antenas4	43
Figura 8: Valores propios Escenario 1.14	16
Figura 9: Acercamiento de valores propios Escenario 1.1	16
Figura 10: valores propios Escenario 1.25	50
Figura 11: Acercamiento de valores propios cercanos a cero Escenario 1.25	50
Figura 12: Valores propios Escenario 1.35	53
Figura 13: Acercamiento de valores propios Escenario 1.3	53
Figura 14: Valores propios Escenario 25	56
Figura 15 : Acercamiento de valores propios Escenario 2	56
Figura 16: Valores propios Escenario 3	59
Figura 17: Acercamiento valores propios Escenario 3	59
Figura 18: Curva PV AOSB36	53
Figura 19: Curva PV Esperada (3)6	53
Figura 20: Movimiento Polo Modo 26	56
Figura 21: Movimiento Polo Modo 5 6	57

Capítulo 1

Introducción

1.1 ALMA

El origen de ALMA (Atacama *Large Millimiter/Submillimiter Array*) se remonta a finales del siglo pasado, en que astrónomos europeos, norteamericanos y japoneses estudiaron la posibilidad de construir grandes conjuntos de radiotelescopios milimétricos/submilimétricos; discutiéndose, entre otras cosas, la posible ubicación de éste, siendo en 1995 la primera prueba de sitio con Chile. Al ser un proyecto demasiado ambicioso no era posible que fuera realizado por una sola comunidad; de esta manera la comunidad norteamericana, a través de la NSF (*National Science Foundation*), la comunidad europea, mediante la ESO (*European Southern Observatory*), y Japón, mediante la NAOJ (*National Astronomical Observatory of Japan*) firman un acuerdo trilateral para la construcción de ALMA.

El Observatorio Radioastronómico ALMA cuenta actualmente con 3 centros de operaciones llamados OSF (*Operations Support Facility*), AOS (*Array Operations Site*) y SCO (*Santiago Central Offices*). El OSF y AOS se encuentran ubicados en la segunda región de Chile a 40 km de San Pedro de Atacama.

Actualmente, el centro de operaciones OSF es donde se encuentran los contratistas del sitio y el personal ALMA. Éste no solo sirve como campamento base, sino que es también el centro de todas las actividades de Ensamblaje-Integración-Verificación, AIV por sus sigla en inglés (Assembly-Integration-Verification) de antenas. Para esta tarea han dispuesto tres áreas separadas entre sí.

- VERTEX Norteamérica
- MELCO Japón
- Consorcio AEM Europa

Luego del ensamblaje de las antenas, las actividades AIV se llevan a cabo en el OSF; esto después de la aprobación preliminar y antes de ser trasladadas al AOS.

Cuando el observatorio ALMA entre a la fase de operación completa, el OSF y sus instalaciones técnicas se convertirán en el centro de todas las actividades científicas relacionadas con las observaciones diarias realizadas en éste. Durante esta fase, el OSF será el lugar de trabajo de astrónomos y equipos responsables de mantener funcionando adecuadamente todas las antenas e instalaciones del proyecto.

Las instalaciones del observatorio correspondientes al OSF y AOS, al encontrarse en un lugar de difícil acceso no poseen alimentación eléctrica mediante el SING (Sistema Interconectado del Norte Grande); lo que hace que actualmente se encuentren operando en base a pequeños generadores a petróleo para las instalaciones. Esta situación plantea una serie de desafíos, como la creación y mantención de un sistema eléctrico confiable que sea seguro y suficiente.

Las áreas que requieren alimentación eléctrica dentro del Sitio (OSF y AOS) se pueden distinguir dentro de las siguientes:

- OSF
 - OSF Technical Facilities
 - o Antenna Area
 - o Antenna Shed Area
 - o ALMA Hotel
- AOS
 - AOS Technical Building
 - o Flywheel
 - o Antenas

Este Trabajo de Memoria plantea un estudio de estabilidad mediante un análisis modal, para distinguir el tipo de estabilidad y los elementos con los que se debe tener cuidado con el aumento o disminución de carga en el sistema.

1.2 Fundamentos

La alimentación eléctrica de las instalaciones de ALMA actualmente se realiza mediante generadores eléctricos a combustible diesel. El combustible se almacena en estanques para cada generador. El monitoreo de los niveles de estos estanques no es en tiempo real y es poco preciso, por lo que existe la posibilidad de quedarse sin combustible, provocando "black-out" en algunas zonas del sitio generando grandes pérdidas en tiempo de observación. Para tener una mayor seguridad en el abastecimiento eléctrico de las instalaciones de ALMA, se están instalando tres turbinas a gas para la alimentación eléctrica. Estas turbinas se encontrarán en el OSF, a 2900 msnm, pero también alimentarán el AOS; esto mediante una línea de media tensión hasta los 5000 msnm en el llano de Chajnantor.

En esta Memoria de Título se busca modelar el sistema de distribución eléctrica, utilizando el software DigSILENT para dichos fines. Se elige esta herramienta ya que permite realizar simulaciones de prueba, análisis de falla y obtener modos y valores propios de la matriz de estado del sistema, con la que se analizará la estabilidad del mismo. En la actualidad, respecto a la matriz energética, solo existen los planos unilineales en CAD del sistema de distribución, los cuales no incluyen las nuevas instalaciones para el abastecimiento eléctrico, ni es posible realizar pruebas ni simulaciones, para observar cómo se comportaría el sistema frente a determinados eventos como fallas y entradas de nuevas cargas al sistema; teniendo de esta manera mayor conocimiento del sistema eléctrico.

1.3 Objetivos Generales

Los objetivos generales que se busca cumplir en este trabajo son:

- Modelación del sistema de distribución eléctrico del Operation Support Facility (OSF) y Array Operations Site (AOS) del Observatorio radioastronómico ALMA en la Región de Antofagasta.
- Estudio de estabilidad del sistema de distribución eléctrico en ALMA.

1.4 Objetivos Específicos

- Modelación de la matriz energética en el Software DigSilent.
- Estudio de estabilidad mediante simulaciones en DigSilent.
- Encontrar rango de operación del sistema eléctrico.
- Encontrar modos y valores propios del sistema eléctrico.
- Analizar factores de participación del sistema eléctrico.

1.5 Alcances de Trabajo y Metodología.

La importancia de este proyecto radica principalmente en que se tendrá un modelo del sistema eléctrico completo, en el cual se podrán realizar las simulaciones y pruebas necesarias antes de realizar cambios importantes o grandes conexiones o desconexiones del sistema. Este modelo en software será una gran herramienta para el equipo de ALMA al momento de realizar mantención o cambios en el sistema eléctrico.

1.5.1 Metodología

Se realizará la modelación del sistema de distribución eléctrica de ALMA, estudios de estabilidad del sistema, esto es, pruebas de robustez del sistema, conexión y desconexión de cargas. Además, se obtendrá el rango de operación del mismo. Con las pruebas mencionadas, será posible saber cómo se comporta el sistema completo frente a determinadas situaciones; es decir, si la entrada necesaria de cierta carga hace caer una barra del sistema según simulación, será conveniente desconectar esa barra antes de la conexión, y luego hacerla entrar de manera segura. Se espera que los resultados de este estudio ayuden a crear planes para entrada de cargas al sistema, buscando el momento óptimo para realizar dicha acción sin necesidad de desenergizar parte del sistema. Adicionalmente, en caso de no ser posible lo anterior, programar la desenergización segura de los sectores que se verán afectados, de manera tal que las pérdidas sean mínimas.

Capítulo 2

Marco Teórico y Contextualización del Problema

2.1 Sistemas Eléctricos de Potencia

Un Sistema Eléctrico de Potencia (SEP) corresponde al conjunto de instalaciones que permite generar, transportar y distribuir la energía eléctrica en condiciones adecuadas de tensión, frecuencia y disponibilidad.

Existen diversas topologías para los SEP, entre las que se cuentan: [1]

- <u>Sistemas Radiales</u>: son aquellos en los que desde una determinada subestación salen uno o más alimentadores, cada uno de los cuales puede o no ramificarse, pero que jamás vuelven a encontrar un punto común.
- 2) <u>Sistemas en Anillo (bucle)</u>: son aquellos en los que se aumenta la seguridad de servicio alimentándose en paralelo desde 2 o tres fuentes a la vez mediante líneas continuas, sin interrupciones. El número de anillos así formados es siempre reducido y cada uno puede contener derivaciones más o menos importantes.
- 3) <u>Sistemas Enmallados</u>, son aquellos en los que todas las líneas forman anillos, de manera que se forma una estructura semejante a una malla. Esta disposición exige que todos los tramos de línea acepten sobrecargas permanentes, y estén premunidos de equipos de desconexión en ambos extremos.

2.2 Sistemas Aislados y Centralizados

Las estrategias de electrificación se pueden clasificar en función del esquema de distribución de electricidad, en sistemas aislados y centrales eléctricas autónomas también denominadas micro-redes.

Los sistemas aislados se utilizan para proveer de electricidad a una única vivienda, centro público o aplicación productiva. Pueden limitarse también a suministrar servicios básicos, como iluminación, incluir equipos electrónicos (de bajo consumo de energía), sanitarios de telecomunicación y recreativos.

Los sistemas centralizados están destinados a suministrar electricidad a diversos usuarios, tanto privados como públicos, que se encuentren físicamente agrupados. El rango de consumos puede ser variado; tienen capacidades de generación entre los W y los kW. Las propias compañías de electricidad optan por las micro-redes cuando la comunidad de usuarios está alejada de la red de distribución interconectada, por medio de generadores diesel habitualmente [2].

Un elemento importante en el diseño y análisis de los sistemas eléctricos de potencia es establecer su estabilidad, de esta manera es posible evitar resonancias entre equipos de generación, alzas de voltaje y daños a equipos de consumo. Existen diferentes métodos para determinar la condición de estabilidad asociada a un sistema dado, y también para mejorarla. Existen publicaciones en que se propone, por ejemplo, la modificación del sistema a través de compensadores (FATCs, VARs) con el propósito de mejorar su desempeño y estabilidad [3], [4].

2.3 Estabilidad Ante Pequeñas Perturbaciones

2.3.1 Conceptos Básicos de Estabilidad

La estabilidad de pequeña señal se define como la habilidad de un sistema dinámico para permanecer estable en la presencia de pequeñas perturbaciones. Estas perturbaciones pueden ser variaciones menores en la carga o generación del sistema. Si no hay una amortiguación de torque suficiente en una máquina generadora, esto puede tener como resultado oscilaciones en el ángulo de rotor de amplitud creciente [5]. La estabilidad de un sistema está relacionada con la evolución en el tiempo a partir de una condición de equilibrio, que es gobernada por la interacción de fuerzas que lo sacan del equilibrio y de fuerzas restauradoras que tratan de volverlo al equilibrio inicial.

Frente a perturbaciones pequeñas, las ecuaciones dinámicas que describen al sistema pueden ser linealizadas y la estabilidad puede ser estudiada en el dominio de Laplace mediante las raíces del polinomio característico del determinante del sistema de ecuaciones, lo que se conoce como el primer método de Lyapunov indirecto.

Si la perturbación es mayor, la linealización ya no es válida y en tal caso existen dos formas de analizar la estabilidad. La primera, método de simulación, consiste en resolver en el tiempo el sistema de ecuaciones diferenciales que determina la dinámica del sistema. La segunda, conocida como segundo método de Lyapunov, se basa en la definición de ciertas funciones representativas del sistema, llamadas funciones de Lyapunov, cuyas características indican si el sistema es estable o no. Sin embargo, estas funciones son difíciles de encontrar, por lo que no siempre es posible aplicar este método en la práctica.

2.3.2Representación de un Sistema Dinámico en Espacio de Estado

El espacio de estado es el espacio euclidiano de n dimensiones (las n variables de estado) en el que se representa el estado del sistema. La trayectoria de un estado es el conjunto de puntos representativo de la evolución del estado del sistema en el espacio de estado, siendo el origen de la trayectoria el punto de partida de ella.

El concepto de estado de un sistema dinámico se refiere al conjunto mínimo de variables, conocidas como variables de estado, que describen completamente al sistema y su respuesta a cualquier conjunto de entradas dadas [6].

Es así como para describir el estado de un sistema se define un conjunto (sistema) de n variables x_i linealmente independientes, llamadas variables de estado. En los sistemas

de potencia las variables empleadas normalmente son la tensión y ángulo de las barras del sistema. En general, la forma de representar un estado no es única, de manera que el conjunto de variables de estado tampoco lo es. [1]

El control de la evolución de los sistemas se realiza con ayuda de un conjunto de variables llamadas variables independientes, variables de control o entradas, denotadas como u_j . En el caso de los sistemas de potencia, corresponden a las potencias mecánicas entregadas por las turbinas, las consignas de tensión de los generadores y las referencias de los lazos de control.

Cualquier otra variable en el sistema (salida) puede ser expresada en función de las variables de estado y de control, según:

$$y = g(x, u), \tag{1}$$

donde

 $\mathbf{y} = [y_1 y_2 \dots y_m]^T$: Vector de salidas

 $g = [g_1g_2 \dots g_m]^T$: Vector de funciones no lineales que relaciona las salidas con las entradas

Los parámetros del sistema son los valores que determinan la estructura del sistema. En el caso de los sistemas de potencia se consideran como parámetros las admitancias de los equipos de la red; los límites de operación de las máquinas y equipos; las admitancias permanente, transitoria y subtransitoria de los generadores; la razón de transformación de los transformadores; las constantes de tiempo de los reguladores y los retardos de operación de los equipos de control.

En base a lo expresado anteriormente, el sistema dinámico es aquel sistema que puede ser representado por un conjunto de *n* ecuaciones diferenciales de primer orden:

$$\frac{dx}{dt} = f(x, u, t),\tag{2}$$

en que:

 $[x] = [x_1 x_2 \dots x_n]^T$: Vector de estado

 $[u] = [u_1 u \dots u_r]^T$: Vector de entradas

 $[f] = [f_1 f_2 \dots f_n]^T$: Vector que describe la estructura del sistema.

El sistema será autónomo si las derivadas de las variables de estado no son funciones explícitas del tiempo *t*:

$$\frac{dx}{dt} = f(x, u, t) \Leftrightarrow \frac{dx}{dt} = f(x, y, t).$$
(3)

$$[x(t_0)] = \mathbf{x}_0 \tag{4}$$

Un punto de equilibrio x_e se define como aquel donde todas las derivadas de la trayectoria de estado x(t) valen simultáneamente cero, por lo que el sistema se encuentra en equilibrio.

$$f(\mathbf{x}_e, \mathbf{u}, t) = 0 \tag{5}$$

en que:

 $[x_e] = x_e$: Vector de estado en el punto de equilibrio.

Si las funciones f_i son lineales, entonces el sistema puede representarse:

$$\frac{\mathrm{dx}}{\mathrm{dt}} = \mathrm{Ax} + \mathrm{Bu} \tag{6}$$

y existe un punto de equilibrio $x_e = -A^{-1}Bu$

Si las funciones son no-lineales, como ocurre en los sistemas eléctricos de potencia, puede existir más de un punto de equilibrio. En este caso, los puntos de equilibrio dependen en general del tipo y magnitud de las entradas y del estado inicial.

2.3.3Estabilidad de Sistemas Dinámicos

Sea el sistema dinámico definido por:

$$\frac{d\mathbf{x}}{d\mathbf{t}} = \mathbf{f}(\mathbf{x}, t), \tag{7}$$
$$\mathbf{x}(t_0) = \mathbf{x}_0$$

se dirá que un estado de equilibrio x_e es estable en el sentido Lyapunov (ESL), sí y solo sí $\forall \varepsilon > 0 \exists \delta(\varepsilon, t_0) < 0$, tal que $||x_0 - x_e|| < \delta \Rightarrow ||x(t, x_0, t_0) - x_e|| < \varepsilon, \forall t > t_0$. Esto significa que siempre se puede acotar la evolución del sistema en el tiempo, escogiendo una región acotada para la perturbación inicial [7][8].

El sistema es inestable si no existe un δ tal que se satisfagan las condiciones anteriores.

El estado de equilibrio es asintóticamente estable según Lyapunov (AESL), si es ESL y además $\lim_{t\to\infty} ||\mathbf{x}|| = \mathbf{x}_e$, con algún \mathbf{x}_0 cercano a \mathbf{x}_e . En esta definición x no puede salir de la esfera de radio ε , ya que es ESL [9].

Nótese que la perturbación se supone aplicada para $t = t_0$ y su magnitud está asociada a la distancia entre el estado de equilibrio y la condición inicial, esto es, mientras mayor sea la perturbación, más lejos apartará al sistema de su condición de equilibrio.

Si el sistema es autónomo, como en el caso de los sistemas eléctricos de potencia, se cumple:

$$\frac{\mathrm{dx}}{\mathrm{dt}}(t) = f(x), \tag{8}$$
$$x(t_0) = x_0$$

Entonces, si x(*t*) es una solución, $x(t - t_0)$ también lo es. Por lo tanto, en este caso se dirá que la solución es estable si y solo si $\forall \varepsilon > 0 \exists \delta(\varepsilon) > 0$, tal que:

$$\|x_0 - x_e\| < \delta \Rightarrow \|x(t, x_0, t_0) - x_e\| < \varepsilon, \forall t > t_0$$

Según sea la magnitud de la perturbación operante, se definen 2 tipos de estabilidad:

- <u>Estabilidad Ante Pequeñas Perturbaciones</u>: en la que el sistema es sometido a una perturbación de pequeña magnitud, permanece realizando ciclos en una zona estrecha en torno al punto de equilibrio. Si el sistema vuelve al punto de equilibrio, se dice asintóticamente estable [9].
- <u>Estabilidad Ante Grandes Perturbaciones</u>: en la que el sistema es sometido a una perturbación de mayor magnitud, permanece realizando ciclos en una región finita *D*, del espacio de estado. Si el sistema vuelve al punto de equilibrio, se dice asintóticamente estable en la región finita *D*. Si *D* incluye todo el espacio de estado, se habla de estabilidad global [9].

2.3.4 Linealización de Sistemas Dinámicos

La linealización es un procedimiento que permite aproximar un modelo no lineal, por otro que si lo es y que, por lo tanto, cumple con todas las propiedades de los sistemas lineales [10].

Para linealizar un sistema, se debe hacer en torno a un punto de operación. Se tiene x_0 y u_0 el vector de estado y el vector de entrada iniciales correspondientes al punto de operación sobre el cual se estudia el análisis de pequeña señal. Como x_0 y u_0 cumplen con la ecuación del sistema, se tiene:

$$\dot{\mathbf{x}}_0 = \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0) = 0.$$
 (12)

Perturbando el sistema desde el estado mencionado, se tiene:

$$x = x_0 + \Delta x \qquad u = u_0 + \Delta u. \tag{13}$$

En el que Δ denota una pequeña perturbación. El nuevo estado debe satisfacer la ecuación del sistema, de esta manera:

$$\dot{x} = \dot{x}_0 + \Delta x$$

= f[(x_0 + \Delta x), (u_0 + \Delta u)]. (14)

Como las perturbaciones son pequeñas, la funciones no lineales f(x,u) pueden ser expresadas en términos de la expansión de la serie de Taylor. Donde los términos correspondientes al segundo y mayor orden de Δx y Δu son ignorados, se puede escribir:

$$\dot{x}_{i} = \dot{x}_{i0} + \Delta \dot{x} = f_{i}[(x_{0} + \Delta x), (u_{0} + \Delta u)] =$$

$$= f_{i}(x_{0}, u_{0}) + \frac{\partial f_{i}}{\partial x_{1}} \Delta x_{1} + \dots + \frac{\partial f_{i}}{\partial x_{n}} \Delta x_{n}$$

$$+ \frac{\partial f_{i}}{\partial u_{1}} \Delta u_{1} + \dots + \frac{\partial f_{i}}{\partial u_{r}} \Delta u_{r}.$$
(15)

Dado que $\dot{x}_{i0} = f(x_0, u_0)$, se obtiene:

$$\Delta \dot{x} = \frac{\partial f_i}{\partial x_1} \Delta x_1 + \dots + \frac{\partial f_i}{\partial x_n} \Delta x_n + \frac{\partial f_i}{\partial u_1} \Delta u_1 + \dots + \frac{\partial f_i}{\partial u_r} \Delta u_r,$$
(16)

con i = 1, 2, ... n. De la ecuación (1) se tiene:

$$\Delta y_j = \frac{\partial g_i}{\partial x_1} \Delta x_1 + \dots + \frac{\partial g_i}{\partial x_n} \Delta x_n + \frac{\partial g_i}{\partial u_1} \Delta u_1 + \dots + \frac{\partial g_i}{\partial u_r} \Delta u_r, \tag{17}$$

con j = 1, 2, ... m. De esta manera, las ecuaciones del sistema linealizado son las siguientes:

$$\Delta \dot{x} = A \Delta x + B \Delta u$$

$$\Delta y = C \Delta x + D \Delta u$$
(18)

donde:

$$A = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix} \qquad B = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \cdots & \frac{\partial f_1}{\partial u_r} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial u_1} & \cdots & \frac{\partial f_n}{\partial u_r} \end{bmatrix} \qquad (19)$$
$$C = \begin{bmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_m}{\partial x_1} & \cdots & \frac{\partial m}{\partial x_n} \end{bmatrix} \qquad D = \begin{bmatrix} \frac{\partial g_1}{\partial u_1} & \cdots & \frac{\partial g_1}{\partial u_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_m}{\partial u_1} & \cdots & \frac{\partial m}{\partial u_n} \end{bmatrix}$$

Las derivadas parciales son evaluadas en el punto de equilibrio, en el cual la pequeña perturbación se analiza.

 Δx : vector de estado de dimensión *n*.

 Δy : vector de salida de dimensión *m*.

 Δu : vector de entrada de dimensión r.

A: estado o planta de tamaño $n \times n$.

B: control o matriz de entrada de tamaño $n \times r$.

C: matriz de salida de tamaño $m \times n$.

D: matriz que define la proporción de la entrada que aparece directamente en la salida de tamaño $m \times r$.

Tomando la transformada de Laplace a las ecuaciones (18) - (19), se obtienen las ecuaciones de estado en el dominio de la frecuencia:

$$s\Delta x(s) - \Delta x(0) = A\Delta x(s) + B\Delta u(s)$$
(20)
$$\Delta y = C\Delta x(s) + D\Delta u(s)$$
(21)

Figura 1: Diagrama de Bloque para la representación de un sistema dinámico en Espacio de Estados.

En la Figura 1 se muestra el diagrama de bloques de la representación en espacio de estados. Dado que se representa la función de transferencia del sistema, las condiciones iniciales se asumen iguales a cero.

Una solución formal de las ecuaciones de estado se puede obtener resolviendo para $\Delta x(s)$ y evaluando $\Delta y(s)$ como sigue:

$$(sI-A)\Delta x(s) = \Delta x(0) + B\Delta u(s).$$
⁽²²⁾

Entonces,

$$\Delta \mathbf{x}(s) = (s\mathbf{I}-\mathbf{A})^{-1} [\Delta \mathbf{x}(0) + \mathbf{B}\Delta \mathbf{u}(s)]$$
(32)
= $\frac{\mathrm{adj}(s\mathbf{I}-\mathbf{A})}{\mathrm{det}(s\mathbf{I}-\mathbf{A})} [\Delta \mathbf{x}(0) + \mathbf{B}\Delta \mathbf{u}(s)],$ (33)

y de la misma manera:

$$= C \frac{\operatorname{adj}(sI-A)}{\operatorname{det}(sI-A)} [\Delta x(0) + B\Delta u(s)] + D\Delta u(s).$$
(33)

Las transformadas de Laplace de Δx y Δy son vistas como dos componentes, una dependiente de las condiciones iniciales y la otra de las entradas. Estas son las componentes de las transformadas de Laplace de estado libre y estado cero de los vectores de estado y salida.

Los polos de Δx y Δy son las raíces de la ecuación

$$\det(sI-A) = 0 \tag{34}$$

Los valores de *s* que satisfacen la ecuación de arriba son conocidos como los valores propios de la matriz A y la ecuación (34) es conocida como la ecuación característica de la matriz A.

2.3.5Análisis de Estabilidad en Sistemas Dinámicos

2.3.5.1 Primer Método de Lyapunov Directo

La definición de Lyapunov aplicada al sistema (18) - (19) se traduce en las siguientes condiciones: [9][1]

- Si todos los valores propios tienen parte real negativa (*Re*(λ_i) < 0), el sistema es asintóticamente estable.
- Si el conjunto de valores propios, unos tienen parte real negativa, mientras que los restantes tienen parte real nula (*Re*(λ_i) = 0), el sistema es estable, pero no asintóticamente.
- Si al menos un valor propio tiene parte real positiva (*Re*(λ_i) > 0), el sistema es inestable.

En consecuencia, la estabilidad de un sistema linealizado queda determinada por los valores propios de A. Esto se conoce como el primer método de Lyapunov.

Cuando no existe la posibilidad de linealizar el sistema, se hace uso del segundo método de Lyapunov o método directo, el cual no requiere de la solución explícita de las ecuaciones diferenciales del sistema.

2.3.5.2 Segundo Método de Lyapunov Directo

Este método pretende determinar la estabilidad del sistema de manera directa usando funciones que se ajustan al sistema definidas en el espacio de estado. Para esto se considera el signo de la función de Lyapunov y el signo de la derivada en el tiempo con respecto a las ecuaciones del sistema de estado.

El equilibrio de la ecuación (3) es estable si es que existe una función positiva $V(x_1, x_2, ..., x_n)$ tal que su derivada total \dot{V} con respecto a la ecuación (3) no sea positiva.

El equilibrio de la ecuación (3) es asintóticamente estable si es existe una función definida positiva $V(x_1, x_2, ..., x_n)$ tal que su derivada total \dot{V} con respecto a la ecuación (3) sea negativa.

El sistema es estable en la región en que \dot{V} es semidefinida negativa y asintóticamente estable si \dot{V} es definida negativa.

Cabe mencionar que la matriz A es conocida como la matriz Jacobiana, la cual se compone por las derivada parciales $\partial f_i / \partial x_j$ evaluada en el punto de equilibrio cerca de donde se realiza el análisis de pequeña señal. Es matriz también es llamada matriz de estado o matriz planta. El término planta se origina del área de control de procesos y se ha arraigado al vocabulario de la ingeniería de control. Representa la parte del sistema que será controlado [11].

2.3.6Propiedades de la Matriz de Estado

2.3.6.1 Valores Propios

Los valores propios de la matriz están dados por los valores del parámetro escalar λ para el cual existen soluciones no triviales, es decir $\phi \neq 0$ para la ecuación:

$$A\phi = \lambda\phi$$
, (35)

donde:

A: es una matriz de $n \times n$. ϕ : es un vector de $n \times 1$.

Para encontrar los valores propios, la ecuación (35) se escribe como:

$$(A - \lambda I)\phi = 0, \qquad (36)$$

para una solución no trivial se calcula:

$$\det(\mathbf{A} - \lambda \mathbf{I})\phi = \mathbf{0}.$$
 (37)

La expansión del determinante entrega la ecuación característica. Las *n* soluciones de $\lambda = \lambda_1, \lambda_2, ..., \lambda_n$ son los valores propios de A.

Los valores propios pueden ser reales o complejos. Si A es real, los valores propios complejos siempre serán complejos conjugados.

Matrices similares tendrán los valores propios idénticos. También es posible demostrar que una matriz y su traspuesta poseen los mismos valores propios.

2.3.6.2 Vectores Propios

Para cada valor propio λ_i , el *n*-ésimo vector columna ϕ_i que satisface la ecuación (35) se llama vector propio derecho de A asociado al valor propio λ_i . Entonces, se tiene:

$$A\phi_i = \lambda_i \phi_i \qquad i = 1, 2, \dots, n \tag{38}$$

El vector propio tiene la forma:

$$A\phi_{i} = \begin{bmatrix} \phi_{1i} \\ \phi_{2i} \\ \vdots \\ \phi_{ni} \end{bmatrix}$$
(39)

Dado que la ecuación (37) es homogénea, $k\phi_i$, donde k es un escalar, también es una solución. De esta manera, los vectores propios son determinados solo con un escalar como multiplicador.

Similarmente, el *n*-ésimo vector fila ψ_i el cual satisface

$$\psi_i \mathbf{A} = \lambda_i \psi_i \qquad i = 1, 2, \dots, n \tag{40}$$

Este vector es llamado vector propio izquierdo asociado al valor propio λ_i .

Los vectores propios derecho e izquierdo correspondientes a los diferentes valores propios son ortogonales. En otras palabras, si $\lambda_i \neq \lambda_j$,

$$\psi_i \phi_i = 0. \tag{41}$$

En el caso de los vectores propios izquierdo y derecho del mismo valor propio,

$$\psi_i \phi_i = \mathcal{C}_i , \qquad (42)$$

donde C_i es una constante distinta de cero.

Los vectores propios se determinan solo con un escalar como multiplicador, por lo que es común normalizar estos vectores de manera que:

$$\psi_i \phi_i = 1 \tag{43}$$

2.3.6.3 Matrices Modales

Para expresar las propiedades de valores y vectores propios de A, es conveniente presentar las siguientes matrices.

$$\Phi = \begin{bmatrix} \phi_1 & \phi_2 & \dots & \phi_n \end{bmatrix}$$
(44)

$$\Psi = \begin{bmatrix} \Psi_1^I & \Psi_2^I & \dots & \Psi_n^I \end{bmatrix}$$
(45)

Λ: matriz diagonal con los valores propios $\lambda_1, \lambda_2, ..., \lambda_n$ (46)

Las matrices tiene dimensión $n \times n$, En términos de estas matrices, las ecuaciones (38) y (43) se pueden escribir como sigue:

$$A\Phi = \Phi\Lambda \tag{47}$$

$$\Psi\Phi = I \quad \Psi = \Phi^{-1} \ . \tag{48}$$

De la ecuación (47) se tiene:

$$\Phi^{-1}A\Phi = \Lambda \,, \tag{49}$$

donde Λ es la matriz diagonal con los valores propios del sistema.

2.3.6.4 Evolución en el Tiempo de un Sistema Dinámico

Refiriéndose a la ecuación de estado (21), se observa que la respuesta (con entrada cero) está dada por:

$$\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} \,. \tag{50}$$

Un set de ecuaciones de la misma forma, derivadas de las consideraciones físicas, no es la mejor manera de analizar la respuesta en el tiempo. El problema está en que la velocidad de cambio de cada variable de estado es una combinación lineal de todas las variables de estado. Como resultado de este acoplamiento entre variables de estado, se considera un nuevo vector z relacionado al vector de estado original Δx mediante la transformación:

$$\Delta x = \Phi z , \qquad (51)$$

donde Φ es la matriz modal de A ya definida. Sustituyendo la expresión de arriba por Δx en la ecuación (50) se tiene:

$$\Phi \dot{z} = A \Phi z . \tag{52}$$

La nueva ecuación de estado queda descrita por:

$$\dot{z} = \Phi^{-1} A \Phi z , \qquad (53)$$

de esta manera la ecuación (49) queda como:

$$\dot{z}=\Lambda z$$
. (54)

La diferencia importante entre las ecuaciones (50) y (54) es que Λ es una matriz diagonal, cuando A no lo es.

La ecuación (54) representa n ecuaciones desacopladas de primer orden:

$$\dot{z}_i = \lambda_i z_i \qquad i = 1, 2, \dots, n \tag{55}$$

El efecto de la transformación (51) es tener ecuaciones de estado desacopladas.

La ecuación (55) es una ecuación diferencial de primer orden cuya solución respecto al tiempo está dada por:

$$z_i(t) = z_i(0)e^{\lambda_i t}, \qquad (56)$$

donde $z_i(0)$ es el valor inicial de z_i .

Volviendo a la ecuación (51), la respuesta en términos del vector de estado original está dado por:

$$\Delta \mathbf{x}(t) = \Phi \mathbf{z}(t)$$

$$= [\phi_1 \quad \phi_2 \quad \dots \quad \phi_n] \begin{bmatrix} z_1(t) \\ z_2(t) \\ \vdots \\ z_n(t) \end{bmatrix}.$$
(57)

que, teniendo en cuenta la ecuación (56), implica que:

$$\Delta \mathbf{x}(t) = \sum_{i=1}^{n} \phi_i z_i(0) e^{\lambda_i t} .$$
(58)

De la ecuación (57), se tiene:

$$z(t) = \Phi^{-1} \Delta x(t)$$

= $\Psi \Delta x(t)$. (59)

Esto implica que:

$$z_i(t) = \Psi_i \Delta x(t) , \qquad (60)$$

con t = 0, se tiene que:

$$\mathbf{z}_i(0) = \Psi_i \Delta \mathbf{x}(0). \tag{61}$$

Usando c_i para denotar el producto escalar de $\Psi_i \Delta x(0)$, la ecuación (58) puede ser escrita como:

$$\Delta \mathbf{x}(t) = \sum_{i=1}^{n} \phi_i c_{ii} e^{\lambda_i t} .$$
(62)

En otras palabras, el tiempo de respuesta de la i-ésima variable está dada por:

$$\Delta \mathbf{x}_i(t) = \phi_{i1} c_1 e^{\lambda_1 t} + \phi_{i2} c_2 e^{\lambda_2 t} + \dots + \phi_{in} c_n e^{\lambda_n t}$$
(63)

La ecuación (63) da la expresión para la respuesta en el tiempo del movimiento del sistema en término de los valores y vectores propios, tanto derechos como izquierdos.

De esta manera, la respuesta libre está dada por una combinación lineal de n modo dinámicos correspondientes a los n valores propios de la matriz de estado.

El producto escalar $c_i = \Psi_i \Delta x(0)$ representa la magnitud de la excitación del *i*-ésimo modo resultante desde las condiciones iniciales.

Si la condición inicial se encuentra a lo largo del *j*-ésimo vector propio, los productos escalares de $\psi_i \Delta x(0)$ para todo $i \neq j$ son idénticamente cero. Por esto, solo el *j*-ésimo modo es excitado.

Si el vector representante de la condición inicial no es un vector propio, puede ser representado por una combinación lineal de ellos. La respuesta del sistema será la suma de las n respuestas. Si una componente a lo largo del vector propio inicial es cero, entonces el modo correspondiente no se encontrará excitado. [12]

2.3.6.4.1 Valores Propios y Estabilidad

Las características dependientes del tiempo de un modo correspondientes a un valor propio λ_i están dadas por $e^{\lambda_i t}$. De esta manera, la estabilidad del sistema está determinada por los valores propios según:

 Un valor propio real corresponde a un modo no oscilatorio. Uno valor propio real negativo representa un modo de decaimiento. Mientras mayor sea su magnitud, mas rápido decae. Un valor propio positivo representa una inestabilidad no periódica. • Valores propios complejos ocurren en pares conjugados, y cada par corresponde a un modo oscilatorio.

Las constantes *c*'s y vectores propios asociados tendrán valores complejos apropiados para hacer las entradas x(t) reales en cada instante de tiempo. Por ejemplo:

$$(a+jb)e^{(\sigma-j\omega)t} + (a-jb)e^{(\sigma+j\omega)t},$$

tiene la forma

$$e^{\sigma t}\sin(\omega t+\theta),$$

que representa una sinusoide amortiguada para σ negativo.

La componente real de los valores propios representa el amortiguamiento y la parte imaginaria da la frecuencia de oscilación. Una parte real negativa representa la oscilación amortiguada donde la parte real corresponde a la oscilación aumentando en amplitud. De esta manera, para los pares de valores propios complejos:

$$\lambda = \sigma \pm j\omega \tag{64}$$

La frecuencia de oscilación en Hz está dada por:

$$f = \frac{\omega}{2\pi} \tag{65}$$

Esta representa la frecuencia real o frecuencia amortiguada. EL radio de decaimiento está dado por:

$$\xi = \frac{-\sigma}{\sqrt{\sigma^2 + \omega^2}} \tag{66}$$

El radio de decaimiento ξ determina la velocidad con la que decae la amplitud de la oscilación. La constante de tiempo de decaimiento de la amplitud es $1/|\sigma|$. En otras

palabras, la amplitud decae a (1/e) o 37% de la amplitud inicial en $1/|\sigma|$ segundos en $1/(2\pi\xi)$ ciclos de oscilación.

2.3.6.4.2 Factores de Participación

Para identificar la relación entre los estados y los modos de un sistema, se construye la Matriz de Participación (P), ya que los vectores izquierdos son dependientes en unidades y escala a sus valores propios asociados. La matriz P combina los vectores propios derechos e izquierdos como sigue:

$$P = [p_1 \quad p_2 \quad \dots \quad p_n]$$
(67A)

con

$$p_{i} = \begin{bmatrix} p_{1i} \\ p_{2i} \\ \vdots \\ p_{ni} \end{bmatrix} = \begin{bmatrix} \phi_{1i}\psi_{i1} \\ \phi_{2i}\psi_{i2} \\ \vdots \\ \phi_{ni}\psi_{in} \end{bmatrix}$$
(67B)

donde

 ϕ_{ki} = elemento de la k-ésima fila e i-ésima columna de la matriz modal Φ . ψ_{ik} = elemento de la i-ésima fila y k-ésima columna de la matriz modal Ψ .

El elemento $p_{ki} = \phi_{ki}\psi_{ik}$ se denomina factor de participación. Es la de la participación relativa de la k-ésima variable en el i-ésimo estado y viceversa.

Dado que ϕ_{ki} mide la actividad de x_k en el i-ésimo modo y ψ_{ik} pesa la contribución de esa actividad en el modo, el producto p_{ki} mide la participación neta [9].

Capítulo 3

Modelación del Sistema Eléctrico de Potencia

En este capítulo se presenta la información y modelo del sistema de generación y distribución eléctrica en el AOS y OSF, tanto el sistema temporal como el permanente; siendo el sistema permanente el de mayor importancia en este trabajo.

3.1 Temporay Power Supply

El TPS (*Temporary Power Supply*) corresponde al sistema temporal de alimentación eléctrica del Sitio, el cual se encuentra actualmente en funcionamiento.

El TPS en el AOS se encarga de alimentar el AOS *Technical Building* y los PADs de Antenas. La generación se realiza a 0,4kV y la transmisión a 23kV. La alimentación de los PADs se realiza a través de SwitchGear, estos reciben los 23kV para luego repartirlos a los transformadores step-down, los cuales alimentan a un grupo de entre 4 y 11 PADs (1).

El sistema consta de:1

- 5 Generadores.
- 14 Transformadores: 1 step-up y 13 step-down.
- 4 Switchgears.
 - AOS Temporary SwitchBoard
 - o ACA Antenna Circuit
 - Antenna Circuit 1
 - o Antenna Circuit 2
- 107 PADs.
- 27-28 Antenas en operación.

¹ Detalles de los equipos se encuentran en Anexos

Hay que tener en consideración que este sistema se encuentra en operación a 5050 msnm y los equipos han sido probados y están en condiciones de operar a esta altura.

El diagrama del sistema eléctrico en el AOS es el siguiente:

Figura 2: Diagrama TPS - AOS (2)

El quinto generador se encuentra como reserva, es por esto que aparece con una línea punteada en el diagrama de la Figura 2.

3.2 Permament Power Supply

El PPS (*Permanent Power Supply*) corresponde al sistema de alimentación eléctrica permanente del Sitio, esto es OSF y AOS. El PPS tendrá 3 turbinas a gas ubicadas en el OSF, que alimentarán toda esta área, además se contará con una línea de 30 km para llevar la energía al AOS.

Los elementos con los que cuenta este sistema eléctrico permanente son:

- 3 Turbinas a Gas.
- 96 Transformadores: 3 step-up y 93 step-down.
- 4 SwitchBoasd principales
 - Power Station Main SwitchBoard
 - OSF MV Main Switchboard
 - AOS MV Main SwitchBoard
 - AOS MV Main SwitchBoard(Flywheel)
 - Antenna Main SwitchBoard
 - AOS Technical Building
- 8 SwitchGear
 - o ACA Antenna Circuit
 - Antenna Circuit 1
 - o Antenna Circuit 2
 - Antenna Circuit 3
 - o Antenna Circuit 4
 - Antenna Circuit 5
 - o Antenna Circuit 6
- 192 PADs.
- 4 FlyWheel
- 33 Antenas en operación.²

El diagrama del sistema se presenta en la Figura 3.

² Al momento de realizar el estudio (abril del 2012)

Figura 3: Diagrama PPS [14]

En el diagrama es posible observar las componentes mencionadas, en el cual los bloques que aparecen como *Uniblock* N, corresponden a los *Flywheel* en el AOS.

El sistema está diseñado de manera tal que cada generador posee un transformador *step-up*, del cual salen 2 líneas, cada una conectada a una de las dos Barras del *Power Station Main SwitchBoard*.

El *Power Station Main SwitchBoard* cuenta con 2 barras, las cuales pueden operar de dos maneras distintas.

- Ambas conectadas funcionando como una sola barra principal.
- Como barras independientes; cada una alimentada por los 3 generadores.
Del *Power Station Main SwitchBoard* salen 4 líneas de distribución, 2 para la alimentación del OSF y otras 2 para la alimentación del AOS.

La tensión para la alimentación del OSF llega a las Barras del OSF *MV Main SwitchBoard*. Al igual que la configuración del *Power Station Main SwitchBoard*, posee 2 barras las cuales pueden funcionar como una sola o desconectarse entre sí y funcionar como barras independientes.

La llegada de tensión al AOS es mediante 2 líneas de transmisión, en este caso, a diferencia del OSF, se tiene una sola barra que recibe a ambas líneas, esta barra es el AOS *MV Main SwitchBoard*. De aquí salen 3 líneas; una que alimenta el AOS *Technical Building*, por lo que una de ellas va a directamente al transformador *step-down* de este consumo. Las otras 2 líneas se encargan de la alimentación eléctrica de las antenas.

Antes de la alimentación de las antenas, la electricidad pasa por un conjunto de Flywheel, los cuales se encargan de regular la tensión y mantenerla constante para luego alimentar el SwitchGear principal de antenas. En caso de que estos dispositivos no se encuentren operativos o se requiera realizar mantención se puede alimentar directamente desde el AOS *MV Main SwitchBoard* mediante una línea de transmisión.

El SwitchGear principal se encarga de distribuir a los *7 SwitchGears* que alimentan a los circuitos principales de antenas.

La alimentación de las antenas se hace mediante los PADs en los cuales se encuentran ubicadas, estos se alimentan mediante un transformador *step-down*, el cual dependiendo de la ubicación puede encontrarse alimentado a un solo PAD o un conjunto de ellos. La tensión viene de los denominados *SwitchGears*.

El sistema descrito se construye en el Software DigSILENT, los modelos usado para cada elemento se presentan a continuación.

3.2.1 Elementos del Sistema

En esta parte se describe como fueron modelados los elementos en DigSILENT.

3.2.1.1 Generadores

Los generadores son modelados a partir de las especificaciones del fabricante. Mayor detalle puede encontrarse en el Anexo A.

Tabla 1:	Datos	Genera	ador [15										
Tipo de Generador			LSA 56 BVL8/4p										
Potenc	ia			5260 kVA			Cor	Corriente nominal			A		
Voltaje				10500	рV		Velo	ocida	d	1500	rpm		
Factor	de Po	tencia		0.8			Am	bient	e	40 °	С		
Frecue	ncia			50 Hz			Alti	tud		3000	omsni	m	
Windir	ng pite	h		P 5/6									
Aislación/Temperatura H/			H / B										
Eficiencia			110	%	100%		75%	50%		25	%		
Factor de Potencia 0.8: 96.8				8%	96.8%	6	96.5%	95.6%	6	92	.4%		
Factor de Potencia 1.0:				97.5%		97.4		96.9%	96.0%	6	92	.6%	
Valores no saturados [%]						Consta	antes de '	Tiem	00				
SCR:	Xd	Xq	X'd	X'q	X''d	X"q	X2	Xo	T'do	T'd	T"d		Та
0.502	213	128	28.2	128	17.6	22.0	19.8	12,4	4.233	0.562	0.02	27	0.111
	Valo	re sati	aturados [%]					Segundo		dos			
	Xd	Xq	X'd	X'q	X''d	X"q	X2	Xo	T'do	T'd	T"d		Та
	199	119	24.0	119	15.0	18.7	16.9	12.4	0.043	NA	0.02	24	0.141

Estos datos son ingresados DigSILENT y dejando el modelo de planta como el más simple, esto es, sin compensadores ni controles suplementarios; quedando modelado el generador [16].

3.2.1.2 Líneas

En el sistema eléctrico se tienen 3 tipos de líneas:

Tabla 2:	Líneas del Sistema	
Tino		

Tipo	Ubicación
N2XS2Y 1x50 RM 18/30 kV ir	Líneas de transmisión en media tensión
N2YSY 1x50 rm 18/30 kV ir	Líneas en circuitos de Antenas
N2S(F)2Y 1x50/16 18/30 kV it	Línea de transmisión de 30 km OSF-AOS

Estas líneas no fue necesario modelarlas, ya que vienen incluidos en el Software como modelos de líneas a ser utilizadas. Los largos de ellas se obtienen del modelo CAD del *Array*. Las medidas utilizadas para las líneas se presentan en el Anexo B.

3.2.1.3 Transformadores

El sistema eléctrico cuenta con 97 transformadores, de los cuales 3 son *step-up* y 94 *step-down*, estos se detallan a continuación [17][18].

Tabla 3. Transformauores del Sist	leina				
Transformador <i>Step-up</i> Power Station					
Potencia	5 MVA				
Frecuencia	50 Hz				
Razón de transformación	23/10.5 kV				
Conexión	YNd11				
Altitud	3000 msnm				
Transformadores Step-down	OSF				
Potencia	2.2 MVA				
Frecuencia	50 Hz				
Razón de transformación	23/0.4 kV				
Conexión	Dyn5				
Altitud	3000 msnm				
Transformadores Step-down	AOS				
Potencia	2 MVA; 1,5 MVA; 1 MVA; 0,4 MVA; 0,3 y 0,1 MVA				
Frecuencia	50 Hz				
Razón de transformación	23/0.4 kV				
Conexión	Dyn1				
Altitud	5000 msnm				

Tabla 3: Transformadores del Sistema

Además de los datos de placa presentados en la Tabla 3, se usaron los resultados de pruebas a los transformadores para completar los datos necesarios en el modelo del software. Los detalles de los transformadores se encuentran en el Anexo C.

3.2.1.4 Flywheel

Los Flywheel no son incluidos en el modelo, ya que no es segura su participación dentro del sistema eléctrico final, esto, debido a que las pruebas preliminares no han dado buenos resultados. Entonces, se modelan las barras y líneas correspondientes a estos elementos, pero sin ellos.

3.2.1.5 Carga

Las cargas son modeladas como consumos constantes, tanto potencia activa y reactiva. Esto corresponde a una aproximación de las antenas observando, no considera el movimiento que realizan para ubicarse en posición. Teniendo esto en cuenta, los consumos de AOS y OSF se modelan de acuerdo a las información resumida en Tabla 4 y Tabla 5.

Tabla 4: Consumo Antenas [19		
Antena	Consumo [kVA/Antena]	Factor de Potencia
MELCO 12 y 7 m	29	0,96
AEM y VERTEX	17	0,96
AEM y VERTEX	17	0,96

Tabla 4: Consumo Antenas [19]

Tabla 5: Consumos por Área [15]

Área	Consumo [kW]	Factor de Potencia
LVMS OSF Technical Facility	730	0,8
Antenna Area	1000	0,8
ALMA Hotel	100	0,8
LVMS OSF Technical Facility	330	0,8
Antenna Shed Area	400	0,8
AOS-Technical Building	600	0,85

3.2.2 Modelo del Sistema Eléctrico

En la Figura 4 se muestra la forma final del *Power Station* ubicado en el OSF; los tres generadores, sus barras correspondientes, sus transformadores *step-up*, sus barras en alta tensión y las líneas que van a la barra principal. Ésta está compuesta por dos barras en que ambas son alimentadas por los tres generadores, pudiendo de esta manera desconectarse y funcionar como dos barras independientes. Se observa que el Generador 3 está en color gris, esto porque se encuentra fuera de servicio como unidad de respaldo.

Figura 4: Modelo en DigSILENT de Power Station

Luego de esto, el sistema se divide en dos partes, los consumos correspondientes al OSF y al AOS. El modelo para la parte correspondiente al OSF se muestra en la Figura 5. Se muestra también las líneas de 30 km que van desde el *Power Station* al AOS. Se ven los

5 consumos mencionados junto con sus transformadores de bajada, esto debido a que son las instalaciones del Hotel, Edificios y Oficinas, las cuales trabajan en Baja Tensión.

Figura 5: Modelo en DigSILENT del OSF

Lo que corresponde a AOS se puede separar en dos áreas, la correspondiente al *Technical Building* y Antenas.

En la Figura 6 se observa la barra principal del AOS, donde llegan los 23kV, mediante las dos líneas. Se tiene también el consumo del AOS-TB en la misma barra y la salida a la barra de los Flywheel. De la Barra principal y de los Flywheel es posible alimentar la barra que se observa en la parte inferior de la Figura 6, que corresponde al SwitchGear principal del cual se alimentan los PADs de las Antenas. Se observa que la barra de los Flywheel, no tiene nada conectado, esto porque como se mencionó en la sección anterior, estos no fueron considerados en el modelo; aunque sí se incluyen sus barras correspondientes.

Figura 6: AOS-TB y Flywheel

Una de las simplificaciones realizadas al modelo respecto al sistema real, consiste en la agrupación de las antenas como una sola carga equivalente asociada a un transformador, de esta manera, se reduce el número de barras y líneas del modelo, además es posible la modificación rápida y sencilla del nivel de carga del sistema para analizar diferentes escenarios de carga. En la Figura 7(a) se observa el unilineal del SwitchGear 1, el cual tiene 2 transformadores de bajada y 11 PADs cada uno. El modelo de este en DigSILENT es como se muestra en la Figura 7(b), tiene los 2 transformadores y una carga asociada a cada uno de ellos, esta carga es modelada como un consumo constante según el número de antenas que tenga, siguiendo los datos de la Tabla 4.

Figura 7: Simplificación Carga Antenas

Los SiwtchGears de los 6 circuitos restantes se construyen de la misma manera presentada para el SWGR1 en la Figura 7.

La nomenclatura usada en los diagramas y modelo se encuentra en el Anexo D.

Capítulo 4

En este capítulo se realizarán todas las simulaciones y pruebas necesarias mediante software para obtener los datos de lo que corresponde al análisis modal de un sistema dinámico, esto es, matrices de estado, participación y valores propios [4].

Análisis Modal del Sistema Eléctrico

El sistema eléctrico será analizado en base a distintos escenarios, que se diferenciarán según el número de antenas que se tengan en funcionamiento. De este modo se consideran los siguientes escenarios:³

- 66 Antenas
 - Distribución Uniforme entre ACA/Central Clauster y Resto del Array
 - Totalidad de las Antenas en ACA/Central Clauster
 - Mayoría de las Antenas en el Resto del Array.
- 30 Antenas
- o Antenas

Para cada uno de los escenarios se calculará el punto de operación en el cual opera el sistema, para el cual se construye el modelo lineal usando DigSILENT, obteniendo con este mismo las matrices de estado, los valores propios vectores derechos e izquierdos, además, se obtendrá la matriz de participación de las variables de estado del sistema.

³ La distribución de carga según transformadores en el AOS se detalla en el Anexo E

4.1 Escenario 1: 66 Antenas

4.1.1 Escenario 1.1: Distribución Uniforme

Primeramente se analiza el caso con el observatorio funcionando a su total capacidad, esto es, todas sus antenas distribuidas de manera tal que el Central Cluster y ACA tienen un 50% de ellas y el otro 50% el resto del sistema. La condición inicial (punto de equilibrio), sobre el cual se opera en este escenario, genera el siguiente despacho.

|--|

	S [kVA]	P [kW]	Q [kVAr]	f.p.	
Generador 1	2700	2220	-1550	0.82	
Generador 2	2700	2220	-1550	0.82	
Generador 3	0	0	0	-	

Se observa que el factor de potencia al que operan los generadores es capacitivo e inferior al estipulado en la NTSyCS. [20]

El análisis modal empieza con el cálculo de los valores propios; estos se presentan a continuación.

Valores Propios	Parte Real [1/s]	Parte Imaginaria [rad/s]
λ_1	0	0
λ_2	-22.25412	4.883014
λ_3	-22.25412	-4.883014
λ_4	-23.08713	0
λ_5	-1.393882	8.082141
λ_6	-1.393882	-8.082141
λ_7	-5.574713	0
λ_8	-0.05940388	0
λ_9	-0.4289588	0
λ_{10}	-0.3678096	0

Tabla 7: Valores Propios Escenario 1.1

Para una mejor visualización de ellos, se muestran en el siguiente gráfico.

Figura 8: Valores propios Escenario 1.1

Figura 9: Acercamiento de valores propios Escenario 1.1

Se observa que ninguno de los valores propios tiene parte real negativa, por lo que el sistema es estable frente a pequeñas perturbaciones.

A pesar de no tener modos inestables, es importante estudiar los modos oscilatorios del sistema, que en este caso corresponde a los modos 2,3 y 5,6.

Para ver cuáles son las variables de estado del sistema que son dominantes en los modos se construye la matriz de participación. La parte de ella que interesa corresponde a los módulos y se presenta en la Tabla 8.

	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ ₈	λ9	λ_{10}
$\Delta \delta G_1$	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$\Delta \psi_d G_1$	0.000	0.783	0.783	0.999	0.035	0.035	0.003	0.037	0.055	0.057
$\Delta \psi_q \mathbf{G}_1$	0.000	1.000	1.000	0.010	0.092	0.092	0.999	0.003	0.043	0.051
$\Delta \psi_E G_1$	0.000	0.061	0.061	0.071	0.044	0.044	0.028	0.503	1.000	0.991
$\Delta \omega G_1$	0.000	0.101	0.101	0.000	0.497	0.497	0.008	1.000	0.016	0.576
$\Delta \delta G_2$	0.000	0.202	0.202	0.000	1.000	1.000	0.000	0.000	0.017	0.000
$\Delta \psi_d G_2$	0.000	0.783	0.783	1.000	0.035	0.035	0.003	0.037	0.054	0.058
$\Delta \psi_q G_2$	0.000	0.999	0.999	0.010	0.093	0.093	1.000	0.003	0.044	0.051
$\Delta \psi_E G_2$	0.000	0.061	0.061	0.071	0.044	0.044	0.028	0.501	0.995	1.000
$\Delta \omega G_2$	0.000	0.101	0.101	0.000	0.498	0.498	0.007	0.988	0.002	0.556

Tabla 8: Matriz de Participación Escenario 1.1

En la matriz se marcan con tono más oscuro los valores más grandes, esto es, los estados que tienen mayor participación en el modo indicado. En tono más claro se marcan los estados que también tiene cierto grado de participación; inferior al estado dominante, pero siendo de todas maneras de consideración.

En la Tabla 9 se presentan la frecuencia de oscilación de los modos, su radio de amortiguación y los estados dominantes de cada uno de ellos; los cuales fueron encontrados mediante los factores de participación de cada estado en cada uno de los modos.

Val	ores Propios		Froquoncia	Padio	Estados Dominantes	
N °	Real	Imaginaria	[Hz]	Amortiguación		
					$\Delta \psi_q \text{ G1 y G2}$	
2	-22.25412	4.883014	0.7771559	0.9767631	$\Delta \psi_d$ G1 y G2 (menos)	
					$\Delta \psi_q \operatorname{G1y} \operatorname{G2}$	
3	-22.25412	-4.883014	0.7771559	0.9767631	$\Delta \psi_d$ G1 y G2 (menos)	
					$\Delta\delta$ G2	
5	-1.393882	8.082141	1.286313	0.1699554	$\Delta \omega$ G1 y G2 (menos)	
					$\Delta\delta$ G2	
6	-1.393882	-8.082141	1.286313	0.1699554	$\Delta \omega$ G1 y G2 (menos)	

Tabla 9: Detalle Modos de Oscilación Escenario 1.1

Para el modo 2,3 se tiene que los estados dominantes son el flujo en los enrollados del Eje Q y Eje D (siendo de mayor importancia el flujo en el eje Q) . Los factores de participación para estos flujos fueron levemente mayores para el Generador 1; esto se debe a que es en la barra correspondiente a este Generador en la cual se realiza el control primario y secundario.

El tipo de estabilidad al cual se encuentra asociado este modo, es a la estabilidad de Voltaje. [21]

El modo oscilatorio 5,6 tiene como estados dominantes el ángulo del rotor del Generador 2 y en menor medida las velocidades de los dos generadores en el sistema.

El modo 5,6 se encuentra relacionado a la estabilidad de ángulo de rotor del Generador 2.

4.1.2 Escenario 1.2: Distribución condensada en ACA y Central Cluster

Este escenario corresponde a la totalidad de las antenas ubicadas en el ACA y Central Cluster.

El despacho calculado como condición inicial de operación se presenta en la Tabla 10.

Tabla 10: Despacho Escenario 1.2

	S [kVA]	P [kW]	Q [kVAr]	f.p.
Generador 1	2660	2140	-1580	0.80
Generador 2	2660	2140	-1580	0.80
Generador 3	0	0	0	-

Los modos con sus valores propios son los siguientes:

Tabla 11. Valores Tropios Escenario 1.2								
Valores Propios	Parte Real [1/s]	Parte Imaginaria [rad/s]						
λ_1	0	0						
λ_2	-22.23265	4.877851						
λ_3	-22.23265	-4.877851						
λ_4	-23.0756	0						
λ_5	-1.410801	7.990353						
λ_6	-1.410801	-7.990353						
λ_7	-5.50023	0						
λ_8	-0.05986745	0						
λ_9	-0.4323532	0						
λ ₁₀	-0.3525042	0						

Tabla 11: Valores Propios Escenario 1.2

Dichos modos pueden visualizarse en Figura 10 y Figura 11.

Figura 10: valores propios Escenario 1.2

Figura 11: Acercamiento de valores propios cercanos a cero Escenario 1.2

Ninguno de los modos tiene parte real positiva, por lo que en esta configuración no hay modos inestables. Se construye la matriz de participación para ver cuáles son los estados dominantes en cada modo.

	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8	λ_9	λ_{10}
$\Delta \delta G_1$	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$\Delta \psi_d G_1$	0.000	0.780	0.780	0.999	0.034	0.034	0.003	0.036	0.054	0.058
$\Delta \psi_q G_1$	0.000	1.000	1.000	0.010	0.096	0.096	0.999	0.003	0.044	0.050
$\Delta \psi_E G_1$	0.000	0.061	0.061	0.071	0.045	0.045	0.027	0.494	1.000	0.994
$\Delta \omega G_1$	0.000	0.102	0.102	0.000	0.497	0.497	0.008	1.000	0.014	0.564
$\Delta \delta G_2$	0.000	0.203	0.203	0.000	1.000	1.000	0.000	0.000	0.018	0.000
$\Delta \psi_d G_2$	0.000	0.780	0.780	1.000	0.034	0.034	0.003	0.036	0.054	0.058
$\Delta \psi_q G_2$	0.000	0.999	0.999	0.010	0.097	0.097	1.000	0.003	0.045	0.050
$\Delta \psi_E G_2$	0.000	0.061	0.061	0.071	0.045	0.045	0.027	0.492	0.997	1.000
$\Delta \omega G_2$	0.000	0.102	0.102	0.000	0.498	0.498	0.006	0.987	0.000	0.551

Tabla 12: Matriz de Participación Escenario 1.2

A pesar de no tener modos inestables, se estudian los modos oscilatorios del sistema, los detalles de estos se muestran a continuación.

Valores Propios			Frequencia	Radio	
Ν			[Hz]	Amortiguación	Estados Dominantes
0	Real	Imaginaria		Thilotuguución	
					$\Delta \psi_q \operatorname{G1y} \operatorname{G2}$
2	-22.23265	4.877851	0.7763341	0.9767672	$\Delta \psi_d$ G1 y G2 (menos)
					$\Delta \psi_q \operatorname{G1} \operatorname{y} \operatorname{G2}$
3	-22.23265	-4.877851	0.7763341	0.9767672	$\Delta \psi_d$ G1 y G2 (menos)
					$\Delta\delta$ G2
5	-1.410801	7.990353	1.271704	0.1738736	$\Delta \omega$ G1 y G2 (menos)
					$\Delta\delta$ G2
6	-1.410801	-7.990353	1.271704	0.1738736	$\Delta \omega$ G1 y G2 (menos)

Tabla 13: Detalle Modos de Oscilación Escenario 1.2

Los estados dominantes para los modos oscilantes son los mismos que para la primera configuración, sin embargo, se tiene una disminución tanto en la frecuencia como radio de amortiguamiento.

4.1.3 Escenario 1.3: Distribución condensada fuera del ACA y Central Cluster

Este escenario corresponde a tener la mayor cantidad(70%) de antenas ubicadas fuera del Central Cluster y ACA (30%).

El despacho calculado como condición inicial de operación.

	Tabla 14:	Despacho	Escenario 1.3
--	-----------	----------	---------------

	S [kVA]	P [kW]	Q [kVAr]	f.p.
Generador 1	2720	2230	-1550	0.82
Generador 2	2720	2230	-1550	0.82
Generador 3	0	0	0	-

Los modos con sus valores propios son los siguientes:

1 abia 13. Valores 1 roptos La	Section 10 1.5	
Valores Propios	Parte Real [1/s]	Parte Imaginaria [rad/s]
λ_1	0	0
λ_2	-22.25563	4.883328
λ_3	-22.25563	-4.883328
λ_4	-23.08807	0
λ_5	-1.392664	8.088638
λ_6	-1.392664	-8.088638
λ ₇	-5.580541	0
λ_8	-0.05937805	0
λ ₉	-0.4287942	0
λ_{10}	-0.3689194	0

 Tabla 15: Valores Propios Escenario 1.3

En la Figura 12 y Figura 13 se muestran los polos en el plano complejo.

Figura 12: Valores propios Escenario 1.3

Figura 13: Acercamiento de valores propios Escenario 1.3

Ninguno de los modos tiene parte real positiva, por lo que en esta configuración no se tienen modos inestables. Para revisar los estados dominantes se construye la matriz de participación.

	λ_1	λ_2	λ_3	λ_4	λ_5	λ ₆	λ_7	λ ₈	λ9	λ_{10}
$\Delta \delta G_1$	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$\Delta \psi_d G_1$	0.000	0.783	0.783	0.999	0.035	0.035	0.003	0.037	0.055	0.057
$\Delta \psi_q G_1$	0.000	1.000	1.000	0.010	0.092	0.092	0.999	0.003	0.043	0.051
$\Delta \psi_E G_1$	0.000	0.061	0.061	0.071	0.044	0.044	0.028	0.503	1.000	0.991
$\Delta \omega G_1$	0.000	0.101	0.101	0.000	0.497	0.497	0.008	1.000	0.016	0.577
$\Delta \delta G_2$	0.000	0.202	0.202	0.000	1.000	1.000	0.000	0.000	0.017	0.000
$\Delta \psi_d G_2$	0.000	0.783	0.783	1.000	0.035	0.035	0.003	0.037	0.054	0.057
$\Delta \psi_q G_2$	0.000	0.999	0.999	0.010	0.092	0.092	1.000	0.002	0.044	0.052
$\Delta \psi_E G_2$	0.000	0.061	0.061	0.071	0.044	0.044	0.028	0.501	0.995	1.000
$\Delta \omega G_2$	0.000	0.101	0.101	0.000	0.498	0.498	0.007	0.988	0.002	0.556

Tabla 16: Matriz de Participación Escenario 1.3

Para los modos oscilatorios se tienen las siguientes variables de estado dominantes.

Valores Propios		Fromonoio	Padio		
N °	Pool	Imaginaria	[Hz]	Amortiguación	Estados Dominantes
	Real	magmana			
					$\Delta \psi_q \text{ G1 y G2}$
2	-22.23265	4.877851	0.7772058	0.9767632	$\Delta \psi_d$ G1 y G2 (menos)
					$\Delta \psi_q \text{ G1 y G2}$
3	-22.23265	-4.877851	0.7772058	0.9767632	$\Delta \psi_d$ G1 y G2 (menos)
					$\Delta\delta$ G2
5	-1.410801	7.990353	1.287347	0.1696787	$\Delta \omega$ G1 y G2 (menos)
					$\Delta\delta$ G2
6	-1.410801	-7.990353	1.287347	0.1696787	$\Delta \omega$ G1 y G2 (menos)

Tabla 17: Detalle Modos de Oscilación Escenario 1.3

Los estados dominantes para los modos oscilatorios son los mismos que para la primera configuración, sin embargo, se tiene un aumento en las frecuencias de amortiguamiento en ambos modos y una disminución en la radio de amortiguamiento, esto ocurre con respecto a los 2 casos estudiados anteriormente.

4.2 Escenario 2: 30 Antenas

En el escenario con 30 antenas en operación, se tiene el siguiente despacho de generadores en la condición de equilibrio.

	S [kVA]	P [kW]	Q [kVAr]	f.p.					
Generador 1	2660	2140	-1580	0.80					
Generador 2	2660	2140	-1580	0.80					
Generador 3	0	0	0	-					

Tabla 18: Despacho Generadores Escenario 2

Nuevamente, el factor de potencia es capacitivo y menor al de la NTSyCS.

Los valores propios para este escenario son los siguientes

rabia 19: Valores Propios Escenario 2								
Valores Propios	Parte Real [1/s]	Parte Imaginaria [rad/s]						
λ_1	0	0						
λ_2	-22.23265	4.877851						
λ_3	-22.23265	-4.877851						
λ_4	-23.0756	0						
λ_5	-1.410801	7.990353						
λ_6	-1.410801	-7.990353						
λ_7	-5.50023	0						
λ_8	-0.05986745	0						
λ_9	-0.4323532	0						
λ_{10}	-0.3525042	0						

Tabla 19: Valores Propios Escenario 2

Se observan también en la Figura 14 y Figura 15.

Figura 14: Valores propios Escenario 2

Figura 15 : Acercamiento de valores propios Escenario 2

Nuevamente, no se tienen modos inestables. La matriz de participación es la siguiente:

	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8	λ_9	λ_{10}
$\Delta \delta G_1$	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$\Delta \psi_d G_1$	0.000	0.780	0.780	0.999	0.034	0.034	0.003	0.036	0.054	0.058
$\Delta \psi_q G_1$	0.000	1.000	1.000	0.010	0.096	0.096	0.999	0.003	0.044	0.050
$\Delta \psi_E G_1$	0.000	0.061	0.061	0.071	0.045	0.045	0.027	0.494	1.000	0.994
$\Delta \omega G_1$	0.000	0.102	0.102	0.000	0.497	0.497	0.008	1.000	0.014	0.564
$\Delta \delta G_2$	0.000	0.203	0.203	0.000	1.000	1.000	0.000	0.000	0.018	0.000
$\Delta \psi_d G_2$	0.000	0.780	0.780	1.000	0.034	0.034	0.003	0.036	0.054	0.058
$\Delta \psi_q G_2$	0.000	0.999	0.999	0.010	0.097	0.097	1.000	0.003	0.045	0.050
$\Delta \psi_E G_2$	0.000	0.061	0.061	0.071	0.045	0.045	0.027	0.492	0.997	1.000
$\Delta \omega G_2$	0.000	0.102	0.102	0.000	0.498	0.498	0.006	0.987	0.000	0.551

Tabla 20: Matriz de Participación Escenario 2

Para los modos oscilatorios se tiene lo siguiente.

Tabla 21: Detalle Modos de Oscilación Escenario 2

Valores Propios		Frequencia	Radio		
Ν		Imaginari	[H ₇]	Amortiguación	Estados Dominantes
0	Real	a			
					$\Delta \psi_q \operatorname{G1y} \operatorname{G2}$
2	-22.23265	4.877851	0.7763341	0.9767672	$\Delta \psi_d$ G1 y G2 (menos)
					$\Delta \psi_q \text{ G1 y G2}$
3	-22.23265	-4.877851	0.7763341	0.9767672	$\Delta \psi_d$ G1 y G2 (menos)
					$\Delta\delta$ G2
5	-1.410801	7.990353	1.271704	0.1738736	$\Delta \omega$ G1 y G2 (menos)
					$\Delta\delta$ G2
6	-1.410801	-7.990353	1.271704	0.1738736	$\Delta \omega$ G1 y G2 (menos)

Se obtienen los mismos estados dominantes que para las 66 antenas operando.

Para el modo 2,3 se tiene que disminuye la frecuencia y el radio de amortiguación.

4.3 Escenario 3: Sin Antenas

Este caso consiste en el sistema operando con las cargas pertenecientes al OSF y al AOS-TB, este ocurriría cuando se necesitara realizar mantención en el SwitchGear Principal, dejando sin alimentación a todos los PADs de antenas.

El despacho de los generadores, que corresponde a la condición inicial de lo que será el análisis modal, se presenta en la Tabla 22.

Tabla 22. Despacito Generadores Escenario 5									
	S [kVA]	P [kW]	Q [kVAr]	f.p.					
Generador 1	2420	1640	-1780	0.68					
Generador 2	2420	1640	-1780	0.68					
Generador 3	0	0	0	-					

Tabla 22: Despacho Generadores Escenario 3

El despacho de los generadores se encuentra dentro de sus límites de operación, pero su factor de potencia sigue siendo inferior al de la NTSyCS.

En lo que respecta al análisis modal, primeramente se calculan los valores propios de los modos electromecánicos del sistema.

1 abia 23. Valui Co 1 10pilos E	Sechario 5	
Valores Propios	Parte Real [1/s]	Parte Imaginaria [rad/s]
λ_1	0	0
λ_2	-22.08909	4.837404
λ_3	-22.08909	-4.837404
λ_4	-22.99973	0
λ_5	-1.522376	7.374491
λ_6	-1.522376	-7.374491
λ_7	-5.044699	0
λ_8	-0.06561723	0
λ_9	-0.4624942	0
λ_{10}	-0.2561427	0

Tabla 23: Valores Propios Escenario 3

Para tener una mejor visualización de los valores propios se grafican en el plano complejo en la Figura 16 y Figura 17.

Figura 16: Valores propios Escenario 3

Figura 17: Acercamiento valores propios Escenario 3

Se observa que todos los valores propios poseen parte real no positiva, por lo que el sistema es estable frente a pequeñas perturbaciones en este escenario.

Los factores de participación para ver qué modo es dominante en cada modo se muestran en la Tabla 24.

	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8	λ_9	λ_{10}
$\Delta \delta G_1$	1.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
$\Delta \psi_d G_1$	0.000	0.761	0.761	0.999	0.031	0.031	0.001	0.030	0.053	0.063
$\Delta \psi_q G_1$	0.000	1.000	1.000	0.006	0.126	0.126	0.999	0.006	0.054	0.043
$\Delta \psi_E G_1$	0.000	0.061	0.061	0.072	0.047	0.047	0.022	0.411	0.998	1.000
$\Delta \omega G_1$	0.000	0.107	0.107	0.000	0.497	0.497	0.006	1.000	0.012	0.471
$\Delta \delta G_2$	0.000	0.214	0.214	0.000	1.000	1.000	0.000	0.000	0.021	0.000
$\Delta \psi_d G_2$	0.000	0.761	0.761	1.000	0.031	0.031	0.001	0.030	0.053	0.063
$\Delta \psi_q G_2$	0.000	0.999	0.999	0.006	0.126	0.126	1.000	0.006	0.054	0.043
$\Delta \psi_E G_2$	0.000	0.061	0.061	0.072	0.047	0.047	0.021	0.409	1.000	0.999
$\Delta \omega G_2$	0.000	0.107	0.107	0.000	0.498	0.498	0.005	0.983	0.005	0.475

Tabla 24: Matriz de Participación Escenario 3

A pesar de no existir modos inestables, se revisan los modos oscilatorios del sistema.

Valores Propios		Frecuencia	Radio		
Ν			[H ₇]	Amortiguación	Estados Dominantes
0	Real	Imaginaria		minortiguación	
					$\Delta \psi_q \text{ G1 y G2}$
2	-22.08909	4.837404	0.7698968	0.97685	$\Delta \psi_d$ G1 y G2 (menos)
					$\Delta \psi_q \operatorname{G1y} \operatorname{G2}$
3	-22.08909	-4.837404	0.7698968	0.97685	$\Delta \psi_d$ G1 y G2 (menos)
					$\Delta\delta$ G2
5	-1.522376	7.374491	1.173687	0.202175	$\Delta \omega$ G1 y G2 (menos)
					$\Delta\delta$ G2
6	-1.522376	-7.374491	1.173687	0.202175	$\Delta \omega$ G1 y G2 (menos)

Tabla 25: Detalle Modos de Oscilación Escenario 3

En este escenario, al igual que con 30 antenas, disminuye la frecuencia y radio de amortiguación.

Ya teniendo todos los resultados de pruebas, simulaciones y análisis modal, en el Capítulo 5, se realizará un breve análisis de la curva PV del sistema eléctrico. Se estudiarán los cambios percibidos por todos los modos del sistema; en particular los modos oscilatorios. Además, de un análisis en lo que respecta a frecuencia de oscilación y factores de amortiguamiento y como se ven afectadas la estabilidad de voltaje y de ángulo de rotor con el aumento o disminución de carga en el sistema.

Capítulo 5

Análisis de Resultados

En este capítulo se analizará el cambio que perciben los modos con el aumento o disminución de carga en el sistema. Se verá como este cambio afecta la estabilidad tanto de voltaje como de ángulo de rotor y si ésta debe ser mejorada de alguna forma.

5.1 Curva PV

La curva PV representa la variación del voltaje en la barra frente a distintos niveles de carga [22],[23]. Se realiza una aproximación de esta curva para la Barra AOSB3; correspondiente al switchgear principal para la alimentación de antenas. Esto se hace con los resultados obtenidos de las simulaciones en el Capítulo 4. En la Tabla 26 se muestran los datos con los que se construye la curva.

Tabla 20: Datos Curva PV								
N Antenas	V	S	Р					
0	23.51	1.5008331	0.05					
30	23.31	2.2588714	1.05					
66	23.27	1.65559657	1.21					

Tabla 26: Datos Curva PV

Con los datos de la Tabla 26 se construye la Curva PV en la Figura 18

Figura 18: Curva PV AOSB3

Se observa que la curva calculada es casi una recta, sin embargo, la curva que se esperaría es del estilo de la mostrada en la Figura 19.

Figura 19: Curva PV Esperada (3)

La curva PV estimada en la Figura 18, se ve que tiene una tendencia a la curva PV esperada, sin embargo, no es posible llegar al punto de saturación con cargas reales del sistema (con las simulaciones realizadas), esto se debe principalmente a que el sistema

se encuentra sobredimensionado para lo que será su carga total final, es por esto que no se llegan a saturar los elementos del sistema.

Un punto importante a considerar, es que el sistema eléctrico se encontrará operando a 2900 msnm (OSF) y 5050 msnm (AOS), y por efectos de derrateo por altura los elementos del sistema poseen capacidades por encima de las necesarias [25]. Quedando sobredimensionado el sistema.

Los generadores que se encuentran en el OSF, poseen un factor de derrateo de 0,8; por lo que no pueden operar a más de un 80% de su capacidad máxima [25], y cada uno de los generadores opera a un 50%. Esto, teniendo fuera de servicio uno de los generadores.

5.2 Modos de Oscilación del Sistema Dinámico

En esta parte se realiza el análisis al cambio que sufren los modos de oscilación del sistema frente a distintos niveles de carga. Para tener una mejor visión de cómo se modifican los valores propios de los modos de operación, según aumento de carga, se muestran todos en la siguiente tabla.

Tabla 2/. Resument valores riopios con Aumento de Carga										
	Escenario 1:		Escenario 2:		Escenario 3:		Combio			
N°	66Antenas	66Antenas		30Antenas		o Antenas				
	Real	Imag	Real Imag		Real Imag		[/0]			
1	0.000	0.000	0.000	0.000	0.000	0.000	0			
2	-22.254	4.883	-22.233	4.878	-22.089	4.837	0.742			
3	-22.254	-4.883	-22.233	-4.878	-22.089	-4.837	0.742			
4	-23.087	0.000	-23.076	0.000	-23.000	0.000	0.379			
5	-1.394	8.082	-1.411	7.990	-1.522	7.374	-9.218			
6	-1.394	-8.082	-1.411	-7.990	-1.522	-7.374	-9.218			
7	-5.575	0.000	-5.500	0.000	-5.045	0.000	9.507			
8	-0.059	0.000	-0.060	0.000	-0.066	0.000	-10.460			
9	-0.429	0.000	-0.432	0.000	-0.462	0.000	-7.818			
10	-0.368	0.000	-0.353	0.000	-0.256	0.000	30.360			

Tabla 27: Resumen Valores Propios con Aumento de Carga

Se observa que los modos cuya parte real aumenta (se vuelve menos negativa) son: 2, 3, 4, 7 y 10. Esto es, se van acercando más a convertirse en un modo inestable frente a pequeñas perturbaciones, sin embargo, no disminuyen lo suficiente como para entrar en el semiplano derecho.

De estos modos los que sufren un mayor aumento, y con los cueles debería tenerse cuidado eventualmente, son el modo 10, el cual pasa de -0.368 a -0.256 desde la carga máxima a la mínima estudiadas, teniendo un incremento cercano al 30%.

Los modos cuya parte real disminuye (se vuelve más negativa) son: 5,6, 8 y 9. De los cuales el que sufre un mayor cambio porcentual es el modo 8, el que tiene la parte real más grande, pero como se va haciendo más negativa, no genera problema. Lo mismo ocurre para los otros modos que poseen un cambio porcentual cercano al 10%.

Para tener una mejor visualización de como se mueven los polos de los modos oscilatorios en el plano complejo, se traza su trayectoria en los siguientes gráficos.

Figura 20: Movimiento Polo Modo 2.

Se observa para este modo, correspondiente a la estabilidad de voltaje de los generadores, que con el aumento de carga los polos se alejan del semiplano derecho, esto es, a medida de que se vayan aumentando el número de antenas (hasta 66, lo estudiado) el voltaje se volvería más estable frente a pequeñas perturbaciones.

Figura 21: Movimiento Polo Modo 5.

Para el modo oscilatorio 5, cuya variable de estado dominante es el ángulo de rotor del Generador 2 se tiene que con el aumento de la carga el sistema va tendiendo a la inestabilidad, sin embargo se mantiene dentro del semiplano izquierdo conservando la estabilidad.

En el caso del movimiento de polos para un mismo nivel de carga, pero con diferente distribución en el Array, se muestra en la Tabla 28.

- · ·			- ·			0		- · ·
NIO	Escenario 1.1:		Escenario 1.2:		Escenario 1.3:		Cambio 1	Cambio 2
IN	Real	Imag	Real	Imag	Real	Imag	[%]	[%]
1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	-22.254	4.883	-22.233	4.878	-22.256	4.883	0.096	-0.007
3	-22.254	-4.883	-22.233	-4.878	-22.256	-4.883	0.096	-0.007
4	-23.087	0.000	-23.076	0.000	-23.088	0.000	0.050	-0.004
5	-1.394	8.082	-1.411	7.990	-1.393	8.089	-1.214	0.087
6	-1.394	-8.082	-1.411	-7.990	-1.393	-8.089	-1.214	0.087
7	-5.575	0.000	-5.500	0.000	-5.581	0.000	1.336	-0.105
8	-0.059	0.000	-0.060	0.000	-0.059	0.000	-0.780	0.043
9	-0.429	0.000	-0.432	0.000	-0.429	0.000	-0.791	0.038
10	-0.368	0.000	-0.353	0.000	-0.369	0.000	4.161	-0.302

Tabla 28: Valores Propios con Cambio en la Distribución de la Carga

En la Tabla 28, la columna Cambio 1 corresponde al porcentaje de cambio de la parte real del valor propio que existe entre el Escenario 1.1 (base) y el Escenario 1.2 La columna Cambio 2, es el porcentaje de cambio entre el Escenario 1.1 y el Escenario 1.3. De la tabla se puede observar que se cambian en direcciones distintas los valores propios, es decir, para el Escenario 1.2 los valores propios que se alejan del eje $j\omega$, en el Escenario 1.3 se acercan. Sin embargo, en ninguno de los casos, se tiene una modificación demasiado fuerte, ni un acercamiento peligroso al semiplano derecho.

Otra parte importante a considerar en el análisis es la frecuencia a la que oscilan los modos. En los escenarios estudiados se tienen las siguientes frecuencias:

Tabla 29. Resumen Frecuencia de Amortiguamiento										
	Frecuencia de Amortiguamiento [Hz]									
Modo	Escenario	Escenario	Escenario	Escenario	Escenario	Máximo	Mínimo			
	1.1	1.2	1.3	2	3					
2	0.7772	0.7763	0.7772	0.7763	0.7699	0.7772	0.7699			
3	0.7772	0.7763	0.7772	0.7763	0.7699	0.7772	0.7699			
5	1.2863	1.2717	1.2873	1.2717	1.1737	1.2873	1.1737			
6	1.2863	1.2717	1.2873	1.2717	1.1737	1.2873	1.1737			

Tabla 29: Resumen Frecuencia de Amortiguamiento

Las frecuencia de los modos oscilatorios son muy bajas, y no presentan problemas de resonancia, ya que ninguna corresponde a un múltiplo de la frecuencia natural del sistema (50[Hz]).

Respecto a los modos oscilatorios también es bueno observar el coeficiente de amortiguamiento.

Tubla 30. Obenetentes de finior (iguaniento										
	Coeficiente de Amortiguamiento [Hz]									
Modo	Escenario	Escenario	Escenario	Escenario	Escenario	Máximo	Mínimo			
	1.1	1.2	1.3	2	3					
2	0.976763	0.976767	0.976763	0.976767	0.976850	0.97676	0.97685			
3	0.976763	0.976767	0.976763	0.976767	0.976850	0.97676	0.97685			
5	0.169955	0.173874	0.169679	0.173874	0.202175	0.16967	0.20217			
6	0.169955	0.173874	0.169679	0.173874	0.202175	0.16967	0.20217			

Tabla 30: Coeficientes de Amortiguamiento

Se puede observar que el coeficiente de amortiguamiento es muy bajo, ya que un límite inferior aceptable es de un 5% que consiste en una atenuación entre 73% entre *peaks* consecutivos [26].

Para los modos 2,3 se tiene una variación menor al 1% y los modos 5,6 una variación cercana al 20%. El modo que posee mayor variación respecto a cambios en la carga es el que corresponde a la estabilidad de rotor, para el cual el coeficiente de amortiguamiento se hace más pequeño con el aumento de la carga. Es decir, su tiempo de estabilización se va volviendo mayor. Lo cual puede provocar problemas en los equipos.

Para mejorar el coeficiente de amortiguamiento se tienen distintos tipos de controladores, uno de ellos es el POD (*Power Oscillation Damping*) controller, que corresponde a un control suplementario del sistema eléctrico para aumentar su coeficiente de amortiguamiento [3].

Capítulo 6

Conclusiones

El sistema eléctrico del proyecto ALMA es un sistema estable frente a pequeñas perturbaciones en su estado más básico, es decir, sin controladores. Fue posible observar, más allá del análisis de estabilidad, que el sistema se encuentra sobredimensionado, aun teniendo en cuenta el factor de derrateo que afecta a los equipos, ya que en estas condiciones los generadores trabajan a un 50% de su capacidad, con el máximo de carga.; con el derrateo el máximo a generar corresponde al 80%, además se cuenta con un tercer generador de respaldo.

El objetivo de este trabajo era analizar la estabilidad del sistema mediante un análisis modal, el cual se logró a cabalidad con la utilización del software DigSILENT. Se obtuvieron las matrices de estado para los distintos escenarios estudiados, junto con sus valores y vectores propios, con los cuales fue posible obtener la matriz de participación.

Primeramente, los valores propios indicaron que el sistema eléctrico no posee inestabilidades cuando opera con una carga base en el OSF y sin antenas en funcionamiento hasta 66 antenas operando en el AOS.

Los factores de participación mostraron que las variables de estado más relevantes para los modos oscilatorios fueron los flujos electromagnéticos en los ejes D y Q y los ángulos de rotor y sus velocidades; los primeros dos se relacionan con la estabilidad de voltaje y los segundos con estabilidad de rotor.

El cambio percibido por los valores propios en el plano complejo, según los escenarios estudiados, indicó que se debe actuar con precaución cuando no se tienen antenas en el AOS en cuanto a estabilidad de voltaje, ya que al no tener carga en esta parte del sistema, el valor propio se acerca al semiplano derecho. En cambio, en lo que respecta a estabilidad de ángulo de rotor, el aumento de la carga provoca un acercamiento del polo

al semiplano derecho, es por esto, que en caso de que en el Observatorio ALMA se quisieran instalar más de 66 antenas, se debe revisar la estabilidad del modo oscilatorio correspondiente al ángulo de rotor.

Las frecuencias de los modos oscilatorios, en lo que respecta a magnitud, se encuentran dentro de lo esperado, que son frecuencias bajas, menores a 2[Hz]. En cambio, el coeficiente de amortiguamiento de estas frecuencias se encuentra por debajo de un límite inferior razonable (5%), por lo que se recomienda la implementación de algún tipo de controlador para mejorarlos.
Bibliografía

- PALMA, Rodrigo, BROKERING, Christie Walter y VARGAS, Luis. Ñom Lufke (El Rayo Domado) o Los Sistemas Eléctricos de Potencia. Santiago, Pearson, 2008. 471p.
- [2] STEVENSON, William. Análisis de Sistemas Eléctricos de Potencia. 2º ed. México, McGraw-Hill, 1975. 383p.
- [3] RUSEJLA Sadikovic. Use of FACTS Devices for Power Flow Control and Damping of Oscillations in Power Systems. Tesis (Doctor of Technical Sciences). Zürich, Switzerland. SWISS Federal Institute Of Technology, 2006. 139 h.
- [4] RODRÍGUEZ, Carlos, ZILLI, Federico y ZUNÍN, Alejandro. Análisis Dinámicos en Sistemas Eléctricos de Potencia. Universidad de la República, Uruguay.
- [5] BASLER, M. y SCHAEFER, R. Understanding Power System Stability. En: 58th Annual Conference for Protective Relay Engineers: 5 al 7 de abril de 2005. Texas A&M University.
- [6] ROWELL, Derek. Apuntes del curso Analysis and Design of Feedback Control Systems. Massachusetts Institute of Technology, 2002.
- [7] DORF, R.C. y BISHOP, R. Modern Control Systems. 11° ed. New Jersey. Pearson Prentice Hall, 2008. 1046p.
- [8] DERUSSO, P.M., ROY, R.J. y CLOSE, C.M. State Variables for Engineers. New York . John Wiley and Sons, 1998.
- [9] KUNDUR, Prabha. Power System Stability and Control. California. McGraw-Hill, 1994. 1199p.

- [10] OJEA, Guillermo, y otros. Apuntes del curso Análisis Dinámico De Sistemas. Universidad de Oviedo, 2005.
- [11] DUARTE, Manuel. Apuntes del Curso Análisis y Modelación de Sistemas Dinámicos. Universidad de Chile, 2007.
- [12] ANDERSON, P. y FOUAD, A.. Power System Control and Stability. 2° ed. New York. Jhon Wiley & Sons, 2003.
- [13] SANTANDER, E. Alimentación Eléctrica Switchgear ASWGR-PROV, ASWGR1 y ASWGR2 - Estudio de Coordinación de Protecciones, 2010.
- [14] OLIVOS, Rolando. OSF TB Electrical Loads. [Diapositivas] Observatorio ALMA.[2012].
- [15] WEBER, Thomas. Power System Supply Alma Power Supply Project, 2010.
- [16] KEITH Watt. Simulación Dinámica para Distintos Escenarios de Alta Penetración Eólica en el SIC. Trabajo de Título. Universidad de Chile, Facultad de Ciencias Físicas y Matemáticas, 2008.
- [17] SNOW, William. AOS Power Distribution Switchgear and Transformer Configuration for Circuits 1-7. [Documento Interno] Observatorio ALMA; Texto en inglés [2012].
- [18] SNOW, William. AOS Technical Building 2MVA Entrance 23kV Step Down Transformers Specification. [Documento Interno] Observatorio ALMA; Texto en inglés [2012].
- [19] SNOW, William. AOS Switchgear Present and Scaled Current and Power for F35 programming. [Documento Interno] Observatorio ALMA; Texto en inglés [2012].

- [20] Norma Técnica de Seguridad y Calidad de Servicio. Ministerio de Energía, Santiago, Chile, 2009. 153p.
- [21] DigSILENT. Synchronous Generator. 2010.
- [22] Industrial Electrical Engineering and Automation. [En línea] <http://www.iea.lth.se/~ielolof/stability/Seminar5.pdf> [Consulta: 09 julio 2012]
- [23] ARRIETA, Mario. Herramienta de Análisis de Estabilidad de Tensión para Sistemas Eléctricos de Potencia. Tesis (Maestría en Ingenieria - Automatización Industrial). Medellín. Universidad Nacional de Colombia, 2009. 87h.
- [24] SU, Y. C., CHENG, S. J. y WEN, J. Y. Power System Dynamic Stability Analysis and Stability Type Discrimination. En: International Conference on Power System Technology: 22 al 26 de octubre de 2006. Chongqing, China.
- [25] GARCÍA, Freddy Javier. Criterio de Diseño para Redes de Distribución. Cali, Colombia. 2010.
- [26] GIUSTO, Álvaro y MONZÓN, Pablo. Análisis Modal del Sistema Eléctrico Uruguayo.
 En: 7º Encuentro de Energía, Potencia, Instrumentación y Medidas: 16 y 17 de octubre de 2008. Montevideo, Uruguay.

Anexo A

Solar Turbines A Catagollar Company

TAURUS 60 Gas Turbine Generator Set

Features

- Industrial Gas Turbine Package
- Compact, Integrated Package
- Providing Ease of Installation
- Package Arrangement

Gas Turbine

- Taurus™ 60 Industrial, Single-Shaft
- Axial Compressor 12 Stages
- Annular Combustion Chamber
- 12 Fuel Injectors
- Coatings
 - Compressor: Inorganic Aluminum - Turbine and Nozzle Blades:
- Precious Metal Diffusion Aluminide
- Proximity Probe Vibration Transducers

Main Reduction Drive

- Epicyclic
 - 1800 or 1500 rpm
 - Acceleration Vibration Transducers

Generator

- · Salient Pole, 3 Phase, 6 Wire, Wye Connected, Synchronous with Brushless Exciter
- Open Drip-Proof Construction
- Sleeve Bearings
- Velocity Vibration Transducers
- Solid-State Voltage Regulation with
- Permanent Magnet Generator NEMA Class F Insulation with F Rise
- Continuous Duty Rating
- Package
- Steel Base Frame with Drip Pans Direct-Drive AC Start System
- Natural Gas Fuel System

Factory Tested

- Control System
- Microprocessor-Based PLC
- Generator Control

Combustion Available

- Vibration and Temperature Monitoring Lube OII System

Dry, Low Emission (SoLoNOx™)

- Auto Synchronizing
- Integrated Lube OII System
- Turbine-Driven Lube Pump
- AC Pre/Post Lube Pump
- Backup Lube Pump
- Air/Oll Cooler
- Integral Lube Oll Tank
- Lube Oll Tank Heater
- Lube Oll Filter
- Documentation
- Drawings
- Quality Control Data Book
- Inspection and Test Plan
- Test Reports
- O&M Manuals
- Factory Testing of Turbine and Package
- Optional Equipment/Services

Generator Options:

- WPIL TEWAC
- Standby Duty Rating
- Standard Voltages: 3300, 6600, 11,000 50 Hz;
- 4160, 6900, 12,470, 13,800 60 Hz
- Fuel Systems
- Llouid
- Dual (Gas/Liquid)

- Onskid Microprocessor-Control with Auto Sync Capability Multiple Fuel Capability
 - SoLoNOx, Dry, Low Emission
- Alternate Fuels (such as naphtha, propage low Btu)
- Water/OII Lube Cooler
- Electrostatic Demister
- Duplex Lube OI Filters
- Control System
- Remote Display/Control Terminal
- Heat Recovery Application Interface - Serial Link Supervisory Interface
- KW Control
- KVAR/Power Factor Control
- Turbine Performance Map
- Historical Displays
- Printer/Logger
- Predictive Emissions Monitoring
- Field Programming Terminal
- Accessory Equipment
- 24-VDC Battery/Charger System - Turbine Cleaning System: On-Crank
- and On-line - Package Litting Kit
- Weatherproof Acoustic Enclosure
- Ancillary Equipment: Various Air Inlet and Exhaust Systems
 - Inlet and Exhaust Silencers
 - Self-Cleaning or Prefilter/Barrier Air Inlet Filter
 - Injet Evaporative Cooler
 - Inlet Chiller Colls
 - Ancillary Support Frame

Solar Turbines

TAURUS 60 Gas Turbine Generator Set

Nominal Performance*

Available Performance

Typical Service Connections

Solar Turbines Incorporated P.O. Box 85376 San Diego, CA 92186-5376

Catespillar is a trademark of Catespillar Inc. Solar, Tauna and SoloNCs are trademarks of Solar Turtines incorporated. Specifications subject to change without notice. Printed in U.S.A. C1968 Solar Turtines incorporated. All rights reserved. DisplayPolyColymniastM

FOR MORE INFORMATION

Telephone: (+1) 619-544-5352 Telefax: (+1) 619-544-2633 Telex: 695045 Internet: www.solarturbines.com

Anexo B

Línea	Тіро	Terminal i	Terminal j	Largo km
AOSB1 - AOSFWB1	N2XS2Y 1x150RM 18/30kV it	AOSB1	AOSFWB1	0.03
AOSB1-AOSB3	N2XS2Y 1x150RM 18/30kV it	AOSB1	AOSB3	0.02
AOSB1-AOSB3(1)	N2XS2Y 1x150RM 18/30kV it	AOSFWB2	AOSB3	0.02
AOSB3-AOSSGB1	N2YSY 1x50rm 18/30kV ir	AOSB3	AOSSGB1	0.65
AOSB3-AOSSGB2	N2YSY 1x50rm 18/30kV ir	AOSB3	AOSSGB2	0.45
AOSB3-AOSSGB3	N2YSY 1x50rm 18/30kV ir	AOSB3	AOSSGB3	0.641
AOSB3-AOSSGB4	N2YSY 1x50rm 18/30kV ir	AOSB3	AOSSGB4	0.45
AOSB3-AOSSGB5	N2YSY 1x50rm 18/30kV ir	AOSB3	AOSSGB5	0.213
AOSB3-AOSSGB6	N2YSY 1x50rm 18/30kV ir	AOSB3	AOSSGB6	0.886
AOSB3-AOSSGB7	N2YSY 1x50rm 18/30kV ir	AOSB3	AOSSGB7	0.75
AOSB3-AOSTBB1	N2YSY 1x50rm 18/30kV ir	AOSB1	AOSTBB1	0.16
AOSFWB1 - AOSFWB2	N2XS2Y 1x150RM 18/30kV it	AOSFWB1	AOSFWB2	0.01
AOSPD01-AOSPD04	N2YSY 1x50rm 18/30kV ir	AOSPD01	AOSPD04	0.78233
AOSPD01-AOSPTB01	N2YSY 1x50rm 18/30kV ir	AOSPD01	AOSPTB01	0.36211
AOSPD02-AOSPD03	N2YSY 1x50rm 18/30kV ir	AOSPD02	AOSPD03	0.008
AOSPD02-AOSPTB02	N2YSY 1x50rm 18/30kV ir	AOSPD02	AOSPTB02	0.51739
AOSPD03-AOSPTB03	N2YSY 1x50rm 18/30kV ir	AOSPD03	AOSPTB03	0.11748
AOSPD05-AOSSPTB05	N2YSY 1x50rm 18/30kV ir	AOSPD05	AOSPTB05	0.08312
AOSPD06-AOSPD07	N2YSY 1x50rm 18/30kV ir	AOSPD06	AOSPD07	0.30159
AOSPD07-AOSSPTB07	N2YSY 1x50rm 18/30kV ir	AOSPD07	AOSPTB07	0.22212
AOSPD10-AOSPD11	N2YSY 1x50rm 18/30kV ir	AOSPD10	AOSPD11	1.54509
AOSPD10-AOSSPTB10	N2YSY 1x50rm 18/30kV ir	AOSPD10	AOSPTB10	0.55687
AOSPD11-AOSPTB11	N2YSY 1x50rm 18/30kV ir	AOSPD11	AOSPTB11	0.15409
AOSPD11-AOSSD12	N2YSY 1x50rm 18/30kV ir	AOSPD11	AOSPD12	1.62442
AOSPD12-AOSPD13	N2YSY 1x50rm 18/30kV ir	AOSPD12	AOSPD13	1.21218
AOSPD12-AOSSPTB12	N2YSY 1x50rm 18/30kV ir	AOSPD12	AOSPTB12	0.46453
AOSSD01-AOSSD09	N2YSY 1x50rm 18/30kV ir	AOSSD01	AOSSD09	1.39471
AOSSD01-AOSSTB01	N2YSY 1x50rm 18/30kV ir	AOSSD01	AOSSTB01	0.85442
AOSSD02-AOSSD03	N2YSY 1x50rm 18/30kV ir	AOSWD02	AOSWD03	1.05812
AOSSD03-AOSSD01	N2YSY 1x50rm 18/30kV ir	AOSWD03	AOSWD01	1.59363
AOSSD03-AOSSD02	N2YSY 1x50rm 18/30kV ir	AOSSD03	AOSSD02	1.3613
AOSSD03-AOSSD05	N2YSY 1x50rm 18/30kV ir	AOSPD03	AOSPD05	0.23632
AOSSD04-AOSSD02	N2YSY 1x50rm 18/30kV ir	AOSPD04	AOSPD02	0.51802
AOSSD04-AOSSD06	N2YSY 1x50rm 18/30kV ir	AOSSD04	AOSSD06	0.59644
AOSSD04-AOSSTB04	N2YSY 1x50rm 18/30kV ir	AOSSD04	AOSSTB04	0.23993
AOSSD05-AOSSD06	N2YSY 1x50rm 18/30kV ir	AOSPD05	AOSPD06	0.56475
AOSSD05-AOSSD08b	N2YSY 1x50rm 18/30kV ir	AOSSD05	AOSSD08b	1.56438
AOSSD05-AOSSTB05	N2YSY 1x50rm 18/30kV ir	AOSSD05	AOSSTB05	0.66394
AOSSD06-AOSSD07	N2YSY 1x50rm 18/30kV ir	AOSSD06	AOSSD07	0.81841
AOSSD07-AOSSD08	N2YSY 1x50rm 18/30kV ir	AOSPD07	AOSPD08	0.30159
AOSSD08-AOSSD03	N2YSY 1x50rm 18/30kV ir	AOSSD08	AOSSD03	0.59432

AOSSD08-AOSSD05	N2YSY 1x50rm 18/30kV ir	AOSSD08	AOSSD05	0.10298
AOSSD08-AOSSD09	AOSPD09 N2YSY 1x50rm 18/30kV ir AOSPD08 AOSPD09		AOSPD09	0.58819
AOSSD08-AOSSTB08	N2YSY 1x50rm 18/30kV ir	AOSSD08b	AOSSTB08	0.18669
AOSSD08b-AOSSD09b	N2YSY 1x50rm 18/30kV ir	AOSSD08b	AOSSD09	0.85992
AOSSD09-AOSDB08	N2YSY 1x50rm 18/30kV ir	AOSSD09	AOSSD08	3.3604
AOSSD09-AOSSD04	N2YSY 1x50rm 18/30kV ir	AOSSD09	AOSSD04	0.64083
AOSSD09-AOSSD10	N2YSY 1x50rm 18/30kV ir	AOSPD09	AOSPD10	0.81896
AOSSGB1-AOSITB1	N2YSY 1x50rm 18/30kV ir	AOSSGB1	AOSITB1	0.1
AOSSGB11-AOSATB11	N2YSY 1x50rm 18/30kV ir	AOSSGB11	AOSATB11	0.094
AOSSGB11-AOSATB12	N2YSY 1x50rm 18/30kV ir	AOSSGB11	AOSATB12	0.253
AOSSGB11-AOSATB13	N2YSY 1x50rm 18/30kV ir	AOSSGB11	AOSATB13	0.09
AOSSGB12-AOSATB31	N2YSY 1x50rm 18/30kV ir	AOSSGB12	AOSATB31	0.2
AOSSGB12-AOSATB45	N2YSY 1x50rm 18/30kV ir	AOSSGB12	AOSATB45	0.08
AOSSGB12-AOSATB46	N2YSY 1x50rm 18/30kV ir	AOSSGB12	AOSATB46	0.075
AOSSGB12-AOSSGB19	N2YSY 1x50rm 18/30kV ir	AOSSGB12	AOSSGB19	0.641
AOSSGB14-AOSATB19	N2YSY 1x50rm 18/30kV ir	AOSSGB14	AOSATB19	0.061
AOSSGB14-AOSATB20	N2YSY 1x50rm 18/30kV ir	AOSSGB12	AOSATB20	0.09
AOSSGB14-AOSATB30	N2YSY 1x50rm 18/30kV ir	AOSSGB14	AOSATB30	0.243
AOSSGB14-AOSATB51	N2YSY 1x50rm 18/30kV ir	AOSSGB14	AOSATB51	0.799
AOSSGB14-AOSATB52	N2YSY 1x50rm 18/30kV ir	AOSSGB14	AOSATB52	1.229
AOSSGB16-AOSATB15	N2YSY 1x50rm 18/30kV ir	- AOSSGB16	AOSATB15	0.66
AOSSGB16-AOSATB17	N2YSY 1x50rm 18/30kV ir	AOSSGB16	AOSATB17	0.43
AOSSGB16-AOSATB23	N2YSY 1x50rm 18/30kV ir	AOSSGB16	AOSATB23	0.199
AOSSGB16-AOSATB25	N2YSY 1x50rm 18/30kV ir	AOSSGB16	AOSATB25	0.013
AOSSGB16-AOSATB32	N2YSY 1x50rm 18/30kV ir	AOSSGB16	AOSATB32	0.512
AOSSGB16-AOSATB44	N2YSY 1x50rm 18/30kV ir	AOSSGB16	AOSATB44	0.53
AOSSGB18-AOSATB21	N2YSY 1x50rm 18/30kV ir	AOSSGB18	AOSATB21	0.016
AOSSGB18-AOSATB22	N2YSY 1x50rm 18/30kV ir	AOSSGB18	AOSATB22	0.221
AOSSGB18-AOSATB27	N2YSY 1x50rm 18/30kV ir	AOSSGB18	AOSATB27	0.061
AOSSGB18-AOSATB37	N2YSY 1x50rm 18/30kV ir	AOSSGB18	AOSATB37	0.586
AOSSGB18-AOSATB38A	N2YSY 1x50rm 18/30kV ir	AOSSGB18	AOSATB38A	1.317
AOSSGB19-AOSATB24	N2YSY 1x50rm 18/30kV ir	AOSSGB19	AOSATB24	0.09
AOSSGB19-AOSATB26	N2YSY 1x50rm 18/30kV ir	AOSSGB19	AOSATB26	0.253
AOSSGB19-AOSATB34	N2YSY 1x50rm 18/30kV ir	AOSSGB19	AOSATB34	0.094
AOSSGB19-AOSATB35	N2YSY 1x50rm 18/30kV ir	AOSSGB19	AOSATB35	0.094
AOSSGB19-AOSSGB32	N2YSY 1x50rm 18/30kV ir	AOSSGB19	AOSSGB32	0.641
AOSSGB2-AOSATB14	N2YSY 1x50rm 18/30kV ir	AOSSGB2	AOSATB14	0.165
AOSSGB2-AOSATB5	N2YSY 1x50rm 18/30kV ir	AOSSGB2	AOSATB5	0.2
AOSSGB2-AOSATB6	N2YSY 1x50rm 18/30kV ir	AOSSGB2	AOSATB6	0.08
AOSSGB2-AOSATB7	N2YSY 1x50rm 18/30kV ir	AOSSGB2	AOSATB7	0.075
AOSSGB2-AOSATB9	N2YSY 1x50rm 18/30kV ir	AOSSGB2	AOSATB9	0.25
AOSSGB2-AOSITB2	N2YSY 1x50rm 18/30kV ir	AOSSGB1	AOSITB2	0.15
AOSSGB27-AOSATB36	N2YSY 1x50rm 18/30kV ir	AOSSGB27	AOSATB36	0.648
AOSSGB27-AOSATB38B	N2YSY 1x50rm 18/30kV ir	AOSSGB27	AOSATB38B	0.266

		-	1	
AOSSGB27-AOSATB39	N2YSY 1x50rm 18/30kV ir	AOSSGB27	AOSATB39	1.224
AOSSGB27-AOSATB40	OSSGB27-AOSATB40 N2YSY 1x50rm 18/30kV ir		AOSATB40	0.787
AOSSGB27-AOSATB41	N2YSY 1x50rm 18/30kV ir	AOSSGB27	AOSATB41	0.686
AOSSGB28-AOSATB42	N2YSY 1x50rm 18/30kV ir	AOSSGB28	AOSATB42	0.214
AOSSGB28-AOSATB43	N2YSY 1x50rm 18/30kV ir	AOSSGB28	AOSATB43	0.918
AOSSGB28-AOSSGB27	N2YSY 1x50rm 18/30kV ir	AOSSGB28	AOSSGB27	0.499
AOSSGB3-AOSPD01	N2YSY 1x50rm 18/30kV ir	AOSSGB3	AOSPD01	2.40944
AOSSGB3-AOSWD11	N2YSY 1x50rm 18/30kV ir	AOSSGB3	AOSWD11	0.48579
AOSSGB32-AOSATB47	N2YSY 1x50rm 18/30kV ir	AOSSGB32	AOSATB47	0.09
AOSSGB32-AOSATB48	N2YSY 1x50rm 18/30kV ir	AOSSGB32	AOSATB48	0.253
AOSSGB32-AOSATB49	N2YSY 1x50rm 18/30kV ir	AOSSGB32	AOSATB49	0.094
AOSSGB32-AOSATB50	N2YSY 1x50rm 18/30kV ir	AOSSGB32	AOSATB50	0.094
AOSSGB32-AOSDB01	N2YSY 1x50rm 18/30kV ir	AOSSGB32	AOSSD01	1.639
AOSSGB4-AOSATB16	N2YSY 1x50rm 18/30kV ir	AOSSGB4	AOSATB16	0.075
AOSSGB4-AOSATB18	N2YSY 1x50rm 18/30kV ir	AOSSGB4	AOSATB18	0.08
AOSSGB4-AOSATB28	N2YSY 1x50rm 18/30kV ir	AOSSGB4	AOSATB28	0.2
AOSSGB4-AOSSGB12	N2YSY 1x50rm 18/30kV ir	AOSSGB4	AOSSGB12	0.641
AOSSGB5-AOSATB29	N2YSY 1x50rm 18/30kV ir	AOSSGB5	AOSATB29	0.015
AOSSGB5-AOSATB33	N2YSY 1x50rm 18/30kV ir	AOSSGB5	AOSATB33	0.343
AOSSGB5-AOSSG28	N2YSY 1x50rm 18/30kV ir	AOSSGB5	AOSSGB28	0.641
AOSSGB5-AOSSGB18	N2YSY 1x50rm 18/30kV ir	AOSSGB5	AOSSGB18	0.659
AOSSGB6-AOSATB10	N2YSY 1x50rm 18/30kV ir	AOSSGB6	AOSATB10	0.014
AOSSGB6-AOSSGB11	N2YSY 1x50rm 18/30kV ir	AOSSGB6	AOSSGB11	0.641
AOSSGB6-AOSSGB14	N2YSY 1x50rm 18/30kV ir	AOSSGB6	AOSSGB14	0.659
AOSSGB6-AOSSGB16	N2YSY 1x50rm 18/30kV ir	AOSSGB6	AOSSGB16	0.499
AOSSGB7-AOSATB1	N2YSY 1x50rm 18/30kV ir	AOSSGB7	AOSATB1	0.0393
AOSSGB7-AOSATB2	N2YSY 1x50rm 18/30kV ir	AOSSGB7	AOSATB2	0.0558
AOSSGB7-AOSATB3	N2YSY 1x50rm 18/30kV ir	AOSSGB7	AOSATB3	0.2243
AOSSGB7-AOSATB4	N2YSY 1x50rm 18/30kV ir	AOSSGB7	AOSATB4	0.2562
AOSSGB7-AOSATB8	N2YSY 1x50rm 18/30kV ir	AOSSGB7	AOSATB8	0.228
AOSWD02-AOSWTB02	N2YSY 1x50rm 18/30kV ir	AOSWD02	AOSWTB02	1.03963
AOSWD04-AOSWD02	N2YSY 1x50rm 18/30kV ir	AOSWD04	AOSWD02	0.76798
AOSWD04-AOSWD04	N2YSY 1x50rm 18/30kV ir	AOSWD05	AOSWD04	0.35411
AOSWD06-AOSWD05	N2YSY 1x50rm 18/30kV ir	AOSWD06	AOSWD05	1.41421
AOSWD07-AOSWD06	N2YSY 1x50rm 18/30kV ir	AOSWD07	AOSWD06	0.37206
AOSWD09-AOSWD08	N2YSY 1x50rm 18/30kV ir	AOSWD09	AOSWD08	0.23877
AOSWD10-AOSWD09	N2YSY 1x50rm 18/30kV ir	AOSWD10	AOSWD09	0.79272
AOSWD11-AOSWD07	N2YSY 1x50rm 18/30kV ir	AOSWD11	AOSWD07	2.70802
AOSWD11-AOSWD10	N2YSY 1x50rm 18/30kV ir	AOSWD11	AOSWD10	1.96001
OSBB1b-AOSB1	NA2XS(FL)2Y 1x50RM/16 18/30kV it	OSFB1b	AOSB1	30
OSFB1a-AOSB1	NA2XS(FL)2Y 1x50RM/16 18/30kV it	OSFB1a	AOSB1	30
OSFB1a-OSFB2a	N2XS2Y 1x50RM 18/30kV it	OSFB1a	OSFB2a	0.85
OSFB1b-OSFB2b	N2XS2Y 1x50RM 18/30kV it	OSFB1b	OSFB2b	0.85
OSFB2a-OSFBT4	N2XS(F)2Y 1x50RM/16 18/30kV it	OSFB2a	OSFTB4	0.05

OSFB2a-OSFBT5	N2XS(F)2Y 1x50RM/16 18/30kV it	OSFB2a	OSFTB5	0.05
OSFB2b-OSFBT6	N2XS(F)2Y 1x50RM/16 18/30kV it	OSFB2b	OSFTB6	0.05
OSFB2b-OSFBT7	N2XS(F)2Y 1x50RM/16 18/30kV it	OSFB2b	OSFTB7	0.05
OSFB2b-OSFBT8	N2XS(F)2Y 1x50RM/16 18/30kV it	OSFB2b	OSFTB8	0.05
OSFTB1-OSFB1a	N2XS2Y 1x50RM 18/30kV it	OSFTB1	OSFB1a	0.5
OSFTB1-OSFB1b	N2XS2Y 1x50RM 18/30kV it	OSFTB1	OSFB1b	0.5
OSFTB2-OSFB1a	N2XS2Y 1x50RM 18/30kV it	OSFTB2	OSFB1a	0.5
OSFTB2-OSFB1b	N2XS2Y 1x50RM 18/30kV it	OSFTB2	OSFB1b	0.5
OSFTB3-OSFB1a	N2XS2Y 1x50RM 18/30kV it	OSFTB3	OSFB1a	0.5
OSFTB3-OSFB1b	N2XS2Y 1x50RM 18/30kV it	OSFTB3	OSFB1b	0.5

Anexo C

Transformador	Тіро	Lado AT	Lado BT
AOSAT1	1MVA-RHONA	AOSATB1	AOSACB1
AOSAT10	0,4MVA	AOSATB10	AOSACB10
AOSAT11	0,1MVA	AOSATB11	AOSACB11
AOSAT12	0,1MVA	AOSATB12	AOSACB12
AOSAT13	0,1MVA	AOSATB13	AOSACB13
AOSAT14	0,4MVA	AOSATB14	AOSACB14
AOSAT15	0,2MVA	AOSATB15	AOSACB15
AOSAT16	0,2MVA	AOSATB16	OSCACB16
AOSAT17	0,1MVA	AOSATB17	AOSACB17
AOSAT18	0,2MVA	AOSATB18	AOSACB18
AOSAT19	0,1MVA	AOSATB19	AOSACB19
AOSAT2	1MVA-RHONA	AOSATB2	AOSACB2
AOSAT20	0,1MVA	AOSATB20	AOSACB20
AOSAT21	0,1MVA	AOSATB21	AOSACB21
AOSAT22	0,1MVA	AOSATB22	AOSACB22
AOSAT23	0,1MVA	AOSATB23	AOSACB23
AOSAT24	0,1MVA	AOSATB24	AOSACB24
AOSAT25	0,2MVA	AOSATB25	AOSACB25
AOSAT26	0,2MVA	AOSATB26	AOSACB26
AOSAT27	0,3MVA	AOSATB27	AOSACB27
AOSAT28	0,1MVA	AOSATB28	AOSACB28
AOSAT29	0,1MVA	AOSATB29	AOSACB29
AOSAT3	1MVA-RHONA	AOSATB3	AOSACB3
AOSAT30	0,1MVA	AOSATB30	AOSACB30
AOSAT31	0,1MVA	AOSATB31	AOSACB31
AOSAT32	0,1MVA	AOSATB32	AOSACB32
AOSAT33	0,1MVA	AOSATB33	AOSACB33
AOSAT34	0,1MVA	AOSATB34	AOSACB34
AOSAT35	0,1MVA	AOSATB35	AOSACB35
AOSAT36	0,1MVA	AOSATB36	AOSACB36
AOSAT37	0,1MVA	AOSATB37	AOSACB37
AOSAT38A	0,1MVA	OSATB38A	AOSACB38A
AOSAT38B	0,1MVA	AOSATB38B	AOSACB38B
AOSAT39	0,1MVA	AOSATB39	AOSACB39
AOSAT4	1MVA-RHONA	AOSATB4	AOSACB4
AOSAT40	0,1MVA	AOSATB40	AOSACB40
AOSAT41	0,1MVA	AOSATB41	AOSACB41
AOSAT42	0,1MVA	AOSATB42	AOSACB42
AOSAT43	0,1MVA	AOSATB43	AOSACB43
AOSAT44	0,1MVA	AOSATB44	AOSACB44
AOSAT45	0,1MVA	AOSATB45	AOSACB45

		-	
AOSAT46	0,1MVA	AOSATB46	OSCACB46
AOSAT47	0,1MVA	AOSATB47	AOSACB47
AOSAT48	0,1MVA	AOSATB48	AOSACB48
AOSAT49	0,1MVA	AOSATB49	AOSACB49
AOSAT5	1MVA-RHONA	AOSATB5	AOSACB5
AOSAT50	0,1MVA	AOSATB50	AOSACB50
AOSAT51	0,1MVA	AOSATB51	AOSACB51
AOSAT52	0,1MVA	AOSATB52	AOSACB52
AOSAT6	1MVA-RHONA	AOSATB6	AOSACB6
AOSAT7	1MVA-RHONA	AOSATB7	AOSCACB7
AOSAT8	1MVA-RHONA	AOSATB8	AOSACB8
AOSAT9	1MVA-RHONA	AOSATB9	AOSACB9
AOSIT1	1,5MVA-RHONA	AOSITB1	AOSICB1
AOSIT2	1,5MVA-RHONA	AOSITB2	AOSICB2
AOSPT01	0,1MVA	AOSPTB01	AOSPCB01
AOSPT02	0,1MVA	AOSPTB02	AOSPCB02
AOSPT03	0,1MVA	AOSPTB03	AOSPCB03
AOSPT04	0,1MVA	AOSPD04	AOSPCB04
AOSPT05	0,1MVA	AOSPTB05	AOSPCB05
AOSPT06	0,1MVA	AOSPD06	AOSPCB06
AOSPT07	0,1MVA	AOSPTB07	AOSPCB07
AOSPT08	0,1MVA	AOSPD08	AOSPCB08
AOSPT09	0,1MVA	AOSPD09	AOSPCB09
AOSPT10	0,1MVA	AOSPTB10	AOSPCB10
AOSPT11	0,1MVA	AOSPTB11	AOSPCB11
AOSPT12	0,1MVA	AOSPTB12	AOSPCB12
AOSPT13	0,1MVA	AOSPD13	AOSPCB13
AOSST01	0,1MVA	AOSSTB01	AOSSCB01
AOSST02	0,1MVA	AOSSD02	AOSSCB02
AOSST03	0,1MVA	AOSSD03	AOSSCB03
AOSST04	0,1MVA	AOSSTB04	AOSSCB04
AOSST05	0,1MVA	AOSSTB05	AOSSCB05
AOSST06	0,1MVA	AOSSD06	AOSSCB06
AOSST07	0,1MVA	AOSSD07	AOSSCB07
AOSST08	0,1MVA	AOSSTB08	AOSSCB08
AOSST09	0,1MVA	AOSSD09	AOSSCB09
AOSTBT	2MVA-TUSAN	AOSTBB1	AOSTBCB1
AOSWT01	0,1MVA	AOSWD01	AOSWCB01
AOSWT02	0,1MVA	AOSWTB02	AOSWCB02
AOSWT03	0,1MVA	AOSWD03	OSWCB03
AOSWT04	0,1MVA	AOSWD04	OSWCB04
AOSWT05	0,1MVA	AOSWD05	OSWCB05
AOSWT06	0,1MVA	AOSWD06	OSWCB06
AOSWT07	0,1MVA	AOSWD07	OSWCB07

AOSWT08	0,1MVA	AOSWD08	OSWCB08
AOSWT09	0,1MVA	AOSWD09	OSWCB09
AOSWT10	0,1MVA	AOSWD10	OSWCB10
OSFT1	5MVA-Trf	OSFTB1	OSFGB1
OSFT2	5MVA-Trf	OSFTB2	OSFGB2
OSFT3	5MVA-Trf	OSFTB3	OSFGB3
OSFT4	2,5MVA	OSFTB4	OSFCB1
OSFT5	1,25MVA	OSFTB5	OSFCB2
OSFT6	1,25MVA	OSFTB6	OSFCB3
OSFT7	2,5MVA	OSFTB7	OSFCB4
OSFT8	1,25MVA	OSFTB8	OSFCB5

Anexo D

Nomenclatura OSF

Generador es	OSFG1	Generador 1 del PPS
	OSFG2	Generador 2 del PPS
	OSFG3	Generador 3 del PPS

S	OSFT1	Transformador step-up de G1
	OSFT2	Transformador step-up de G2
dore	OSFT3	Transformador step-up de G3
mac	OSFT4	Transformador step-down LVMS OSF Technical Facility
Transfor	OSFT5	Transformador step-down Antenna Area
	OSFT6	Transformador step-down ALMA Hotel
	OSFT7	Transformador step-down LVMS OSF Technical Facility
	OSFT8	Transformador step-downAntenna Shed Area

	OSFGB1	Barra Generador 1
	OSFGB2	Barra Generador 2
	OSFGB3	Barra Generador 3
	OSFTB1	Barra lado BT del transformador step-up del G1
	OSFTB2	Barra lado BT del transformador step-up del G2
	OSFTB3	Barra lado BT del transformador step-up del G3
	OSFB1a	Barra a de llegada de los Generadores
	OSFB1b	Barra b de llegada de los Generadores
ras	OSFB2a	Barra a de llegada de la línea de 23kV para la alimentación del OSF
Bar	OSFB2b	Barra b de llegada de la línea de 23kV para la alimentación del OSF
	OSFATB4	Barra lado AT del transformador step-down OSFT4
	OSFATB5	Barra lado AT del transformador step-down OSFT5
	OSFATB6	Barra lado AT del transformador step-down OSFT6
	OSFATB7	Barra lado AT del transformador step-down OSFT7
	OSFATB8	Barra lado AT del transformador step-down OSFT8
	OSFCB1	Barra lado BT del transformador step-down OSFT4
	OSFCB2	Barra lado BT del transformador step-down OSFT5
	OSFCB3	Barra lado BT del transformador step-down OSFT6
	OSFCB4	Barra lado BT del transformador step-down OSFT7

OSECB5	Barra Jado BT del transformador sten-down OSET8
051005	

	OSFTB1-OSFB1a	Línea de la Barra del G1 a la Barra de llegada de los Transformadores
	OSFTB1-OSFB1b	Línea de la Barra del G1 a la Barra de llegada de los Transformadores
	OSFTB2-OSFB1a	Línea de la Barra del G2 a la Barra de llegada de los Transformadores
	OSFTB2-OSFB1b	Línea de la Barra del G2 a la Barra de llegada de los Transformadores
	OSFTB3-OSFB1a	Línea de la Barra del G3 a la Barra de llegada de los Transformadores
	OSFTB3-OSFB1b	Línea de la Barra del G3 a la Barra de llegada de los Transformadores
		Línea de Barra de llegada de los transformadores a Barra Principal del
	OSFB1a-OSFB2a	OSF
(0		Línea de Barra de llegada de los transformadores a Barra Principal del
eas	OSFB1b-OSFB2b	OSF
Lín		
	OSFB2a-OSFBT4	Línea desde Barra principal del OSF al OSFT4
	OSFB2a-OSFBT5	Línea desde Barra principal del OSF al OSFT5
	OSFB2b-OSFBT6	Línea desde Barra principal del OSF al OSFT6
	OSFB2b-OSFBT7	Línea desde Barra principal del OSF al OSFT7
	OSFB2b-OSFBT8	Línea desde Barra principal del OSF al OSFT8
		Linea desde Barra de llegada de los transformadores a Barra principal
	OSBB1b-AOSB1	del AOS
		Linea desde Barra de llegada de los transformadores a Barra principal
	OSFB1a-AOSB1	del AOS

Cargas	OSFC1	LVMS OSF Technical Facility
	OSFC2	Antenna Area
	OSFC3	ALMA Hotel
	OSFC4	LVMS OSF Technical Facility
	OSFC5	Antenna Shed Area

Nomenclatura AOS

	AOSTBT	Transformador step-down del Technichal Building
	AOSIT1	Transformador IT1
	AOSIT2	Transformador IT2
	AOSAT5	Transformador AT5
	AOSAT6	Transformador AT6
	AOSAT7	Transformador AT7
	AOSAT9	Transformador AT9
	AOSAT14	Transformador AT14
	AOSAT8	Transformador AT8
	AOSAT1	Transformador AT1
	AOSAT2	Transformador AT2
	AOSAT3	Transformador AT3
	AOSAT4	Transformador AT4
	AOSAT21	Transformador AT21
ores	AOSAT22	Transformador AT22
Jade	AOSAT27	Transformador AT27
forn	AOSAT29	Transformador AT29
ansf	AOSAT33	Transformador AT33
Trö	AOSAT36	Transformador AT36
	AOSAT37	Transformador AT37
	AOSAT38A	Transformador AT38A
	AOSAT38B	Transformador AT38B
	AOSAT39	Transformador AT39
	AOSAT40	Transformador AT40
	AOSAT41	Transformador AT41
	AOSAT42	Transformador AT42
	AOSAT43	Transformador AT43
	AOSAT10	Transformador AT10
	AOSAT11	Transformador AT11
	AOSAT12	Transformador AT12
	AOSAT13	Transformador AT13
	AOSAT15	Transformador AT15
	AOSAT17	Transformador AT17
	AOSAT19	Transformador AT19
	AOSAT23	Transformador AT23
	AOSAT25	Transformador AT25

AOSAT30	Transformador AT30
AOSAT32	Transformador AT32
AOSAT44	Transformador AT44
AOSAT51	Transformador AT51
AOSAT52	Transformador AT52
AOSAT16	Transformador AT16
AOSAT18	Transformador AT18
AOSAT20	Transformador AT20
AOSAT24	Transformador AT24
AOSAT26	Transformador AT26
AOSAT28	Transformador AT28
AOSAT31	Transformador AT31
AOSAT34	Transformador AT34
AOSAT35	Transformador AT35
AOSAT45	Transformador AT45
AOSAT46	Transformador AT46
AOSAT47	Transformador AT47
AOSAT48	Transformador AT48
AOSAT49	Transformador AT49
AOSAT50	Transformador AT50
AOSST01	Transformador ST01
AOSST02	Transformador ST02
AOSST03	Transformador ST03
AOSST04	Transformador ST04
AOSST05	Transformador ST05
AOSST06	Transformador ST06
AOSST07	Transformador ST07
AOSST08	Transformador ST08
AOSST09	Transformador ST09
AOSPT01	Transformador PT01
AOSPT02	Transformador PT02
AOSPT03	Transformador PT03
AOSPT04	Transformador PT04
AOSPT05	Transformador PT05
AOSPT06	Transformador PT06
AOSPT07	Transformador PT07
AOSPT08	Transformador PT08
AOSPT09	Transformador PT09
AOSPT10	Transformador PT10
AOSPT11	Transformador PT11
AOSPT12	Transformador PT12

AOSPT13	Transformador PT13
AOSWT01	Transformador WT01
AOSWT02	Transformador WT02
AOSWT03	Transformador WT03
AOSWT04	Transformador WT04
AOSWT05	Transformador WT05
AOSWT06	Transformador WT06
AOSWT07	Transformador WT07
AOSWT08	Transformador WT08
AOSWT09	Transformador WT09
AOSWT10	Transformador WT10

	AOSB1	Barra de llegada de línea de 23kV
	AOSTBB1	Barra lado AT del Transformador step-down del SAOS-TB
	AOSTBCB1	Barra lado BT del Transformador step-down del SAOS-TB
	AOSSGB1	ASWGR1
	AOSSGB2	ASWGR2
	AOSSGB3	ASWGR33
	AOSSGB4	ASWGR4
	AOSSGB5	ASWGR5
	AOSSGB6	ASWGR10
	AOSSGB7	ASWGR7-mod
	AOSSGB18	ASWGR18
St	AOSSGB27	ASWGR27
arra	AOSSGB28	ASWGR28
Θ		
	AOSSGB11	ASWGR11
	AOSSGB14	ASWGR14
	AOSSGB16	ASWGR16
	AOSSGB12	ASWGR12
	AOSSGB19	ASWGR19
	AOSSGB32	ASWGR32
	AOSSD01	Desconectador S01
	AOSSD02	Desconectador S02
	AOSSD03	Desconectador S03
	AOSSD04	Desconectador S04
	AOSSD05	Desconectador S05
	AOSSD06	Desconectador S06

1	AOSSD07	Desconectador S07
	AOSSD08	Desconectador S08
	AOSSD08b	Desconectador S09
	AOSSD09	Desconectador S10
	AOSSD09	Desconectador S11
	AOSWD01	Desconectador W01
	AOSWD02	Desconectador W02
	AOSWD03	Desconectador W03
	AOSWD04	Desconectador W04
	AOSWD05	Desconectador W05
	AOSWD06	Desconectador W06
	AOSWD07	Desconectador W07
	AOSWD08	Desconectador W08
	AOSWD09	Desconectador W09
	AOSWD10	Desconectador W10
	AOSWD11	Desconectador W11
	AOSPD01	Desconectador P01
	AOSPD02	Desconectador P02
	AOSPD03	Desconectador P03
	AOSPD04	Desconectador P04
	AOSPD05	Desconectador P05
	AOSPD06	Desconectador P06
	AOSPD07	Desconectador P07
	AOSPD08	Desconectador P08
	AOSPD09	Desconectador P09
	AOSPD10	Desconectador P10
	AOSPD11	Desconectador P11
	AOSPD12	Desconectador P12
	AOSPD13	Desconectador P13
	AOSITB1	Barra lado AT del transformador step-down IT1
	AOSITB2	Barra lado AT del transformador step-down IT2
	AOSATB5	Barra lado AT del transformador step-down AT5
	AOSATB6	Barra lado AT del transformador step-down AT6
	AOSATB7	Barra lado AT del transformador step-down AT7
	AOSATB9	Barra lado AT del transformador step-down AT9
	AOSATB14	Barra lado AT del transformador step-down AT14
Γ		
	AOSATB8	Barra lado AT del transformador step-down AT8
	AOSATB1	Barra lado AT del transformador step-down AT1

AOSATB2	Barra lado AT del transformador step-down AT2
AOSATB3	Barra lado AT del transformador step-down AT3
AOSATB4	Barra lado AT del transformador step-down AT4
AOSATB21	Barra lado AT del transformador step-down AT21
AOSATB22	Barra lado AT del transformador step-down AT22
AOSATB27	Barra lado AT del transformador step-down AT27
AOSATB29	Barra lado AT del transformador step-down AT29
AOSATB33	Barra lado AT del transformador step-down AT33
AOSATB36	Barra lado AT del transformador step-down AT36
AOSATB37	Barra lado AT del transformador step-down AT37
AOSATB38A	Barra lado AT del transformador step-down AT38A
AOSATB38B	Barra lado AT del transformador step-down AT38B
AOSATB39	Barra lado AT del transformador step-down AT39
AOSATB40	Barra lado AT del transformador step-down AT40
AOSATB41	Barra lado AT del transformador step-down AT41
AOSATB42	Barra lado AT del transformador step-down AT42
AOSATB43	Barra lado AT del transformador step-down AT43
AOSATB10	Barra lado AT del transformador step-down AT10
AOSATB11	Barra lado AT del transformador step-down AT11
AOSATB12	Barra lado AT del transformador step-down AT12
AOSATB13	Barra lado AT del transformador step-down AT13
AOSATB15	Barra lado AT del transformador step-down AT15
AOSATB17	Barra lado AT del transformador step-down AT17
AOSATB19	Barra lado AT del transformador step-down AT19
AOSATB23	Barra lado AT del transformador step-down AT23
AOSATB25	Barra lado AT del transformador step-down AT25
AOSATB30	Barra lado AT del transformador step-down AT30
AOSATB32	Barra lado AT del transformador step-down AT32
AOSATB44	Barra lado AT del transformador step-down AT44
AOSATB51	Barra lado AT del transformador step-down AT51
AOSATB52	Barra lado AT del transformador step-down AT52
AOSSTB01	Barra lado AT del transformador step-down ST01
AOSSTB04	Barra lado AT del transformador step-down ST04
AOSSTB05	Barra lado AT del transformador step-down ST05
AOSSTB08	Barra lado AT del transformador step-down ST08
AOSWTB02	Barra lado AT del transformador step-down WT02
AOSPTB01	Barra lado AT del transformador step-down PT01
AOSPTB02	Barra lado AT del transformador step-down PT02
AOSPTB03	Barra lado AT del transformador step-down PT03

AOSPTB05	Barra lado AT del transformador step-down PT05
AOSPTB07	Barra lado AT del transformador step-down PT07
AOSPTB10	Barra lado AT del transformador step-down PT10
AOSPTB11	Barra lado AT del transformador step-down PT11
AOSPTB12	Barra lado AT del transformador step-down PT12
AOSICB1	Barra lado BT del transformador step-down IT1
AOSICB2	Barra lado BT del transformador step-down IT2
AOSACB5	Barra lado BT del transformador step-down AT5
AOSACB6	Barra lado BT del transformador step-down AT6
AOSACB7	Barra lado BT del transformador step-down AT7
AOSACB9	Barra lado BT del transformador step-down AT9
AOSACB14	Barra lado BT del transformador step-down AT14
AOSACB8	Barra lado BT del transformador step-down AT8
AOSACB1	Barra lado BT del transformador step-down AT1
AOSACB2	Barra lado BT del transformador step-down AT2
AOSACB3	Barra lado BT del transformador step-down AT3
AOSACB4	Barra lado BT del transformador step-down AT4
AOSACB21	Barra lado BT del transformador step-down AT21
AOSACB22	Barra lado BT del transformador step-down AT22
AOSACB27	Barra lado BT del transformador step-down AT27
AOSACB29	Barra lado BT del transformador step-down AT29
AOSACB33	Barra lado BT del transformador step-down AT33
AOSACB36	Barra lado BT del transformador step-down AT36
AOSACB37	Barra lado BT del transformador step-down AT37
AOSACB38A	Barra lado BT del transformador step-down AT38A
AOSACB38B	Barra lado BT del transformador step-down AT38B
AOSACB39	Barra lado BT del transformador step-down AT39
AOSACB40	Barra lado BT del transformador step-down AT40
AOSACB41	Barra lado BT del transformador step-down AT41
AOSACB42	Barra lado BT del transformador step-down AT42
AOSACB43	Barra lado BT del transformador step-down AT43
AOSACB10	Barra lado BT del transformador step-down AT10
AOSACB11	Barra lado BT del transformador step-down AT11
AOSACB12	Barra lado BT del transformador step-down AT12
AOSACB13	Barra lado BT del transformador step-down AT13
AOSACB15	Barra lado BT del transformador step-down AT15
AOSACB17	Barra lado BT del transformador step-down AT17
AOSACB19	Barra lado BT del transformador step-down AT19
AOSACB23	Barra lado BT del transformador step-down AT23

AOSACB25	Barra lado BT del transformador step-down AT25
AOSACB30	Barra lado BT del transformador step-down AT30
AOSACB32	Barra lado BT del transformador step-down AT32
AOSACB44	Barra lado BT del transformador step-down AT44
AOSACB51	Barra lado BT del transformador step-down AT51
AOSACB52	Barra lado BT del transformador step-down AT52
AOSSCB01	Barra lado BT del transformador step-down ST01
AOSSCB04	Barra lado BT del transformador step-down ST04
AOSSCB05	Barra lado BT del transformador step-down ST05
AOSSCB08	Barra lado BT del transformador step-down ST08
AOSWCB02	Barra lado BT del transformador step-down WT02
AOSPCB01	Barra lado BT del transformador step-down PT01
AOSPCB02	Barra lado BT del transformador step-down PT02
AOSPCB03	Barra lado BT del transformador step-down PT03
AOSPCB05	Barra lado BT del transformador step-down PT05
AOSPCB07	Barra lado BT del transformador step-down PT07
AOSPCB10	Barra lado BT del transformador step-down PT10
AOSPCB11	Barra lado BT del transformador step-down PT11
AOSPCB12	Barra lado BT del transformador step-down PT12

AOSB3-AOSTBB1	Línea desde SwitchGear principal a Barra del AOS-TB
	Línea desde Barra principal del AOS a Barra del SwirchGear
AOSB1-AOSB3	Principal
AOSB3-AOSSGB1	Línea desde SwitchGear al ASWGR1
AOSB3-AOSSGB2	Línea desde SwitchGear al ASWGR2
AOSB3-AOSSGB3	Línea desde SwitchGear al ASWGR33
AOSB3-AOSSGB4	Línea desde SwitchGear al ASWGR4
AOSB3-AOSSGB5	Línea desde SwitchGear al ASWGR5
AOSB3-AOSSGB6	Línea desde SwitchGear al ASWGR10
AOSB3-AOSSGB7	Línea desde SwitchGear al ASWGR7-mod
AOSSGB1-AOSITB1	Linea desde ISWGR1 al Tranformador IT1
AOSSGB2-AOSITB2	Linea desde ISWGR1 al Tranformador IT2
AOSSGB2-AOSATB14	Línea desde ASWGR2 al Transformador AT14
AOSSGB2-AOSATB5	Línea desde ASWGR2 al Transformador AT5
AOSSGB2-AOSATB6	Línea desde ASWGR2 al Transformador AT6
AOSSGB2-AOSATB7	Línea desde ASWGR2 al Transformador AT7
AOSSGB2-AOSATB9	Línea desde ASWGR2 al Transformador AT9
	AOSB3-AOSTBB1 AOSB1-AOSB3 AOSB3-AOSSGB1 AOSB3-AOSSGB2 AOSB3-AOSSGB3 AOSB3-AOSSGB4 AOSB3-AOSSGB4 AOSB3-AOSSGB5 AOSB3-AOSSGB6 AOSB3-AOSSGB7 AOSSGB1-AOSITB1 AOSSGB2-AOSITB2 AOSSGB2-AOSATB14 AOSSGB2-AOSATB5 AOSSGB2-AOSATB5 AOSSGB2-AOSATB7 AOSSGB2-AOSATB9

AOSSGB7-AOSATB1	Línea desde ASWGR7 al Transformador AT1
AOSSGB7-AOSATB2	Línea desde ASWGR7 al Transformador AT2
AOSSGB7-AOSATB3	Línea desde ASWGR7 al Transformador AT3
AOSSGB7-AOSATB4	Línea desde ASWGR7 al Transformador AT4
AOSSGB7-AOSATB8	Línea desde ASWGR7 al Transformador AT8
AOSSGB28-AOSSGB27	Línea desde ASWGR28 al ASWGR27
AOSSGB5-AOSSG28	Línea desde ASWGR5 al ASWGR28
AOSSGB5-AOSSGB18	Línea desde ASWGR5 al ASWGR18
AOSSGB18-AOSATB21	Línea desde ASWGR18 al Transformador AT21
AOSSGB18-AOSATB22	Línea desde ASWGR18 al Transformador AT22
AOSSGB18-AOSATB27	Línea desde ASWGR18 al Transformador AT27
AOSSGB18-AOSATB37	Línea desde ASWGR18 al Transformador AT37
AOSSGB18-AOSATB38A	Línea desde ASWGR18 al Transformador AT38A
AOSSGB27-AOSATB36	Línea desde ASWGR27 al Transformador AT36
AOSSGB27-AOSATB38B	Línea desde ASWGR27 al Transformador AT38B
AOSSGB27-AOSATB39	Línea desde ASWGR27 al Transformador AT39
AOSSGB27-AOSATB40	Línea desde ASWGR27 al Transformador AT40
AOSSGB27-AOSATB41	Línea desde ASWGR27 al Transformador AT41
AOSSGB28-AOSATB42	Línea desde ASWGR28 al Transformador AT42
AOSSGB28-AOSATB43	Línea desde ASWGR28 al Transformador AT43
AOSSGB5-AOSATB29	Línea desde ASWGR5 al Transformador AT29
AOSSGB5-AOSATB33	Línea desde ASWGR5 al Transformador AT33
AOSSGB6-AOSSGB11	Línea desde ASWGR6 al ASWGR11
AOSSGB6-AOSSGB14	Línea desde ASWGR6 al ASWGR14
AOSSGB6-AOSSGB16	Línea desde ASWGR6 al ASWGR16
AOSSGB11-AOSATB11	Línea desde ASWGR11 al Transformador AT11
AOSSGB11-AOSATB12	Línea desde ASWGR11 al Transformador AT12
AOSSGB11-AOSATB13	Línea desde ASWGR11 al Transformador AT13
AOSSGB14-AOSATB19	Línea desde ASWGR14 al Transformador AT19
AOSSGB14-AOSATB30	Línea desde ASWGR14 al Transformador AT30
AOSSGB14-AOSATB51	Línea desde ASWGR14 al Transformador AT51
AOSSGB14-AOSATB52	Línea desde ASWGR14 al Transformador AT52
AOSSGB16-AOSATB15	Línea desde ASWGR16 al Transformador AT15
AOSSGB16-AOSATB17	Línea desde ASWGR16 al Transformador AT17
AOSSGB16-AOSATB23	Línea desde ASWGR16 al Transformador AT23
AOSSGB16-AOSATB25	Línea desde ASWGR16 al Transformador AT25
AOSSGB16-AOSATB32	Línea desde ASWGR16 al Transformador AT32
AOSSGB16-AOSATB44	Línea desde ASWGR16 al Transformador AT44
AOSSGB6-AOSATB10	Línea desde ASWGR6 al Transformador AT10

AOSSD01-AOSSD02	Línea desde Desconectador S01 al Desconectador S09
AOSSD03-AOSSD02	Línea desde Desconectador S03 al Desconectador S02
AOSSD04-AOSSD06	Línea desde Desconectador S04 al Desconectador S06
AOSSD05-AOSSD08b	Línea desde Desconectador S05 al Desconectador S08b
AOSSD06-AOSSD07	Línea desde Desconectador S06 al Desconectador S07
AOSSD08-AOSSD03	Línea desde Desconectador S08 al Desconectador S03
AOSSD08-AOSSD05	Línea desde Desconectador S08 al Desconectador S05
AOSSD08b-AOSSD09b	Línea desde Desconectador S08b al Desconectador S09b
AOSSD09-AOSDB08	Línea desde Desconectador S09 al Desconectador S08
AOSSD09-AOSSD04	Línea desde Desconectador S09 al Desconectador S04
AOSSGB12-AOSSGB19	Línea desde ASWGR12 al ASWGR19
AOSSGB19-AOSSGB32	Línea desde ASWGR19 al ASWGR32
AOSSGB32-AOSDB01	Línea desde ASWGR32 al Desconectador S01
AOSSGB4-AOSSGB12	Línea desde ASWGR4 al ASWGR12
AOSSD01-AOSSTB01	Línea desde Desconectador S01 al Transformador ST01
AOSSD04-AOSSTB04	Línea desde Desconectador S04 al Transformador ST04
AOSSD05-AOSSTB05	Línea desde Desconectador S05 al Transformador ST05
AOSSD08-AOSSTB08	Línea desde Desconectador S08 al Transformador ST08
AOSSGB12-AOSATB31	Línea desde ASWGR12 al Transformador AT31
AOSSGB12-AOSATB45	Línea desde ASWGR12 al Transformador AT45
AOSSGB12-AOSATB46	Línea desde ASWGR12 al Transformador AT46
AOSSGB14-AOSATB20	Línea desde ASWGR14 al Transformador AT20
AOSSGB19-AOSATB24	Línea desde ASWGR19 al Transformador AT24
AOSSGB19-AOSATB26	Línea desde ASWGR19 al Transformador AT26
AOSSGB19-AOSATB34	Línea desde ASWGR19 al Transformador AT34
AOSSGB19-AOSATB35	Línea desde ASWGR19 al Transformador AT35
AOSSGB32-AOSATB47	Línea desde ASWGR32 al Transformador AT47
AOSSGB32-AOSATB48	Línea desde ASWGR32 al Transformador AT48
AOSSGB32-AOSATB49	Línea desde ASWGR32 al Transformador AT49
AOSSGB4-AOSATB16	Línea desde ASWGR4 al Transformador AT16
AOSSGB4-AOSATB18	Línea desde ASWGR4 al Transformador AT18
AOSSGB4-AOSATB28	Línea desde ASWGR4 al Transformador AT28
AOSPD01-AOSPD04	Línea desde Desconectador P01 al Desconectador P04
AOSPD02-AOSPD03	Línea desde Desconectador P02 al Desconectador P03
AOSPD10-AOSPD11	Línea desde Desconectador P10 al Desconectador P11
AOSPD11-AOSPD12	Línea desde Desconectador P11 al Desconectador P12
AOSPD12-AOSPD13	Línea desde Desconectador P12 al Desconectador P13
AOSSD02-AOSSD03	Línea desde Desconectador S02 al Desconectador S03
AOSSD03-AOSSD01	Línea desde Desconectador S03 al Desconectador S01
AOSSD03-AOSSD05	Línea desde Desconectador S03 al Desconectador S05
AOSSD04-AOSSD02	Línea desde Desconectador S04 al Desconectador S02

AOSSD05-AOSSD06	Línea desde Desconectador S05 al Desconectador S06
AOSSD07-AOSSD08	Línea desde Desconectador S07 al Desconectador S08
AOSSD08-AOSSD09	Línea desde Desconectador S08 al Desconectador S09
AOSSD09-AOSSD10	Línea desde Desconectador S09 al Desconectador S10
AOSSGB3-AOSPD01	Línea desde ASWGR3 al Desconectador P01
AOSSGB3-AOSWD11	Línea desde ASWGR3 al Desconectador W11
AOSWD04-AOSWD02	Línea dsede Desconectador W04 al Desconectador W02
AOSWD04-AOSWD04	Línea dsede Desconectador W04 al Desconectador W04
AOSWD06-AOSWD05	Línea dsede Desconectador W06 al Desconectador W05
AOSWD07-AOSWD06	Línea dsede Desconectador W07 al Desconectador W06
AOSWD09-AOSWD08	Línea dsede Desconectador W09 al Desconectador W08
AOSWD10-AOSWD09	Línea dsede Desconectador W10 al Desconectador W09
AOSWD11-AOSWD07	Línea dsede Desconectador W11 al Desconectador W07
AOSWD11-AOSWD10	Línea dsede Desconectador W11 al Desconectador W10
AOSPD01-AOSPTB01	Línea desde Desconectador P01 al Transformador PT01
AOSPD02-AOSPTB02	Línea desde Desconectador P02 al Transformador PT02
AOSPD03-AOSPTB03	Línea desde Desconectador P03 al Transformador PT03
AOSPD05-AOSPTB05	Línea desde Desconectador P05 al Transformador PT05
AOSPD07-AOSPTB07	Línea desde Desconectador P07 al Transformador PT07
AOSPD10-AOSPTB10	Línea desde Desconectador P10 al Transformador PT10
AOSPD11-AOSPTB11	Línea desde Desconectador P11 al Transformador PT11
AOSPD12-AOSPTB12	Línea desde Desconectador P12 al Transformador PT12
AOSWD02-AOSWTB02	Línea dsede Desconectador W02 al Transformador WT02

	AOSTBC1	Carga del AOS-TB		
Cargas	AOSIC1	Carga asociada al Transformador IT1		
	AOSIC2	Carga asociada al Transformador IT2		
	AOSAC14	Carga asociada al Transformador AT14		
	AOSAC5	Carga asociada al Transformador AT5		
	AOSAC6	Carga asociada al Transformador AT6		
	AOSAC7	Carga asociada al Transformador AT7		
	AOSAC9	Carga asociada al Transformador AT9		
	AOSAC1	Carga asociada al Transformador AT1		
	AOSAC2	Carga asociada al Transformador AT2		
	AOSAC3	Carga asociada al Transformador AT3		
	AOSAC4	Carga asociada al Transformador AT4		
	AOSAC8	Carga asociada al Transformador AT8		
	AOSAC21	Carga asociada al Transformador AT21		
	AOSAC22	Carga asociada al Transformador AT22		

	AOSAC27	Carga asociada al Transformador AT27
	AOSAC29	Carga asociada al Transformador AT29
	AOSAC33	Carga asociada al Transformador AT33
	AOSAC36	Carga asociada al Transformador AT36
	AOSAC37	Carga asociada al Transformador AT37
	AOSAC38A	Carga asociada al Transformador AT38A
	AOSAC38B	Carga asociada al Transformador AT38B
	AOSAC39	Carga asociada al Transformador AT39
	AOSAC40	Carga asociada al Transformador AT40
	AOSAC41	Carga asociada al Transformador AT41
	AOSAC42	Carga asociada al Transformador AT42
	AOSAC43	Carga asociada al Transformador AT43
	AOSAC10	Carga asociada al Transformador AT10
	AOSAC11	Carga asociada al Transformador AT11
	AOSAC12	Carga asociada al Transformador AT12
	AOSAC13	Carga asociada al Transformador AT13
	AOSAC15	Carga asociada al Transformador AT15
	AOSAC17	Carga asociada al Transformador AT17
	AOSAC19	Carga asociada al Transformador AT19
	AOSAC23	Carga asociada al Transformador AT23
	AOSAC25	Carga asociada al Transformador AT25
	AOSAC30	Carga asociada al Transformador AT30
	AOSAC32	Carga asociada al Transformador AT32
	AOSAC44	Carga asociada al Transformador AT44
	AOSAC51	Carga asociada al Transformador AT51
	AOSAC52	Carga asociada al Transformador AT52
	AOSAC16	Carga asociada al Transformador AT16
	AOSAC18	Carga asociada al Transformador AT18
	AOSAC20	Carga asociada al Transformador AT20
	AOSAC24	Carga asociada al Transformador AT24
	AOSAC26	Carga asociada al Transformador AT26
	AOSAC28	Carga asociada al Transformador AT28
	AOSAC31	Carga asociada al Transformador AT31
	AOSAC34	Carga asociada al Transformador AT34
	AOSAC35	Carga asociada al Transformador AT35
	AOSAC45	Carga asociada al Transformador AT45
Γ	AOSAC46	Carga asociada al Transformador AT46
, I	AOSAC47	Carga asociada al Transformador AT47
L L	AOSAC48	Carga asociada al Transformador AT48
Γ	AOSAC49	Carga asociada al Transformador AT49
, I	AOSAC50	Carga asociada al Transformador AT50

AOSSC01	Carga asociada al Transformador ST01
AOSSC02	Carga asociada al Transformador ST02
AOSSC03	Carga asociada al Transformador ST03
AOSSC04	Carga asociada al Transformador ST04
AOSSC05	Carga asociada al Transformador ST05
AOSSC06	Carga asociada al Transformador ST06
AOSSC07	Carga asociada al Transformador ST07
AOSSC08	Carga asociada al Transformador ST08
AOSSC09	Carga asociada al Transformador ST09
AOSPC01	Carga asociada al Transformador PT01
AOSPC02	Carga asociada al Transformador PT02
AOSPC03	Carga asociada al Transformador PT03
AOSPC04	Carga asociada al Transformador PT04
AOSPC05	Carga asociada al Transformador PT05
AOSPC06	Carga asociada al Transformador PT06
AOSPC07	Carga asociada al Transformador PT07
AOSPC08	Carga asociada al Transformador PT08
AOSPC09	Carga asociada al Transformador PT09
AOSPC10	Carga asociada al Transformador PT10
AOSPC11	Carga asociada al Transformador PT11
AOSPC12	Carga asociada al Transformador PT12
AOSPC13	Carga asociada al Transformador PT13
AOSWC01	Carga asociada al Transformador WT01
AOSWC02	Carga asociada al Transformador WT02
AOSWC03	Carga asociada al Transformador WT03
AOSWC04	Carga asociada al Transformador WT04
AOSWC05	Carga asociada al Transformador WT05
AOSWC06	Carga asociada al Transformador WT06
AOSWC07	Carga asociada al Transformador WT07
AOSWC08	Carga asociada al Transformador WT08
AOSWC09	Carga asociada al Transformador WT09
AOSWC10	Carga asociada al Transformador WT10

Anexo E

Transformador	Escenario 1.1	Escenario 1.2	Escenario 1.3	Escenario 2	Escenario 3
AT1	0.068	0.136	0.017	0.051	0
AT10	0	0	0	0	0
AT11	0	0	0	0	0
AT12	0	0	0	0	0
AT13	0.017	0	0	0	0
AT14	0.034	0.017	0	0.017	0
AT15	0	0	0.017	0	0
AT16	0.017	0	0.017	0	0
AT17	0	0	0.017	0	0
AT18	0.017	0	0.017	0	0
AT19	0	0	0.017	0	0
AT2	0.068	0.119	0.034	0.051	0
AT20	0.017	0	0.017	0	0
AT21	0.017	0.017	0.017	0.017	0
AT22	0.017	0.017	0.017	0.017	0
AT23	0	0	0.017	0	0
AT24	0.017	0	0.017	0	0
AT25	0.034	0	0	0	0
AT26	0.034	0	0.017	0	0
AT27	0.017	0.034	0.051	0.034	0
AT28	0	0	0	0	0
AT29	0.017	0	0	0	0
AT3	0.017	0.119	0.017	0.051	0
AT30	0	0	0.017	0	0
AT31	0	0	0.017	0	0
AT32	0.017	0	0.017	0	0
AT33	0.017	0	0.017	0	0
AT34	0	0	0.017	0	0
AT35	0	0	0.017	0	0
AT36	0.017	0	0	0	0
AT37	0	0	0.017	0	0
AT38A	0.017	0	0.017	0	0
AT38B	0	0	0	0	0
AT39	0	0	0	0	0
AT4	0.017	0.136	0.034	0.017	0
AT40	0	0	0	0	0
AT41	0	0	0	0	0
AT42	0	0	0	0	0
AT43	0	0	0	0	0
AT44	0	0	0.017	0	0
AT45	0	0	0	0	0
AT46	0	0	0.017	0	0
AT47	0	0	0.017	0	0

AT48	0	0	0.017	0	0
AT49	0	0	0.017	0	0
AT5	0.08500001	0.102	0.034	0.034	0
AT50	0	0	0	0	0
AT51	0.017	0	0.017	0	0
AT52	0.017	0	0.017	0	0
AT6	0.08500001	0.102	0.034	0.034	0
AT7	0.068	0.119	0.017	0.034	0
AT8	0.034	0.119	0.034	0.034	0
AT9	0.034	0.034	0.017	0	0
IT1	0.116	0.116	0.116	0.116	0
IT2	0.087	0.116	0.116	0.116	0
PT01	0		0.017	0	0
PT02	0.017		0.017	0	0
PT03	0.017		0.017	0	0
РТ04	0.017		0.017	0	0
PT05	0.017		0.017	0	0
РТ06	0		0.017	0	0
PT07	0		0.017	0	0
PT08	0		0.017	0	0
PT09	0		0		0
PT10	0		0	0	0
PT11	0		0	0	0
PT12	0		0	0	0
PT13	0		0	0	0
ST01	0.017	0	0	0	0
ST02	0.017	0	0	0	0
ST03	0.017	0	0	0	0
ST04	0	0	0	0	0
ST05	0	0	0	0	0
ST06	0	0	0	0	0
ST07	0	0	0	0	0
ST08	0	0	0	0	0
ST09	0	0	0	0	0
WT01	0.017		0.017	0	0
WT02	0.017		0.017	0	0
WT03	0.017		0.017	0	0
WT04	0		0.017	0	0
WT05	0		0.017	0	0
WT06	0		0.017	0	0
WT07	0		0.017	0	0
WT08	0		0	0	0
WT09	0		0	0	0
WT10	0		0.017	0	0