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Resumen

La recuperación de documentos consiste en, dada una colección de documentos y un patrón
de consulta, obtener los documentos más relevantes para la consulta. Cuando los documentos
están disponibles con anterioridad a las consultas, es posible construir un índice que permita,
al momento de realizar las consultas, obtener documentos relevantes en tiempo razonable.
Contar con índices que resuelvan un problema como éste es fundamental en áreas como
recuperación de la información, minería de datos y bioinformática, entre otros.

Cuando el texto que se indexa es lenguaje natural, la solución paradigmática corresponde
al índice invertido. Sin embargo, los problemas de recuperación de documentos emergen
también en escenarios en que el texto y los patrones de consulta pueden ser secuencias
generales de caracteres, como lenguajes orientales, bases de datos multimedia, secuencias
genómicas, etc. En estos escenarios los índices invertidos clásicos no se aplican con el mismo
éxito. Si bien existen soluciones que requieren espacio lineal en este escenario de texto general,
el espacio que utilizan es un problema importante: estas soluciones pueden utilizar más de
20 veces el espacio de la colección.

Esta tesis presenta nuevos algoritmos y estructuras de datos para resolver algunos pro-
blemas fundamentales para recuperación de documentos en colecciones de texto general, en
espacio reducido. Más específicamente, se ofrecen nuevas soluciones al problema de document
listing con frecuencias, y recuperación de los top-k documentos. Como subproducto, se de-
sarrolló un nuevo esquema de compresión para bitmaps repetitivos que puede ser de interés
por sí mismo.

También se presentan implementaciones de las nuevas propuestas, y de trabajos relaciona-
dos. Estudiamos nuestros algoritmos desde un punto de vista práctico y los comparamos con
el estado del arte. Nuestros experimentos muestran que nuestras soluciones para document
listing reducen el espacio de la mejor solución existente en un 40%, con un impacto mínimo
en los tiempos de consulta.

Para recuperación de los top-k documentos, también se redujo el espacio de la mejor
solución existente en un 40% en la práctica, manteniendo los tiempos de consulta. Así
mismo, mejoramos el tiempo de esta solución hasta en un factor de 100, a expensas de usar
un bit extra por carácter. Nuestras soluciones son capaces de retornar los top-10 a top-100
documentos en el orden de milisegundos. Nuestras nuevas soluciones dominan la mayor parte
del mapa espacio-tiempo, apuntando a ser el estándar contra el cual comparar la investigación
futura.
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Abstract

Document retrieval consists in, given a collection of documents and a query pattern, obtaining
documents relevant for the query. Having the documents available on advance allows one to
build an index that obtains relevant documents within a reasonable amount of time. Indexes
to solve such a fundamental problem are required in many fields, like Information Retrieval,
data mining, bioinformatics, and so on.

When the text to be indexed is natural language, the paradigmatic solution is the inverted
index. However, document retrieval problems arise also in scenarios where text and pattern
can be general sequences of symbols, such as Oriental languages, multimedia databases, and
genomic sequences. In those scenarios the classical inverted indexes cannot be successfully
applied. Even though there exist linear-space solutions for this general text scenario, the
space required is a serious concern in practice: those indexes may require more than 20 times
the size of the collection.

This thesis introduces novel algorithms and data structures to solve some important doc-
ument retrieval problems on general text collections in reduced space. More specifically, we
provide new solutions for document listing with term frequencies and for top-k document
retrieval. As a byproduct, we obtain a new compression scheme for repetitive bitmaps that
might be of independent interest.

We implemented our proposals, as well as most relevant previous work, and studied their
practicality. Our experiments show that our proposals for document listing reduce the space
of the best previous solution by 40% with little impact on query times.

For top-k document retrieval our solutions allow one to reduce the space by 40% in prac-
tice, with no impact on the query time. In addition, we were able to reduce query times
up to a factor of 100, as the cost of about 1 extra bit per character. Our solutions are able
to retrieve from top-10 to top-100 documents within milliseconds. Our new combinations
dominate most of the space/time tradeoff, aiming to become the reference standard with
which subsequent research should compare.
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Chapter 1

Introduction

Humankind is producing and collecting incredibly big amounts of data. While the Web
is nowadays the paradigmatic example (over 20 billion pages conform the indexable Web),
enormous repositories of data are arising in almost every area of human knowledge. Some
examples are Web pages, genomic sequences, the data collected by the Large Hadron Collider,
the increasingly detailed maps from the Earth, and astronomical data collected by telescopes,
click-through data and query logs, among many others. Managing those amounts of data
raises many challenges from many different perspectives. One of the main challenges is the
problem of searching for certain patterns in this sea of data, obtaining meaningful results in
a reasonable amount of time.

When the data to be searched is available beforehand, it is possible to build a data
structure in a preprocessing phase. This additional data structure is used at query time to
improve the speed and effectiveness in the process of answering queries. Such a data structure
is called an index. The most naive index will pre-store the answer to every possible query.
This, of course, would be very fast at answering the queries (just the time required to look
at the table of answers) but, in most cases, extremely space-inefficient. On the other hand,
using no index at all will reduce the extra space to zero but the time to answer the queries
will be at best linear in the size of the data (for example, a sequential search over the visible
Web would take months, while any decent search engine takes less than a second to answer).
The challenge of indexing can be thought of as how to achieve relevant space-time trade-offs
in between those extremes.

Data repositories can be of very different natures, and also the kind of queries that are
expected may vary a lot depending on the context. Documents may have a well-defined
structure (graphs, XML) or not (music and image repositories), and so on.

For the sake of this work we offer a very general definition: a document is a finite sequence
of symbols over a given alphabet. That is, we regard documents simply as strings. Queries
also may be defined in many different ways. In this work a query pattern is also defined as
a given string. More formal definitions are given in Chapter 3.
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1.1 Succinct Data Structures and Document Retrieval

Document listing is probably the most basic document retrieval problem. Given a collection
of documents and a query pattern, document listing consists in obtaining all the documents
in which the pattern occurs. Note that when the collections contain millions of documents,
the output of the query could still be very big. In some scenarios, like those when the output
is directly given to a user (think about Web search engines) it is also important to have a
ranked document retrieval. That is, the documents in the output are sorted according to a
certain relevance criterion. One of the most fundamental criteria for this work is the term
frequency, which measures the relevance of a given document as the number of occurrences
of the query pattern on the document [4]. Moreover, given a parameter k, one could ask only
for the top-k ranked documents.

To date, the best known solution for this scenario is the inverted index. The essential
idea of an inverted index is to store a vocabulary of text words and a list of occurrences
for each vocabulary word. The list of occurrences stores the documents in which the word
appears, plus some extra information depending on which queries are going to be answered.
This technique has proven to be very effective, and due to Heaps’s law [40] , the size of
the vocabulary (and therefore the number of occurrence lists) is not that big. However, the
inverted index relies on the assumption that the text is tokenizable into words, which is not
true in many scenarios of interest. One such scenario is documents written in languages such
as Chinese or Korean, where it is not easy to split words automatically. Search engines treat
these texts as sequences of symbols, so that queries can retrieve any substring of the text.
Even agglutinating languages such as Finnish or German pose problems to the inverted index
approach. In other scenarios the data to be indexed do not even have a concept of word, yet
document retrieval would be of interest: In the field of biotechnology, huge repositories of
DNA sequences arise everyday. Looking for short patterns that appear frequently in those
sequences (motifs), and finding similarities among given sequences is a critical task in many
scientific contexts, like understanding diseases, establishing phylogeny, genome assembly, etc.
In source code repositories it is important to look for functions making use of an expression
or function call. Detecting copies of a video in a given database is important in the task of
revealing plagiarism, and so on.

When the texts to be indexed are not easily tokenized into words, the most successful solu-
tions are based on suffix trees and suffix arrays. Those structures support general queries over
the text, meaning that they allow one to search for any arbitrary concatenation of symbols.
A suffix array can be thought as a list of all the suffixes of the text stored in lexicographic
order. Given a query pattern, with two binary searches it is possible to find an interval
containing all the suffixes that begin with the query pattern. This interval corresponds to
all the occurrences of the pattern in the text. The cost of this functionality is the high space
consumption of suffix trees and suffix arrays: they can require up to 20 times the size of
the original text. It is important to note that suffix arrays and suffix trees by themselves
are not powerful enough to give an efficient solution to document retrieval problems. Suffix
arrays and suffix trees give all the occurrences of the query pattern; however, this number
of occurrences is typically much bigger than the number of documents where the pattern
appears. Muthukrishnan, in a foundational work [56], introduced the document array, giving
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the first optimal solution for the document listing problem, and efficient solutions for many
document retrieval problems. Muthukrishnan’s approach is built on top of the suffix tree,
therefore its space consumption is even higher.

On the other hand, in the last two decades we have witnessed a rich development of
the field of succinct data structures [3, 26, 29, 38, 54, 58, 65, 66]. These aim to provide fast
functionality while requiring space close to the information-theoretic lower bound.

The range of problems addressed with succinct data structures is very wide: rank and select
over binary sequences [19,54,65], succinct representations of trees with rich functionality [2,
15, 45], graph representation of social networks [41], and so on. In particular, compressed
suffix arrays enable the same functionality of classical suffix arrays, requiring as little space as
that of the compressed text. They also allow one to reconstruct the text, therefore they can
be seen as a replacement of the text itself. For this reason, they are also called self-indexes.

Self-indexes have achieved certain maturity, exhibiting results very close to the theoretical
bounds both in theory and in practice. However, the functionality they provide is mainly
focused on the pattern matching problem. Only in the recent years we have seen the first
efforts to develop succinct data structures for document retrieval problems, revealing that
there is a lot of room for improvement.

On the one hand, only relatively simple document listing problems are being addressed,
where no document relevance information is retrieved. On the other hand, the solutions are
far from being optimal. There are solutions for retrieving the top-k documents, for instance,
that requires twice the minimal space, but we are going to show that their implementation is
not practical. There are more practical solutions in practice, but they require much more than
the minimum space and have no time worst-case-time guarantees. Our main contributions
help to reduce all those gaps.

1.2 Outline and Contributions

This thesis introduces novel algorithms and data structures to solve some important docu-
ment retrieval problems on general text collections on reduced space. More specifically, we
provide new solutions for the document listing with term frequencies and the top-k document
retrieval problems. As a byproduct, we obtain new compression schemas for bitmaps and
sequences that might be of independent interest.

We implemented our proposals, as well as some relevant previous work, and studied their
practicality. Our experiments show that our proposals for document listing reduce the space
of the best previous solution by 40% with little impact on query times.

For top-k document retrieval our solutions allow to reduce the space by a 40% with no
impact on the query time. Also we were able to reduce query times up to a factor of 100,
at the cost of about 1 extra bit per character, and we presented combinations that reduced
query time and space requirement simultaneously.

3



The outline of the thesis is as follows:

• Chapter 2 gives basic definitions, introduces the fundamental topics in the field, and
reviews the related work.
• In Chapter 3 we introduce document retrieval concepts, provide definitions for the main

problems addressed in the thesis, and review the previous approaches. Finally, we
present the document collections and experimental environment to be used throughout
the thesis.
• In Chapter 4 we propose a compressed representation of binary sequences that exploit

repetitiveness and is capable of answering rank and select queries.
• In Chapter 5 we propose compressed wavelet trees based on the new sequence repre-

sentation of Chapter 4, and analyze how those wavelet trees perform in a document
retrieval scenario.
• Chapter 6 proposes a practical version of a previous theoretical work of Hon et al. [43] for

top-k document retrieval. We also propose novel algorithms that improve its practical
performance. This structure, in combination with the solution of Chapter 5, dominates
almost all the space/time tradeoff.
• Chapter 7 presents our implementation of a different approach for document listing,

based on Monotone Minimal Perfect Hash Functions.
• Finally, in Chapter 8 we discuss our contributions and possible directions for future

work.

The work of Chapters 4 and 5 was published in the Symposium of Experimental Algorithms
(SEA) 2011 [60]. The work of Chapter 6 was published in the Symposium of Experimental
Algorithms (SEA) 2012 [62]. Both articles [60, 62] were invited and submitted to a Special
Issue of the Journal of Experimental Algorithms. The work of Chapter 7 will appear in a
Special Issue of the Journal of Discrete Algorithms [13].
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Chapter 2

Related Work

2.1 Entropy of a Text

Consider a sequence of characters T [1, n] over an alphabet Σ = {1, . . . , σ} and let nc be the
number of times character c appears in T . The empirical zero-order entropy is defined as
follows: 1

H0(T ) =
∑

c∈Σ,nc>0

nc
n

log
n

nc
.

The value nH0(T ) is the minimum size in bits that can be achieved to encode T using a
compressor that assigns a unique code to each symbol in Σ.

However, the compression can be improved if codes are assigned depending on the context.
We can define the empirical k-th order entropy as [52]:

Hk(T ) =
∑

s∈Σk,T s 6=ε

|T s|
n
H0(T s),

where T s is the string obtained if we concatenate each character that appears followed by
the context s in T . The empirical k-th order entropy of a text T is a lower bound for the
numbers of bits per symbol required to encode T using any algorithm that encodes a symbol
considering the context defined by the following k symbols.

2.2 Huffman Coding

Huffman [44] is one of the most popular coding schemes used to compress to zero-order
entropy. It assigns a variable-length code to each symbol of the original sequence, minimizing
the length of the encoded sequence. Huffman codes are prefix free codes, meaning that there

1In this thesis we will assume logarithms are to the base 2 by default.
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is no code that is a prefix of another code. This property allows the encoded sequence to
be decompressed unambiguously without need of any end marker between codewords. The
main idea behind Huffman coding is to assign shorter codes to more frequent symbols and
longer codes to the less frequent ones.

The algorithm first computes the frequency of each symbol and then sorts the symbols by
frequency. A virtual symbol is then created to replace the two least frequent symbols. The
frequency of the new symbol is the sum of the frequencies of those two symbols that compose
it. The procedure is applied repeatedly (to original and virtual symbols) until the number
of symbols is reduced to one. Figure 2.1 shows an example.

Stage

Symbol Probability 1 2 3 4 5
a1 0.39 0.39 0.39 0.39 0.61 1.00
a5 0.20 0.20 0.23 0.38 0.39
a6 0.18 0.18 0.20 0.23
a3 0.18 0.18 0.18
a2 0.03 0.05
a4 0.02

Figure 2.1: Procedure to obtain the virtual symbols. At every stage the arrows show the
two least frequent symbols being replaced by a virtual symbol.

The codes assigned to the symbols are sequences of 0s and 1s. The process to obtain
the symbols is explained as follows: The virtual symbol with probability 1.0 will be encoded
with the empty string. Then, for each virtual symbol, we compute recursively the code of
the composing symbols, making the following expansion: we append a 0 to the current code
to obtain the code of the first composing symbol, and we append a 1 to the current code to
obtain the code of the second composing symbol. When there is no virtual symbol left to
be expanded, we have computed the codes of all the original symbols. Figure 2.2 shows the
expansion for our example.

Stage

Symbol Probability 1 2 3 4 5
a1 0.39 1 0.39 1 0.39 1 0.39 1 0.61 0 1.00
a5 0.20 000 0.20 000 0.23 01 0.38 00 0.39 1
a6 0.18 001 0.18 001 0.20 000 0.23 01
a3 0.18 010 0.18 010 0.18 001
a2 0.03 0110 0.05 011
a4 0.02 0111

Figure 2.2: Procedure to obtain Huffman codes for the original symbols. Virtual symbols are
recursively expanded into their composing symbols. In the process, a 0 is appended to the
code of the first composing symbol and a 1 is appended to the code of the second composing
symbol.
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2.3 Rank and Select

Two basic operations used in almost every succinct data structure are rank and select.
Given a sequence S[1, n] over an alphabet Σ = {1, . . . , σ}, a character c ∈ Σ, and integers
i,j, rank c(S, i) is the number of times that c appears in S[1, i], and select c(S, j) is the position
of the j-th occurrence of c in S.

There is a great variety of techniques to answer these queries, depending on the nature
of the sequence, for example: whether or not it will be compressed, the size of the alphabet,
etc. In the following sections we review the most relevant techniques for our work.

2.3.1 Binary Rank and Select

Consider a binary sequence B[1, n]. The classic solution [19, 54] is built upon the plain
sequence, requiring o(n) additional bits. Generally, rank 1 and select1 are considered the
default rank and select queries.

Let us consider the solution for rank 1 (rank 0 can be directly computed as rank 0 = i−
rank 1): The idea is based on a two-level dictionary that stores the answers at regular spaced
positions plus a small table containing the answer for every sequence that is short enough.

Let us divide B into blocks of size b = blog(n)/2c and consider also superblocks of size
s = bblog nc. We build an array Rs that stores the rank value at the beginning of each
superblock. More precisely, Rs[j] = rank 1(B, j × s), j = 0 . . . bn/sc. Rs requires O(n/ log n)
bits, because it contains n/s = O(n/ log2 n) elements of size log n bits.

We also need an array Rb for the blocks. For each block we will store the relative rank
with respect to the beginning of the corresponding superblock. More precisely, for each block
k contained in a superblock j = bk/bc , k = 0 . . . bn/bc we store Rb[k] = rank(B, k × b) −
rank(B, j × s). Rb requires (n/b) log s = O(n log log n/ log n) bits of space.

Finally, a small table Rp stores the rank values for any binary sequence of size b. Formally,
Rp[S, i] = rank(S, i), for every binary sequence S of size b, 0 ≤ i < b. Rp requires O(2b ×
b × log(b)) = O(

√
n log n log log n) bits. Figure 2.3 shows an example of a rank calculation

using those data structures.

The idea is similar for answering select queries, but the data structures and algorithms are
more complicated. To provide the satisfactory performance the samplings need to be regular
in the space [1, n] of possible arguments for select(B, j). It is also possible to answer a select
query by doing a binary search within the rank values [36].
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0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1B

Rs

Rb

0 4 9 14 20

0 3 4 3 5 2 5 3 6

rank(B, 21) = Rs[3] +Rb[6] +Rp[1110, 1]

= 9 + 2 + 1 = 12

Rp 1 2 3 4
0000 0 0 0 0
0001 0 0 0 1
...

...
...

...
...

1110 1 2 3 3
1111 1 2 3 4

Figure 2.3: An example of the additional structures to answer rank using n+ o(n) bits.

2.3.2 Compressed Binary Rank and Select

Raman, Raman and Rao [65] showed that is also possible to represent B in a compressed
form using nH0(B) bits, with some extra data structures using o(n) bits, and still answer
rank and select queries in constant time.

The main idea is to divide B into blocks of size b = blog(n)/2c. Each block I = Bbi+1,bi+b

will be represented using a pair (ci, oi), where ci represents the class the block belongs to, and
oi indicates which of the elements of the class the block corresponds to. Each class c is the col-
lection of all the sequences of size b that have c bits with value 1. For example, if b = 4, class 0
is {0000}, class 1 is {0001, 0010, 0100, 1000}, class 2 is {0011, 0101, 0110, 1001, 1010, 1100, . . .}
and class 4 is {1111}. We need dlog(b + 1)e bits to store each value ci, because there are
b + 1 classes of sequences of size b. To represent oi it is important to note that class ci has(
b
ci

)
elements, so we require dlog

(
b
ci

)
e bits to represent each oi. In order to represent the

sequence B we use dn/be (ci, oi) pairs. The total space of the ci terms is Σ
dn/be
i=0 dlog(b+ 1)e =

O(n log(b)/b) = O(n log log n/ log n) = o(n) bits. The space required to represent the oi
terms is given by [64]:

⌈
log

(
b

c1

)⌉
+ . . .+

⌈
log

(
b

cdn/be

)⌉
< log

((
b

c1

)
× . . .×

(
b

cdn/be

))
+ n/b

≤ log

(
n

c1 + . . .+ cdn/be

)
+ n/b

= log

(
n

m

)
+ n/b

= nH0(B) +O(n/ log n).
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Where m = c1 + . . .+ cdn/be is the number of 1s in the sequence. In order to answer rank
and select queries we will need additional structures in a similar manner as in the previous
section. We will use the same arrays Rs and Rb. Because pairs (ci, oi) have variable lengths,
this time we will need to build two additional arrays, namely Rposs and Rposb, pointing to
the position in the compressed representation of B where each superblock (Rposs) and each
block (Rposb) begins. These add extra o(n) bits.

The table Rp of the previous section is not useful anymore because we cannot access it
through the chunks of the original sequence. This time we construct an analogous table,
which will be accessible through (ci, oi) pairs. Data structures for select are somewhat more
complicated but the idea is still the same.

In this way, it is possible to represent a binary sequence B occupying nH0(B) + o(n) bits
and answering rank and select queries in constant time.

2.3.3 General Sequences: Wavelet Tree

Although there are many solutions for the rank and select problem on general sequences [6,7,
29,35,38], we will focus on one of the most versatile and useful, namely the wavelet tree [38].
Let us consider a sequence T = a1a2 . . . an over an alphabet Σ.

The wavelet tree of T is a binary balanced tree, where each leaf represents a symbol of
Σ. The root is associated with the complete sequence T . Its left child is associated with a
subsequence obtained by concatenating the symbols ai of T satisfying ai < σ/2. The right
child corresponds to the concatenation of every symbol ai satisfying ai ≥ σ/2. This relation
is maintained recursively up to the leaves, which will be associated with the repetitions of
a unique symbol. At each node we store only a binary sequence of the same length of the
corresponding sequence, using at each position a 0 to indicate that the corresponding symbol
is mapped to the left child, and a 1 to indicate the symbol is mapped to the right child.

If the bitmaps of the nodes support constant-time rank and select queries, then the wavelet
tree support fast access, rank and select on T .

Access: In order to obtain the value of ai the algorithm begins at the root, and depending
on the value of the root bitmap B at position i, it moves down to the left or to the right
child. If the bitmap value is 0 it goes to the left, and replaces i← rank 0(B, i). If the bitmap
value is 1 it goes to the right child and replaces i← rank 1(B, i). When a leaf is reached, the
symbol associated with that leaf is the value of ai.

Rank: To obtain the value of rank c(S, i) the algorithm is similar: it begins at the root,
and goes down updating i as in the previous query, but the path is chosen according to the
bits of c instead of looking at B[i]. When a leaf is reached, the i value is the answer.

Select: The value of select c(S, j) is computed as follows: The algorithm begins in the leaf
corresponding to the character c, and then moves upwards until reaching the root. When it
moves from a node to its parent, j is updated as j ← select0(B, j) if the node is a left child,
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and j ← select1(B, j) otherwise. When the root is reached, the final j value is the answer.

Figure 2.4: Wavelet tree of the sequence T = 3185718714672727. We show the mapped
sequences in the nodes only for clarity, the wavelet tree only stores the bitmaps.

2.4 Directly Addressable Codes (DAC)

There are many variable-length codes available in the literature to represent sequences in
compressed form, like γ-codes, δ-codes, Huffman codes, among many others [76]. When
variable-length codes are used, a common problem that arises is that is not possible to access
directly the i-th encoded element. This issue is very common for compressed data structures,
and the typical solution is to make a regular sampling and store the position of the samples
in the encoded sequence. Therefore, decompression from the last sampling suffices to access
the i-th element.

Directly Addressable Codes (DAC) [16] is a variant of Vbytes codes [75] that uses variable-
length codes reordered so as to allow accessing the i-th element without need of any sampling.

Vbytes codes a number n splitting the blog n + 1c bits of its binary representation into
blocks of b bits. Each block is stored in a chunk of b + 1 bits. The extra bit is a flag whose
value is 0 in the chunk that contains the least significative bits, and 1 in the others. For
instance, if n = 25 = 11001 and b = 3, then Vbytes needs two chunks, and the representation
is 1011, 0001.

Directly addressable codes consider a sequence of numbers T [1, n], and compute the Vbytes
code of each number. The most significative blocks are stored together in an array A1. The
extra bit used as a flag is stored separately in a bitmap B1 capable of answering rank queries.
The remaining chunks are stored similarly in arrays Ai and bitmaps Bi keeping together the
i-th chunks of the numbers that have them.
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2.5 Grammar Compression of Sequences: RePair

Grammar compression techniques replace the original sequence by a context-free grammar
that only produces the original sequence. Compression is achieved by finding a grammar
that requires less space to be represented than the original sequence.

The problem of finding the smallest grammar to represent a sequence is known to be
NP-Hard [18]. However, there are very efficient algorithms that run in linear time and
asymptotically achieve the entropy of the sequence, like LZ77 [77], LZ78 [78], and RePair [48]
among others.

We focus on RePair [48] because it has proven to fit very well in the field of succinct data
structures [37]. RePair is an off-line dictionary-based compressor that achieves high-order
compression, taking advantage of repetitiveness and allowing fast random access [48,61].

RePair looks for the most common pair in the original sequence and replaces that pair
with a new symbol, adding the corresponding replacement rule to a dictionary. The process
is repeated until no pair appears twice.

Given a sequence T over and alphabet of size σ, a more formal description is to begin
with an empty dictionary R and do the following:

1. Identify the symbols a and b in T , such as ab is the most frequent pair in T . If no pair
appears twice, the algorithm stops.

2. Create a new symbol A, add a new rule to the dictionary, R(A) → ab, and replace
every occurrence of ab in T with A.

3. Repeat from 1

As a result, the original sequence T is transformed into a new, compressed, sequence C
(including original symbols as well as newly created ones), and a dictionary R. Note that the
new symbols have values larger than σ, thus the compressed sequence alphabet is σ′ = σ+|R|.
Using the proper data structures to account for the frequencies of the pairs the process runs
in O(n) time and requires O(n) space [48].

To decompress C[j] we evaluate: if C[j] ≤ σ, then it is an original symbol, so we return
C[j]. Otherwise, we expand it using the rule R(C[j])→ ab and repeat the process recursively
with a and b. In this manner we can expand C[j] in time O(|C[j]|).

2.6 Succinct Representation of Trees

How to succinctly encode a tree has been subject to much study [2, 7, 15, 45, 69]. Although
there are many proposals that achieve optimal space, that is 2n+ o(n) bits to encode a tree
of n nodes, they offer different query times for different queries. Most solutions are based on
Balanced Parentheses [34, 45,55,65,69], Depth-First Unary Degree Sequence (DFUDS) [15],
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or Level-Order Unary Degree Sequence (LOUDS) [45].

Arroyuelo et al. [2] implemented and compared the major current techniques and showed
that, for the functionality it provides, LOUDS is the most promising succinct representation
of trees. The 2n + o(n) bits of space required can, in practice, be as little as 2.1n and it
solves many operations in constant time (less than a microsecond in practice). In particular,
it allows fast navigation through labeled children.

In LOUDS, the shape of the tree is stored using a single binary sequence, as follows.
Starting with an empty bitstring, every node is visited in level order starting from the root.
Each node with c children is encoded by writing its arity in unary, that is, 1c0 is appended to
the bitstring. Each node is identified with the position in the bitstring where the encoding
of the node begins. If the tree is labeled, then all the labels are put together in another
sequence, where the labels are indexed by the rank of the node in the bitstring.

2.7 Range Minimum Queries

Range minimum queries (RMQ) are useful in the field of succinct data structures [30, 68].
Given a sequence A[1, n], a range minimum query from i to j asks for the position of the
minimum element in the subsequence A[i, j]. The RMQ problem consists in building an
additional data structure over A that allows one to answer RMQ queries on-line in an efficient
manner. There are two possible settings: the first one, called systematic, meaning that the
sequence A is available at query time, and the non-systematic setting, meaning that A is no
longer available during query time.

Sadakane [68] gave the first known solution for the non-systematic setting, requiring 4n+
o(n) bits and answering the queries in O(1) time. This solution is based on a succinct
representation of the Cartesian tree [73] of A. Later, Fischer and Heun. [30] offered a solution
requiring the optimal 2n + o(n) bits, and answering the RMQ queries in O(1) time. This
is not achieved using the Cartesian tree, but instead they define a data structure called
2d-Min-Heap, which is at the core of their solution.

Each node of the 2d-Min-Heap represents a position on the array, and thus corresponds
to the value stored in this position. The 2d-Min-Heap satisfies two heap-like properties: (i)
the value corresponding to every node is smaller than the value corresponding to its children,
and (ii) the value corresponding to every node is smaller than the value corresponding to
every right sibling. Provided a succinct representation of the 2d-Min-Heap, Fischer and Heun
showed how to answer RMQ queries in optimal O(1) time.

2.8 Suffix Trees

The suffix tree is a classic full-text index introduced in 1973 by Weiner [74], providing a pow-
erful data structure that requires optimal space in the non-compressed sense, and supports
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the counting of the occurrences of an arbitrary pattern P in optimal O(|P |) time, as well as
to locating these occ occurrences in O(|P |+ occ) time, which is also optimal.

Let us consider a text T [1, n], with a special end-marker T [n] = $ that is lexicographically
smaller than any other character in T . We define a suffix of T starting at position i as
T [i, n]. The suffix tree is a digital tree containing every suffix of T . The root corresponds to
the empty string, every internal node corresponds to a proper prefix of (at least) two suffixes,
and every leaf corresponds to a suffix of T . Each unary path is compressed to ensure that the
space requirement is O(n log n) bits, and every leaf contains a pointer to the corresponding
position in the text. Figure 2.5 shows an example.

To find the occurrences of an arbitrary pattern P in T , the algorithm begins at the root
and follows the path corresponding to the characters of P . The search can end in three
possible ways:

i At some point there is no edge leaving from the current node that matches the characters
that follows in P , which means that P does not occur in T ;

ii we read all the characters of P and end up at a tree node, which is called the locus of
P (we can also end in the middle of an edge, in which case the locus of P is the node
following that edge), then all the answers are in the subtree of the locus of P ; or

iii we reach a leaf of the suffix tree without having read the whole P , in which case there is
at most one occurrence of P in T , which must be checked by going to the suffix pointed
to by the leaf and comparing the rest of P with the rest of the suffix.

Figure 2.5: Suffix tree of the text “alabar_a_la_alabarda$” [58].
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2.9 Suffix Arrays

The suffix array [51] is also a classic full-text index that allows us to efficiently count and
find the occurrences of an arbitrary pattern in a given text.

The suffix array of T [1, n] = t1t2 . . . tn is an array SA[1, n] of pointers to every suffix
of T , lexicographically sorted. More specifically, SA[i] points to the suffix T [SA[i], n] =
tSA[i]tSA[i]+1 . . . tn, and it holds that T [SA[i], n] < T [SA[i + 1], n]. The suffix array requires
ndlog ne bits in addition to the text itself.

To find the occurrences of P using the suffix array, it is important to notice that every
substring is the prefix of a suffix. In the suffix array the suffixes are lexicographically sorted,
so the occurrences of P will be in a contiguous interval of SA, SA[sp, ep], such that every
suffix tSA[i]tSA[i]+1 . . . tn, for every sp ≤ i ≤ ep, contains P as a prefix. This interval is easily
computed using two binary searches, one to find sp and another one to find ep. Algorithm 1
shows the pseudo-code, which takes O(|P | log n) time to find the interval. Figure 2.6 shows
an example.

sp ← 1;
st ← n+ 1;
while sp < st do

s← b(sp+ st)/2c;
if P > TSA[s],SA[s]+m−1 then

sp ← s+ 1;
else

st ← s;
ep ← sp− 1;
et← n;
while ep < et do

e← d(ep+ et)/2e;
if P = TSA[e],SA[e]+m−1 then

ep← e;
else

et← e− 1;
return [sp, ep]

Algorithm 1: Binary search used to find the interval associated with the pattern P
in the suffix array SA of T . There are ep− sp+ 1 occurrences of P .

2.10 The Burrows-Wheeler Transform (BWT)

The Burrows-Wheeler transform (BWT) of a text T is a reversible transformation of T which
is usually more easily compressible than T itself.
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T = a l a b a r _ a _ l a _ a l a b a r d a $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

21 7 12 9 20 11 8 3 15 1 13 5 17 4 16 19 10 2 14 6 18A =
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 2.6: Suffix array of the text “alabar_a_la_alabarda$”. The shaded interval corre-
sponds to the suffixes that begin with “la”.

Let us consider the suffix array of T , SA[1, n]. The BWT of T , T bwt, is defined as follows:
when SA[i] 6= 1 tbwti = tSA[i]−1, otherwise tbwti = tn = $. In other words, the BWT can be
obtained beginning with an empty sequence, to which we will append the character preceding
each suffix we found in the suffix array.

Another view of the BWT emerges from a matrix M that contains the sequence ti,nt1,i−1

in the i-th row. If we sort the rows of the matrix in lexicographical order, the last column of
the resulting matrix is the BWT of T . This can be seen in Figure 2.7

In order to obtain the inverse of the BWT it will be necessary to compute functions that
allow us to map the last column of M to the first one. For this purpose, let us define F
as the first column of M , and L = T bwt the last one. Some useful functions in this chapter
are CBWT and Occ, which are defined as follows: CBWT (c) is the number of occurrences in
T of characters alphabetically smaller than c; and Occ(c, i) is the number of occurrences of
character c in L1,i, that is, Occ(c, i) = rank c(L, i) = rank c(T

BWT , i). Now we are ready to
define a function called LF-mapping, such that LF (i) is the position in F where Li appears. It
has been proved [17,26] that LF can be computed as follows: LF (i) = CBWT (Li)+Occ(Li, i).

It is straightforward to obtain the original text from T bwt using the LF-mapping : We know
that the last character of T is $, and F1 = $ because $ is smaller than any other character.
By construction of M , the character that precedes Fi in the text is Li, thus we know that
the character preceding $ in the text is L1. In the example shown in Figure 2.7, this is an
a. Now we compute LF (1) in order to obtain the position of that a in F and we will obtain
that the preceding character in T is LLF (1). In general, we consider T [n] = $ and s = 1 and
then for each k = n− 1 . . . 1, we do s← LF (s) , T [k]← T bwt[s].

2.11 Self-Indexes

A self-index is a data structure built in a preprocessing phase of a text T , that is able to
answer the following queries for an arbitrary pattern P :

• Count(P ): Number of occurrences of pattern P in T .
• Locate(P ): Position of every occurrence of pattern P in T .
• Access(i): Character ti.
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alabar_a_la_alabarda$

labar_a_la_alabarda$a

abar_a_la_alabarda$al

bar_a_la_alabarda$ala

ar_a_la_alabarda$alab

r_a_la_alabarda$alaba

_a_la_alabarda$alabar

a_la_alabarda$alabar_

_la_alabarda$alabar_a

la_alabarda$alabar_a_

a_alabarda$alabar_a_l

_alabarda$alabar_a_la

alabarda$alabar_a_la_

labarda$alabar_a_la_a

abarda$alabar_a_la_al

barda$alabar_a_la_ala

arda$alabar_a_la_alab

rda$alabar_a_la_alaba

da$alabar_a_la_alabar

a$alabar_a_la_alabard

$alabar_a_la_alabarda

$alabar_a_la_alabarda

_a_la_alabarda$alabar

_alabarda$alabar_a_la

_la_alabarda$alabar_a

a$alabar_a_la_alabard

a_alabarda$alabar_a_l

a_la_alabarda$alabar_

abar_a_la_alabarda$al

abarda$alabar_a_la_al

alabar_a_la_alabarda$

alabarda$alabar_a_la_

ar_a_la_alabarda$alab

arda$alabar_a_la_alab

bar_a_la_alabarda$ala

barda$alabar_a_la_ala

da$alabar_a_la_alabar

la_alabarda$alabar_a_

labar_a_la_alabarda$a

labarda$alabar_a_la_a

r_a_la_alabarda$alaba

rda$alabar_a_la_alaba

F L = TBWT

Figure 2.7: Matrix M to obtain the BWT of the text T = “alabar_a_la_alabarda$”. Note
that the last column L = “araadl_ll$_bbaar_aaaa” is T bwt and the first one, F , corresponds
to the characters pointed by the suffix array of the text.
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The last query means that the self-index provides random access to the text, thus it is a
replacement for the text. If the space requirement of a self index is proportional to the space
requirement of a compressed representation of the text, then the self-index can be thought
of as a compressed representation of T and as a full-text index of T at the same time.

There are mainly three families of self-indexes, namely the FM-Index [26, 29, 50, 58], the
Compressed Suffix Array [38, 39, 66, 67], and the LZ-Index [3, 27, 46, 57]. For every family
there are many variations, and there have been many works [20, 22, 24, 25, 58] showing that
the choice of the best self-index, both in theory and in practice, will depend on the scenario
(which kind of data is going to be indexed, which kind of query we will use more often, etc.).

For some document retrieval applications of self-indexes we will need not only to answer
the queries defined above, but also need to simulate the suffix array; that is, to compute SA[i]
and its inverse, SA−1[i] , efficiently. We will focus on those families of self-indexes that are
capable of such computation, namely the Compressed Suffix Array and the FM-Index. Table
2.1 briefly sketches their space and time requirements. We will refer to any of the members
of those two families as CSA.

Index Size tSA search(P )
CSA [66] 1

ε
n(H0 + 1) + o(n log σ) O(logε n) O(|P | log n)

CSA [38] (1 + 1
ε
)nHk + o(n log σ) O(logε n) O(|P | log σ + polylog(n))

FM-Index [29] nHk + o(n log σ) O(log1+ε n) O(|P | log σ
log logn

)

Table 2.1: Summary of some of the main self-indexes that will be useful for this thesis, and
their (simplified) time and space complexities. The size is expressed in bits, tSA is the time
required to compute either SA[i] or SA−1[i], and search(P ) is the time required to compute
the [sp, ep] interval. ε is any constant greater than 0.

2.11.1 FM-Index and Backward Search

The FM-Index is the common name for a family of self-indexes whose core is the Burrows-
Wheeler Transform (BWT), which can be used to find the occurrences of the pattern and to
recover the text itself. The BWT can be compressed using many techniques. Depending on
the choice made to represent the BWT, different space-time trade-offs emerge [26,29,50,58].

Backward Search and Burrows-Wheeler Transform

We have shown in Section 2.9 how to find the occurrences of an arbitrary pattern P =
p1p2 . . . pm in a text T using the suffix array of T , SA. Backward search allows us to do the
same, but this time using a different approach. The first step is to find the interval [spm, epm]
in SA pointing to every suffix beginning with the last character of P , pm.

The function CBWT , defined in Section 2.10, allows us to find this interval using the
following identity: [spm, epm] = [CBWT (pm) + 1, CBWT (pm + 1)]. Now, given [spm, epm], we
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need to find [spm−1, epm−1], the interval in the suffix array pointing to those suffixes that begin
with pm−1pm. Note that [spm−1, epm−1] is a subinterval of [CBWT (pm−1)+1, CBWT (pm−1 +1)].

In general, given [spi+1, epi+1], we need to find [spi, epi]. The key tool for this purpose is
the LF function defined in Section 2.10. We will use the fact that the occurrences of pi in
L[spi+1, epi+1] appear contiguously in F , preserving their relative order. In order to find the
new interval we would like to find the first and the last occurrence of pi in L[spi+1, epi+1].
Thus, we are looking for b and e such that Lb = pi and Le = pi are the first and the last
occurrence of pi in L[spi+1, epi+1], respectively. Then, LF (b) and LF (e) are the first and the
last row in F that begins with pi followed by pi+1 . . . pm, that is, spi = LF (b) and epi = LF (e).
Let us show that we do not need to know the precise values of b and e:

LF (b) = CBWT (Lb) + rankLb
(T bwt, b) (2.1)

= CBWT (pi) + rank pi(T
bwt, b) (2.2)

= CBWT (pi) + rank pi(T
bwt, spi+1 − 1) + 1. (2.3)

Equation (2.1) is a consequence of the properties shown in Section 2.10. Equation (2.2)
holds because the character that appears at the position b of T bwt is precisely the character
that we are looking for, pi. Finally, Equation (2.3) holds because b is the first occurrence
of pi in the interval. Analogously, for LF (e) we know that the occurrences of pi up to the
position e are the same up to the position epi+1 because by definition e is the last position
in L the range [spi+1, epi+1] of an occurrence in pi. Therefore, it holds

LF (e) = CBWT (pi) + rank pi(T
bwt, epi+1). (2.4)

The pseudo code of the backward search is shown in Algorithm 2. Figure 2.8 shows an
example.

sp ← CBWT (pm) + 1;
ep ← CBWT (pm + 1);
for i← |P | − 1 to 1 do

sp ← CBWT (pi)+ rankpi(T
BWT ,pi,sp −1) + 1;

ep ← CBWT (pi)+ rankpi(T
BWT ,pi,ep );

if sp > ep then
return φ

return [sp, ep]

Algorithm 2: Backward search of suffixes that begin with P1,m.

Encoding the Burrows-Wheeler Transform

If we store CBWT as a plain array, it requires σ log n bits. The search time of Algorithm 2
is dominated by the time required to calculate 2m times the function rank pi(T

bwt, c). There
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aaaa $alabar_a_la_alabarda

raaa _a_la_alabarda$alabar

aaaa _alabarda$alabar_a_la

aaaa _la_alabarda$alabar_a

daaa a$alabar_a_la_alabard

laaa a_alabarda$alabar_a_l

_aaa a_la_alabarda$alabar_

l aaaabar_a_la_alabarda$al

laaa abarda$alabar_a_la_al

$aaa alabar_a_la_alabarda$
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Figure 2.8: Backward search of the pattern “ala” in the text “alabar_a_la_alabarda$” using
the BWT.
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are several proposals of encoding techniques for the BWT that allow one to compute rank of
characters quickly [26,28,29,49,50,58]. One of the most successful encoding schemes for that
purpose is the wavelet tree. The wavelet tree was used by Ferragina et al. [28] to develop
a variant of the FM-Index, the Alphabet Friendly FM-Index [28], and also by Mäkinen and
Navarro to develop the Run Length FM-Index (RL-FMI) [49]. Both indexes count the
occurrences of a pattern in time O(m log σ) and use space proportional to the k-th order
entropy of the text.

Later, Mäkinen and Navarro [50] showed that using a wavelet tree that encodes its bitmaps
using zero-order entropy [65] is enough to encode T bwt using nHk(T )+o(n log σ) bits, for any
k ≤ α log σ and constant α ≤ 1, without any further refinement. Later, Claude and Navarro
showed the practicality of this scheme [21].

2.11.2 CSA based on Function Ψ

A different line of research [38, 39, 66, 67] is based on the function Ψ, which is the inverse of
the LF function used in the FM-Index (see Sections 2.10 and 2.11.1). Function Ψ maps the
suffix tSA[i],n to the suffix tSA[i]+1,n inside SA.

Grossi and Vitter’s [39] representation of the suffix array reduces the space requirement
from n log n to O(n log σ) bits. However, to find the occurrences of a pattern P they still
need access to the text T . Sadakane [66, 67] proposes a representation that allows one to
efficiently find the occurrences P without accessing T at all. The search algorithm is carried
out in a way very similar to the binary search algorithm shown in Section 2.9, emulating the
access to SA and T with the compressed structures instead of accessing the original ones.

The main data structures required by the CSA are the function Ψ, the array CBWT defined
in Section 2.10, and samplings of the suffix array and inverse suffix array. Sadakane proposed
a hierarchy to store the data structures using bitmaps to signal which values are stored in
the next level. For the sake of clarity, we present the CSA in a more practical fashion, closer
to the actual implementation of Sadakane.

Given the suffix array SA of T , the function Ψ is defined so that SA[Ψ(i)] = SA[i] + 1, if
SA[i] < n. When SA[i] = n it is defined SA[Ψ(i)] = 1, so Ψ is actually a permutation. This
definition of Ψ allows one to traverse (virtually) the text from left to right. This is done
by jumping in the suffix array domain from the position that points to ti to the position
that points to ti+1. Because T is not stored we simulate its access on the suffix array, and
we need a way to know which is the corresponding character in the text. That is, given a
position i, we need to know the character T [SA[i]]. The function CBWT (recall Section 2.10)
is useful for this purpose. If tSA[i] = c, then CBWT (c) < i ≤ CBWT (c + 1). However, instead
of storing CBWT itself Sadakane uses a bitmap newF [1, n] such that newF [1 + C[i]] = 1
for every i ∈ {1, . . . , σ}, and an array S[1, σ] that stores in S[j] th j-th different character
(in lexicographic order) appearing in T . With these structures we can compute the desired
character c in constant time with the following formula: c = S[rank(newF, i)]. Finally,
samples of the suffix array an its inverse are stored in arrays SA′ and SA′−1 respectively.
The sampling is regular on the text: They mark one text position out of log1+εn for a given
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constant ε > 0, and collect the SA values pointing to those positions in the array SA′. The
corresponding inverse SA−1 values are also collected in SA′−1. In order to find out if a given
value SA[i] is sampled or not, they store a bitmap mark[1, n] such that mark[i] = 1 if and
only if the SA[i] value is stored in SA′.

In order to reconstruct a substring of length l starting from position i, T [i, i + l − 1] we
need to find the rightmost sample of the text before position i. This position is bi/ log1+ε nc.
Using the (sampled) inverse suffix array it is possible to find the position in the suffix array
that points to this sample. That is p = SA′−1[bi/ log1+ε nc]. Then, we iteratively apply
function Ψ up to reaching the position p′ in the suffix array that points to T [i]. That is
p′ = Ψr(p), where r = i− bi/ log1+ε nc log1+ε n.

To obtain the first character of the substring we use ti = S[rank(newF, p′)]. Then we
move (virtually) to the right with p′′ = Ψ(p′) so we obtain ti+1 = S[rank(newF, p′′)]. After
repeating this procedure l times we obtain the desired substring T [i, i + l − 1]. The time is
l+ log1+ε n times the cost of calculating Ψ and the rank functions. If we have constant time
access for both we are able to retrieve any substring of length l in O(l + log1+ε n) time.

Given a pattern P , the search algorithm is essentially the same shown in Section 2.9:
Two binary searches are made on the suffix array, comparing the current position with the
pattern. Those binary searches give us the begin and the end of the [sp, ep] interval.

Given a position s in the suffix array domain, to find the character of the text corre-
sponding to tSA[s], we compute tA[s] = S[rank(newF, s)] in constant time. In this way we can
extract as many characters of the suffix as needed to complete the lexicographic comparison
with P . Therefore, the desired interval [sp, ep] is obtained in time O(|P | log n).

To locate each of the occurrences the procedure is as follows: given a position p in SA[sp, ep]
we apply Ψ recursively until we find the next position p′ = Ψr(p) marked in mark. Then,
SA[p] = SA[Ψr(p)]−r = SA′[rank(mark,Ψr(p))]−r. Therefore, locating the occ = ep−sp+1
occurrences of P in T requires O(m log n+ occ log1+ε n) time.

The samplings and marking array requireO(n/ logε n) bits. The structures used to emulate
CBWT , that is, newF and S, require n+ o(n) and σ log σ bits, respectively.

The most space-consuming structure is Ψ. If we stored it in plain form it would require
n log n bits. Grossi and Vitter [39] showed that Ψ is monotonically increasing in the areas of
SA that point to suffixes starting with the same character, and therefore it can be encoded
in reduced space. One possibility [67] is to use Elias-δ codes to represent Ψ. This requires
nH0(T ) +O(n log log σ) bits, and supports the computation of Ψ(i) in constant time. In this
way, the CSA requires nH0(T ) + O(n log log σ) bits of space. Grossi, Gupta and Vitter [38]
reduced the space to (1+ 1

ε
)nHk+o(n log σ), however the time required for searching a pattern

raises to O(|P | log σ + polylog(n)).
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2.12 Information Retrieval Concepts

In this section we sketch some basic concepts of Information Retrieval. In particular we
present the Inverted Index, which is the main data structure behind most information retrieval
systems.

Inverted indexes have been very successful for natural languages. This success is closely
related with the structure of the inverted index itself: it can be roughly explained as a set
of lists that store the occurrences of every different word that appears in the collection.
Therefore, the inverted index approach requires that the documents are tokenizable into
words. Words are referred to as index terms because the process of tokenization is not
straightforward, and deciding which substrings are going to be considered as retrievable
units (i.e., conceptually meaningful) is also part of the indexing process.

2.12.1 Inverted Indexes

The inverted index (or inverted file) is probably the most important data structure for docu-
ment retrieval in information retrieval systems. It has proven to work very well for document
collections of natural language. The inverted index is well suited to answer word queries,
bag-of-word queries, proximity queries, and so on.

The inverted index stores mainly two data structures: (1) The vocabulary V (also called
lexicon or dictionary), which stores all the different words that exist in the collection and (2)
the occurrences (also called posting lists or posting file), which stores for each word of the
vocabulary the list of documents where this word occurs.

The inverted index we have presented so far is not powerful enough to answer more
sophisticated queries. It will only retrieve the documents in which a word appears

Usually the inverted lists are enriched with extra information, such as the positions in the
document where the word appears (to enable, for example, proximity queries). If no such
information is provided, the model is usually referred as bag of words. In order to return
documents most likely to be relevant for the user, some measure of relevance can be stored
within each document in the inverted lists. The inverted lists are usually sorted in decreasing
order according to a relevance measure, thus enabling fast answers to queries.

2.12.2 Answering queries

When the query pattern is formed only by one word, the inverted index simply looks for the
inverted list corresponding to the query word, and retrieves those documents.

When the queries are composed by two or more words we need to consider, at least,
two scenarios: conjunctive (AND operator) and disjunctive (OR operator) queries. When
a conjunctive query is performed, the documents in the output must contain all the query
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patterns. When a disjunctive query is performed, the documents to be delivered contain at
least one of the query terms.

In order to answer conjunctive queries, the inverted lists of all the query terms are obtained.
Then, the intersection of those lists needs to be computed. There are many algorithms to
compute such kind of intersections efficiently, depending on the nature of the lists [4,5,8,9,71].
To answer disjunctive queries the answer is obtained computing the union of the lists of all
the query terms.

If the lists are sorted according to a given relevance measure, answering a top-k query
is not difficult when the pattern is formed only by one query term: once the proper list is
found, the first k documents are retrieved. To answer top-k queries for multiple-word queries
the intersection and union algorithms become more complex [4].

2.12.3 Relevance Measures

The existence of a ranking among the documents is critical for information retrieval systems.
For instance, a ranking is needed to define the notion of top-k queries. Because information
systems aim to retrieve meaningful information, the quality of such a ranking is also a very
important matter. There are many relevance measures available in the literature. We will
briefly review the most fundamentals measures.

Term frequency is probably the simplest relevance measure, and it is just the number of
times that a given word wi appears in certain document j, TF i,j. Several variants of this
measure have been proposed, like normalized term frequency, which is TF i,j/|dj|, where |dj|
is the length of the document j.

Plain term frequency has some drawbacks on queries formed by various words. Consider
a word wi that appears in every document of the collection, and it appears the same number
of times in every one of them (think about articles or prepositions). Then consider another
word wj that only appears in one document, and it appears the same number of times as wi.
If we rank the documents for a query following only term frequency we will assign the same
rank to both results. A measure that aims to overcome this problem is the Inverse Document
Frequency IDF i = log |D|

DF i
, where DF i is the total number of documents containing the term

wi and |D| is the number of documents. IDF attempts to measure how common or rare
the term wi is across all documents. This is combined with term frequency, into a relevance
measure that has become very popular, namely TF × IDF = TF i,j × IDF i.

There are other relevance measures that are more sophisticated and arise from different
probabilistic models, such as BM25. These are usually variants of the TF × IDF measure.
In some contexts static ranks are also used (alone or as a part of the relevance formula). A
popular example is PageRank. The measures we have presented so far correspond to the
vectorial model, however there are other less popular approaches, such as latent semantic
indexing (LSI), probabilistic models, etc. [4].

Despite all the variations, the contributions of this thesis are focused on one-word queries.
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In such scenario, IDF is irrelevant and we will use TF as the relevance criterion.

2.12.4 Heaps’ Law

A very important issue for inverted indexes is the number of different words that appear in
the document collection, that is, the size of the vocabulary V . In information retrieval the
standard model to predict the growth of the vocabulary size in natural language texts is the
assumption of Heaps’ Law [4,40]. Heaps’ Law states that the size of the vocabulary of a text
of n words is given by |V | = Knβ = O(nβ), where K and β depend on the particular text. K
is typically between 10 and 100, and β is a positive number smaller than one [4]. Therefore,
the size of the vocabulary is sub-linear in the size of the text.

Heaps’ law is exactly what makes inverted indexes feasible: term indexes are the basic
token of queries, and it is possible to precompute and store the answer for every different
token in linear space. When a query is made of many tokens the task at query time is
to obtain the desired results using the precomputed results for each term. However, if we
want to enable queries in which the basic terms (or words) are arbitrary substrings of the
collection, Heaps’ Law does not apply. Instead, the size of the vocabulary becomes quadratic
and the approach is not feasible anymore.
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Chapter 3

Full Text Document Retrieval

The self-indexes described in Chapter 2 are built over a text T to solve pattern matching
queries, that is, to count and locate the occurrences of an arbitrary pattern P . A more
interesting query for information retrieval would consist in, given a pattern P , finding the
documents where P appears (all of them, or the most relevant ones). Although relevance
can be defined in many ways, most of the relevance criteria are based on the term frequency
(TF ), that is, the number of occurrences of P in a given document.

From now on we will consider a collection of D documents D = {d1, d2, . . . , dD},
∑D

1 |di| =
n, and we will call T their concatenation. We will assume that every document i ends with
a unique end-marker $i, satisfying $i < $j iff i < j and $i < c,∀c ∈ Σ. For an arbitrary
pattern P , the following queries are defined:

• Document Listing(P ): Return the ndoc documents that contain P .
• Document Listing(P ) with frequencies: Return the ndoc documents that contain P ,

with the frequency (number of occurrences) of P in each document d, TFP,d.
• Top(P ,k): Return k documents where P occurs most times. That is, the k documents

with highest TFP,d value.

For the context of natural language collections and word queries, the inverted index (Sec-
tion 2.12.1) will solve these queries very efficiently. However, when the query pattern may be
an arbitrary concatenation of characters, the inverted index approach is not useful. In the
following sections we cover the previous work that addresses these queries in the scenario of
general sequences.

3.1 Non-Compressed Approach

Muthukrishnan [56] proposed the first solution to the document listing problem that is
optimal-time and linear-space. His solution is built upon Weiner’s suffix tree (see Section
2.8), and introduces a new data structure for document retrieval problems: the so-called
document array.
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Mutukrishnan’s solution builds the generalized suffix tree of D, which is a suffix tree
containing the suffixes of every document in D. This is equivalent to the suffix tree of the
concatenated collection, T . This structure requires O(n log n) bits.

To obtain the document array of D, DA[1, n], we consider the suffix array of T , SA[1, n]
(Section 2.9) and, for every position pointed from SA[i], we store in DA[i] the document
corresponding to that position. The document array requires n logD bits.

Up to this point, the query can be answered by looking for the pattern P in the suffix tree
in O(|P |) time, determining the range DA[sp, ep] of the occ occurrences of P in DA, and then
reporting every different document in DA[sp, ep]. That would require at least O(|P | + occ)
time. The problem is that occ = ep − sp + 1 can be much bigger than ndoc, the number
of different documents where P occurs. An optimal algorithm would answer the query in
O(|P |+ ndoc) time.

For this purpose, Muthukrishnan [56] defines an array C, which is built from DA, and that
for each document stores the position of the previous occurrence of the same document in
DA. Thus, C can be seen as a collection of linked lists for every document. More formally, C
is defined as C[i] = max{j < i,DA[i] = DA[j]} or C[i] = −1 if such j does not exist. C must
be enriched to answer range minimum queries (RMQs, Section 2.7). The space required by
the C array and the RMQ structure is O(n log n) bits.

To understand Mutukrishnan’s [56] algorithm it is important to note that, for every dif-
ferent document present in DA[sp, ep], there exists exactly one position in C pointing to a
number smaller than sp. Those positions are going to be used to report the corresponding
document. The algorithm works recursively as follows: find the position j with the smallest
value in C[sp, ep] using the RMQ structure. If C[j] ≥ sp, output nothing and return. If
C[j] < sp, return DA[j] and continue the procedure with the intervals DA[sp, j − 1] and
DA[j + 1, ep] (looking in both subintervals for positions where C points to positions smaller
than the original sp boundary). This algorithm clearly reports each distinct document DA[j]
in [sp, ep] where C[j] < sp, and no document is reported more than once. The total space
required is O(n log n) bits, which is linear 1. The total time is O(|P |+ndoc), which is optimal
for document listing.

An optimal solution to top-k document retrieval has required more work. Hon et al. [43]
achieved linear space and O(|P |+k log k) time. They enrich the suffix tree of T with bidirec-
tional pointers that describe the subgraph corresponding to the suffix tree of each individual
document. It is shown that, if P corresponds to the suffix tree node v, then each distinct
document where P appears has a pointer from the subtree of v to an ancestor of v. Thus
they collect the pointers arriving at nodes in the path from the root to v and extract the k
with most occurrences from those candidates. Navarro and Nekrich [59] achieve linear-space
and optimal time O(|P |+ k) by reducing this search over candidates to a geometric problem
where we want the k heaviest points on a three-sided range over a grid. In both cases, the
space is several times that of the suffix tree, which is already high.

1Using the standard word random access model (RAM); the computer word size w is assumed to be such
that log n = O(w).
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3.2 Wavelet Tree Based Approach

Although the space of Mutukrishnan’s solution is linear in the input size (i.e., O(n) machine
words) it is still impractical on a collection that requires only n log σ bits. There have been
various approaches to reduce the space of this solution. The suffix tree or suffix array of
T can be easily replaced by any of the self-indexes presented in Section 2.11. As stated in
Section 2.11, we will refer to any of those indexes as a compressed suffix array (CSA). All
the algorithms presented in this section will use the CSA to obtain the interval SA[sp, ep]
corresponding to the suffixes beginning with P , in a time search(P ) that depends on the
particular CSA. The challenging part is to reduce the space of the representation of the
arrays DA and C, and how to answer document retrieval queries given the [sp, ep] interval.
The rest of this chapter surveys the main techniques for document listing and top-k queries.

3.2.1 Emulating Muthukrishnan’s algorithm

Mäkinen and Välimäki [72] were the first in using a wavelet tree (Section 2.3.3) to represent
DA. While the wavelet tree takes essentially the same space of the plain representation,
n logD+ o(n logD) bits, they showed that it can be used to emulate the array C, using rank
and select on DA (Section 2.3.1), with

C[i] = selectDA[i](DA, rankDA[i](DA, i)− 1).

Therefore C is not needed anymore. The time for document listing becomes O(search(P ) +
ndoc logD). The wavelet tree also allows them to compute the frequency of P in any docu-
ment d as TFP,d = rankd(DA, ep)− rankd(DA, sp− 1), in O(logD) time as well. The RMQ
data structure is still necessary to emulate Muthukrishnan’s algorithms.

3.2.2 Document Listing with TF via Range Quantile Queries

Later, Gagie et al. [33] showed that the wavelet tree is powerful enough to get rid of the whole
Muthukrishnan’s algorithm. They defined a new operation over wavelet trees, the so-called
range quantile query (RQQ). Given the wavelet tree of a sequence DA, a range quantile query
takes a rank k and an interval DA[sp, ep] and returns the kth smallest number in DA[sp, ep].
To answer such query RQQ(DA[sp, ep], k), they begin in the root of the wavelet tree and
compute the number of 0s in the interval corresponding to DA[sp, ep], nz = rank 0(Broot, ep)−
rank 0(Broot, sp − 1), where Broot is the bitmap associated to the root node. If nz ≥ k, then
the target number will be found in the left subtree of the root. Therefore, the algorithm
updates sp = rank 0(Broot, sp − 1) + 1, ep = rank 0(Broot, ep), and continues on the left
subtree. If nz < k, the target is in the right subtree, so the algorithm updates k = k − nz,
sp = rank 1(Broot, sp− 1) + 1 and ep = rank 1(root, ep) and recurses to the right. When a leaf
is reached, its corresponding value is the kth smallest value in the subinterval, therefore it is
returned.

To solve the document listing problem, Gagie et al. considered the wavelet tree of the
document array, and successive applications of the range quantile query. The first document
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is obtained as d1 = RQQ(DA[sp, ep], 1), the second is d2 = RQQ(DA[sp, ep], 1 + TFP,d1),
and in general dj = RQQ(DA[sp, ep], 1 +

∑
i<j TFP,di). The frequencies are computed also

in O(logD) time, TFP,dj = rankdj(D, ep) − rankdj(D, sp − 1). Each range quantile query
takes O(logD) time, therefore the total time to enumerate all the documents in DA[sp, ep] is
O(ndoc logD).

3.2.3 Document Listing with TF via DFS

Culpepper et al. [23] pointed out that the essence of Gagie et al.’s algorithm was a depth-first
search, and by recasting the implementation the performance was improved toO(ndoc log D

ndoc
)

time. They also made a practical improvement over Gagie et al. algorithm that obtains the
frequencies for free.

The algorithm begins in the bitmap corresponding to the root of the wavelet tree, Broot,
and calculates the number of 0s (resp. 1s) in Broot[sp, ep], n0 (resp. n1), using two rank
operations. If n0 (resp. n1) is not zero, the algorithm recurses to the left (resp. right) child
of the node. When the algorithm reaches a leaf, the document value encoded in that leaf is
reported, and if the leaf was a left child (resp. right), then the n0 (resp. n1) value calculated
in its parent is reported as the document frequency.

The DFS traversal visits the same nodes that are visited by the successive range quantile
queries. However, the range quantiles visit some nodes many times (e.g., the root is visited
ndoc times) while the DFS visits them at most twice, avoiding multiple visits to some nodes.
The DFS traversal requires O(ndoc log D

ndoc
) time to list all the documents in the interval [32].

Figure 3.1 shows an example.

3.2.4 Top-k via Quantile Probing

Culpepper et al. [23] explored different heuristics to solve the top-k document retrieval prob-
lem using a wavelet tree. Quantile probing is based on the observation that in a sorted array
X[1, . . . ,m], if there exists a d ∈ X with frequency larger than f , then there exists at least
one j such that X[j · f ] = d. Instead of sorting the document array, Culpepper et al. use
range quantile queries to access the document with a given rank in DA[sp, ep].

The algorithm makes successively more refined passes using the above observation, and
stores candidates in a min-heap of size k. The first pass finds the document with rank m/2,
wherem = ep−sp+1, computes its frequency, and inserts it into the heap. In the second pass,
the elements probed are those with ranks m/4 and 3m/4, their frequencies are computed,
and each is inserted in the heap, if not already present. If the heap exceeds the size k, then
the smallest element of the heap is removed. Each pass considers the new quantiles of the
form jm/2i. If after the ith pass the heap has k elements, and its minimum element has a
frequency larger thanm/2i+1, then the candidates in the heap are the actual top-k documents
and the algorithm finishes.
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Figure 3.1: Wavelet tree representation of a document array and depth-first search traversal
to perform document listing with frequencies. Shaded regions show the intervals [sp, ep]
mapped in each node.

3.2.5 Top-k via Greedy Traversal

Among the top-k techniques presented by Culpepper et al. [23] using a wavelet tree, their
so-called “greedy traversal” was the best in practice.

The key idea is that, if a document has a high TFP,d value, then the number of bits used
in the bitvectors on the path to that document leaf in the wavelet tree should also be large.

By choosing the nodes to inspect in a greedy fashion (i.e., longer [sp, ep] intervals first)
the algorithm will first reach the leaf (and report its corresponding document) with highest
TF value. The next document reported will be the second highest score, and so on. Thus,
the documents will be reported in decreasing TF order until having output k documents. In
this way, depending on the distribution of frequencies of the documents, the algorithm can
avoid having to inspect a large part of the tree that would be explored if a depth-first search
had been performed. Although very good in practice, there are no time guarantees for this
algorithm beyond the DFS worst-case complexity, O(ndoc log(D/ndoc)).
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3.3 CSA Based Approach

A parallel development started with Sadakane [68]. He proposed to store a bitmap B[1, n]
marking with a 1 the positions in T where the documents start. B should be enriched to
answer rank and select queries (Section 2.3.1). Sadakane used the fact that DA can be easily
simulated using a CSA of T and the bitmap B, computing DA[i] = rank(B, SA[i]), using
very little extra space on top of the CSA: A compressed representation of B requires just
D log(n/D) +O(D) + o(n) bits, supporting rank in constant time (see Section 2.3.2).

To emulate Muthukrishnan’s algorithm, Sadakane showed that C can be discarded as well,
because just RMQ queries on C are needed. He proposed an RMQ structure using 4n+ o(n)
bits that does not need to access C (a more recent proposal adresses the same problem using
just 2n+ o(n) bits [30], see Section 2.7). Therefore, the overall space required for document
listing was that of the CSA plus O(n) bits. The time is O(search(P ) + ndoc · tSA), where
tSA is the time required by the CSA to compute SA[i] (Section 2.9). Both in theory and in
practice, this solution is competitive in time and uses much less space than those based on
wavelet trees, yet it only solves basic document listing queries.

Hon et al. [43] showed how to reduce the extra space to just o(n) by sparsifying the
RMQ structure, impacting the time with a factor logε n for listing each document, for some
constant 0 < ε < 1. To accomplish this, instead of building the RMQ structure over C, Hon
et al. build the RMQ structure over a sampled version of C, C∗. They consider chunks of
size b = logε n in C, and store in C∗ the smallest value of each chunk, that is, the leftmost
pointer. The queries are solved in a similar way: using the RMQ data structure they find all
the values in C∗[dsp/be, bep/bc] that are smaller than sp. Each such a value still corresponds
to an actual document to be reported, but now they need to check its complete chunk of
size b (as well as the two extremes of [sp, ep], not convering whole chunks) looking for other
values smaller than sp. Therefore, Hon et al. answer document listing queries using |CSA|+
D log(n/D) +O(D) + o(n) bits, and the total time becomes O(search(P ) + ndoctSA logε n).

3.3.1 Document Listing with TF via Individual CSAs

Sadakane [68] also proposed a method to calculate the frequency of each document: He stores
an individual CSA, CSAd, for each document d of the collection. By computing SA and SA−1

a constant number of times over the global CSA and that of document d, it is possible
to compute frequencies on document d. The idea behind his solution is to determine the
positions [spd, epd] in SAd corresponding to the suffixes beginning with P in document d, and
then report TFP,d = epd− spd + 1. The naive approach is, after solving the document listing
problem, for each document d in the output compute its frequency by looking for the pattern
in the corresponding CSA of the document d, CSAd. This would takeO(ndoc(search(P )+tSA))
time.

Sadakane improves that time by finding the leftmost and rightmost occurrences of each
document d in DA[sp, ep], and then mapping the extremes to SAd[spd, epd]. He defines an
array C ′ that is analogous to C. The array C is regarded as a set of linked lists for each
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document. C ′ represents the linked lists in the opposite direction, that is C ′[i] = min{j >
i,DA[j] = DA[i]} or D + 1 if no such j exists. To enumerate the rightmost indices j of all
distinct values in DA[sp, ep], Sadakane uses range maximum queries over C ′, which are solved
by using range minimum queries on the negative values −C ′[i]. As for C, C ′ is not stored
but only the RMQ structure over it.

Using these RMQ structures, for each document d in the output, Sadakane finds the
leftmost ld and the rightmost rd indices in [sp, ep] where DA[ld] = DA[rd] = d (a sorting step
of time O(ndoc log log ndoc) is needed to match the same documents d in both lists).

It is now possible to map these values to the corresponding positions [spd, epd] in SAd with
the following calculation: let x = SA[ld] and y = SA[rd] be the corresponding positions in
the text T . Those are calculated in time O(tSA) using the global CSA. We then obtain the
position z in T that corresponds to the beginning of the document d in constant time using
z = select(B, d). Then x′ = x − z and y′ = y − z are the positions in the document d that
correspond to x and y. Finally, spd = SA−1

d [x′] and epd = SA−1
d [y′] are computed using CSAd

in time O(tSA) . Figure 3.2 illustrates the mapping process.

f i r s t $ . . . $ l o r e m $ . . . $T =

1 1 1 1B =

z x′

x

Figure 3.2: Illustration of the relationship among global and document’s CSAs and how the
mapping is performed. SAd points to the positions in document d and SA points to positions
in T , the concatenation of documents. If x′ = SAd[j], and x = SA[j′] refer to the same suffix,
and z = select(B, d), then it holds that x = z + x′.

Thus, Sadakane solved the document listing with frequencies problem in O(search(P ) +
ndoc(tSA + log log ndoc)) time (resorting to a sorting algorithm of Anderssen et al. [1]). The
space needed is 2|CSA|+O(n) bits.

3.3.2 Top-k via sparsification

Hon et al. [43] proposed a new data structure with worst-case guarantees to answer top-k
queries. Their proposal is essentially a sampling of the suffix tree of T precomputing some
top-k answers and being sparse enough to require just o(n) extra bits.

Hon et al. consider a fixed value of k and a parameter g as the “group size”. They traverse
the leaves of the suffix tree from left to right, forming groups of size g, and marking the
lowest common ancestor (lca) of the leftmost and rightmost leaves of each group: lca(l1, lg),
lca(lg+1, l2g), and so on. Then, they do further marking to ensure that the set of marked
nodes is closed under the lca operation. In the first pass they mark n/g nodes, and the total
number of marked nodes becomes at most 2n/g. At each marked node v, they store a list
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called F-list with the k documents where the string represented by v appears most often,
together with the actual frequencies in those k documents. They also store the intervals of
leaves associated with the node, [spv, epv]. With all the marked nodes they form the so-
called τk tree, which requires O((n/g)k log n) bits. Fixing g = Θ(k log2+ε n), for an arbitrary
ε > 0, the space of the τk tree is O(n/ log1+ε). Adding the space required by the τk trees for
k = 1, 2, 4, 8, 16, . . ., the total amount of space is O(n/ logε n) = o(n) bits.

To answer a top-k query they first look for the pattern using the CSA, finding the interval
[sp, ep]. Now, they take k′ as the power of two next to k, k′ = 2dlog ke, and traverse τk′
looking for the node with the largest interval contained in [sp, ep], namely [L,R]. The k′
most frequent documents in [L,R] are stored in the F-list of the node, so attention is placed
on the documents not covered by the F-list. They examine each suffix array position sp, sp+
1, . . . , L−1, R+1, R+2, . . . , ep, and find out their corresponding document d in O(tSA) time
per position (using d = rank 1(B, SA[i])). These documents may potentially be the top-k
most frequent, so the next step is to calculate the frequency of each of those documents d,
in the range [sp, ep].

To obtain the frequencies efficiently, they notice that, for any position j in CSAd, it is
possible to identify the position j′ in CSA such that SAd[j] and SA[j′] refer to the same suffix
of document d. This is done via SA and SA−1 operations on both the global CSA and in CSAd
in O(tSA) time (and also constant number of rank end select operations on the bit-vector B)
as follows: The position in T where Td begins is simply z = select(B, d). Then the respective
position in T is given by x = z + CSAd(j). Finally, j′ = CSA−1(x). Figure 3.2 illustrates the
process.

Also they observe that the suffixes of document d have the same relative rank in SA
and SAd. Thus, for each position i in [sp, L) ∪ (R, ep], they first find SA[i] and thus its
corresponding document d. Then they perform an exponential search using CSA and CSAd
to find the range [spd, epd] in SAd that corresponds to those suffixes of d stored within [sp, ep]
in SA. The total time to compute spd and epd is O(tSA log n). Finally, they return epd−spd+1
as the frequency of document d in range [sp, ep].

This procedure is repeated at most 2g times because, by construction of τ , both [sp, L−1]
and [R + 1, ep] are at most of length g [43]. They find the frequencies of these documents,
each costing O(tSA log n) time, so the total time taken by this is O(tSA k log3+ε n). Once they
have this set of frequencies (those calculated and those they got from the F-list of v), they
report the top-k among them using the standard linear-time selection algorithm (in O(2g+k)
time), followed by a sorting (in O(k log k) time).

Summarizing, Hon et al.’s [43] data structure requires 2|CSA| + D log(n/D) + o(n) bits
and retrieves the k most frequent documents in O(search(P ) + k tSA log3+ε n) time, for any
ε > 0.

32



3.4 Hybrid Approach for top-k Document Retrieval

Gagie et al. [31] pointed out that in fact Hon et al.’s sparsification technique can run on
any other data structure able to (1) tell which document corresponds to a given value of the
suffix array, SA[i], and (2) count how many times the same document appears in any interval
SA[sp, ep].

A structure that is suitable for this task is the document array DA[1, n], however there is
no efficient method for task (2). A natural alternative is the wavelet tree representation of
DA. It uses n logD+o(n logD) bits and not only computes any DA[i] in O(logD) time, but it
can also compute operation rankd(DA, j) in O(logD) time too. This solves operation (2) with
rankDA[i](DA, ep)− rankDA[i](DA, sp− 1). With the obvious disadvantage of the considerable
extra space to represent DA, this solution improves on Hon et al.’s (Section 3.3.2) replacing
tSA log n by logD in the query time. They show many other combinations that solve (1) and
(2). One of the fastest uses Golynski et al.’s representation [35] of DA, which within the same
n logD + o(n logD) bits improves tSA log n to log logD in the time of Section 3.3.2. Very
recently, Hon et al. [42] presented new combinations in the line of Gagie et al., using also faster
CSAs. Their least space-consuming variant requires n logD + o(n logD) bits of extra space
on top of the CSA of T , and improves the time to O(search(P ) + k(log k + (log log n)2+ε)).
Although promising, this structure has not yet been implemented.

3.5 Monotone Minimal Perfect Hash Functions

A recent work by Belazzougui and Navarro [12] presented a new approach to document
retrieval based on monotone minimal perfect hash functions (mmphf) [10, 11]. Instead of
using individual CSAs or the document array DA to compute frequencies, they use a weaker
data structure that takes O(n log logD) bits of space.

A mmphf over a bitmap B[1, n] is a data structure able to answer rank 1 queries over B,
but only for those positions i where B[i] = 1. Whenever B[j] = 0 the result of rank 1(B, j)
is an arbitrary value. This means that the mmphf is unable to tell whether B[i] = 1 or 0.
As it cannot reconstruct B, the mmphf can be represented within less space than the lower
bounds stated in Section 2.3.1. One variant of mmphf data structure over B is able to answer
the limited rank query in constant time and requires O(m log log(n/m)) bits, where m is the
number of bits set in B. Another variant uses O(m log log log(n/m)) bits, and the query time
increases to O(log log(n/m)) [10].

Belazzougui and Navarro’s approach for document listing with frequencies is similar to
the method of Sadakane [68] (see Section 3.3.1). They use the CSA of the whole collection,
T , the RMQ structures over the C and C ′ arrays, but instead of the individual CSAs, they
make use of mmphfs.

For each document d they store in a mmphf fd the positions i such that DA[i] = d (i.e.,
fd(i) = rankd(DA, i) if DA[i] = d). Let nd be the frequency of document d in DA (which is
actually the length of document d), then this structure occupies

∑
dO(nd log log(n/nd)) bits,

33



which is O(n(logH0(DA) + 1)) = O(n log logD) bits.

In order to answer the queries, they proceed in the same way as Sadakane does (cf.
Section 3.3.1), first computing the interval SA[sp, ep] using the global CSA, and then using
the RMQ structures to find the leftmost and rightmost occurrences of each different document
in DA[sp, ep]. Then, for each document j with leftmost and rightmost occurrences li and ri,
its frequency is computed as TF = fj(ri)− fj(li) + 1 in constant time.

Let us now analyze their other variant, where the mmphfs use O(nd log log log n
nd

) bits.
By the log-sum inequality these add up to O(n log log logD) bits. The time to query fd is
O(log log n

nd
). To achieve the O(log logD) time in the worst case, they use constant-time mm-

phfs when n
nd
> D log logD. This implies that on those arrays they spend O(nd log log n

nd
) =

O( n
D log logD

log logD) = O(n/D) bits, as it is increasing with nd and nd < n
D log logD

. Adding
over all documents d, they have at most O(n) bits.

In summary, Belazzougui and Navarro [12] offer two solutions, both on top of the CSA
of the entire collection and the two RMQ structures of Sadakane [68]. The first one uses
O(n log logD) bits, and solves document listing with frequencies in time O(search(P ) +
ndoctSA). The second one requires O(n log log logD) bits and time O(search(P )+ndoc(tSA +
log logD)). The logD in the space complexities can be replaced by log(H0(DA)) + 1.

Furthermore, they also offer a solution for top-k document retrieval. Despite Gagie et
al. [31] (Section 3.4) pointed that Hon et al. solution may run on top of many data structures,
mmphfs are not able to compute arbitrary frequencies. Their solution enriches the τk trees
of Hon et al., so they give enough information to answer the top-k queries with the mmphf
instead of the individual CSAs. Their main result is a data structure that requires |CSA| +
O(n log log logD) bits and answers top-k queries in time O(search(P ) + tSAk log k log1+ε n)
for any ε > 0. They also make several other improvements over previous work, yet these are
mostly theoretical.

3.6 Experimental Setup

In this section we present the experimental setup that is going to be used in the rest of the
document. We will test the different techniques over four collections of different nature, such
as English, Chinese, biological, and symbolic sequences.

ClueChin A sample of ClueWeb09 (http://boston.lti.cs.cmu.edu/ Data/clueweb09), a collec-
tion of Chinese Web pages.

ClueWiki A sample of ClueWeb09 formed byWeb pages extracted from the EnglishWikipedia.
It is seen as a sequence of characters, ignoring word structure.

KGS A collection of sgf-formatted Go game records from year 2009
(http://www.u-go.net/gamerecords).

Proteins A collection formed by sequences of Human and Mouse proteins
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(http://www.ebi.ac.uk/swissprot).

Table 3.1 lists the main properties of each collection. To give an idea of the compressibility
ratio, we show the bits per cell (bpc) usage of their global CSA divided by log σ.

Collection Documents Characters Doc. length (avg.) CSA / log σ
ClueChin 23 2,294,691 99,769 5.34/7.99 = 0.68
ClueWiki 3,334 137,622,191 41,298 4.74/6.98 = 0.68

KGS 18,838 26,351,161 1,399 4.48/6.93 = 0.65
Proteins 143,244 59,103,058 413 6.02/6.57 = 0.92

Table 3.1: Collections

For the implementation of the basic succinct data structures, like bitmaps, wavelet trees,
etc. we resort to libcds library, available at http://libcds.recoded.cl.

For grammar compression, we use an implementation (www.dcc.uchile.cl/gnavarro/software).
that, although does not guarantee balancedness, has always produced a grammar of very small
height in our experiments.

For the implementation of RMQ data structures we resort to library sdsl, available at
http://www.uni-ulm.de/in/theo/research/sdsl.

We chose a very competitive CSA implementation, namely the WT-FM-Index available at
PizzaChili (http://pizzachili.dcc.uchile.cl/indexes/SSA). The space and time of the global
CSA is ignored in the experiments, as it is the same for all the solutions, but our choice is
relevant for the CSAd structures, where the chosen CSA poses a low constant-space overhead.

Our tests were run on an 4-core 8-processors Intel Xeon, 2GHz each, with 16GB RAM
and 2MB cache. The operating system is Ubuntu 10.04.4, kernel version 2.6.32 − 39. Our
code was compiled using GNU g++ version 4.4.3 with optimization -O3.

35



Chapter 4

Grammar Compression of Bitmaps

The first contribution of this work is a compressed representation of bitmaps with support for
rank and select queries, that takes advantage of repetitiveness. There are many representa-
tions of bitmaps with support for rank and select queries [19,45,54,63,65]. Some of those use
less space when the bitmap has few 1s [63], and some when the bitmap has few or many 1s, or
they are unevenly distributed [65]. However, none of them uses less space when the bitmap
is repetitive. Although our motivation is to handle arbitrary sequences supporting rank and
select (see Chapter 5), this type of compression might also have independent interest.

We focus on the algorithm RePair, explained in Section 2.5. RePair factors out repetitions,
thus our goal is to achieve efficient support for rank and select queries on a RePair compressed
sequence.

4.1 RePair Compressed Bitmaps

Let us consider a bitmap B[1, n], and its RePair representation: the compressed sequence C
(containing both terminal and nonterminal symbols) and its dictionary R. Let us consider
a variant that generates a balanced grammar [53, 70], of height O(log n). We define two
functions, namely ` and r, to compute the length and the number of 1s of the string of
terminals obtained when we expand a nonterminal. Let `(c) = 1 for terminals c, and for
nonterminals let `(Z) = `(X) + `(Y ) if Z → XY ∈ R. Likewise, let r(1) = 1, r(0) = 0 and
for non-terminals Z → XY ∈ R let r(Z) = r(X) + r(Y ). For each nonterminal Z added
to the dictionary we store also the length `(Z) and the number of 1s, r(Z), of the string of
terminals it expands to.

Additionally, we sample B at regular intervals s. Let L(i) = 1 +
∑i−1

j=1 `(C[j]) be the
starting position in B of the symbol C[i] when expanded. For each position B[i · s] we store
P [i] = (p, o, r), where p is the position in C of the symbol whose expansion will contain
B[i · s], that is, p = max{j, L(j) ≤ i · s}. The second component is the offset within that
symbol, o = i · s−L(p), and the third is the rank up to that symbol, r = rank 1(B,L(p)− 1).
Figure 4.1 shows an example.
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0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 1B

P (3,2,1) (6,1,4)

C Z X Z 1 Z Y Y

rule string ` r
X → 00 00 2 0
Y → X1 001 3 1
Z → XY 00001 5 1

Figure 4.1: An example of our RePair representation of bitmaps with sampling period s = 10.

4.2 Solving Rank and Select queries

To answer rank 1(B, i), we compute i′ = bi/sc and P [i′] = (p, o, r). We then start from C[p]
with position l = L(p) = i − o and rank r. From position p we advance in C as long as
l ≤ i. Each symbol of C can be processed in constant time while l and r are updated, since
we know `(Z) and r(Z) for any symbol Z = C[p′] Finally we arrive at a position p′ ≥ p so
that l = L(p′) ≤ i < L(p′ + 1) = l + `(C[p′]). At this point we complete our computation
by recursively expanding C[p′] = Z. Let Z → XY ∈ R, then if l + `(X) ≤ i we expand X;
otherwise we increase l by `(X), r by r(X), and expand Y . As the grammar is balanced, the
total time is O(s+ log n). Algorithm 3 shows the pseudo-code.

For select1(B, j) we can obtain the same complexity. We first perform a binary search over
the r values of P to find the interval that contains j. That is, we look for position t in P such
as r < j ≤ r′, where P [t] = (p, o, r) and P [t + 1| = (p′, o′, r′). Then we sequentially traverse
the block until exceeding the desired number of 1s, and finally expand the last accessed
symbol of C.

4.3 Space Requirement

Let R = |R| be the number of rules in the grammar and C = |C| the length of the final array.
Then a simple RePair compressor would require (2R + C) logR bits. Our representation
requires O(R log n+C logR+(n/s) log n) bits, and the time for the operations is O(s+log n).
The minimum interesting value for s is log n, where we achieve space O((R + C) log n + n)
bits and O(log n) time for the operations. We can reduce the O(n) extra space to o(n) by
increasing s, which impacts query times and makes them superlogarithmic.

We must remind that the original RePair algorithm stops when no pair appears twice, so
that with each new rule there is a gain of (at least) one integer. This is true because for each
non terminal the original algorithm stores two values (the left and the right side of the rule).
On the other hand, our algorithm stores four values for each nonterminal, which leads us to
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Rank(i)

j ← bi/sc;
r ← P [j].r;
p′ ← P [j].p;
l← i− P [j].o;
while p′ ≤ |C| do

Z ← C[p′];
if l + l(Z) < i then

p′ ← p′ + 1;
r ← r + r(Z);
l← l + l(Z);

else
return Expand(Z, l, r)

Expand(Z, l, r)

if l = i then
return r

XY ← R[Z];
if l + l(X) ≥ i then

return Expand(X);
else

r ← r + r(X);
l← l + l(X);
return Expand(Y );

Algorithm 3: Computing rank 1(B, i) with our grammar compressed bitmap.

stop the replacement procedure at an earlier stage.

Navarro and Russo [61] showed that RePair achieves high-order entropy, and it is easy to
prove that their bound still holds for our scheme supporting rank and select. Given that each
iteration of RePair reduces the size of the structures, we analyze the size when no pair appears
more than b = log2 n times. This is achieved in at most n/(b+ 1) RePair steps, so there are
O(n/ log2 n) rules. Therefore, when we add a new rule z → xy ∈ R to the dictionary we are
able to store not only the right side, but also the r(z) and `(z) values and still achieve o(n)
bits for the dictionary. To analyze the size of C in this stage, Navarro and Russo considered
the parsing of the sequence B = expand(C[1]C[2])expand(C[3]C[4]) . . . expand(C[C − 1]C[C])
of t = C/2 strings that do not appear more than b times. Resorting to a theorem of Korasaju
and Manzini [47], which states that in such a case it holds that t log t ≤ nHk(B)+t log(n/t)+
t log(b)+Θ(t(1+k)), they proved that the space required to store C is at most 2nHk(B)+o(n)
bits for any k = o(log n). In our case, as in theirs, the size of the dictionary is o(n) so the
total space of our representation is bounded by 2nHk(B).

4.4 In Practice

There are several ways to represent the dictionary R in compressed form. We choose one [37]
that allows for random access to the rules. It represents R in the form of a directed acyclic
graph (DAG) as a sequence SR and a bitmap SB. A node is identified as a position in SB,
where a 1 denotes an internal node and a 0 a leaf. The two children of SB[i] = 1 are written
next to i, thus we obtain all the subtree by traversing SB[i . . .] until we have seen more 0s
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than 1s. The 0s in SB are associated with positions in SR (that is, SB[i] = 0 is associated
to SR[rank 0(SB, i)]). Those leaf symbols are either terminals or nonterminals. Nonterminals
are represented as positions in SB, which must then be recursively expanded. This DAG
representation takes, in good cases, as little as 50% of the space required by a plain array
representation of R [37].

To reduce the O(R log n) space required to store ` and r, we will store `(Z) and r(Z)
only for certain sampled nonterminals Z. When we need to calculate `(Z ′) or r(Z ′) for a
nonterminal that is not sampled we simply expand it recursively until finding a sampled
nonterminal (or a terminal). We studied two sampling policies:

Max Depth(MD): Given a parameter δ, we guarantee that no nonterminal in C will require
expanding at depth more than δ to determine its length and number of 1s. That is, we expand
each C[i] until depth δ or until reaching an already sampled nonterminal. Those nonterminals
at depth δ are then sampled. We set up a bitmap Bδ[1, R] where each sampled nonterminal
has a 1, and store `(Z) and r(Z) of marked nonterminal Z at an array E[rank 1(Bδ, Z)].

Short Terminals(ST): Another heuristic consists in fixing a maximum number of bits ml

that we are going to spend for storing each nonterminal length and number of 1s. For every
nonterminal whose length and number of 1s are in the interval [0, 2ml − 2] we store them,
and for those with greater values we use 2ml − 1 as an escape value. With this heuristic we
decide beforehand the exact extra space used to store the r(Z) and `(Z) values. To answer
the queries we expand those nonterminals that are not sampled until we reach one that is
sampled.

4.5 Experimental Results

We now analyze the behavior of our grammar compression technique over random bitmaps of
various densities, that is, fraction of 1s (repetitive bitmaps will be considered in Chapter 5).
For this sake we generate 1, 000 random and uniformly distributed bitmaps of length n = 108

with densities ranging from 1% to 15%. We compare our compression ratio with other
compressed representations supporting rank and select, namely Raman, Raman and Rao
(RRR) [65], explained in Section 2.3.2, and a practical approach of Okanohara and Sadakane
(SDArray) [63]. For this experiment we intend to compare the compression techniques,
therefore we do not use any extra space for the samplings. In particular, we store no `(·)
nor r(·) data in our technique, and set s = ∞. We also include a theoretical line with the
zero-order entropy of the sequence (H0) as a reference.

Figure 4.2 shows the results. In these random bitmaps there is no expected repetitiveness,
which is what our technique is designed to exploit. However, the space usage of our technique
is competitive with the state of the art. The reason is that RePair reaches the high-order
entropy [61], which in this case is the same as the zero-order entropy, just like the other two
schemes [63,65].

In more detail, RRR requires nH0 + o(n) bits, and the o(n) overhead is more significant
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where the density is smaller, therefore this technique becomes more appealing when the
density is not that small. On the other hand, SDArray [63] uses nH0 + O(#1s) bits, which
is also close to the entropy, especially when the density is small. This is exactly the domain
where this technique dominates. Finally, even though Navarro and Russo [61] only gave a
bound of 2nHk for the space usage of RePair, we can see in practice that RePair’s overhead
over the zero-order entropy is comparable with the overhead of the other techniques.

We now consider time to answer queries. Our RePair techniques can improve the time
either by decreasing the sampling period (s), or by using more space to store the lengths and
number of 1s of the rules. Because the sampling period s is orthogonal to our two approaches
MD and ST (see Section 4.4), we fixed different s values (1024, 256, 128, 64) and for each such
value we changed the parameters of techniques MD and ST. For both techniques we plot the
extreme scenarios where no space is advocated to sample the rules, and where the space is
maximal. For MD, δ value was set to 0,1,2,4,8, . . ., h, where h is the height of the grammar.
For ST, ml was set to 0,2,4,6, . . ., b, where b is the number of bits required to store the
longest rule. Figures 4.3 and 4.4 show the different space-time trade-offs we obtained to
answer access, rank and select queries. We also include RRR (with sampling values 32, 64,
and 128) and SDArray as a reference.

We note that whether or not a technique will dominate the other depends on how much
space we are willing to spend on the samples. If we aim for the least space usage, then Max
Depth offers the best space-time trade-offs. If, instead, we are willing to spend more than
the minimum space, then ST offers the best times for the same space. Note also that, in all
cases, it is more effective to spend as much space as possible in sampling the rules rather than
increasing the sampling parameter s. In particular, it is interesting to use ST and sample
all the rules, because in this case the bitmap Bδ does not need to be stored, and the rank
operation on it is also avoided.

We also note that the times for answering access and rank queries are fairly similar. This
is because the number of expansions needed for computing a rank query is exactly the same
to compute access , but during a rank computation we also keep count of the number of 1s.
Operation select is only slightly slower.

Note that, in any case, structures RRR and SDArray are at least one order of magnitude
faster than our RePair compressed bitmaps. In the next chapters we will consider this
handicap and use RePair only when it impacts space the most and impacts time the least.
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Figure 4.3: Tradeoffs obtained for our different techniques to solve access, rank and select
queries over random bitmaps with density 5% and 10%.
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Figure 4.4: Tradeoffs obtained for our different techniques to solve access, rank and select
queries over random bitmaps with density 15% and 20%.
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Chapter 5

Grammar Compression of Wavelet Trees
and Document Arrays

In this chapter we present new compressed representations of sequences with support for rank
and select queries and with applications to document retrieval.

Given a sequence S[1, n] over alphabet [1, D], we build the wavelet tree of S and repre-
sent its bitmaps using the compressed format of Chapter 4, with the aim of exploiting the
repetitions in S. Our intention is to apply this data structure to the representation of the
document array (Section 3.1)

Various studies have shown the practicality for document retrieval of representing the
document array with a wavelet tree [23,31,33,72]. The major drawback of these approaches
is the space usage of the document array, which the wavelet tree does not help to reduce.
The existing compressed representations of wavelet trees achieve the zero-order entropy of
the sequence represented. In the case of the document array this yields little compression,
because its zero-order entropy corresponds to the distribution of document lengths. However,
we will show that the document array contains self-repetitions that can be exploited for
compression [37].

5.1 General Analysis

Consider a RePair representation (R, C) of S, where the sizes of the components is R and
C as in Section 4.1. Now take the top-level bitmap B of the wavelet tree. Bitmap B
can be regarded as the result of mapping the alphabet of S onto two symbols, 0 and 1.
Thus, a grammar (R′, C ′) where the terminals are mapped accordingly, generates B. Since
the number of rules in R′ is still R and that of C ′ is C, the representation of B requires
O(R log n + C logR + (n/s) log n) bits (this is of course pessimistic; many more repetitions
could arise after the mapping).

The bitmaps stored at the left and right children of the root correspond to a partition of
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S into two subsequences S1 and S2. Given the grammar that represents S, we can obtain
one that represents S1, and another for S2, by removing all the terminals in the right sides
that do not belong to the proper subalphabet, and removing rules with right hands of length
0 or 1. Thus, at worst, the left and right side bitmaps can also be represented within
O(R log n + C logR) bits each, plus O((n/s) log n) for the whole level. Added over the D
wavelet tree nodes, the overall space is no more than D times that of the RePair compression
of S. The time for the operations raises to O((s+ log n) logD).

This result does not look alphabet-friendly, and actually the upper bounds are no better
than applying the method described in Chapter 4 on D bitmaps Bc[1, n], where Bc[1] = 1
iff S[i] = c. Thus the analysis gives only a (very) pessimistic upper bound. Still, one can
expect that the repetitions exploited by RePair get cut by half as we descend one level of the
wavelet tree, so that after descending some levels, no repetition structure can be identified.
At this point RePair compression becomes ineffective. On the other hand, we showed that
our RePair technique over a bitmap B uses O(|B|H0(B)) bits, hence, using this technique
over each level, the space required for the complete wavelet tree of S is O(nH0(S)) [38].

5.2 In Practice

As D is likely to be large, we use a wavelet tree design without pointers, that concatenates
all the bitmaps of the same wavelet tree level [21]. We apply the RePair representation from
Chapter 4 to each of those logD levels. Therefore, we use one set of rules R per level.

As the repetitions that could be present in S get shorter when we move deeper in the
wavelet tree, we evaluate at each level whether our RePair-based compression is actually
better than an entropy-compressed representation [65] or even a plain one, and choose the one
with the smallest space. The experiments in Section 4.5 show that computing access and rank
on RePair-compressed bitmaps is in practice much slower than on alternative representations.
Therefore, we use a space-time tradeoff parameter 0 < α ≤ 1, so that we prefer RePair
compression only when its size is α times that of the alternatives, or less.

Note that the algorithms that use wavelet trees on DA (Section 3.2) traverse many more
nodes at deeper levels. Therefore, we have the fortunate effect that using RePair on the
higher levels impacts much on the space, as repetitiveness is still high, and little on the time,
as even when operations on RePair-compressed bitmaps are much slower, there are also much
fewer operations on those bitmaps.

5.3 Compressing the Document Array

The document array DA[1, n] is not generally compressible in terms of statistical entropy.
Consider for instance the situation when all the documents have the same length. Then, the
zero-order entropy of the document array will be maximal, no matter the compressibility of
the documents. However, we show now that it contains repetitions that are related to the
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statistical high-order entropy of the text T [1, n].

A quasi-repetition in the suffix array SA[1, n] of T is an area SA[i..i + `] such that there
is another area SA[i′..i′ + `] such that SA[i + k] = SA[i′ + k] + 1 for 0 ≤ k ≤ `. Let τ be
the minimum number of quasi-repetitions in which SA can be partitioned. It is known that
τ ≤ nHk(T ) + σk for any k [49] (the upper bound is useful only when Hk(T ) < 1).

González and Navarro [37] proved that, if one differentially encodes the suffix array SA
(so that the quasi-repetitions on SA become true repetitions on the differential version),
and applies RePair compression on the differential version, the resulting grammar has size
R + C = O(τ log(n/τ)).

Gagie et al. [31] noted that the document array contains almost the same repetitions of the
differential suffix array. If SA[i] = SA[i′] + 1, then DA[i] = DA[i′], except when SA[i] points to
the last symbol of document DA[i]. As this occurs at most D times, they concluded that a
RePair compression of DA achieves R+C = O((τ +D) log(n/(τ +D)). The formula suggests
that the compressed representation of DA is smaller when the text is more compressible.

This theoretical result had not been verified in practice. Moreover, the situation is more
complicated because we do not need to represent DA, but the wavelet tree of DA, in order to
support the various document retrieval tasks. As explained, RePair compression degrades in
the lower levels of the wavelet tree.

5.4 Experimental Results

Our experimental results will focus on our intended application, that is, the compression of
the document array. Thus we use the collections described in Section 3.6

5.4.1 Compressing the Wavelet Tree

Considering our finding that repetitions degrade on deeper levels of the wavelet tree, we start
by analyzing the different techniques for representing bitmaps on each level of the wavelet
tree of the document array. Figures 5.1 and 5.2 show the space achieved. Again, we are not
storing any sampling information.

As explained in Section 5.3, we expect more repetitiveness on the higher levels of the
wavelet tree, and the experimental results confirm it: our technique dominates on the higher
levels. The wavelet tree breaks those repetitions when moving to the lower levels, which
explains the deterioration of our compression ratio. It is also worth noting that no technique
achieves much compression on the Proteins collection, with the exception of RePair on the
first two levels. This is also expected, because the entropy of this collection is very high
(recall Table 3.1). From now on we disregard technique SDArray, which is not useful in this
scenario.
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Figure 5.1: Bits per bit achieved by the different bitmap compression methods on the bitmaps
of the wavelet tree representation of the document array of collections ClueChin and KGS.
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5.4.2 Choosing the sampling technique for RePair

In Section 4.5 we presented two different techniques to support rank and select queries on our
compressed representation of bitmaps. We studied their performance over random bitmaps,
and the results showed that the best performing technique depends on the context.

Therefore, we carried out the same experiments of Section 4.5, obtaining space-time trade-
offs for our two techniques for representing bitmaps, now over the most relevant levels of the
wavelet tree. That is, those levels in which the experiments on bitmap compression (Figures
5.1 and 5.2) show that RePair compresses better than RRR and requires less than one bit
per bit. Figures 5.3 to 5.8 show the results.

First, we note that our RePair-compressed bitmaps provide significant space advantages
on various wavelet tree levels. Second, as on random bitmaps, technique MD yields the best
results when using minimum space. When using more space, ST is faster for the same space.

5.4.3 Wavelet Trees for Document Listing with Frequencies

In this section we compare our wavelet tree representation of the document array with pre-
vious work: plain and statistical encoding of the wavelet tree, and Sadakane’s [68] method
based on individual CSAs (Section 3.3). As explained, alternative solutions [43, 68] for the
basic document listing problem are hardly improvable. They require very little extra space
and are likely to perform similarly to wavelet trees in time. Therefore, our experiments focus
on document listing with frequencies.

As the CSA search for P is common to all the approaches, we do not consider the time
for this search nor the space for that global CSA, but only the extra space/time to support
document retrieval once [sp, ep] has been determined. We give the space usage in bits per
text character (bpc).

Section 3.6 describes the CSA used to implement Sadakane’s representation using one
CSA per document. We encode the bitmap B using a plain representation because it is the
fastest one, and also use an efficient RMQ data structure. Again, Section 3.6 describes those
choices in more detail. For the space we charge only 2n bits (the lower bound) for each RMQ
structure and zero for B, to account for possible future space reductions.

Previous work by Culpepper et al. [23] has demonstrated that the quantile approach [33]
is clearly preferable, in space and time, over previous ones based on wavelet trees [72]. They
also showed that the quantile approach is in turn superseded by a DFS traversal, which
avoids some redundant computations (see Section 3.2.3). Therefore, we carry out the DFS
algorithm over a plain wavelet tree representation (WT-Plain), over one where the bitmaps
are statistically compressed [65] (WT-RRR), and over our RePair-compressed ones.

As explained, our grammar compressed wavelet trees offer a space/time tradeoff depending
on the α value (recall Section 5.2), which can be the same for all levels, or decreasing for
the deeper levels (where one visits more nodes and thus being slower has a higher impact).
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Figure 5.3: Tradeoffs obtained for our different techniques to support access, over the wavelet
tree planes of the document array of the collection ClueChin.
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Figure 5.4: Tradeoffs obtained for our different techniques to support access, over the wavelet
tree planes of the document array of the collection KGS.
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Figure 5.5: Tradeoffs obtained for our different techniques to support access, over the wavelet
tree planes of the document array of the collection KGS.
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Figure 5.6: Tradeoffs obtained for our different techniques to support access, over the wavelet
tree planes of the document array of the collection ClueWiki.
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Figure 5.7: Tradeoffs obtained for our different techniques to support access, over the wavelet
tree planes of the document array of the collection ClueWiki.
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Figure 5.8: Tradeoffs obtained for our different techniques to support access, over the wavelet
tree planes of the document array of the collection Proteins.

Another space/time tradeoff is obtained with the sampling parameter s on each bitmap.
Additionally, when deciding to increment the sampling values, they can be varied freely on
each level, and one can expect that the impact on the query times may be more significant
when the effort is done in the lower levels. For all of the above reasons we will plot a cloud
of points with a number of combinations of α values and sampling parameters in order to
determine our best scheme. We chose 10,000 random intervals of the form [sp, ep], for interval
sizes ep− sp+ 1 from 100 to 100,000, and listed the distinct documents in the interval, with
their frequencies.

Figures 5.9 to 5.12 show the average query time for the different collections and interval
sizes. Among all the combinations we plotted, we highlight the points that dominate the
space-time map. Among those dominating configurations we have selected four points that
we are going to use for our combination called WT-Alpha in the following experiments. The
detailed specification of those choices is shown in Tables 5.1 to 5.4. We will also include the
variant using α = 1, called WT-RP.

In the upcoming experiments we will compare our technique with previous work, show-
ing two grammar-compressed alternatives, the variant with α = 1 (WT-RP) and the best-
performing alternative with α < 1 (WT-Alpha).

Figures 5.13 to 5.16 show the results of our techniques in the context of the related work.

The space overhead of indexing the documents separately makes Sadakane’s approach
impractical (even with the generous assumptions on extra bitmaps and RMQs). Even on
ClueChin and ClueWiki with relatively large documents Sadakane’s solution requires more
space than all our techniques, and is also slower. In collections KGS and Proteins we keep it
out of the plots, as it requires more than 60 bpc.

The results are different depending on the type of collection, but in general our compressed
representation is able to reduce the space of the plain wavelet tree by a wide margin. The
compressed size is 40% to 75% of the original wavelet tree size. The exception is Proteins,
where the text is mostly incompressible and this translates into the incompressibility of the
document array.
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Figure 5.9: Clouds of space-time tradeoffs for document listing with our techniques on doc-
ument array intervals of length from 100 to 10,000 on collection ClueChin

While WT-RP is significantly slower than WT-Plain (up to 20 times slower in the most
extreme case), the WT-Alpha versions provide useful tradeoffs. They achieve compression
ratios of 50% to 80% and significantly reduce time gaps, to 7 times slower in the most extreme
case. The answer time over the interval [sp, ep] of length 10,000 is around 10-20 milliseconds.
We note that our slowest version is still 10 times faster than SADA CSA.
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Planes Size Technique Sampling MD(δ)
0 RePair 128 1
1 RePair 128 1
2 Smallest RePair 128 1
3 RePair 128 1
4 RePair 128 1
0 RePair 256 3
1 RePair 256 3
2 Small RRR 128 -
3 RRR 128 -
4 RRR 128 -
0 RePair 128 1
1 RePair 128 1
2 Medium RRR 64 -
3 RRR 64 -
4 RRR 64 -
0 RRR 128 -
1 RRR 128 -
2 Large RRR 128 -
3 RRR 128 -
4 RRR 128 -

Table 5.1: WT-Alpha configuration, collection ClueChin.

Planes Size Technique Sampling MD(δ)
0 to 4 Smallest RePair 256 3
5-14 Plain 10*32 -

0 to 3 Small RePair 256 3
4 to 14 Plain 10*32 -
0 to 2 Medium RePair 256 3
3 to 14 Plain 10*32 -

0 RePair 256 3
1 to 2 Large RRR 128 -
3 to 14 Plain 10*32 -

Table 5.2: WT-Alpha configuration, collection KGS.

Planes Size Technique Sampling MD(δ)
0 to 7 Smallest RePair 128 1
8 to 11 RRR 64 -
0 to 7 Small RePair 64 0
8 to 11 RRR 32 -
0 to 3 Medium RePair 128 1
4 to 11 RRR 64 -
0 to 1 Large RePair 128 1
2 to 11 RRR 64 -

Table 5.3: WT-Alpha configuration, collection ClueWiki.
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Figure 5.10: Clouds of space-time tradeoffs for document listing with our techniques on
document array intervals of length from 100 to 10,000 on collection ClueWiki

Planes Size Technique Sampling MD(δ)
0 RRR 256 -
1 RePair 1024 1

2 to 3 Smallest RRR 256 -
4 to 15 Plain 20*32 -
16 to 17 RRR 256 -

0 RRR 256 -
1 Small RePair 1024 1

2 to 17 Plain 20*32 -
0 Medium RRR 64 -

1 to 17 Plain 4*32 -
0 Large RePair 64 0

1 to 17 Plain 2*32 -

Table 5.4: WT-Alpha configuration, collection Proteins.
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Figure 5.11: Clouds of space-time tradeoffs for document listing with our techniques on
document array intervals of length from 100 to 10,000 on collection KGS
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Figure 5.12: Clouds of space-time tradeoffs for document listing with our techniques on
document array intervals of length from 100 to 10,000 on collection Proteins
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Figure 5.13: Experiments for document listing with term frequencies, collection ClueChin.
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Figure 5.14: Experiments for document listing with term frequencies, collection ClueWiki.
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Figure 5.15: Experiments for document listing with term frequencies, collection KGS.
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Figure 5.16: Experiments for document listing with term frequencies, collection Proteins.
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Chapter 6

Sparsified Suffix Trees and Top-k
Retrieval

In the previous chapter we have shown that the technique of Sadakane [68], based on individ-
ual CSAs to obtain the frequency of individual documents, is not effective in practice, at least
using existing CSA implementations. Hon et al.’s [43] data structure for top-k document re-
trieval (Section 3.3.2) is built on the top of Sadakane’s approach, therefore a straightforward
implementation will suffer from the same lack of practicality.

In this chapter we propose various practical versions of Hon et al.’s o(n)-bit data struc-
tures for top-k queries, as well as efficient algorithms to use them on top of a wavelet tree
representation of the document array instead of the original scheme, which uses individual
CSAs. We carried out exhaustive experiments among them to find the best combination.

Our top-k algorithms combine the sparsified technique of Hon et al. [43] with various of
the techniques of Culpepper et al. [23] to explore the remaining areas of the document array.
We can regard the combination as either method boosting the other. Culpepper et al. boost
Hon et al.’s method, while retaining its good worst-case complexities, as they find the extra
occurrences more cleverly than by enumerating them all. Hon et al. boost plain Culpepper
et al.’s method by having precomputed a large part of the range, and thus ensuring that only
small intervals have to be handled.

As explained in Section 3.4, Gagie et al. [31] showed that Hon et al.’s succinct scheme can
actually run on top of any data structure able to (1) telling which document corresponds to
a given value of the suffix array, SA[i], and (2) count how many times the same document
appears in any interval SA[sp, ep] (see Section 3.4). They gave many combinations that solve
(1) and (2), being Golynski et al.’s representation [35] of the document array the fastest
choice in theory. We have also implemented this scheme and studied its practicality.
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6.1 Implementing Hon et al.’s Succinct Structure

The succinct structure of Hon et al. [43] is a sparse generalized suffix tree of T (SGST;
“generalized” means it indexes D strings). It can be seen as a sampling of the suffix tree,
with a sampling parameter g, which is sparse enough to make the sampled suffix tree require
only o(n) bits, and at the same time it guarantees that, for each possible interval SA[sp, ep],
there exists a node whose corresponding interval spans inside the interval [sp, ep] leaving
at most 2g uncovered positions. For each sampled node they precompute a list with top-k
most frequent documents and their frequencies. To answer top-k queries, they look for P
in their sample, and then they compute the frequency of O(g) uncovered documents using a
technique inspired by Sadakane’s solution [68]. See Section 3.3.2 for details.

This section focuses on practical implementations of this idea. In the next section we
present new algorithms for top-k document retrieval.

6.1.1 Sparsified Generalized Suffix Trees (SGST)

We call li = SA[i] the i-th suffix tree leaf. Given a value of k we define g = k · g′,
for a space/time tradeoff parameter g′, and sample n/g leaves l1, lg+1, l2g+1, . . ., instead of
sampling 2n/g leaves as in the theoretical proposal [43]. We mark internal SGST nodes
lca(l1, lg+1), lca(lg+1, l2g+1), . . .. It is not difficult to prove that any v = lca(lig+1, ljg+1) is
also v = lca(lrg+1, l(r+1)g+1) for some r. We prove it by induction: Let us consider nodes
v1 = lca(lig+1, l(i+1)g+1) and v2 = lca(l(i+1)g+1, l(i+2)g+1). Because v1 and v2 are both ancestors
of l(i+1)g, it follows that v12 = lca(v1, v2) is either v1 or v2. By closure property of the lca op-
eration, it follows that v12 = lca(lig+1, l(i+2)g+1). In general, consider v1 = lca(lig+1, l(j−1)g+1)
and v2 = lca(l(j−1)g+1, ljg+1). Then, similarily, v = lca(v1, v2) = lca(lig+1,jg+1) is either v1 or
v2 as both are ancestors of l(j−1)g+1. By the inductive hypothesis, v1 is lca(lrg+1, l(r+1)g+1) for
some i ≤ r ≤ j−1, whereas v2 is also the lca of two consecutive samples. Then the inductive
thesis holds.

Therefore with these n/g SGST nodes we already have a set of nodes that is closed under
lca operation and no further nodes are required. These nodes can be computed in linear
time [14]. Gagie et al. [31] point out that we need only logD sparsified trees τk, not log n as
in the original proposal.

6.1.2 Level-Ordered Unary Degree Sequence (LOUDS) GST

SGST is built up on the idea of sparsification to achieve o(n) bits, but the data is still stored
explicitly. More precisely, they store O(n/ log2 n) nodes within their respective F-list, Lv, Rv

values and pointers to the children.

Our first data structure uses a pointerless representation of the tree topologies. Although
the tree operations are slightly slower than on a pointer-based representation, this slowdown
occurs on a not too significant part of the search process, and a succinct representation
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allows one to spend more space on structures with higher impact (e.g., reducing the sampling
parameter g).

Arroyuelo et al. [2] showed that, for the functionality it provides, the most promising
succinct representation of trees is the so-called Level-Order Unary Degree Sequence (LOUDS)
[45]. As mentioned in Section 2.6, the theoretical space requirement of 2n + o(n) bits can
be in practice as little as 2.1n bits to represent a tree of n nodes. LOUDS solves many
operations in constant time (less than a microsecond in practice). In particular it allows fast
navigation through labeled children.

We resort to their labeled trees implementation [2]. We encode the values Lv and Rv,
pointers to τ (in τk), and pointers to the candidates in τ in a separate array, indexed by the
LOUDS rank of the node v, managing them just as Arroyuelo et al. [2] manage labels.

6.1.3 Other Sources of Redundancy

We note that there is also a great deal of redundancy in the logD trees τk, since the nodes of
τ2k are included in those of τk, and the 2k candidates stored in the nodes of τ2k contain those
in the corresponding nodes of τk. To factor out some of this redundancy we store only one
tree τ , whose nodes are the same of τ1, and record the class c(v) of each node v ∈ τ . This
is c(v) = max{k, v ∈ τk}, and can be stored in log logD bits. Each node v ∈ τ stores the
top-c(v) candidates corresponding to its interval, using c(v) logD bits, and their frequencies,
using c(v) log n bits. All the candidates and frequencies of all the nodes are stored in a
unique table, to which each node v stores a pointer. Each node v also stores its interval
[spv, epv], using 2 log n bits. Note that the class does not necessarily decrease monotonically
in a root-to-leaf path of τ , thus we store the topologies of all the τk trees independently, to
allow for their efficient traversal, for k > 1. Apart from topology information, each node of
such τk trees contains just a pointer to the corresponding node in τ , using log |τ | bits.

In our second data structure, the topology of the trees τ and τk is represented using
pointers of log |τ | and log |τk| bits, respectively.

To answer top-k queries, we find the range SA[sp, ep] using a CSA. Now we use the closest
higher power of two of k, k′ = 2dlog ke. Then we find the locus in the appropriate tree τk′
top-down, binary searching the intervals [spv, epv] of the children v of the current node, and
extracting those intervals using the pointers to τ . By the properties of the sampling [43] it
follows that we will traverse, in this descent, nodes u ∈ τk′ such that [sp, ep] ⊆ [spu, epu],
until reaching a node v where [spv, epv] = [sp′, ep′] ⊆ [sp, ep] ⊆ [sp′ − g, ep′ + g] (or reaching
a leaf u ∈ τk such that [sp, ep] ⊆ [spu, epu], in which case ep − sp + 1 < 2g). This v is the
locus of P in τk′ , and we find it in time O(|P | log σ).

In practice, we can further reduce the space in exchange for possibly higher times. For
example, the sequence of all precomputed top-k candidates can be Huffman-compressed, as
there is much repetition in the sets, and values [spv, epv] can be stored as [spv, epv − spv],
using DACs for the second components [16], as many such differences will be small. Also, as
Gagie et al. pointed out [31], a major space reduction can be achieved by storing only the
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identifiers of the candidates, and their frequencies can be computed on the fly using rank on
the wavelet tree of DA. These variants are analyzed in Section 6.3.

6.2 New Top-k Algorithms

Once the search for the locus of P is done, Hon et al.’s algorithm requires a brute-force scan
of the uncovered leaves to obtain their frequencies (using individuals CSAs). When Gagie et
al. [31] showed that Hon et al.’s SGST may run on top of different structures, they also keep
using this brute-force scanning. Instead, we run a combination of the algorithm by Hon et
al. [43] and those of Culpepper et al. [23], over a wavelet tree representation of the document
array DA[1, n]. Culpepper et al. introduce, among others, a document listing method (DFS)
and a Greedy top-k heuristic (recall Section 3.2). We adapt these to our particular top-k
subproblem.

If the search for the locus of P ends at a leaf u that still contains the interval [sp, ep],
Hon et al. simply scan SA[sp, ep] by brute-force and accumulate frequencies. We use instead
Culpepper et al.’s Greedy algorithm, which is always faster than a brute-force scanning.

When, instead, the locus of P is a node v where [spv, epv] = [sp′, ep′] ⊆ [sp, ep], we start
with the precomputed answer of the k ≤ k′ most frequent documents in [sp′, ep′], and update
it to consider the subintervals [sp, sp′−1] and [ep′+1, ep]. We use the wavelet tree of DA
to solve the following problem: Given an interval DA[l, r], and two subintervals [l1, r1] and
[l2, r2], enumerate all the distinct values in [l1, r1] ∪ [l2, r2] together with their frequencies in
[l, r]. We propose two solutions, which can be seen as generalizations of heuristics proposed
by Culpepper et al. [23].

6.2.1 Restricted Depth-First Search

Note that any interval DA[i, j] can be projected into the left child of the root as

[i0, j0] = [rank0(B, i−1)+1, rank0(B, j)],

and into its right child as

[i1, j1] = [rank1(B, i−1)+1, rank1(B, j)].

where B is the root bitmap. Those can then be projected recursively into other wavelet tree
nodes.

Our restricted DFS algorithm begins at the root of the wavelet tree and tracks down the
intervals [l, r] = [sp, ep], [l1, r1] = [sp, sp′−1], and [l2, r2] = [ep′+1, ep]. More precisely, we
count the number of zeros and ones in B in ranges [l1, r1] ∪ [l2, r2], as well as in [l, r], using
a constant number of rank operations on B. If there are any zeros in [l1, r1] ∪ [l2, r2], we
map all the intervals into the left child of the node and proceed recursively from this node.
Similarly, if there are any ones in [l1, r1] ∪ [l2, r2], we continue on the right child of the node.
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Figure 6.1: Restricted DFS to obtain the frequencies of documents not covered by τk. Shaded
regions show the interval [sp, ep] = [4, 14] mapped to each wavelet tree node. Dark shaded
intervals are the projections of the leaves not covered by [sp′, ep′] = [7, 11].

When we reach a wavelet tree leaf we report the corresponding document, and the frequency
is the length of the interval [l, r] at the leaf. Figure 6.1 shows an example where we arrive at
the leaves of documents 1, 2, 5 and 7, reporting frequencies 2, 2, 1 and 4, respectively.

When solving the problem in the context of top-k retrieval, we can prune some recursive
calls. If, at some node, the size of the local interval [l, r] is smaller than our current kth
candidate to the answer, we stop exploring its subtree since it cannot contain competitive
documents. In the worst case, the algorithm needs to reach the bottom of the wavelet tree
for each distinct document, so the time required to obtain the frequencies is O(g log(D/g)).

6.2.2 Restricted Greedy

Following the idea described by Culpepper et al., we can not only stop the traversal when
[l, r] is too small, but also prioritize the traversal of the nodes by their [l, r] value.

We keep a priority queue where we store the wavelet tree nodes yet to process, and their
intervals [l, r], [l1, r1], and [l2, r2]. The priority queue begins with one element, the root.
Iteratively, we remove the element with highest r−l+1 value from the queue. If it is a leaf,
we report it. If it is not, we project the intervals into its left and right children, and insert
each such children containing nonempty intervals [l1, r1] or [l2, r2] into the queue. As soon
as the r−l+1 value of the element we extract from the queue is not larger than the kth
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frequency known at the moment, we can stop the whole process.

In the worst case this heuristic requires O(g(log(D/g) + log g)) = O(g logD) time.

6.2.3 Heaps for the k Most Frequent Candidates

Our two algorithms solve the query assuming that we can easily find, at any given moment,
which is the kth best candidate known up to now. We use a min-heap data structure for this
purpose. It is loaded with the top-k precomputed candidates corresponding to the interval
[sp′, ep′] stored in the F-List. At each point, the top of the heap gives the kth known frequency
in constant time.

Given that the Greedy algorithm stops when it reaches a wavelet tree node where r−l+1
is not larger than the kth known frequency, it follows that each time the algorithm reports
a new candidate, that reported candidate has a higher frequency value than our previous
kth known candidate. Thus we replace the top of our heap with the reported candidate
and reorder the heap (which is always of size k, or less until we find k distinct elements in
DA[sp, ep]). Therefore each reported candidate costs O(logD + log k) time (there are also
steps that do not yield any result, but the overall upper bound is still O(g(logD + log k))).
The DFS algorithm does not report the documents in a particular order, so we need to check
if a reported document has a higher frequency than the minimum of the heap. If it occurs,
then we replace the top of the heap with the reported candidate and reorder the heap. The
overall bound is still O(g(logD + log k))).

A remaining issue is that we could find again, in our DFS or Greedy traversal, a document
that was in the original top-k list, and thus possibly in the heap. This means that the
document had been inserted with its frequency in DA[sp′, ep′], but since it appears further
times in DA[sp, ep], we must now update its frequency, that is, increase it and restore the
min-heap invariant. It is not hard to maintain a hash table with forward and backward
pointers to the heap so that we can track the current candidate positions and replace their
values. However, for the small k values used in practice (say, tens or at most hundreds), it is
more practical to scan the heap for each new candidate to insert than to maintain all those
pointers upon all operations.

6.3 Experimental Results

In this section we run exhaustive experiments to determine the best alternatives. First we
compare the different algorithms to answer top-k queries. Once we choose the best algorithm,
we turn to study the performance of our different data structure variants. Finally, we compare
our best choice with the related work. We extracted sets of 10,000 random substrings from
each collection, of length 3 and 8, to act as search patterns. The time and space needed to
perform the CSA search is orthogonal to all of the methods we present (and also the time is
negligible, being at most 20 microseconds per query), thus we only consider the space and
time to retrieve the top-k documents.
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6.3.1 Evaluation of our Algorithms

We tested the different algorithms to find the top-k answers among the precomputed candi-
dates and uncovered leaves (see Section 6.2):

Greedy Our modified greedy algorithm.

DFS Our modified depth-first-search algorithm.

Select The brute-force selection procedure of the original proposal [43].

Because in this case the algorithms are orthogonal to the data structures for the sparsified
trees, we run all the algorithms only on top of the straightforward implementation of Hon et
al. [43], which we will call Ptrs. For all the algorithms we use the best wavelet tree of Section
5, that is the variant WT-Alpha, showing the four chosen points per curve. We consider three
sampling steps, g′ = 200, 400 and 800.

Figures 6.2 to 6.5 show the results. As expected, method Greedy is always better than
Select (up to 80% better) and never worse than DFS (and up to 50% better), which confirms
intuition. From here on we will use only the Greedy algorithm. Note, however, that if we
wanted to compute top-k considering metrics more complicated than term frequency, Greedy
would not apply anymore (nor would DFS). In such a case we could still use method Select,
whose times would remain similar.

6.3.2 Evaluation of our Data Structures

In this round of top-k experiments we compare our different implementations of SSGSTs
(i.e., the trees τk, see Section 6.1) over a single implementation of wavelet tree (WT-Alpha),
and using always method Greedy. We test the following variants:

Ptrs Straightforward implementation of the original proposal [43].

LOUDS Like Ptrs but using a LOUDS representation of the tree topologies.

LIGHT Like LOUDS but storing the information of the nodes in a unique tree τ .

XLIGHT Like LIGHT but not storing the frequencies of the top-k candidates.

HUFF Like LIGHT but Huffman-compressing the candidate identifiers and encoding the
[spv, epv] intervals succinctly using DACs.

We consider sampling steps of 200, 400 and 800 for g′. For each value of g, we obtain a
curve with various sampling steps for the rank computations on the wavelet tree bitmaps.
Figures 6.6 to 6.9 show the results.

Using LOUDS representation instead of Ptr had almost no impact on the time, except on
ClueChin, where all the methods are very fast anyway. This is because the time needed to find
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Figure 6.2: Our different algorithms for top-1, and top-10 queries on the collection ClueChin.
On the left for |P | = 3, on the right for |P | = 8.
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Figure 6.3: Our different algorithms for top-1, top-10 and top-100 queries on the collection
KGS. On the left for pattern length |P | = 3, and on the right for |P | = 8.

73



 0

 0.5

 1

 1.5

 2

 8  8.5  9  9.5  10  10.5  11  11.5  12

A
v
e

ra
g

e
 t

im
e

 (
m

ill
is

e
c
s
) 

p
e

r 
q

u
e

ry

Size (bpc)

ClueWiki, |P| = 3, K = 1

Ptrs 200 Select
Ptrs 200 DFS

Ptrs 200 Greedy
Ptrs 400 Select

Ptrs 400 DFS
Ptrs 400 Greedy
Ptrs 800 Select

Ptrs 800 DFS
Ptrs 800 Greedy

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 8  8.5  9  9.5  10  10.5  11  11.5  12

A
v
e

ra
g

e
 t

im
e

 (
m

ill
is

e
c
s
) 

p
e

r 
q

u
e

ry
Size (bpc)

ClueWiki, |P| = 8, K = 1

 0

 2

 4

 6

 8

 10

 8  8.5  9  9.5  10  10.5  11  11.5  12

A
v
e

ra
g

e
 t

im
e

 (
m

ill
is

e
c
s
) 

p
e

r 
q

u
e

ry

Size (bpc)

ClueWiki, |P| = 3, K = 10

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 8  8.5  9  9.5  10  10.5  11  11.5  12

A
v
e

ra
g

e
 t

im
e

 (
m

ill
is

e
c
s
) 

p
e

r 
q

u
e

ry

Size (bpc)

ClueWiki, |P| = 8, K = 10

 0

 2

 4

 6

 8

 10

 12

 14

 16

 8  8.5  9  9.5  10  10.5  11  11.5  12

A
v
e

ra
g

e
 t

im
e

 (
m

ill
is

e
c
s
) 

p
e

r 
q

u
e

ry

Size (bpc)

ClueWiki, |P| = 3, K = 100

 2

 4

 6

 8

 10

 12

 14

 16

 18

 8  8.5  9  9.5  10  10.5  11  11.5  12

A
v
e

ra
g

e
 t

im
e

 (
m

ill
is

e
c
s
) 

p
e

r 
q

u
e

ry

Size (bpc)

ClueWiki, |P| = 8, K = 100

Figure 6.4: Our different algorithms for top-1, top-10 and top-100 queries on the collection
ClueWiki. On the left for pattern length |P | = 3, and on the right for |P | = 8.
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Figure 6.5: Our different algorithms for top-1, top-10 and top-100 queries on the collection
Proteins. On the left for pattern length |P | = 3, and on the right for |P | = 8.
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Figure 6.6: Our different data structures for top-1 and top-10 queries on the collection
ClueChin. On the left for pattern length |P | = 3, and on the right for |P | = 8.
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Figure 6.7: Our different data structures for top-1,top-10 and top-100 queries on the collec-
tion KGS. On the left for pattern length |P | = 3, and on the right for |P | = 8.
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Figure 6.8: Our different data structures for top-1,top-10 and top-100 queries on the collec-
tion ClueWiki. On the left for pattern length |P | = 3, and on the right for |P | = 8.
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Figure 6.9: Our different data structures for top-1,top-10 and top-100 queries on the collec-
tion Proteins. On the left for pattern length |P | = 3, and on the right for |P | = 8.
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the locus is usually negligible compared with that to explore the uncovered leaves. Further
costless space gains are obtained with variant LIGHT, which reduces the space significantly,
especially for small g′. Variant XLIGHT, instead, reduces the space of LIGHT at a noticeable
cost in time that makes it not so interesting, except on Proteins. Time is impacted because
k additional rank operations on the wavelet tree are needed. Variant HUFF, instead, gains
a little more space over LIGHT without a noticeable time penalty, and it dominates the
space-time tradeoff map in almost all cases.

It is interesting that the variant that does not include any structure on top of the wavelet
tree, WT-Alpha, is much slower for small k, but it becomes competitive when k increases
(more specifically, when the ratio between k and ep − sp grows). This shows that, for less
specific top-k queries, just running the Greedy algorithm without any extra structure may
be the best option. In various cases a sparser sampling dominates a denser one in space and
time, whereas in others a denser sampling makes the structure faster. To compare with other
techniques, we will use variant HUFF.

6.3.3 Comparison with Previous Work

Finally, we study the performance of our best solution compared with previous work to solve
top-k queries.

The Greedy heuristic of Culpepper et al. [23] is run over the different wavelet tree repre-
sentations of the document array from Chapter 5: a plain one (WT-Plain, as in the original
proposal) [23], an entropy-compressed one (WT-RRR), a RePair-compressed one (WT-RP),
and the hybrid that at each wavelet tree level chooses between plain, RePair, or entropy-based
compression of the bitmaps (WT-Alpha).

We also combine those wavelet tree representations with our best implementation of Hon
et al.’s structure (suffixing the previous names with +SSGST). We also consider variant
Goly+SSGST [31,42], which runs the rank-based method (Select) on top of the fastest rank-
capable sequence representation of the document array [35]. This representation is faster
than wavelet trees to compute rank, but does not support our more sophisticated traversal
algorithms.

Figures 6.10 to 6.13 show the results. WT-Alpha + HUFF is only dominated in space (in
most cases only slightly) by WT-RP, which is however orders of magnitude slower.

Only on Proteins, where compression does not work, our structures are in some cases
dominated by previous work, WT-Plain and WT-RRR, especially for large k or small ep−sp.
Goly + HUFF requires much space and is usually much slower than WT-Plain, which uses
a slower sequence representation (the wavelet tree) but a smarter algorithm to traverse the
block (our modified Greedy).

It is important to remark that, although in some cases WT-RP is the fastest alternative
(e.g. for high values of k), our variant WT-Alpha + HUFF includes the wavelet tree, so it
supports Culpepper et.al.’s original algorithms. Thus in a real-world application it would be
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interesting to store the τk only up to certain value, and when a top-k query for higher values
of k is required, it can be answered using the original algorithms.
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Figure 6.10: Comparison with previous work for top-1 and top-10 queries on the collection
ClueChin. On the left for |P | = 3, on the right for |P | = 8.
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Figure 6.11: Comparison with previous work for top-1, top-10 and top-100 queries on the
collection KGS. On the left for |P | = 3, on the right for |P | = 8.
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Figure 6.12: Comparison with previous work for top-1, top-10 and top-100 queries on the
collection ClueWiki. On the left for |P | = 3, on the right for |P | = 8.
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Figure 6.13: Comparison with previous work for top-1, top-10 and top-100 queries on the
collection Proteins. On the left for |P | = 3, on the right for |P | = 8.
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Chapter 7

Mmphf Approach for Document Listing

In this chapter we present our implementation of a different approach to solve the problem
of document listing with frequencies. This approach was recently stated by Belazzougui and
Navarro [12] and is based on Monotone Minimal Perfect Hash Functions (mmphfs) [10, 11]
(see Section 3.5).

We implemented their idea for document listing with frequencies, in order to explore the
practical potential of mmphfs. In Chapter 5 we showed that the approaches based on indi-
viduals CSAs were not efficient in practice, despite their theoretical soundness. In Chapters
5 and 6 we advocated for exploring the practicality of the wavelet tree representation of the
document array. However, both of those approaches store redundant information that poses
serious space overheads, both in theory and in practice. Mmphf is another approach, which
have a potential high-impact in practice, because it aims to get rid of the aforementioned
redundancy.

7.1 In Practiece

As in the previous chapters, because the global CSA search for a pattern (to obtain sp and
ep) is common to all the approaches, we do not consider the time for this search, nor the
space for that global CSA. We only count the extra space/time required to support document
retrieval once [sp, ep] has been determined. We give the space usage in bits per text character
(bpc).

For the mmphf-based method, we use a practical mmphf implementation by Belazzougui
et al. (space-optimized since its original publication [11]). Section 3.6 describes the CSA and
RMQ we used to implement mmphf approach in detail.

We implement the algorithm as described in Section 3.5, except that we do a naive sorting
of the leftmost and rightmost occurrences.

Note that the CSA is used by all the techniques to obtain sp and ep, but in addition this
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method uses it to compute suffix array cell contents. To carry out this task the CSA makes
use of a further sampling, whose space cost will be charged (only) to our data structure. Note
this is not totally fair because, in a scenario where one wants to carry out document retrieval
and pattern locating queries, we would use the same sampling structure for both activities.
On the other hand, its impact is relatively low.

7.2 Experimental Results

Table 7.1 gives the space of the different substructures that make up this solution. It is
interesting that spaces are roughly equal and basically independent of, say, how compressible
the collection is. Note also that the space is basically independent of the number of documents
in the collection. This is in contrast to the O(n logD) space of wavelet-tree-based solutions,
and suggests that our scheme could compare better on much larger test collections.

Collection RMQs B mmphf CSA Total
ClueChin 5.90 0.34 5.39 21/z 11.63+22/z
ClueWiki 5.84 0.32 4.67 28/z 10.83+26/z
KGS 5.82 0.34 3.14 25/z 9.30+25/z
Proteins 5.81 0.36 3.56 26/z 9.73+26/z

Table 7.1: Space breakdown, in bpc, of our scheme for the three collections. Value z is the
sampling step chosen to support access to the CSA cells. The total space includes two RMQ
structures, B, mmphf, and the CSA sampling.

As for times, we note that each occurrence we report requires to compute 4 RMQ queries,
2 accesses to B and to the CSA, and 0 or 2 mmphfs (this can be zero in the case the leftmost
and rightmost positions are the same, so we know that the frequency is 1 without invoking
the mmphf). Our queries are made of 10,000 random intervals of the form [sp, ep], for interval
sizes ep− sp+ 1 from 100 to 100,000, and for every length we listed the distinct documents
in the interval, with their frequencies. We made a first experiment replacing the CSA with
a plain suffix array (where tSA corresponds to simply accessing a cell). The times were 12.8
msec on ClueWiki and 18.4 msec on KGS and Proteins. These are significantly lower than
the times we will see on CSAs, which shows that the time performance is sharply dominated
by parameter z. Due to the design of Sadakane’s CSA (and most implemented CSAs, in
fact), the time tSA is essentially linear on z. This gives our space/time tradeoff.

We compare the mmphfs approach with the four wavelet tree variants of Chapter 5,
namely WT-Plain, WT-RP, WT-RRR, and WT-Alpha. In their case, space-time tradeoffs
are obtained by varying various samplings. They are stretched up to essentially the minimum
space they can possibly use.

Figures 7.1 to 7.4 give the space/time results. When we compare to WT-Plain, which is
the basic wavelet-tree-based theoretical solution, the mmphf-based technique makes good on
its theoretical promise of using less space (more clearly on collections Proteins and KGS, where
D is sufficiently large). The wavelet tree uses 12.5 to 19 bpc, depending on the number of
documents in the collection. The mmphf technique uses, in our experiments, as little as 12
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bpc. On the other hand, the time O(tSA) spent for each document reported turns out to be,
in practice, much higher than the O(logD) used to access the wavelet tree. The space/time
tradeoff obtained is likely to keep improving on collections with even more documents, as
the space and time of wavelet trees grow with logD, whereas the mmphf solution has a time
independent of D, and a space that depends log-logarithmically (or less) on D.
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Figure 7.1: Experiments for document listing with term frequencies, collection ClueChin.

When we consider the practical improvements to compress wavelet trees (Chapter 5),
however, we have that these offer more attractive tradeoffs on collections ClueChin, ClueWiki
and KGS, whereas on Proteins our attempts to compress has a very limited effect, as seen in
Section 5.4.

The mmphf technique stands as a robust alternative whose performance is very easy to
predict, independently of the characteristics of the collection. We notice that this technique
is more sensitive to the length of the [sp, ep] interval than the solutions presented in Chap-
ter 5. Therefore, the mmphf technique is interesting for uncommon queries, that will produce
shorter [sp, ep] intervals. On large collections that are resilient to the known techniques to
compress the wavelet tree, the mmphf-based solution offers a relevant space/time tradeoff.
Moreover, the technique is likely to be more scalable, as explained, and its times benefit
directly from any improvement in access times to Compressed Suffix Arrays.
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Figure 7.2: Experiments for document listing with term frequencies, collection ClueWiki.
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Figure 7.3: Experiments for document listing with term frequencies, collection KGS.

89



 0.1

 1

 10

 100

 10  15  20  25  30

A
v
e

ra
g

e
 t

im
e

 (
m

ill
is

e
c
s
) 

p
e

r 
q

u
e

ry

Size (bpc)

Proteins, 100

WT−Plain
WT−RRR

WT−RP
WT−Alpha

MMPHF

 1

 10

 100

 10  15  20  25  30

A
v
e

ra
g

e
 t

im
e

 (
m

ill
is

e
c
s
) 

p
e

r 
q

u
e

ry

Size (bpc)

Proteins, 1000

 10

 100

 1000

 10  15  20  25  30

A
v
e

ra
g

e
 t

im
e

 (
m

ill
is

e
c
s
) 

p
e

r 
q

u
e

ry

Size (bpc)

Proteins, 10000

 10

 100

 1000

 10000

 10  15  20  25  30

A
v
e

ra
g

e
 t

im
e

 (
m

ill
is

e
c
s
) 

p
e

r 
q

u
e

ry

Size (bpc)

Proteins, 100000

Figure 7.4: Experiments for document listing with term frequencies, collection Proteins.
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Chapter 8

Conclusions

This work has introduced new algorithms and data structures to solve some important doc-
ument retrieval problems. We have improved the state of the art for document listing and
top-k document retrieval, and as byproduct, we have introduced new compression schemes
for relevant data structures.

We have proposed the first compressed representation of the document array, a fundamen-
tal data structure to answer various general document retrieval queries, such as document
listing with frequencies and top-k document retrieval. For this sake, we developed two novel
compact data structures that achieve compression on generic repetitive sequences and might
be of independent interest: (1) a grammar-compressed representation of bitmaps supporting
rank and select queries, and (2) a compressed wavelet tree that extends the bitmap repre-
sentation to sequences over general alphabets. We have shown that our technique reduces
the space of a plain wavelet tree by up to half on real-life document arrays. Although our
representation is significantly slower than a plain wavelet tree, we have engineered it to reach
very competitive times to answer document listing with frequencies, as well as for retrieving
the top-k documents.

We also implemented the theoretical proposal of Hon et al. [43]. First we show that in
practice this technique does not perform well if implemented on individual compressed suffix
arrays (CSAs) as they propose (at least using current CSAs). We developed new algorithms
that allowed this structure to run on top of a unique wavelet tree instead of individual CSAs,
and showed that this technique performs very well in practice. Our implementation of this
data structure removes various sources of redundancy and inefficiency of the original proposal
(which are neglectable in an asymptotic analysis but relevant in practice).

While Hon et al.’s original proposal, that runs over CSAs, has worst-case guarantees, in
practice it requires 2-3 times the space required by the plain solution, while being 10 times
slower to answer the queries. On the other hand, the original algorithms over wavelet trees
were the best in practice, but had no worst-case guarantees. Our new algorithms have the
best of both worlds: They retain the theoretical bounds of Hon et al. and perform very well
in practice.
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Our implementation of Hon et al., running in combination with the best wavelet tree
variants, dominate most of the space-time map.

We also explored the practicality of a different approach, based on monotone minimal
perfect hash functions (mmphf). Even though this approach was not the best performing in
most collections, we verified that in practice it behaves as theoretically expected: the space
overhead shows a mild dependence on the nature of the collection. The same happens regard-
ing to the time needed to solve the document listing with frequencies problem. Therefore,
this technique has a great potential to scale very well for use with larger collections. On
collection Proteins, which is not compressible, our previous techniques did not improve over
previous work, however the mmphf techinque offered much better performance.

8.1 Future Work

Term frequency is probably the simplest relevance measure. In Information Retrieval, more
sophisticated ones like BM25 are used. Such a formula involves the sizes of the documents,
and thus techniques like Culpeppper et al.’s [23] do not immediately apply. However, Hon
et al.’s [43] does, by simply storing the precomputed top-k answers according to BM25 and
using their brute-force method for the uncovered cells, instead of our restricted greedy or
DFS methods. The times would be very similar to the variant we called Select in Section
6.3.1.

Sadakane [68] showed how to efficiently compute document frequencies (i.e., in how many
documents does a pattern appear), in constant time and using just 2n + o(n) bits. With
term frequency, these two measures are sufficient to compute the popular tf-idf score. Note,
however, that as long as queries are formed by a single term, the top-k sorting is the same
as given by term frequency alone. Document frequency makes a difference on bag-of-word
queries, which involve several terms. Structures like those we have explored in this paper are
able to emulate a (virtual) inverted list, sorted by decreasing term frequency, for any pattern,
and thus enable the implementation of any top-k algorithm for bags of words designed for
inverted indexes. However, it is possible that extensions of the heuristics of Culpepper et
al. [23] support better techniques natively on the wavelet trees.
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