PROPUESTA DE ZONIFICACIÓN DE UN ÁREA SILVESTRE PROTEGIDA EN LA REGIÓN DE ATACAMA EN EL CONTEXTO DEL CAMBIO GLOBAL

MÓNICA MARTÍNEZ OLIVARES

Santiago, Chile
2010
Memoria de Título

PROPUESTA DE ZONIFICACIÓN DE UN ÁREA SILVESTRE PROTEGIDA EN LA REGIÓN DE ATACAMA EN EL CONTEXTO DEL CAMBIO GLOBAL

ZONING PROPOSAL OF A WILDLAND PROTECTED AREA IN THE ATACAMA REGION IN THE GLOBAL CHANGE CONTEXT

MÓNICA MARTÍNEZ OLIVARES

Santiago, Chile

2010
PROPUESTA DE ZONIFICACIÓN DE UN ÁREA SILVESTRE PROTEGIDA EN LA REGIÓN DE ATACAMA EN EL CONTEXTO DEL CAMBIO GLOBAL

Memoria para optar al título profesional de: Ingeniero en Recursos Naturales Renovables

Mónica Martínez Olivares

Profesor Guía

Rodolfo Gajardo M. 7,0
Doctor en Ecología

Profesores Evaluadores

Andrés de la Fuente D. 7,0
Ingeniero Agrónomo

Juan Manuel Uribe M. 7,0
Ingeniero Agrónomo

Santiago, Chile

2010
TABLA DE CONTENIDOS

GLOSARIO DE SIGLAS .. 6
RESUMEN .. 7
ABSTRACT ... 8
INTRODUCCIÓN .. 9
Objetivo General .. 12
Objetivos Específicos ... 12
MATERIALES Y MÉTODOS ... 12
Zona de Influencia ... 12
Zonificación sobre la base de criterios biofísicos, ecológicos y socioculturales 14
 Ponderación de Criterios ... 34
 Obtención de Capas de Aptitud ... 35
 Obtención Capas de Vocación .. 35
 Regla de Decisión .. 35
 Capa Modelo de Zonificación y Macrozonificación ... 38
Aplicación de enfoque prospectivo con variables de cambio global 39
 Listado de Variables ... 39
 Análisis Estructural ... 39
 Análisis Morfológico ... 41
Propuesta de zonificación dinámica como base para un plan de manejo de un ASPP 42
RESULTADOS .. 42
Localización Área de Estudio .. 42
Zona de Influencia .. 43
 Caracterización del Área ... 45
 I. Componentes Bióticos ... 45
 I.I. Vegetación Potencial Terrestre .. 45
 I.II. Fauna Potencial Terrestre ... 47
 II. Componentes Físicos .. 48
 II.I. Geomorfología .. 48
 II.II. Geología .. 50
 II.III. Clima ... 50
 II.IV. Suelos .. 51
 II.V. Hidrografía ... 51
III. Componentes Socioeconómicos y Culturales ... 53
 III.I. Antecedentes Histórico - Culturales de los Diaguitas de Huasco Alto 53
 III.II. Patrimonio Arqueológico .. 55
 III.III. Descripción Demográfica .. 56
 III.IV. Principales Asentamientos Humanos e Infraestructura 56
 III.V. Usos de la Tierra y Actividades Productivas .. 58

Objetivos del Área Silvestre Protegida .. 60
Zonificación sobre la base de criterios biofísicos, ecológicos y socioculturales 61
 Ponderación de Criterios .. 65
 Capa Modelo de Zonificación y Macrozonificación .. 67
Aplicación de enfoque prospectivo con variables de cambio global 71
 Listado de Variables .. 71
 Análisis Estructural ... 76
 Análisis Morfológico .. 79

Propuesta de zonificación dinámica como base para un plan de manejo de un ASPP 84

DISCUSIÓN .. 92

CONCLUSIONES ... 97

BIBLIOGRAFÍA ... 98

APÉNDICES .. 107

I. Colaboradores del Estudio .. 107
II. Diagrama General de la Metodología ... 108
III. Clasificación de Variables según su Dependencia-Motricidad 109
GLOSARIO DE SIGLAS

ASP: Áreas Silvestres Protegidas
SNASPE: Sistema Nacional de Áreas Silvestres Protegidas del Estado
APP: Áreas Protegidas Privadas
ASPP: Áreas Silvestres Protegidas Privadas
SIG: Sistema de Información Geográfica
CG: Cambios Globales
EMC: Evaluación Multicriterio
UH: Unidades Homogéneas
CONAF: Corporación Nacional Forestal
FXAVE: Formaciones Xerofíticas de Alto Valor Ecológico
MJA: Método de las Jerarquías Analíticas
RC: Razón de Consistencia
RNC: Reserva Natural y Cultural
RESUMEN

Los ambientes naturales proveen servicios indispensables para mantener la vida en el planeta, y las Áreas Silvestres Protegidas (ASP) han sido el instrumento clásico para conservar y proteger estos lugares, donde los propietarios privados han participado complementando el Sistema Nacional de Áreas Silvestres Protegidas del Estado (SNASPE).

Las ASP, como todos los espacios naturales, están siendo afectadas por el impacto de distintos cambios globales (CG), a los cuales deben adaptarse. Un aspecto importante para enfrentar los CG son los planes de manejo o gestión, que involucran modelos de zonificación cuyo objetivo es ordenar el territorio de acuerdo a sectores con atributos homogéneos. En Chile, no se han documentado metodologías para incorporar el dinamismo que plantean los CG en el proceso de zonificación y que permitan conocer el cambio en las exigencias y decisiones de manejo de un área silvestre.

El presente estudio tiene por objetivo proponer, en el contexto del cambio global, una zonificación dinámica del Área Silvestre Protegida Privada (ASPP) Huasco Altinos, en la Región de Atacama, Chile. Se ocupó el Modelo de Vocación de Uso por Zonas para obtener la zonificación actual del área. La innovación propuesta consistió en aplicar un enfoque prospectivo, es decir, generar escenarios futuros a partir de un análisis estructural y morfológico, que entrega las variables más importantes del territorio y sus posibles respuestas frente a los CG. Esta modificación en las variables, representadas en dos escenarios posibles, fue la información de entrada para establecer dos nuevas zonificaciones.

Los mapas obtenidos corresponden a un escenario tendencial y alternativo, que al compararlos presentan diferencias que no logran ser contrastantes en extremo. Sin embargo, ambos poseen diferencias notorias con la zonificación inicial (estado actual), lo que denota que en general existe una potencial sensibilidad en el manejo del área frente a cambios en sus componentes.

Finalmente, se concluyó que el enfoque prospectivo permite incorporar el dinamismo en la gestión de áreas protegidas y contribuye como aproximación metodológica. Incluir escenarios futuros favorece la mejora en la toma de decisiones respecto a dicha gestión, ya que permite prever los usos que serán más importantes y priorizar acciones.

Palabras clave: Evaluación Multicriterio, Enfoque Prospectivo, Reserva Natural, Huasco Altinos.
ABSTRACT

Zoning Proposal of a Wildland Protected Area in the Atacama Region in the Global Change Context

Natural environments provide essential services to sustain life on the planet, and protected areas have been the classic instrument to conserve and protect these places, where private owners have participated by complementing the National System of Protected Areas.

Protected areas, like all natural spaces, are being affected by the impact of various global changes (GC) to which they must adapt. An important aspect to face GCs are the management plans, involving zoning models whose objective is ordering the territory according to sectors with homogeneous attributes. In Chile, methodologies for incorporating the dynamism derived from GCs in the zoning process and which allow to know the change in the demands and decisions for a wildland area management have not been reported as yet.

The present study aims to propose, in the global change context, a dynamic zoning of the Huasco Altinos Private Protected Area, in the Atacama Region, Chile. The Model of Zonal Vocation Use was utilized to obtain the current area zoning. The proposed innovation consisted in applying a prospective approach, i.e. to generate future scenarios starting from a structural and morphological analysis supplying the most important variables of the territory and their possible responses to global changes. This modification in the variables, represented in two scenarios, was the input information to establish two new zonings.

The maps obtained correspond to baseline and alternative scenarios that when compared presented not extremely contrasting differences. However, both scenarios have marked differences with initial zoning (current status), which denotes that in general there is a potential sensitivity in the area management to changes in its components.

Finally, it was concluded that the prospective approach allows the incorporation of dynamism in the protected areas management and contributes methodologically to this purpose. By considering future scenarios, decision making concerning such management is improved since it allows to foresee the most important uses and, consequently, to prioritize actions.

Key words: Multicriteria Evaluation, Prospective Approach, Nature Reserve, Huasco Altinos.
INTRODUCCIÓN

Los ecosistemas proporcionan una variedad de servicios indispensables para mantener la vida, el equilibrio ecológico y la capacidad productiva del medio ambiente (Squeo et al., 2008). A su vez, los bienes y servicios esenciales del planeta dependen de la diversidad biológica (Gobierno de Chile, 2003; Naciones Unidas, 2003; OTA, 1987), que para el caso de Chile, se acentúa su importancia por la existencia de especies, ecosistemas y territorios de gran singularidad y elevado endemismo, la presencia de “hotspots” de biodiversidad reconocidos mundialmente, los servicios ambientales que proporciona, la alta productividad biológica y el valor económico de sus recursos naturales (Gobierno de Chile, 1995; Gobierno de Chile, 2003).

El instrumento clásico utilizado para conservar y proteger la diversidad biológica en Chile ha sido el establecimiento de una red de “áreas silvestres protegidas” (ASP) (Soto, 2005); que según Armend et al. (2002), son espacios dedicados a la protección y mantenimiento de la biodiversidad, así como de los recursos naturales y culturales. Además, García y Villarroel (1998) y el Convenio de Diversidad Biológica1, sostienen que son espacios fundamentales para la conservación in situ que promueven. Las áreas protegidas proporcionan una serie de beneficios a nivel nacional y mundial (Barber et al., 2004), siendo la pieza clave de las estrategias globales para la conservación biológica (Pauchard y Villarroel, 2002).

La creciente valorización de los servicios ecosistémicos y del patrimonio natural en el país, se ha manifestado en el establecimiento de Áreas Protegidas Privadas (APP) (García, 2000; Tacón et al., 2004). Éstas constituyen una herramienta para mejorar las deficiencias del SNASPE, como lo son la falta de representatividad ecosistémica2 y la dificultad de incorporar nuevas áreas por los recursos que se requieren (Gobierno de Chile, 2003; García y Villarroel, 1998; Villarroel, 1991). Asimismo, la Ley 19.300 (Gobierno de Chile, 1994) establece que “el Estado fomentará e incentivará la creación de Áreas Silvestres de Propiedad Privada (ASPP)”, coordinándolas con el actual SNASPE. Para que el mandato sea operativo debe poseer un Reglamento (García, 2000), el que fijaría normas de creación, afectación, categorías y manejo, entre otros aspectos de gestión (Peña, 2005).

El interés privado por contribuir a la conservación de la naturaleza se enfrenta al reto de hacer compatible dicho objetivo con las diversas actividades económicas que en ella se realizan (Tacón et al., 2004), las cuales aumentan a la par con las necesidades humanas, provocando competencia y conflicto en el uso de la tierra y los recursos. Para resolver este

2 19 de las 85 formaciones vegetacionales del país están ausentes en el SNASPE y 26 están insuficientemente representadas (BIOTA, 2004; Geisse y Sepúlveda, 2000), gran parte de esta biodiversidad se localiza en terrenos privados.
problema, se debe considerar la planificación tanto a nivel nacional como local, contemplando para dichos fines la presencia de zonas protegidas, el derecho a la propiedad privada, los derechos de las poblaciones indígenas y sus comunidades (Naciones Unidas, 2003).

Actualmente, la humanidad se enfrenta a una continua y rápida degradación y alteración de los ecosistemas de los que depende su bienestar. El hombre está modificando la biosfera a un ritmo sin precedentes; la alteración del uso de la tierra, del clima, de los ciclos biogeoquímicos, y de los ensambles bióticos amenazan la diversidad biológica a escala mundial (Sala et al., 2000). Asimismo, el contexto en el que se manejan las áreas protegidas ha variado y, junto a ello, se deben modificar también sus enfoques de planificación de manera de adaptarse a los cambios. Por tanto, la gestión de ASP debe insertarse en un mundo de cambios acelerados (Barber et al., 2004). Estas transformaciones que ocurren a escala planetaria y que presentan efectos acumulativos suficientes para tener un impacto a nivel mundial, se denominan Cambios Globales (CG). Pueden clasificarse en cambios biofísicos, socio-económicos e institucionales (Barber et al., 2004) y comprenden la suma de múltiples impactos de las actividades humanas sobre el medio ambiente global desde la era industrial (Armesto, 2008).

Un plan de manejo de conservación dirige el desarrollo de las actividades dentro de un ASP y debe considerar una zonificación de la misma (Gobierno de Chile, 2008; Núñez, 2008). La zonificación, corresponde a un proceso de ordenación territorial consistente en sectorizar la superficie del área en zonas con atributos homogéneos, que se someterán a ciertas normas a fin de cumplir los objetivos planteados (Oltremari y Thelen, 2003), basándose en que el manejo y uso del territorio debe cumplir con la condición de adaptarse a sus aptitudes y limitaciones (Núñez, 2008). Para desarrollar una zonificación, se utiliza comúnmente la tecnología informática para gestionar y analizar información espacial conocida como Sistemas de Información Geográfica (SIG) (Núñez, 2008). El modelo de zonificación usado en Chile, se ha basado en preceptos establecidos por la UICN, y en las propuestas de Miller (1974) y Miller (1980), donde se encuentran definidos los tipos potenciales de zonas dentro de un ASP.

Frecuentemente, el objetivo de gestión de las áreas protegidas es la inmutabilidad o incluso revertir el estado de los ecosistemas objeto de protección a un estado anterior más cercano a su condición original. Estos objetivos no consideran suficientemente el carácter dinámico de los ecosistemas ni que, inevitablemente, el cambio global impone también cambios sobre los ecosistemas protegidos (Barber et al., 2004).

La elaboración de un plan de manejo debe ser dinámica, adaptable, cíclica e iterativa (Armend et al., 2002; Núñez, 2008; Alexander, 2008). Sin embargo, no se han documentado metodologías para aplicar el dinamismo en el proceso de zonificación, que debiera considerarse como una herramienta flexible de manejo (Alexander, 2008). Además, Barber et al. (2004) señalan que deben existir planes sistemáticos de conservación que

3 Citado en bibliografía como Moseley et al. (1974).
incluyen explícitamente los CG. Esto resulta relevante considerando la preocupación existente acerca de la vulnerabilidad del patrimonio natural frente a presiones antrópicas y a fenómenos catastróficos previsibles (Gobierno de Chile, 2003); el cambio en el paradigma del equilibrio ecológico\(^4\) por una concepción de sistema abierto y continuo\(^5\), donde se enfatizan las ideas de proceso, dinámica y contexto (Sepúlveda et al., 1997); y la necesidad de conocer el cambio en parámetros ecosistémicos y sus determinantes sociales y económicas, información que se puede integrar en modelos predictivos bajo distintos escenarios de cambio global (Arroyo et al., 1993; Pielke et al., 2007). Junto a lo anterior, cabe mencionar que cambios biofísicos, como la fragmentación y el cambio climático, no han sido suficientemente considerados en el diseño de sistemas de ASP (Barber et al., 2004).

Para el manejo adaptativo de áreas protegidas en el contexto del CG, Barber et al. (2004) afirman que es necesario tener visión de futuro y desarrollar opciones de respuesta sobre la base de hipótesis acerca de eventuales acontecimientos. Montes et al. (1998), plantean que en el proceso de planificación y gestión de recursos naturales se necesita emplear una estructura lógica que permita elaborar modelos dinámicos y predictivos. Ademáis, Minns (1995, citado por Montes et al., 1998) propone que la gestión preventiva de ecosistemas debe ser flexible y amoldable, dada la incertidumbre relacionada al medio natural por su carácter dinámico, cambiante y poco predecible.

En la Región de Atacama existen zonas definidas como sitios prioritarios para la conservación de las especies de flora amenazada (Squeo et al., 2008). Éstos lugares reúnen características ecosistémicas relevantes junto con consideraciones importantes para los habitantes de la región (Gobierno de Chile, 2003). Además, algunos de estos sitios prioritarios se ubican en terrenos de la Comunidad Agrícola Huasco Altinos y en los alrededores. De acuerdo a Squeo et al. (2008), la propiedad ya es considerada como ASPP en la categoría de Reserva Natural. Por otra parte, el año 2006, la propia comunidad decide convertir su territorio en ASPP destinando cerca de 240.000 ha a la conservación de su patrimonio natural y cultural (Comunidad Agrícola Huasco Altinos, 2008).

Las montañas y las comunidades asociadas son particularmente sensibles a los efectos del CG (Huber et al., 2005). Las regiones montañosas, como el caso en estudio, son especialmente vulnerables al cambio climático y las consiguientes variaciones profundas en la capa de nieve, caudales, funcionamiento de los ecosistemas, y una multitud de otros impactos en sistemas humanos y no-humanos (Díaz et al., 2006).

La hipótesis del presente estudio consiste en que el enfoque prospectivo, que incluye la formulación de escenarios exploratorios, podría ayudar a conocer la progresión de

\(^4\) Plantea que las perturbaciones constituyen eventos excepcionales y los ecosistemas naturales serían unidades discretas internamente balanceadas, que pueden protegerse con independencia del exterior y en caso de perturbación, tienen la capacidad de volver al estado de equilibrio anterior por medio de mecanismos de autorregulación.

\(^5\) Plantea que no existe un estado único de equilibrio al que sea posible retornar y postula que las perturbaciones y el cambio, a toda escala, son una constante en ecología.
acontecimientos que llevan de una situación originaria a una futura (Gabiña, 1999, citado por MIDEPLAN, 2005), y así ser útil como método para incorporar horizontes dinámicos en la gestión de áreas protegidas.

El enfoque prospectivo de interés se basa en la escuela francesa, donde Michael Godet es uno de sus principales exponentes. Responde a una aproximación global y sistémica, que combina aspectos cuantitativos y cualitativos e incorpora los eventuales elementos de rupturas y discontinuidad en la evolución del cambio (Costa, 1999; ODEPA, 2005).

Objetivo General

Proponer, en el contexto del cambio global, una zonificación dinámica del Área Silvestre Protegida Privada Huasco Altinos.

Objetivos Específicos

1. Elaborar una zonificación sobre la base de criterios biofísicos, ecológicos y socioculturales.
2. Desarrollar una aplicación de enfoque prospectivo con variables de cambio global a las unidades cartográficas establecidas
3. Establecer una propuesta de zonificación dinámica como base para un plan de manejo de un ASPP

MATERIALES Y MÉTODOS

Zona de Influencia

Se delimitó una zona de influencia con el objeto de ubicar el área protegida dentro del contexto territorial local y considerar las diversas relaciones y flujos existentes. Asimismo, se consideró apropiada su definición, ya que permite garantizar el efecto positivo de los programas de manejo que tendrá el ASP en el entorno, además es útil en la proposición de una eventual “zona de amortiguación” (Miller, 1980) adyacente a la unidad, la que se ha citado ventajosa para evitar una de las principales amenazas que afectan a los espacios protegidos, el riesgo de convertirse en islas biológicas en una matriz de ecosistemas antropocéntricos (Armesto et al., 1998; Pauchard y Villarroel, 2002)

Para su delimitación, se consideraron las fronteras naturales o zona de influencia biofísica, la que pretende aproximarse a la definición del espacio vital para la estabilidad de los procesos naturales de los hábitats y ecosistemas a conservar. Según Miller (1980), el área protegida debe situarse donde existan cambios naturales en la topografía y orografía (serranías, cadenas de colinas, divisoria entre cuencas hidrográficas). La efectividad de estos límites se detectó analizando la presencia de los siguientes elementos: hábitats críticos
no fragmentados, subcuencas hidrográficas completas, espacios suficientes para la fauna migratoria (humedales altoandinos) (Núñez e Illanes, 2003).

También, se incorporó en el análisis la componente **socioeconómica y cultural**, que corresponde al entorno necesario para fortalecer el beneficio del ASP. Para ello se consideró la presencia de: los espacios suficientes para programas de uso público, terrenos necesarios para la administración del área, demandas comunitarias por el uso de recursos naturales y/o culturales por dependencia e interés tradicional.

Además, Oltremari y Thelen (2003) señalan que es adecuado abarcar un cinturón de hasta un 50% de la superficie de estudio\(^6\) para planificar áreas protegidas. Por su parte, Miller (1980) señala que una de las directrices para fijar el límite de un área protegida es que ésta sea lo más circular posible para disminuir la cantidad de intercambios de especies con los terrenos adyacentes. La inclusión de dicha pauta en la zona de influencia contribuye a mitigar la presencia de las líneas dentadas o de forma irregular presentes en la propiedad huascoaltina.

Finalmente, la unidad protegida y su zona de influencia se caracterizaron a través de sus principales componentes biofísicos, tales como: vegetación, fauna, geomorfología, clima, suelos e hidrografía. Además, dada la naturaleza de la unidad protegida, donde el hombre es parte esencial de ella, se incorporó una descripción socioeconómica-cultural, atendiendo a: antecedentes histórico-culturales de los diaguitas de Huasco Alto, patrimonio arqueológico, demografía, asentamientos humanos e infraestructura, usos de la tierra y actividades productivas.

Cabe señalar que en ésta y las posteriores etapas de la zonificación, se utilizó una escala de trabajo 1:50.000, datum WGS84 y huso 19 Sur.

Objetivos del Área Silvestre Protegida

Considerando lo estipulado en el Reglamento de Áreas Silvestres Protegidas de Propiedad Privada (Gobierno de Chile, 2008), ya aprobado y en espera para su promulgación, se sintetizaron los objetivos que motivaron la creación del ASP y que se entienden como enunciados generales del proceso de zonificación, de donde derivarán las distintas Zonas de Uso que correspondan al caso. Para ello, se revisó la Declaración de Impacto Ambiental del Proyecto Plan de Desarrollo de la Comunidad Agrícola Diaguita Los Huasco Altinos (Comunidad Agrícola Huasco Altinos, 2008), y el borrador del plan de manejo de la Reserva Natural y Cultural (RNC) Huasco Altinos\(^7\). También, se utilizaron como complemento las directrices para las categorías de gestión de áreas protegidas expuestas por la UICN (2008).

\(^6\) Para escalas de trabajo menores a 1:10.000, como es el caso del presente trabajo.

\(^7\) Mónica Martínez, Universidad de Chile, Facultad de Ciencias Agronómicas, 2010.
Zonificación sobre la base de criterios biofísicos, ecológicos y socioculturales

La zonificación, en general, tomó como base la metodología de “Evaluación de Tierras” propuesta por la FAO (1976), y su aplicación en el manejo de áreas protegidas presentada por Núñez (2008), considerando especialmente las etapas de análisis territorial y de ordenación – programación. Se aplicó el Modelo de Vocación de Uso por Zonas (Figura 1), que genera a partir de una Evaluación Multicriterio (EMC) (Núñez, 2008; Rivera et al., 2002) y del procesamiento en un SIG (software ArcView GIS 3.2) de la información temática de la etapa de análisis territorial, un conjunto de Capas de Vocación para cada Zona de Uso. El modelo conduce finalmente a la generación de una Capa Modelo de Zonificación para la Reserva previa aplicación de una regla de decisión (Figura 2).

Figura 1. Modelo de Vocación de Uso por Zonas (Núñez, 2008).

Las Capas de Vocación de Uso por Zonas, están diseñadas como un modelo aptitud/limitación, es decir, se basa en la obtención de un valor que refleja la aptitud de un espacio para acoger una determinada Zona de Uso, y en las limitaciones de localización que el espacio impone a cada zona.
La aptitud es una variable continua que puede aumentar o disminuir su valor para un uso en particular (Barredo, 1996). Ésta depende del o los factores de localización que, a su vez, se encuentra definidos por un grupo de criterios valorativos (Cuadro 1). El factor de localización es el conjunto de requisitos o condiciones locacionales que debe poseer el espacio para acoger una Zona de Uso. Los criterios valorativos son las variables de expresión espacial que permiten cuantificar o cualificar un sitio de acuerdo al requerimiento que impone el factor de localización correspondiente (Núñez, 2008).

Las limitantes son variables que impiden el establecimiento de un uso en el espacio por incompatibilidad. Éstas pueden considerarse como variables del tipo binario (Barredo, 1996).

Figura 2. Generación Capa Modelo de Zonificación (Núñez, 2008).

Se definieron Zonas de Uso potenciales para el ASP coherentes con la categoría de “Reserva Natural Privada” y con los objetivos de creación del ASP, siguiendo la propuesta de Núñez (2008), que a su vez, se basa en las zonas señaladas por Miller (1980) empleadas...
tradicionalmente desde comienzos de la década de los ’80 y ’90. Posteriormente, se delimitaron 9 Unidades Homogéneas (UH) que responden a las unidades de análisis apropiadas para los criterios valorativos y factores de localización correspondientes para cada Zona de Uso (Cuadro 1).

Para definir los descriptores y subcriterios que explican cada criterio valorativo, se ocuparon las variables biofísicas, ecológicas y socioculturales de cada UH que tuvieran expresión en una cobertura de información georreferenciada. La valoración de cada clase de las UH, de acuerdo a los criterios expuestos, se efectuó tomando como base los resultados de talleres participativos sectoriales efectuados en la comunidad, el análisis de la información del ASP y el juicio experto de profesionales conocedores del lugar en estudio y/o con experticia en algunas de las temáticas analizadas (Apéndice I).

Cuadro 1. Síntesis de factores de localización, criterios, unidades homogéneas y limitantes por Zonas de Uso para la Reserva.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Factor de Localización</th>
<th>Criterio Valorativo</th>
<th>Unidad Homogénea</th>
<th>Limitantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intangible</td>
<td>Sectores naturales con mínima intervención antrópica</td>
<td>Naturalidad</td>
<td>Comunidad vegetal</td>
<td>Comunidades vegetales con alta degradación y artificialización</td>
</tr>
<tr>
<td></td>
<td>Ecosistemas únicos y frágiles</td>
<td>Unicidad</td>
<td>Ecosistemas</td>
<td>Accesibilidad alta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fragilidad</td>
<td>Ecosistemas</td>
<td>Recursos culturales</td>
</tr>
<tr>
<td></td>
<td>Comunidades de flora y biótopos de fauna de interés científico</td>
<td>Interés científico de comunidades vegetales</td>
<td>Comunidad vegetal</td>
<td>de alto valor intrínseco y de reconocimiento público</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interés científico de biótopos faunísticos</td>
<td>Subcuenca</td>
<td></td>
</tr>
</tbody>
</table>

(Continúa)

8 Mónica Martínez, Universidad de Chile, Facultad de Ciencias Agronómicas, 2010.

10 Se utilizó la unidad homogénea de subcuenca debido a que la información más completa se encuentra a ese nivel de análisis. Además, Núñez (2008) plantea que los biótopos faunísticos pueden ser de difícil determinación debido a la movilidad y cambios temporales que experimentan. Sin embargo, las especies presentan una fuerte relación de dependencia a las condiciones ambientales y/o físicas para su desarrollo. Así, pueden utilizarse de referencia los elementos geomorfológicos, los fenómenos hídricos y las formaciones o asociaciones vegetales.
Cuadro 1. Síntesis de factores de localización, criterios, unidades homogéneas y limitantes por Zonas de Uso para la Reserva (continuación).

<table>
<thead>
<tr>
<th>Zona</th>
<th>Factor de Localización</th>
<th>Criterio Valorativo</th>
<th>Unidad Homogénea</th>
<th>Limitantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primitiva</td>
<td>Sectores naturales con mínima intervención antrópica</td>
<td>Naturalidad</td>
<td>Comunidad vegetal</td>
<td>Recursos culturales con alto valor de manejo, intrínseco y de reconocimiento público</td>
</tr>
<tr>
<td></td>
<td>Ecosistemas únicos y resistentes</td>
<td>Unicidad</td>
<td>Ecosistemas</td>
<td>Comunidades vegetales con alta degradación y artificialización</td>
</tr>
<tr>
<td></td>
<td>Comunidades de flora y biótopos de fauna de interés científico</td>
<td>Interés científico de comunidades vegetales</td>
<td>Comunidad vegetal</td>
<td>Accesibilidad alta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interés científico de biótopos faunísticos</td>
<td>Subcuenca</td>
<td></td>
</tr>
<tr>
<td>Recuperación</td>
<td>Sectores con degradación física</td>
<td>Intensidad de procesos dinámicos</td>
<td>Unidad de erosión</td>
<td>Sin limitantes</td>
</tr>
<tr>
<td></td>
<td>Sectores con degradación biótica</td>
<td>Artificialización de comunidad vegetal</td>
<td>Comunidad vegetal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Degradación de comunidad vegetal</td>
<td>Comunidad vegetal</td>
<td></td>
</tr>
<tr>
<td>Uso Especial</td>
<td>Sectores aptos para la localización de la administración, obras públicas y otras actividades incompatibles con los objetivos del ASP</td>
<td></td>
<td>Comprende los sectores donde no existe aptitud para las demás zonas o ésta es mínima</td>
<td></td>
</tr>
<tr>
<td>Histórico Cultural</td>
<td>Sectores con manifestaciones culturales (arqueológicas, históricas, antropológicas) aptos para su restauración, preservación y/o conservación</td>
<td>Intrínseco</td>
<td>Recursos culturales</td>
<td>Sin limitantes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manejo</td>
<td>Recursos culturales</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reconocimiento público</td>
<td>Recursos culturales</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dependencia del medio</td>
<td>Unidades de ocupación</td>
<td></td>
</tr>
</tbody>
</table>

(Continúa)
Cuadro 1. Síntesis de factores de localización, criterios, unidades homogéneas y limitantes por Zonas de Uso para la Reserva (continuación).

<table>
<thead>
<tr>
<th>Zona</th>
<th>Factor de Localización</th>
<th>Criterio Valorativo</th>
<th>Unidad Homogénea</th>
<th>Limitantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educación Ambiental</td>
<td>Sectores con topografía adecuada para tránsito vehicular y otras instalaciones</td>
<td>Topografía</td>
<td>Unidad de pendiente</td>
<td>Unidad de erosión con alta intensidad de procesos dinámicos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Recursos culturales con alto valor de manejo</td>
</tr>
<tr>
<td></td>
<td>Paisajes sobresalientes</td>
<td></td>
<td>Unidad de paisaje</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manejo de Recurso Hídrico</td>
<td>Sectores de alta producción hídrica y potencial de uso</td>
<td>Disponibilidad de agua</td>
<td>Subcuenca</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sectores con necesidad de manejo por su importancia al aporte hídrico y a la sustentación de flora y fauna</td>
<td>Presencia de lagunas</td>
<td>Subcuenca</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Presencia de cuerpos de nieves perpetuas y glaciares</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manejo de Recurso Fauna</td>
<td>Sectores con elevada presencia de fauna</td>
<td>Concentración de fauna silvestre</td>
<td>Subcuenca</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Concentración de fauna doméstica</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sectores con suelo frágil</td>
<td>Fragilidad del suelo según cobertura vegetal</td>
<td>Comunidad vegetal</td>
<td></td>
</tr>
<tr>
<td>Manejo de Recurso Suelo</td>
<td>Sectores con degradación por procesos dinámicos</td>
<td>Intensidad de procesos dinámicos</td>
<td>Unidad de erosión</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fragilidad del suelo según cobertura vegetal</td>
<td>Comunidad vegetal</td>
</tr>
<tr>
<td>Manejo de Recurso Flora y Vegetación</td>
<td>Sectores con presencia de especies de flora de interés productivo, cuyo estado las hace susceptibles de uso y aprovechamiento sostenido</td>
<td>Valor productivo de comunidad vegetal</td>
<td>Comunidad Vegetal</td>
<td>Pendientes sobre 45%</td>
</tr>
</tbody>
</table>

11. Esta Zona de Uso puede asociarse a las comúnmente llamadas “Zona de Uso Público”, que en este caso cambió de nombre para enfatizar los objetivos principales del ASP.
12. Esta unidad homogénea corresponde a la división de la superficie de estudio en rangos de pendientes de acuerdo lo descrito en el criterio “topografía”.
13. Esta unidad homogénea corresponde a la división de la superficie de estudio de acuerdo a las distancias definidas en el criterio “accesibilidad”.

A continuación, se definen los criterios valorativos mencionados en la tabla anterior. Para todos los criterios, subcriterios y/o descriptores se utilizó una escala ordinal de tres niveles (1, 50 y 100; para referirse a un nivel bajo, medio y alto; respectivamente).

- **Naturalidad:** Grado de independencia de actuaciones humanas en una comunidad vegetal, o la escasa intervención o acción transformadora del hombre. Expresa un gradiente de artificialización. Se utilizaron los siguientes descriptores y valores:

 Uso de suelo
 100 = Matorral muy abierto\(^{14}\) y matorral con suculentas muy abierto (*Opuntia miquelii* - *Calandrinia grandiflora, Bulnesia chilensis* – *Heliotropium chenopodiaceum*)
 50 = Áreas sobre el límite de vegetación y áreas sin vegetación
 1 = Áreas urbanas y uso agrícola

 Altitud: Se utiliza el supuesto de que a mayor altitud mayor es la naturalidad (Valenzuela, 2007).
 100 = 4.400 a 6.300 msnm
 50 = 2.500 a 4.400 msnm
 1 = 600 a 2.500 msnm

 Red vial
 100 = Presencia escasa o nula de caminos
 50 = Mediana presencia de caminos
 1 = Elevada presencia de caminos distribuidos en toda la comunidad vegetal

 Minería
 100 = Sin presencia de exploraciones ni proyectos en curso
 50 = Comunidad parcialmente (entre 0 y 50% de la superficie) localizada en exploraciones y proyectos en curso
 1 = Comunidad localizada (entre 50 y 100%) en exploraciones y proyectos en curso

 Para obtener el valor final, se cruzó la información de “usos de suelo” con la de “altitud” (Cuadro 3), otorgándole mayor importancia al uso de suelo, por ser un descriptor más directo de la naturalidad; luego se cruzó la información de “red vial” con la de “minería”, otorgándole mayor importancia a la red vial, por explicar en todo el espacio de estudio una relevante acción transformadora; en cambio, la minería puede subvalorar el espacio por concentrarse en solo ciertos sectores. Finalmente, se cruzaron las dos matrices otorgándole mayor importancia a la última por la gran influencia que posee la red vial en la naturalidad de área de estudio.

\(^{14}\) La característica de “muy abierto” corresponde a un recubrimiento entre 10-25% de arbustos (CONAF, CONAMA y BHIRF, 1997).
Cuadro 2. Valoración de comunidades vegetales según naturalidad.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alta</td>
<td>Comunidad vegetal con nula o escasa intervención humana, con altos valores de descriptores de naturalidad. Sistema natural.</td>
</tr>
<tr>
<td>50</td>
<td>Media</td>
<td>Comunidad vegetal con mediano grado de intervención humana, representado en valores medios de descriptores de naturalidad. Sistema semi-natural o de transición.</td>
</tr>
<tr>
<td>1</td>
<td>Baja</td>
<td>Comunidad vegetal artificial o con alto grado de intervención humana, que se representa en bajos valores de descriptores de naturalidad. Sistema semi-artificial.</td>
</tr>
</tbody>
</table>

Parte de la metodología utilizada en cada criterio corresponde al cruce de información entre distintos subcriterios. El Cuadro 3 grafica la lógica y muestra el resultado de cruzar los distintos valores, en este caso (para el criterio de naturalidad), se le otorgó más importancia al “uso de suelo” por sobre la “altitud”. Dicha importancia fue determinante cuando se tuvo que decidir el valor final entre valores no extremos (e.g. 100 y 50, 50 y 1), donde se requirió efectuar una ponderación cualitativa caso a caso, enfatizando el carácter argumentativo del método.

Cuadro 3. Matriz de ejemplo para cruzar subcriterios.

<table>
<thead>
<tr>
<th>Usos de Suelo</th>
<th>100</th>
<th>50</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitud</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>50</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Unicidad**: Nivel de presencia de un ecosistema en una determinada unidad biogeográfica, en este caso nacional, siendo la calificación más alta la presencia solo local.

Cuadro 4. Valoración de ecosistemas según unicidad.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alta</td>
<td>Formación vegetal presente solo en el área protegida o de distribución muy restringida a nivel regional, sin representación en el SNASPE.</td>
</tr>
<tr>
<td>50</td>
<td>Media</td>
<td>Formación vegetal de distribución amplia, común en el contexto regional, pero con baja o nula representatividad en el SNASPE.</td>
</tr>
<tr>
<td>1</td>
<td>Baja</td>
<td>Formación vegetal de distribución amplia, común en el contexto nacional, con representación en el SNASPE.</td>
</tr>
</tbody>
</table>

Fragilidad: Criterio de carácter intrínseco y esencial, cuya susceptibilidad se atribuye a la propia condición zonal, azonal o intrazonal del ecosistema. Además, puede entenderse como la capacidad de enfrentar agentes de cambio, basada en las características particulares de sus componentes, en la capacidad y velocidad de regeneración respecto a las restricciones que le impone el medio. Se utilizaron los siguientes descriptores y valores:

 Complejidad de la formación vegetal: A mayor complejidad espacial más fragilidad; esto entendido como heterogeneidad espacial que se puede representar en el número de comunidades vegetales presentes, si éste es mayor, la complejidad y fragilidad también. A mayor complejidad, las formaciones se acercan más al clímax y la regeneración y persistencia de las especies dominantes es menor (Valenzuela, 2007).
 1 = Desierto Florido de los Llanos
50 = Desierto Florido de las Serranías
100 = Estepa Alto-andina de la Cordillera de Doña Ana

Vegetación azonal: A mayor número de éstas, más frágil.

Cobertura vegetal: A mayor cobertura, menor fragilidad. Esto es porque al disminuir la cobertura de un ecosistema, se pierde la capacidad de control de materia y energía por parte del sistema. Según CONAF, CONAMA y BHIRF (1997). En la zona solo se registran coberturas del 0% y del 25-50%.
100 = Superficie con escasa cobertura vegetal (domina la clase 0%, al menos en igual proporción con la de 25-50%)
50 = Cobertura vegetal entre 25-50%
1 = Cobertura superior al 50% domina el ecosistema

Para obtener el valor final, se cruzó la información de “vegetación azonal” con la de “cobertura vegetal”, otorgándole mayor importancia a la primera, puesto que representa información de mayor detalle. Posteriormente, se cruzó la matriz resultante con “complejidad de la formación vegetal”, otorgándole mayor importancia a la matriz por considerar a los dos descriptores nombrados.

Cuadro 5. Valoración de ecosistemas según fragilidad.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alta</td>
<td>Ecosistema tendiente a desaparecer o a desarrollarse precariamente en un medio escaso, efímero o cambiante.</td>
</tr>
<tr>
<td>50</td>
<td>Media</td>
<td>Ecosistema capaz de sobrevivir a pesar de pertenecer a un ambiente cambiante o escaso.</td>
</tr>
<tr>
<td>1</td>
<td>Baja</td>
<td>Ecosistema estable con alta proporción de comunidades zonales (escasa o nula presencia vegas u lagunas, comunidades azonales).</td>
</tr>
</tbody>
</table>

Interés científico de comunidades vegetales\(^{17}\): Indica los valores científicos o de investigación que presentan las comunidades vegetales. Se utilizaron los siguientes descriptores:

- Número de especies presentes, según el catastro de BIOTA (2004) y complementado con el Libro Rojo de la Flora Nativa y de los Sitios Prioritarios para su Conservación de la Región de Atacama (Squeo et al., 2008)
- Presencia de especies con problemas de conservación. Según el catastro de BIOTA (2004), donde se consideraron las especies raras y vulnerables de acuerdo al B.N.M.H.N. N°47 (B.N.M.H.N., 1998), y a nivel regional, se complementó con el Libro Rojo de la Flora Nativa y de los Sitios Prioritarios para su Conservación de la Región de Atacama (Squeo et al., 2008)
- Presencia de corredores biológicos (humedales altoandinos como vegas y lagunas)
- Distinción sociológica (concentración de endemismos), de acuerdo a BIOTA (2004), se consideraron las especies autóctonas y se complementó con las especies endémicas del Libro Rojo de la Flora Nativa y de los Sitios Prioritarios para su Conservación de la Región de Atacama (Squeo et al., 2008)
- Prospecciones efectuadas, a mayor número de estudios en terreno menor interés científico, ya que se supone que se desea mejorar el conocimiento de las áreas menos estudiadas

Para obtener el valor final se cruzó la información de “N° de especies presentes” con la de “presencia de especies con problemas de conservación”, otorgándole mayor importancia a esta última ya que representarían elementos prioritarios. Luego se cruzó la información de “presencia de corredores biológicos” con la de “distinción sociológica”, siendo más importante los corredores por ser puntos centrales de atención dadas las características especiales de la vegetación que ahí se encuentra. Posteriormente, se cruzó la información de esta última matriz con las “prospecciones efectuadas”, dándole mayor importancia a la matriz por incluir el análisis de dos descriptores. Finalmente esta última tabla se cruzó con la primera (N° de especies presentes/presencia de especies con problemas de conservación), dándole mayor importancia a la última matriz por incluir el análisis de tres descriptores, además que la primera matriz por el hecho de llegar a la última fase de análisis ya tiene una alta consideración.

De las 20 comunidades vegetales presentes, existen 4 sin información espacial, tanto del catastro florístico de BIOTA (2004) como del Libro Rojo. En estos casos, solo se cruzó la información de Presencia de corredores biológicos con la de Prospecciones efectuadas, otorgándole mayor importancia a los corredores.

\(^{17}\) Basado en Núñez (2008).
Cuadro 6. Valoración de comunidades vegetales según interés científico.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alta</td>
<td>Alto interés científico de comunidades vegetales</td>
</tr>
<tr>
<td>50</td>
<td>Media</td>
<td>Mediano interés científico de comunidades vegetales</td>
</tr>
<tr>
<td>1</td>
<td>Baja</td>
<td>Bajo interés científico de comunidades vegetales</td>
</tr>
</tbody>
</table>

- **Interés científico de biótopos faunísticos**: Indica los valores científicos o de investigación que presentan los biótopos faunísticos. Los descriptores utilizados son:

 - Número de especies de acuerdo a BIOTA (2004)
 - Presencia de especies con problemas de conservación de acuerdo a BIOTA (2004)
 - Presencia de corredores biológicos, utilizados como lugares de descanso para especies migratorias, anidación de aves y alimentación de herbívoros (unidades azonales hídricas, como humedales del tipo lagunas o vega)\(^{19}\)
 - Prospecciones efectuadas

Cabe destacar que no existió distinción entre especies detectadas o potencialmente presentes.

Para obtener el valor final se cruzó la información de “N° de especies” con la de “presencia de especies con problemas de conservación”, otorgándole más importancia a esta última, ya que representan elementos críticos de interés, además las especies totales en algunos casos pueden estar subestimadas debido a dificultades de visitar la zona en terreno u otros aspectos ligados al muestreo. Luego, se cruzó la información de “presencia de corredores biológicos” con la de “prospecciones efectuadas”, otorgándoles mayor valor a los corredores, ya que la información de las visitas a terreno puede estar incompleta, además los corredores representan sitios de gran relevancia para la fauna local. Finalmente, se cruzaron las dos matrices obtenidas, dándole mayor importancia a la primera matriz de las especies.

Cuadro 7. Valoración de subcuencas según interés científico de biótopos faunísticos.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alta</td>
<td>Alta presencia de descriptores anteriores</td>
</tr>
<tr>
<td>50</td>
<td>Media</td>
<td>Mediana presencia de descriptores anteriores</td>
</tr>
<tr>
<td>1</td>
<td>Baja</td>
<td>Baja presencia de descriptores anteriores</td>
</tr>
</tbody>
</table>

\(^{18}\) Basado en Núñez (2008).

\(^{19}\) Basado en el estudio de BIOTA (2004).
- **Intensidad de Procesos Dinámicos:** Indica el nivel de degradación de la superficie según susceptibilidad a la erosión y estabilidad de taludes.

Para la zona en estudio, y de acuerdo a SINIA (2010), se ha determinado espacialmente que la **erodabilidad** (propiedad intrínseca del suelo que determina su potencial de erosión según estructura, estabilidad de los agregados y densidad aparente) es muy alta al comparar el suelo a nivel regional. Además, se ha documentado que el **potencial de degradación** (incluye la degradación erosiva y la no erosiva\(^\text{20}\)) de toda el área es moderada y que el proceso de **desertificación** también, esto según la comparación del suelo de toda la región. Sin embargo, la **erosividad** (carácter asociada a la lluvia, frecuencia, intensidad y duración de ésta) es variable dentro del área. Por esto, se consideraron tres variables descriptivas:

Grado de erosividad a nivel regional:
100 = Alta
50 = Media
1 = Baja

Pendientes:
100 = Superiores a 60\(^\circ\)
50 = Entre 30 y 60\(^\circ\)
1 = Inferiores a 30\(^\circ\)

Altitud: Se utilizó el supuesto de que a mayor altitud aumenta la intensidad de procesos dinámicos porque aumentan las precipitaciones.
100 = 4.400 a 6.300 msnm
50 = 2.500 a 4.400 msnm
1 = 600 a 2.500 msnm

Para obtener el valor final, se cruzó la información del descriptor “grado de erosividad” con el de “altura” (variables externas), otorgándole más importancia a este último, puesto que muestra información de mayor detalle. Luego, se cruzó la información anterior con la de “pendientes” (variables externas x variables internas), otorgándole mayor importancia a la pendiente, ya que la zona tiene escasas precipitaciones y los procesos dinámicos pueden explicarse de mejor manera con variables internas.

Cuadro 8. Valoración de unidades de erosión según intensidad de procesos dinámicos.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alta</td>
<td>Valores altos de descriptores anteriores</td>
</tr>
<tr>
<td>50</td>
<td>Media</td>
<td>Valores medios de descriptores anteriores</td>
</tr>
<tr>
<td>1</td>
<td>Baja</td>
<td>Valores bajos de descriptores anteriores</td>
</tr>
</tbody>
</table>

\(^{20}\)-Degradación erosiva: la que se produce por factores como el viento, agua, gravedad y hielo.
-Degradación no erosiva: se puede separar en tres tipos, física, química y biológica.
Artificialización: Indica los grados de alteración de la vegetación natural en función de la presencia de flora alóctona. En el caso de las fuentes provenientes del Libro Rojo (Squeo et al., 2008), se consideraron las especies adventicias.

Para las comunidades vegetales que no tienen información espacial asociada de ningún catastro florístico, se consideró el porcentaje de especies alóctonas presentes en las subcuencas correspondientes citadas por BIOTA (2004).

Cuadro 9. Valoración de comunidades vegetales según artificialización.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alta</td>
<td>Composición florística alóctona entre un 15 y 21%</td>
</tr>
<tr>
<td>50</td>
<td>Media</td>
<td>Estructura inicial modificada, composición florística autóctona con especies alóctonas entre un 8 y 14%.</td>
</tr>
<tr>
<td>1</td>
<td>Baja</td>
<td>Estructura inicial escasamente modificada, con proporciones de flora alóctona entre un 0% y 7%.</td>
</tr>
</tbody>
</table>

Degradación: Indica el grado de empobrecimiento de la vegetación por influencia principalmente humana. Se consideraron los siguientes descriptores:

- **Sitios de invernada y veranada:** Para asignar los valores, se separaron en 3 rangos (alto, medio, bajo) según la carga animal presente en cada quebrada de acuerdo a los antecedentes del informe TEPU tomo V (Molina et al., 2005).

- **Explotación para recurso dendroenergético:** Tuvieron valor alto las comunidades que se encontraron dentro del piso vegetacional *Matorral desértico mediterráneo interior de Adesmia argentea* y *Bulnesia chilensis*, del cual existen antecedentes de este tipo explotación (Luebert y Pliscoff, 2006).

- **Superficie alterada por actividades mineras:** Las comunidades vegetales presentes en las zonas de los proyectos mineros tuvieron valor alto.

- **Zonas de trashumancia:** Estas zonas tuvieron alto valor, ya que en ellas se cosechan hierbas y se realiza ganadería extensiva.

Para obtener el valor final se cruzó la información de “sitios de invernada y veranada” con la de “explotación para recurso dendroenergético”, otorgándole mayor importancia a la primera, por ser la principal actividad de la Estancia. Luego se cruzó la información de “superficie alterada por actividades mineras” con la de “zonas de trashumancia”, siendo más importante esta última por la relevancia de la actividad. Finalmente, se cruzaron las dos matrices obtenidas siendo más importante la primera, por representar dos actividades degradantes de gran relevancia en el área en general.
Cuadro 10. Valoración de comunidades vegetales según degradación.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alta</td>
<td>Degradación elevada debido a agentes antrópicos</td>
</tr>
<tr>
<td>50</td>
<td>Media</td>
<td>Degradación media por agentes antrópicos</td>
</tr>
<tr>
<td>1</td>
<td>Baja</td>
<td>Sin alteración aparente</td>
</tr>
</tbody>
</table>

- **Intrínseco**: Criterio compuesto de 3 variables (Cuadro 11) cuya valoración se establece para cada sitio de recursos culturales calculando el valor total mediante la expresión:

\[VT = re + si + in \]

El valor final en porcentaje es:

\[VF = (VT \times 100/300) \]

Para los sitios donde no aplicó el criterio de integridad, el VF se calculó de la siguiente manera:

\[VF= (VT*100/200) \]

Cuadro 11. Variables utilizadas en el criterio intrínseco.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Registro (re)</th>
<th>Singularidad (si)</th>
<th>Integridad (in)(^{21})</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Bien documentado (sitios definidos en el estudio TEPU y en la Qda. de La Totora)</td>
<td>Ejemplo único o exclusivo</td>
<td>Grado de conservación óptimo</td>
</tr>
<tr>
<td>50</td>
<td>Regularmente documentado (sitios definidos en el proyecto El Morro)</td>
<td>Ejemplo iterativo (con restricción territorial)</td>
<td>Grado de conservación mediano</td>
</tr>
<tr>
<td>1</td>
<td>Sin documentación conocida</td>
<td>Ejemplos muy representados</td>
<td>Grado de conservación malo</td>
</tr>
</tbody>
</table>

Cuadro 12. Valoración de unidades de recursos culturales según valor intrínseco.

<table>
<thead>
<tr>
<th>Valor Final</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>61 - 100</td>
<td>Alto</td>
<td>Sitio de recurso cultural altamente significativo</td>
</tr>
<tr>
<td>21 - 60</td>
<td>Medio</td>
<td>Sitio de recurso cultural medianamente significativo</td>
</tr>
<tr>
<td>1 - 20</td>
<td>Bajo</td>
<td>Sitio de recurso cultural poco significativo</td>
</tr>
</tbody>
</table>

\(^{21}\) Subcriterio que no aplica en los sitios definidos en el proyecto El Morro y en la Qda. de La Totora, debido a la carencia de este tipo de información. En los sitios definidos en el informe TEPU, se consideró el estado de conservación para evaluarlo.
• **Manejo:** Corresponde al potencial que posee el recurso cultural para ser manejado basándose en la existencia de elementos y rasgos culturales altamente amenazados y/o vulnerables y en la posibilidad de identificar e intervenir por medio de estrategias las causas más importantes de su deterioro. La valoración total se estableció aplicando la fórmula siguiente:

\[
VT = am + vu + cd
\]

El valor final en porcentaje es:

\[
VF = \left(\frac{VT \times 100}{300} \right)
\]

Para los sitios donde no aplicó el criterio de vulnerabilidad, el VF se calculó de la siguiente manera:

\[
VF = \left(\frac{VT \times 100}{200} \right)
\]

Cuadro 13. Variables utilizadas en el criterio de manejo.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Amenaza (am)</th>
<th>Vulnerabilidad (vu)</th>
<th>Causas de deterioro (cd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alto grado de amenaza del recurso cultural (todos los sitios del proyecto El Morro y de La Qda. de La Totora)</td>
<td>Recursos cultural altamente vulnerable</td>
<td>Causas de deterioro plenamente identificadas</td>
</tr>
<tr>
<td>50</td>
<td>Mediano grado de amenaza del recurso cultural</td>
<td>Recursos cultural medianamente vulnerable</td>
<td>Causas de deterioro en parte identificadas (los sitios de la Qda. de La Totora)</td>
</tr>
<tr>
<td>1</td>
<td>Bajo grado de amenaza del recurso cultural</td>
<td>Recursos cultural con baja o nula vulnerabilidad</td>
<td>Causas de deterioro poco perceptibles o sin identificación (sitios del proyecto El Morro)</td>
</tr>
</tbody>
</table>

Cuadro 14. Valoración de unidades de recursos culturales según valor de manejo.

<table>
<thead>
<tr>
<th>Valor Final</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>61 - 100</td>
<td>Alto</td>
<td>Altas condiciones para su manejo como recurso cultural</td>
</tr>
<tr>
<td>21 – 60</td>
<td>Medio</td>
<td>Medianas condiciones para su manejo como recurso cultural (todos los sitios del proyecto El Morro)</td>
</tr>
<tr>
<td>1 - 20</td>
<td>Bajo</td>
<td>Bajas condiciones para su manejo como recurso cultural</td>
</tr>
</tbody>
</table>

Para los sitios del informe TEPU se consideró la densidad material y la visibilidad, para los de La Qda. de La Totora solo se valoró si existían antecedentes, para los del proyecto El Morro no aplicó el criterio por falta de información.
• **Reconocimiento Público**: Corresponde al reconocimiento público del uso potencial de los recursos culturales y su contribución a la sociedad. La valoración total se estableció aplicando la fórmula siguiente:

\[VT = vc + vs \]

El valor final en porcentaje es:

\[VF = \left(\frac{VT \times 100}{200} \right) \]

En los casos donde no aplicó el subcriterio de valor social, el VF fue equivalente al de valor científico.

Cuadro 15. Variables utilizadas en el criterio de reconocimiento público.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Valor científico (vc)</td>
</tr>
<tr>
<td>100</td>
<td>Alta información científica acumulada y/o lugar de alta exclusividad o rareza para la investigación</td>
</tr>
<tr>
<td>50</td>
<td>Considerable información científica acumulada y/o lugar de alta exclusividad o rareza para la investigación (sitios del proyecto El Morro y de la Qda. de La Totora)</td>
</tr>
<tr>
<td>1</td>
<td>Poca o nula información científica acumulada y/o lugar de alta exclusividad o rareza para la investigación</td>
</tr>
</tbody>
</table>

Cuadro 16. Valoración de unidades de recursos culturales según reconocimiento público.

<table>
<thead>
<tr>
<th>Valor Final</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>61 - 100</td>
<td>Alto</td>
<td>Alto reconocimiento público del sitio desde el punto de vista científico, histórico, estético y social.</td>
</tr>
<tr>
<td>21 - 60</td>
<td>Medio</td>
<td>Mediano reconocimiento público del sitio desde el punto de vista científico, histórico, estético y social.</td>
</tr>
<tr>
<td>1 - 20</td>
<td>Bajo</td>
<td>Bajo reconocimiento público del sitio desde el punto de vista científico, histórico, estético y social.</td>
</tr>
</tbody>
</table>

\[^{23}\] Subcriterio que no aplica a los sitios del proyecto El Morro, por carencia de información. Para los sitios de la Qda. de La Totora, se valoraron solo los que sitios que tuvieron antecedentes de uso actual de majadas.
- **Dependencia del Medio**: Establece la dependencia de las comunidades al medio local.

Cuadro 17. Valoración de unidades de ocupación según dependencia del medio.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alta</td>
<td>Manifestaciones estables de uso tradicional de recursos naturales, altamente dependientes del medio. Economía de subsistencias y manifestaciones culturales relevantes. Corresponden a la crianza de Trushumancia en el lugar de estudio.</td>
</tr>
<tr>
<td>50</td>
<td>Media</td>
<td>Manifestaciones de mediana dependencia al medio. Corresponden a la zona agrícola, a la de uso mixto agrícola-pobladores, y a las zonas mixtas de uso minero - trashumancia. No existen antecedentes suficientes para distinguir la agricultura tradicional</td>
</tr>
<tr>
<td>1</td>
<td>Baja</td>
<td>Bajo reconocimiento público del sitio desde el punto de vista científico, histórico, estético y social. Corresponden a las zonas de uso minero y a las zonas sin ocupación.</td>
</tr>
</tbody>
</table>

- **Topografía**: Establece por medio de la pendiente el potencial de erodabilidad del área, y junto a ello, su capacidad de resistir infraestructura vehicular entre otros elementos ligados al uso público (en este caso de Educación Ambiental).

Cuadro 18. Valoración de clases de unidades de pendiente según topografía.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Muy Adecuada</td>
<td>Pendientes entre 0 y 15°</td>
</tr>
<tr>
<td>75</td>
<td>Adecuada</td>
<td>Pendientes entre 15 y 30°</td>
</tr>
<tr>
<td>50</td>
<td>Medianamente adecuada</td>
<td>Pendientes entre 30 y 45°</td>
</tr>
<tr>
<td>25</td>
<td>Poco adecuada</td>
<td>Pendientes entre 45 y 60°</td>
</tr>
<tr>
<td>1</td>
<td>No adecuada</td>
<td>Pendientes superiores a 60°</td>
</tr>
</tbody>
</table>

- **Accesibilidad**: Grado de acceso, es decir, de facilidad de llegar a un lugar en términos de las distancia desde el camino a éste.\(^{24}\)

Cuadro 19. Valoración de unidades de accesibilidad según el criterio de accesibilidad.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alta</td>
<td>Zonas cercanas a caminos o senderos, es decir, a una distancia inferior o igual a 1.000 m.</td>
</tr>
<tr>
<td>50</td>
<td>Media</td>
<td>Zonas medianamente cercanas a caminos o senderos, es decir, a una distancia entre 1.000 y 2.000 m.</td>
</tr>
<tr>
<td>1</td>
<td>Baja</td>
<td>Zonas lejanas a caminos o senderos, es decir, a una distancia superior a 2.000 m.</td>
</tr>
</tbody>
</table>

\(^{24}\) Las distancias utilizadas en los descriptores se basaron en el estudio de Rivera et al. (2002), capítulo “Asignación de Funciones”.
- **Valor Paisajístico**\(^{25}\): Establece el valor de la unidad de paisaje para el uso público (Educación Ambiental), a partir de la calidad y fragilidad.

Calidad: Corresponde a la calidad visual, o grado de “excelencia” del mismo, según componentes tales como:

- Hidrografía: A mayor presencia de cuerpos de agua (lagunas y cauces permanentes) mayor calidad
- Vegetación: A mayor número de comunidades vegetales presentes mayor calidad
- Actuaciones humanas: La presencia de minería disminuye la calidad. La demás infraestructura pertenece a la cultura local y se valora positivamente.
- Belleza escénica\(^{26}\): Se valora subjetivamente este atributo suponiendo la existencia de diversas sensibilidades respecto de la apreciación del paisaje en estudio, otorgándole 3 niveles de valorización (alto, medio y bajo).

Para obtener el valor final de calidad, se cruzó la información de “hidrografía” con “vegetación”, dándole mayor valor a la hidrografía, ya que es una zona de escasa disponibilidad hídrica y representa un mayor atractivo que la vegetación. Luego, se cruzó la información de “actuaciones humanas” con la de “belleza escénica”, dándole mayor valor a la belleza escénica, ya que entrega información a nivel general, en cambio la actividad minera está localizada. Finalmente se cruzaron las dos matrices obtenidas, otorgándole mayor importancia a la primera, por contener a dos descriptores muy relevantes en la conformación del paisaje visual.

Fragilidad: Condición de vulnerabilidad del paisaje de ser afectado por actuaciones ajenas, o su capacidad de absorber dichos efectos. Se consideraron los siguientes descriptores, que se **valoran al revés** (mayor fragilidad con valor 1 y menor con valor 100), ya que una alta fragilidad disminuye el valor paisajístico final:

- Cubierta vegetal: A mayor cobertura, menor fragilidad

 \[
 1 = 0\% \text{ de cobertura} \\
 50 = 25-50\% \text{ de cobertura} \\
 100 = \text{mayor a } 50\% \text{ de cobertura}
 \]

- Presencia de unidades vegetales azonales: A mayor número de éstas, más frágil

Para obtener el valor final de fragilidad, se cruzó la información de “cubierta vegetal” con la de “presencia de unidades vegetales azonales”, otorgándole mayor valor a esta última por entregar mayores detalles a la escala que se trabaja.

\(^{25}\) Basado en la definición del criterio de Núñez (2008) y en el estudio de Montoya et al. (2003).

\(^{26}\) Se ha incorporado este descriptor porque ha jugado un papel histórico importante en el modo en que se ha protegido y conservado el paisaje (Elizalde, 1970; citado por De la Fuente et al., 2004). Además, desde la ecología del paisaje, existe interés en la interpretación o la medida del paisaje desde los valores humanos (De la Fuente, 2004). De este modo, esperamos completar los criterios que relacionan calidad de paisaje considerando el punto de vista del hombre que lo percibe, y el punto de vista ecológico en el que éste se inserta (De la Fuente et al., 2004).
El valor final de valor paisajístico se obtiene del cruce matricial entre la calidad y fragilidad de cada unidad de paisaje, otorgándole mayor importancia a la calidad, ya que se considera más determinante para definir la Zona de Educación Ambiental por representar el atractivo del paisaje.

Cuadro 20. Valoración de clases de unidad de paisaje según valor paisajístico.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alta</td>
<td>Alto valor paisajístico</td>
</tr>
<tr>
<td>50</td>
<td>Media</td>
<td>Mediano valor paisajístico</td>
</tr>
<tr>
<td>1</td>
<td>Baja</td>
<td>Bajo valor paisajístico</td>
</tr>
</tbody>
</table>

- **Disponibilidad de Agua:** Importancia de la red de drenaje de la subcuenca según la relación D (definida abajo) y la evaluación del aporte hídrico de acuerdo al tipo de cauces que presenta (quebradas intermitentes o permanentes).

\[
D = \frac{\text{Longitud total de la red de drenaje de la subcuenca (km)}}{\text{Superficie de la subcuenca (ha)}}
\]

A mayor valor de D, mayor disponibilidad de agua. A mayor presencia de quebradas permanentes, mayor disponibilidad de agua.

El valor final se obtuvo cruzando la información de la relación D con la de “tipo de cauces”, otorgándole mayor importancia al último descriptor, puesto que en el área existen gran cantidad de cauces intermitentes que sólo disponen de agua en periodos de precipitaciones, las que son escasas, representando esto un elemento importante en la disponibilidad hídrica general.

Cuadro 21. Valoración de subcuencas según disponibilidad de agua.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alta</td>
<td>Alto aporte hídrico</td>
</tr>
<tr>
<td>50</td>
<td>Media</td>
<td>Aporte hídrico medio</td>
</tr>
<tr>
<td>1</td>
<td>Baja</td>
<td>Aporte hídrico bajo en relación a las subcuencas acompañantes</td>
</tr>
</tbody>
</table>

- **Presencia de Lagunas:** Corresponde a la evaluación de la presencia de cuerpos de agua, de acuerdo a la proporción de superficie de lagunas presente en cada subcuenca en relación al total de lagunas analizadas.

Cuadro 22. Valoración de subcuencas según presencia de lagunas.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alta</td>
<td>Presencia de más del 40% de las lagunas del área</td>
</tr>
<tr>
<td>50</td>
<td>Media</td>
<td>Escasa presencia de lagunas</td>
</tr>
<tr>
<td>1</td>
<td>Baja</td>
<td>Nula presencia de lagunas</td>
</tr>
</tbody>
</table>
- **Presencia de Cuerpos de Nieves Perpetuas y Glaciares:** Se valoró cada subcuenca de acuerdo a la presencia de cuerpos de nieve y glaciares, considerando su importancia en el aporte hídrico a las cuencas principales del área.

Se asignó el valor final a cada subcuenca de acuerdo a la proporción de glaciares que contiene cada una de ellas en relación al total de cuerpos de nieves perpetuas analizados.

Cuadro 23. Valoración de subcuenca según presencia de cuerpos de nieves perpetuas y glaciares.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alta</td>
<td>Más del 40% de los cuerpos de nieves y glaciares del área</td>
</tr>
<tr>
<td>50</td>
<td>Media</td>
<td>Escasa presencia de cuerpos de nieves y glaciares</td>
</tr>
<tr>
<td>1</td>
<td>Baja</td>
<td>Nula presencia de cuerpos de nieves y glaciares</td>
</tr>
</tbody>
</table>

- **Concentración de Fauna Silvestre:** Corresponde a la valorización de subcuenca según la importancia del agrupamiento de fauna silvestre. Se consideraron los siguientes descriptores:

 - Presencia de vegas y lagunas que cumplen la función de corredor biológico
 - Red hídrica, que también funciona como corredor biológico (relación D)
 - Presencia del guanaco (*Lama guanicoe*), que se incluye de manera especial por ser una especie de elevada importancia cultural para la comunidad, además de estar en peligro de extinción

Para determinar las zonas donde puede habitar el guanaco, se utilizó la información generada por CONAF en un taller participativo con la comunidad huascoaltina, donde se señalan los lugares donde se avistan guanacos, estos son: río Cazadero, Qda de La Totora, Conay, Qda. de Colpe, Qda. de la Plata, Pachuy, Chollay y La Pampa.

Para determinar el valor final, se cruzó la información de la “red hídrica” con la de “presencia de guanaco”, siendo más importante la primera, ya que el guanaco es solo una especie de importancia, en cambio la red hídrica representa un elemento importante para más especies. Luego, se cruzó la información de la matriz resultante con la de “presencia de vegas y lagunas”, siendo más importante la matriz porque contiene más descriptores.

Cuadro 24. Valoración de subcuenca según concentración de fauna silvestre.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alta</td>
<td>Alta presencia de descriptores anteriores</td>
</tr>
<tr>
<td>50</td>
<td>Media</td>
<td>Mediana presencia de descriptores</td>
</tr>
<tr>
<td>1</td>
<td>Baja</td>
<td>Baja presencia de descriptores</td>
</tr>
</tbody>
</table>

27 Se continúa utilizando la unidad homogénea de subcuenca para no variar el nivel de análisis del componente fauna (la misma unidad homogénea de interés científico de biótopos faunísticos).
Concentración de Fauna Doméstica: Corresponde a la valorización de cada subcuenca según la importancia del agrupamiento de fauna doméstica. Se consideró que las subcuencas pertenecientes a la zona de trashumancia caprina tendrían un alto valor.

Cuadro 25. Valoración de subcuencas según concentración fauna doméstica.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alta</td>
<td>Alta presencia de zonas de trashumancia</td>
</tr>
<tr>
<td>50</td>
<td>Media</td>
<td>Mediana presencia de zonas de trashumancia</td>
</tr>
<tr>
<td>1</td>
<td>Baja</td>
<td>Baja presencia de zonas de trashumancia</td>
</tr>
</tbody>
</table>

Fragilidad del Suelo: Establece la susceptibilidad del suelo al deterioro por exposición del mismo a agentes erosivos según su cobertura vegetal.

Cuadro 26. Valoración de comunidades vegetales según fragilidad del suelo.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Alta</td>
<td>Comunidades con cobertura 0%</td>
</tr>
<tr>
<td>50</td>
<td>Media</td>
<td>Comunidades con cobertura entre 25-50% y cultivos agrícolas</td>
</tr>
</tbody>
</table>

Valor Productivo: Indica el valor de aprovechamiento económico de la comunidad vegetal. Se utilizaron los siguientes descriptores:

Presencia de especies de uso tradicional: Tola (Baccharis tola), Bailahuén (Haplopappus baylahuen) y Chachacoma (Senecio sp.), son las tres especies más utilizadas por los crianceros en el circuito de trashumancia, de acuerdo a la encuesta aplicada por Peña (2005). Además, se consideraron otras especies de importancia para la comunidad, como los son: la Varilla (Adesmia hystrix), por ser el principal alimento de las cabras y utilizarse para carbón; el Pingo pingo (Ephedra breana, Ephedra chilensis, Ephedra gracilis), la Llareta (Azorella sp.) y el Churque (Acacia caven), que se utiliza para leña. Se catastró la presencia de las especies mencionadas en cada comunidad vegetal, según la información de BIOTA (2004) y del Libro Rojo (Squeo et al., 2008), luego se asignaron los valores alto-medio-bajo de acuerdo a la presencia de dichas especies.

Zonas agrícolas: Todas estas zonas, de acuerdo al Catastro de de los Recursos Vegetacionales Nativos (CONAF et al., 1997), tendrán un alto valor.

Formaciones xerófiticas de alto valor ecológico (FXAVE): Estas formaciones corresponden a los sitios prioritarios definidos en el Libro Rojo de la Flora Nativa y de los Sitios Prioritarios para su Conservación de la Región de Atacama (Squeo et al., 2008), la Laguna Grande y Laguna Chica. Las comunidades que contengan dichas formaciones tendrán un alto valor.
Rodales en evaluación para bonificación: Corresponden a ciertos rodales de Algarrobo (*Prosopis chilensis*), Espino (*Acacia caven*) y Chañar (*Geoffroea decorticans*), de los cuales la comunidad huascoaltina gestiona recibir una bonificación que entrega CONAF. Las comunidades que los contengan tendrán un alto valor.

Para obtener el valor final, se cruzó la información de las “FXAVE” con la de “presencia de especies de uso tradicional”, siendo más importante la primera por poseer un reconocimiento en la Ley de Bosque Nativo. Luego, se cruzó la información de “rodales en evaluación para bonificación” con la de “rodales reconocidos por CONAF”, siendo más importante la primera por tener más probabilidades de bonificarse. Finalmente, se cruzó la primera matriz con la segunda, siendo más importante la primera, puesto que incluye las FXAVE y a las especies de mayor interés productivo local.

Cuadro 27. Valoración de comunidades vegetales según valor productivo.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Calificación</th>
<th>Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Altamente productiva</td>
<td>Comunidad vegetal con alta presencia de descriptores anteriores</td>
</tr>
<tr>
<td>50</td>
<td>Medianamente productiva</td>
<td>Comunidad vegetal con mediana presencia de descriptores anteriores</td>
</tr>
<tr>
<td>1</td>
<td>Productividad baja</td>
<td>Comunidad vegetal sin o con escasa presencia de descriptores anteriores.</td>
</tr>
</tbody>
</table>

Ponderación de Criterios

Para obtener la capa de aptitud de cada zona, fue necesario calcular previamente los pesos de cada criterio para cada zona respectivamente. Se utilizó el Método de las Jerarquías Analíticas (MJA), o análisis jerárquico, propuesto en la metodología de Núñez (2008) que se basa en Saaty (1980), y consiste en completar una matriz de comparación de pares por Zona de Uso, donde se ubican tanto en las filas como en las columnas los criterios correspondientes y se le asigna un valor de importancia a un criterio sobre otro.

Para realizar la comparación de pares, se requirió la colaboración de profesionales expertos en las temáticas consideradas y personas con conocimientos de la zona analizada (Apéndice I). Luego de obtener los pesos, se calculó la Razón de Consistencia (RC) del procedimiento, la que expresa la transitividad de las preferencias (criterios) y debe ser inferior a 0,1 (Saaty, 1980).
Obtención de Capas de Aptitud

Una vez definidos los pesos de cada criterio y dispuestos en modelo raster (software Idrisi Kilimanjaro) para operar cada píxel, se efectúa una suma ponderada de éstos de acuerdo a los pesos obtenidos y según la Zona de Uso. Por ejemplo, para la Zona de Educación Ambiental la suma ponderada consideraría los siguientes criterios con sus pesos respectivos:

\[
\text{Capa de Aptitud} = (\text{Topografía} \times 0,6) + (\text{Accesibilidad} \times 0,2) + (\text{Valor paisajístico} \times 0,2)
\]

\text{Educación Ambiental}

Las capas de aptitud se normalizaron de la siguiente forma:

\[
\text{VPN} = (\text{VP} - \text{MIN})/\text{MAX} - \text{MIN}
\]

Donde:

VPN = Valor de píxel normalizado
MIN = Valor mínimo de píxel presentado en la capa de aptitud
MAX = Valor máximo de píxel presentado en la capa de aptitud
VP = Valor de píxel

Es necesario aclarar que se utilizó la suma ponderada, debido a que no se ha demostrado que exista una mejor regla de decisión para combinar los criterios y elegir la mejor alternativa de uso para estos casos de evaluación.

Obtención Capas de Vocación

Una vez que las limitantes de cada Zona de Uso fueron dispuestas en raster, se multiplicó cada capa de aptitud por las limitantes correspondientes de la zona\(^{28}\) para obtener las capas de vocación.

Regla de Decisión

Para asignar los usos, se definieron previamente las prioridades que éstos tendrían en el ASP (Cuadro 28). Esto se efectuó de acuerdo a los objetivos del ASP y a los intereses de la comunidad.

\(^{28}\) Las áreas limitantes tienen valor de píxel 0, de modo que al multiplicarse con la capa de aptitud eliminan dicha área, y el resto valor 1.
Cuadro 28. Prioridades de las Zonas de Uso de la RNC Huasco Altinos. El valor 1 indica el uso de mayor prioridad y así decreciendo.

<table>
<thead>
<tr>
<th>Zona de Uso</th>
<th>Prioridad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intangible o Científica</td>
<td>7</td>
</tr>
<tr>
<td>Primitiva</td>
<td>6</td>
</tr>
<tr>
<td>Recuperación</td>
<td>8</td>
</tr>
<tr>
<td>Histórico Cultural</td>
<td>5</td>
</tr>
<tr>
<td>Educación Ambiental</td>
<td>9</td>
</tr>
<tr>
<td>Manejo de Recurso Flora y Vegetación</td>
<td>3</td>
</tr>
<tr>
<td>Manejo de Recurso Suelo</td>
<td>2</td>
</tr>
<tr>
<td>Manejo de Recurso Hídrico</td>
<td>1</td>
</tr>
<tr>
<td>Manejo de Recurso Fauna</td>
<td>4</td>
</tr>
</tbody>
</table>

Se asignaron los píxeles que tuvieron valor de vocación máximo (valor 1) en orden de usos prioritarios, es decir, primero las Zonas de Uso de Recurso Hídrico, luego la de Recurso Suelo, y así sucesivamente de acuerdo al Cuadro 28.

Luego, se asignaron los píxeles de valores superiores a 0,9 y menores a 1 en orden de usos prioritarios, de igual forma que el procedimiento anterior. A continuación, se asignaron los píxeles de valores superiores a 0,8 y menores a 0,9 en orden de usos prioritarios. Así sucesivamente, se disminuyó de 0,1 en 0,1, hasta llegar a 0,5, dejando los píxeles restantes para Zona de Uso Especial (que no presentan vocación para los demás usos, o es muy baja). Un esquema que sintetiza la regla de decisión se muestra en la Figura 3.

\[
\text{Vocación} = 1 \rightarrow \text{asignados en orden de prioridad} \\
1 > \text{Vocación} \geq 0,9 \rightarrow \text{asignados en orden de prioridad} \\
0,9 > \text{Vocación} \geq 0,8 \rightarrow \text{asignados en orden de prioridad} \\
0,8 > \text{Vocación} \geq 0,7 \rightarrow \text{asignados en orden de prioridad} \\
0,7 > \text{Vocación} \geq 0,6 \rightarrow \text{asignados en orden de prioridad} \\
0,6 > \text{Vocación} \geq 0,5 \rightarrow \text{asignados en orden de prioridad} \\
\text{Vocación} < 0,5 \rightarrow \text{Uso especial}
\]

Figura 3. Síntesis de la regla de decisión para asignación de usos.

Análisis de Adyacencia

A los usos ya asignados, se les aplicó un análisis de adyacencia con el objeto de corregir aquellos usos que siendo incompatibles se encontrarán contiguos. Para ello, se utilizó la siguiente matriz de compatibilidad:
Cuadro 29. Matriz de compatibilidad de usos.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>C</td>
<td>M</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>-</td>
<td>C</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>C</td>
<td>-</td>
<td>C</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>M</td>
<td>C</td>
<td>-</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>M</td>
<td>-</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>M</td>
<td>C</td>
<td>-</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>M</td>
<td>C</td>
<td>C</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>8</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>M</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>I</td>
<td>M</td>
<td>M</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Clave de usos:

1 = Zona Intangible
2 = Zona Primitiva
3 = Zona Histórico Cultural
4 = Zona de Recuperación
5 = Zona de Educación Ambiental
6 = Zona de Manejo de Flora y Vegetación
7 = Zona de Manejo de Suelo
8 = Zona de Manejo Hídrico
9 = Zona de Manejo de Fauna

I = Incompatible
C = Compatible
M = Medianamente compatible, hay acciones complementarias

Las reglas aplicadas se mencionan a continuación:

1. Cuando dos polígonos son incompatibles, se reasigna el uso del polígono de menos prioridad a un uso intermedio, es decir, uno medianamente compatible a ambos, de lo posible, tenga otro polígono próximo a los analizados, de manera que exista una continuidad espacial. Solo se mantendrá el uso menos prioritario si éste predomina por sobre el otro uso, y forma una “matriz” en el entorno.

2. Siempre se partirá reasignando los polígonos considerando las prioridades, es decir, en el caso que exista una Zona Intangible adyacente a Zonas de Educación Ambiental y de Manejo de Recursos, la Zona de Educación Ambiental será la primera en reasignarse por ser incompatible con la Intangible, luego, se analizarán las otras zonas junto a los nuevos polígonos asignados.

3. Las Zonas de Manejo de Recursos no se intercambiarán entre sí, por ejemplo, una Zona de Manejo Hídrico no podrá cambiar a Manejo de Fauna.

4. Se les dio un trato especial a las Zonas Histórico Culturales, debido a que muchos de los píxeles que quedaron asignados no correspondían exactamente a los sitios de importancia cultural catastrados, sino que al espacio circundante. Por lo que, en
algunos casos, se extendió la Zona Histórico Cultural asignada, cuando el sitio de importancia cultural estaba próximo (a menos de 300 m). Para las Zonas de Educación Ambiental, también se utilizó dicha metodología, en el caso que las zonas puntuales de interés educativo hayan quedado excluidas a menos de 300 m.

5. Las Zonas de Uso Especial se reasignaron solo cuando estaban adyacentes a una zona de mayor restricción como serían: Intangible y Primitiva. Además, las Zonas de Uso Especial asignadas fuera del territorio huascoaltino, se reasignaron a la zona de mayor prioridad adyacente, ya que éstas corresponden a zonas de uso administrativo interno, y no deberían ubicarse fuera del ASPP.

Junto a lo anterior, se modificó la asignación de ciertos píxeles de menor tamaño de acuerdo a las siguientes reglas:

1. Cuando un polígono pequeño (menor o igual a 10 ha) se encuentre circunscrito en una zona distinta a la que se le asignó, éste cambiará de Zona de Uso a la del entorno dominante.
2. Cuando un polígono pequeño sea adyacente a dos o más polígonos más grandes y de distinto uso, se le reasignará el uso del polígono que tenga mayor perímetro adyacente (al menos 60% de adyacencia)
3. Cuando un polígono pequeño sea adyacente a dos o más polígonos grandes de usos distintos, sin existir uno con adyacencia mayor, se reasignará el uso de mayor prioridad.

Capa Modelo de Zonificación y Macrozonificación

Una vez obtenida la Capa Modelo de Zonificación siguiendo la regla de decisión y el análisis de adyacencia, se agruparon los usos afines en una Macrozonificación con el objeto de sintetizar la zonificación. Ésto sería útil para labores, por ejemplo, administrativas, o para hacer más amigable la comunicación de los usos a eventuales visitantes, o cuando lo requiera la administración.

Las agrupaciones efectuadas, de acuerdo a Tacón et al. (2004) son:

- Zona de Preservación: corresponde a las Zonas de Uso Intangible y Primitiva
- Zona de Conservación: corresponde a las Zonas de Uso de Recuperación e Histórico Cultural
- Zona de Desarrollo Sostenible: corresponde a las Zonas de Manejo de Recursos en general, a la de Uso Especial y a la de Educación Ambiental.
Aplicación de enfoque prospectivo con variables de cambio global

Listado de Variables

Se identificaron las variables que compondrán los escenarios, utilizando los descriptores de los criterios para las variables del ASP. Además, se incorporaron CG que pudieran tener influencia sobre algunas de ellas y que complementarían el análisis estructural posterior. Para esto, se utilizó un listado de CG aplicables al caso de estudio, los cuales se basan principalmente en la descripción de Barber (2004), quien realiza una fundamentación detallada de los alcances de los cambios, apoyándose en una amplia bibliografía. No se consideraron los CG del tipo institucional, dado que la complejidad y el análisis que merecen escapan al alcance de este estudio. Sin duda, estos cambios requieren un análisis acabado que permita predecir lo que es probable que ocurra en el futuro, ya que, en gran parte, la manifestación de los cambios biofísicos y socioeconómicos dependen de las políticas y restricciones al uso del territorio, de las políticas globales, la labor de organizaciones no gubernamentales y la representación ciudadana (Valenzuela, 2007).

Cabe destacar que las variables enlistadas pertenecen a distintas escalas de análisis, situación que se consideró y se aprovechó para conocer las relaciones existentes entre ellas, sabiendo que son los procesos físicos los que dominan los niveles superiores influyendo a procesos biológicos o biofísicos, los que controlan los niveles inferiores (Raffaelli et al., 1994; citado por Montes et al., 1998).

Se definió cada variable enlistada con el fin de evitar confusiones e interpretaciones erróneas al momento de efectuar el análisis estructural.

Análisis Estructural

El propósito de esta fase es identificar, a partir del listado de variables realizado, aquellas variables claves, conocer las relaciones entre variables cualitativas y reducir la complejidad del sistema. En otras palabras, se desea explicitar la estructura interna del sistema (MIDEPLAN, 2005).

Posteriormente, se construyó una matriz relacional donde se ubicaron tanto en las filas como en las columnas todas las variables enlistadas. Se realizó una clasificación directa que permitió diagnosticar las variables motrices y dependientes del territorio y jerarquizarlas mediante el relleno cualitativo de la matriz, donde se asignó el valor “0” a las relaciones inexistentes, “1” a las débiles, “2” a las medianas y “3” a las fuertes (Godet et al., 2000; MIDEPLAN, 2005). El relleno se llevó a cabo mediante consultas a un número reducido de expertos seleccionados (Apéndice I) según el grado de conocimiento de la zona y de algunas de las temáticas consideradas (botánica, ecología, análisis territorial sistémico, entre otras), solicitándoles que completaran la tabla de acuerdo a la relaciones intuitivas que reconocieran (Acuña, 1986). El sentido del análisis de relaciones (Figura 4) fue de la
columna “A” hacia la fila “B”, es decir, respondiendo a la pregunta ¿existe una influencia de la variable A (columna) sobre la variable B (fila)?, luego ¿existe una influencia de la variable A (columna) sobre la variable C (fila)?, así sucesivamente hasta terminar con la primera columna, luego se sigue con la columna B. Se destacó a los participantes que hay que analizar si la relación es efectivamente de A hacia B, o al revés, o si existe alguna influencia intermedia (de A sobre D y de D sobre B) (Acuña, 1986).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 4. Sentido del análisis de influencia entre variables.

Una vez efectuado el relleno de la matriz, se construyó un gráfico dependencia-motricidad (Figura 5) donde se ubican en el eje “X” los valores de dependencia (que corresponden a las sumas horizontales de cada fila) y en el eje “Y” los de motricidad (sumas verticales de las columnas) (Costa, 1999; MIDEPLAN, 2005).

Figura 5. Modelo gráfico dependencia-motricidad (Gabiña, 1999).

Una vez construido el gráfico, se clasificaron las variables y se desecharon las que estuvieron bajo el puntaje de corte escogido para la dependencia y motricidad, respectivamente; es decir, que se encontraran dentro del recuadro 4 de la Figura 5 (variable excluida). Dichos puntajes correspondieron a la mediana de cada caso. Las variables excluidas del análisis son aquellas variables autónomas que se encuentran desconectadas del sistema. Las variables de entrada, también son llamadas motrices, ya que son las que “mueven” el sistema, tal como indica su nombre (Costa, 1999). Las variables resultado son
aquellas con mayor nivel de dependencia, es decir, su motricidad es baja y su comportamiento obedece a la influencia de otras variables. Las variables de enlace son inestables y pueden tener un comportamiento dependiente o motriz.

Se espera que las variables escogidas sean las que condicionan el sistema o determinan la evolución del territorio en estudio; es decir, que estén relacionadas con el futuro del lugar (MIDEPLAN, 2005), y las desechadas, las que no poseen relaciones fuertes.

Todas las relaciones fuertes entre las variables claves se expusieron en un modelo de síntesis.

Análisis Morfológico

Esta etapa tiene el propósito de plantear las cuestiones críticas del objeto de estudio y sus posibles respuestas (MIDEPLAN, 2005; ODEPA, 2005). Para ello, se utilizó el método general de los escenarios, centrándose exclusivamente en aquellos del tipo exploratorio, que tienen como objetivo investigar el campo de los futuros posibles (ODEPA, 2005).

Se establecieron hipótesis sobre las variables claves definidas agrupándoles en distintos ámbitos o medios: físico natural, biótico, económico, sociocultural, y asentamientos humanos y redes. A partir de estas hipótesis, se conformaron 4 escenarios, que expresan distintas respuestas al CG y son combinaciones de la descomposición del sistema propuesto (MIDEPLAN, 2005), que construyen un modelo de relaciones causales (propulsoras y restrictivas) entre las variables claves. Se utilizó un horizonte temporal de 30 años para la construcción de dichos escenarios, dada la duración de la afectación de las ASPP que actualmente evidencia un largo mantenimiento temporal de sus planes de manejo. Sin embargo, este horizonte temporal se justifica ya que permite reducir los efectos “período” y apprehender las dinámicas más profundas, eliminando comportamientos generados por hechos coyunturales. Permite también incorporar variables de mayor inercia, tales como las evoluciones demográficas o ecológicas. Por último, proyecta hacia el futuro un horizonte de tiempo suficientemente largo para plantear transformaciones y acciones asociadas de más largo aliento (ODEPA, 2005).

Cabe señalar que en esta fase se puede reducir el espacio morfológico eliminando las combinaciones irrealizables. Asimismo, se cuidó que los escenarios fueran coherentes, pertinentes y verosímiles (MIDEPLAN, 2005; Godet, 1993) y que las ideas recibidas, dominantes o de moda se tradujieran persistentemente a escenarios, al contrario, las ideas nuevas e intuitivas nunca fueron reprimidas (Godet, 1993).

Algunos aspectos importantes de esta metodología son: la consideración de lo que “no cambiará, por lo que siempre es de ayuda conocer la retrospectiva (tendencias) de las variables, las fuerzas de inercia, es decir, variables que tienen nula probabilidad de cambiar; y la consideración de los gérmenes de cambio del sistema (Godet, 1993).
Una vez completadas las hipótesis iniciales, se asignó un nombre a cada escenario y se redactó sintetizando todas las hipótesis y relaciones que conformaban a cada uno.

Propuesta de zonificación dinámica como base para un plan de manejo de un ASPP

A partir de los escenarios elaborados, se escogieron dos de ellos, uno tendencial (más probable) y otro alternativo (de contraste) para realizar dos nuevas zonificaciones.

Se reatribuyeron algunas características de las unidades homogéneas y se valorizaron nuevamente los criterios iniciales de zonificación basándose en los cambios que supone cada escenario lo que, a su vez, repercutirá en la aptitud (factores de localización) de las zonas y eventualmente en las limitantes. Cabe señalar que se realizó una cuidadosa revisión de todos los criterios valorativos de manera de que los cambios de estado de cada variable contemplada en los escenarios se expresaran en la nueva zonificación.

Se obtuvo una nueva zonificación para cada escenario propuesto siguiendo la metodología descrita en “Zonificación sobre la base de criterios biofísicos, ecológicos y socioculturales”.

En el Apéndice II se expone la metodología general aplicada.

RESULTADOS

Localización Área de Estudio

El área que comprende la Comunidad Agrícola Huasco Altinos (o el ASP) posee una superficie de 239.918 ha y se ubica en el valle del Trán sito, Comuna de Alto del Carmen, Provincia del Huasco, Región de Atacama, Chile; entre los 28° 34´ y 29° 10´ Latitud Sur y los 69° 42´ y 70° 29´ Longitud Oeste (Figura 6).
Figura 6. Mapa de ubicación de la zona de estudio inserta a nivel regional. La región más oscura representa a la Comunidad Agrícola Huasco Altinos y la celeste corresponde al límite de la Región de Atacama.

Zona de Influencia

En la Figura 7 se presenta la zona de influencia del ASP, que posee una superficie aproximada de 409.504 ha y que, en síntesis, corresponde a las 5 subcuencas completas del área más la subcuenca de río Valeriano. El área aledaña que eventualmente podría proponerse como zona de amortiguación corresponde a 169.586 ha (70,68% del ASP), sobrepasando el 50% propuesto por Oltremari y Thelen (2003).
Figura 7. Zona de influencia biofísica, socioeconómica y cultural de la RNC Huasco Altinos.

Respecto a la influencia biofísica y a los criterios ocupados, cabe destacar que en el caso de los hábitats críticos se incluyó el sitio prioritario Laguna Chica (Squeo et al., 2008), para mantener una continuidad en los procesos ecológicos de los humedales altoandinos. Además, respecto a las subcuenca hidrográficas, se incluyeron completamente aquellas que se encontraban parcialmente dentro del ASP.

Respecto a la influencia socioeconómica y cultural y a los criterios ocupados, para prácticamente todos ellos bastaba considerar solo el territorio de la Estancia. Sin embargo, cabe destacar que en el caso de las demandas comunitarias locales por el uso de recursos naturales y/o culturales, resultó necesario incorporar la subcuenca de río Valeriano dado que se ha documentado su uso para pastoreo, además, la Laguna Chica, ya incluida, es parte de dicha subcuenca y se decidió no fragmentarla.
Caracterización del Área

I. Componentes Bióticos

I.I. Vegetación Potencial Terrestre

La Comuna de Alto del Carmen se inserta en un ambiente general árido, de características desérticas que, según la disponibilidad de agua, se encuentra dentro de la zona xeromórfica (Fuenzalida, 1965a). Desde un punto de vista biogeográfico a nivel continental, queda incluida en la Región Neotropical, Dominio Andino-Patagónico, en las Provincias del Desierto y Altoandina (Cabrera y Willink, 1973).

Cuadro 30. Formaciones vegetales representadas en el ASP y la zona de influencia.

<table>
<thead>
<tr>
<th>Región vegetacional</th>
<th>Formación vegetal</th>
<th>Superficie representada en el ASP (%)</th>
<th>Superficie aproximada del ASP (%)</th>
<th>Representación en el SNASPE (%)</th>
<th>Total protegido (%) (A+C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desierto</td>
<td>Desierto Florido de los Llanos</td>
<td>0</td>
<td>1</td>
<td>0,16</td>
<td>0,16</td>
</tr>
<tr>
<td>Desierto</td>
<td>Desierto Florido de las Serranías</td>
<td>3</td>
<td>23</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Estepa Altoandina</td>
<td>Estepa Alto-andina de la Cordillera de Doña Ana</td>
<td>16</td>
<td>76</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Los pisos de vegetación que se asocian a los pisos bioclimáticos, continentalidad y bioclimas presentes en el área protegida y su zona de influencia se mencionan en el Cuadro 31, según el estudio de Luebert y Pliscoff (2006).

29 También citada como Estepa Altoandina de Coquimbo y con futura actualización a Estepa Andina Árida.
Cuadro 31. Pisos vegetacionales representados en el ASP.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbazal tropical andino de Chaetanthera sphaeroidalis</td>
<td>Herbazal de altitud</td>
<td>Estepa Alto-Andina de la Cordillera de Doña Ana</td>
<td>Tropical pluviestacional Tropical xérico (antitropical)</td>
<td>2,2</td>
</tr>
<tr>
<td>Matorral bajo desértico mediterráneo andino de Senecio proteus y Haplopappus baylahuen</td>
<td>Matorral bajo desértico</td>
<td>Desierto Florido de las Serranías</td>
<td>Mediterráneo desértico-oceánico</td>
<td>0</td>
</tr>
<tr>
<td>Matorral bajo tropical-mediterráneo andino de Adesmia hystrix y Ephedra breana</td>
<td>Matorral bajo de altitud</td>
<td>Estepa Alto-Andina de la Cordillera de Doña Ana</td>
<td>Tropical desértico Mediterráneo desértico-oceánico Mediterráneo xérico-oceánico</td>
<td>1,0</td>
</tr>
<tr>
<td>Matorral bajo tropical-mediterráneo andino de Adesmia subterranea y Adesmia echinus</td>
<td>Matorral bajo de altitud</td>
<td>Estepa Alto-Andina de la Cordillera de Doña Ana</td>
<td>Tropical xérico (antitropical) Mediterráneo xérico-oceánico</td>
<td>1,1</td>
</tr>
<tr>
<td>Matorral desértico mediterráneo interior de Adesmia Argentea y Bulnesia chilensis</td>
<td>Matorral desértico</td>
<td>Desierto Florido de los Llanos Desierto Florido de las Serranías</td>
<td>Mediterráneo desértico-oceánico</td>
<td>1,1</td>
</tr>
</tbody>
</table>

De acuerdo al estudio de BIOTA (2004), que se basa en el Catastro de de los Recursos Vegetacionales Nativos (CONAF, CONAMA y BHIF, 1997), se reconocen 16 comunidades vegetales en la zona de influencia, las cuales se consideraron para la etapa de zonificación. El Cuadro 32 muestra dichas comunidades, excluyendo la vegetación de uso agrícola.

Cuadro 32. Comunidades vegetales de la zona de influencia.

<table>
<thead>
<tr>
<th>Uso</th>
<th>Comunidad Vegetal</th>
</tr>
</thead>
</table>
| Matorral con suculentas muy abierto | *Bulnesia chilensis* – *Heliotropium chenopodiaceum*
Opuntia miqueli - *Calandrinia grandiflora* |
| Matorral muy abierto | *Adesmia divaricata* - *Heliotropium chenopodiaceum*
Stipa sp.
Gymnophyton flexuosum - *Heliotropium chenopodiaceum*
Adesmia hystrix |

(Continúa)

30 Solo se nombra la formación presente en el área de estudio.
31 Entre paréntesis se indican las variantes bioclimáticas
Cuadro 32. Comunidades vegetales de la zona de influencia (continuación).

<table>
<thead>
<tr>
<th>Uso</th>
<th>Comunidad Vegetal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matorral muy abierto</td>
<td>Adesmia hystrix – Adesmia aegyceras</td>
</tr>
<tr>
<td></td>
<td>Atriplex imbricata – Stipa sp.</td>
</tr>
<tr>
<td></td>
<td>Bulnesia chilensis - Adesmia divaricata</td>
</tr>
<tr>
<td></td>
<td>Ephedra breana – Adesmia aphylla</td>
</tr>
<tr>
<td></td>
<td>Ephedra breana – Adesmia hystrix</td>
</tr>
<tr>
<td></td>
<td>Ephedra breana – Gymnophyton flexuosum</td>
</tr>
<tr>
<td></td>
<td>Prosopis chilensis - Bulnesia chilensis</td>
</tr>
<tr>
<td></td>
<td>Senecio maritimum - Stipa sp.</td>
</tr>
<tr>
<td></td>
<td>Tetrugoccin alatus - Adesmia aphylla</td>
</tr>
</tbody>
</table>

I.II. Fauna Potencial Terrestre

A nivel regional y desde un punto de vista zoogeográfico, la fauna presente forma parte de las “comunidades desérticas”, que se caracterizan por la presencia de un número reducido de especies (Mann, 1960). Sin embargo, también corresponde a una zona de transición, motivo por el cual presenta una singular riqueza. La costa y la parte intermedia de la cuenca del Huasco, es la transición entre el desierto absoluto y el matorral mediterráneo, y la zona andina representa una transición entre la fauna altiplánica de las regiones I - II y la zona andina de Chile Central (Artigas, 1975).

Grupos importantes de animales, como peces, anfibios, decápodos y gran parte de la avifauna se restringen a los hábitats de humedales; además, estos sistemas actúan como refugios para la avifauna en periodos de sequía. De acuerdo a esto, los humedales altoandinos serían los hábitats de fauna más relevantes de la zona.

De acuerdo al estudio de BIOTA (2004), la fauna actual a nivel comunal alcanza las 162 especies (94 detectadas y 68 potenciales). Respecto a la distribución, las especies se encuentran desigualmente distribuidas en el área, para analizar dicho comportamiento se utilizó como base la descripción por subcuencas del estudio de BIOTA (2004) que se resume en el Cuadro 33. En general las abundancias son bajas, sin embargo las aves son el grupo con mayor número de especies, y dentro de éstas, el orden Passeriformes es el más común y abundante (BIOTA, 2004).
Cuadro 33. Número de especies detectadas, potenciales y en problemas de conservación por subcuencas.

<table>
<thead>
<tr>
<th>Subcuenca</th>
<th>Nº especies detectadas (D)</th>
<th>Nº especies potenciales (P)</th>
<th>Total de especies registradas</th>
<th>Nº de especies con problemas de conservación (P+D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Río Laguna Grande</td>
<td>14</td>
<td>50</td>
<td>64</td>
<td>26</td>
</tr>
<tr>
<td>Río Valeriano</td>
<td>0</td>
<td>31</td>
<td>31</td>
<td>21</td>
</tr>
<tr>
<td>Río Conay</td>
<td>17</td>
<td>17</td>
<td>34</td>
<td>7</td>
</tr>
<tr>
<td>Río Chollay</td>
<td>3</td>
<td>25</td>
<td>28</td>
<td>8</td>
</tr>
<tr>
<td>Quebrada Chancoquín</td>
<td>22</td>
<td>9</td>
<td>31</td>
<td>8</td>
</tr>
<tr>
<td>Río El Tránsito Superior</td>
<td>65</td>
<td>47</td>
<td>112</td>
<td>16</td>
</tr>
<tr>
<td>Río El Tránsito Inferior</td>
<td>24</td>
<td>13</td>
<td>37</td>
<td>7</td>
</tr>
</tbody>
</table>

II. Componentes Físicos

II.I. Geomorfología

La Región de Atacama corresponde al límite norte de la zona de los valles transversales (Börgel, 1983; Ulloa y Ortiz de Zárate, 1989) que se encuentra representada por los valles de los ríos Copiapó y Huasco. La erosión hídrica ha determinado la orientación de la depresión intermedia, conformando dichos valles (Fuenzalida, 1965b). Además, la región constituye el límite sur de los ecosistemas del Altiplano y la Puna.

A escala regional, la zona de estudio se encuentra comprendida principalmente en la macrounidad geomorfológica de la Cordillera de los Andes y en menor medida, hacia el este (Alto del Carmen), en la Pampa Transicional (Börgel, 1983; Ulloa y Ortiz de Zárate, 1989). Ésta última, se desarrolla entre el río Copiapó por el norte y el Elqui por el sur, cubriendo 300 km de extensión N-S y un ancho medio de 55 km. Las Sierras transversales del tronco maestro andino constituyen el encadenamiento principal de la Cordillera de los Andes. Presenta cordilleras y sierras transversales con un acelerado drenaje exorreico a medida que ganan latitud. Consecuencia de lo anterior, la cordillera se desplaza por la erosión de las aguas corrientes lo que permite una profunda penetración de los valles en su tronco principal. En el cordón maestro cordillerano, las alturas se empinan sobre los 4.500 m, situándose la mayoría de los numerosos portezuelos a las alturas de 4.000 m en promedio (Börgel, 1983).

En la cuenca del Huasco es posible distinguir cuatro unidades morfológicas: la Planicie Litoral, la Cordillera de la Costa, la Depresión Central (poco desarrollada) y la Cordillera Principal (Cordillera de Los Andes) (CONAMA, 1994), donde se encuentra el área de estudio. Ésta corresponde a un sistema montañoso de orientación general N-S, cuyas altitudes varían entre los 1.000 y 5.300 msnm Sobre los 3.500 msnm aparecen depósitos
glaciales y fluvio-glaciales cuaternarios (depósitos morrénicos) (Nasi et al., 1990). Sobre los 4.000 msnm, junto a dichos depósitos, se encuentran depósitos remanentes de glaciares de rocas, con forma lobulada, que rellenan pequeños circos glaciares que se orientan preferentemente hacia el este y el sur. Esta cuenca, comprendida en la zona de los valles transversales, se caracteriza por la ausencia de volcanismo reciente y por la existencia de valles fluviales de orientación general E-W, como el río El Tránsito, afluente oriental del río Huasco y cauce principal que cruza el área de estudio, cuyos afluentes caen a aquel en dirección N-S, orientando el encadenamiento de cerros en ese mismo eje (Fuenzalida, 1965a). Las cuencas hidrográficas de la Comuna de Alto del Carmen en particular, se caracterizan por la marcada acción glacial ocurrida en los últimos milenios, y por la acción erosiva de los ríos de alta montaña.

A lo largo del río Huasco y sus tributarios, aparecen depósitos aluviales y coluviales modernos, no consolidados, constituidos por ripios, gravas y arenas (Moscoso et al., 1982). Estos corresponden a conos de deyección, abanicos aluviales, remociones en masa, escombros de falda y rellenos de fondo de valle.

Según la clasificación de la FAO (1995), la zona se ubicaría dentro del grupo T (“tierra empinada”) de pendientes, en general, superiores a 30%, y al subgrupo TM montañas de alta pendiente.

En los Cuadros 34 y 35 se muestran las pendientes y altitudes presentes en la zona de influencia.

Cuadro 34. Rangos de pendientes y la superficie que abarcan en la Zona de Influencia (Z.I.).

<table>
<thead>
<tr>
<th>Pendiente</th>
<th>Superficie de la Z.I. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 a 15°</td>
<td>21</td>
</tr>
<tr>
<td>15 a 30°</td>
<td>21,81</td>
</tr>
<tr>
<td>30 a 45°</td>
<td>23,50</td>
</tr>
<tr>
<td>45 a 60°</td>
<td>18,19</td>
</tr>
<tr>
<td>Superiores a 60°</td>
<td>15,30</td>
</tr>
</tbody>
</table>

Cuadro 35. Rangos de altitud y la superficie que abarcan en la Zona de Influencia (Z.I.).

<table>
<thead>
<tr>
<th>Altitud</th>
<th>Superficie de la Z.I. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 a 2.500 msnm</td>
<td>17,89</td>
</tr>
<tr>
<td>2.500 a 4.400 msnm</td>
<td>70,94</td>
</tr>
<tr>
<td>4.400 a 6.300 msnm</td>
<td>11,16</td>
</tr>
</tbody>
</table>
II.II. Geología

La superficie geológica de la región está centrada en la presencia de un basamento rocoso ígneo (63%) y sedimentario (33,8%). La zona de estudio se encuentra situada en una matriz de roca ígnea, pudiendo identificar además parches de roca sedimentaria al sur de la localidad de Alto del Carmen y al este de la Estancia (SERNAGEOMÍN, 2004).

De acuerdo a la FAO (1995), la zona de estudio se encuentra en su mayoría compuesta de roca ígnea ácida tipo granito (IA1) distinguiéndose también, hacia la cuenca del río Chollay, roca ígnea ácida tipo riolita (IA4).

Según Nasi et al. (1990), la geología de la Cordillera Principal del Valle del Huasco, donde se localiza el área protegida, se caracteriza por la presencia de un extenso macizo granítico de edad paleozoica superior-triásica inferior (Batolito Elqui-Limari, Batolito Chollay) y por una cubierta de volcanitas ácidas contemporáneas (Formación Pastos Blancos). Los granitoides intruyen a rocas metamórficas (del Complejo Metamórfico El Tránsito) y a secuencias metasedimentarias marinas del Devónico-Carbonífero (Formación Las Placetas). También afloran unidades de edad mesozoica y cenozoica. Estas corresponden a depósitos sedimentarios marinos (Formación San Felix, Formación Lautaro), continentales (conglomerados y areniscas) y rocas volcánicas pertenecientes a la Formación Algarrobal. Las rocas volcánicas más jóvenes presentes en el área pertenecen a la Formación Doña Ana, a las cuales se asocian numerosas zonas de alteración hidrotermal.

II.III. Clima

El clima es el principal factor ecológico a escala regional que permite inferir la distribución de la vegetación (Luebert y Pliscoff, 2006). En Chile, se encuentran presente los cinco macrobioclimas reconocidos a escala global (Amigo y Ramírez, 1998; Luebert y Pliscoff, 2006): Tropical, Mediterráneo, Templado, Boreal (Antiboreal o Austral) y Polar. La zona de estudio se encuentra en la zona de transición entre los macrobioclimas Mediterráneo y Tropical (Amigo y Ramírez, 1998; Luebert y Pliscoff, 2006). El límite entre los diferentes macrobioclimas son áreas de difícil discriminación bioclimática, siendo este límite una de las zonas más críticas, puesto que ha sido escasamente estudiada en términos vegetacionales y existen muy pocas estaciones meteorológicas, sobre todo en la zona andina (Luebert y Pliscoff, 2006).

La zona de estudio se caracteriza por un clima de estación estival seca con ocasionales avances de masas de aire húmedo de las laderas orientales de la Cordillera de los Andes y una estación corta de lluvias invernales, que alcanzan los 250 mm en la parte alta (Huber, 1975).

Según la clasificación de Köppen (1948), adaptada a Chile por Fuenzalida (1967), en la unidad se pueden distinguir tres de los cuatro tipos climáticos presentes en la región: Desértico transicional (Bwi), Desierto Frío de Montaña (Bwk’G) y Tundra de Alta Montaña (EB).
II.IV. Suelos

En términos generales, desde Copiapó a La Serena encontramos los suelos rojos desérticos típicos, que se caracterizan por la escasa cantidad de materia orgánica que la vegetación procura al suelo (Fuenzalida, 1965a). Los fondos de quebradas y valles son más fértiles debido a los aportes de sedimentación y a la presencia de materia orgánica proveniente de formaciones vegetales asociadas a cursos de agua (Molina et al., 2001).

De acuerdo a Alcayaga y Luzio (1985), la clasificación taxonómica de los suelos, excluyendo a los suelos del valle, corresponde al orden entisoles. Asimismo, según la Base Referencial Mundial del Recurso Suelo (WRB) (FAO, 1995), el área comprende en mayor medida cambisoles crómicos, que son suelos jóvenes, moderadamente desarrollados; y leptosoles dístricos, que son suelos someros y extremadamente gravillosos (IUSS, 2007).

La zona en estudio, según la clasificación de Suelos de Regiones Naturales de Conservación, comprende 3 de los 4 suelos clasificados para la zona norte de Chile: los suelos de los valles regados, suelos de praderas temporales y las veranadas (en la alta cordillera) (Peralta, 1976).

II.V. Hidrografía

Del paralelo 27° Sur al sur, la región de Atacama presenta precipitaciones débiles que permiten la aparición de una zona exorreica con ríos pluvionivales (Copiapó y Huasco) (Novoa et al., 2008), los que se asocian al aumento de precipitaciones en el periodo invernal y al aporte de aguas provenientes del derretimiento de nieves y glaciares, situación que aseguraría el caudal de estos ríos durante todo el año (BIOTA, 2004).

El río Huasco se origina a partir de dos ríos cordilleranos: el río El Tránsito y río El Carmen. Ambos presentan regímenes hidrológicos parecidos, pero El Tránsito tiene fluctuaciones más fuertes que van de los 3,76 m³/seg en agosto a los 7,41 m³/seg en diciembre. El río El Carmen tiene menor caudal y es más homogéneo (Fuenzalida, 1965a).

En la zona de influencia se encuentran 7 de las 11 subcuencas (ver Figura 7) presentes a nivel comunal (BIOTA, 2004), donde se distinguen tanto cursos superficiales permanentes como estacionales (Figura 8), siendo el río El Tránsito el cauce central del área. Sus principales afluentes son los ríos: Conay, Chollay, Laguna Grande y Valeriano.
Figura 8. Hidrografía zona de influencia.

La cuenca hidrográfica del río El Tránsito, con orientación de cordillera a mar, tiene una superficie de 4.130 km² y una longitud total de 63 km. Nace en el límite con Argentina, en la confluencia de los ríos Conay y Chollay, y se extiende hasta la confluencia con el río El Carmen. El río Conay tiene una extensión de 15 km y se origina en la confluencia de los ríos Laguna Grande y Valeriano. Por su parte, el río Chollay se origina en la confluencia de los ríos Blanco, Estrecho y Toro, y tiene una longitud aproximada de 20 km (BIOTA 2004). En resumen, desde su nacimiento hasta la confluencia con el río El Carmen, el río El Tránsito recibe los siguientes tributarios (ríos y quebradas):

- Ribera Norte: Laguna Chica, Arroyo, Yerbas Buenas, Laguna Grande y Cazadero; y las quebradas El Pozo, La Plaza, Chilico, La Mollaca, Paitepén, Chanchoquín y El Tabaco.
- Ribera Sur: Valeriano, Chollay y Conay; y las quebradas del Chacay, El Corral, Albaricoque, La Plata, del Amarillo, Pinte y Las Pircas.

En la zona Andina se localizan 4 lagunas consideradas humedales altoandinos: Valeriano, Laguna Grande (la única dentro del ASP), Laguna Chica y el sistema de lagunas del Cajón del Encierro (BIOTA, 2004).
III. Componentes Socioeconómicos y Culturales

III.I. Antecedentes Histórico - Culturales de los Diaguitas de Huasco Alto

El valle del río El Tránsito también recibe el nombre de “Valle de los Naturales”, debido a la ocupación exclusiva de esta zona en tiempos de la Colonia, por comunidades diaguitas; mientras que el valle vecino (Carmen) es llamado “De los Españoles”. La ocupación distintiva y excluyente por etnia de los valles, ocurrió debido al tratado y “mensura de tierras indígenas de Huasco Alto” en 1750 (Pizarro et al., 2006).

La población del área es resultado de presencias, composiciones y trayectorias étnicas complejas. Este hecho se suma al impacto de sociedades estatales sucesivas (la Inca, la sociedad colonial española y la República chilena), que influyeron y provocaron profundas alteraciones.

En la zona andina han existido culturas que se han adaptado y desarrollado de acuerdo a las condiciones ambientales locales. Es así como en la cuenca alta del río Huasco, se pueden mencionar cuatro estadios culturales que se manifiestan en la región de Atacama: el Periodo Arcaico de cazadores-recolectores cordilleranos (3000 a.C. – 2500 a 150 a.C), Periodo Agroalfarero Temprano: Complejo El Molle (150 a.C a 700 d.C), Periodo Agroalfarero Medio: Complejo Las Ánimas (800 d.C. a 1000 d.C.), Periodo Agroalfarero Tardío: Cultura Diaguita (1000 d.C. a 1470 d.C.) y la Cultura Diaguita/Inca (1470 d.C. a 1536 d.C.). La Cultura Diaguita chilena, habría ocupado desde el valle de Copiapó hasta el Aconcagua, tras llegar de la Puna argentina a fines del siglo VII d.C.

Tradicionalmente, se ha dividido la cultura diaguita chilena en tres fases, siguiendo diferencias cerámicas y fúnebres: Diaguita I (900 al 1200 d.C.), que se basaría en actividades ganaderas, agrícolas y marinas, siendo la cerámica, las sepulturas de baja profundidad y las ceremonias fúnebres con sacrificios animales, componentes que identifican la fase; la Diaguita II (1200 al 1470 d.C.), mejor conocida por la abundancia de restos y su riqueza contextual; La Diaguita III (1470 al 1536 d.C.), que se caracteriza por la aculturación de las poblaciones diaguitas al Imperio Inca. Los registros arqueológicos indican que los primeros vestigios de la cultura diaguita en el Huasco Alto, datan de esta última fase, por lo que la ocupación diaguita se habría producido por una colonización motivada por el Imperio Inca (Comunidad Agrícola Huasco Altinos, 2008).

A partir de 1540, con la entrada de Pedro de Valdivia a Chile y la ocupación de los territorios indígenas, entre éstos el diaguita, las tierras fueron objeto de un proceso reduccional donde se propugnaba el dominio de la Corona sobre las tierras del Nuevo Mundo. Hasta 1580, estas tierras habían sido reconocidas tácitamente por el derecho indiano español, pero la expansión de la propiedad hacendal (constituida en base a mercedes de tierras), las encomiendas, el traslado y la reducción de la población indígena y, por ende, el abandono productivo de sus tierras, impuso la necesidad de deslindarlas para someterlas a tributo real. Para ello, fue necesario implementar procesos de mensura y
asignación de terrenos, produciéndose la reducción de las tierras diaguitas y su sometimiento al régimen de propiedad conocido como ‘Pueblos de Indios’ (Comunidad Agrícola Huasco Altinos, 2008).

Los indígenas de Huasco Alto mantuvieron una resistencia social y territorial que impidió la constitución del pueblo de indios en la década de 1750. Así, a fines de 1757 el territorio huascoaltino se caracterizaba por ser un valle sin población de origen hispano.

A inicios de la República, se intentó constituir nuevos pueblos de indios que reagruparían en unos pocos asentamientos a toda la población. Posteriormente, se intentó mensurar los territorios indígenas para determinar dentro de éstos las posesiones indígenas efectivas y el resto declararlo propiedad fiscal y luego rematarla a particulares. A partir del término de este proceso de mensura, la República impuso el discurso de un Chile sin indígenas entre Copiapó y Bío Bío. Sin embargo, el Pueblo de Indios del Huasco Alto fue uno de los pocos Pueblos de Indios que mantuvo su integridad territorial, por haber sido en 1750 mensurado y reconocida la posesión material de las familias que habitaban el espacio existente entre la Sierra de Tatul y las lagunas cordilleranas, incluyendo las quebradas aledañas (Comunidad Agrícola Huasco Altinos, 2008).

En 1903, los mismos huascoaltinos inscriben la posesión territorial de sus tierras ancestrales, bajo el nombre de Estancia de los Huasco Altinos, propiedad que alcanzó una superficie de 395.000 ha entre tierras de pastoreo de uso comunitario y la de los fondos de valle en que se encuentran las tierras bajo riego de posesión familiar (Comunidad Agrícola Huasco Altinos, 2008).

Luego, en 1993, se promulga la Ley 19.253, que modificó el DFL N° 5 de 1967 reafirmando el derecho a organizarse de un modo particular, conforme al respeto a una tradición de organización y cultura. Sin embargo, y a raíz de que la etnia diaguita no estaba incluida en la Ley 19.253, las tierras se inscribieron de acuerdo al DFL N° 5 de 1967, bajo la figura de “Comunidad Agrícola”. En el año 1997, la propiedad fue regularizada bajo el nombre de “Comunidad Agrícola los Huasco Altinos” (Comunidad Agrícola Huasco Altinos, 2008).

Los diaguitas como etnia, fueron reconocidos oficialmente por primera vez en el año 1971, en el Parlamento de Chile, con ocasión de la discusión de la ley indígena N° 17.729. Sin embargo, las posibilidades de un reconocimiento legal de la etnia diaguita se interrumpe durante la década de 1970 y 1980 como consecuencia de la dictadura militar y la implementación de un sistema económico que privilegia la propiedad privada a la colectiva (Comunidad Agrícola Huasco Altinos, 2008).

En el momento de la dictación de la Ley Indígena N° 19.253 en 1993, los diaguitas quedaron fuera del reconocimiento explícito de las etnias de Chile que se formula en el artículo 1°, pero implicitamente se les reconoce, en la denominación “demás comunidades indígenas del Norte del País”. Sin embargo, en el trabajo de la Comisión Verdad Histórica y Nuevo Trato que funcionó entre los años 2001 y 2003, con la finalidad de generar un
documento que relevara la historia y los derechos de los pueblos indígenas de Chile, se reconoce la presencia diaguita como parte de los pueblos indígenas de Chile (Comunidad Agrícola Huasco Altinos, 2008).

En el año 2006, la Presidenta Michelle Bachelet firma la Ley indígena modificada que incluye a la etnia diaguita (Pizarro et al., 2006).

III.II. Patrimonio Arqueológico

De acuerdo a la investigación del Grupo TEPU (Molina et al., 2005), los sitios arqueológicos con mayores antecedentes y conocimiento por parte de la población huascoaltina corresponden a cementerios, los cuales evidencian alteraciones debido a saqueos. Los elementos patrimoniales que se investigaron en este caso fueron separados en sitios prehispánicos y sitios históricos, dentro de los que se catastraron elementos como: viviendas, sepulturas aisladas, cementerios, arte rupestre, puertos ganaderos, iglesias, sitios mineros, sitios ceremoniales y restos arqueológicos indeterminados.

Aparentemente, los asentamientos diaguitas localizados en lugares estratégicos de las quebradas secundarias afluentes del río El Tránsito, cumplen la función de controlar los recursos de vegas ribereñas y terrazas agrícolas, así como las vías de circulación hacia sectores cordilleranos de pastizales de altura, cotos de caza y ganadería de camélidos y fronteras interregionales (Molina et al., 2005).

La información mencionada, se complementa con otros estudios efectuados en lugares específicos, tal como lo es el de Garrido (2008) realizado en el tramo de la Qda. de La Totora y sus laderas inmediatas, donde se hallaron diferentes sitios prehispánicos e históricos de diversa data, muchos de los cuales se superponen espacialmente. También se presentan constantemente múltiples ocupaciones, donde muchos sitios forman un continuo espacial. Cabe destacar que la mayor parte de los sitios de esta zona presentan estructuras de habitación y corrales, las denominadas “majadas”, muchas de las cuales son utilizadas actualmente por pastores que residen en el verano. Además, pueden evidenciarse sectores de cultivo y obras de riego. En cuanto al estado de conservación de los sitios, se observa que algunos han quedado expuestos a agentes de deterioro ambientales, como lo son los factores climáticos y las ocasionales escorrentías de la quebrada durante períodos lluviosos esporádicos, las que han generado un fuerte proceso depositacional en el fondo de la quebrada, situación que dificulta el reconocimiento de la evidencia cultural de las ocupaciones más antiguas de los sitios.

El proyecto minero El Morro también ha generado información arqueológica. La del área mina – planta, que se ubica en la Qda. Larga, subcuencra del río Laguna Grande, es la que intersecta con el área de estudio. En ella, se hallaron 53 sitios tanto prehispánicos como históricos, y una minoría de cronología etnográfica (Knight Piésold Consulting, 2008).
III.III. Descripción Demográfica

De acuerdo al censo nacional del año 2002, la Comuna de Alto del Carmen posee 4.840 habitantes (2.629 hombres y 2.211 mujeres), lo que representa el 0,02% de la población regional, distribuyéndose en 22 localidades y cerca de 70 caseríos (SINIM, 2008).

Según la proyección del INE, la Comuna de Alto del Carmen ha superado las expectativas de crecimiento demográfico, en tanto que para el año 2002 se esperaba contar con 4.372 personas y se censaron 4.840, lo que hace pensar en un crecimiento que, sin ser altamente significativo, puede verse influido por la instalación de inversiones mineras y turísticas, actuando como un factor de atracción.

Al año 2002, no estaba incorporado el pueblo diaguita en la encuesta de Población y Vivienda y por lo tanto no existen datos oficiales respecto de la cantidad de personas que pertenecen dicha etnia en la Comuna. Los únicos datos disponibles son proporcionados por la consultora TEPU que realizó, a petición del Gobierno Regional en el año 2005, un Diagnostico Socio Cultural sobre la Etnia Diaguita. En este estudio se indica que cerca de un 60% de los comuneros de la Estancia huascoaltina tienen apellidos considerados diaguita o indígena en la zona (Molina et al., 2005).

III.IV. Principales Asentamientos Humanos e Infraestructura

La ordenación del territorio ocurre principalmente siguiendo el curso del río El Tránsito, donde se ubican las diferentes localidades, sin polos de concentración marcados, todas de carácter rural. Las localidades más importantes, en cuanto a número de viviendas, habitantes, infraestructura y servicios, corresponde a la localidad de Alto del Carmen, El Tránsito, La Pampa y Conay. A continuación de describen brevemente algunas de ellas de acuerdo a Comunidad Agrícola Huasco Altinos (2008).

Alto del Carmen

Se encuentra a 1 km del comienzo de la Estancia (fuera del ASP) y a 47 km al oriente de Vallenar. Es el principal poblado de la Comuna y la actividad económica predominante es la agricultura, relacionada especialmente con la uva de exportación. Un alto porcentaje de las viviendas cuenta con energía eléctrica y agua potable.

El Tránsito

Presenta una actividad económica basada en la agricultura de uva de exportación. Cuenta con servicios de agua potable y energía eléctrica. Posee además, un recinto educacional, servicios de correos, registro civil, registro electoral y retén de carabineros.
La Pampa

Localidad constituida por pequeñas hijuelas y predios destinados al monocultivo de uva. Está ubicada a 51 km de Alto del Carmen y cuenta con una población de 99 habitantes según el censo del año 2002. Su infraestructura está caracterizada por servicios públicos de energía eléctrica domiciliaria, red de agua potable, servicio de radio transmisor y una posta de salud. Existe además una escuela básica unidocente.

Los TAMBOS

Localidad constituida por hijuelas, ubicada a 57 km de la capital comunal. Cuenta con una población de 99 habitantes aproximadamente según el censo del 2002. Presenta viviendas construidas en material ligero y adobes, que cuentan con sistema de fosas sépticas. Cuenta también con energía eléctrica domiciliaria, radio transmisor, teléfono público, agua potable y una escuela básica unidocente. Su principal actividad económica es la explotación de minifundios, trabajados por personas independientes o pequeños agricultores.

Conay

Se localiza a 60 km al oriente de Alto del Carmen, y corresponde a un caserío que basa su actividad en la agricultura realizada por empresas agrícolas y por pequeños agricultores. Presenta un recinto educacional, posta de salud y un retén de Carabineros.

Chollay

Localidad compuesta por hijuelas y majadas. Ubicada a 65 km de Alto del Carmen, cuenta con una población estimada de 162 personas (INE, 2002). Posee dos principales centros de concentración de viviendas separados por 1 km. El primero se encuentra en el sector del comité vecinal y se conoce como “la población”, mientras que el segundo está ubicado en los sectores aledaños a la sede de la junta de vecinos, la parroquia y a la escuela básica unidocente de la localidad. Los habitantes de ambos sectores tienen acceso a los servicios básicos de energía eléctrica domiciliaria y agua potable, y cuentan además con un radiotransmisor y un teléfono público. La actividad económica principal es la agricultura, centrada en el cultivo de uvas de exportación y la explotación de minifundios. Además, algunos trabajadores se desempeñan temporalmente en los grandes monocultivos de uva ubicados en la Comuna.

Malaguín

Localidad constituida por hijuelas, ubicada a 70 km de la capital comunal, con una población de 34 habitantes según censo del 2002. Las viviendas se encuentran en malas condiciones y están construidas de material ligero (cana, quincha barro) y adobe, con piso de tierra y pozo negro. Cuentan con luz eléctrica, radio transmisor y agua para consumo que obtienen de la quebrada de Conay. Presenta una actividad económica deprimida, pues
solo se observa escasa explotación de terrenos (naranjas, paltos, duraznos) y la población debe desplazarse a otros sectores para acceder a un puesto de trabajo.

Juntas de Valeriano

Es la última localidad poblada del valle El Tránsito y presenta caseríos e hijuelas. Ubicada a 83 km de la capital comunal, cuenta con 102 habitantes según el censo del 2002. Actualmente cuenta con red de energía eléctrica y agua potable. No cuenta con teléfono público, solo con radio transmisor. El lugar posee una escuela básica unidocente, un jardín infantil y una estación médico rural.

III.V. Usos de la Tierra y Actividades Productivas

En términos generales, las principales actividades productivas presentes en la zona son la pequeña agricultura y la ganadería, principalmente caprina.

Uso Agrícola

De acuerdo al último censo agropecuario (INE, 2007), en la Comuna de Alto del Carmen existen 1.181 explotaciones agropecuarias que abarcan un total de 458,502,7 ha. Los terrenos agrícolas de la Comuna, abarcan un total de 2.118,84 ha, y se encuentran mayormente ocupados por el cultivo de árboles frutales (69%) y por el cultivo de viñas y parronales (14,4%).

La pequeña agricultura se efectúa sobre la base de huertos de una superficie promedio de una hectárea. Éstos se encuentran localizados en el valle de Huasco Alto, sobre la cuenca del río El Tránsito. En estas zonas se han desarrollado cultivos frutícolas y hortícolas de subsistencia y, en épocas más recientes, el desarrollo de la agroindustria ha producido la introducción del monocultivo de la uva de exportación, y el cultivo de otras especies como paltos y mangos.

En la Figura 9 se muestran los usos de suelo de acuerdo al Catastro de los Recursos Vegetacionales Nativos (CONAF et al., 1997). La zona de uso agrícola, donde también se localizan los asentamientos humanos, se ubica en las partes bajas de los valles cercanos a los cursos de agua, ocupando los sectores de menores pendientes que corresponden a terrazas aluviales, ribeas de los cauces mayores y últimamente, con la aplicación de nuevas tecnologías, amplios conos aluviales, laderas y sectores pedregosos que en tiempos pasados eran ocupados por vegetación natural (BIOTA, 2004).
Ganadería

En el último censo se contabilizaron un total de 8.816 cabezas de ganado, de las cuales el porcentaje mayor corresponde a ganado caprino (47,88%), destacándose también las cabezas de ganado equino (19,56%) y ovino (14,19%) (INE, 2007).

La estructura social de la comunidad huascoaltina se articula sobre la base de la ocupación ancestral del territorio y el desarrollo de actividades productivas de tipo silvo-pastoril, orientada al pastoreo de ganado caprino y equino. Esta actividad ganadera se sustenta gracias al uso de importantes y dilatados espacios territoriales de la cordillera y a la trashumancia, que considera el uso de pisos ecológicos diferenciados por la altura, denominados invernadas y veranadas. Esta situación tiene relación directa con la escasez de recursos durante los meses de verano, lo que dificulta el pastaje de ganado, obligando a la comunidad a emigrar con sus animales y los elementos necesarios para vivir. La veranada se desarrolla entre los meses de noviembre y abril, y consiste en llevar el ganado hasta la alta cordillera en busca de talaje fresco. Durante la invernada, los pastores buscan protección de las bajas temperaturas y alimento para los animales, cuando aumentan las temperaturas (septiembre a noviembre) comienzan a ascender con el ganado para el pastoreo (Gahona, 2000; Molina et al., 2001).

Cabe destacar que los sistemas de pastoreo de los comuneros huascoaltinos como práctica, constituyen parte fundamental del patrimonio cultural inmaterial vivo de la comunidad.
Ésta corresponde a una actividad de subsistencia puesto que, debido a la irregularidad de la producción y la demanda, no genera ingresos monetarios considerables.

Minería

Actualmente, existen dos proyectos mineros de relevancia, debida, principalmente, al efecto negativo sobre la calidad y cantidad de las aguas, sobre todo las de la cuenca del río Chollay. El primero de ellos, Pascua Lama, es un proyecto perteneciente a la Compañía Minera Nevada S.A., que tiene una vida útil de 20 años. Su inversión se estima en US$ 1.500 millones y anualmente producirá unas 5.000 toneladas de cobre, 615.000 onzas de oro y 18.2 millones de onzas de plata (Arcadis Geotécnica, 2004). El segundo, corresponde al proyecto minero El Morro, de la compañía minera Xstrata Copper, que ingresó el año 2008 al Sistema de Evaluación de Impacto Ambiental (SEIA) y se encuentra actualmente en proceso de evaluación. Éste pretende emplazarse en el sector de Qda. Larga, cuenca del río Laguna Grande, accediendo en la etapa de construcción por el acceso de Qda. de La Totora. Su inversión se estima en US$ 1.400 millones y su producción anual estimada correspondería a 145.000 toneladas de cobre y 325.000 onzas de oro. Su construcción se proyectaba para el año 2009 y su puesta en marcha el año 2011 (Xstrata Copper, 2006).

Turismo

En el valle existe una gran diversidad de atractivos turísticos asociados principalmente al valor paisajístico y arqueológico del lugar. Algunos sectores destacados en términos de paisaje son: Mirador Cerro La Cruz, Lagunas Huaescoaltinas, Piedra del Indio en el Sendero del Eco, las quebradas de Colpe, La Plata, Pinte, Pachuy, La Totora y la Sierra del Tatul. En relación a los atractivos asociados al valor arqueológico, es importante destacar las manifestaciones materiales de las distintas culturas que han habitado en el sector, por ejemplo: los 31 túmulos funerarios Molle de Pinte, algunos sitios habitacionales diaguita, los petroglifos de El Berraco, Las Copitas o los de la Qda. de La Totora; así como tambos incaicos en la cordillera. En la actualidad, las actividades turísticas se encuentran en incipiente desarrollo dentro del territorio de la Estancia. Una de éstas es el ecoturismo en la alta cordillera, actividad informal que significa un pequeño ingreso para algunos crianceros que, durante la temporada estival, ofrecen servicios de guía y arriendo de animales necesarios para el desarrollo de esta actividad.

Objetivos del Área Silvestre Protegida

En el Reglamento de Áreas Silvestres Protegidas de Propiedad Privada se define “área silvestre protegida de propiedad privada” a la “porción de territorio de propiedad privada, delimitada geográficamente y destinada por voluntad de su propietario para alcanzar los objetivos contemplados en el artículo 34 de la Ley N° 19.300, esto es, asegurar la diversidad biológica, tutelar la preservación de la naturaleza y conservar el patrimonio ambiental”.
La categoría de manejo correspondiente a Reserva Natural Privada, se define como un área cuyos recursos naturales es necesario conservar y utilizar con especial cuidado, por la susceptibilidad de éstos a sufrir degradación o por su importancia relevante en el resguardo del bienestar de la comunidad. El objetivo de manejo de ella es la conservación, por lo que se pueden realizar actividades que proporcionen un flujo sostenible de productos naturales y servicios, y que garanticen su conservación en el largo plazo.

Cabe mencionar que el área protegida privada según las directrices de la UICN (2008), correspondería a la categoría VI “Área Protegida con Uso Sostenible de Recursos Naturales”, cuyo objetivo primario es proteger los ecosistemas naturales y usar los recursos naturales de forma sostenible, cuando la conservación y el uso sostenible puedan beneficiarse mutuamente. Dicho de otro modo, su finalidad es conservar los ecosistemas y hábitats, junto con los valores culturales y los sistemas tradicionales de gestión de recursos naturales asociados a ellos.

Objetivo General del Área Silvestre Protegida Huasco Altinos\(^{32}\)

Implementar un modelo de manejo sustentable de los recursos en la Reserva Natural y Cultural Huasco Altinos, acorde con la afectación de la misma como “Área Silvestre Protegida de Propiedad Privada”, que permita la conservación de su patrimonio natural, histórico y cultural de manera autónoma e independiente.

Objetivos Específicos

1. Proteger la biodiversidad y el desarrollo de los procesos ecológicos
2. Asegurar la provisión de servicios ecosistémicos
3. Resguardar el bienestar humano de la comunidad y de los habitantes de la cuenca
4. Fomentar la participación de la comunidad en el proceso de toma de decisiones y ejecución de proyectos en el territorio
5. Mantener las formas tradicionales de vida y costumbres de los comuneros huascoaltinos

Zonificación sobre la base de criterios biofísicos, ecológicos y socioculturales

En el Cuadro 36 se exponen las Zonas de Uso, sus objetivos, características y principales tipos de usos aplicables; considerando dentro del uso “Manejo de Recursos” las Zonas de Manejo específicas (recurso hídrico, suelo, vegetación y fauna). Cabe mencionar que se incluye la Zona de Amortiguamiento cuya definición espacial se propuso, sin embargo, su real aplicación depende de factores externos a la administración de la RNC.

\(^{32}\) Estos objetivos, al igual que los específicos, están sujetos a modificaciones conforme se obtenga el plan de manejo final del ASPP.
Cuadro 36. Zonas de Uso potenciales del ASP.

<table>
<thead>
<tr>
<th>Zonas de Uso</th>
<th>Objetivo General de Manejo</th>
<th>Características</th>
<th>Tipos de Usos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intangible</td>
<td>Preservar el ambiente en su estado natural permitiendo solo usos científicos y funciones de protección</td>
<td>Áreas naturales con mínima alteración antrópica. Contiene ecosistemas únicos y frágiles, especies o fenómenos naturales que ameritan protección completa ya sea para fines científicos y para el control del ambiente. Se excluyen caminos y el uso de vehículos motorizados.</td>
<td>• Preservación de ambientes naturales frágiles o de flora y fauna de valor científico • Uso científico</td>
</tr>
<tr>
<td>Primitiva</td>
<td>Preservar el ambiente natural y a la vez facilitar la realización de estudios científicos, educación ambiental y recreación en forma primitiva</td>
<td>Áreas naturales con mínima alteración antrópica. Puede contener ecosistemas únicos, especies o fenómenos naturales de valor científico resistentes que pueden tolerar un uso público moderado. Se excluyen caminos y el uso de vehículos motorizados.</td>
<td>• Preservación de ambientes naturales relativamente resistentes o de flora y fauna de valor científico • Uso científico • Educación ambiental sin instalaciones • Recreación primitiva o de bajo impacto</td>
</tr>
<tr>
<td>Recuperación</td>
<td>Detener la degradación de recursos y/o restaurar el área al estado más natural posible</td>
<td>Áreas donde la vegetación natural y/o suelos han sido severamente dañados, o áreas con flora exótica que requieren reemplazarse por nativa. Una vez rehabilitada, se le asigna una de las otras zonas permanentes.</td>
<td>• Detención de degradación del suelo, cuerpos de agua, poblaciones y/o comunidades de fauna y vegetación para posibilitar el aumento de naturalidad • Eliminación o reemplazo de flora exótica</td>
</tr>
<tr>
<td>Uso Especial</td>
<td>Minimizar el impacto sobre el ambiente natural del contorno visual de las instalaciones de administración y todas las actividades que no concuerden con los objetivos del área protegida</td>
<td>Áreas de superficie reducida esenciales para la administración, obras públicas y otras actividades incompatibles con los objetivos de manejo.</td>
<td>• Administración • Instalación y operación de obras públicas • Actuaciones incompatibles con el objetivo de la ASP</td>
</tr>
</tbody>
</table>

(Continúa)

Cuadro 36. Zonas de Uso potenciales del ASP (continuación).

<table>
<thead>
<tr>
<th>Zonas de Uso</th>
<th>Objetivo General de Manejo</th>
<th>Características</th>
<th>Tipos de Usos</th>
</tr>
</thead>
</table>
| Histórico Cultural | Proteger los artefactos y sitios como elementos integrales del medio natural para la preservación de la herencia cultural, facilitando usos educativos y recreacionales relacionados | Áreas con rasgos históricos, arqueológicos u otras manifestaciones humanas que se deseen preservar, restaurar e interpretar al público. | • Preservación herencia cultural
• Restauración e interpretación de manifestaciones culturales
• Educación ambiental
• Recreación relacionada |
| Educación Ambiental | Facilitar el desarrollo de la educación ambiental y la recreación, entendida también como un medio para la educación, de manera armónica con el ambiente, procurando minimizar el impacto sobre éste y su contexto cultural. | Áreas naturales o intervenidas, con paisajes sobresalientes, recursos para actividades recreativas de bajo impacto, topografía apta para tránsito vehicular e instalaciones de apoyo. | • Recreación primitiva o de bajo impacto
• Educación ambiental con instalaciones |
| Manejo de Recursos | Usar de manera sustentable los recursos hídricos, flora, fauna y suelos. | Zona característica de una reserva que contiene recursos naturales en condiciones de ser manejados de manera sustentable. Se permite la investigación, experimentación, utilización de recursos, así como el desarrollo y ensayo de técnicas de manejo modelo para otras áreas. | • **Recurso Flora:**
Intervención silvícola de manutención, uso y aprovechamiento de flora, uso científico de flora.
• **Recurso Fauna:**
Regulación de poblaciones, uso y aprovechamiento productivo, uso científico.
• **Recurso Hídrico:**
Protección de cabeceras de cuencas o sistemas hidrológicos, regulando o mejorando la calidad y cantidad de agua.
• **Recurso Suelo:**
Restauración del suelo a través de forestación y obras mecánicas. |

(Continúa)
Cuadro 36. Zonas de Uso potenciales del ASP (continuación).

<table>
<thead>
<tr>
<th>Zonas de Uso</th>
<th>Objetivo General de Manejo</th>
<th>Características</th>
<th>Tipos de Usos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amortiguamiento</td>
<td>Frenar los efectos de las actividades internas del área protegida sobre otras zonas de la misma<sup>33</sup></td>
<td>Zona ubicada en terrenos periféricos al área protegida, rodea los recursos y hábitats especiales actuando como barrera a las influencias externas. Los usos de los recursos al interior de la zona de amortiguamiento pueden ser intermedios en intensidad entre el área protegida y el entorno.</td>
<td>La propuesta considera Zonas de Amortiguamiento aledañas al ASP. Éstas fueron zonificadas para proponer los usos potenciales más adecuados.</td>
</tr>
<tr>
<td></td>
<td>Frenar los efectos de las actividades externas sobre el área protegida</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

³³ Este criterio (Miller, 1980) fue utilizado para realizar el análisis de adyacencia en la asignación de usos de la zonificación, es decir, se consideró la existencia de una transición en el nivel de protección del espacio, evitando los contrastes de usos (e.g. Zona de Educación Ambiental/Zona de Uso Intangible) y favoreciendo la amortiguación interna de los mismos.
Ponderación de Criterios

En los Cuadros 37 al 44 se muestran los pesos obtenidos para cada criterio según Zona de Uso, junto con la Razón de Consistencia (RC).

Cuadro 37. Pesos y razón de consistencia de criterios de la Zona Intangible.

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturalidad</td>
<td>0,053</td>
</tr>
<tr>
<td>Unicidad</td>
<td>0,107</td>
</tr>
<tr>
<td>Fragilidad de ecosistemas</td>
<td>0,163</td>
</tr>
<tr>
<td>Interés científico de comunidades vegetales</td>
<td>0,409</td>
</tr>
<tr>
<td>Interés científico de biótopos faunísticos</td>
<td>0,225</td>
</tr>
<tr>
<td>RC</td>
<td>0,087</td>
</tr>
</tbody>
</table>

Cuadro 38. Pesos y razón de consistencia de criterios de la Zona Primitiva.

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naturalidad</td>
<td>0,0670</td>
</tr>
<tr>
<td>Unicidad</td>
<td>0,1507</td>
</tr>
<tr>
<td>Interés científico de comunidades vegetales</td>
<td>0,4909</td>
</tr>
<tr>
<td>Interés científico de biótopos faunísticos</td>
<td>0,2913</td>
</tr>
<tr>
<td>RC</td>
<td>0,073</td>
</tr>
</tbody>
</table>

Cuadro 39. Pesos y razón de consistencia de criterios de la Zona de Recuperación.

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensidad de procesos dinámicos</td>
<td>0,193</td>
</tr>
<tr>
<td>Artificialización de comunidad vegetal</td>
<td>0,083</td>
</tr>
<tr>
<td>Degradación de comunidad vegetal</td>
<td>0,724</td>
</tr>
<tr>
<td>RC</td>
<td>0,056</td>
</tr>
</tbody>
</table>
Cuadro 40. Pesos y razón de consistencia de criterios de la Zona Histórico Cultural.

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrínseco</td>
<td>0,263</td>
</tr>
<tr>
<td>Manejo</td>
<td>0,122</td>
</tr>
<tr>
<td>Reconocimiento público</td>
<td>0,558</td>
</tr>
<tr>
<td>Dependencia del medio</td>
<td>0,057</td>
</tr>
<tr>
<td>RC</td>
<td>0,043</td>
</tr>
</tbody>
</table>

Cuadro 41. Pesos y razón de consistencia de criterios de la Zona de Educación Ambiental.

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topografía</td>
<td>0,600</td>
</tr>
<tr>
<td>Accesibilidad</td>
<td>0,200</td>
</tr>
<tr>
<td>Valor Paisajístico</td>
<td>0,200</td>
</tr>
<tr>
<td>RC</td>
<td>0</td>
</tr>
</tbody>
</table>

Cuadro 42. Pesos y razón de consistencia de criterios de la Zona de Manejo Hídrico.

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disponibilidad de agua</td>
<td>0,435</td>
</tr>
<tr>
<td>Presencia de lagunas</td>
<td>0,078</td>
</tr>
<tr>
<td>Presencia de cuerpos de nieves perpetuas y glaciares</td>
<td>0,487</td>
</tr>
<tr>
<td>RC</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Cuadro 43. Pesos y razón de consistencia de criterios de la Zona de Manejo de Suelos

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensidad de procesos dinámicos</td>
<td>0,833</td>
</tr>
<tr>
<td>Fragilidad del suelo según cobertura vegetal</td>
<td>0,167</td>
</tr>
</tbody>
</table>

34 Para esta Zona de Uso y también para la de Manejo de Fauna, no se calcula la RC puesto que las matrices de 2x2 tienen un índice aleatorio (RI) de 0.
Cuadro 44. Pesos y razón de consistencia de criterios de la Zona de Manejo de Fauna.

<table>
<thead>
<tr>
<th>Criterio</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración de fauna silvestre</td>
<td>0,167</td>
</tr>
<tr>
<td>Concentración de fauna doméstica</td>
<td>0,833</td>
</tr>
</tbody>
</table>

Cabe mencionar que no se incluyeron los pesos de la Zona de Manejo de Flora y vegetación, ya que solo contaba con un solo criterio.

Capa Modelo de Zonificación y Macrozonificación

La zonificación final obtenida o Capa Modelo de Zonificación, se expone en la Figura 10. En ella se puede observar además la zona de influencia definida, la cual también se incluyó en el análisis con el objeto de conocer los usos más apropiados para una eventual zona de amortiguación. En la Figura 11 se muestra la Macrozonificación obtenida.
Figura 10. Zonificación de la RNC Huasco Altinos y su zona de influencia.
Figura 11. Macrozonificación de la RNC Huasco Altinos y su zona de influencia.

En los Cuadros 45 y 46 se muestran las superficies asignadas a cada Zona de Uso para el ASP y para la zona de influencia completa, respectivamente.
Cuadro 45. Superficie asignada por Zona de Uso en el ASP.

<table>
<thead>
<tr>
<th>Zona de Uso</th>
<th>Superficie (ha)</th>
<th>Superficie (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intangible o Científica</td>
<td>877,34</td>
<td>0,37</td>
</tr>
<tr>
<td>Primitiva</td>
<td>29,764,79</td>
<td>12,4</td>
</tr>
<tr>
<td>Recuperación</td>
<td>57,636,63</td>
<td>24</td>
</tr>
<tr>
<td>Histórico Cultural</td>
<td>221,84</td>
<td>0,09</td>
</tr>
<tr>
<td>Educación Ambiental</td>
<td>9,620,42</td>
<td>4</td>
</tr>
<tr>
<td>Manejo de Recurso Flora y Vegetación</td>
<td>4,226,78</td>
<td>1,76</td>
</tr>
<tr>
<td>Manejo Recursos Suelo</td>
<td>31,286,62</td>
<td>13,04</td>
</tr>
<tr>
<td>Manejo Recurso Hídrico</td>
<td>29,056,32</td>
<td>12,11</td>
</tr>
<tr>
<td>Manejo Recurso Fauna</td>
<td>76,028,11</td>
<td>31,69</td>
</tr>
<tr>
<td>Uso Especial</td>
<td>1,209,38</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Cuadro 46. Superficie asignada por Zona de Uso en total (incluye toda la zona de influencia, es decir, el ASP y la zona de amortiguación).

<table>
<thead>
<tr>
<th>Zona de Uso</th>
<th>Superficie (ha)</th>
<th>Superficie (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intangible o Científica</td>
<td>1,137,2</td>
<td>0,27</td>
</tr>
<tr>
<td>Primitiva</td>
<td>30,931,98</td>
<td>7,49</td>
</tr>
<tr>
<td>Recuperación</td>
<td>79,112,81</td>
<td>19,15</td>
</tr>
<tr>
<td>Histórico Cultural</td>
<td>221,86</td>
<td>0,05</td>
</tr>
<tr>
<td>Educación Ambiental</td>
<td>16,322,09</td>
<td>3,95</td>
</tr>
<tr>
<td>Manejo de Recurso Flora y Vegetación</td>
<td>5,438,52</td>
<td>1,32</td>
</tr>
<tr>
<td>Manejo Recursos Suelo</td>
<td>43,737,43</td>
<td>10,59</td>
</tr>
<tr>
<td>Manejo Recurso Hídrico</td>
<td>151,385,87</td>
<td>36,65</td>
</tr>
<tr>
<td>Manejo Recurso Fauna</td>
<td>83,418,72</td>
<td>20,2</td>
</tr>
<tr>
<td>Uso Especial</td>
<td>1,298,98</td>
<td>0,31</td>
</tr>
</tbody>
</table>

De acuerdo al Cuadro 45, el uso con mayor superficie asignada en el ASP fue el de Manejo de Fauna, seguido del de Recuperación. En el caso de la zona de influencia en general, el uso con mayor superficie corresponde al de Manejo de Recurso Hídrico, seguido del de Manejo de Fauna, y con similar proporción, del de Recuperación.

En los Cuadros 47 y 48 se muestran las superficies asignadas en el ASP y en la zona de influencia en total, respectivamente, de acuerdo a la Macrozonificación efectuada.
Cuadro 47. Superficie asignada en el ASP de acuerdo a la Macrozonificación.

<table>
<thead>
<tr>
<th>Zona de Uso</th>
<th>Superficie (ha)</th>
<th>Superficie (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preservación</td>
<td>30.634,75</td>
<td>12,77</td>
</tr>
<tr>
<td>Conservación</td>
<td>57.858,47</td>
<td>24,11</td>
</tr>
<tr>
<td>Desarrollo Sostenible</td>
<td>151.422,78</td>
<td>63,11</td>
</tr>
</tbody>
</table>

Cuadro 48. Superficie asignada en la zona de influencia (incluye el ASP y la zona de amortiguación) de acuerdo a la Macrozonificación.

<table>
<thead>
<tr>
<th>Zona de Uso</th>
<th>Superficie (ha)</th>
<th>Superficie (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preservación</td>
<td>32.061,80</td>
<td>7,76</td>
</tr>
<tr>
<td>Conservación</td>
<td>79.334,67</td>
<td>19,21</td>
</tr>
<tr>
<td>Desarrollo Sostenible</td>
<td>301.596,77</td>
<td>73,03</td>
</tr>
</tbody>
</table>

Respecto a la Macrozonificación, en el Cuadro 47 se aprecia que la Zona de Desarrollo Sostenible es la de mayor superficie asignada, situación que se ve reforzada en la Macrozonificación a nivel de toda el área de influencia.

Aplicación de enfoque prospectivo con variables de cambio global

Listado de Variables

En el Cuadro 49 se muestran las 40 variables del ASP extraídas de los criterios de zonificación. Se incluyó la columna “criterio al que aplica” para facilitar la modificación posterior de los criterios valorativos cuando el estado de las variables claves cambie con los escenarios.

Cuadro 49. Variables del ASP utilizadas para el enfoque prospectivo.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Criterio al que aplica</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uso de suelo sobre el límite de vegetación y sin vegetación</td>
<td>Naturalidad</td>
<td>Tipos de uso de suelo empleado en la clasificación de CONAF et al. (1997). Sin vegetación, se entiende a coberturas menores al 25% (para la macroregión III).</td>
</tr>
<tr>
<td>Uso agrícola</td>
<td>Naturalidad y valor productivo de comunidad vegetal (agricultura)</td>
<td>Tipo de uso de suelo empleado en la clasificación de CONAF et al. (1997).</td>
</tr>
</tbody>
</table>

(Continúa)
Cuadro 49. Variables del ASP utilizadas para el enfoque prospectivo (continuación).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Criterio al que aplica</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uso de suelo matorral muy abierto y matorral con suculentas muy abierto</td>
<td>Naturalidad</td>
<td>Tipos de uso de suelo empleados en la clasificación de CONAF et al. (1997). Matorral muy abierto, se refiere a una formación vegetal donde el tipo biológico árbol es menor al 25%, el de arbustos puede ser entre 10 y 25% y las herbáceas pueden estar entre 0 y 100%. Matorral con suculentas muy abierto, se refiere a una formación vegetal donde la presencia de suculentas es mayor al 5%, manteniendo las demás coberturas mencionadas.</td>
</tr>
<tr>
<td>Red vial</td>
<td>Naturalidad y accesibilidad</td>
<td>Presencia de caminos sin considerar el tipo de éste</td>
</tr>
<tr>
<td>Actividad minera</td>
<td>Naturalidad, degradación de comunidad vegetal y valor paisajístico</td>
<td>Presencia de exploraciones y explotaciones mineras en el territorio</td>
</tr>
<tr>
<td>Complejidad de formaciones vegetales</td>
<td>Fragilidad de ecosistemas y Valor paisajístico</td>
<td>Se refiere al N° de comunidades vegetales presentes en cada formación</td>
</tr>
<tr>
<td>Vegetación azonal</td>
<td>Fragilidad de ecosistemas y Valor paisajístico</td>
<td>Corresponde a la presencia de vegas</td>
</tr>
<tr>
<td>Cobertura vegetal</td>
<td>Fragilidad de ecosistemas, Valor paisajístico y fragilidad del suelo</td>
<td>Porcentaje de cubrimiento del suelo por vegetación. Las referencias se extrajeron de CONAF et al. (1997)</td>
</tr>
<tr>
<td>Número de especies de flora</td>
<td>Interés científico de comunidades vegetales</td>
<td>Corresponde al listado de especies presentes</td>
</tr>
<tr>
<td>Flora con problemas de conservación</td>
<td>Interés científico de comunidades vegetales</td>
<td>De acuerdo a BIOTA (2004), se consideraron las especies raras y vulnerables mencionadas en el B.N.M.H.N. 47 (B.N.M.H.N., 1998), y a nivel regional se complementó con el Libro Rojo de la Flora Nativa y de los Sitios Prioritarios para su Conservación de la Región de Atacama (Squeo et al., 2008).</td>
</tr>
<tr>
<td>Corredores biológicos</td>
<td>Interés científico de comunidades vegetales, Interés científico de biótopos faunísticos y Concentración de fauna silvestre</td>
<td>Corresponen a humedales altoandinos considerando vegas y lagunas</td>
</tr>
<tr>
<td>Prospecciones</td>
<td>Interés científico de comunidades vegetales y Interés científico de biótopos faunísticos</td>
<td>Estudios científicos efectuados en terreno</td>
</tr>
<tr>
<td>Flora endémica</td>
<td>Interés científico de comunidades vegetales</td>
<td>Corresponde a la distinción sociológica, se consideran las especies autóctonas de acuerdo a BIOTA (2004) y las especies endémicas del Libro Rojo de la Flora Nativa y de los Sitios Prioritarios para su Conservación de la Región de Atacama (Squeo et al., 2008)</td>
</tr>
</tbody>
</table>

(Continúa)
Cuadro 49. Variables del ASP utilizadas para el enfoque prospectivo (continuación).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Criterio al que aplica</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de especies de fauna</td>
<td>Interés científico de biótopos faunísticos</td>
<td>Listado de especies presentes</td>
</tr>
<tr>
<td>Fauna con problemas de conservación</td>
<td>Interés científico de biótopos faunísticos</td>
<td>Se consideraron las especies vulnerables, en peligro, raras e inadecuadamente conocidas, citadas en BIOTA (2004) a partir del Reglamento de la Ley de Caza (SAG, 1998)</td>
</tr>
<tr>
<td>Pendientes</td>
<td>Intensidad de procesos dinámicos y topografía</td>
<td>Inclinación del terreno respecto de la horizontal</td>
</tr>
<tr>
<td>Erosividad a nivel regional</td>
<td>Intensidad de procesos dinámicos</td>
<td>Característica asociada a la lluvia, frecuencia, intensidad y duración de ésta, la que puede asociarse a eventos erosivos</td>
</tr>
<tr>
<td>Flora alóctona</td>
<td>Artificialización</td>
<td>Especies que no son propias del país (ni endémicas ni nativas). En el caso de las fuentes provenientes del Libro Rojo (Squeo et al., 2008) se consideraron las especies adventicias en esta categoría.</td>
</tr>
<tr>
<td>Sitios de invernada y veranada</td>
<td>Degradación de comunidad vegetal</td>
<td>Lugares utilizados por los crianeros para llevar su ganado en temporada de invierno y verano, y que suponen una carga animal más elevada que el resto del territorio</td>
</tr>
<tr>
<td>Explotación de vegetación como recurso dendroenergético</td>
<td>Degradación de comunidad vegetal</td>
<td>Lugares donde se extrae leña</td>
</tr>
<tr>
<td>Zonas de trashumancia</td>
<td>Degradación de comunidad vegetal y concentración fauna doméstica</td>
<td>Lugares donde se realiza la ganadería extensiva, principalmente caprina. Se diferencia de la variable “Sitios de invernada y veranada” porque en este caso se diferenció de manera general la posible ruta recorrida por los crianeros tomando como referencia algunas quebradas y la distancia diaria que recorren los animales.</td>
</tr>
<tr>
<td>Registro de recursos culturales</td>
<td>Intrínseco</td>
<td>Grado de documentación de recursos culturales, como por ejemplo sitios arqueológicos.</td>
</tr>
<tr>
<td>Singularidad de recursos culturales</td>
<td>Intrínseco</td>
<td>Grado de exclusividad del sitio arqueológico.</td>
</tr>
<tr>
<td>Integridad de recursos culturales</td>
<td>Intrínseco</td>
<td>Grado de conservación del sitio arqueológico.</td>
</tr>
<tr>
<td>Amenaza de recursos culturales</td>
<td>Manejo</td>
<td>Influencias externas al sitio arqueológico que actúan negativamente en la conservación de éste</td>
</tr>
<tr>
<td>Vulnerabilidad de recursos culturales</td>
<td>Manejo</td>
<td>Características intrínsecas del sitio arqueológico que actúan negativamente en la conservación de éste (tipo de material, visibilidad)</td>
</tr>
<tr>
<td>Reconocimiento causas de deterioro de recursos culturales</td>
<td>Manejo</td>
<td>Relacionado con el grado de documentación del sitio, mientras más completa y específica sea ésta, más posibilidades hay de conocer las causas de deterioro</td>
</tr>
</tbody>
</table>

(Continuación)
Cuadro 49. Variables del ASP utilizadas para el enfoque prospectivo (continuación).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Criterio al que aplica</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor científico de recursos culturales</td>
<td>Reconocimiento público</td>
<td>Se refiere a la cantidad de información científica acumulada, o a la rareza o exclusividad del sitio para investigar</td>
</tr>
<tr>
<td>Valor social de recursos culturales</td>
<td>Reconocimiento público</td>
<td>Cualidades de un lugar que lo hacen un centro o foco espiritual, político, nacional o de otro sentimiento cultural, incluye el valor recreativo educacional</td>
</tr>
<tr>
<td>Dependencia del medio</td>
<td>Dependencia del Medio</td>
<td>Dependencia de la comunidad respecto de las actividades que se realizan en el territorio, se considera la estabilidad y ancestralidad de dichas actividades</td>
</tr>
<tr>
<td>Hidrografía</td>
<td>Valor paisajístico y disponibilidad de agua</td>
<td>Considera las lagunas y los cauces permanentes para el caso del valor paisajístico, y todos los tipos cauces para la disponibilidad de agua</td>
</tr>
<tr>
<td>Belleza escénica</td>
<td>Valor paisajístico</td>
<td>Apreciación personal del atractivo del paisaje observado</td>
</tr>
<tr>
<td>Importancia de la red de drenaje (relación D)</td>
<td>Disponibilidad de agua y concentración de fauna silvestre</td>
<td>D = Longitud total de la red de drenaje de la subcuenca (km)/Superficie de la subcuenca (ha)</td>
</tr>
<tr>
<td>Lagunas</td>
<td>Presencia de lagunas</td>
<td>Proporción de lagunas en cada subcuenca en relación al total</td>
</tr>
<tr>
<td>Glaciares</td>
<td>Presencia de cuerpos de nieves perpetuas y glaciares</td>
<td>Proporción de glaciares de cada subcuenca en relación al total</td>
</tr>
<tr>
<td>Presencia de Lama guanicoe</td>
<td>Concentración de fauna silvestre</td>
<td>Presencia de la especie Guanaco</td>
</tr>
<tr>
<td>Flora de uso tradicional</td>
<td>Valor productivo de comunidad vegetal</td>
<td>Presencia de las especies: Tola, Bailahuén, Chachacoma, Varilla, Pingo pingo, Llareta y el Churque. La modificación de esta variable estaría asociada al cambio en la distribución de las especies mencionadas y/o a la incorporación-eliminación de especies de uso tradicional.</td>
</tr>
<tr>
<td>FXAVE</td>
<td>Valor productivo de comunidad vegetal</td>
<td>Actualmente solo se refiere a los sitios prioritarios Laguna grande y chica</td>
</tr>
<tr>
<td>Rodales en evaluación para bonificación</td>
<td>Valor productivo de comunidad vegetal</td>
<td>Corresponden a ciertos rodales que actualmente se evalúan para la bonificación entregada por CONAF de acuerdo a la Ley 20.283</td>
</tr>
<tr>
<td>Unicidad de ecosistemas</td>
<td>Unidad</td>
<td>Su modificación se podría deber a dos factores: 1) que la formación vegetacional correspondiente al ecosistema varíe en cuanto a distribución espacial 2) que los ecosistemas del ASP sean protegidos por otra(s) unidad(es).</td>
</tr>
</tbody>
</table>

En el Cuadro 50 se muestran los 20 cambios globales que se seleccionaron de diversas fuentes.
Cuadro 50. Cambios globales utilizados para el enfoque prospectivo.

<table>
<thead>
<tr>
<th>Variables y Fuentes</th>
<th>Observaciones y Tendencias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desplazamiento de las poblaciones rurales (migración) (Barber et al., 2004)</td>
<td>Influyen en la diversidad étnica, en la identidad y otros patrones culturales</td>
</tr>
<tr>
<td>Pobreza y desigualdad de la población (Barber et al., 2004)</td>
<td></td>
</tr>
<tr>
<td>Intensificación tecnológica de cultivos y uso de transgénicos (Barber et al., 2004)</td>
<td></td>
</tr>
<tr>
<td>Modificación de la estructura de edades de la población (Barber et al., 2004)</td>
<td>Incremento de la población adulta a nivel mundial (ODEPA, 2005)</td>
</tr>
<tr>
<td>Aceleración de la urbanización (Barber et al., 2004)</td>
<td>Afecta sobre todo si hay áreas urbanas e industriales adyacentes. La tendencia de los centros urbanos es a expandirse y concentrar la población, antes de crear nuevos centros.</td>
</tr>
<tr>
<td>Densidad poblacional (ODEPA, 2005)</td>
<td>Crecimiento demográfico en desaceleración a nivel mundial (ODEPA, 2005)</td>
</tr>
<tr>
<td>Crecimiento de la producción animal (Barber et al., 2004)</td>
<td></td>
</tr>
<tr>
<td>Aumento del consumo de madera y productos forestales (Barber et al., 2004; UNEP, 2007)</td>
<td></td>
</tr>
<tr>
<td>Aumento consumo de plantas y animales silvestres (Barber et al., 2004)</td>
<td></td>
</tr>
<tr>
<td>Incremento en el consumo de energía (UNEP, 2007; Barber et al., 2004)</td>
<td></td>
</tr>
<tr>
<td>Crecimiento sostenido en el consumo de productos agrícolas (ODEPA, 2005)</td>
<td></td>
</tr>
<tr>
<td>Efecto invernadero (Barber et al., 2004)</td>
<td>Se refiere a la composición gaseosa de la atmósfera. Cambio global amplio que afecta sin distinción de zonas</td>
</tr>
<tr>
<td>Radiación atmosférica (Barber et al., 2004)</td>
<td>Se refiere a los efectos físicos y bióticos que afectan a toda el área</td>
</tr>
<tr>
<td>Calidad del agua (Barber et al., 2004)</td>
<td>Puede ser alterada (contaminación física y biológica) por los fertilizantes agrícolas (eutrofización), lluvia ácida y otros contaminantes</td>
</tr>
<tr>
<td>Aumento de la demanda de agua (Barber et al., 2004)</td>
<td>Afecta a la disponibilidad del recurso</td>
</tr>
<tr>
<td>Desertificación (Duarte et al., 2006)</td>
<td>Proceso de degradación del suelo que afecta a zonas áridas, semiáridas y subhúmedas secas causadas, entre otros, por cambios climáticos y antrópicos.</td>
</tr>
<tr>
<td>Número de Visitantes (Duarte et al., 2006)</td>
<td>Relacionado con el turismo</td>
</tr>
<tr>
<td>Fenología de las especies (Duarte et al., 2006)</td>
<td>Refiero a la alteración de los ritmos estacionales</td>
</tr>
<tr>
<td>Migración especies (Duarte et al., 2006)</td>
<td>Referido a la modificación de las fechas de salida y llegada de las especies</td>
</tr>
</tbody>
</table>

(Continúa)

35 Esta columna es útil para las relaciones que se intentaron reconocer y la formulación de los escenarios. En algunos CG no existe información de este tipo ya que son autoexplicativos y/o no hay más antecedentes de utilidad para efectos de este trabajo.
Cuadro 50. Cambios globales utilizados para el enfoque prospectivo (continuación).

<table>
<thead>
<tr>
<th>Variables y Fuentes</th>
<th>Observaciones y Tendencias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambio en el clima (Barber et al., 2004)</td>
<td>La variación térmica y de precipitaciones a lo largo del gradiente altitudinal pueden afectar la complejidad de formaciones vegetales. Los cambios microclimáticos y en los vientos también afectan. El calentamiento global reduce la acumulación de nieves y desplaza la fecha de escorrentía. Otros efectos son: el agotamiento de reservas de aguas subterráneas, aumento de sequía, aumento de erosión por la escorrentía, aumento de depósitos fluviales. Indirectamente influye sobre la mortalidad de especies por las sequías plurianuales. Ésta también causa la apertura de nichos ecológicos (CIRMOUNT, 2006).</td>
</tr>
</tbody>
</table>

Análisis Estructural

A partir de la matriz relacional, donde se analizaron todas las variables enlistadas, se construyó el gráfico dependencia-motricidad (Figura 12) que resume el comportamiento de todas las variables en el sistema. Posteriormente, se clasificaron las variables (Apéndice III) y se excluyeron aquellas que tuvieran un valor de motricidad inferior a 40 y de dependencia inferior a 30 (variables de excluida). De esta forma, quedaron seleccionadas 23 variables, que corresponden al 38 % de las variables enlistadas inicialmente.

Una vez efectuado el modelo de influencias entre las variables claves (Figura 13), se omitieron algunas del análisis posterior debido, en general, a que se pretende simplificar el sistema. Los motivos puntuales se enuncian a continuación:

- Radiación atmosférica: por ser una variable intermedia entre la influencia del efecto invernadero sobre el cambio climático y no poseer más relaciones fuertes con las demás variables
- Corredores biológicos: se incluyen de manera separada en las variables vegetación azonal y lagunas
- FXAVE: ya estaban representadas por las variables vegetación azonal y lagunas
- Belleza escénica: tiene influencia solo sobre la variable número de visitantes, la que a su vez no tiene un gran impacto en el sistema planteado y también se descartó
- Presencia de Lama guanicoe: se consideró dentro de la variable Número de especies de fauna, con el objeto de simplificar el sistema y respetar las escalas de análisis.
- Número de visitantes: solo tiene relación fuerte con la belleza escénica, y no afectaba fuertemente a ninguna variable
- Zonas de trashumancia: se prefirió incluir a los *sitios de invernada y veranada* en el modelo, sin embargo ambas variables se consideraron en la revalorización de los criterios.
- Urbanización: no tenía relación fuerte con ninguna variable, para el modelo territorial propuesto.

Figura 12. Gráfico dependencia-motricidad.
Figura 13. Modelo de influencias de variables claves.
Las 15 variables claves finales, se agruparon en 5 ámbitos, los que fueron útiles para plantear los escenarios en la etapa posterior.

1. **Medio Físico Natural:**
 - Efecto invernadero
 - Cambio en el clima
 - Desertificación
 - Hidrografía
 - Lagunas

2. **Medio Biótico:**
 - Uso de suelo *matorral muy abierto* y *matorral con suculentas muy abierto*
 - Complejidad de formaciones vegetales
 - Vegetación azonal
 - Cobertura vegetal
 - Número de especies de fauna

3. **Medio Económico:**
 - Uso agrícola
 - Actividad minera

4. **Medio Sociocultural:**
 - Sitios de invernada y veranada
 - Dependencia del medio

5. **Asentamientos humanos y redes:**
 - Red vial

Análisis Morfológico

De acuerdo a las variables claves seleccionadas, se realizó el juego de hipótesis del Cuadro 51 que resultó en la conformación de 4 escenarios.

En el Cuadro 52 se muestra la síntesis de los escenarios generados. Se asignó el escenario tendencial al “B”, debido a que posee las hipótesis más probables en el contexto territorial de estudio.
Cuadro 51. Hipótesis sobre las variables claves agrupadas en 5 ámbitos.

<table>
<thead>
<tr>
<th>Ámbitos para preguntas claves pertinentes</th>
<th>Reseñas probables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1. Medio Físico Natural</td>
<td>La desertificación se avanza levemente producto del cambio en el clima principalmente. La implementación del ASPP y las medidas de la Estrategia de Biodiversidad (Comité Regional de Biodiversidad Región de Atacama, 2009) de la Región ayudan a su control.</td>
</tr>
</tbody>
</table>

(Continúa)
Cuadro 51. Hipótesis sobre las variables claves agrupadas en 5 ámbitos (continuación).

<table>
<thead>
<tr>
<th>Ámbitos para preguntas claves pertinentes</th>
<th>Respuestas probables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>4. Medio Sociocultural</td>
<td>Los sitios de invernada y veranada utilizados ancestralmente en los circuitos de trashumancia se mantienen. En otras palabras, la dependencia del medio se mantiene, es decir, la actividad ganadera caprina sigue siendo la de mayor relevancia.</td>
</tr>
<tr>
<td>5. Asentamientos Humanos y Redes</td>
<td>La red vial se mantiene tanto en número de caminos como en estado.</td>
</tr>
<tr>
<td>Escenarios coherentes</td>
<td>Cambio climático y control comunitario para la protección de los recursos naturales y culturales</td>
</tr>
</tbody>
</table>
Cuadro 52. Síntesis del análisis morfológico.

<table>
<thead>
<tr>
<th>Escenario e hipótesis</th>
<th>Nombre</th>
<th>Hipótesis del Escenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Alternativo</td>
<td>Cambio climático y control comunitario para la protección de los recursos naturales y culturales</td>
<td>Supone las consecuencias del efecto invernadero y el cambio climático, enfatizando en la activación del proceso de desertificación, el que avanza levemente dado que existen un control efectivo que se enmarca dentro de la implementación del ASPP y de la Estrategia de Biodiversidad, lo que disminuye el efecto sobre la vegetación. Sin embargo, la vegetación azonal se ve fuertemente afectada por la disminución de agua en lagunas y cauces. Asimismo, la vegetación zonal y la diversidad de comunidades vegetales disminuye ligeramente debido a las variaciones térmicas a lo largo del gradiente altitudinal, aunque también se contempla un control de estos efectos por parte del hombre. La riqueza faunística se mantiene debido a las medidas de protección y a los hallazgos de estudios realizados en el marco de la Estrategia de Biodiversidad, que pretende completar la caracterización de la biodiversidad en los sitios prioritarios. La agricultura disminuye gradualmente debido a las limitantes climáticas y al intenso control de usurpaciones territoriales. Por otra parte, la minería, representada por el proyecto Pascualama, ya se encontraría en la etapa de cierre. El proyecto El Morro no se aprobó. La actividad que sostiene a la mayor parte de los comuneros es la crianza de ganado, por lo que sus sitios de veranada e invernada se mantienen. La red vial no se modifica.</td>
</tr>
<tr>
<td>B) Tendencial</td>
<td>Cambio climático y ausencia de intervención antrópica</td>
<td>Supone las consecuencias del efecto invernadero y el cambio climático (Barber et al., 2004), sin la intervención del hombre en ningún sentido (protección de recursos, sobreexplotación de los mismos, etc.) y si es que la hay, ésta no es significativa para constituir una modificación en las tendencias del cambio climático. Las principales respuestas físicas son el aumento de la temperatura promedio (UNEP, 2007) y de las sequías, originando una menor disponibilidad hídrica, salinización y desertificación (CONAMA, 2009). Lo anterior repercute fuertemente en la vegetación azonal, en la cobertura y diversidad vegetal, estas dos últimas ligadas al cambio en las variaciones térmicas a lo largo del gradiente altitudinal. La riqueza faunística también se ve afectada debido a la escases de agua, las sequías plurianuales (CIRMOUNT, 2006) y los cambios en la vegetación, por lo que disminuye gradualmente. La actividad agrícola, que se ve limitada solo por efectos del cambio climático, disminuye gradualmente. La actividad minera aumenta debido a la puesta en marcha del proyecto El Morro y Pascualama, estando este último en su fase de cierre. Los efectos del cambio climático afectan los sitios de invernada y veranada, históricamente ligados a los cursos y cuerpos de agua y al forraje disponible, por lo que disminuyen y se buscan nuevos lugares para el pastoreo. Esto también se ve acrecentado por el funcionamiento del proyecto El Morro, que limita el acceso a la Quebrada Larga. La modernización y conectividad del mundo rural se traduce en mejoras a los caminos existentes, pero no necesariamente en el aumento de éstos (ODEPA, 2005).</td>
</tr>
</tbody>
</table>

(Continúa)
Cuadro 52. Síntesis del análisis morfológico (continuación).

<table>
<thead>
<tr>
<th>Escenario e hipótesis</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>C) Alternativo</td>
<td>Crecimiento económico y efectos territoriales</td>
</tr>
<tr>
<td>Hipótesis del Escenario</td>
<td>Supone la inexistencia de manifestaciones relacionadas con el cambio climático, los principales cambios físicos son producto de la intervención antrópica, como la modificación y fragmentación de ríos, la intervención de lagunas, la expansión de la agricultura (Barber et al., 2004; Duarte et al., 2006) cerca de las localidades y de los cultivos ya existentes. La intervención en la red hidrográfica tiene directa relación con la inversión de la Junta de Vigilancia en mejorar la disponibilidad hídrica. Producto de lo anterior, la vegetación azonal se ve directamente afectada, no así la vegetación zonal, que no sufre alteraciones mayores. Respecto a la fauna, ésta se ve afectada producto del cambio de uso de suelo, la fragmentación de los hábitats (Barber et al., 2004) y el efecto de la modificación de cursos y cuerpos de agua.</td>
</tr>
<tr>
<td></td>
<td>La actividad minera aumenta debido a la puesta en marcha del proyecto El Morro y Pascualama, estando este último en su fase de cierre.</td>
</tr>
<tr>
<td></td>
<td>La explansión agrícola y la minería afectan también a la crianza, bloqueando algunos pasos utilizados ancestralmente. También afecta la modificación de cursos y cuerpos de agua, ya que la actividad depende de éstos elementos. El cambio en este sentido es más rápido que en el escenario B.</td>
</tr>
<tr>
<td></td>
<td>La alta demanda de transporte, caminos e infraestructura de comunicaciones (Barber et al., 2004) repercute en el aumento de la red vial (Duarte et al., 2006), la que también se ve influenciada por las necesidades de la minería.</td>
</tr>
<tr>
<td>D) Alternativo</td>
<td>Cambio climático y explotación de recursos naturales</td>
</tr>
<tr>
<td>Hipótesis del Escenario</td>
<td>Supone los efectos conjuntos del cambio climático y de la intervención antrópica. La desertificación avanza consecuencia del cambio climático, del sobrepastoreo y de las malas prácticas agrícolas, lo que altera en gran medida a la vegetación. También la vegetación azonal se altera debido al déficit hídrico de lagunas y ríos. Asimismo, la riqueza de fauna disminuye de manera gradual debido al cambio de uso de suelo y los efectos del cambio climático sobre su hábitat (vegetación y cuerpos de agua). Este cambio gradual se supone en base a las características adaptativas que poseen.</td>
</tr>
<tr>
<td></td>
<td>La superficie agrícola aumenta levemente, sobre todo la de vid de mesa (ODEPA, 2005), producto de las limitaciones climáticas que se compensan con las medidas adaptativas del hombre. La actividad minera aumenta debido a la implementación del proyecto Pascualama y El Morro, influyendo en la expansión de caminos y en la calidad de las aguas por la depositación de metales pesados, es decir se supone un incumplimiento en las medidas de protección ambiental.</td>
</tr>
<tr>
<td></td>
<td>La dependencia del medio se modifica restándole importancia a la crianza, debido a los efectos de la desertificación y la minería que la limitan. Se torna relevante la agricultura como base de la subsistencia, además de otras fuentes laborales externas. Todo esto provoca la reducción de los sitios de invernada y veranada.</td>
</tr>
</tbody>
</table>
Propuesta de zonificación dinámica como base para un plan de manejo de un ASPP

A partir de los escenarios descritos, se escogió el escenario tendencial (más probable) y el “alternativo D” para elaborar dos nuevas zonificaciones, replicando la metodología de la primera zonificación.

Las zonificaciones finales de cada escenario se exponen en las Figuras 14 y 15. En éstas se pueden observar las Zonas de Uso para el ASP y para la zona de influencia. En las Figuras 16 y 17 se muestra la Macrozonificación para el ASP y la zona de influencia de acuerdo a cada escenario generado.
Figura 14. Zonificación de la RNC Huasco Altinos y su zona de influencia de acuerdo al escenario tendencial.
Figura 15. Zonificación de la RNC Huasco Altinos y su zona de influencia de acuerdo al escenario alternativo D.
Figura 16. Macrozonificación de la RNC Huasco Altinos y su zona de influencia de acuerdo al escenario tendencial.
Figura 17. Macrozonificación de la RNC Huasco Altinos y su zona de influencia de acuerdo al escenario alternativo D.
En los Cuadros 53 y 54 se muestran las superficies asignadas a cada Zona de Uso en el ASP de acuerdo a los escenarios generados.

Cuadro 53. Superficie asignada por Zona de Uso en el ASP de acuerdo al escenario tendencial.

<table>
<thead>
<tr>
<th>Zona de Uso</th>
<th>Superficie (ha)</th>
<th>Superficie (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intangible o Científica</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Primitiva</td>
<td>154,97</td>
<td>0,06</td>
</tr>
<tr>
<td>Recuperación</td>
<td>29,551,66</td>
<td>12,30</td>
</tr>
<tr>
<td>Histórico Cultural</td>
<td>56,05</td>
<td>0,02</td>
</tr>
<tr>
<td>Educación Ambiental</td>
<td>128,31</td>
<td>0,05</td>
</tr>
<tr>
<td>Manejo de Recurso Flora y Vegetación</td>
<td>3,819,89</td>
<td>1,6</td>
</tr>
<tr>
<td>Manejo Recurso Suelo</td>
<td>24,919,23</td>
<td>10,37</td>
</tr>
<tr>
<td>Manejo Recurso Hídrico</td>
<td>4,759,72</td>
<td>1,98</td>
</tr>
<tr>
<td>Manejo Recurso Fauna</td>
<td>176,520,89</td>
<td>73,5</td>
</tr>
<tr>
<td>Uso Especial</td>
<td>266,10</td>
<td>0,11</td>
</tr>
</tbody>
</table>

Cuadro 54. Superficie asignada por Zona de Uso en el ASP de acuerdo al escenario alternativo D.

<table>
<thead>
<tr>
<th>Zona de Uso</th>
<th>Superficie (ha)</th>
<th>Superficie (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intangible o Científica</td>
<td>22,23</td>
<td>0</td>
</tr>
<tr>
<td>Primitiva</td>
<td>2878,54</td>
<td>1,17</td>
</tr>
<tr>
<td>Recuperación</td>
<td>56004,78</td>
<td>22,79</td>
</tr>
<tr>
<td>Histórico Cultural</td>
<td>60,28</td>
<td>0,02</td>
</tr>
<tr>
<td>Educación Ambiental</td>
<td>138,22</td>
<td>0,06</td>
</tr>
<tr>
<td>Manejo de Recurso Flora y Vegetación</td>
<td>5146,68</td>
<td>2,09</td>
</tr>
<tr>
<td>Manejo Recurso Suelo</td>
<td>24144,96</td>
<td>9,82</td>
</tr>
<tr>
<td>Manejo Recurso Hídrico</td>
<td>4759,82</td>
<td>1,94</td>
</tr>
<tr>
<td>Manejo Recurso Fauna</td>
<td>151884,29</td>
<td>61,80</td>
</tr>
<tr>
<td>Uso Especial</td>
<td>708,71</td>
<td>0,29</td>
</tr>
</tbody>
</table>

De acuerdo a los Cuadros 53 y 54, se observa que en ambos escenarios la Zona de Manejo de Recurso Fauna fue el uso con mayor porcentaje de asignación en el ASP, seguido de la Zona de Recuperación, con mayor proporción en el escenario alternativo. La Zona de Uso Intangible fue inexistente en ambos escenarios y la Primitiva tuvo una mínima representación.
En los Cuadros 55 y 56 se muestran las superficies asignadas a cada Zona de Uso en el área de influencia completa de acuerdo a los escenarios generados.

Cuadro 55. Superficie asignada por Zona de Uso en total (incluye toda la zona de influencia, es decir, el ASP y la zona de amortiguación) de acuerdo al escenario tendencial.

<table>
<thead>
<tr>
<th>Zona de Uso</th>
<th>Superficie (ha)</th>
<th>Superficie (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intangible o Científica</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Primitiva</td>
<td>154,97</td>
<td>0,04</td>
</tr>
<tr>
<td>Recuperación</td>
<td>42,809,89</td>
<td>10,36</td>
</tr>
<tr>
<td>Histórico Cultural</td>
<td>56,05</td>
<td>0,01</td>
</tr>
<tr>
<td>Educación Ambiental</td>
<td>128,31</td>
<td>0,03</td>
</tr>
<tr>
<td>Manejo de Recurso Flora y Vegetación</td>
<td>5,022,68</td>
<td>1,21</td>
</tr>
<tr>
<td>Manejo Recursos Suelo</td>
<td>44,563,53</td>
<td>10,78</td>
</tr>
<tr>
<td>Manejo Recurso Hídrico</td>
<td>91,656,49</td>
<td>22,17</td>
</tr>
<tr>
<td>Manejo Recurso Fauna</td>
<td>228,659,91</td>
<td>55,32</td>
</tr>
<tr>
<td>Uso Especial</td>
<td>266,57</td>
<td>0,06</td>
</tr>
</tbody>
</table>

Cuadro 56. Superficie asignada por Zona de Uso en total (incluye toda la zona de influencia, es decir, el ASP y la zona de amortiguación) de acuerdo al escenario alternativo D.

<table>
<thead>
<tr>
<th>Zona de Uso</th>
<th>Superficie (ha)</th>
<th>Superficie (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intangible o Científica</td>
<td>22,29</td>
<td>0</td>
</tr>
<tr>
<td>Primitiva</td>
<td>2,878,54</td>
<td>0,69</td>
</tr>
<tr>
<td>Recuperación</td>
<td>69,699,35</td>
<td>16,64</td>
</tr>
<tr>
<td>Histórico Cultural</td>
<td>60,28</td>
<td>0,01</td>
</tr>
<tr>
<td>Educación Ambiental</td>
<td>138,22</td>
<td>0,03</td>
</tr>
<tr>
<td>Manejo de Recurso Flora y Vegetación</td>
<td>6,554,14</td>
<td>1,56</td>
</tr>
<tr>
<td>Manejo Recursos Suelo</td>
<td>45,360,07</td>
<td>10,83</td>
</tr>
<tr>
<td>Manejo Recurso Hídrico</td>
<td>91,656,02</td>
<td>21,88</td>
</tr>
<tr>
<td>Manejo Recurso Fauna</td>
<td>201,879,03</td>
<td>48,18</td>
</tr>
<tr>
<td>Uso Especial</td>
<td>708,71</td>
<td>0,17</td>
</tr>
</tbody>
</table>

A nivel de toda el área de influencia y al igual que en el ASP, también es la Zona de Manejo de Recurso Fauna la más representada en ambos escenarios, seguida por la de Manejo de Recurso Hídrico. En ambos escenarios la Zona de Uso Intangible no alcanza a
representarse. Los demás usos no tienen grandes diferencias en los escenarios, salvo el uso Recuperación que es levemente mayor en el escenario tendencial.

En los Cuadros 57 y 58 se muestran las superficies asignadas en el ASP de acuerdo a los escenarios generados y a la Macrozonificación realizada.

Cuadro 57. Superficie asignada en el ASP de acuerdo a la Macrozonificación y al escenario tendencial.

<table>
<thead>
<tr>
<th>Zona de Uso</th>
<th>Superficie (ha)</th>
<th>Superficie (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preservación</td>
<td>154,97</td>
<td>0,06</td>
</tr>
<tr>
<td>Conservación</td>
<td>29.607,72</td>
<td>12,33</td>
</tr>
<tr>
<td>Desarrollo Sostenible</td>
<td>210.414,14</td>
<td>87,61</td>
</tr>
</tbody>
</table>

Cuadro 58. Superficie asignada en el ASP de acuerdo a la Macrozonificación y al escenario alternativo D.

<table>
<thead>
<tr>
<th>Zona de Uso</th>
<th>Superficie (ha)</th>
<th>Superficie (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preservación</td>
<td>2.900,78</td>
<td>1,20</td>
</tr>
<tr>
<td>Conservación</td>
<td>56.065,06</td>
<td>23,29</td>
</tr>
<tr>
<td>Desarrollo Sostenible</td>
<td>181.777,92</td>
<td>75,50</td>
</tr>
</tbody>
</table>

Respecto a la Macrozonificación, se observa que en ambos escenarios la categoría con mayor superficie es la de Desarrollo sostenible, seguida de la de Conservación, que posee un porcentaje mayor en el escenario alternativo.

En los Cuadros 59 y 60 se muestran las superficies asignadas en la zona de influencia de acuerdo a los escenarios generados y a la Macrozonificación realizada.

Cuadro 59. Superficie asignada en la zona de influencia (incluye el ASP y la zona de amortiguación) de acuerdo a la Macrozonificación y al escenario tendencial.

<table>
<thead>
<tr>
<th>Zona de Uso</th>
<th>Superficie (ha)</th>
<th>Superficie (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preservación</td>
<td>154,97</td>
<td>0,04</td>
</tr>
<tr>
<td>Conservación</td>
<td>42.865,94</td>
<td>10,37</td>
</tr>
<tr>
<td>Desarrollo Sostenible</td>
<td>370.297,5</td>
<td>89,59</td>
</tr>
</tbody>
</table>
Cuadro 60. Superficie asignada en la zona de influencia (incluye el ASP y la zona de amortiguación) de acuerdo a la Macrozonificación y al escenario alternativo D.

<table>
<thead>
<tr>
<th>Zona de Uso</th>
<th>Superficie (ha)</th>
<th>Superficie (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preservación</td>
<td>2.900,78</td>
<td>0,7</td>
</tr>
<tr>
<td>Conservación</td>
<td>69.759,63</td>
<td>16,85</td>
</tr>
<tr>
<td>Desarrollo Sostenible</td>
<td>341.224,93</td>
<td>82,44</td>
</tr>
</tbody>
</table>

Se observa que a nivel de toda la zona de influencia se repite la tendencia del ASP, la categoría con mayor superficie continúa siendo el de Desarrollo sostenible, seguido de de Conservación.

DISCUSIÓN

Tal como indica Fuentes (2006), la diversificación de los enfoques metodológicos relacionados con la gestión de espacios naturales ha sido creciente. Asimismo, la necesidad de redefinir modelos e incluir nuevas variables, tales como el crecimiento poblacional y los cambios globales, responde a la necesidad de estimar futuros escenarios relacionados con el uso del patrimonio natural. Es así como este trabajo pretendió incorporar dichas enseñanzas y probar la metodología general de planificación del manejo de áreas protegidas propuesto por Núñez (2008), incorporando a la vez el dinamismo en las variables que lo componen. Cabe mencionar que si bien el método de Núñez (2008) no es completamente desconocido, pues se basa en la propuesta de FAO (1976), realiza un aporte en cuanto a los criterios y subcriterios que son posibles de aplicar en el contexto de las áreas protegidas y su manejo.

Iniciativas en todo el mundo relacionadas con la gestión de áreas silvestres postulan, habitualmente, el tratamiento de variables físicas y bióticas sobre la base de unidades de paisaje definidas (Devillers y Devillers-Terschuren, 1996; Rivera et al., 2002; Núñez et al., 2003). En este caso en particular, resultó obligatorio agregar las variables socioculturales, basándose en que la sociedad humana y sus actividades económicas no deben entenderse como un elemento externo que perturba al medio natural, sino como un componente dinámico que actúa desde dentro de los ecosistemas. Aspectos como las tendencias demográficas, sociales, culturales o económicas deben ser internalizadas como parte de los flujos biogeoquímicos e hidrológicos de los ecosistemas a todas las escalas (Folke et al., 1996). Es así, como las interacciones entre el hombre y la naturaleza se han hecho tan estrechas que es necesario recurrir a un enfoque ecológico-sociológico-económico para poder desarrollar, de una forma realista y segura, modelos de gestión del medio natural que sean viables a largo plazo (Montes et al., 1998).
Cabe señalar que, para un gran número de ecosistemas, el mantenimiento de su funcionalidad depende de las perturbaciones humanas que durante miles de años han moldeado su estructura y desarrollo, estableciéndose históricamente una especie de coevolución entre las fuerzas naturales y culturales. De esta forma los ecosistemas seminaturales y culturales, como podría ser el caso de la RNC Huasco Altinos, son el resultado de la diversidad de especies, la heterogeneidad ecológica y, especialmente, de la diversidad cultural expresada en las perturbaciones que generan los usos tradicionales de sus recursos. Desde esa perspectiva, la conservación de estas áreas debería incluir la protección de los procesos y especies esenciales, y además, la recuperación de las perturbaciones originadas por los sistemas de usos tradicionales del territorio (Montes et al., 1998). En gran parte, el fundamento de la creación de esta ASP se basa en lo mencionado, sin embargo, sería de utilidad verificar dicha hipótesis. Este caso de estudio podría ser un buen ejemplo de la integración de las comunidades en el proceso de planificación y gestión de áreas protegidas.

Núñez e Illanes (2004), sostienen que después de un período de tiempo, con seguridad han cambiado una serie de circunstancias que sustentan los programas de desarrollo de un ASP, como por ejemplo la demanda por uso público, la accesibilidad del área, el mercado de productos, el conocimiento sobre los recursos y valores del área, entre otros. Es por ello que resulta necesario identificar las variables que siendo claves, se modifiquen en el tiempo, y repercutan en el manejo del área.

Después del estudio realizado, es posible proponer una definición del concepto de zonificación dinámica, como aquel ordenamiento sucesivo que sectoriza una superficie según atributos homogéneos, la que tendrá un uso de acuerdo a las aptitudes y limitantes que presente en el tiempo, considerando el cambio en sus parámetros ecosistémicos, sociales y económicos. Cabe señalar que este concepto puede entenderse de dos formas: la primera, corresponde a la mera actualización de la información espacial cada cierto tiempo, que repercutiría, probablemente, en la revalorización de los criterios y en la modificación del mapa de zonificación actual, sin realizar un análisis prospectivo debido a que solo cambiamos las zonas de acuerdo a nueva información. La segunda acepción consiste en realizar un análisis prospectivo como el efectuado en este estudio, donde la fase de revalorar criterios y modificar la zonificación no tiene diferencias con la primera acepción; sin embargo, este modo de ver la zonificación dinámica puede ser útil debido a que permite ahorrar los recursos humanos y financieros que significaría efectuar un nuevo levantamiento de información y cambiar la zonificación cada cierto tiempo, optimizando de esta manera el aprovechamiento de la información ya disponible, puesto que permite mejorar las decisiones que se tomen acerca de los usos del área involucrada, atendiendo a cambios estudiados y a las tendencias que muestran.

Respecto al método de zonificación, la ventaja que posee el Modelo de Vocación de Uso por Zonas radica en que permite mejorar la asignación de usos conforme se completa la información base del territorio. En relación a aquello, unas de las limitantes que existió fue la falta de información más completa para fauna, sobre todo del tipo espacial, la carencia de
estudios acerca del suelo que no fuesen del fondo de valle (zona agrícola), sobre todo para conocer el estado de erosión de zonas más altas, y la necesidad de mejorar el tratamiento de la información sociocultural con expertos (recursos culturales; actividades tradicionales, en especial la agricultura). Las desventajas tienen relación con la incorporación de juicios de expertos, que pueden ser considerados como subjetivos. Barredo (1996), señala que el objetivo de la fase de ponderación de criterios es la de llegar a expresar, en términos cuantitativos, la importancia de los distintos elementos, y que si bien es frecuente asignar pesos a los criterios, no existe un método general aceptado para su determinación, pudiendo generar esto controversias acerca de la asignación de dichos pesos. Por ejemplo, Núñez (2008) sugiere tres formas de realizar la ponderación: el método Delphi, el de ordenación por rangos y el de las jerarquías analíticas.

En cuanto a la etapa de análisis estructural, es necesario señalar que el estudio de relaciones entre las variables es una tarea compleja, más aún reconociendo que el enfoque prospectivo no es un método de previsión excesivamente marcado por la cuantificación y la simple extrapolación de tendencias (Godet, 1993). A modo de ejemplo, el uso de la tierra y su grado de cobertura vegetal pueden verse influidos por factores naturales, socioeconómicos y políticos. Los cambios en estos ámbitos pueden ser resultado de procesos de larga escala, por ejemplo, el cambio en los precios de productos agrícolas se relaciona con cambios en los mercados globales y regionales, pero también tienen implicancias locales en el uso y cobertura de la tierra (Bugmann et al., 2007).

Si bien el análisis estructural posee la ventaja de develar y poner en evidencia el rol de variables muchas veces ocultas para otros modelos, también tiene la desventaja de ser un método subjetivo, ya que la información muchas veces provino de la opinión de un experto y no pasó por el cedazo de la metodología tradicional (verificabilidad, experimentación, etc.). También presenta la dificultad de delimitar, precisar y definir las variables de estudio, lo que puede traer como consecuencia el no otorgar la importancia debida a ciertas variables relevantes, sobreestimar otras de escasa incidencia y omitir las más determinantes. Cabe señalar la importancia de las relaciones que se determinaron en esta etapa, ya que son las que condicionan los resultados posteriores (Acuña, 1986).

A propósito de la subjetividad de ciertas etapas de la metodología ocupada, es necesario recalcar que muchos resultados pudieron variar si se incluyeran otros métodos, como por ejemplo el Delphi, en todas las fases donde se requiere opinión experta (ponderación de criterios de zonificación, relleno de la matriz relacional del análisis estructural, etc.).

Por su parte, el análisis morfológico posee la desventaja de tener que trabajar con la incertidumbre, dificultando la precisión de los escenarios generados. También se debe considerar que las variables que contempla son multidimensionales, sin embargo, el modelo relacional base de esta etapa suele ser más bien lineal.

Sala et al. (2000) señalan que el cambio de uso de la tierra es el motor de cambio más importante en la biodiversidad, seguido por el cambio climático. Por su parte, Duarte et al.
(2006) plantean que los 5 motores directos del cambio global son: la alteración del hábitat, el cambio climático, la invasión de especies exóticas, la sobreexplotación y la contaminación. Según lo anterior, constatamos que las dos variables de mayor relevancia en el contexto del cambio global señaladas por Sala et al. (2000) fueron contempladas en la conformación de los escenarios, esto mismo se observa para el caso de la alteración del hábitat y la sobreexplotación. Las demás variables no se incluyeron en el análisis morfológico, lo que puede deberse a que, para el caso de estudio en particular, no se distinguían relaciones fuertes con los demás elementos territoriales, además Duarte et al. (2006) hacen referencia a motores del CG a un nivel de análisis superior al presentado en este estudio.

Un aspecto muy relevante en la metodología empleada es que la escala de cambios no es igual para todos los procesos ecológicos, sociales y económicos contemplados, por tanto el tiempo que transcurrido entre cada evaluación y actualización de la zonificación es un punto obligado de discusión.

Es importante distinguir ciertas observaciones que surgen de la comparación de los mapas de zonificación del ASP, más allá de los porcentajes mostrados, entendiendo que el trabajo realizado puede también considerarse como un análisis de sensibilidad, donde a partir de una modificación en los inputs podemos constatar qué tanto varían los outputs, en este caso los usos del área. Para ello, debemos dejar en claro el supuesto de que el modelo de zonificación efectivamente funciona, por tanto la sensibilidad analizada sería solamente la respuesta del territorio. De este modo, se aprecia que la zona central de ASP (correspondiente a la subcuenca del río El Tránsito Superior) y la zona sur (subcuenca del río Chollay y Conay) son las más sensibles al cambio en el estado de sus variables, seguidas de la zona noreste (subcuenca río Laguna Grande), la que si bien varía en sus usos, su matriz base (Manejo de Recurso Fauna) se mantiene en ambos escenarios. Cabe destacar que, por el contrario, la zona norte del ASP (correspondiente a la subcuenca Qda. Chanchoquín), es la menos sensible ya que en ambos escenarios mantiene el uso de Manejo de Recurso Fauna. Esto también se puede observar y reforzar a partir de los mapas de Macrozonificación, donde se aprecia que la zona central y sur del ASP son las más sensibles. Además, en el escenario tendencial es posible notar un notable aumento de los usos agrupados en la categoría de Conservación y una disminución prácticamente total en los usos de Preservación.

En el área de amortiguación, el cambio más notorio es el aumento en los usos de Desarrollo Sostenible en la zona noroeste (subcuenca El Tránsito Inferior), situación que se manifiesta en ambos escenarios. Con respecto a la zonificación en detalle, se destaca la mantención del uso Manejo de Recurso Hídrico en la subcuenca de río Valeriano, situación que se da en ambos escenarios futuros. Además, este mismo uso que en la zonificación actual se asignó como matriz base a la zona de la subcuenca río Chollay, en los dos escenarios futuros cambia y pasa a ser una Zona de Manejo de Recurso Fauna. Este último uso, que en general aumenta, sobre todo en el escenario tendencial ocupando también la zona de la subcuenca El Tránsito Superior y río Conay, se presentaría como uno de los más importantes dada su
mantención y probable expansión futura, lo que indicaría que su correcta implementación debiera ser prioridad en el manejo del área.

Respecto a la comparación de las zonificaciones de los dos escenarios, se observa que el contraste no fue tan intenso, y solo se aprecia en el alternativo una Zona de Recuperación más extendida en la subcuenca El Tránsito Superior junto a una superficie más pequeña de uso Primitivo, mientras que en el tendencial hay unas franjas de Recuperación en la subcuenca Laguna Grande. Según esto, los encargados de la gestión del área debieran prestarle mayor atención a las superficies con variabilidad futura más elevada, de manera de prever el uso más adecuado. Por ejemplo, respecto a la subcuenca Qda. Chanchoquín, no habría mayores dudas de que el uso futuro continuará siendo el de Manejo de Recurso Fauna, no así en el caso de la subcuenca El Tránsito Superior.

Según Fuentes (2006), las Zonas de Educación Ambiental e Histórico Cultural se asocian a unidades de menor superficie, situación que se confirmó en las 3 zonificaciones efectuadas.

Es complejo intentar resumir la razón de los cambios en la zonificación, ya que éstas pueden responder a la modificación de muchos procesos que están dentro del Modelo de Vocación de Uso por Zonas. No obstante, nombraremos los criterios que pueden haber influido los cambios, debido a que se constató una modificación espacial en su valoración. En el caso del escenario tendencial, los criterios que cambiaron fueron: fragilidad de ecosistemas, degradación comunidad vegetal, dependencia del medio, valor paisajístico, disponibilidad de agua, presencia de lagunas, presencia de cuerpos de nieves perpetuas y glaciares, concentración de fauna doméstica, fragilidad del suelo, valor productivo y comunidad vegetal. En el alternativo, cambiaron los mismos criterios anteriores, además de la accesibilidad y concentración de fauna silvestre.

Cabe señalar respecto al límite del ASP, que no se analizó un eventual cambio en éste ni se sugiere alguno en particular, ya que este aspecto está íntimamente ligado a asuntos de títulos de dominio, su regularización, y los recursos, por lo demás escasos, con los que cuenta la comunidad para adquirir nuevas tierras. Además, la superficie con la que se cuenta para formar parte de un ASPP es considerable, en comparación a otros terrenos privados que en el país existen para estos fines (Villarroel, 2001). Sin embargo, se incluyó un área de amortiguación aledaña en el análisis para conocer los usos potenciales que podrían tener estas tierras y que complementarían el ASP. De esta manera, sería importante que en el futuro se estudiara con mayor profundidad la factibilidad de implementar dichos usos de amortiguación.

Finalmente, tal como indica Peralta (1976) para el caso particular del estudio del suelo, las clasificaciones, o en este caso, las zonificaciones, son artificios hechos por el hombre para servir sus propósitos, no son por sí mismas verdades que pueden ser reveladas. Por ello es que no existe una zonificación que sea verdadera y perfecta, éstas pueden cambiar conforme se expanden los conocimientos, se modifique el grupo de expertos consultados o cambien las prioridades de la comunidad involucrada.
Las ASPP se presentan como un instrumento útil en la protección y conservación de los espacios naturales, complementando el SNASPE. Estas áreas, al igual que todos los espacios naturales, están siendo afectadas por distintos cambios globales, que incluyen aspectos biofísicos, socio-económicos e institucionales, que obligan a adaptar los planes de manejo de las mismas incorporando el dinamismo en sus procesos. La necesidad de generar modelos para prever el cambio en los distintos parámetros que componen dichos planes es patente, sin embargo, no existía una aproximación metodológica que haya sido probada y que contribuyera a estos fines.

El enfoque prospectivo, normalmente aplicado en otros contextos, permite incorporar el dinamismo en la gestión de los espacios naturales. No obstante, al igual que con los Modelos de Vocación de Uso por Zonas, es complejo estandarizar el método, ya que los criterios y las variables a utilizar dependen del caso a estudiar y de la información disponible. Además, si se quiere aplicar para elaborar zonificaciones dinámicas, tiene una exigencia elevada en cuanto a la actualización de la información que requiere, y necesita de un alto nivel de participación para que el método sea satisfactorio. Asimismo, se debe tener siempre presente que este enfoque debe hacerse cargo de la incertidumbre y la subjetividad que conllevan sus procedimientos.

Respecto a los métodos de zonificación, los SIG’s, la evaluación multicriterio y el análisis jerárquico son los métodos de integración de la información más empleados y útiles. La diferencia más notoria de este estudio con una zonificación tradicional, radica en la necesidad de incluir nuevas variables que den cuenta del cambio global, además de tener en cuenta las variables socioculturales, dada la naturaleza del área. La regla de decisión utilizada en este trabajo contempla un proceso participativo muy importante, donde se requiere priorizar las Zonas de Uso, lo cual permite solucionar un problema de análisis espacial multiobjetivo y sobreponer distintos usos, ya sean éstos competitivos, indiferentes o complementarios, sobre el territorio. Mejorar la inclusión de opinión experta en toda la metodología del estudio contribuiría a perfeccionar el funcionamiento del modelo, y a hacer más fidedignas las respuestas espaciales del área.

La zonificación dinámica de un ASP, a pesar de ser un concepto nuevo que no presenta aún una discusión amplia respecto de su alcance, puede generar beneficios más allá de presentarse como una simple actualización periódica de sus Zonas de Uso, pues si se expresa en distintos mapas de zonificación de acuerdo a escenarios futuros, permite mejorar las decisiones respecto al manejo del área y optimizar el aprovechamiento de la información ya disponible. Asimismo, proporciona información útil referente a las zonas más sensibles a los cambios globales, como también de las más estables, además, permite conocer los usos que mantendrán una gran relevancia en el futuro y que su correcta implementación debiera ser prioridad para los planificadores.

Gobierno de Chile. 2008. Reglamento de Áreas Silvestres Protegidas de Propiedad Privada. República de Chile. CONAMA, documento interno, borrador. 8 p.

I. Colaboradores del Estudio

- Rodolfo Gajardo Michell (Docteur en Ecologie, U. d’Aix-Marseille, France)
- Amilcar Guzmán Valladares (Lic. Cs. de los Recursos Naturales Renovables, Universidad de Chile)
- Daniela Guzmán González (Lic. en Cs. Biológicas, Pontificia Universidad Católica de Chile)
- Héctor Mondaca Farías (Lic. Cs. de los Recursos Naturales Renovables, Universidad de Chile)
II. Diagrama General de la Metodología

Definición zona de influencia

Identificación de objetivos locales del ASP

Definición Zonas de Uso

Delimitación Unidades Homogéneas (UH)

Caracterización biofísica, ecológica y sociocultural de las UH

Variables del Cambio Global

Variables del ASP

Valoración de UH según criterios definidos

Obtención capa de aptitudes de cada UH

Capas de aptitudes

Limitantes

Selección variables claves

Análisis morfológico (Escenarios tendencial y de contrastes)

Análisis estructural

Fase dinámica – entrada al modelo

Cartografía de Zonificación

Regla de decisión

Capa de vocación de cada UH
III. Clasificación de Variables según su Dependencia-Motricidad

<table>
<thead>
<tr>
<th>Variables del ASP</th>
<th>Clasificación Dependencia-Motricidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uso de suelo sobre el límite de vegetación y sin vegetación</td>
<td>Excluida</td>
</tr>
<tr>
<td>Uso agrícola</td>
<td>De enlace (o inestables)</td>
</tr>
<tr>
<td>Uso de suelo matorral muy abierto y matorral con succulentas muy abierto</td>
<td>Resultado</td>
</tr>
<tr>
<td>Red vial</td>
<td>Resultado</td>
</tr>
<tr>
<td>Actividad minera</td>
<td>De enlace</td>
</tr>
<tr>
<td>Complejidad de formaciones vegetales</td>
<td>Resultado</td>
</tr>
<tr>
<td>Vegetación azonal</td>
<td>Resultado</td>
</tr>
<tr>
<td>Cobertura vegetal</td>
<td>Resultado</td>
</tr>
<tr>
<td>Número de especies de flora</td>
<td>Excluida</td>
</tr>
<tr>
<td>Flora con problemas de conservación</td>
<td>Excluida</td>
</tr>
<tr>
<td>Corredores biológicos</td>
<td>Resultado</td>
</tr>
<tr>
<td>Prospecciones</td>
<td>Excluida</td>
</tr>
<tr>
<td>Flora endémica</td>
<td>Excluida</td>
</tr>
<tr>
<td>Número de especies de fauna</td>
<td>Resultado</td>
</tr>
<tr>
<td>Fauna con problemas de conservación</td>
<td>Excluida</td>
</tr>
<tr>
<td>Pendientes</td>
<td>Excluida</td>
</tr>
<tr>
<td>Erosividad a nivel regional</td>
<td>Excluida</td>
</tr>
<tr>
<td>Flora alóctona</td>
<td>Excluida</td>
</tr>
<tr>
<td>Sitios de invernada y veranada</td>
<td>Resultado</td>
</tr>
<tr>
<td>Explotación de vegetación como recurso dendroenergético</td>
<td>Excluida</td>
</tr>
<tr>
<td>Zonas de trashumanancia</td>
<td>Resultado</td>
</tr>
<tr>
<td>Registro de recursos culturales</td>
<td>Excluida</td>
</tr>
<tr>
<td>Singularidad de recursos culturales</td>
<td>Excluida</td>
</tr>
<tr>
<td>Integridad de recursos culturales</td>
<td>Excluida</td>
</tr>
<tr>
<td>Amenaza de recursos culturales</td>
<td>Excluida</td>
</tr>
<tr>
<td>Vulnerabilidad de recursos culturales</td>
<td>Excluida</td>
</tr>
<tr>
<td>Reconocimiento causas de deterioro de recursos culturales</td>
<td>Excluida</td>
</tr>
<tr>
<td>Valor científico de recursos culturales</td>
<td>Excluida</td>
</tr>
<tr>
<td>Valor social de recursos culturales</td>
<td>Excluida</td>
</tr>
<tr>
<td>Dependencia del medio</td>
<td>De enlace</td>
</tr>
</tbody>
</table>

(Continúa)
(Continuación)

<table>
<thead>
<tr>
<th>Variables del ASP</th>
<th>Clasificación Dependencia-Motricidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidrografía</td>
<td>De entrada</td>
</tr>
<tr>
<td>Belleza escénica</td>
<td>Resultado</td>
</tr>
<tr>
<td>Importancia red de drenaje (relación D)</td>
<td>Excluida</td>
</tr>
<tr>
<td>Lagunas</td>
<td>Resultado</td>
</tr>
<tr>
<td>Glaciares</td>
<td>Excluida</td>
</tr>
<tr>
<td>Presencia de Lama guanicoe</td>
<td>Resultado</td>
</tr>
<tr>
<td>Flora de uso tradicional</td>
<td>Excluida</td>
</tr>
<tr>
<td>Formaciones xerofíticas de alto valor ecológico (FXAVE)</td>
<td>Resultado</td>
</tr>
<tr>
<td>Rodales en evaluación para bonificación</td>
<td>Excluida</td>
</tr>
<tr>
<td>Unicidad de ecosistemas</td>
<td>Excluida</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cambios Globales aplicables</th>
<th>Ambito</th>
<th>Clasificación Dependencia-Motricidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desplazamiento de las poblaciones rurales (migración)</td>
<td>Socio-económico</td>
<td>Excluida</td>
</tr>
<tr>
<td>Pobreza y desigualdad de la población</td>
<td>Socio-económico</td>
<td>Excluida</td>
</tr>
<tr>
<td>Intensificación tecnológica de cultivos y uso de transgénicos</td>
<td>Socio-económico</td>
<td>Excluida</td>
</tr>
<tr>
<td>Modificación de la estructura de edades de la población</td>
<td>Socio-económico</td>
<td>Excluida</td>
</tr>
<tr>
<td>Aceleración de la urbanización</td>
<td>Socio-económico</td>
<td>Resultado</td>
</tr>
<tr>
<td>Densidad poblacional</td>
<td></td>
<td>Excluida</td>
</tr>
<tr>
<td>Crecimiento de la producción animal</td>
<td>Socio-económico</td>
<td>Excluida</td>
</tr>
<tr>
<td>Aumento del consumo de madera y productos forestales</td>
<td>Socio-económico</td>
<td>Excluida</td>
</tr>
<tr>
<td>Aumento consumo de plantas y animales silvestres</td>
<td>Socio-económico</td>
<td>Excluida</td>
</tr>
<tr>
<td>Incremento en el consumo de energía</td>
<td>Socio-económico</td>
<td>Excluida</td>
</tr>
<tr>
<td>Crecimiento sostenido en el consumo de productos agrícolas</td>
<td>Socio-económico</td>
<td>Excluida</td>
</tr>
<tr>
<td>Efecto invernadero</td>
<td>Biofísico</td>
<td>De entrada</td>
</tr>
<tr>
<td>Radiación atmosférica</td>
<td>Biofísico</td>
<td>De entrada</td>
</tr>
<tr>
<td>Calidad del agua</td>
<td>Biofísico</td>
<td>Excluida</td>
</tr>
<tr>
<td>Aumento de la demanda de agua</td>
<td>Biofísico</td>
<td>Excluida</td>
</tr>
<tr>
<td>Desertificación</td>
<td>Biofísico</td>
<td>De enlace</td>
</tr>
<tr>
<td>Número de Visitantes</td>
<td>Socio-económico</td>
<td>Resultado</td>
</tr>
<tr>
<td>Fenología de las especies</td>
<td>Biofísico</td>
<td>Excluida</td>
</tr>
<tr>
<td>Migración especies</td>
<td>Biofísico</td>
<td>Excluida</td>
</tr>
<tr>
<td>Cambio en el clima</td>
<td>Biofísico</td>
<td>De entrada</td>
</tr>
</tbody>
</table>