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Resumen

A la fecha más de 800 exoplanetas han sido detectados, la mayoŕıa de ellos mediante el

método de velocidad radial (VR). De forma tal de obtener VR’s precisas, el espectro este-

lar debe contener miles de ĺıneas de absorción delgadas, lo cual restringe ésta técnica a ser

aplicada principalmente en estrellas de secuencia principal (SP), de tipos espectrales FGK

(M . 1.3M⊙). Sin embargo, luego de la SP, estrellas tempranas (A y F) se expanden, por lo

tanto se enfŕıan, y disminuyen su velocidad de rotación (Schrijver & Pols 1993), presentando

un espectro rico en ĺıneas espectrales delgadas. Por lo tanto, estrellas evolucionadas son un

caso ideal para aplicar ésta técnica para detectar planetas alrededor de estrellas de masa

intermedia (1.3.M/M⊙. 3.0) y para estudiar el efecto de la interacción entre el planeta y

su estrellas huésped.

Durante la última década, varios planetas han sido encontrados alrededor de estrellas post-

SP, los cuales han revelado propiedades orbitales que contrastan con aquellos alrededor de

estrellas de SP. En particular, se observa una falta de exoplanetas orbitando a menos de 0.6

AU de la estrella húesped, lo cual ha sido interpretado como la evidencia observacional de

la destrucción de estos cuerpos durante la época de expansión del radio estelar, debido a la

interacción de marea entre ambos cuerpos (e.g. Villaver & Livio 2009). Sin embargo, el efecto

de la masa estelar también juega un papel importante en este resultado emṕırico (Johnson

et al. 2007).

En ésta tesis se presenta un extenso estudio de VR’s precisas, aplicado a una muestra de

166 estrellas gigantes. El objetivo principal de este estudio es la búsqueda de exoplanetas gi-

gantes alrededor de tales estrellas, con el objetivo de determinar cúal es el rol de la evolución

estelar en las órbitas de los planetas de peŕıodo corto. Durante este proyecto, tres planetas

masivos han sido descubiertos, todos ellos con distancia orbital mayor a 0.57 AU, alrededor

de estrellas que recién comienzan la etapa gigante. Con los datos obtenidos durante éste
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proyecto y aquellos publicados en la literatura cient́ıfica, no es posible separar el efecto de la

evolución estelar del efecto de la masa de la estrella huésped, por lo cual aún no es posible

concluir en favor o en contra del mecanismo recientemente nombrado.
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Abstract

To date, more than 800 exoplanets have been detected, most of them by the radial velocity

(RV) technique. In order to achieve high enough RV precision, the stellar spectrum of the

host star has to contain thousands of narrow absoprtion lines, which restricts this method

mainly to FGK main-sequence stars (M . 1.3M⊙). However, after the main-sequence, earlier

spectral type stars (A and early F) expand, hence becoming cooler and rotate slower than

their former main-sequence progenitors (Schrijver & Pols 1993), hence presenting a spec-

trum containing thousands of narrow absorption lines. Therefore, evolved stars present an

ideal case where we can use the RV technique to search for planets orbiting intermediate-mass

(1.3.M/M⊙. 3.0) stars and to investigate the effect of the post-MS star-planet interactions.

During the last decade, several exoplanets were detected around post-MS stars, revealing

different properties than those orbiting solar-type stars. In particular, the semimajor axis

distribution shows a lack of planets orbiting interior to 0.6 AU, which has been interpreted

as the observational evidence of the engulfment of planets due to tidal decay (e.g. Villaver

& Livio 2009). However, the effect of the stellar mass is also playing a role, which might be

in part responsible for this observational result (Johnson et al. 2007).

In this dissertation a large RV study of 166 giant stars is presented. The main goal of

this survey is to search for giant planets in close-in orbits, and to determine whether the

effect of the stellar evolution is responsible for the observed lack of short period orbit planets

around post-MS stars. During this project, three massive giant planets were detected, all

of them having orbital distances greater than 0.57 AU, around first ascending giant branch

stars. With the current statistics for these kind of objects, is not possible to dissentangle the

effect of the stellar mass from the stellar evolution, thus there is still no conclusive evidence

in favor of the afore mentioned mechanism.
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Chapter 1

Introduction

Twenty years ago, Wolszczan & Frail (1992) announced the detection of a planetary system

around the pulsar PSR 1257+12, based on the study of the variation of the pulsar period.

At the time, this discovery was very controversial since one year before Bailes et al. (1991)

announced a similar result, which was discarded by the same group several months later

(Lyne & Bailes 1992). In addition, since pulsars are the remnants of the explosion of mas-

sive stars, no planet was expected to be found around them. However, three years later, by

measuring the doppler shift of stellar absorption lines, Mayor & Queloz (1995) detected a

Jupiter-mass planet (51 Peg b) around a solar-like star in a 4 days orbit1, which was also

surprising since giant planets (like Jupiter or Saturn) are expected to be formed beyond the

snow line. This new discovery not only confirmed the presence of planets orbiting stars other

than the sun (hereafter exoplanets), but also showed that, as in the case of the planetary sys-

tem around PSR 1257+12, planets live in environments where they were not thought to exist.

These two discoveries revolutionazed modern Astronomy, opening a new field of investi-

gation, that has experienced a very rapid growth in the last 15 years. Nowaday, hundreds

of exoplanets have been detected, covering a wide range of masses, eccentricities and orbital

periods. These planets have been found orbiting very different stars, having different masses,

ages and enviroments. Among them, it is worth to highlight some recent discoveries such as

1These kind of planets were afterwards dubbed as “Hot Jupiters”
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the transiting planet orbiting two stars (Doyle et al. 2011), a planetary system including up

to seven members (Lovis et al. 2011), a Super-Earth in the habitable zone (Anglada-escude

et al. 2012), an Earth-mass planet orbiting α Centauri B (Dumusque et al. 2012) and the

multiple system detected around the radial velocity “stable” star τ Ceti (Tuomi et al. 2012).

1.1 Detection methods

In order to detect exoplanets, several different method have been developed, namely, the

radial velocity (RV) technique, pulsar timing, the planet transit method, astrometric mea-

surements, the microlensing technique, and more recently by direct imaging. The basic ideas

behind these techniques are discussed in the following sections.

1.1.1 Astrometry

This method consists of measuring the position of the host star on the sky, in order to detect

small variations that are induced by an orbiting planet. Considering that both the star and

the planet orbit around the common center of mass, the expected amplitude of the ellipse

described by the star (after correcting for the stellar parallax and proper motion) is given

by:

a⋆ =
aP Mp

M⋆
(1.1)

where a⋆ and ap are the orbital distance of the host star and the planet around the center

of mass of the system. M⋆ and Mp are their corresponding masses. Equation 1.1 shows that

this technique is more effective for massive planets orbiting at large distances from the star.

Certainly close-in planets are more difficult to be detected by this method. Figure 1.1 shows

the angular amplitude in the sky as a function of the distance to the star for a 1.0 MJ size

planet orbiting at 3 AU (black solid line) and a 0.5 MJ planet at 1 AU (dashed blue line).

In both cases the mass of the host star was fixed to 1.0 M⊙ . As can be seen, the angular

precision needed for such detections are below one miliarcsecond. Future missions such as
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GAIA will be able to resolve angular variations at the ∼ 10 µ arcsec level, making possible

the detection of rocky planets orbiting nearby stars. The main advantage of this technique

is that its sensitivity increases with the orbital distance, hence it is complementary to the

RV technique, which is more sensitive to the inner region of planetary systems. However,

very precise measurements of nearby stars have to be taken during several years in order to

obtain a reliable astrometric solution. Also, starspots produce astrometric signals at the ∼

10 micro arcseconds level in nearby solar-type stars (Hatzes 2002).

5 10 15 20 25 30

Figure 1.1: Astrometric amplitudes induced by an orbiting planet, as a function of the
distance to the star. The black solid line corresponds to a 1.0 MJ planet orbiting at a
distance of 3 AU, while the blue dashed line corresponds to a 0.5 MJ mass planet orbiting
at 1 AU. In both cases the mass of the star was fixed to 1.0 M⊙ .
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1.1.2 Transit method

When the orbital plane of the planet is aligned with the observer line of sight, then the

transit of the planet that is passing in front of the star can be observed, in a similar way

that Mercury and Venus passes in front of the Sun. However, it is not possible to observe

spatially resolved transits in exoplanets. Instead, it is possible to measure the decrease of

the stellar flux (∆f) during the transit, whose maximum is given by:

∆ f

f
=

(

RP

R⋆

)2

(1.2)

where f is the off-transit flux of the star, Rp is the planet’s radius and R⋆ the star’s radius.

Since ∆ f is affected by a differential limb darkening in the stellar disk, is not straightfor-

ward to measure an arbitrarily accurate depth. Figure 1.2 shows the fraction of the flux

blocked by the transiting planets as a function of the planet’s radius. The black and blue

lines correspond to a radius of 1.0 R⊙ and 0.6 R⊙ for the host star. It can be noticed that, for

instance, Jupiter produces a ∼ 1 % decrease in the stellar flux when passing in front of the

Sun, whereas the Earth (R ∼ 0.1 RJ) blocks only ∼ 0.01 % of the light. When the RV curve

of the star is available, the shape and duration of the transit provide the orbital inclination,

hence the planet’s orbital and physical properties (MP , RP , aP , e) can be fully derived. This

method, is highly complementary with the RV technique as the combination of both gives

us the planet’s mass and density. Unfortunately, this method has the disadvantage that the

transit probability is very low (∼ 0.5 % for the Earth and ∼ 10 % for a Hot Jupiter), and

considering typical photometric precision, it is mostly sensitive to large planets using ground

based telescopes. However, space missions like KEPLER (precision better than 20 ppm for

a V=12 mag star), have already detected around 2000 planet candidates (including a bunch

of rocky planets) by this technique. In Figure 1.3 a schematic diagram of 5 confirmed tran-

siting planets in the Kepler’s field is shown. As can be noticed the amount of flux blocked

by the transiting planets is below 1 %. Also, all of them are in short period orbits (P < 5
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Figure 1.2: Transit depth as a function of the planet’s radius. The solid black line and the
dashed blue line correspond host stars with R⋆ = 1.0 R⊙ and R⋆ = 0.6 R⊙, respectively.

days), since as mentioned above, the probability of having a transit decreases linearly with

the orbital distance.

During the transit, it is also possible to study the atmosphere of the planet via trans-

mission spectroscopy or occultation. In the former case part of the stellar light crosses the

planet’s atmosphere, superimposing the absorption features of the elements present there in

the stellar spectrum. This method has allowed us to detect the presence of different elements

in the atmospheres of several transiting planets (e.g. Charbonneau et al. 2002). Also the

thermal emission of the planet can be measured by substracting the stellar flux (measured

during the secondary eclipse when the planet is passing behind the star) from the total flux

of the system (star + planet emission; e.g. Zhao et al. 2012).
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Figure 1.3: Schematic diagram of 5 transiting planets detected bty the Kepler mission. Image
credit: NASA/Kepler

An extension of the transit technique is the so called TTV (Transit Timing Variation).

The basic idea of this technique is to measure the variations in the predicted central time of

the transit, which is attributed to the presence of other substellar objects that are perturbing

gravitationally the orbit of the transiting planet.

1.1.3 Gravitational Microlensing

The microlensing effect is based around measuring the the temporal increase of the apparent

brightness of an object, which is produced by the re-focusing of the light of the source in the

direction to the observer, by some intervening object acting as a gravitational lens. This effect

is explained by the curvature of the time-space produced by a compact object, as predicted

by Einstein’s General Relativity. This principle can be used to detect planets that induce a

temporal magnification of the source brightness. However, this effect can only be measured

when two stars, the source and the lensing system (a star hosting a planet) are more or less

aligned and the planet produces an additional magnification effect, which is superimposed to
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the one produced by the lensing star. The main advantage of this technique is that planets

can be detected very far away from us, up to several kiloparsecs, and with very wide orbits.

The disadvantages are the low probability of these events (low probability of the two stars

alignment), and that the event will not be repeated (since stars are moving respect to each

other).

1.1.4 Direct Imaging

The detection techniques presented in last few sections are based on indirect methods to

detect the presence of a planet. The angularly resolved detection of exoplanets is extremely

challenging because of the small angular separation between the planet and the parent star

and due to the large ratio between their fluxes. However, with the use of new technologies

Figure 1.4: Image of Formalhaut and its orbiting planet. Image credit: NASA, ESA and P.
Kalas (University of California, Berkeley, USA)

(such as coronographs) it has been possible to directly observe substellar companions around

several stars. The first direct images of extrasolar planets came just a few years ago, with

the discovery of a giant planet around a brown dwarf (Chauvin et al. 2004). More recently,
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Marois et al. (2008) found a multiple planets system around the star HR 8799, all of them

orbiting beyond 20 AU from the host star. At the same time, Kalas et al. (2008) observed a

planet orbiting in the dusty belt around the star Formalhaut. The latter system is shown in

Figure 1.4, where the displacement of the planet is also shown between 2004 and 2006. To

date, several other systems have been detected by this method, using different instruments

and techniques. The main advantage of this technique is that it is sensitive to planet in wide

orbits, hence allow us to probe the outer part of planetary systems aswell as directly measure

the thermal emission and spectral properties of the planet.

1.1.5 Pulsar Timing

The Pulsars are extremely precise cosmic clocks, as they emit regular radio frequency pulses

induced by their strong magnetic fields generated by their fast rotation. However, in the

presence of a stellar or substellar companion, the effect of their orbital motion around the

center of mass of the system, translates into a periodic increase and decrease in the frequency

of the pulse, due to the difference in the path traveled by the light emitted by the pulsar.

For a planet in a circular orbit, the maximum difference in the time of arrival of the pulse is

given by:

∆t =

(

aP sin i

c

) (

MP

M⋆

)

(1.3)

where ap is the orbital distance of the planet, respect to the system’s center of mass, i is

the inclination angle of the orbit and c is the speed of light. MP and M⋆ correspond to the

mass of the planet and the pulsar, respectively. In Figure 1.5 the time delay amplitude in the

orbital distance versus planet’s mass plane is plotted. The orbits are assumed to be circular

having an inclination angle i = 90 degrees. The mass of the pulsar was set to 1.4 M⊙ . The

positions of the rocky planets in the Solar System are also shown. Since the typical precision

achieved is ∼ 1 µ s (lower line in Figure 1.5), it is possible to detect moon-sized objects and

small asteroids in wide orbits.
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Figure 1.5: Maximum time delay observed in the pulsar frequency in the orbital distance
versus planet’s mass plane. The lines from bottom to top correspond to time delay amplitudes
of 1, 10, 100 and 1000 µs, respectively. The orbital inclination angle is assumed to be i=90
degrees and the mass of the star is fixed to 1.4 M⊙ . The position of the inner planets in the
solar systems are also labelled.

1.1.6 The Radial Velocity Technique

Among the detection methods developed for planet searches, the RV technique has been the

most successfull one in terms of the rate of discoveries (around 500 exoplanets confirmed as

of December of 20122). The basic idea behind this technique is to measure the doppler shift

induced by the gravitational pull of a substellar companion. This effect can be measured

from the shifts in the position of the stellar spectral features, which are related to the stellar

radial velocity relative to the observer simply by (in the non-relativistic regime):

2source: http://exoplanet.eu/
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v

c
=

∆ λ

λ
(1.4)

where v is the velocity of the star in the direction of the observer and c is the speed of

light. ∆ λ correspond to the wavelength shift at the wavelength λ. Since the velocity of

the star along its orbital motion around the star-planet center of mass varies with time, the

doppler shift measured from the stellar spectrum follows a periodical variation having the

following form:

Vr(ν) = K (cos(ν + ω) + e cos(ω)) (1.5)

where ν is known as the true anomaly, and corresponds to the angle between the peri-

astron and the position of the planet, measured from the center of mass of the system, that

corresponds approximately to the position of the host star. ω is a fixed quantity usually called

as argument of periastron or argument of periapsis and corresponds to the angle between the

line of nodes and the periastron, while e is the eccentricity of the orbit. Figure 1.6 shows a

schematic diagram with the orbital elements of the planet.

The proportional constant K is the amplitude of the radial velocity curve, which is given by:

K =
28.4√
1 − e2

(

Mp sin i

MJ

) (

M⋆

M⊙

)−1/2
( a

AU

)−1/2

(1.6)

where Mp, M⋆ and a correspond to the mass of the planet, the mass of the star and the

semimajor-axis, respectively. The i angle, corresponds to the inclination between the planet

orbit and the plane of the sky, which is perpendicular to the observer’s line of sight. The last

formula is valid only when the mass of the star is much larger than the mass of the planet,

i.e., M⋆ ≫ Mp. Figure 1.7 shows the RV amplitude K in the a-Mp plane, for planet orbiting

a 1.0 M⊙ star. The three lines from bottom to top correspond to RV amplitudes of 0.1 m s−1 ,

1.0 m s−1 and 10.0 m s−1 , respectively. The position of the the Earth, Jupiter and Saturn are
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Figure 1.6: Schematic diagram of the planet’s orbital elements. The reference direction is
perpendicular to the observer’s line of sight.

also plotted. As can be seen, a planet similar to the Earth would be barely detectable with

a 10 cm s−1 precision.3 Planets similar (in mass and orbital distance) to Saturn and Jupiter

can easily be detected with the current instrumentation.

In order to convert from ν (which is not a direct observable quantity) into time, two trascen-

dental equations are used:

2 π (t − Tp)

P
= E − e sin E (1.7)

tan
(ν

2

)

=

(

1 + e

1 − e

)1/2

tan

(

E

2

)

(1.8)

3The next generation of high precision spectrographs such as ESPRESSO at VLT (first light schedule for
2016) are expected to reach ∼ 10 cm s−1 level precision.
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1 10

Figure 1.7: Radial velocity amplitude in the a-MP plane. The lines from bottom to top
correspond to K = 0,1, 1.0, 10 m s−1 . The mass of the parent star is fixed to 1.0 M⊙ .

where P is the orbital period and Tp is the time of periastron passage. These two equation

can be solved numerically, and hence it is possible to derive the radial velocity variations of

the star as a function of time.

With the current instrumentation (e.g. HARPS mounted on the 3.6m telescope, at La

Silla) it is possible to reach a single shot RV precision below ∼ 1 m s−1 , allowing us to detect

planets having masses comparable to the mass of the Earth (e.g. Pepe et al. 2011; Forveille

et al. 2011; Dumusque et al. 2012; Tuomi et al. 2012). Adittionally, the use of a laser comb

4 (which is under construction), will be used to compute a much more precise wavelength

calibration through all of the optical range, allowing to improve the RV precision down to ∼
4The laser comb produces a uniformly distributed set of emission lines which are then used to derive a

very high accuracy (∼ 10 cm s−1 ) wavelength solution
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30 cm s−1 .

Unfortunately, this technique has also some disadvantages. First, from the RV curves it

is possible to derive only the minimum mass of the planet (Mp sin i) since the inclination

angle between the orbital plane of the substellar companion and the observer cannot be di-

rectly measured. However, when transiting observations of the planet are also available, the

inclination angle of the orbit can be derived, and hence the orbital parameters can be fully

resolved. Secondly, the RV curve requires several decades of continues observations to cover

at least one orbital period for planets orbiting beyond a few AU’s from the host star (like the

giant planets in our solar system). Considering also that the RV amplitude decreases with

the distance of the host star (see equation 1.6), the RV technique is most sensitive for planets

orbiting within a few AU’s. Finally, since precise RV measurements require thousands of

narrow absorption lines in the stellar spectrum, the detection of exoplanets by this technique

is mainly restricted to solar-type stars, having low rotational velocities5.

1.1.6.1 Intrinsic Stellar Phenomena

Since the RV technique is based on the precise determination of the centroid of the spectral

lines, other stellar phenomena producing a similar effect might mimic the doppler shift induce

by an orbiting planets. The main sources of stellar phenomena affecting the RV measurements

are:

• Stellar oscillation modes. As in the case of the Sun, most stars show a rich spectrum

of stable radial and non-radial oscillation modes. In the case of solar-type stars, they

present solar-like oscillations, having the maximum power at frequencies of ∼ 3 mHz,

corresponding to ∼ 5 minutes. The effect of these oscillation modes has been usually

average out (for solar-type stars) by taking longer exposure time (texp & 10 minutes)

This method is very efficient at decreasing the RV variations induced by stellar oscil-

lations well below the 1 m s−1 level (see O’Toole et al. 2008). Unfortunately this is

5The stellar rotation produces a significant broadening in the spectral lines, thus difficulting the precise
RV measurements.
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not possible for stars having much longer oscillation timescales (such as giant stars).

In addition, since non-radial pulsations are expected to be accompanied by line shape

variations, it is possible to use a bisector analysis in order to investigate the degree of

asymmetry and to determine whether these variations are in phase with the RV curve

(see section 4.3.2.1).

• Rotational modulation. When a spot (or group of spots) crosses the stellar disk of

a rotating star, produces variations in the spectral lines profile, as shown in Figure 1.8.

When the spot is passing in the front of the region that is approaching the observer

(left spot in Figure 1.8), it blocks some of the blue shifted emission, producing an

asymmetry in the spectral lines (the line centroid is red-shifted). A similar effect is

caused by the spot after it moved toward the red shifted side of the disk (the line

centroid is blue-shifted). Since the asymmetry induced by the rotating spot produces

also a displacement of the spectral lines centroids, this effect might be interpreted as

a radial velocity shift. In fact, when the spot remains stable during several rotational

periods, the RV curve of the star will show a similar variation as the one produced by

a substellar companion (e.g. Queloz et al. 2001). In order to discriminate between

the companion interpretation and the rotating spot, a line bisector and/or photometric

analysis is needed (the spots produce line asymmetries and photometric variability). In

addition, since this effect is wavelength dependent, the RV curve computed at different

wavelength might provide additional information (e.g. a flat curve in the near-IR; see

Huelamo et al. 2008).

• Magnetic activity Another source of RV variations might be produced by inhomo-

geneities in the stellar convection, which are associated to magnetic activity in the

stellar surface (e.g. Saar et al. 1998; Lovis et al. 2011). When convection is par-

tially supressed or retarded in a region of the stellar surface, then a net RV velocity

is measured when integrating the light from the stellar disk. One way to distinguish

between the intrinsic and extrinsic scenarios is to study the emission of chromospheric

lines (such as the Ca ii HK lines). The emission of these lines is directly correlated
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Figure 1.8: Schematic diagram of the effect of starspots in the shape of spectral lines. Since
the spot is moving from the left (blue shifted emission) to the right (red shifted emission),
the extra absorption in the stellar lines is also moving from the blue to the red, shifting the
line centroids.

to the presence of bright plagues and dark spots in the stellar surface (e.g. Dorren &

Guinan 1994). This emission is also observed to be stronger around active regions in

the surface of the Sun.

1.2 The Observed Properties of Exoplanets

Since more than 800 exoplanets have been detected, it is possible to study in a statistical

manner their properties and how they correlate with the stellar properties. These kind of

analysis can provide valuable information about the planet formation/migration mechanisms,

dynamical interactions and orbital evolution of planetary systems.
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Figure 1.9: Planetary mass ditribution as a function of the orbital period, for planets detected
by the RV technique (blue dots) and the planet transit method (red triangles). The two lines
from bottom to top, correspond to RV amplitudes of 1 m s−1 and 10 m s−1 , respectively.

Figure 1.9 shows the position of exoplanets in the Mp - P plane 6. The blue dots correspond

to the exoplanets detected by the RV method while the red triangles are those detected

by transit surveys. The two dotted lines correspond to radial velocity amplitudes of K=1

ms−1 (lower line) and K=10 ms−1 (upper line) for a 1.0 M⊙ star. Some interesting features

are worth highlighting from Figure 1.9. First, there is a large population of Hot Jupiters (Mp

& 0.3 MJ ; P . 10 days), most of them detected by the transit method. In fact, around ∼

35 % of the known exoplanets have orbital periods below 10 days. This is in part due to the

strong decrease in the transit probability with the orbital distance (p ∝ a−1), restricting this

6The orbital parameters of the exoplanets were retrieved from http://exoplanet.eu/
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technique mainly to P . 10 -20 days. In the core-accretion model, this rich population of gas

giants orbiting in close-in orbits can be explained by including a migration mechanism, where

the giant planets are formed beyond the snow line 7 and then they move inward due to the

interaction with the disk (e.g. Ida & Lin 2004). Also it can be noticed that there is a paucity

of giant planets orbiting between ∼ 10 - 100 days, which is known as the “period valley”.

However, when we only include giant planets detected by the RV method (in order to avoid

the strong bias toward close-in systems in the transit method), this apparent “desert” is less

pronounced than what was previously claimed, based on smaller samples (Jones et al. 2003;

Udry et al. 2003; Cumming et al. 2008). It is also evident that there is an overpopulation of

planets having orbital periods around ∼ 400 days. This feature cannot be attributed to an

observational bias, since the RV detectability increases toward shorter period orbits. Finally,

there is a paucity of very short period (P . 3 days) giant planets with MP . 0.6 MJ . Once

again, this cannot be explained by an observational bias, since these systems should be easily

detected by both, the RV technique and the transit method. This observational result might

be interpreted to be due to the total evaporation of relatively small giant planets by the

strong stellar radiation field or that the outer part of the planet is evaporated, thus losing

a significant fraction of its gaseous envelope. This scenario would also explain the presence

of low mass planets (MP . 0.03 MJ) with orbital peridos . 3 days, which would be the

remaining solid cores of gas giants after losing their envelopes. In fact, according to the

core-accretion model, the size of these solid cores that form giant planets (after accreting gas

from the protoplanetary disk) is ∼ 0.01 - 0.03 MJ (Ida & Lin 2004).

In Figure 1.10 the eccentricities of exoplanets as a function of their orbital distance are

plotted, for planets detected by the RV technique8. For comparison, the position of the

inner planets in the Solar System are labelled (red triangles). The first thing to notice in

Figure 1.10 is the existence of highly eccentric planets, in contrast to what is observed in the

7The snow line is the point beyond which condensation of ices occurs, thus increasing considerably the
surface density of the disk (∼ 3 AU in the Solar System).

8The planet’s eccentricity cannot be directly measured by the tranist method.
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Figure 1.10: Eccentricity distribution as a function of the planet’s orbital distance (black
dots). The position of the inner planets in the Solar Systems are also shown (red triangles).

Solar System. It has been argued that the reason causing the high eccentricity observed in

extrasolar planets is due to to planet-planet (e.g. Lin & Ida, 1997) and planet-planetesimals

interactions (Levison et al. 1998) or as the result of the gravitational influence of a stellar

companion (e.g. Holman et al. 1997) or a passing star (e.g. Zakamska & Tremaine, 2004).

Also, it can be noticed that close-in planets (a . 0.2 AU) have lower eccentricities (e <

0.3 - 0.4). This has been interpreted as the result of tidal circularisation (Goldreich & Soter

1966). However, it is also possible that the afore mentioned mechanisms (planet-planet and

planet-star interactions) are less efficient in pumping the eccentricities in the inner region of

planetary systems, which might explain the low values of e observed among close-in planets.

Finally, Figure 1.11 shows a histogram of the metallicity of known exoplanets host stars.
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The distribution has a sharp peak at [Fe/H] ∼ 0.1 dex, suggesting that planets are formed

preferentially around metal-rich stars. In addition, it has been found that the occurrence of

gas giants increases with increasing metallicity of the host star (Gonzalez 1997; Fischer &

Valenti, 2005) and that the mean metallicity of planet hosting stars is significantly higher

than non-planet hosting stars (Santos et al. 2001). These observational facts has been used

in favor of the core acrretion model, where the content of metals in the protoplanetary disk

is a crucial ingredient for the formation of the cores and planetesimal, prior to the formation

of planets.

-1.5 -1 -0.5 0 0.5 1

Figure 1.11: Histogram of the metallicity of stars hosting exoplanets.
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1.3 Giant Stars

1.3.1 Naming convention

During the rest of this thesis the following naming convention is used:

• Evolved or post-MS star. Stellar object that has exhausted the hydrogen in its

core, thus H fusion is not taking place in the core. This category includes SGB, RGB,

HB and AGB stars.

• Sub-giant star (SGB). Stellar object that is fusing hydrogen in a thick shell around

an inert core.

• Giant star. Evolutionary states after the sub-giant phase. This category includes

RGB, HB, and AGB stars.

• Red Giant Branch star (RGB). Star that is fusing hydrogen in a thin shell around

an inert core.

• Horizontal Branch star (HB). Stellar object after the end of the RGB phase. It

is either a core helium burning star or an early phase double shell burning object

(asymptotic giant star).

1.3.2 Stellar evolution after the main-sequence.

During the main sequence, a star converts hydrogen into helium in its core, in stable con-

ditions. During this process, the stellar core increases slowly its mean molecular weight,

leading to a gradual contraction and hence a slight increase in the gas pressure and temper-

ature. The increase in the core temperature (TC) leads to a slight increase in the core size,

where particles in the outer edge of the core also reach temperatures high enough to fuse

H into He. In addition, when the star has a convective core (M⋆ & 1.2 M⊙ ) then H-rich

material from the outer layers will be transported into the core, replenishing it with extra

nuclear fuel. This process also increases the energy generation in the star’s center which is
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transported into the stellar surface, increasing its luminosity and radius. Figure 1.12 shows

the evolution of a 1.0 M⊙ star (and solar metallicity) in the HR diagram (upper panel), from

the zero age main sequence (ZAMS) up to the tip of the red giant branch (RGB) phase. In

the lower panel it is shown the fractional mass of the inner (blue dashed line) and outer (red

solid line) edge of the H-burning region. It can be noticed that during the MS the nuclear

reactions occur in the stellar core, which reaches a maximum size (in mass coordinate) of 0.4

M⊙ . After the exhaustion of H in the star’s center, the nuclear fusion starts to occur in a

shell around the nearly isothermal He-enriched core. The thickness the shell rapidly shrinks

(the blue line approaches the red line during the sub-giant phase) becoming narrower during

the RGB phase. A similar plot is shown in Figure 1.13 but for a 3.0 M⊙ and solar metallicity.

3.7 3.6 3.5

3.7 3.6 3.5

Figure 1.12: Upper panel: Evolutionary track for M⋆ = 1.0 M⊙ and Z=0.019 (solar metal-
licity). Lower panel: The corresponding fractional mass of the inner (dashed blue line) and
outer (solid red line) H-burning region. Data from Salasnich et al. (2000).

The subsequent evolution after the star reaches the tip of the RGB depends on the stel-
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lar mass, although the physical processes are similar. For star with M⋆ . 2.0 M⊙ , since the

gas in its core is in degenerate conditions, an increase in the temperature does not lead to an

expansion of the gas (because the gravitational force is balance by degenerate pressure instead

of thermal pressure). Because of this, the rich-He core increases its temperature while its size

and pressure remain nearly constant. At some point, the local temperature reaches a value

high enough (∼ 108 K) so that He fusion sets in, thereby releasing suddenly a huge amount of

energy, known as Helium Flash (see e.g. Dearborn et al. 2006; Mocak et al. 2008). Most of

the energy produced during this process is used in breaking the core degeneracy and to heat

it up, hence this effect is not expected to be observed in the stellar surface. As a consequence

of the Helium Flash all of the structure of the star is modified, decreasing its radius (since

the energy production by Hydrogen fusion at the edge of the core falls; see e.g. Dearborn

et al. 2006) and increasing its surface temperature. The star has now reached a new stable

equilibrium, fusing He in the core. This stage in the stellar evolution is the beginning of the

Horizontal Branch (HB) phase. On the other hand, for a star more massive than & 2.0 M⊙ ,

an increase in its central temperature is accompanied with a a slight expansion of the gas,

cooling down the stellar core. This is because these stars reach high temperatures at lower

densities, therefore the gas in the core is not degenerate (see Figure 1.14). In Figure 1.14 the

core temperature as a function of the central density from the ZAMS to the tip of the RGB

is plotted. Four stellar models from Charbonnel et al. (1993) are presented (M⋆ = 1.0, 1,5,

2.0, 3.0 M⊙ ; black, green, red and blue lines, respectively). The dots correspond to each

point in the grid of stellar models. It can be seen that higher mass star reach the He ignition

temperature at lower central densities, while lower mass stars develop degenerate cores (ρ ∼

105-106 gr cm−3) at T ∼ 107-108 K. At some point, the mass of the inert core reaches a critical

value, hence thermal pressure can no longer compensate the gravitational force, leading to a

further contraction. The value of TC increases dramatically until He fusion takes place. As

a consequence, energy released by He fusion expands the stellar core, and the star’s radius

and luminosity strongly decrease. As for the lower mass range, at this point the star reaches

a new equilibrium, burning steadily He in its core.
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Figure 1.13: Same as Figure 1.12 but for M⋆ = 3.0 M⊙ .

During this stage of the stellar evolution, the star is converting He into heavier elements

in the core (mainly carbon and oxygen) via the triple-α process. Additionally the star is also

fusing hydrogen into helium in a thin layer surrounding the stellar core. Even though the

star is in a stable situation, the fuel supply is exhausted in a much shorter timescale than the

main-sequence timescale (core hydrogen fusion), leaving behind an inert C-O core, while still

burning hydrogen in a thin shell. Once again, the core contracts, increasing its temperature,

until He fusion is possible around the core. At this point the star is burning He in the layer

inmediately above the inert C-O core and in a shell above that one, fusing hydrogen. The

star has now reached the so called asymptotic giant branch (AGB) phase, and its evolution is

even faster than during the HB phase. During this evolutionary stage, the star losses a large

fraction of its envelope via strong stellar winds, and its late fate will depend on its initial

mass. In Table 1.1 the timescales for the MS, sub-giant branch (SGB), RGB, HB and AGB

phases, for M⋆ = 1.5 M⊙ and 3.0 M⊙ are listed. For comparison the positions of the starting
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Figure 1.14: Central Temperature as a function of the the density in the stellar core. Four
different models are presented (M⋆ = 1.0, 1,5, 2.0, 3.0 M⊙ ; black, green, red and blue lines,
respectively). Data from Charbonnel et al. (1993)

points of different evolutionary states are shown in Figure 1.15.

Besides the fact that massive stars live shorter than lower mass stars, it is important to

notice from Table 1.1 that there are large differences in the timescales for different evolu-

tionary states, after the main-sequence. For instance, the evolution of the star through the

subgiant phase is very fast, compared to the MS and HB phases (also to the RGB for a

1.5 M⊙ star). As a consequence, the subgiant stars are rare, simply because a star spends

just a small fraction of its life in this stage. It can be also noticed that the HB timescale is

comparable to the time in the RGB, for a 1.5 M⊙ star, and much longer for a 3.0 M⊙ star.

For this reason, most of the stars that lie in the red clump 9 (see Chapter 2 for further

9The red clump is the region in the HR diagram restricted to 0.8 . B-V . 1.2 and -0.5 . MV . 2.0
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Table 1.1: Timescales for different evolutionary states, for a 1.5 M⊙ star and 3.0 M⊙ star. The
corresponding locations in the HR diagram are plotted in Figure 1.15. Data from Salasnich
et al. (2000).

Points in Figure 1.15 τ (Myr) Stage
M⋆ = 1.5 M⊙

1 - 2 2755 Core H-burning (main-sequence)

2 - 3 42 H fusion in a thick shell (sub-giant phase)

3 - 4 151 H fusion in a thin shell (RGB)

4 - 5 ... Post He-flash transition

5 - 6 112 Core He-burning (HB)

6 - 7 12 Double shell (He and H) burning (AGB)

M⋆ = 3.0 M⊙

1 - 2 379 Core H-burning (main-sequence)

2 - 3 2.0 H fusion in a thick shell (sub-giant phase)

3 - 4 2.3 H fusion in a thin shell (RGB)

4 - 5 7.3 Transition from RGB to HB

5 - 6 85 Core He-burning (HB)

6 - 7 6.5 Double shell (He and H) burning (AGB)

details) are HB stars, instead of first ascending RGB stars. Finally, it is clear that the stellar

evolution speeds up after the exhaustion of helium in the core, thus the AGB phase is also

very short. Once again, the observational consequence, is a that only a small percentage of

the field stars are in the AGB phase. Figure 1.16 shows the color-magnitude diagram of the

globular cluster M3. The different post-MS evolutionary phases can be clearly distinguished,

since the cluster members have roughly the same age and metallicity.

1.3.3 Surface abundances

Due to the stellar evolution, the surface abundances of stars are strongly affected. After the

MS, the stars develop deep convective envelopes, where material from the surface and from
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Figure 1.15: Stellar evolutionary tracks for a 3.0 M⊙ star (upper panel) and a 1.5 M⊙ star
(lower panel), both having solar metallicity. Different evolutionary stages are labelled which
are explained in table 1.1. Data from Salasnich et al. (2000).

the interior are mixed together. During the post-MS evolution, there are three main mixing

episodes, known as dredge-up. The first dredge-up occurs when the star reaches the base of the

RGB. During this period, the convective zone reaches the inner part of the star, bringing to

the surface material produced by fusion processes. As a result, the atmospheric abundances

of nuclear processed elements, such as 3He and 4He, are enhanced and the isotopic ratios of

some elements such as 12C/13C decrease. In addition, the surface lithium is depleted since it

is completely destroyed in the stellar interior at temperatures greater than ∼ 2.7 × 106 K. A

second dredge-up occur for stars with ∼ 4-7 M⊙ , at the end of the HB phase (i.e., soon after

the exhaustion of He in the core). In this mixing episode the surface abundance of 4He and

14N increases, while the amount of 12C, 13C and 16O decreases. Finally, a third dredge-up is

predicted to occur during the AGB phase. As a result recently synthesized carbon is carried
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Figure 1.16: HR diagram of the globular cluster M3. Different post-MS evolutionary states
are labelled. Data taken from Buonanno et al. (1994).

to the surface. In Figure 1.17 the surface abundance relative to the original composition after

the first dredge-up is shown, for star with mass up to 5 M⊙ . The abundances of five species

are plotted. Their corresponding symbols are also labelled. It is worth to notice that the

mixing process is nearly constant with the stellar mass, except for 14N (since it is produced

in intermediate-mass stars via the CNO cycle). The observed abundances and isotopic ratios

in giant stars provide an excellent test for stellar evolution models, aswell as a determination
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of the age of the star based on the amount of enhancement or depletion of different species.

1 2 3 4 5

Figure 1.17: Surface abundances relative to the original composition for different elements,
after completition of the first dredge-up. Data from Salasnich et al. (2000)

1.4 Planets Around Giant Stars

As already mentioned in the previous section, the RV detection of planets is mainly biased

to solar-like stars, having a low rotational velocity and low level of stellar activity. Fast

rotators present a broad lines spectrum, preventing us to compute precise RV’s, and active

stars induce a high level of RV noise, which might also mimic the doppler shift induced by a

planet. On one hand, very low mass stars are too cool and present strong molecular bands

in their spectra, which makes difficult the precise determination of the doppler shift induced
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by a companion. On the other hand, main-sequence (MS) stars more massive than ∼ 1.3

M⊙ (corresponding to spectral types earlier than ∼ F5) are too hot and rotate fast, which

produces a spectrum dominated by few and broad absorption lines, making extremely chal-

lenging the computation of precise RV’s. However, when these kind of stars evolve off the

MS, they become cooler and rotate slower than their MS progenitors (Schrijver & Pols 1993),

thus presenting a rich spectrum of narrow absorption lines, which, as discussed before, is ideal

for the computation of precise RV’s. Figure 1.18 shows a portion of the observed spectra of a

5010 5020 5030 5040

5010 5020 5030 5040

Figure 1.18: A portion of the optical spectrum of a F5 main-sequence star (upper panel) and
a K1 giant star. Both stars have similar masses.

F5 main-sequence star (upper panel) and a K1 giant star. Both stars have a similar mass. It

can be clearly noticed that in the former case the spectrum is dominated by few and broad

lines, whereas in the latter case the spectrum exhibits many narrow absorption lines, which

means that in principle it is possible to reach high RV precision and hence to detect substellar
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companions. However, giant stars are known to be intrinsically more active than solar-type

stars (see § 5.1 in chapter 3), difficulting the RV analysis. The first precise RV studies of giant

stars (e.g. Smith et al. 1987; Belmonte et al. 1990) revealed that these objects present dif-

ferent oscillations modes having amplitudes up to hundreds m s−1 and timescales from hours

to days. As a comparison, the typical oscillation amplitudes in the sun are ∼ 20 cm s−1

with timescales of ∼ 5 minutes. Subsequent studies (e.g. Merline 1999; Frandsen et al. 2002;

Kallinger 2008), also showed that these kind of stars present solar-like oscillations, i.e., oscilla-

tions excited by convection, with a frequency spectrum similar to the one observed in the sun.

Kjeldsen & Bedding (1995), using a linear theory and based on observational data, pro-

vided a set of scaling relationships that are usefull for deriving the typical amplitude and

frequency of the radial velocity variations, which are given by:

vosc = 0.23
(L/L⊙)

(M/M⊙)
ms−1 (1.9)

νmax = 3.05
(M/M⊙)

(R/R⊙)2
√

(Teff/5777 K)
mHz (1.10)

where vosc is the maximum velocity amplitude observed at the frequency νmax. Also, the

expected change in the stellar luminosity can be computed by:

(δ L/L)λ = 20.1
vosc / m s−1

(λ/550 nm) (Teff/5777 K)2
ppm (1.11)

where λ is the wavelength and ppm denotes parts per million (1 ppm ∼ 1 µmag). Even

though these relations were computed for MS and sub-giant stars, they agree reasonably well

with the oscillation amplitudes and timescales observed in giant stars. Additionally, Cox

(1980) derived the following relation:

30



∆ ν = 134.9

(

M

M⊙

)1/2 (

R

R⊙

)−3/2

µHz (1.12)

where ∆ ν is the so-called large frequency separation, corresponding to the frequency sep-

aration of two consecutive peaks for which the radial mode 10 differs by n = 1. It can be

seen that if νmax and ∆ ν are known, equations 1.10 and 1.12 can be used to derive the

physical properties of the star (e.g. Kallinger et al. 2009). Also, equations 1.9 and 1.11 can

used to derive the RV amplitudes and timescales of the main oscillation modes in the giant

stars. For instance, let’s consider a clump giant star having the following physical parame-

ters: M=2M⊙, L=50L⊙, R=10R⊙ and Teff =5000K. Using these values in equations 1.9

and 1.10 we obtain a radial velocity amplitude of ∼ 6 m s−1 at a frequency of ∼ 66 µHz,

corresponding to a timescale of 4.2 hours.

Extensive recent studies have also shown that the random sampling of the stellar pulsa-

tions result in a RV noise at the 10 - 100 m s−1 level (e.g. Setiawan et al. 2004). In particular,

Sato et al. (2005) showed that giant stars bluer than B -V = 1.0 present a variability at the 10

m s−1 level (with the most stable stars showing a 6-8 m s−1 scatter) and Hekker et al. (2006)

also showed that a significant fraction the bluer giant stars (B -V color < 1.2) present a RV

noise below 20 m s−1 . From these results, it is possible to conclude two main things. Firstly,

even though giant stars are intrinsically more active than solar-type stars, it is possible to use

the RV technique to detect substellar companion in the blue part of the red giant branch and

the horizontal branch. For instance, let’s consider a Jupiter-mass planet in a circular orbit at

a distance of 0.6 AU around a 2.0 M⊙ star. According to equation 1.6, (assuming sin i close

to 1) the RV amplitude induced by the planet is ∼ 26 m s−1 , which is ∼ 3 times the stellar

jitter for the bluer giant stars (∼ 6-10 m s−1 ). Secondly, since the oscillation main modes

have timescales of hours to days, it is not possible to average them by, for instance, increasing

the observing time (as is usually done for solar-type star), meaning that the RV errors are

10The n mode correspond to the radial modes in spherical coordinates. Since the pulsation of the stars cor-
respond to the eigenmodes of a vibrating sphere, also non-radial modes having different polar and azimuthal
orders are observed.
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dominated by stellar jitter when using a high precision spectrograph, such as HARPS.

0.1 1

Figure 1.19: Semimajor-axis distribution for planets around evolved stars, discovered until
2009. The blue open stars and red filled circles correspond to sub-giant and giant host stars,
respectively.

By the middle of 2009, (starting time of this PhD thesis) around 40 planets were already

found orbiting evolved stars, revealing different properties than the planetary population

around solar-type stars. In Figure 1.19 the semimajor-axis distribution of planets orbiting

post-MS stars (discovered until 2009) as a function of the host stellar mass is plotted. It

can be noticed that there is an absence of planets around giant stars within 0.6 AU, which

suggests that the stellar evolution of the host stars is playing a role on the orbital evolution
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of the planets around them. Theoretically, this observational fact was predicted to be due

to tidal interactions that lead to the engulfment of close-in planets during the ascent of the

host star through the red giant branch (e.g. Siess & Livio 1999; Sato et al. 2008; Villaver &

Livio 2009). Also, in the presence of a significant mass loss, the gravitational field produced

by the host star is weakened, thus increasing the orbital distance of the planet. Hence the

orbital evolution of the planet can be described by:

ȧ

a
= −Ṁ⋆

M⋆
− Ft (1.13)

where a is the orbital distance of the planet (assumed to be in a circular orbit), M⋆ is

the mass of the star, hence −Ṁ⋆ corresponds to the mass loss rate. Ft is the tidal friction

contribution, given by (see Villaver & Livio 2009, and references therein):

Ft = q (1 + q)
f

τd

Menv

M⋆

(

R⋆

a

)8

(1.14)

where q is the ratio between the mass of the planet and the mass of the star and Menv is

the mass of the convective envelope of the giant star. M⋆ and R⋆ are the total mass and radius

of the star and f is a numerical constant obtained by integrating the viscous dissipation of

the tidal energy through the convective zone. Finally, τd is the eddy turnover timescale,

which is given by (Rasio et al. 1996):

τd =

(

Menv Renv ∆ R

3 L⋆

)1/3

(1.15)

where Renv is the radius of convective envelope and ∆ R corresponds to the size of the

convective region (R⋆ - Renv). Also, according to Reimers’ Law, during the red giant branch

phase the stellar wind is not strong enough to significantly affect the stellar mass, thus the

orbital evolution is mainly dictated by the angular momentum exchange between the planet
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and the convective envelope of the giant host star 11. Since the tidal dissipation term is

strongly dependent on the relative size of the stellar radius and the orbital distance (see

equation 1.14), close-in planets are expected to be engulfed mainly during the late phase of

the RGB evolution of the parent star, when the radius of the star becomes larger. Further-

more, since during the RGB phase the radius of the star strongly depends on its mass (the

lower the mass, the larger the radius), the survival distance (minimum orbital distance to

avoid being engulfed by the host star) of planets decreases dramatically with the mass of

the host star. For instance, according to Kunitomo et al (2011), the survival distance for a

planet around a 1.8 M⊙ star is 1.1 AU, while for a 2.0 M⊙ star is only 0.36 AU. This fact

is certainly very important when studying the effect of planets engulfment in the observed

population of them around horizontal branch stars.

In addition, from Figure 1.19 it can be noticed that there is no close-in planet orbiting sub-

giant stars more massive than ∼ 1.4M⊙ . Since subgiants have not evolved enough (small

radii) to efficiently exchange angular momentum with the orbiting planets, the tidal decay

scenario cannot be solely responsible for the lack of close-in planets around them. In fact,

this result suggests that the properties of planetary systems are stongly affected by the mass

of the host star and the protoplanetary disk from where they are formed. In particular, the

formation scenarios and/or migration mechanisms, including the protoplanetary disk dissi-

pation timescale, are probably significantly different for intermediate-mass stars (M & 1.5

M⊙ ) when compared to lower mass stars. In fact, in the core-accretion model the formation

of gas giant planets in close-in orbits (. 0.6 AU) around stars more massive than ∼ 1.2M⊙

is less efficient compared to lower mass stars (Burkert & Ida 2007).

11An enhanced mass loss rate will produced a decrease in the stellar mass and then a lower surface gravity.
The star will then reach a larger radius at the end of the RGB phase, hence a stronger tidal force. See e.g.
Schroder & Smith (2008)

34



1.5 This Thesis

In this PhD thesis it will studied the population of planets in close-in orbits (a . 0.6 AU)

around giant stars. The main goals of this project are:

• To measure the fraction of giant stars that host a giant planet (M & 1 MJ) in close-in

orbits (a . 0.6 AU). This information will be used to either confirm or discard the lack

of short period planets around giant stars that has been claimed by different groups, as

discussed in the previous section. In particular, it is expectec to determine whether an

observational bias, as the sampling rate, might be in part responsible for this result.

• To compare the fraction of close-in planets around RGB and HB stars, in order to

determine whether there is an evolutionary effect that is significantly affecting their

orbits.

• To increase the poor statistics of planets around intermediate-mass stars, in order to

investigate how the mass of the host star affects the properties of planetary systems.

In order to achieve these goals, a radial velocity survey has been conducted during the last

three years, aimed at detecting giant planets around giant stars. A sample of 166 post-MS

stars have been monitored using three different high-resolution spectrographs, namely, FECH

and CHIRON (1.5m telescope at CTIO) and FEROS (2.2m telescope at La Silla), leading to

a large set of precise radial velocities, having a nearly homogeneous sampling.

The organization of this thesis is as follows. In chapter 2 is described the sample selec-

tion along with the determination of the atmospheric and physical parameters of the giant

stars. In particular, the evolutionary status for all of the targets is derived, relying on the

post-MS timescales provided by the stellar evolution models. In chapter 3, an extensive

description of the I2 cell technique is presented and a detailed analysis of all of the radial

velocities computed from the CTIO sample, compounded by 66 clump stars. In chapter 4,

the preliminary results from the FEROS sample are presented, highlighted by the discovery
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of several binary systems and the detection of four new planets orbiting three different stars.

Finally, the summary and conclusions of this thesis are discussed in chapter 5.
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Chapter 2

Sample Definition and Physical Properties

(Jones, M. I.; Jenkins, J. S.; Rojo, P. and Melo, C. H. F. 2011, A&A, 536, 71 ∗)

2.1 Introduction

The determination of fundamental parameters (mass, radius, temperature, age, etc) of stars

hosting exoplanets is very important, since it allows us to study how the physical properties

of the host stars and the orbital parameters of the planets are related, when compared with

non-planet host stars. This information can be used to test different planet formation models

and to study the dynamical evolution of planetary systems. For instance, the study of the

chemical abundances of stars harbouring planets led to the discovery of the planet-metallicity

correlation for main-sequence stars (Gonzalez 1997; Santos et al. 2001; Fischer & Valenti

2005), which has been used as an argument in favor of the core-accretion model (Ida & Lin

2004; Alibert et al. 2005; Kennedy & Kenyon 2008).

During the main-sequence and the subgiant phase, the physical parameters of stars can

be derived accurately from photometric data, since different evolutionary tracks are well sep-

arated in the color magnitude diagram for a given metallicity. However, during the red giant

phase, red giant branch (RGB) and horizontal branch (HB) stars with different ages, masses

∗We added two new targets to the original sample of 164 stars presented in this paper.
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and metallicities occupy a similar position in the HR diagram, making the determination of

their physical parameters more difficult. In order to partially break this degeneracy, high-

resolution spectra can be used to derive effective temperature (Teff), surface gravity (logg),

and iron abundance ([Fe/H]).

We are conducting a precision radial velocity survey of 166 bright G and K giant stars

in the southern hemisphere. The main goal of this project is to determine the fraction of

close-in planets (orbital periods . 150 days) orbiting RGB and HB stars, and compare them

in order to study how the evolution of the host star affects the inner part of planetary sys-

tems. Furthermore, these results will be used to test the theoretical prediction that tidal

interaction leads to the engulfment of close-in planets during the post-MS evolution of the

host star (Villaver & Livio 2009; Nordhaus et al. 2010; Kunitomo et al. 2011). A more

detailed description of the project, along with the first results will be presented in a forth-

coming paper (Jones et al. 2012, in prep.).

In this work we present the spectroscopic atmospheric parameters (Teff , log g , microturbu-

lent velocity and [Fe/H]), which are used to derive the mass, radius and evolutionary phase

of the program stars. In addition, rotational velocities are measured for our targets, so can

select against rapid rotators that would preclude the measurement of precise radial velocities.

This chapter is organized as follows. In sections 2 and 3 we describe the targets selection,

the observations and data reduction. In section 4 we present the method used to derive the

atmospheric parameters. In section 5, stellar evolution models are used to derive the mass,

radii and evolutionary status of the stars in our sample. In section 6 we study the depen-

dence of macroturbulence broadening with log g , which is used to derive projected rotational

velocities. Finally, the summary and the discussion is presented in section 7.
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2.2 Targets

We selected a total of 166 giant stars in the Southern Hemisphere from the Hipparcos catalog

(Perryman el al. 1997) according to their position in the HR diagram (0.8 ≤ BV ≤ 1.2;

-0.5 ≤ MV ≤ 4.0). We included stars brighter than V=8 magnitudes, parallaxes with a

precision better than 14%, and uncertainty in the Johnson B -V color less than 0.02 mags.

We also removed binary systems from the sample and we add the restriction of including

only those stars with a Hipparcos (Hp) photometric variability less than 0.015 mags. The

Hipparcos ID, B -V color and V magnitudes are listed in the first three columns of Table 2.2

(placed at the end of this chapter). The improved Hipparcos parallaxes (Van Leeuwen 2007)

are listed in column 4, and the uncertainties are given within brackets. We corrected the

visual magnitudes using the 3D extinction maps of Arenou et al. (1992) in order to compute

absolute magnitudes and luminosities (see § 5). The visual extinction values (AV ) are listed

in column 5 of Table 2.2.

Figure 2.1 shows the position of our targets in the HR diagram and their resultant evo-

lutionary status (see § 5). Evolutionary tracks from Salasnich et al. (2000) are overplotted

for different stellar masses and metallicities. In summary, our sample consists of 122 RGB

stars and 42 HB stars, with a range of masses between ∼1.0M⊙ and 3.5M⊙.

2.3 Observations and Data Reduction.

High resolution and high S/N spectra were taken for each of the stars in our sample. The

targets were observed using the Fiber-fed Extended Range Optical Spectrograph (FEROS;

Kaufer et al. 1999) mounted on the MPG/ESO 2.2m telescope at La Silla and the Echelle

Spectrograph mounted on the 1.5m telescope at CTIO, which has now been replaced by

CHIRON (Schwab et al. 2010). FEROS has a resolving power of R ∼ 48000, an efficiency

of ∼ 20% and provides an almost complete optical spectral coverage (∼ 3500 - 9200Å), which

allows us to study many absorption lines in the optical range (used in the chemical analisys
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Figure 2.1: HR diagram including all of our targets. The red open circles correspond to RGB
stars, while the blue filled triangles to HB stars. Different evolutionary tracks (Salasnich et
al. 2000) are overplotted for stars with 1.1M⊙, 2.0M⊙ and 3.0M⊙ (line pairs from bottom
to top). The solid lines correspond to models with [Fe/H]=0.0 and the dashed lines to
[Fe/H]=0.32

and in our radial velocity computations) and also to study the emission in the core of the

Ca ii HK lines (3933 and 3968 Å), which are used as chromospheric activity indicators (e.g.

Jenkins et al. 2008 and references therein). The echelle spectrograph mounted on the 1.5m

telescope, can reach a maximum resolution of R ∼ 45000 with an efficiency of ∼ 1% and cov-

ers a spectral region between 4020 Å and 7100 Å. The exposure time of the FEROS targets

(V ≤ 8) ranges between 60 and 480 seconds, which leads to a S/N ratio between 200-300 at

5500 Å and ∼ 80 at 3950 Å. The CTIO targets (V ≤ 6) were observed with exposure times

between 180 and 300 seconds, giving rise to S/N ratios of ∼ 200 at 5500 Å.

The FEROS spectra were reduced in a standard fashion using the FEROS Data Reduc-
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tion Software. All the calibrations (flat-fields, bias and lamps) were obtained during the

afternoon, according to the standard ESO calibration plan. The reduction of CTIO spectra

was performed in a similar way, using an IDL-based pipeline available for all users. As in

the case of FEROS data, the calibrations were taken during the afternoon, before the nightly

stellar observations.

2.4 Atmospheric Parameters

We derived spectroscopic atmospheric parameters (Teff , logg, [Fe/H] and microturbulent ve-

locity) using the equivalent widths (EW s) of a set of neutral and singly-ionized iron lines. We

used the 2002 version of the MOOG1 code (Sneden 1973), which solves the radiative trans-

fer equation through a multi-layer atmospheric model by imposing excitation and ionization

equilibrium (Saha-Boltzmann equation; see Appendix A) and using the atomic parameters

for each electronic transition (excitation potential (χ), oscillator strength (loggf) and damp-

ing constant; see § 4.1). The atmosphere models were obtained from the Kurucz (1993) grid.

We linearly interpolated this grid in metallicity (fixing Teffand log g ), then in Teff(fixing the

metallicity and log g ) and finally in log g to obtain the desired atmosphere model. For a

detailed description of this method see Gray (2005).

2.4.1 Line List and Atomic Constants

We adopted the line list used in Sestito et al. (2006), which consists of a total of 159 Fe i

lines and 18 Fe ii lines, covering the spectral range between 5500Å and 6800Å. Features

bluer than 5500Å were excluded in order to discard strongly blended lines and to avoid

complications in the continuum tracing. Lines redder than 6800 Å were excluded due to the

presence of many telluric features in the red part of the optical spectrum. The loggf and

χ for each transition were also taken from Sestito et al. (2006; see also references therein).

The collisional damping constants were computed using the Unsöld (1955) approximation,

multiplied by an enhacement factor E given by: logE = aχ - b, where a=0.381 ± 0.017 and

1http://www.as.utexas.edu/ chris/moog.html
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b =0.88 ± 0.33. χ corresponds to the excitation potential of the transition. This factor was

derived from several Fe i features with available accurate collisional damping parameters, for

stars with Teff∼ 5000K (Gratton et al. 2003). Finally, we removed from the line list seven

Fe i lines (λλ 5521.28, 5547.00, 5852.23, 6290.55, 6400.32, 6411.11, 6625.04 Å) and four Fe ii

lines (λλ 5136.80, 5525.14, 5534.85, 6383.72 Å) which were found to be the most deviant

points in the abundance analysis. We examined all of these lines by eye, and we found that

all of them are heavily blended leading to an inaccurate measurement of the EW , with the

exception of the feature at 5852.23 Å , where the discrepant behavior is probably due to an

error in its atomic parameters (loggf and/or χ).

2.4.2 Equivalent Widths

Since it is very time consuming to measure EW s manually, we used the code ARES2 (Sousa

et al. 2007), which computes them automatically, by applying a gaussian fit to the spectral

lines. In order to test the realibility of this code we also computed some EW s manually, using

the routine splot in IRAF3. We found differences < 10% between our EW measurements and

those derived using ARES, which are mainly due to the continuum fit. In the abundance

analysis we included only those lines with EW between 10 mÅ and 150 mÅ . Lines weaker

than 10 mÅ were discarded because the measured equivalent width is strongly dependent

on the continuum fitting. Also, lines stronger than 150 mÅ were removed from the analysis,

since the gaussian fitting profile is not always appropiate to determine the EW and also

because these lines are more affected by collisional broadening.

2.4.3 Results and Uncertainties

The effective temperatures, spectroscopic surface gravities, microturbulent velocities and iron

abundances for our targets are presented in columns 6 - 9 of Table 2.2. We compared our re-

sulting effective temperatures with those derived by three other independent studies that have

2http://www.astro.up.pt/ sousasag/ares/
3IRAF is distributed by by the National Optical Astronomy Observatories, which are operated by the

Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National
Science Foundation.
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a few stars in common with our sample. These are shown in Figure 2.2 where we found mean

differences of 〈∆Teff(This study - McWilliam1990)〉=156± 86K for 14 stars in common,

〈∆Teff(This study - Randich et al. 1999)〉 =108± 70K for 6 stars in common and 〈∆Teff(This

study - Luck & Heiter 2007〉=24± 50K for 12 stars in common. Considering all of the stars

4600 4800 5000

Figure 2.2: Comparison between our derived effective temperatures with those derived by
three independent works. The filled black triangles, filled red squares and filled blue circles
correspond to Teff ’s derived by McWilliam (1990), Luck & Heiter (2007) and Randich et al.
(1999), respectively. The solid line is the 1:1 correlation.

in common with these three studies we obtain 〈∆Teff(This study - literature)〉=98± 90K.

Based on this result, we adopted an uncertainty of ∼ 100K in our derived Teff ’s, which is

consistent with the estimated uncertainties in similar studies (see e.g. Sestito et al. 2006,

Hekker & Melendez 2007, Ghezzi et al. 2010).

Figure 2.3 shows a histogram of the metallicity distribution of our targets. It can be seen

that most of the giant stars in our sample are metal rich, with ∼ 50% having [Fe/H] between

0.0 and 0.2 dex. Also, there is no significant difference in the metallicity distribution between
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Figure 2.3: Metallicity distribution of our targets. The red dotted line corresponds to RGB
stars, while the blue dashed line to HB stars. The sum of both samples is shown with the
solid black line.

RGB and HB stars. The uncertainties in the metallicities were estimated from the standard

deviation of individual Fe i lines in the abundance analysis, and are listed in brackets in

column 9 of Table 2.2. These values are larger than the uncertainties in the mean, but are

more realistic.

Concerning the surface gravities, several studies have revealed systematic differences be-

tween spectroscopic and photometric log g ’s. In the former approach, the surface gravity is

varied in order to obtain the same abundance for Fe i and Fe ii lines, while in the latter case

the gravity of the star is derived by comparing its position in the HR diagram with theo-

retical evolutionary tracks. In Figure 2.4 we plot the difference between photometric (see

§ 5) and spectroscopic log g ’s, as a function of the effective temperature (left panel) and the

mass (right panel) for our program stars. It is evident that our derived spectroscopic log g ’s

are systematically lower (by ∼ 0.14 dex) than photometric gravities for RGB stars cooler

than ∼ 5000 K (or less massive than ∼ 2.0 M⊙). A similar discrepancy between photometric

and spectroscopic log g ’s was also found by Gratton et al. (1996) and Sestito et al. (2006).
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Figure 2.4: Difference between photometric and spectroscopic log g ’s as a function of the
effective temperature (left panel) and the mass (right panel) of our targets. The open red
circles and filled blue triangles represent RGB and HB stars, respectively. The black dotted
line shows the ∆ log g= 0.0 boundary.

However, some authors have found the oppsosite result, i.e., that the spectroscopic log g ’s

are systematically higher than the photometric ones (e.g. Valenti & Fischer 2005, da Silva

et al. 2006). This suggests that these inconsistencies in the derived surface gravities are due

to systematic errors inherent to the method used for deriving iron abundances, mainly from

Fe ii lines, which strongly affect the final log g ’s (Fe i lines are quite insentive to a change

in log g ). For instance, an overestimation/underestimation of the position of the continuum,

will translate into higher/lower measured EW s, which are matched by a higher/lower metal-

licity in the curve of growth. Since the Fe ii lines are on average weaker than Fe i lines, they

will be more affected, hence deriving lower/higher log g ’s. However, we cannot discard a

priori other effects like departures from LTE that might be playing a role on this (see e.g.

Gratton et al. 1999).

Finally, Figure 2.5 shows the microturbulent velocities as a function of the photometric

log g ’s, which are apparently more reliable than the spectroscopic ones, as discussed above.
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Figure 2.5: Microturbulent velocity as a function of photometric log g . The red open circles
correspond to RGB stars and the blue filled triangles correspond to HB stars. A linear
regression yields a fit of ξ =2.55 - 0.45 log g , with a scatter of 0.09 km s−1.

There is a clear correlation between these two parameters, where the microturbulent velocity

decreases linearly with log g . Applying a linear regression yields a fit of ξ =2.55 - 0.45 log g .

A similar trend was also found by other authors, who obtained: ξ =2.22 - 0.322 log g (Gratton

et al. 1996), ξ =1.5 - 0.13 log g (Carretta et al. 2004), ξ =2.29 - 0.35 log g (Monaco et al. 2005)

and ξ =1.93 - 0.254 log g (Marino et al. 2008).

2.5 Masses and Evolutionary Status

We used the evolutionary tracks from Salasnich et al. (2000) to derive the mass of each star,

in a similar manner to that performed in Jenkins et al. (2009) and according to the method

described the Appendix B. We choose to use these models because they cover a wider range

in metallicity compared to similar evolutionary tracks (for instance Girardi et al. 2002). In

addition we restricted the minimum mass of the models to 1M⊙. This is due to the fact that

less massive stars spend more than ∼10Gyr on the main-sequence, therefore nearby (d. 200
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pc), low-mass stars (. 1M⊙) are not expected to have reached the RGB phase yet. This

method allows us to derive the mass of a giant star given its spectroscopic (Teffand [Fe/H])

and photometric (log L) parameters when the evolutionary status of the star is also known.

For instance, stars cooler than ∼ 5000 K and less luminous than ∼ 1.5 L⊙ are ascending the

RGB, and therefore their masses can be derived solely by comparing their position in the HR

diagram with stellar evolution models. However, more luminous RGB stars occupy a similar

position in the HR diagram as HB stars and therefore the mass and evolutionary status

cannot be determined simply by comparing their effective temperature and luminosity with

isomass tracks. This is the so called mass-age-metallicity degeneracy, which can be partially

broken when the metallicity of the star is known (which is the case for this work).

Figure 2.6 shows two examples where the determination of the metallicity of the star is

not enough to derive unambiguously its evolutionary status. In the upper panel we plot two

models with the same metallicity (Z=0.008) but different masses and evolutionary status

that cover a similar region in the HR diagram. The position of HIP21743 (Z=0.008) is also

shown. It can be seen that this star could either be ascending the RGB (somewhere in be-

tween A and B) or in the HB phase (between C and D). However, the time scale between

points C and D is ∼ 5 times longer than between A and B, therefore this star is most likely

to be a HB star. The lower panel shows a similar situation for HIP68333 (Z=0.009), but

this time the two models correspond to a 1.9M⊙ RGB star and a 1.5M⊙ HB giant. Both

models have the same metallicity (Z=0.008). As in the previous case, HIP68333 could be

either somewhere in between A-B or C-D, considering the error bars in logTeffand LogL, but

in this case the timescale between points C and D is ∼ 45 times longer than between A and

B. Once again, based on the timescales, this giant star is most likely to be on the horizontal

branch. Finally, when the position of the star in the HR diagram is very close to the zero age

horizontal branch, the determination of the evolutionary status is even more complicated,

since the star is as likely to be in the red giant branch as in the He-burning phase, mainly

due to the uncertainty in logTeff. The resulting masses, radii and evolutionary status of our
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Figure 2.6: Upper panel: Position of HIP21743 on the HR diagram (black dot). The two
closest evolutionary models from Salasnich et al. (2000) are overplotted. The red solid line
corresponds to a 2.5M⊙ RGB model, while the blue dashed line to a 2.0M⊙ HB model. Both
tracks have a metallicity of Z=0.008. Lower panel: same as the upper plot, but this time the
masses of the models are 1.9M⊙ for an RGB star and 1.5M⊙ for a HB giant. The position
of HIP68333 is also shown.

targets are listed in columns 11, 12 and 13 of Table 2.2, respectively.

2.6 Rotational Velocities

Projected rotational velocities (v sin i ) were computed for the stars in our sample, according

to the following procedure. First, we measured the FWHM for all of the Fe i lines used in the

abundance analysis (see § 4.1 and § 4.2) between 6000 and 6100 Å and we averaged them to

obtain the total FWHM of each star (σtot). The instrumental width (σinst) was measured from

several ThAr lines present in the same spectral region, which is then substracted from σtot in

order to obtain the intrinsic broadening (σint) of the star by applying: σint=
√

σ2
tot − σ2

inst .
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The second step consists of separating the contribution of the rotation and macroturbulence

(non-thermal velocities), which are the two main line broadening mechanisms in giant stars.

2.5 3 3.5

Figure 2.7: Intrinsic broadening as a function of the photometric surface gravity. The red
open circles correspond to RGB stars and the blue filled triangles to HB stars. The red open
stars and blue filled squares correspond to RGB and HB stars from the literature (listed in
Table 2). The macroturbulence broadening is shown by the dashed black line.

Since we have a large dataset, it can be expected that many of our stars show projected

rotational velocities close to zero (due to a low inclination, i.e., sin i∼ 0) and therefore their

intrinsic broadening is mainly due to macroturbulence broadening (σmac). These stars can

be used to determine empirically σmac as a function of some intrinsic property of the star

(e.g. Melo et al. 2001; Jenkins et al. 2011).

In order to do this, we plotted σint as a function of log g , which is shown in Figure 2.7.
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The lower envelope (dashed black line) corresponds to σmac, therefore stars lying close

to this line are expected to be those with null projected rotational velocity. It can be

seen that σmac increases smoothly with decreasing log g , and also seems to be systemati-

cally higher for HB stars. We fit a second order polynomial of the form: σmac =0.2223 -

0.0548 log g +0.0063 log g 2, valid for RGB stars, while we just assumed a constant value

for HB stars of σmac =0.134 Å. It is worth mentioning that since the macroturbulence is

as depth-dependent phenomenon (e.g. Takeda 1995), our derived σmac is an average of the

macroturbulence broadening for different lines, which are formed at different depths in the

stellar atmosphere. Using the correlations derived above, we computed the rotational broad-

ening (σrot) by applying σrot = σint − σmac.

Table 2.1: Calibrators stars

Star σrot v sin i
(Å) (kms−1)

HR97 0.0507 3.9 b

HR188 0.0636 3.0 b

HR373 0.0663 4.5 b

HR510 0.0240 2.9 b

HR1030 0.0830 4.8 b

HR1346 0.0429 2.4 b

HR1373 0.0517 2.5 b

HR1409 0.0417 2.5 b

HR5516 0.0620 5.6 b

HR5997 0.0450 3.5 b

HR6770 0.0260 3.9 b

HR7754 0.0412 3.2 b

HR8093 0.0238 2.8 b

HR8167 0.0885 5.6 b

HR8213 0.0272 1.1 b

Pollux 0.0157 2.5 b

β Crv 0.0880 3.8 a

β Lep 0.0971 5.1 a

β Oph 0.0080 1.6 c

α Ser 0.0620 5.6 c

η Ser 0.0038 1.0 c

(a) Gray 1982 (b) Gray 1989 (c) Carney et al. 2008
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Finally, in order to convert from σrot to rotational velocities, we used 21 calibrators with

published v sin i ’s derived by the Fourier transform method, which are listed in Table 2.1.

We fit a straight line obtaining: v sin i = 1.18 + 42.9σrot, where σrot is in Å and v sin i in

km s−1. The RMS of the fit is 0.89 km s−1. We note that v sin i doesn’t approach zero at

σrot =0, which produces a small systematic shift in our derived projected rotational veloci-

ties at low σrot. We applied this conversion to all of our targets to finally obtain projected

rotational velocities, which are listed in the last column of Table 2.2.

We investigated the dependence of rotation with the luminosity and the mass of the star.

Figure 2.8 shows our derived v sin i versus log L for all of our targets. In the lower panel

the data are binned in ∆ logL=0.2 dex bins, which helps to remove the dispersion due to

random inclination angles. It is clear that for RGB giants, the average rotational velocity in-

creases smoothly with the luminosity. Also, it can be noticed in Figure 2.8 that even though

HB stars rotate slightly slower than RGB giants having the same luminosity, the difference

is not statistically significant because of the low number of HB stars in the sample (∼ 20 per

bin). We also plotted v sin i against the mass of our targets in Figure 2.9. The symbols are

the same as in Figure 2.8, and this time we binned the data in steps of ∆ mass = 0.4 M⊙

bins (lower panel). It can be seen that for both, RGB and HB stars, the average rotational

velocity increases with the mass of the star, and no significant difference between them is

observed. Also, this plot explains the similar trend in Figure 2.8, since the most luminous

stars in the sample are also the most massive ones.

2.7 Conclusions

High resolution and high S/N spectra were used to measure the atmospheric parameters (Teff ,

log g , vt and [Fe/H]) of 166 giant stars, which are the targets of our precise radial velocity

program, aimed at studying the impact of the host star evolution on the inner structure of

planetary systems.
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Figure 2.8: Upper panel: Projected rotational velocities against luminosity for all of our
targets. The red open circles correspond to RGB stars while the blue filled triangles to
HB stars. Lower panel: Same as the upper panel, but this time the data are binned in ∆
logL=0.2 dex.

We compared the resulting position in the HR diagram with evolutionary tracks in order

to derive the physical properties of each star (mass, radius) and its evolutionary status. We

showed the difficulties in the determination of the age and mass of stars that populate the so

called “clump” in the HR diagram, since many evolutionary tracks for different masses and

ages converge into this region. From the masses and radii we derived photometric gravities,

which are systematically higher than the photometric values. We have also shown that the

microturbulent velocity decreases linearly with log g , as found previously in other works.

Finally we computed projected rotational velocities for all of our targets. We found that

the rotational velocities increase with the mass and the luminosity of the stars, and no sig-

nificant difference is observed between RGB and HB stars.
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Figure 2.9: Upper panel: Projected rotational velocities against mass for all of our targets.
The red open circles correspond to RGB stars while the blue filled triangles to HB stars.
Lower panel: Same as the upper panel, but this time the data are binned in ∆ logL=0.2
dex.
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Table 2.2: Stellar parameter of the program stars

HIP B -V V π AV Teff log g ξ [Fe/H] log L Mass Radius Ev. v sin i

(mas) (K) (cm/s2) (km/s) (L⊙) (M⊙) (R⊙) St. (km/s)

242 0.97 7.76 7.02 (0.73) 0.100 4990 3.14 1.11 -0.04 (0.06) 1.257 1.84 5.59 RGB 1.53

343 1.08 5.78 11.03 (0.45) 0.100 4790 2.51 1.34 0.14 (0.10) 1.687 1.95 10.00 HB 1.35

655 1.12 5.67 10.53 (0.38) 0.100 4750 2.59 1.33 0.12 (0.10) 1.778 1.95 11.75 HB 1.48

671 1.03 5.99 10.16 (0.42) 0.100 4960 3.01 1.49 -0.08 (0.16) 1.648 2.10 8.83 HB 2.77

873 1.00 5.84 13.33 (0.35) 0.100 4920 3.06 1.17 0.07 (0.12) 1.478 2.08 8.11 RGB 2.72

1230 1.02 7.75 7.12 (0.92) 0.100 4880 2.95 1.20 -0.09 (0.07) 1.264 1.55 5.89 RGB 1.62

1684 1.04 6.92 12.36 (0.58) 0.100 4970 3.16 1.15 0.28 (0.11) 1.104 1.83 4.74 RGB 1.87

1708 1.01 5.18 9.87 (0.41) 0.100 5020 2.73 1.44 0.16 (0.12) 1.989 2.94 12.28 RGB 2.20

3137 1.14 6.00 10.62 (0.43) 0.100 4730 2.57 1.58 0.05 (0.22) 1.642 1.85 10.20 HB 2.81

3436 1.11 6.01 17.73 (0.44) 0.100 4750 2.90 1.17 0.17 (0.09) 1.189 1.47 5.80 RGB 2.09

4293 1.10 5.45 14.70 (0.27) 0.090 4780 2.74 1.38 -0.07 (0.14) 1.567 1.75 8.94 RGB 3.14

4587 0.95 5.62 10.20 (0.53) 0.100 5010 2.80 1.33 -0.17 (0.09) 1.786 2.10 10.74 HB 1.27

4618 1.09 7.78 7.03 (0.57) 0.123 4750 2.91 1.16 0.01 (0.09) 1.294 1.45 6.77 RGB 1.56

5364 1.16 3.46 26.32 (0.14) 0.100 4770 2.96 1.36 0.24 (0.19) 1.863 2.38 11.70 HB 2.64

6116 1.03 7.89 8.06 (0.76) 0.100 4850 3.11 1.12 0.04 (0.08) 1.105 1.53 5.28 RGB 1.51

6537 1.07 3.60 28.66 (0.19) 0.100 4820 2.70 1.56 -0.13 (0.15) 1.724 1.75 10.04 HB 2.60

7118 1.07 5.79 9.77 (0.41) 0.100 4820 2.74 1.32 -0.06 (0.16) 1.783 1.85 11.18 HB 2.04

8541 1.08 7.88 5.93 (0.61) 0.100 4670 2.70 1.15 -0.15 (0.08) 1.405 1.15 7.86 RGB 1.28

9313 1.05 5.57 11.12 (0.34) 0.100 4860 2.71 1.47 -0.03 (0.14) 1.752 1.85 10.68 HB 2.81

9406 0.96 6.92 18.29 (0.51) 0.100 4950 3.37 0.93 -0.04 (0.06) 0.767 1.25 3.22 RGB 1.40

9572 0.97 5.87 9.10 (0.37) 0.100 5130 2.85 1.36 0.15 (0.10) 1.770 2.65 9.59 RGB 2.73

10164 1.00 7.06 17.30 (0.56) 0.100 4930 3.30 1.05 0.14 (0.09) 0.762 1.36 3.18 RGB 1.72

10234 0.97 5.94 8.40 (0.46) 0.092 4940 2.59 1.39 -0.17 (0.06) 1.833 1.85 11.06 HB 1.27

10326 1.01 5.86 9.40 (0.36) 0.100 4950 2.66 1.36 -0.09 (0.09) 1.769 2.11 10.28 HB 1.27

10548 0.98 7.30 11.57 (0.51) 0.193 4980 3.36 1.04 0.11 (0.07) 1.045 1.66 4.32 RGB 1.64

11600 1.05 7.34 19.98 (0.76) 0.100 4970 3.62 1.06 0.33 (0.11) 0.519 1.30 2.47 RGB 2.14

11791 1.00 5.36 12.28 (0.45) 0.070 4890 2.68 1.31 0.01 (0.08) 1.733 2.09 10.72 HB 1.22

11867 1.06 5.91 8.94 (0.35) 0.100 4770 2.32 1.31 0.18 (0.14) 1.821 2.32 12.38 HB 2.00

13147 0.98 4.45 18.89 (0.26) 0.100 4820 2.45 1.42 -0.37 (0.08) 1.747 1.53 11.02 RGB 2.19

16142 1.10 5.74 10.24 (0.47) 0.124 4940 3.10 1.60 0.21 (0.21) 1.753 2.43 9.84 RGB 3.15

16780 0.92 5.56 8.63 (0.41) 0.144 5070 2.90 1.35 -0.23 (0.07) 1.966 2.36 11.79 HB 1.39

16989 0.98 5.86 8.90 (0.43) 0.140 4960 2.59 1.35 0.00 (0.08) 1.831 2.61 11.70 RGB 2.19

17183 0.95 6.96 20.82 (0.59) 0.041 4930 3.41 0.87 -0.07 (0.07) 0.617 1.05 2.72 RGB 1.30

17351 1.19 4.59 17.70 (0.22) 0.117 4700 2.55 1.33 0.29 (0.11) 1.775 2.11 11.67 HB 1.35

17534 0.96 5.72 9.66 (0.32) 0.186 5070 2.85 1.43 0.11 (0.11) 1.819 2.69 9.88 RGB 2.32

17738 0.97 5.52 12.13 (0.30) 0.146 4910 2.63 1.39 -0.33 (0.11) 1.708 1.75 10.04 RGB 4.25

18056 1.04 7.71 5.58 (0.78) 0.207 4820 2.83 1.16 -0.17 (0.05) 1.544 1.55 8.23 RGB 1.53

18606 1.00 5.85 21.53 (0.41) 0.004 4950 3.19 1.11 0.07 (0.08) 1.014 1.61 4.50 RGB 1.52

19483 0.94 5.44 9.28 (0.37) 0.042 5080 2.72 1.37 0.13 (0.10) 1.907 2.99 11.70 RGB 3.19
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19511 1.06 5.70 11.40 (0.51) 0.199 4900 2.85 1.38 0.11 (0.14) 1.712 2.39 9.87 HB 3.07

21154 1.09 7.42 10.46 (0.66) 0.209 4780 3.00 1.12 0.18 (0.09) 1.122 1.54 5.42 RGB 1.59

21685 1.05 5.46 16.63 (0.37) 0.154 4650 2.55 1.23 -0.31 (0.14) 1.503 0.96 8.53 RGB 2.51

21743 0.93 5.56 9.31 (0.33) 0.222 4990 2.82 1.39 -0.36 (0.09) 1.942 2.08 12.85 HB 1.57

22479 0.99 5.03 13.83 (0.30) 0.176 4990 2.93 1.35 0.11 (0.10) 1.790 2.42 9.93 RGB 2.41

22491 0.96 7.91 8.47 (0.71) 0.230 5000 3.23 1.07 -0.16 (0.06) 1.085 1.45 4.58 RGB 1.53

22860 0.95 5.71 6.89 (0.39) 0.242 5200 2.77 1.59 0.12 (0.07) 2.120 3.23 12.15 RGB 4.26

23067 0.96 7.67 6.80 (0.95) 0.138 5020 3.20 1.09 -0.13 (0.06) 1.332 1.85 6.08 RGB 1.31

24130 0.98 6.24 21.37 (0.45) 0.049 4910 3.22 1.01 -0.02 (0.07) 0.889 1.35 3.67 RGB 1.53

24275 1.04 7.29 9.91 (0.64) 0.099 4890 3.05 1.17 0.17 (0.10) 1.159 1.74 5.50 RGB 1.65

24426 1.01 5.75 6.56 (0.30) 0.187 5030 2.58 1.43 0.10 (0.10) 2.149 3.43 16.51 RGB 2.88

24679 0.93 5.48 20.40 (0.39) 0.051 4860 3.02 1.02 -0.36 (0.07) 1.238 1.08 5.91 RGB 1.51

26019 1.09 5.75 12.67 (0.31) 0.124 4690 2.54 1.24 0.00 (0.10) 1.598 1.63 9.91 RGB 1.83

26649 0.91 5.44 7.73 (0.27) 0.114 5220 2.94 1.39 0.08 (0.10) 2.079 3.11 11.92 RGB 3.14

27243 1.04 5.31 6.95 (0.19) 0.183 5120 2.81 1.59 0.23 (0.12) 2.262 3.48 16.25 RGB 3.80

27434 1.06 7.85 9.57 (0.51) 0.152 4830 3.08 1.08 0.13 (0.09) 0.996 1.45 4.32 RGB 1.60

33139 0.99 6.24 18.48 (0.37) 0.100 5060 3.36 1.11 0.15 (0.09) 1.015 1.66 4.03 RGB 1.92

35154 1.06 7.69 17.45 (0.45) 0.104 4930 3.50 0.99 0.35 (0.12) 0.504 1.27 2.44 RGB 2.19

39738 0.95 6.69 14.42 (0.37) 0.062 4980 3.26 1.07 -0.06 (0.07) 1.046 1.46 4.54 RGB 1.58

41683 1.02 7.14 16.82 (0.61) 0.110 4980 3.35 1.10 0.20 (0.09) 0.751 1.43 3.29 RGB 1.85

41856 1.05 7.59 11.16 (0.52) 0.100 4900 3.18 1.09 0.17 (0.09) 0.935 1.54 4.11 RGB 1.81

56260 1.05 6.74 16.53 (0.68) 0.019 4890 3.12 1.14 0.23 (0.12) 0.903 1.53 4.14 RGB 2.24

56640 1.08 7.94 8.18 (0.66) 0.163 4780 2.94 1.10 0.09 (0.09) 1.109 1.45 5.26 RGB 1.80

58782 1.04 7.49 8.73 (0.79) 0.115 4810 2.81 1.20 -0.15 (0.08) 1.208 1.25 5.54 RGB 1.68

59016 1.07 7.03 9.75 (0.53) 0.104 4800 2.88 1.16 0.07 (0.10) 1.294 1.64 6.64 RGB 1.87

59367 1.00 7.50 10.06 (0.83) 0.019 4960 3.08 1.12 -0.01 (0.07) 1.020 1.57 4.39 RGB 2.04

60035 1.05 7.99 9.91 (0.60) 0.293 4890 3.17 1.07 0.23 (0.11) 0.957 1.55 4.32 RGB 2.22

60374 1.01 6.52 7.56 (0.59) 0.131 4940 2.60 1.33 -0.04 (0.08) 1.708 2.11 9.60 HB 1.44

60396 1.06 6.82 6.66 (0.40) 0.240 4810 2.52 1.45 -0.18 (0.08) 1.762 1.55 11.10 HB 1.35

62447 1.05 6.81 7.29 (0.46) 0.233 4990 2.88 1.32 0.13 (0.10) 1.657 2.46 9.025 RGB 2.40

63242 1.02 6.86 7.42 (0.49) 0.200 4830 2.53 1.52 -0.31 (0.09) 1.633 1.54 9.41 RGB 3.65

63243 1.07 6.31 8.41 (0.38) 0.218 4880 2.57 1.43 -0.08 (0.08) 1.743 1.75 10.15 HB 1.39

63583 1.04 6.65 7.50 (0.54) 0.203 4800 2.46 1.40 -0.22 (0.10) 1.713 1.65 10.44 RGB 1.80

63981 1.02 6.75 9.05 (0.52) 0.210 4840 2.85 1.26 -0.22 (0.08) 1.506 1.55 8.04 RGB 1.80

64580 1.08 5.91 9.16 (0.52) 0.163 4770 2.55 1.41 0.02 (0.11) 1.825 2.13 11.73 HB 1.31

64590 1.08 6.72 6.59 (0.55) 0.222 4870 2.70 1.42 0.18 (0.12) 1.794 2.40 10.84 HB 1.74

64647 1.09 7.83 6.70 (0.65) 0.240 4870 2.92 1.21 0.01 (0.14) 1.343 1.82 6.61 RGB 2.46

64803 0.96 5.10 12.66 (0.28) 0.168 5060 2.63 1.39 0.04 (0.09) 1.827 2.41 10.14 RGB 2.40

65238 1.08 7.96 7.28 (0.68) 0.076 4810 2.82 1.15 0.14 (0.09) 1.163 1.56 5.39 RGB 2.11

65373 1.03 6.77 5.17 (0.53) 0.227 4920 2.75 1.34 0.15 (0.09) 1.979 2.94 12.42 RGB 2.10

65891 1.00 6.75 7.35 (0.60) 0.202 5000 2.90 1.30 0.16 (0.10) 1.660 2.46 8.52 RGB 2.52

66427 0.94 5.96 7.86 (0.47) 0.197 5180 3.00 1.37 0.12 (0.08) 1.894 2.97 11.65 RGB 2.33

66711 0.99 7.55 9.64 (0.76) 0.155 5000 3.22 1.00 0.13 (0.12) 1.086 1.75 4.75 RGB 2.20
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66924 1.02 5.96 9.06 (0.42) 0.177 4860 2.53 1.43 -0.18 (0.10) 1.805 1.55 10.60 HB 1.39

67537 0.99 6.43 8.88 (0.46) 0.179 4985 2.85 1.31 0.15 (0.08) 1.617 2.43 8.57 RGB 2.34

67851 1.01 6.17 15.16 (0.39) 0.115 4890 3.15 1.14 0.00 (0.10) 1.244 1.67 5.71 RGB 1.84

67890 1.13 6.05 15.42 (0.43) 0.145 4750 2.81 1.22 0.31 (0.14) 1.313 1.73 6.90 RGB 2.33

68054 0.97 6.83 6.27 (0.51) 0.251 5110 2.90 1.43 0.13 (0.08) 1.772 2.71 8.44 RGB 3.46

68099 0.96 6.83 5.95 (0.55) 0.317 5130 3.00 1.29 0.15 (0.08) 1.841 2.93 11.57 RGB 2.80

68263 0.98 7.03 11.91 (0.88) 0.172 4870 3.05 1.11 -0.11 (0.08) 1.136 1.35 5.31 RGB 1.64

68333 0.96 5.92 9.42 (0.48) 0.174 4925 2.55 1.44 -0.32 (0.09) 1.777 1.55 10.36 HB 1.39

69065 1.01 6.39 8.89 (0.53) 0.210 4960 2.62 1.51 -0.22 (0.09) 1.648 1.95 9.02 RGB 2.32

70261 1.03 6.80 7.24 (0.62) 0.284 4810 2.65 1.30 -0.38 (0.07) 1.715 1.52 10.49 RGB 1.33

70514 1.09 6.83 9.47 (0.56) 0.220 4750 2.65 1.29 -0.12 (0.09) 1.454 1.35 7.59 RGB 1.71

70987 1.06 5.99 10.35 (0.50) 0.206 4880 2.64 1.44 -0.03 (0.07) 1.686 1.95 9.55 HB 1.18

71778 0.96 7.87 10.51 (0.75) 0.110 5040 3.45 1.03 0.03 (0.12) 0.860 1.51 3.58 RGB 1.83

72097 1.01 6.10 9.71 (0.37) 0.193 5000 2.72 1.41 -0.03 (0.10) 1.675 2.35 9.67 RGB 2.42

72618 0.99 7.86 9.99 (1.17) 0.115 4930 3.14 1.10 -0.28 (0.11) 0.925 1.14 4.06 RGB 1.32

73758 1.12 7.92 12.17 (0.69) 0.095 4840 3.20 1.26 0.41 (0.15) 0.735 1.40 3.33 RGB 2.83

74188 1.06 7.12 12.45 (0.73) 0.185 4750 2.95 1.16 0.12 (0.12) 1.087 1.36 5.09 RGB 1.80

74239 1.05 5.75 7.67 (0.42) 0.256 5000 2.77 1.58 0.07 (0.15) 2.045 3.07 13.00 RGB 3.93

74890 1.05 7.05 10.93 (0.63) 0.195 4850 3.06 1.19 0.20 (0.13) 1.215 1.74 5.76 RGB 2.23

75092 1.03 7.11 12.98 (0.77) 0.364 4940 3.17 1.10 0.09 (0.11) 1.095 1.66 4.79 RGB 2.02

75101 1.06 6.34 28.53 (0.54) 0.079 4880 3.35 1.03 0.29 (0.13) 0.614 1.27 2.90 RGB 2.09

75331 1.08 7.59 15.09 (0.62) 0.152 4880 3.33 1.13 0.31 (0.14) 0.696 1.38 3.02 RGB 2.17

76532 1.07 5.79 11.87 (0.53) 0.394 4850 2.77 1.30 0.02 (0.08) 1.727 1.97 10.40 HB 1.44

76569 1.08 5.82 11.45 (0.61) 0.406 4830 2.78 1.38 -0.18 (0.15) 1.754 1.55 10.48 HB 2.42

77059 0.96 6.62 12.47 (0.47) 0.377 5010 3.14 1.09 0.01 (0.09) 1.322 1.98 5.93 RGB 1.56

77888 1.12 7.70 7.72 (0.65) 0.268 4690 2.63 1.23 0.02 (0.13) 1.314 1.35 7.08 RGB 1.93

78752 0.99 7.28 16.55 (0.92) 0.154 4970 3.47 0.94 0.09 (0.09) 0.728 1.38 3.09 RGB 1.56

78868 1.17 5.70 11.21 (0.36) 0.174 4660 2.38 1.30 0.30 (0.16) 1.756 1.95 11.22 HB 1.95

80672 1.10 5.79 9.06 (0.37) 0.349 4710 2.47 1.29 0.03 (0.08) 1.968 2.29 14.62 HB 1.39

80687 0.95 6.89 16.94 (0.60) 0.332 5020 3.30 1.07 0.03 (0.07) 0.928 1.54 4.02 RGB 1.39

82135 0.98 5.48 11.30 (0.39) 0.196 4970 2.78 1.30 0.06 (0.09) 1.794 2.63 10.59 RGB 2.14

82653 1.19 7.57 8.01 (0.83) 0.618 4790 2.80 1.18 0.04 (0.10) 1.456 1.75 7.88 RGB 1.73

83224 1.10 7.35 9.46 (0.77) 0.288 4880 2.91 1.25 0.07 (0.08) 1.253 1.75 5.84 RGB 1.71

83235 1.16 5.95 10.10 (0.38) 0.218 4720 2.56 1.24 0.35 (0.13) 1.751 2.31 11.53 HB 2.04

84056 1.03 6.81 13.31 (0.59) 0.209 4960 3.17 1.12 0.08 (0.07) 1.129 1.75 4.97 RGB 1.67

84248 1.07 5.87 10.00 (0.41) 0.137 4730 2.42 1.45 -0.12 (0.11) 1.761 1.25 11.31 HB 2.98

85250 0.96 6.79 13.14 (0.54) 0.154 4980 3.15 1.15 -0.17 (0.08) 1.124 1.45 4.96 RGB 1.40

86208 1.08 7.45 6.89 (0.59) 0.383 4730 2.73 1.17 -0.16 (0.07) 1.551 1.35 8.61 RGB 1.44

86248 1.11 5.89 9.82 (0.43) 0.133 4680 2.28 1.36 0.02 (0.11) 1.777 1.55 11.62 HB 1.74

86368 1.00 7.43 13.04 (1.00) 0.102 4880 3.13 1.05 0.12 (0.11) 0.867 1.43 3.87 RGB 1.70

86786 0.98 7.21 10.27 (0.62) 0.370 4970 3.07 1.08 -0.12 (0.07) 1.257 1.65 5.80 RGB 1.52

87273 1.11 7.02 11.32 (0.68) 0.223 4750 2.64 1.27 0.21 (0.13) 1.224 1.56 5.98 RGB 2.43

88684 0.97 5.74 27.20 (0.38) 0.122 4940 3.24 1.04 0.04 (0.07) 0.904 1.45 3.90 RGB 1.61

56



90124 1.02 5.52 11.38 (0.35) 0.096 4950 2.73 1.44 0.09 (0.09) 1.737 2.40 9.89 HB 1.82

90606 1.17 5.95 8.40 (0.28) 0.193 4420 2.09 1.02 0.15 (0.19) 1.973 1.35 17.18 HB 1.31

90988 1.04 7.75 9.17 (0.75) 0.136 4910 3.21 1.14 0.24 (0.14) 1.054 1.66 4.68 RGB 1.90

92367 0.89 5.80 9.10 (0.31) 0.137 5040 2.68 1.39 -0.43 (0.16) 1.826 1.87 10.74 HB 3.11

95124 1.02 7.55 9.04 (0.61) 0.254 5040 3.28 1.18 0.20 (0.08) 1.176 1.87 4.97 RGB 1.90

95532 0.95 6.66 16.41 (0.53) 0.082 4970 3.20 0.97 -0.04 (0.08) 0.955 1.44 4.11 RGB 1.93

96760 1.04 5.97 9.10 (0.84) 0.253 4980 2.86 1.52 0.12 (0.18) 1.810 2.72 10.53 RGB 3.44

97233 1.00 7.34 9.39 (0.70) 0.190 5020 3.26 1.23 0.29 (0.13) 1.204 1.96 5.20 RGB 2.19

98482 1.06 6.18 9.64 (0.38) 0.155 4720 2.51 1.29 -0.17 (0.10) 1.678 1.54 10.56 RGB 1.42

98575 0.98 6.01 9.29 (0.38) 0.249 5150 2.81 1.39 0.15 (0.10) 1.753 2.44 7.83 RGB 2.92

99171 1.02 5.97 21.30 (0.46) 0.029 4830 3.07 1.03 -0.01 (0.08) 1.004 1.35 4.57 RGB 1.51

100062 1.00 5.86 10.31 (0.48) 0.297 4920 2.57 1.43 -0.09 (0.10) 1.772 1.85 10.44 HB 1.52

101477 1.00 5.12 13.94 (0.34) 0.128 4980 2.78 1.35 0.05 (0.10) 1.729 2.46 10.13 RGB 2.02

101911 1.02 6.46 13.44 (0.50) 0.045 4885 2.97 1.18 0.03 (0.08) 1.206 1.74 5.82 RGB 1.79

102014 1.12 5.47 13.77 (0.32) 0.119 4710 2.65 1.34 -0.02 (0.18) 1.640 1.75 9.58 RGB 3.09

102773 1.12 5.41 10.80 (0.31) 0.158 4780 2.58 1.54 0.01 (0.16) 1.878 2.15 12.92 HB 3.20

103836 1.11 5.93 14.85 (0.49) 0.112 4740 2.89 1.27 -0.06 (0.16) 1.382 1.45 7.17 RGB 3.23

104148 1.05 5.69 10.82 (0.64) 0.142 4805 2.45 1.40 0.03 (0.11) 1.754 1.96 10.87 HB 2.12

104838 1.01 6.89 15.67 (0.50) 0.119 4900 3.18 1.06 0.04 (0.07) 0.928 1.45 3.80 RGB 1.44

105854 1.19 5.64 12.37 (0.31) 0.162 4780 2.94 1.47 0.31 (0.18) 1.670 2.12 10.07 HB 3.71

105856 1.02 6.70 14.59 (0.41) 0.085 4915 3.08 1.14 0.09 (0.10) 1.050 1.55 4.90 RGB 1.86

106055 1.11 7.16 7.19 (0.75) 0.136 4770 2.68 1.33 0.15 (0.14) 1.524 1.95 8.61 RGB 2.31

106922 1.07 7.25 8.22 (0.74) 0.127 4875 2.96 1.15 0.12 (0.10) 1.351 1.86 6.45 RGB 1.62

107122 0.97 7.18 10.98 (0.81) 0.132 4965 3.27 1.07 0.10 (0.08) 1.116 1.75 4.86 RGB 1.72

107773 1.02 5.62 9.65 (0.40) 0.167 4945 2.59 1.43 0.03 (0.10) 1.869 2.46 11.49 HB 1.95

108543 1.00 5.50 7.54 (0.32) 0.200 4995 2.41 1.55 0.05 (0.10) 2.138 3.35 16.31 RGB 2.53

109228 0.95 7.15 16.48 (0.69) 0.094 4960 3.31 0.95 0.02 (0.08) 0.761 1.37 3.11 RGB 1.65

110391 1.06 5.12 19.07 (0.29) 0.088 4750 2.69 1.28 -0.18 (0.08) 1.477 1.35 7.86 RGB 1.43

110529 0.98 5.53 12.45 (0.44) 0.161 5060 2.80 1.30 0.13 (0.11) 1.666 2.46 8.62 RGB 2.60

111515 0.98 5.97 10.76 (0.43) 0.134 5030 2.97 1.31 0.14 (0.07) 1.610 2.45 8.03 RGB 2.05

111909 1.03 7.37 12.18 (0.74) 0.118 4930 3.24 1.16 0.23 (0.11) 0.949 1.57 4.10 RGB 2.25

112862 0.91 5.99 10.11 (0.44) 0.100 5080 2.90 1.14 -0.05 (0.11) 1.637 2.36 8.16 RGB 3.20

113779 0.97 7.76 9.21 (1.03) 0.147 5020 3.42 1.11 0.11 (0.08) 1.036 1.68 4.34 RGB 1.55

114408 0.96 6.47 15.72 (0.46) 0.085 4880 3.12 1.03 -0.25 (0.09) 1.083 1.15 4.74 RGB 1.92

114775 1.16 5.77 13.06 (0.35) 0.100 4660 2.57 1.18 0.26 (0.13) 1.566 1.85 9.41 RGB 2.22

114933 1.03 7.25 11.35 (0.93) 0.100 4920 3.09 1.15 0.14 (0.08) 1.053 1.65 4.83 RGB 1.75

115620 1.06 5.60 11.23 (0.31) 0.106 4820 2.72 1.37 0.07 (0.18) 1.740 1.95 10.47 HB 2.51

115769 0.98 5.63 10.38 (0.27) 0.110 4850 2.67 1.37 -0.27 (0.13) 1.794 1.45 11.39 HB 2.25

116630 1.03 7.47 11.98 (0.59) 0.102 4900 3.18 1.19 0.16 (0.14) 0.922 1.47 4.01 RGB 2.59

117314 1.07 5.74 10.69 (0.39) 0.100 4920 3.00 1.53 0.07 (0.16) 1.709 2.39 9.75 HB 2.90

117411 1.08 7.60 10.44 (0.71) 0.100 4800 3.04 1.17 0.17 (0.11) 1.005 1.45 4.63 RGB 1.87
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Chapter 3

Results from the CTIO Sample

3.1 Introduction

Around 5001 exoplanets have been confirmed by the radial velocity (RV) technique, most

of them orbiting late F, G and K dwarf stars. The RV detection of planets orbiting main-

sequence (MS) stars with spectral types earlier than F0-F5 is very challenging because these

stars are too hot and thus show very few absorption lines which are also broadened due to

fast rotation. However, after the MS, early type stars become cooler and rotate slower than

their former progenitors, showing a spectrum with many narrow absorption lines, which are

neccessary to obtain a RV precision at the m s−1 level. Additionally, even though they are

more active than solar-type stars, giant stars bluer than B -V ∼ 1.2 present a stellar jitter at

the ∼ 20 m s−1 level (Hekker et al. 2006), meaning it is possible to detect giant planets (M

& 1.0MJ) orbiting them. Therefore, evolved stars are suitable RV targets for probing the

planetary population around intermediate-mass stars (M⋆ & 1.5M⊙) and studying the effect

of the star-planet interactions, after the MS.

To date around 40 planets have been detected orbiting intermediate-mass giants, but none of

them within 0.6 AU from the host star. This observational fact contrasts with the observed

planetary population around solar-type stars, where a fraction of them host a giant planet in

a close-in orbit (see e.g. Cumming et al. 2008), suggesting that these planets are destroyed

1As of September, 2012. Source: http://exoplanet.eu/
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by the large envelope of the host star during its post-MS evolution. This idea was predicted

theoretically to be due to tidal decay that leads to the engulfment of close-in planets during

the RGB ascent of the host star (e.g. Siess & Livio 1999; Sato et al. 2008; Villaver & Livio

2009). On the other hand, the population of planets around subgiant stars has revealed a

lack of giant planets orbiting between 0.1 and 0.6 AU from the host star (Johnson et al.

2011). Since subgiant stars have not evolved enough to the point of affecting the orbits of

planets, this observational result suggests that the primordial distribution and/or migration

efficiency of giant planets around intermediate-mass stars is different to the one observed in

low-mass stars.

We are conducting a RV study of 166 giant stars in order to determine the fraction of

close-in planets (a . 0.6 AU) orbiting Red Giant Branch (RGB) and Horizontal Branch

(HB) stars. These results might give us some information about the effect of the star-planet

tidal interactions during the RGB phase. In particular, if the inner planets are efficiently

destroyed after spiral inward during the late phase of the RGB (when the radius of the star

is larger and hence the tidal effect is stronger), then it can be expected that there is a lower

fraction of close-in planets orbiting HB stars than around RGB stars.

In this paper, we present the first RV results of our program, including a sample of 66

giant stars, that were observed with the 1.5m telescope at Cerro Tololo (CTIO sample). The

results for the rest of the targets (observed with FEROS), along with the study of the RGB

and HB planet populations will be presented in a forthcoming paper (Jones et al. 2013, in

preparation).

This paper is organized as follows. In section 2 and 3 the targets selection, the observa-

tions and data reduction is briefly summarized. In section 4 we explained the technique used

to compute the RV’s. The results are presented in section 5 and finally the conclusions are

summarized in section 6.
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Figure 3.1: Position in the color-magnitude diagram of our CTIO sample (red filled dots).
Different isomass tracks from Marigo et al. (2008) are overplotted, for stars with M⋆ = 1.3,
2.0 and 3.0 M⊙ (solid lines from bottom to top), and solar metallicity.

3.2 Targets

We have selected a total of 166 bright giant stars in the southern hemisphere, according

to the criteria explained in Jones et al. (2011). The atmospheric parameters and physical

properties, including the evolutionary status of 164 of them are also presented in that work.

We added 2 more targets to the original sample. The atmospheric and physical parameters

for both of them are also listed in Table 2.2. In this work we present the results for the

CTIO sample, compounded by 66 clump giants. The position of our CTIO targets in the

color-magnitude diagram is shown in Figure 3.1. Three isomass tracks from Marigo et al.

(2008) are overplotted, for star with M⋆ = 1.3, 2.0 and 3.0 M⊙, and solar metallicity. As can

be noticed, these stars fall in the clump region of the color-magnitude diagram, where there

is an overlap between evolutionary tracks from the RGB and HB phases.

60



3.3 Observations and data reduction.

The sample of stars presented in this paper were observed from August 2009 until December

2010 using the Fiber Echelle Spectrograph (FECH) and then with CHIRON (Spronck et

al. 2011; Tokovinin et al. 2012), starting on March of 2011 until September of 2012, both

mounted at the 1.5m telescope, placed at CTIO. We collected a total of ∼ 15 spectra for

each target, during a period of ∼ 2 years, assigning to all of them the same priority, resulting

in a nearly homogeneous dataset.

The FECH spectra were taken using two different setups: with a 60 micron slit leading

to a resolution of ∼ 48,000 and a very low total efficiency (∼ 1%) and using a 90 microns slit,

increasing significantly the S/N but at cost of a loss in resolution (R∼ 42,000). In both cases

a molecular iodine (I2) cell was set in the light path to superimpose thousands of absorption

lines on top of the stellar spectrum and these are used as a precise wavelength reference. The

I2 cell absorption spectrum removes more than 40% of the light between 5000-6000 Å, de-

creasing considerably the light collected. The typical exposure time for the targets (only two

of them are fainter than V=6 mag) was 300 seconds, which leads to a signal to noise ratio over

100 at the center of the orders around 5500 Å, when observed in good atmospheric conditions.

The CHIRON data were also taken using two different setups. For the templates (I2 free

observations) the narrow slit (R∼ 120,000) was used while for the normal observations (with

the I2 cell in the light beam) the normal slit (R∼ 90,000) was used. The exposure time for the

star + I2 observations was between 300 and 800 seconds, while for the templates we increased

the exposure time up to 1200 seconds in order to reach a higher S/N. Since the templates are

I2 free spectra, the loss in the efficiency of the narrow slit is compensated by the fact that no

light is absorbed by the I2 cell, and therefore the total efficiency of both modes (normal slit

and the narrow slit + I2) is very similar (∼ 4%).

The reduction of the data was performed in the standard way (bias substraction, over-

scan trimming, flatfield normalization, order tracing, extraction and wavelength calibration)
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using two different pipelines (for FECH data and for CHIRON data; the latter available for

service mode observations) and in some cases using IRAF scripts (imred / echelle package).

The calibartion data as usual were taken either in the afternoon, just before the observations,

or in the morning after the end of the night.

3.4 Data Analysis

In this work we applied the iodine cell technique for computing the RV’s of our targets. The

main idea of this technique is to pass the starlight through a vapor I2 cell, which superimpose

thousands of absoprtion lines in the region between 5000 and 6000 Å. These lines are then

used as a precise wavelength reference, against which we can measure the doppler shift of the

stellar spectrum. The normalized observed spectrum (Iobs) is then modelled by:

Iobs = [Ist(λ + ∆λ) Iiod(λ)] ∗ IP (3.1)

where Ist and Iiod are the normalized instrinsic spectrum of the star and the transmission

spectrum of the I2 cell. ∆λ corresponds to the stellar doppler shift and IP is the instrumental

profile, which is a function of λ and the position in the CCD. In order to model equation

3.1 and derive ∆λ (which finally translates into a radial velocity) we mainly followed the

procedure described in Butler et al. (1996), though with some slight modifications. First, in

order to compute the IP, we passed the light from a quartz lamp through the I2 cell, instead

of using a rapidly rotating B star as a featureless background source. Since both, FECH and

CHIRON are fed by a fiber, the light from the star and from the quartz lamp follow the same

path before reaching the I2 cell and the spectrograph, ensuring a nearly constant illumination.

Secondly, the IP was modeled by a central gaussian and only two small flanking gaussians.

The position and width of these 3 functions are fixed (but they change for different setups and

instruments), while the amplitudes are left as free parameters. Finally, we solved equation

3.1 for chunks of ∼ 5 Å, corresponding to ∼ 80 pixels in the FECH spectra. We found that
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Figure 3.2: Radial velocities derived from 342 different chunks. The solid black dots corre-
spond to the chunks velocities. The red crosses correspond to the rejected velocities. The
upper and lower panel correspond a CHIRON and FECH spectrum, respectively. The stan-
dard deviation in each case is also labelled.

in our data this length leads to the lowest RV uncertainties. In order to simultaneously use

both datasets, we rebinned the CHIRON data to the FECH resolution, at expense of losing

information in the gradient of the lines but not in the width of the lines, and therefore the

measured IP width in CHIRON data remains largely unchanged.

3.4.1 Radial velocity calculation

As already mentioned above, the doppler shift (∆λ) is computed for each 5 Å chunk. We

included a total of 342 chunks (19 chunks on each of 18 different orders) in the wavelength

region between 5000 and 6000 Å. This procedure is performed at each observational epoch,

resulting in a large set of velocities for every star. The final RV curve is built as follows:

firstly, for a given star, at each epoch we compute the mean velocity of the 342 chunks,

rejecting every point that lies further away than 2.5 sigma (typically less than 10% of the

chunks are rejected). An example of this is shown in Figure 3.2, where we plot the velocity
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of every chunk from a single observation (black dots). The rejected velocities are shown with

red crosses. The upper and lower panel correspond to CHIRON and FECH observations,

respectively. After the outlier rejection, the next step consists of weighting every specific

chunk based on how deviant are the velocities it produces with respect to the mean velocity

at different epochs. The chunk weights are assign by:

σ2
j =

n
∑

i=1

(vj − vi) (3.2)

where vi is the j-th chunk velocity a the i-th epoch, vi is the mean velocity from all of

the chunks at that specific epoch and n correspond to the total number of spectra taken for

the star under analysis. Then the weight for the j-th chunk (ωj) is simply given by:

ωj =
A

σ2
j

(3.3)

where A is a normalization constant, so that
∑

ωj = 1.

As can be noticed from the last two equations, a chunk that gives velocities that are consistent

with the mean velocity at different epochs is assigned with a high weight, while chunks lead-

ing to deviant velocities have lower weights. Once the weights for every chunk are computed

the final radial velocity at the i-th epoch is computed by:

vi =

nc
∑

j=1

ωj vj (3.4)

where nc is the number of non-rejected chunks. The final radial velocity is then obtained

by subtracting the barycentric velocity computed at the mean time of the observation from vi.
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The weighting scheme described above takes into consideration several factors regarding

the intrinsic information of the stellar spectrum contained in a specific chunk and differences

inherent to the observation itself, like the S/N or the difference in the resolution across the

orders. For instance, the doppler shifts computed from chunks having few or very shallow

lines, are expected to depart from the mean radial velocity of the star. Also, the chunks close

to the edges of the orders usually have a low S/N and therefore they lead to deviant velocities

due to a poor IP modelling. The same is valid for the template, which has regions with lower

S/N and/or chunks where the deconvolution process was poor. This whole procedure allows

us to improve the RV precision, which is observed in the RV scatter of the most “stable”

stars. An example of this is shown in Figure 3.3. In the upper panel we plot the RV curve of

HIP1708. Each datapoint correspond to the mean chunk velocity, computed at each epoch.

The error bars are computed from the error in the mean chunks velocities 2.

100 200 300 400

Figure 3.3: RV’s computed for one of our targets. In the upper panel the RV at each epoch
is computed from the mean velocity of the chunks. In the lower panel the final RV’s are
computed using the weighting method described in § 4.1.

The weighted standard deviation (defined in equation 3.5) of the data in this case is 22.3

2The error in the mean is given by: σ/
√

nc, where σ is the standard deviation of the chunks velocities
and nc is the number of non-rejected chunks used in the analysis
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ms−1. In the lower panel we plotted the new result after applying the outlier rejection and

the weighting method described above. Note that the dispersion drops down to 9.6 m s−1,

revealing the actual “stable” nature of this star. The same is observed in every flat star in

our sample, showing the importance of this procedure in order to achieve RV precision better

than 10 m s−1. It is important to mention that since the error bars are computed from the

dispersion in the individual chunk velocities and thus the weighting method just described is

not taken into consideration, the actual value of the error bars (in the absence of systematic

effects) should be slighlty lower than the given value. For FECH data the error bars are typ-

ically ∼ 10-15 m s−1 , while for CHIRON they are between 5-8 m s−1 . Since CHIRON data

are rebinned to the FECH resolution and most of the stars were observed with the normal

slit (R∼ 90,000) and a S/N below 100, it is likely that CHIRON can reach a single shot pre-

cision of 2-3 m s−1 when working with high S/N data taken with the narrow slit (R∼ 120,000).

Finally it is worth mentioning that the CHIRON RV’s are systematically higher than FECH

ones. In order to find the RV shift between both datasets we used three “stable” stars that

were observed several times with each spectrograph. We obtain a shift of 35 m s−1 , which

was then substracted from all of the CHIRON velocities. The final RV’s for all of our CTIO

targets can be found at the end of this chapter, in Figures 3.6 - 3.14.

3.5 Results

3.5.1 Stellar Variability

As already known from extensive previous studies (e.g. Setiawan et al. 2004; Hekker et

al. 2006) giant stars are intrisically RV variable at the ∼ 10-100 m s−1 level, mainly due to

solar-like oscillations, having typical timescales from hours up to a few days and RV am-

plitudes of several m s−1 (see e.g. Barban et al. 2004; Zechmeister et al. 2008; Bedding et

al. 2010). Even though this level of variability is exceedingly large to search for planetary

signals, Hekker et al. (2006) showed that a significant fraction of clump giants having a B-V
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Figure 3.4: Upper panel: Histogram of the observed standard deviation in the RV variations
computed for our CTIO sample (black solid line). The same is also shown but this time the
intrumental error (mean error bar for each star dataset) is substracted in quadrature (red
dashed line). Lower panel: Cumulative fraction for both distributions shown in the upper
panel plot.

color less than 1.2 present a level of jitter below 20 m s−1 (in fact we used this cut in the

color selection of our targets), which allows us to detect giant planets orbiting them as they

produce RV amplitudes of several tens of m s−1 . In order to investigate the level of variability

of our CTIO targets we computed the RV standard deviation for all of them.

Since there are three binary stars in our sample (HIP76532, HIP75569 and HIP104148) we fit

a keplerian orbit, and then we computed the standard deviation from the residuals of the fit.

We applied an equivalent procedure for the three stars showing a long linear trend (HIP7118,

HIP22479 and HIP103836). The results are plotted in Figure 3.4. In the upper panel we show

a histogram of the observed standard deviation (black solid line). In addition, we computed

the standard deviation of the data, but this time we substracted in quadrature the mean

instrumental error for each star dataset (dashed red line), which is more representative of
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the intrinsic stellar variability.

In the lower panel we show the corresponding cumulative distribution functions. As can

be seen, the red dashed line shows that around half of the stars have an intrinsic variabil-

ity below 10 m s−1 and ∼ 75% of them below 20 m s−1 . There is also one star that show a

variability of ∼ 100 m s−1 , which is out of the plot scale. This result is in agreement with

Setiawan et al. (2004) and Hekker et al. (2006) even though we obtain a larger fraction of

stable stars (σ . 20 m s−1 ) in our sample. This difference can be explained by the fact that

we put an upper cut in the luminosity for our stars (just a few of them are more luminous

than 100L⊙) and since the more luminous stars have also larger radii, which are expected to

present larger oscillation amplitudes, we don’t observe RV variabilities exceeding ∼ 50 m s−1 ,

except for HIP105854. We also put a cut in the photometric variability from Hippracos data,

in order to include the most stable giant stars.

3.5.2 Are there any close-in planets?

In the presence of a massive enough companion, the RV curve of a star shows a large and

periodic variation, from which the orbital parameters can be determined. On the other hand,

in the presence of a lower mass companion, no clear periodic variation will be observed, es-

pecially when the stellar jitter and instrumental error are comparable to the induced velocity

amplitude, making the analysis of the RV curve more complicated. However, in this case

the dispersion of the RV datapoints provides important information, which can be used to

discard the presence of a planet in a given region of the orbital parameter space. Let’s then

define the observed weighted standard deviation (σobs) by:

σ2
obs =

n
∑

i=1

ωi (vi − v̄)2 (3.5)

where vi is the measured RV at the i-th epoch and v̄ is the weighted mean velocity,

given by
∑

ωi vi. The normalized statistical weight ωi correspond simply to A/σ2
i , where
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σi is the measurement error derived from the velocity dispersion of all the chunks, at the

i-th epoch. This weighting scheme helps to assign a low weight to RV points having a large

instrumental error, which usually depart from the mean velocity. For the three binary stars

and the three stars with a long period linear trend, we computed σobs from the residuals

of the best keplerian fits. Additionally, in a few cases, we rejected one RV datapoint that

significantly departs from the mean velocity. The measured σobs for a given star arises from

three different sources, namely the instrumental error (σins), the doppler shift induced by a

substellar companion (σp) and the stellar jitter (σst). The first term is simply the dispersion

in the individual chunk velocities, as mentioned above, and the second one (in the presence

of a planet) depends on the stellar mass, planetary mass, eccentricity, orbital distance, and

time coverage. The third term, which is related to intrisic stellar phenomena, is typically

below 20 m s−1 (see § 5.1). For each stellar dataset we computed the time of the observations

and the correponding instrumental errors in a Monte-Carlo fashion, employing a total of

∼ 1000 simulations and including the three terms just described. The instrumental errors

and stellar jitter were assumed to follow a gaussian distribution, with mean value equal to σi

(see equation 3.5) and 10 m s−1 , respectively. Finally σp was computed varying the orbital

distance between 0.05 and 0.6 AU, the eccentricity between 0 and 0.5 and ω (argument of

periastron) between 0 and π/2. The mass of the planet was fixed to 1MJ and the mass of

the host star was retrieved from Jones et al. (2011). For each synthetic dataset we measured

the weighted standard deviation, as defined in equation 3.5 (hereafter refered as σsim). We

then computed the fraction of simulations leading to σobs < σsim (fsim).

Let us consider a star, for which fsim is close to 1. In this case we can rule out the presence of

a giant planet (at a confidence level given by the fsim), because on the contrary the σp term

would be large enough so that σobs > σsim. Let’s now consider the opposite situation, i.e.,

that a significant fraction of the simulations lead to σobs < σsim (i.e. fsim close to zero). In

this case the interpretation is more difficut since there are different possibilities that could

explain the observed variability. The first possibility is that the stellar jitter is considerably
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higher than 10 m s−1 and hence σst will be the most important contribution to σobs. The sec-

ond possibility is that a massive enough planet (or a planetary system) is orbiting the star,

inducing a doppler shift variability in time that will be the dominant term contributing to

σobs. In this case, if a periodic variability is observed, a further follow up is needed to actually

confirm (or discard) the presence of a companion. The third possibility is a combination of

both stellar jitter plus an orbiting planet.

From the MC simulations we found that for half of the stars fsim > 0.97 and for 75% of

them fsim > 0.86. This result is interpreted as the majority of the stars show a RV variability

that is consistent with a stellar jitter at the 10 m s−1 level and no giant planet. However, as

can be expected from Figure 3.4, there is a fraction of our targets that show a higher level

of variability that might be due to either a planetary signal and/or enhanced stellar jitter.

Since σobs cannot be used to discriminate between stellar activity and/or a planetary signal,

for every target showing fsim < 0.97 we computed a Lomb-Scargle periodogram, in order to

search for periodical signals in the range between ∼ 25 days (corresponding to around 4 times

the Nyquist frequency in our data) and periods corresponding to the orbital distance of 0.6

AU (∼ 170 days for a planet orbiting in a circular orbit around a 1.0 M⊙ star). We didn’t find

any significant peak in the periodograms, meaning that we can discard the presence of giant

planets in close-in orbits in our CTIO sample. This result, reinforces the previous claims

(e.g. Sato el at. 2008; Dollinger et al. 2009) of the absence of planets orbiting within 0,6 AU

around clump giants.

3.5.3 Long period companions

As already mentioned in the previous sections, we found significant RV signals with periods

exceeding several hundreds of days. Firstly, there are three stars (HIP76532, HIP75569 and

HIP104148) that present a RV variation of a few kms−1 , which are clearly due to the presence

of a stellar companion (see Figures 3.10 and 3.12). HIP7118 and HIP22479 show a long linear

trend with peak to peak variations of several hundreds m s−1 . In the latter case, there are 9
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HARPS observations that confirm the linear trend, which extends over ∼ 2000 days. In both

cases the RV curves can be explained either by a brown dwarf orbiting at several AU’s or by

a stellar companion in a very wide orbit. A similar trend is also exhibited by HIP103836,

but this time the peak to peak variation is ∼ 200 m s−1 , in a timespan of over 800 days.

Finally, there are several smaller amplitude signals that might be due to the presence of

planets orbiting beyond 0.6 AU, but the peak in the periodograms are not that strong. More

data are needed to confirm these lower signal amplitudes in the data.

3.5.4 Observations of 81 Cet

During the past few years, we have observed the giant star 81 Cet, which is known to host a

giant planet (Sato et al. 2008). The RV curve of this object is shown in Figure 3.5. The red

solid dots correspond to the publish data while the blue open circles are our data. The best

keplerian fit, which is computed including both datasets, is overplotted with a solid black

line. Our observations confirm the periodic RV signal published for this star, but we obtain

a larger scatter, that is in part due to our larger uncertainties. However our data show a

much steeper RV variation, and a keplerian fit to our data leads to a lower eccentricity and

a longer orbital period. We speculate that this star might be experiencing a higher activity

cicle, or even more, the periodic signal might be due to spots on the stellar surface. However,

the latter hypothesis is unlikely, since the typical rotational period for these type of stars

is a few hundreds of days, much shorter than the observed RV period (∼ 1000 days), unless

we are witnessing an unfortunate mixture of spot group rotation that is beating with our

sampling epochs.

3.6 Summary and conclusions

In this paper we report the first results of our RV survey aimed at studying the population

of giant planets orbiting within the inner 0.6 AU’s from the host star. We have applied

the I2 cell technique in order to obtain precise RV’s for a sample of 66 giant stars. We
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Figure 3.5: Radial velocity curve of 81 Cet. The red dots and blue open circles correspond
to Sato et el. (2008) and our data, respectively. The black solid line correspond to the best
keplerian fit using both datasets. The new derived orbital parameters are also labelled.

also used a strong statistical procedure in order to improve the precision of the radial ve-

locities. We investigated the variability of our targets and we have shown that > 75 % of

them are more stable than 20 m s−1 and around 50% have intrinsic variability below 10 m s−1 .

We performed a detailed analysis of the RV variability computed for each target and we

searched for significant periodicities up to ∼ 160 days, in order to put some constraints on

the population of giant planets in close-in orbits. We showed that based on the RV standard

deviation, half of the targets show no indication of any giant planet orbiting within 0.6 AU’s

(at the 97 % confidence level). For the rest of the targets we also searched for significant

periodic signals using a LS periodogram. We didn’t obtain a significant peak for any of

the targets, meaning that we can discard the presence of giant planets orbiting close to the

host star, in our CTIO sample. This result confirms the lack of short period planets already

claimed by other groups (e.g. Sato et al. 2005; Dollinger et al. 2009; Niedzielski et al. 2009).
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In addition, we found 3 stars that exhibit RV variation of a few kms−1 , and two other

stars that exhibit RV variations of several hundreds of m s−1 , which are likely to be in binary

systems. This result confirms that there is a significant fraction of giant stars in binary sys-

tems, especially considering that we selected stars that were not identified to have a stellar

companion (and therefore the actual fraction should be much larger).

Finally, we obtained 15 observations of 81 Cet, which is a clump giant known to host a

substellar companion. We confirmed the periodic RV signal published by Sato et al. (2008),

but we found a different slope in the RV curve, which cannot be explained solely by our

larger error bars. This might be an indication that the star is experiencing a higher activity

cicle, so that the RV curve is significantly affected. More data are needed to confirm this

hypothesis.
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Figure 3.6: Radial velocity variations for 8 of our targets. The name of the star and the
observed weighted standard deviations are labelled.
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Figure 3.7: Same as Figure 3.6
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Figure 3.8: Same as Figure 3.6
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Figure 3.9: Same as Figure 3.6
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Figure 3.10: Same as Figure 3.6
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Figure 3.11: Same as Figure 3.6
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Figure 3.12: Same as Figure 3.6
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Figure 3.13: Same as Figure 3.6
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Figure 3.14: Same as Figure 3.6
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Chapter 4

Radial Velocities From the FEROS Sample

4.1 Data Reduction

The data reduction of all of the spectra taken with FEROS was done with the ESO reduc-

tion pipeline, which is available for FEROS users. The reduction pipeline performs a bias

substraction, flat fielding, orders tracing and extraction. In addition, the scattered light is

substracted. Since FEROS uses a fiber slicer, the order extraction is done after adding up

all of the light from the pixels along the width of the fiber instead of applying an optimum

extraction (i.e. fitting a gaussian perpendicular to the dispersion direction). A wavelength

calibration is computed using several Thorium-Argon calibration lamps having different ex-

posure times and instensities, which allow to cover all of the spectral range (∼ 3500 -9200 Å).

The typical rms in the wavelength solution is ∼ 0.005 Å. Finally, the wavelength calibration

is applied to the observed spectra, which are extracted order by order. Additionally, the

reduction pipeline applies a barycentric correction to the extracted spectra, but this option

was disabled because it retrieves the coordinates of the star that are recorded in the header,

which are not accurate enough. Instead, this correction was computed separately, and then

is applied to the reduced data, as is discussed in the next section.
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4.2 Radial Velocity Computation

The RV’s for each individual spectrum were measured in the following manner. Firstly, the

doppler shift was computed by applying a Cross Correlation (Tonry & Davis 1979) between

the stellar spectrum and its corresponding template (high S/N spectrum of the same star).

This method was repeated to ∼ 50 Å chunks (corresponding to ∼ 2000 pixels), leading to a

total of ∼ 140 different RV’s per observation. The IRAF task RV/fxcor (Fitzpatrick 1993)

was used, applying a fourier filter to both, the observation and the stellar template. The

fourier filter is used to cut every frequency below and above a given value, which help to

improve in few ms−1 the error bars (especially for low S/N spectra). The low frequency cut

is intended to remove periodic patterns that are correlated with the position in the CCD,

whereas the high frequency cut allows to remove periodic signals that are related to noise

in the data. Then, for each dataset, the mean velocity was derived, rejecting in an iterative

way every point lying away from 2.5 sigma, which typically correspond to 20 % of them. It

is worth mentioning that since all of the orders were included, cutting only 100 pixels at the

edges, many chunks lead to very deviating velocities mainly either due to low S/N (especially

toward the blue) or because of the presence of telluric lines (in the red part of the spectrum).

Figure 4.1 shows the chunk velocities from one spectrum of Tau Ceti. The black dots are the

non-deviant velocities and the red crosses are those rejected by the procedure just described

(some of them are out of scale). The standard deviation of the chunk velocities is 60.7 m s−1 ,

which correspond to an error in the mean1 of just 5.1 m s−1 .

The second step consists on a similar procedure, but this the cross correlation is computed

between the simultaneous calibration lamp (sky fiber) and one of the lamps that was used for

the wavelength calibration of that night (i.e., corresponding to the night zero point), having

a similar exposure time of the simultaneous calibration lamp. This procedure is neccessary

to substract the nighlty drift, produced mainly by small variations in the refraction index in

1The error in the mean is given by: σ/
√

nc, where σ is the standard deviation of the chunks velocities
and

nc is the number of non-rejected chunks used in the analysis
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Figure 4.1: Radial velocities computed from ∼ 140 different chunks, from a single observation
of Tau Ceti. The solid black dots are the chunks velocities, while the red crosses correspond
to the rejected velocities. The standard deviation is 60.7 m s−1 , corresponding to an error in
the mean velocity of ∼ 5.1 m s−1 .

the spectrograph during the night, which at first order translates into a linear RV shift as

large as ∼ 150 m s−1 . It is worth to mention that no second order correction was applied,

like the RV shift between the two fibers, which is typically ∼ 2 m s−1 (Setiawan et al. 2000).

Finally, the radial velocity for each epoch is computed by:

RV (Obj , Temp) + RV (SimCal , WavCal) + BC (4.1)

where the first and second terms correspond to the RV computed for the object with

its corresponding template and to the nightly drift, as explained above. The third term

corresponds to the barycentric correction, which is computed using the middle time of the

observation and using the actual coordinates of the star at that time, which are slightly

different to the ones recorded in the image header (typically up to ∼ 1-2 arcminutes). This
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is quite important, since the error in the header coordinates translates into a RV uncertainty

as big as ∼ 5-10 m s−1 . Figure 4.2 shows the RV’s computed from 25 spectra of Tau Ceti,

400 600 800 1000 1200

Figure 4.2: Three years observations of the RV standard star Tau Ceti. The mean instru-
mental error is 4.6 m s−1 , and the standard deviation is 5.2 m s−1 . The binned RV’s lead to
a dispersion of only 4.4 m s−1 .

taken during the last three years. This star is known to be stable at the ∼ 1 m s−1 level (see

Pepe et al. 2011) and therefore it is a very appropiate target to test the long-term precision

of FEROS. The error bars are computed from the error in the mean of the chunk velocities.

The measured standard deviation is only 5.2 m s−1 and the mean intrumental error is 4.6

m s−1 . Additionally, since the typical exposure time of the observations is 20 seconds, the

RV’s from consecutives observations during the same night were binned in order to average

the main stellar oscillation modes, having typical timescales of ∼ 5 minutes in these kind

of stars. The binned RV’s are overplotted in Figure 4.2 (open red circles). This time the

standard deviation drops down to just 4.4 m s−1 , which is consistent with the intrumental

errors. Hence, it can be claimed that the long-term RV precision of FEROS is ∼ 4 m s−1 .

This result is important since puts FEROS well into the high precision instruments that
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are suited for RV surveys aimed at detecting lower mass planets. Actually, this precision is

comparable to the one that can be achieved by other instruments that have been developed

mainly for planet searches (e.g. CORALIE at the Swiss telescope on La Silla).

4.3 Preliminary Results

During the last three years, multi-epoch FEROS observations for a sample of more than 100

stars were collected (∼ 20 of them in common with the CTIO sample). Some interesting

results have emerged from this rich dataset, which are highlighted in the following sections.

4.3.1 Binary Systems

From the FEROS sample, 20 stars show a RV variation of hundreds to thousands m s−1 ,

which are likely explained by the presence of a stellar companion. Figures 4.3 and 4.4 show

some examples. In most cases, the error bars are smaller than the symbol sizes. It can be

Figure 4.3: Four binary system discovered among the FEROS sample. The error bars are
smaller than the symbol size.
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be noticed that only in one case it is possible to constraint the orbital distance and hence

the mass of the secondary (left upper panel in Figure 4.4). For the rest of them, the time

coverage is not long enough to determine the orbital parameters. More observations for

these objects will be taken in the future in order to fully derive the orbital parameters. In

Figure 4.4: Same as Figure 4.3.

addition, there are two very interesting binary systems, both of them compounded by a first

ascending red giant branch star and companion having a minimum mass corresponding to a

M dwarf. In the first case, the primary star (HIP73758) has a mass of 1.4 M⊙ and the best

keplerian fit leads to an orbital distance of a = 0.5 AU (corresponding to P=97 days) and

an eccentricity of 0.44. This is a pre-common envelope system. In fact, according to single

stellar evolution models, in ∼ 108 yr, the radius of the primary star will be comparable in

size to the separation between both stars. In the second case (HIP83224) the primary star is

an intermediate-mass star (1.75 M⊙ ) and the orbital period of the system is 173 days with

an eccentricity of 0.31. The RV curves for them are plotted in Figure 4.5. The best keplerian

fits are overplotted (solid black lines).
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Figure 4.5: RV curves for HIP83224 (upper panel) and HIP73758 (lower panel). The best
keplerian fits are overplotted (black solid line). The orbital periods and eccentricities are also
labelled.

4.3.2 HIP63242b: the closest planet around and intermediate-mass giant star

According to the Hipparcos catalogue, HIP63242 is a G8III star with V=6.87, B-V=1.03 and

a parallax of π=7.42 ± 0.49, which correspond to a distance of 135 pc. The atmospheric

parameters for this star were computed in Jones et al. (2011) and are listed in Table 4.1.

Comparing these parameters, with Salasnich et al. (2000) evolutionary models, they derived

a mass of 1.54 M⊙ for this object. In Figure 4.6 is also plotted the position of HIP63242 in

the HR diagram and the closest evolutionary models from Salasnich et al. (2000). This star

is clearly ascending the RGB, since no HB model cross its position in the HR diagram.

During the last three years, 12 spectra (including the template) for this object were ob-

tained using FEROS. Its RV curve is shown in Figure 4.7. The typical error bars are ∼ 5

m s−1 , therefore are smaller than the symbol sizes. The best keplerian fit 2 is overplotted

2The keplerian solution was computed using the Systemic Console (Meschiari et al. 2009)
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Table 4.1: Stellar properties of HIP63242

Parameter Value
B-V (mag) 1.02 ± 0.02

V (mag) 6.86 ± 0.01

π (mas) 7.42 ± 0.49

Teff(K) 4830 ± 100

log g (cm s−2) 2.53 ± 0.2

[Fe/H] -0.31 ± 0.09

L (L⊙) 42.7 ± 0.08

Mass (M⊙) 1.54 ± 0.05

v sini (km s−1) 3.7 ± 0.1

3.7 3.68 3.66

Figure 4.6: Position of HIP63242 in the HR diagram. The four closest evolutionary tracks
from Salasnich et al. (2000) are overplotted.
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Table 4.2: Orbital parameters for HIP63242 b

Parameter Value

P (days) 125.2

K (m s−1 ) 304.2

a (AU) 0.57

e 0.23

ω (deg) 110.8

T0 (JD) 2455355.8

Mp sin i (MJ) 9.7

(solid black curve). It can be noticed that there is a strong RV signal present in the data.

The orbital parameters of the planet are listed in Table 4.2.

4.3.2.1 Photometric and Line Profile Analysis

In order to determine the actual nature of the large periodic signal observed in the HIP63242

radial velocities, two standard tests were applied to detect stellar phenomena that might be

afecting the RV curve, such as rotational modulation or stellar oscillations. The first test

consists in a photometric analysis, aimed at detecting variations in the brightness of the star

due to the presence of spots in its surface, that might be mimicing a doppler shift induced

by a substellar companion (e.g. Figueira et al. 2010). For this purpose, the Hipparcos pho-

tometric data were analyzed, which consists of a total of 142 Hp filter observations, taken

between JD 2447869 and 2449013. The photometric data show a small dispersion of 0.009

mag, which certainly cannot be responsible for the observed large RV variations. In fact,

according Hatzes (2002), a spot covering 5% of the stellar surface (corresponding to a de-

crease of ∼ 0.06 mag in the flux if the spot is completely opaque) will induce a RV variation

below 100m s−1 , on a star having a projected rotational velocity similar to HIP63242 (vrot

= 3.6 km s−1 ). Also, no significant periodic signal is observed in the Hipparcos photome-
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Figure 4.7: RV curve for HIP63242 (black dots). The best keplerian fit is overplotted (black
solid line). The orbital parameters are labelled.

try. Hence, rotational modulation can be discarded as the responsible mechanism for the

observed RV signal. The second test corresponds to the bisector analysis (Toner & Gray

1988), aimed at detecting assymetries in the line profiles due to oscillations in the outer part

of the star. Figure 4.8 shows the bisector velocity span, which corresponds to the velocity

difference between the bottom and the top of the CCF, versus the measured radial velocities

of HIP63242. The error bars in the bisector velocities were derived simply as the error in the

mean from 5 sets of indepedent bisector velocities, computed from the CCF from 5 different

orders. Clearly no obvious correlation between both quantities is present, which supports the

planetary origin of the RV curve.

The discovery of this planet is very important for two main reasons: 1) this is the first
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Figure 4.8: Bisector velocity span against the RV’s measured for HIP63242. The mean error
bars in the bisector velocities is ∼ 70 m s−1 , much smaller than the RV amplitude observed
for this star.

planet discovered between 0.1 and 0.6 AU around an intermediate-mass star, and the first

one orbiting within 0.6 AU around an intermediate-mass giant star (see Figure 1.19), and

2) since the host star is ascending the red giant branch, the presence of this planet supports

the idea of the planetary destruction by the host star during the late phase of the RGB,

especially considering that in this project and in other surveys no planet has been found in

this region of the parameter space around a HB star, which is in agreement with the results

from RV studies of giant stars conducted by other groups.

4.3.3 Longer period RV signals

In addition to the RV signals discussed above, there are two other stars that show a large pe-

riodic RV variability, that might be produced by orbiting planets. The first one (HIP99171)

is a RGB stars with a mass of 1.35 M⊙ , showing a doppler shift that is likely induced by a
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massive planet (Mp sini = 10.7 MJ), with an orbital period of 367.3 days (a = 1.1 AU). The

RV curve for this object is plotted in Figure 4.9. The solid black line corresponds to the best

keplerian fit. The rms of the fit is 10 m s−1 . The orbital parameter are also labelled.

The second object is HIP97233, which probably hosts two giant planets. The RV curve

for this star is shown in Figure 4.10. The black solid line correspond to one possible solution,

with two giant planets with orbital periods of 243 days (a = 0.96 AU) and 1414 days (a = 3.1

AU), respectively. The rms of the fit is 9 m s−1 . In both cases, a further analysis is needed

to determine the actual nature of the RV variations, but since the amplitudes are large, the

rotational modulation cannot be responsible for the observed RV curves.

400 600 800 1000 1200

Figure 4.9: RV curve for HIP99171 (black dots). The best keplerian fit is overplotted (black
solid line). The orbital parameters are labelled.
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Figure 4.10: RV curve for HIP97233 (black dots). One possible keplerian solution with two
planets is overplotted (black solid line).
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Chapter 5

Summary and Conclusions

5.1 Summary

5.1.1 Atmospheric and physical parameters

During the last three years a large radial velocity study of a sample of 166 bright giant stars

was conducted in the southern hemipshere. Multi-epochs and high-resolution spectra were

collected for every target, in order to compute precise RV variation and hence to study the

population of close-in planets around RGB and HB stars. The first step of the project was

to fully characterize the physical properties and evolutionary states of the stars. In order

to do that, their atmospheric parameters (Teff , logg, [Fe/H] and microturbulent velocity)

were derived using a set of stellar atmosphere models and by imposing local thermodynamic

equilibrium. These parameteres were then compared to evolutionary tracks to derive the age

and mass of the program stars. Additionally, their rotational velocities were measured using

a calibration based on a sample of stars with rotational velocities measured by the Fourier

method. A complete catalog with all of this information was built and is available in the

VizieR database 1.

1ftp://cdsarc.u-strasbg.fr/pub/cats/J/A+A/536/A71/
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5.1.2 Clump giants from the CTIO sample

The CTIO sample consists of clump giant stars, i.e., a mixture of massive sub-giants, intermediate-

mass RGB stars and low-mass and intermediate-mass Horizontal Branch stars, that occupy a

similar region in the HR diagram. In order to derive high-precision RV variations, a molecular

iodine cell was used to compute a precise wavelength calibration against which the doppler

shift of the star is measured. This technique was used with two different instruments, namely

FECH, that was later replaced by CHIRON, both of them mounted on a 1.5m telescope. The

RV precision achieved was typically ∼ 10 m s−1 and ∼ 5 m s−1 , respectively. The main results

from the RV analysis of the CTIO sample were:

• No giant planet was found in close-in orbits in this sample of 66 giant stars (23 RGB

and 43 HB). Since a detailed analysis of each star dataset was performed, no expected

observational bias is present, thus reinforcing the observational result about the lack of

short period orbit planets around giant stars, already claimed by other groups.

• Several long period signals were detected, which might be either due to stellar activity

or induced by the presence of a giant planet or a Brown Dwarf. These targets require

follow-up observations in order to determine the actual nature of these signals, and for

characterizing the orbital parameters in the case that a planet is present.

• Three new binary systems were discovered during this project, but still more observa-

tions in the future are needed to constraint the orbital parameters. These result shows

that binary is very common in giant stars, especially considering that in the target

selection stars known to host a stellar companion were excluded.

5.1.3 First ascending RGB stars from the FEROS sample

A total of 100 giants stars were observed with FEROS (plus 15 stars in common with the

CTIO sample), all of them having B-V color bluer than 1.2. From the total sample, 75 stars

have MV > 1.5, meaning that most of them are either at the end of the sub-giant phase

or just ascending the RGB phase. Even though, this sample has not been analyzed as was
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done for the CTIO sample (because this program is still incomplete in terms of number of

observations per star), it is worth to highlight the following emerging results:

• The RV precision achieved with FEROS is better than what was previously expected.

During commissioning, the precision obtain for this instrument was ∼ 23 m s−1 (Kaufer

et al. 1999) and then Setiawan et al. (2007), based on data taken between 2003 and

2006, showed that it is possible to achieve a long-term precision stability at the ∼ 10

m s−1 level. Applying the method described in § 4.2, it is possible to reach a long-term

precision of ∼ 4 m s−1 . This is an improvement in 2 or 3 times in the RV precision,

showing the huge potential of FEROS as a planet hunter.

• One giant planet was found orbiting at a distance of 0.57 AU, around a first ascending

RGB star. This is the closest planet around an intermediate-mass giant star, and the

closest one detected around a RGB star2.

• Two planetary systems, showing large RV amplitudes were detected around two giants,

that were identified as RGB stars. In the first case the best keplerian fit is compatible

with a massive giant planet (M ∼ 10 M⊙ ) in a nearly circular orbit with ∼ 1 year

orbital period. In the second case, two massive giant planets are clearly detected in

the RV of their host star, the inner one having an orbital period ∼ 243 days. More

observations are needed to fully constrain the orbit of the second planet in the system.

• Several RV signals are present in the data that might be produced by orbiting planets.

In particular, there is one high amplitude signal present in the RV’s of a 1.7 M⊙ RGB

star, with a tentative orbital period of ∼ 90 days. Unfortunately, there are only 9 RV

epochs for this star, hence still is not possible to come to a firm conclusion about the

nature of the periodic signal.

• A total of 16 stars show RV variations that are explained by the presence of either a

massive brown dwarf or a stellar companion. This shows that the binary fraction in

2There is one planet in a close-in orbit (P = 16 days) around a low-mass HB star (Setiawan et al. 2010,
Science, 330, 1642)
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giant stars is large. As in the case of the CTIO targets, no previously detected binaries

were included in the FEROS sample.

5.2 Conclusions

5.2.1 The Fraction of Planets Around Giant Stars

Based on the results presented in the last section, it is possible to measure the fraction of

planets orbiting giant stars by simply compute the ratio between the number of detections

and the total number of targets observed. From the FEROS sample, 15 of them have less

than 10 observations, hence they will be excluded in this analysis. Also the 16 BD/Binary

systems are not included since an analysis of the RV’s after substraction of the fits have to

be done in order to search for periodicities in the residuals. Hence, a total of three detections

will be considered in a a sample of 135 stars. It is worth to emphasize that this is a lower

detection limit because there are several stars showing RV signals with periods & 180 days,

which are currently being monitored in order to determine the actual nature of the observed

variability. Additionally, in order to obtain a robust statistical result, planets detected by

other groups will be also included in this analysis. Unfortunately, different surveys have

different observing strategies, sampling rates, detectability limits, targets selection, etc, thus

they cannot be directly compared, which complicates the statistical analysis. However, the

results published by some groups can be included in the analysis.

The Okayama Planet Search Program (OPS hereafter; Sato et al. 2005) has monitored a

sample of 319 3 G giants stars (see Takeda et al. 2008 for a detailed description of the targets

properties). From the OPS sample, 13 stars hotter than logTeff = 3.72 (hence are clearly sub-

giant stars) are not included here. To date, a total of 13 planets around giants stars (Brown

Dwarfs and subgiant hosts are not included) have been discovered by that survey, covering

a wide range in orbital periods. A similar work was done by Hekker et al. (2008), where

3Three stars presented in Takeda et al. 2008 are planet hosts that are not part the OPS sample
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a sample of 179 giant stars, including clump giants and evolved RGB stars, were analyzed

in detail, in order to study the nature of the RV variability observed in giant stars. From

that sample, 2 planets were published, having orbital periods of 511 days and and 590 days.

In addition, 83 evolved stars, including RGB and clump giants, were studied by Setiawan

et al. (2003), from which 5 planets (one double system) were detected, all of them orbiting

beyond ∼ 1.5 AU. Finally, 62 K giant stars were monitored by the TLS survey (Dollinger et

al. 2008), from which 5 giant planets were detected, with orbital periods ranging from 158

days up to 1125 days (0.59 AU < a < 2.36 AU).

Considering the results from the CTIO and FEROS sample and the four different surveys

mentioned above, it is possible to compute the fraction planets as a function of the orbital

distance. The results are summarized in Table 5.1, where are also listed the values obtained

from a sample of 475 solar-type stars presented in Table 1 in Cumming et al. (2008) 4.

Table 5.1: Cumulative fraction (%) of giant planets around dwarfs and giant stars

0.1 AU 0.42 AU 0.60 AU 1.0 AU 2.0 AU 2.5 AU
FGK dwarfs 0.43 0.85 1.12 1.9 3.9 4.3
Giant stars 0.00 0.00 0.29 1.4 2.9 3.5

It is important to notice from Table 5.1 that the fraction of planets around giant stars

is similar to the fraction for dwarfs stars. However, as already mentioned, the results for

giant stars are still incomplete (for instance there are a few planet candidates from the CTIO

and FEROS samples that still have to be confirmed). In addition, the detectability of plan-

ets around giant stars decreases for more massive stars and with the orbital distance. Also,

the effect of the stellar jitter complicates the detection of substellar companions, especially

when the sampling rate per star is poor (see Figure 3 in Cumming 2004 for the number of

4The fraction of planets around dwarfs stars at 0.6 AU and 2.5 AU were linearly interpolated
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datapoints needed to detect a planet, given the signal to noise ratio). Hence, the actual

fraction of planet around giant stars is probably significantly higher than the one presented

here. In fact, based on preliminary results from an extension of the TLS survey, Dollinger et

al. (2011) claimed a fraction of ∼ 10 - 15 % of giant stars harbouring planets.

5.2.2 The Properties of Planets Around Giant Stars

As has been already mentioned in this thesis, the properties of the planets detected around

giant stars are different when compared to solar-type stars. Apparently, two main reasons are

responsible for these differences, namely the stellar mass (giants are on average more massive

than FGK dwarfs stars by & 0.5 M⊙) and the stellar evolution. In the next subsections the

properties of these systems are investigated.

5.2.2.1 Semimajor Axis Distribution

In Figure 1.19 the mass of the parent star as a function of the orbital distance is plotted, for

planets discovered until 2009, around sub-giant and giant stars. After three years, several new

planets have been discovered around giant stars, including three detections by this program

and the number of planets orbiting sub-giants stars has increased a factor ∼ 2. The current

semimajor axis distribution is presented in Figure 5.1. The red filled circles and blue stars

correspond to giants and subgiants hosts, respectively. The three red triangles correspond

to the planets detected during this project. For comparison, also planet hosting MS stars

were included (small black dots). It can be noticed that despite the fact that several new

planets were added, the lack of close-in planets is still present, even though there are a few

new interesting objects that were not present in Figure 1.19. First, there is a planet in a 0.12

AU orbit around a low-mass star, that was identified as a HB stars (Setiawan et al. 2010).

However the host stars is an extremely metal poor star ([Fe/H] ∼ -2.0) and no parallax have

been measured for this object, hence the determination of its evolutionary status and its mass

are quite uncertain. In addition, the planet detected during this project around HIP63242 is

the closest one around a giant star more massive than ∼ 0.8 M⊙ . This planet has moved the
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Figure 5.1: Semimajor-axis distribution for planets around evolved stars. The blue stars and
red filled circles correspond to sub-giant and giant host stars, respectively. The red triangles
correspond to the planets discovered during this project. Planets around MS stars are also
plotted (small black dots).

upper boundary of the planet desert a little bit closer to the star. Also it is very important

to note that the host star is clearly ascending the RGB, hence no degeneracy in its mass

and age are present. Finally, a new planet in a short-period orbit was found around ∼ 1.7

M⊙ sub-giant star, and several others were detected (by the transit method) orbiting MS

stars with M⋆ ∼ 1.4 - 1.6 M⊙ , showing that even though planet in close-in orbits are rare

around intermediate-mass stars, they do exist.
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Figure 5.2: Semimajor-axis cumulative fraction of giant planets (0.9 < MP /MJ < 13) around
dwarfs (0.7 < M⋆/M⊙ < 1.2) and evolved stars. The black, blue and red lines correspond to
dwarfs, subgiants and giants hosts, respectively.

The observed gap in the semi-major axis distribution around intermediate-mass stars, has

been investigated by Burkert & Lin (2007). They compute a large number of Monte Carlo

simulations in order to study whether this planet desert can be theoretically reproduced.

They found that for star more massive than 1.2 M⊙ , there is a paucity of giant planets

more massive than ∼ 0.8 MJ , orbiting between 0.1 AU and 0.6 AU from the host star. The

main reason causing this discontinuity in the semi-major axis distribution is attributed to

a shorter disk depletion timescale, therefore Type II migration 5 is rapidly halted, avoiding

the inward motion of gas giant planet from their formation position. A complementary work

by Currie (2009) showed that it is possible to reproduce the observed lack of Hot Jupiters

5In Type I migration, a small planets creates a spiral pattern in the disk, while in Type II migration a
giant planet opens a gap in the protoplanetary disk.
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around intermediate-mass stars, by modelling the effect of a stellar-mass-dependent timescale

for the disk on type II migration.

In addition, Figure 5.2 shows the cumulative fraction of all of the giant planets (0.9 MJ

< Mp < 13 MJ) published, as a function of the orbital distance (up to 4 AU), for MS, sub-

giant and giant host stars (black, blue and red lines, respectively). In the case of the MS

hosts, the mass range was restricted between 0.7 - 1.2 M⊙ . It can be noticed in Figure 5.2

the planet desert around evolved stars, i.e., a low fraction of planets orbiting interior to 0.6

AU. It is also worth to mention, that the effect of the stellar mass can be observed in the

cumulative fraction of planets around subgiant stars. As can be seen, the fraction of planets

up to ∼ 1.6 AU, is significantly lower than for MS hosts, which suggests that planets around

imtermediate-mass stars are preferably formed in wider orbits. This is also evident in Figure

5.1, since only one planet is found orbiting within ∼ 0.7 AU around subgiant stars more

massive than ∼ 1.5 M⊙ . In fact, Bowler et al. (2010) showed that the period distribution of

planets around intermediate-mass stars (all of them detected around subgiants) is different

than the population of planets around FGK dwarfs, at the 4σ level. Regarding the planetary

population around giant stars, there is steep increase in the cumulative fraction between ∼

0.6 AU and 1.5 AU. However, the interpretation of this is extremely difficult to analyze, since

the detectability of planets orbiting beyond 2 AU is strongly reduced. For instance, a 1 MJ

planet orbiting a 1.5 M⊙ star at a distance of 2 AU induces a RV amplitude of only ∼ 16

m s−1 , barely above the jitter level for the stable giant stars.

5.2.2.2 Mass Distribution

As already noticed by other authors (e.g. Lovis & Mayor 2007; Dollinger et al. 2009) planets

around giant stars (or around intermediate-mass stars) are significantly more massive than

the substellar companions orbiting solar-type (or low-mass stars). In Figure 5.3 the minimum

mass of the planets versus the mass of the parent star are plotted. The black squares, blue

triangles and red circles correspond to MS, subgiant and giant host stars, respectively. The
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black dashed line represents a RV amplitude of 30 m s−1 for a planet orbiting at a distance

of 1 AU. It is evident that planets around giant stars are significantly more massive than

1 2 3

Figure 5.3: Mass distribution for planets orbiting MS (black squares), subgiant (blue tri-
angles) and giant stars (red circles). The black dashed line represents the detection limit
(K=30 ms−1 ) for a planet orbiting at 1 AU.

around MS and subgiant stars. This result can be interpreted in part due the fact that the

properties of substellar companions (in this case the mass of the planets) are strongly affected

by the stellar mass, which probably directly correlates with the properties of the protoplane-

tary disk. Thus probably more massive stars have denser and more massive disk, from where

super planets can efficiently be formed. From a theoretical point of view, Kennedy & Kenyon

(2008) predicted that the frequency of giant planets increases considerably with the stellar
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mass, which explains in part the mass distribution of planets around intermediate-mass stars

(M& 1.5 M⊙ ). However, the former argument does not explain the difference in the mass

distribution between subgiant and giant stars. In order to investigate how different these two

population are, only the planets orbiting star with masses between 0.9 M⊙ and 2.0 M⊙ will be

considered. In this mass range, there are 53 planets around subgiants and 28 planets orbiting

giants. A K-S test gives a probability that both datasets come from the same distribution of

only 5×10−8 %. The reason of this difference in the planet mass distributions is not clear,

but might be attributed to different scenarios.

One possibility is that most of the massive planets detected around giant stars are not

planets, but rather the RV variability is intrinsically related to stellar phenomena, such as

oscillations or spots. However this option seems to be very unlikey, since these kind of

phenomena should translate into a larger photometric variability and/or are expected to be

detected in the bisector analysis, especially because these massive planets induce RV ampli-

tudes ∼ 100 m s−1 . As explained in section 4.3.2.1, such a large variation should be easily

detected in photometric data or in a line profile analysis.

A second option is that the host stars are actually less massive, hence the the mass of the

planets derived from equation 1.5 are smaller (since K ∝ M⋆
−1/2). Interestingly, Lloyd (2011)

suggested that the giant stars hosting exoplanet are the evolved counterpart of late F and

early G MS stars, with masses of ∼ 1.0-1.2 M⊙ . However, even considering that this is the

case, this idea cannot be solely responsible for the planets mass distribution around giants

stars. For instance, let us consider a stars that was originally identified as a 1.5 M⊙ star,

hosting a 10 MJ mass planet. Let us also consider that the actual mass of the host is 1.0

M⊙ instead of 1.5 M⊙ . Hence, the mass of planet would decrease a factor
√

1.5 = 1.22,

meaning that its mass would be 8.2 MJ . If we repeat this procedure for all of the stars in

the region between ∼ 0.9 and 2.0 M⊙ , there would still remain an overabundance of massive

giant planets. Indeed if we assume that all of the giant host stars are a factor 1.5 less massive
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than their derived mass, then every planet has a minimum mass ∼ 1.22 times smaller. A new

K-S test after appliying this correction factor gives a 4×10−5 probability that the observed

mass of exoplanets around subgiants and giants stars follow the same distribution, hence this

option can be discarded.

A third possibility is that, due to tidal decay during the RGB phase, massive planets that

are formed beyond ∼2-3 AU move inward, thus are detected around giant stars but are not

seen around subgiant stars, since they are too far and produces smaller RV amplitudes. How-

ever, this scenario is in disagrement with the theoretical predictions of tidal decay, where the

exchange of angular momentum is negligible beyond a certain orbital distance (which also

depends on the mass of the planet and the mass of the star). In fact, according to equation

1.14, the strong dependence of the tidal force with the relative orbital distance will produce

a very narrow region where the planet is either engulfed by the host star or it survives and

its orbital distance remains nearly unchanged (see also Figure 1 in Villaver & Livio, 2009).

Finally, the overabundance of super Jupiters might be due to a growth of the planet size

by accretion either from the host star envelope or from the stellar wind. These ideas have

been studied from a theoretical point of view in several works (e,.g. Livio & Soker 1983,

1984). In the former hypothesis, even though there might be a significant amount of accreted

mass from the stellar envelope, the planet will rapidly spiral inward due to tidal and viscous

forces, thus it is dissipated at the bottom of the stellar convective envelope (Siess & Livio,

1999). Also, Livio & Soker (1984) showed that a substellar object more massive than ∼ 20

MJ can survive inside the envelope of the star, and indeed accrete a significant amount of

mass. As a result the brown dwarf ends up in a very close-in orbit and having a mass & 0.15

M⊙ , hence this scenario can be discarded. On the other hand, accretion from the stellar

wind (outside the envelope of the host star) seems to be a possible mechanism to explain the

overabundance of super planets around giant stars. Unfortunately, none of the afore men-

tioned studies focus the discussion on this point, although Livio & Soker (1983) and Villaver
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& Livio (2009) explicitly mention that the accretion and evaporation rates are unimportant

in the orbital evolution of the planets. Therefore, in order to study the effect of the accretion

from the stellar wind, here some basic calculations are presented. Fisrt let us consider only

accretion from the stellar wind, thus no evaporation of gas in the outer part of the planet.

Under this assumption the rate of change of the planet ṁ is simply proportional to the star

mass loss rate, given by:

ṁ = βṀ⋆ (5.1)

where Ṁ⋆ corresponds to the stellar mass loss rate and β is a proportional constant given

by the fraction of the wind that is accreted by the planet. According to Bondi & Hoyle

(1944), the accretion rate by an object that is moving at supersonic velocity v in a medium

(which is the case of the planet), is given by:

ṁ =
4 π G2 m2

p ρ

v3
(5.2)

where mp is the mass of the planet, ρ the density of the stellar wind at the position

of the planet and G is the gravitational constant. The value of ρ depends mainly of three

quantities, namely the mass loss rate, the velocity of the wind and the planet’s orbital

distance, a. Assuming that the wind is spherically ejected at a velocity vW , then the value

of ρ at the planet distance is given by (Villaver & Livio, 2009):

ρ =
Ṁ⋆

4 π a2 Vw

(5.3)

Hence, equation 5.3 can be replaced in equation 5.2 in order to derive the accreted mass.

However, the value of Ṁ⋆ in not constant through the RGB phase, thus equation 5.2 have

to be integrated along the stellar evolution. However, it is still possible to approximate the

results using an average value for Ṁ⋆ during the RGB phase and then multiply this number
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by the timescale spent by the star in this phase. As an example, let us consider the case of

the sun, for which Schroder & Connon (2008) derived a total mass loss of 0.33 M⊙ during

the whole RGB phase. Considering a timescale in the RGB for the sun of τRGB ∼ 109 years,

then the average mass loss during this phase is ∼ 3.3 × 10−10 M⊙ yr−1. Using this value it

is possible to compute the total accreted mass by a planet, as a function of the planet mass,

orbital distance and wind velocity. The result of the calculations are plotted in Figure 5.4.

The orbital distance was fixed to 0.5 AU around a 1.0 M⊙ and the afore mentioned mass loss

prescription was used. In addition, the mass accreted by the planet was computed for three

5 10 15

Figure 5.4: Total mass accreted during the RGB phase by a planet as a function of its mass.
The orbital distance was fixed to 0.5 AU. The red, blue and black lines correspond to wind
velocities of 10000, 5000 and 1000 km s−1 , respectively.
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different values of the stellar wind velocity: 1000 km s−1 (black line), 5000 km s−1 (blue line)

and 10000 km s−1 (red line). It can be noticed from Figure 5.4 that for lower mass planets and

high velocities of the stellar wind, the accretion rate is too slow. The effect of the planet’s

mass is playing a role in the gravitational radius, within which the material from the wind

is accreted, hence the more massive the planet the faster the accretion. On the other hand,

the density of the stellar material at the position of the planet is inversely proportional to

the wind velocity, thus explaining the three different regimes plotted in Figure 5.4. From

these calculations the conclusion is that this mechanism cannot be responsible for the mass

differences observed between giant planets around subgiant and giant stars. However, more

detailed calculations should be performed to address this problem in a more reliable way (for

instance by computing the accretion rates of planets around stars with different masses). On

the other hand, the strong dependence of the accretion rate with the mass of the planet (see

equation 5.2) suggests that brown dwarf orbiting in relatively close orbits around RGB stars,

might increase significantly their mass (actually are predicted to become low-mass stars; Livio

& Soker, 1984) thus they might be very rare around post-RGB stars.

5.2.2.3 Metallicity Distribution

The metallicity distribution of MS planet hosts have been studied in detailed by different

authors, who have found a strong correlation between the ocurrence probability of a planet

and the metallicity of the host stars (e.g. Gonzalez 1997). In particular, Santos et al. 2001

showed that the mean metallicty of planet hosts is [Fe/H]= +0.15, whereas those without

planets have a mean metallicity of [Fe/H]= -0.10. In addition, Fischer & Valenti 2004, based

on a sample of ∼ 850 stars analyzed in a uniform way, showed that the occurrence rate

of giant planet scales as f ∝ 10 2 [Fe/H]. These results have been used in favor of the core-

accretion model, where the formation and growth of the planetesimals is highly dependent

on the metal content (which form dust) in the protoplanetary disk. On the other hand, in

contrast to what is observed for MS hosts stars, the giant stars that harbour planets do not

show any trend toward metal richness (e.g. Sadakane, et al. 2005; Pasquini et al. 2007).
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Figure 5.5 shows a histogram with the metallicity distribution of planet hosting subgiant

(blue dashed line) and giant stars (red solid line). In the subgiants sample, some planets

detected by metal-biased surveys (N2K and Elodie Survey) were not included, aswell as the

planet around the extremely metal-poor giant star detected by Setiawan et al. (2010). The

mean metallicity for both distributions are [Fe/H] = 0.08 ± 0.21 and [Fe/H] = -0.17 ± 0.24,

respectively. Here the errors corresponds to the RMS around the mean, as given by Santos

et al. 2001). Clearly, the metallicity distribution for the giant host stars contrasts with the

trend observed in MS host stars.

Pasquini et al. (2007), argued that the enhanced metallicity of the MS host stars is explained

-1 -0.5 0 0.5

GIANT HOSTS

SUBGIANT HOSTS

Figure 5.5: Metallicity histogram of post-MS stars harbouring planets.
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by pollution, instead to be primordial, i.e., that the cloud from which is formed the star (and

thus the protoplanetary disk) is metal rich. In this scenario, a significant amount of material

(including planetesimals and/or planets) fall into the star, enhancing the metal abundance

in its atmosphere (e.g. Laughlin & Adams 1997). However, after these stars evolve off the

MS, they develop large convective envelopes, where the metal excess is rapidly diluted. This

idea seems to explain the low metal content of the plantet hosting giant stars, but it does

not explain why the subgiant host stars are also on average metal rich. However, since the

distribution for MS stars peaks at ∼ +0.15, it is possible that the subgiant stars have par-

tially diluted the metal excess in their atmospheres, thus the blue dashed distribution might

be interpreted to be a “transition” between the MS and giant stars metallicity distributions,

since subgiant stars still have smaller convective regions than the giant stars.

Another explanation for this discrepancy is that massive giant planets are preferentially

formed by the disk instability mechanism (Boss 1997), which is nearly independent of the

amount of metals and dust in the protoplanetary disk. Additionally, in this scenario, giant

planets can be rapidly formed (t ∼ 103 yr), prior to gas depletion. Since more massive stars

have much stronger radiation field, the disk dissipation timescale (due to strong radiation

pressure and photoevaporation) might be too short so that giant planets are not efficiently

formed by the core-accretion mechanism (t & 106 yr; e.g. Pollack et al 1996).
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5.2.3 Stellar Mass or/and Stellar Evolution?

In order to investigate what is the main reason (stellar mass or evolution of the host star)

causing the different properties observed in exoplanets orbiting MS and evolved stars, let us

analyze all of the evidence collected in each case.

First, as already mentioned in section 5.2.2.1, Bowler et al. (2010) performed a detailed

analysis of the differences in the Period-Mass distribution between low-mass stars (results

from the Keck Planet Search; Cumming et al. 2008) and the intermediate-mass (M > 1.5

M⊙ ) subgiant stars (from the Lick Survey; Johnson et al. 2006). They found that the

frequency of giant planets orbiting within 3.0 AU is 26+8
−7 %. This is much higher than the

∼ 5 % frequency for low-mass hosts. In addition, Bowler et al. (2010) also studied whether

the period distribution is consistent with the one for low-mass stars, which is given by the

following parametric model (Cumming et al. 2008):

dN = C Mα P β d ln M d ln P (5.4)

where M and P represent the orbital period and mass of the planet. α and β are equal to

-0.31 ± 0.2 and 0.26 ± 0.1, respectively. Finally, C is a constant that gives the total fraction

of planets having orbital periods up to ∼ 2000 days. They found, that even by scaling the

value of C to the ∼ 26 % occurrence rate for intermediate-mass star, the given values of α

and β cannot reproduce their results. In fact, they found a probability of only 0.002 % (after

rescaling the value of C) that the planets around intermediate-mass stars follows the same

P-M distribution as the one presented in equation 5.4. This result appears as an extension

to the intermediate-mass regime of previous studies on MS stars. For instance, Butler et al.

(2006) showed that the frequency of giant planets orbiting up to 2.5 AU increases from f

= 1.8 ± 1.2, for M and late F dwarfs (M . 0.6) to f = 5.6 ± 1.6, for FGK host stars (0.5

M⊙ < M< 1.1 M⊙ ). Based on these results, it is clear that the properties of the planetary
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systems are strongly correlated with the mass of the host star.

On the other hand, the effect of the stellar evolution in the orbits of planets can be studied

by comparing the properties of exoplanets around subgiants or RGB stars with those orbit-

ing post-RGB stars. The main observational evidence supporting this scenario is the lack

of close-in planets around giant stars, which is in part explained by the effect of the stellar

mass. In fact, as can be seen in Figure 5.1, planets are very rare around intermediate-mass

subgiants, thus they are not detected around giant stars not because of the stellar evolu-

tion but probably because they are not formed in that region. However, the planet desert

is still present around giant stars with mass between ∼ 1.0 - 1.5 M⊙ . In this region of

the parameter space, four planets were detected orbiting subgiant stars interior to 0.25 AU,

and several other short-period systems are found around MS hosts. Nevertheless, this result

might be also attributed to the fact that only few giant targets with masses between ∼ 1.0 -

1.5 M⊙ have been monitored. For instance, according to the results presented in Takeda et

al. (2008), out of the 319 stars observed by the OPS, only 12 of them are less massive than

1.5 M⊙ . In addition, as shown in Table 2.2, only 41 stars presented in this thesis have M⋆

< 1.5 M⊙ . Having this premise in mind, it is not surprising that still no close-in planet was

detected. In fact, for solar-mass stars, the fraction of stars harbouring planets within 0.5 AU

is ∼ 1% (see Table 5.1).

In summary, the current statistics (including the new detections during this project) are

still poor, thus no firm conclusion can be drawn regarding the effect of the stellar evolution

on the orbits of close-in planets. In order to obtain a stronger result and to disentangle the

effect of the stellar mass from the stellar evolution in the planetary population around giant

stars, a larger sample of giant stars should be monitored, especially in the stellar mass range

between 1.0-1.5 M⊙ . In fact, according to stellar evolutionary models, the effect of the tidal

decay is much stronger for a 1.0 M⊙ than for a 3.0 M⊙ , because the stellar radius at the end

of the RGB phase decreases with increasing mass.
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5.2.4 Future Work

Although, the first results of this long-term RV survey have been presented in this thesis, a

subsample of giant stars are currently being monitored. Additional RV epochs are required

for the following reasons:

• Follow-up of the CTIO planet candidates. As already explained in chapter 3,

there a a bunch of stars that show RV variations that might be induced by giant

planets or brown dwarfs. These planet candidates are currently being observed with

CHIRON, and further telescope time was requested for 2013, in order to determine

if these RV variations are actually induced by planets or if they are related to stellar

activity. In addition the orbital parameters of the three binaries detected in the CTIO

sample are still to be resolved.

• Finishing the FEROS program. As mentioned in chapter 4 the FEROS sample

is still incomplete in term of the number of observations. Out of the sample of 100

stars, ∼ 25 of them still have between 7 and 10 spectra (hence 6-9 RV epochs, because

one spectrum is used as a template). Also, the three planetary systems candidates

presented in chapter 4 will be reobserved in order to put strong constraints in their

orbital properties. In particular, many additional RV epochs are needed to fully resolve

the parameters of the double system around HIP97233. Finally, the time coverage for

several binary stars present in the FEROS sample is still too short, therefore further

RV epochs are needed to cover at least half of their orbital period. During the current

period three more nights were awarded for this project. Further telescope time was

requested for the next semester.

• Asteroseismic study of giant stars.

Multiple RV epochs were obtained in two different nights for two stars in the FEROS

sample. The idea behind this procedure is to study whether it is possible to substract

the strongest oscillation modes (timescales of several hours) of the stars from the RV

variations, which might help to push the detection limits towards smaller planets.
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In terms of the scientific outcome, the following topics will be studied (after the data acqui-

sition):

• Detection fraction in the FEROS sample. A detailed analysis (via periodogram

and RV variability) will be done for the FEROS sample, in order to derive the fraction

of close-in giant planets (as presented in chapter 3).

• Confirmation of planetary systems. The exoplanets detected during this project

will be published, including a detailed analysis of the stellar activity indicators (bisector

study, photometric variability, Ca ii lines emission).

• The fraction of brown dwarfs around giant stars. A study of the fraction and

properties of the Brown dwarfs detected during this project (if any) will be presented.

Using published data in the literature it might be possible to test the hypothesis of the

brown dwarf growth via accretion from either the stellar wind or from the envelope of

the star, as discussed in section 5.2.2.2.

• Binary fraction among giant stars. In this project, a total of 19 binary systems

were discovered (some of them might be actually massive brown dwarfs). The properties

of the binaries will be published, including the analysis of binary fraction among giant

stars. Also, there is at least one system in the FEROS sample corresponding to a

pre-common envelope system, for which it is worth to study its dynamical evolution.

• FEROS pipeline. An improvement of the FEROS RV computation method will be

done. In particular a fully automatic pipeline will be developed in order to compute

high precision radial velocities. Second order effects will be included, such as a the

fiber-to-fiber drift during the night. The main goal is to reach a 3 m s−1 precision using

high signal to noise ratio spectra.

In addition to the science cases listed above, it would be desirable to increase the sample of

giant stars presented in this thesis, in order to search for new planetary systems that might

give us some clues regarding the effect of the stellar evolution. In this case it might be worth
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to bias the data sampling, assigning a higher priority to those stars showing an excess of

RV variability, which could be an indication of the presence of a substellar companion in a

close-in orbit.
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Appendix A

Local Thermodynamic Equilibrium

Under LTE the density population of electrons in atoms or molecules is described by the

Boltzmann equation, given by:

ni

nj
=

gi

gj
exp

(−hν

KT

)

(A.1)

where ni and nj are the density of electrons in the energy states i and j and hν is the

energy difference between both states. T is the temperature, h is the Planck constant and

K is the Boltzmann constant. The electron density of a given state, ni is related to the total

density ntot by:

ni

ntot

=
gi

Z
exp

(−χi

KT

)

(A.2)

where Z correspond to the partition function, given by:

Z =
∑

gj exp

(−χj

KT

)

(A.3)

Additionally, when the temperature is high enough so that the ionization of atoms or molecules

is significant, the Saha-Boltzmann equation is used to computed the ratio between the density

of them in two different stages of ionization. This equation is expressed by:
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Nr+1

Nr
Ne = A

Zr+1

Zr
exp

(−χr

KT

)

(A.4)

where Nr is the density of particules in the r-th ionization state (i.e. r times ionized),

Z−r is the partition function for the atom or molecule in that specific ionization stage and

Ne is the total free electron density. The proportional constant is given by:

A =
2

h3
(2 π m KT )2/3 (A.5)
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Appendix B

Interpolation Method

In order to determine the mass of the star we searched for the closest models (isomass tracks)

in the Teff - log L plane by minimizing the following quantity:

χ2 =
(Teff − TM

eff )2

σ2
Teff

+
(Lbol − LM

bol)
2

σ2
Lbol

, (B.1)

where Teff and Lbol are the effective temperature and the bolometric luminosity of the

star. The quantities carrying an upper script are the corresponding values of the model. The

luminosities were derived using the bolometric corrections given in Alonso et al. (1999), and

are listed in column 10 of Table 2.2. Since the evolutionary tracks are given for different

metallicities, we computed a χ2 for the two set of models containing the metallicity of the

star (Z), i.e., ZM
1 ≤ Z ≤ ZM

2 . Then, we used a linear weighting to determine the total χ2, by

applying:

χ2
tot = αχ2

1 + βχ2
2 (B.2)

where α and β correspond to the statistical weights given by:

α = 1 − Z − Z1

Z2 − Z1
β = 1 +

Z − Z2

Z2 − Z1
(B.3)
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We repeated this procedure for the two isomass tracks that yielded the lowest total χ2 values

(χ2
tot,1 and χ2

tot,2). We finally obtain the mass of the star using a linear weighting of the two

closest solutions:

M = k1M1 + k2M2 (B.4)

where M1 and M2 correspond to the mass of the two isomass tracks. The weigthing

constants are given by:

k1 =
χ2

1

χ2
1 + χ2

2

k2 =
χ2

2

χ2
1 + χ2

2

(B.5)
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