Cazadores recolectores en la estepa andina de dos valles ayseninos.
Aproximación desde la gestión de recursos líticos y la organización espacial durante el Holoceno Tardío

Memoria para optar al Título de Arqueóloga

Catalina Contreras Mira
Postulante

César Méndez Melgar
Profesor Guía

Santiago, Mayo de 2012
AGRADECIMIENTOS

Esta investigación fue financiada por el proyecto FONDECYT 1090027. Se desea agradecer a la comunidad de Galera, a Cirilo Peede y Estancia La Frontera, Alejandro Galilea y Estancia Los Cóndores, Juan Carrasco y Estancia Punta del Monte, Eduardo Batarce y Stephanie Bouckaert de Estancia Río Cisnes. A todos ellos, por su colaboración con la realización de los trabajos arqueológicos que permitieron la realización de este trabajo.

Agradezco especialmente a César Méndez, profesor guía de esta tesis e investigador responsable del proyecto FONDECYT 1090027, por su atenta colaboración en la realización de este trabajo, que no hubiera sido lo mismo sin sus consejos y opiniones, y por abrirme las puertas de la arqueología de la hermosa región de Aysén.

Se agradece también al Departamento de Antropología de la Universidad de Chile, en cuyas instalaciones se realizaron los trabajos de análisis de los conjuntos arqueológicos. Agradezco especialmente a los profesores Donald Jackson y Luis Cornejo, cuyas reflexiones y comentarios a este trabajo fueron de gran importancia para su correcta realización, y Roberto Izaurieta, por su paciente y atenta asistencia en la elaboración del SIG o Sistema de Información Geográfico.

Finalmente, quiero agradecer a todos quienes participaron en las labores de trabajo en terreno, en las distintas campañas que permitieron la recuperación de los conjuntos arqueológicos comprendidos en este estudio: Omar Reyes, Pablo González, Antonio Maldonado, Ramiro Barberena, Valentina Trejo, Héctor Velásquez, Ismael Martínez, Claudia Quemada, Carolina Belmar, Manuel San Román, Pedro Cárdenas, Amalia Nuevo Delaunay, Francisco Mena, Luis Borrero, Fabiana Martín, Charles Stern, María Eugenia de Porras, Mauricio Osorio, Rodrigo Loyola, Paulina Chávez, Cynthia Zielhmann y Cristina Ortega.
Índice de Contenido

INTRODUCCIÓN Y PLANTEAMIENTO DEL PROBLEMA............................ 7
 Hipótesis: .. 9
 Objetivos: .. 9
ÁREA DE ESTUDIO ... 11
 Ambiente actual ... 11
 Paleoambiente ... 14
ANTECEDENTES ... 17
 Historia de la Investigación ... 17
 Holoceno Temprano y Medio ... 18
 Holoceno Tardío ... 22
MARCO TEÓRICO Y CONCEPTUAL ... 25
 Estrategias tecnológicas y gestión de recursos líticos 25
 Movilidad y organización espacial ... 31
MATERIAL Y MÉTODO ... 33
 Escala analítica .. 33
 Recuperación de la muestra arqueológica 33
 Recuperación de la muestra de materias primas 35
 Metodología de análisis lítico .. 36
 Análisis petrográfico de materias primas líticas 36
 Análisis tecnológico y tipológico morfofuncional de las muestras arqueológicas 38
 El problema temporal .. 41
 Análisis espacial .. 42
 Síntesis de la muestra .. 43
 Acciones técnicas ... 44
RESULTADOS .. 45
 Arqueología de Alto río Simpson ... 45
 Tafonomía de los conjuntos líticos de Alto río Simpson 46
 Oferta regional de recursos líticos ... 48
 Cadenas operativas y aprovechamiento de materias primas líticas en Alto río Simpson 51
 Categorías tecno-tipológicas presentes en las unidades 59
 Arqueología del sector alto del valle del río Cisnes 63
 Tafonomía del conjunto lítico de Alto Cisnes 65
 Oferta regional de recursos líticos ... 66
Índice de tablas

Tabla 1. Materias primas presentes naturalmente en Alto Simpson 49
Tabla 2. Materias primas provenientes del conjunto arqueológico de Alto Simpson.. 50
Tabla 3. Análisis ICPMS sobre muestras de obsidiana y tipos identificados....... 50
Tabla 4. Segmento de la cadena operativa según materias primas.................. 51
Tabla 5. Segmento de la cadena operativa según calidad de la materia prima..... 52
Tabla 6. Segmento de la cadena operativa según porcentaje de corteza 53
Tabla 7. Relación entre materias primas y tipo de matriz de la muestra de Alto Simpson .. 54
Tabla 8. Segmento de la cadena operativa y presencia o ausencia de aristas paralelas ... 57
Tabla 9. Relación entre técnica de extracción de la pieza y presencia o ausencia de aristas paralelas... 58
Tabla 10. Relación entre materia prima y técnica de extracción de la pieza 59
Tabla 11. Categorías artefactuales halladas en los mayores sitios de Alto Simpson .. 61
Tabla 12. Categorías tecno-tipológicas y materia prima empleada............... 62
Tabla 13. Categoría tecno-tipológica y técnica de astillamiento de los instrumentos ... 62
Tabla 14. Formatización de los instrumentos de Alto Simpson 63
Tabla 15. Muestras de rocas disponibles localmente en Alto río Cisnes........... 68
Tabla 16. Materias primas provenientes del conjunto arqueológico......................68
Tabla 17. Segmento de la secuencia de reducción lítica según materias primas...70
Tabla 18. Segmento de la cadena operativa según calidad de la materia prima....70
Tabla 19. Porcentaje de corteza que presentan las distintas materias primas......71
Tabla 20. Segmento de la cadena operativa según porcentaje de corteza...........71
Tabla 21. Relación entre materias primas y tipo de matriz de la muestra de Alto Cisnes..72
Tabla 22. Segmento de la cadena operativa y presencia o ausencia de aristas paralelas ..76
Tabla 23. Relación entre técnica de extracción de la pieza y presencia o ausencia de aristas paralelas ..77
Tabla 24. Relación entre materia prima y técnica de extracción de la pieza78
Tabla 25. Categorías tecno-tipológicas y materia prima empleada....................82
Tabla 26. Categoría tecno-tipológica y técnica de astillamiento de los instrumentos ...84
Tabla 27. Formatización de los instrumentos de Alto Cisnes84
Tabla 28. Resumen comparativo de la gestión de recursos líticos en Alto Simpson y Alto Cisnes ...87
Tabla 29. Resumen comparativo de las principales características de los sitios estudiados de Alto Cisnes..94

Índice de figuras

Figura 1. Mapa de la región de Aysén con distribuciones fitogeográficas y áreas de interés destacadas ..11
Figura 2. Mapa del área de estudio señalando las unidades arqueológicas, y su relación con hitos geográficos ...45
Figura 3. Grado de erosión diferencial en los cuatro sitios con mayor cantidad de material de Alto Simpson ...47
Figura 4. Aprovechamiento de materias primas en los principales sitios del sector ...55
Figura 5. Segmentos de la secuencia de reducción lítica representados en los principales sitios del sector...56
Figura 6. Dibujos técnicos de algunas piezas de la muestra arqueológica de Alto Simpson ...60
Figura 7. Mapa del área de estudio señalando las unidades arqueológicas, y su relación con hitos geográficos .. 64
Figura 8. Grado de erosión diferencial en las ocho unidades con mayor número de piezas de Alto Cisnes .. 66
Figura 9. Aprovechamiento de materias primas en los principales sitios del sector ... 73
Figura 10. Segmentos de la cadena operativa representados en las principales unidades del sector ... 75
Figura 11. Categorías tecno-tipológicas, presentes en los sitios de Alto Cisnes... 80
Figura 12. Dibujos técnicos de algunas piezas de la muestra arqueológica de Alto Cisnes ... 81
Figura 13. Mapa del área de estudio señalando las principales unidades arqueológicas encontradas en Alto Cisnes y Alto Simpson, y su relación con hitos geográficos .. 98
INTRODUCCIÓN Y PLANTEAMIENTO DEL PROBLEMA

La cordillera andina de la región de Aysén posee una ubicación estratégica para la comprensión de las dinámicas culturales, tanto desde un punto de vista ambiental y geográfico, como cultural (Mena 2000). Ambiental y geográfico, ya que se sitúa entre las estepas orientales y el litoral del Pacífico, entre territorio chileno y argentino, entre zonas de recursos muy diversos y paisajes contrastantes. Cultural, debido a que se encuentra entre áreas culturales de modos de vida muy diferentes, como son la tradición agroalfarera Mapuche hacia el norte, y las poblaciones cazadoras recolectoras conocidas a través de la etnografía, en Magallanes. Por estas razones, esta gran región resulta un punto clave en un nivel más amplio.

Pese a esto, esta región permanece muy poco conocida, en cuanto a su prehistoria, lo cual plantea un desafío, e invita a la realización de investigaciones en valles que aun no han sido explorados. Esta investigación se focalizó en la cabecera de dos de ellos, los valles de los ríos Cisnes y Simpson. A partir de los restos materiales de las poblaciones cazadoras recolectoras que ocuparon estos espacios durante el Holoceno Tardío, y en particular, en base al manejo de los recursos líticos, esta tesis pretende dar luces en torno a la problemática de la organización espacial y el aprovechamiento del entorno del pasado de estos valles, al entender a esta clase de recursos como un aspecto esencial de la dinámica socioeconómica de las sociedades cazadoras-recolectoras.

En esta investigación, hemos buscado reconocer las particularidades de estos valles cordilleranos de Aysén, y de las ocupaciones humanas acontecidas en éstos, intentando esclarecer algunas interrogantes que persisten producto de la existencia de nociones no confirmadas en la prehistoria local, y que sin embargo se mantuvieron presentes en ésta. Para esto, seguimos la línea de otras investigaciones realizadas en la región de Aysén (proyectos FONDECYT 1990159, 1050139 y 1090027), las cuales incluyen la relación entre gestión de recursos líticos, movilidad y modo de vida, pese a que estos estudios utilizan escalas considerablemente más amplias (por ejemplo, transporte de obsidianas a gran escala, Méndez et al. 2009). Además, existen trabajos de caracterización de materias primas y movilidad para el centro-sur de la región (Méndez 2004), pero éstos son infrecuentes o inexistentes para el centro-norte de Aysén. Cabe
destacar que las etapas de recolección de los datos considerados en este estudio, en particular la búsqueda y levantamiento de los conjuntos líticos, fueron realizadas siguiendo los mismos parámetros empleados previamente en las prospecciones de Bajo Ibáñez, Bajo Jeinemeni y Alto Chacabuco, razón por la cual entrega herramientas comparativas para la comprensión regional de la tecnología lítica y la distribución de los artefactos, especialmente durante el Holoceno Tardío (Méndez et al. 2011b). A partir de esto, esperamos poder adentrarnos en el conocimiento de aspectos centrales del modo de vida y la organización de estos grupos humanos.

Dadas las características particulares de las ocupaciones conocidas en los alrededores del área de estudio, y la espectacularidad del sitio Baño Nuevo-1, ubicado en el valle de Nirehuao, en medio de las dos cuencas que competen a esta investigación, resulta sumamente interesante y relevante caracterizar y profundizar en la Prehistoria de estos valles, los sectores altos de las cuencas de los ríos Cisnes y Aysén. Para caracterizar de manera adecuada tales ocupaciones, debemos caracterizar el pasado geológico, climático y medioambiental, a la vez que el arqueológico.

A partir de lo anterior, una vez caracterizada la oferta regional de recursos líticos (previamente desconocida) de estos valles, es que podemos interiorizarnos en la problemática del uso del espacio. Para esta investigación, escogimos adentrarnos en los últimos 5.000 años de historia de estos valles, ya que para ésta época se reconoce una mayor intensidad en el uso del espacio en esta región, lo que ha sido observado en el mayor número y distribución de los asentamientos habitacionales y funerarios (chenques), y corroborado por las edades 14C y la comparación de características tecno-tipológicas de piezas clave, provenientes de ocupaciones identificadas en otros valles andinos de Aysén (Mena 2000, Reyes et al. 2006, Méndez y Reyes 2008). Esto permite suponer la existencia de poblaciones utilizando recurrentemente los valles, y en conocimiento de la disponibilidad de los recursos, lo cual parece responder a lo que Borrero denomina Ocupación Efectiva, es decir, el momento en que todo el territorio deseable está siendo ocupado (Borrero 1989-90, 2001).

El problema de investigación es, entonces, cómo se relacionan la gestión de recursos líticos y la organización tecno-espacial de los cazadores
recolectores, en las cabeceras de dos valles andinos del centro-norte de Aysén (cuencas altas de los ríos Cisnes y Simpson), durante los últimos 5.000 años.

Una vez explicitado el problema de investigación que es el fundamento de este trabajo, podemos explicitar los objetivos que muestran cómo se pretendió darle solución, y la hipótesis que sirvió de guía. Mediante ambos podremos aterrizar esta investigación a problemáticas concretas y de menor escala.

Hipótesis:
Durante los últimos 5.000 años, la presencia humana en el espacio de los valles andinos del centro norte de Aysén, corresponde a una ocupación efectiva del territorio (Borrero 2001), lo que se materializó en el conocimiento de la distribución y la explotación eficiente de los recursos líticos, e influyó en la organización de la movilidad. Las ocupaciones humanas respondieron a las características ambientales particulares de cada valle, lo cual se tradujo en diferencias en el registro arqueológico de los valles de los ríos Cisnes y Simpson.

Objetivos:

General:
- Caracterizar la organización tecnológica y la gestión de recursos líticos, durante los últimos 5.000 años, en los sectores de Alto Cisnes y Alto Simpson, y evaluar su influencia en la organización espacial y la movilidad.

Especificos:
- Establecer la distribución natural de recursos líticos en los sectores de Alto Cisnes y Alto Simpson.
- Caracterizar la distribución espacial de los sitios y correlacionarla con la distribución natural de recursos líticos, en los sectores de Alto Cisnes y Alto Simpson.
- Caracterizar el uso prehistórico de materias primas, a partir de los conjuntos provenientes de los sectores de Alto Cisnes y Alto Simpson.
➢ Caracterizar tecnológicamente los conjuntos líticos de los sitios correspondientes a los sectores de Alto Cisnes y Alto Simpson.
➢ Definir funciones de sitios en los sectores de Alto Cisnes y Alto Simpson.
ÁREA DE ESTUDIO

Ambiente actual
La región de Aysén, con sus alrededor de 110.000 km², exhibe longitudinalmente una de las gradientes bioecológicas más abruptas del planeta, al incluir desde los archipiélagos y canales boscosos del Pacífico, hasta las planicies esteparias ubicadas inmediatamente al oriente de los Andes. Estos espacios son accesibles gracias a la presencia de valles que interrumpen esta gradiente (Mena 2000:21). Para efectos de esta investigación, estudiaremos las cabeceras de dos de estos valles, correspondientes a los sectores altos de las cuencas de los ríos Cisnes y Simpson, situados en las comunas de Lago Verde y Coyhaique respectivamente, en la provincia de Coyhaique, norte de Aysén.

Figura 1. Mapa de la región de Aysén con distribuciones fitogeográficas y áreas de interés destacadas.
En relación a su geomorfología, el sector de estudio coincide con los Relieves Planiformes Orientales (~850 a 900 msnm para Alto Cisnes), los cuales se presentan como planos depositacionales bordeados por amplios lomajes, donde abunda la vegetación de estepa (Atlas región de Aysén 2005), interrumpidos en el caso de río Cisnes por geoformas de origen glaciar (Méndez et al. 2009). La región de Aysén presenta una topografía accidentada y marcada por efecto de los glaciares que dominaron su territorio en el pasado, durante el Último Máximo Glaciar. Los glaciares comenzaron a retirarse alrededor del 14.000 AP, y dejaron como consecuencia un paisaje compuesto por numerosos fiordos, islas, valles profundos y volcanes de origen cretácico de hasta 3.000 msnm (Szeicz et al. 1998). Al ser parte de la Ecorregión Estepária Fría de la Patagonia Oriental (Atlas región de Aysén 2005), el clima se caracteriza por bajas temperaturas, veranos ventosos y fríos inviernos, además de una gran ausencia de precipitaciones, al encontrarse protegida por el cordón montañoso de la Cordillera de Los Andes. Éstas alcanzan los 584 mm anuales en la ciudad de Balmaceda, en el Alto Simpson, mientras que en Alto Cisnes bajan hasta 436 mm anuales (Quintanilla 1983).

Las formaciones vegetacionales en estos sectores pertenecen a la formación de la Estepa Patagónica, de carácter xerófito, la cual destaca por presentar una fisonomía homogénea de Poáceas y arbustos bajos. Entre ellos se encuentran el neneo (*Mulinum spinosum*), duraznillo, coirones (*Stipa* sp.), cadillos y plantas en cojín (como *Azorrela* sp.) como elementos dominantes en superficies llanas, mientras que en condiciones de mayor altitud o humedad se observan matorrales altos y parches de bosques deciduos de Lenga (*Nothofagus pumilio*) y Ñire (*Nothofagus antarctica*) (Atlas región de Aysén 2005). La fauna local actual incluye Huemul, Puma, Zorro Colorado, Chingue de la Patagonia, Pudú y algunas especies introducidas como la Liebre y el Visón. Las aves más características son Chucao, Zorzal, Tordo, Águila, Carancho, Pájaro carpintero, Cachaña, Cóndor, Cernícalo y Martín pescador (fauna presente en las Reservas Nacionales Coyhaique y Río Simpson, Gascón 2005).

Las principales hoyas hidrográficas dentro del sector de estudio, corresponden a los ríos Cisnes y Aysén. El primero drena un territorio de 5.047 km², y sus afluentes principales son los ríos Cáceres, Pedregoso, Moro y Las Torres. Escurre hacia el Pacífico (~44° S), y posee una orientación N60°E. La hoya del Río
Aysén, por su parte, cubre un área de 11.590 km², y se emplaza entre los 45º y 46º16’ Sur y los 71º20’ y 73º Oeste. Sus principales afluentes son los ríos Simpson, Toqui, Nirehuao, Emperador Guillermo, Mañihuales y Blanco (Atlas región de Aysén 2005).

El valle del Cisnes, particularmente en su sector más alto, ve su paisaje fuertemente determinado por la actividad glaciar que lo afectó hace milenios (Ortega 2010). Su geomorfología se vio afectada por un glaciar de gran tamaño, cuyo retroceso habría generado un lago proglaciar. La contemporaneidad de este lago con las ocupaciones humanas del Pleistoceno terminal/Holoceno y del Holoceno (Reyes et al. 2007), si bien es posible, aun no ha podido ser confirmada debido a la ausencia de una cronología concluyente para el lago (Méndez et al. 2009).

Otro factor que ha transformado severamente la geografía regional, ha sido la presencia de volcanes activos, varios de ellos cercanos al área de estudio. Sus erupciones han sido documentadas en parte mediante el hallazgo y estudio de tefras que evidencian el alcance y magnitud de tales eventos. Cerca de las cuencas de los ríos Cisnes y Aysén se encuentran los volcanes Melimoyu, Mentolat, Cay, Macá y Hudson, los cuales corresponden a cinco de los ocho grandes estratovolcanes pertenecientes a la Zona Volcánica Andina del Sur (44°S - 46°S), de los cuales sólo el volcán Cay no cuenta con actividad registrada.

Para los últimos 8.000 años, se describen 11 erupciones explosivas de magnitud menor a media, lo cual sugiere una frecuencia de una erupción cada 725 años. El volcán Hudson es el volcán que ha tenido las erupciones más grandes y numerosas de este segmento de la Zona Volcánica Andina del Sur (Naranjo y Stern 2004), con tres erupciones explosivas muy grandes y nueve eventos explosivos menores. Cabe mencionar que todas las erupciones mencionadas presentan una orientación de la dispersión de las plumas de tefra principalmente hacia el este (Naranjo y Stern 2004).

La relevancia de estos eventos radica en los graves efectos que pudieron tener sobre la geografía y los recursos naturales locales, y por ende para las ocupaciones humanas del área, al afectar las condiciones de habitabilidad de la región. Aun se discute la posibilidad de que tales eventos volcánicos hayan
podido condicionar la presencia humana en el área en ciertos periodos, y resulta un factor relevante a considerar.

Paleoambiente

Transición Pleistoceno-Holoceno y Holoceno Temprano

El proceso de desglaciaciación en Alto río Cisnes y sectores aledaños comenzó alrededor del año 19.000 cal. AP (De Porras et al. 2011), dando origen a un largo periodo de condiciones ambientales húmedas y frías, en el denominado periodo glacial-postglacial en la región de Aysén, que tuvo lugar hasta cerca del año 14.000 cal. AP. En ese entonces dominaban condiciones glaciales, y una vegetación de estepa herbácea (especies de *Poaceae*) y arbustiva (Reyes et al. 2009). Además, hubo un activo vulcanismo y se observa un rápido calentamiento, particularmente entre los años 17.600 y 16.400 cal. AP (Lowell et al. 1995, Heusser et al. 1996, en Martel y Maldonado 2010).

A partir de 14.300 cal. AP, y hasta aproximadamente el 11.000 cal. AP, comienzan a desarrollarse los bosques de *Nothofagus* tipo *dombeyi*, en medio de condiciones ambientales más húmedas, a la vez que disminuyen los taxa arbustivos (De Porras et al. 2011, Reyes et al. 2009). Esto indica que en estos milenios se vivió una transición entre condiciones netamente glaciales, y otras más cercanas al Holoceno. Es así como se comienza a configurar un paisaje de estepa con presencia esporádica del ya mencionado *Nothofagus dombeyi* (Reyes et al. 2009) entre 13.300 y 11.500 años cal. AP., producto de un estancamiento de la humedad efectiva (Martel y Maldonado 2010, Reyes et al. 2009).
Cerca de 11.500 cal. AP, comienza una etapa de importantes cambios geomorfológicos y ambientales, entre los cuales destaca un progresivo aumento de las temperaturas, el establecimiento de la estacionalidad análoga a la actual y la apertura de nuevos espacios por la retirada de los glaciares y el desagüe de los lagos proglaciares, además de un incremento de la humedad efectiva, reflejado en el aumento de Nothofagus dombeyi (Reyes et al. 2009:18).

Entre los años 8.000 y 4.000 AP se reconoce un considerable desarrollo de los bosques, cuyas causas probables son una combinación de mayor humedad efectiva, temperaturas más favorables y un aumento en la pluviosidad (Reyes et al. 2009). Tales condiciones más cálidas y húmedas se mantienen hasta los 3.100 años cal. AP, con una marcada dominancia de Nothofagus y Poaceae (Martel y Maldonado 2010). Es en este contexto, alrededor de 7.500 años cal. AP, se constituyó el régimen de precipitaciones actual, con lo cual comenzaron a establecerse las condiciones ambientales y climáticas presentes en la actualidad (Markgraf et al. 2007). Información obtenida a partir de investigaciones en Lago Pollux (Markgraf et al. 2007), describen para 6.300 años cal. AP condiciones climáticas relativamente secas, las cuales se incrementaron para 4.200 años cal. AP. Estos cambios implicaron, seguramente, modificaciones en el esquema de recursos.

Holoceno Tardío

Durante el Holoceno Tardío (5.000 AP – presente), es decir, la época que compite a esta investigación, Patagonia en general experimentó una serie de cambios ecológicos de gran magnitud, que resultan importantes para entender la instalación y circulación de seres humanos: “Son tiempos en los que se presentan oscilaciones climáticas, incluyendo avances glaciares y sequías prolongadas” (Borrero 2001:117). Entre 4.500 y 1.500 años cal. AP, hubo un cambio abrupto en la vegetación, que es interpretado como consecuencia de la gruesa capa de cenizas que fueron depositadas en la zona producto de una erupción del volcán Hudson, datada en 3.700 14C AP (Markgraf et al. 2007). Los datos obtenidos en Mallín Pollux muestran que a partir de 4.200 cal. AP existieron condiciones ambientales más secas, y con ello una vegetación boscosa más abierta (Markgraf et al. 2007). Esta información es confirmada por los estudios en El Shaman, aunque con una fecha de 3.000 cal. AP para esta mayor aridez y menores temperaturas, que
probablemente trajeron como consecuencia una redistribución en el esquema de recursos (Reyes et al. 2009).

Posteriormente, desde los 3.100 y hasta los 1.300 años cal. AP, se observa una disminución de la humedad efectiva, dando origen a un paisaje estepario de gramíneas, acompañado de un retroceso de los bosques, incluyendo taxa arbóreo tales como *Nothofagus* (Martel y Maldonado 2010, Reyes et al. 2009).

Alrededor del año 1.500 cal. AP, hubo una nueva expansión del bosque que se mantuvo hasta tiempos históricos, en la cual tanto *Nothofagus dombeyi* y *Poaceae* disminuyeron su presencia, y las Asteráceas pasaron a ser dominantes. Además aparecen taxa exóticos como *Rumex acetosella* (Reyes et al. 2009). Entre 1.300 hasta 400 cal. AP aumenta nuevamente la humedad efectiva (Martel y Maldonado 2010), y es cerca del año 1.200 cal. AP cuando se establece la vegetación moderna (De Porras et al. 2011).

Entre 1.080 y 1.250 DC, tuvo lugar la Anomalía Climática Medieval, que implicó un importante aumento en la temperatura, y sequías que, por ejemplo, provocaron un marcado descenso en el nivel de las aguas del Lago Argentino (Borrero 2001). En los sectores cercanos al bosque este cambio no ha sido detectado, pero los efectos sobre las poblaciones humanas que se conocen para Patagonia Oriental, posiblemente se dieron también en otras áreas.

Entre los años 1.830 y 1.840, tuvieron lugar importantes cambios ambientales, por causas principalmente climáticas, que generaron condiciones más frías y secas (Szeicz et al. 1998). A principios del siglo XX, entre 1.910 y 1.920 llegan a la región de Aysén los primeros colonos, y debido a que la ganadería era la actividad económica preponderante, éstos realizaron quemas intencionales de grandes magnitudes en terrenos previamente ocupados por bosques, que tenían como finalidad el despeje de tierras para convertirlas en pastizales donde desarrollar la crianza y el pastoreo de animales, principalmente ovinos (Martel y Maldonado 2010, Szeicz et al. 1998). Esto tuvo lugar hasta mediados de 1.950, y modificó irremediable y profundamente el paisaje regional, además de la distribución y el tipo de recursos naturales. En tiempos posteriores, las especies boscosas autóctonas fueron remplazadas por otras foráneas, primordialmente pinos (*Pinus radiata*) (Szeicz et al. 1998).
ANTECEDENTES

Historia de la Investigación

Uno de los principales problemas que arrastra la arqueología en este rincón del mundo, es la cantidad de prejuicios que existen en relación a su prehistoria. Por ejemplo, que las planicies orientales y los canales del Pacífico son considerados a priori como esferas culturales independientes, en lugar de evaluar estos sectores de estepa que se sitúan entre ambos extremos, como posibles sectores de tránsito, comunicación y quizás intercambio entre poblaciones, lo cual sólo ha comenzado a estudiarse muy recientemente (Reyes et al. 2009). Otras ideas no corroboradas son el pensar a estos valles como parte o continuación de las dinámicas acontecidas en el sector de Magallanes, mejor conocidas, o también ciertas ideas que surgen a partir de falencias en la generación e interpretación de información etnográfica, y en la utilización del método histórico-directo en ésta. Debido a esto, actualmente “se desconoce cuál era el grado de desocupación de los territorios del interior de la Patagonia” (Borrero 2001:158).

El conocimiento de la prehistoria del centro norte de la región de Aysén contrasta notablemente con lo que acontece al sur de la misma, debido a que en los valles de Ibáñez, Jeinemeni y Chacabuco se cuenta con una mayor intensidad de trabajos. No así la prehistoria del valle del río Cisnes, que permaneció como un vacío en la investigación arqueológica hasta tiempos muy recientes, ya que las primeras investigaciones sistemáticas en esta cuenca han tenido lugar sólo en la última década. Sin embargo, el otro sector dentro de nuestra área de estudio, Alto Río Simpson, sólo se comenzó a estudiar de manera sistemática con los trabajos realizados el año 2010. Los trabajos realizados anteriormente en este sector corresponden a análisis de colecciones líticas superficiales en Punta del Monte en Coyhaique Alto (Bate 1970b), y a estudios en el Extremo Oriental del Lago Cástor (Sade 2008a). A esto se suman los hallazgos de sitios con arte rupestre en Lago Frío/Lago Pollux, Laguna Azul/Lago Elizalde y El Salto, todos en el curso medio del río Aysén (Sade 2008b).

Otros importantes estudios en torno al arte rupestre tuvieron su origen en las exploraciones realizadas por Luis Felipe Bate a comienzos de la década de 1.970 (Bate 1970a, 1971). Su importancia radica principalmente en haber identificado
claras similitudes entre los motivos representados en sitios arqueológicos ayseninos (entre los cuales destaca el sitio Punta del Monte, cercano a nuestra área de estudio) y sitios ubicados al oriente de la cordillera de Los Andes, sosteniendo a partir de esto que ambos espacios corresponden al área de dispersión de las mismas poblaciones cazadoras recolectoras. La mayoría de los sitios con arte rupestre estudiados por Bate se encuentran en aleros rocosos, siendo los motivos más representados en primer lugar las manos, tanto en positivo como en negativo, y en segundo lugar las guanacas.

Entre los trabajos realizados en la cuenca del río Cisnes, podemos destacar la prospección sistemática y dirigida de sectores seleccionados, la realización de sondeos y actividades de difusión con la comunidad local. Los materiales recuperados fueron analizados en laboratorio, y la información relevada en terreno fue estudiada e integrada. Estos incluyen líticos, cerámica, información tafonómica, de SIG, petrografía, fitolitos, fechados radiocarbónicos, entre otros. Esta misma metodología de trabajo se llevó a cabo luego en Alto Simpson. Los materiales recuperados en este lugar no consideran fragmentos cerámicos ni fitolitos, pero incluyen restos metálicos y vidrios, aunque estos no muestran evidencia de trabajo indígena.

Holoceno Temprano y Medio

A partir del año 11.500 cal. AP, se comienza a observar en Patagonia un mejoramiento climático, lo que pudo fomentar la expansión humana y un incremento poblacional, lo cual habría llevado a la reducción en el tamaño de los rangos de acción, y a la redundancia en el uso de ciertos espacios. Todo esto va a significar un aumento progresivo en el conocimiento del entorno natural (Borrero 2001:110).
La evidencia de presencia humana más temprana hallada en la región, corresponde al sitio El Chueco (Méndez y Reyes 2008; Méndez et al. 2008), en la cabecera del valle del río Cisnes. Esta ocupación, basada en una edad 14C asociada a un instrumento lítico, ha sido fechada en ∼11.500 años cal. AP, y sería evidencia de la ocupación efímera de este reparo rocoso (Méndez et al. 2009, 2011a). Ocupaciones posteriores también tuvieron un carácter discreto, aunque con una mayor tasa de descarte de artefactos líticos, y tuvieron lugar en dos momentos, entre 10.180 y 9.890 años cal. AP, y alrededor del año 9.230 cal. AP, con una edad mínima de 7.700 años cal. AP. La presencia excepcional de dos desechos de talla de obsidiana negra, en el bloque temporal de 10.180-9.890 años cal. AP, que provienen de fuentes distintas y muy distantes entre sí, estaría implicando o la existencia en estos momentos de rangos de movilidad muy amplios, o la interacción de poblaciones a gran escala, o bien la superposición de rangos de acción de distintas poblaciones en este lugar (Méndez et al. 2011a).

A los restos óseos se les realizaron análisis de isótopos estables y de haplogrupos de ADN mitocondrial. Los primeros muestran un promedio de -19,68 (ds= 1,14) para δ 13C y 10,64 (ds= 1,85) para δ 15N. Estos resultados revelan una dieta continental terrestre, vinculada a la vía fotosintética C3 (Mena et al. 2010). Estudios de patología oral apoyan esta interpretación, identificando huellas de una “dieta ‘dura’ de cazadores terrestres con abrasión, desgaste y microsaltaduras del esmalte de
las piezas dentales” (Reyes 2005, en Mena et al. 2010). En relación al segundo análisis mencionado, encontramos una alta presencia de del haplogrupo mitocondrial B y la presencia del haplogrupo C. Cabe mencionar que en estudios de los grupos humanos que habitaron Sudamérica en tiempos históricos, los haplogrupos A y B estuvieron completamente ausentes en estas latitudes, a la vez que restos humanos del siglo XIX provenientes de los canales del extremo sur sólo muestra la presencia de los haplogrupos C y D (Mena et al. 2010).

Además del estudio de estos sitios, otras evidencias tempranas corresponden a hallazgos superficiales de artefactos líticos, entre los cuales destacan puntas de proyectil cola de pescado y litos discoidales (Bate 1982; Berqvist et al. 1983; Jackson y Méndez 2007; García 2007; Sade 2007). Cabe destacar que todos los registros más tempranos se encuentran en sectores de estepa, de relieve planiforme, y al este de la cordillera de Los Andes, lo cual coincide con el hecho que estos espacios fueron los primeros en quedar libres de hielo, y así, las primeras en desarrollar ambientes capaces de permitir el asentamiento de especies tanto vegetales como animales (Méndez et al. 2009).

En este periodo de ocupación inicial de la estepa aysenina, las características de los sitios encontrados se asemejan a lo esperable para una etapa de exploración, ya que “la presencia humana es efímera, caracterizada por un registro discontinuo, con bajas expectativas de hallazgo, baja visibilidad, baja densidad y con material lítico de aprovisionamiento inmediato y rápido descarte” (Reyes et al. 2009:17).

A partir de los 6.930 años cal. AP, en el sitio El Chueco se observa una intensificación en las ocupaciones, aunque estas mantienen un carácter breve (Méndez et al. 2010c, 2011a). En dos periodos, entre los 6.930 y 6.780 años cal. AP y entre los 5.520 y 5.400 años cal. AP, aumenta el material lítico y faunístico, y la frecuencia y tamaño de los rasgos de combustión. En ambos casos, el material lítico recuperado incluye tecnología bifacial y laminar, además de selectividad de recursos líticos de alta calidad, destacando la presencia de obsidiana de Pampa del Asador. Estas particularidades, junto con la formatización de los conjuntos instrumentales y su alto reciclado, permiten suponer amplios rangos de movilidad para estas poblaciones (Méndez et al. 2011a).
En palabras de Mena, para el Holoceno Temprano y Medio “Lo que caracteriza a estos momentos es el desarrollo de sistemas ‘sintonizados’ a la estructura particular de los espacios de recursos, asociados a una movilidad más restringida y pautada y, en algunos espacios, a sistemas logísticos de movilidad/asentamiento (Gradín 1980:190, Mena 1991a:148, 1997:76)” (Mena 2000:25-26).

Durante el Holoceno Medio y Tardío en la cueva de Baño Nuevo-1, se observa una larga secuencia que “da testimonio de una notable continuidad cultural hasta hace por lo menos 2.000 años” (Mena et al. 2000:174). Mena describe que “Aparte de los restos de estólica (confinados al componente Temprano) y cordeles (confinados al componente Tardío), el resto de los artefactos recuperados en las excavaciones son similares a lo largo de toda la secuencia. Sólo se observa un aumento del uso de láminas como forma base en relación a las lascas (y una mayor cantidad de ambas), así como un mayor uso de las rocas silíceas en las capas superiores” (Mena et al. 2000:190). El Componente Tardío de lacueva, para el cual se obtuvo una fecha de 2.830±70 AP, está “fechado tentativamente” entre 3.000 y 1.000 AP, y corresponde a múltiples ocupaciones. El conjunto artefactual lítico de este período se destaca por el aprovechamiento de materias primas disponibles localmente, como es el caso de un tipo de basalto, y por un aumento en el uso de rocas criptocristalinas, respecto del Componente Temprano. La obsidiana negra mantiene una discreta presencia. El análisis de los derivados de núcleo evidenció un progresivo aumento de las láminas en comparación con las lascas, aunque aquellas se hayan observado desde los niveles más tempranos, y nunca lleguen a remplazar a las lascas. En relación a los restos arqueofaunísticos encontrados, predomina el consumo de guanaco, y le siguen en cantidad los restos de zorro culpeo (Pseudalopex culpaeus), muchos de los cuales presentan huellas de corte (Mena et al. 2000).

Para el Holoceno Tardío en Baño Nuevo-1, la principal diferencia con respecto a las ocupaciones más tempranas de la cueva correspondería a “su inserción en un sistema de movilidad/asentamiento más pautado y espacialmente restringido que en los momentos iniciales de su ocupación” (Mena et al. 2000:192). En relación a la notoria continuidad del registro arqueológico, Mena et al. concluyen que “aunque ello sugiere la permanencia de una misma tradición poblacional y cultural, podría también interpretarse como la impronta de una función esencialmente idéntica del sitio durante milenios, una condición situacional determinada fundamentalmente por el entorno geo-ecológico, cuyo efecto
arqueológico enmascara cualquier huella de remplazo poblacional o cambios estilísticos específicos (...)” (Mena et al. 2000:185).

Holoceno Tardío

El Holoceno Tardío (5.000 AP – presente), en continuación con los procesos mencionados anteriormente, sería el momento en el cual ya comenzamos a hablar de *ocupación efectiva* de diversos espacios. Según Borrero, es un tiempo caracterizado por importantes cambios ecológicos, que incluyen avances glaciares, aumentos en la temperatura y largas sequías, lo cual es fundamental a la hora de entender la movilidad de los grupos humanos (Borrero 2001): “*Estas poblaciones de alguna manera respondían a la dinámica ambiental mencionada, extendiéndose o concentrándose según los cambiantes repertorios de recursos*” (Borrero 2001:118-119). Es así como comienza la explotación organizada de grandes espacios, tales como ríos y lagos. Podemos decir, siguiendo a Reyes, que la dinámica poblacional para esta región es “*inteligible a manera de pulsos*” (Reyes et al. 2009), los cuales estarían definidos por la jerarquización de los ambientes que cada grupo social establecería de acuerdo con su organización espacial. Este periodo es notoriamente el más estudiado, y del cual ha sido posible recuperar más evidencias, provenientes tanto de sitios bajo reparo rocoso como de sitios a cielo abierto.

En El Chueco, durante este periodo las ocupaciones humanas se tornan más intensas y reiterativas, con fechas entre los 3.180 y 2.570 años cal. AP. Destacan como evidencia arqueológica abundante material óseo y fogones (Méndez et al. 2010c, 2011a). El material lítico presenta el uso de materias primas de calidades más bajas y sujetas a menor transporte, lo que es consistente con una ocupación más extendida del área local, como lo atestigua la mayor presencia de sitios contemporáneos en las proximidades (Méndez et al. 2011a:12). A partir de los 2.570 años cal. AP no se registran ocupaciones en El Chueco-1, aunque sí en otros espacios cercanos a este sitio, entre esta fecha y los 650 años cal. AP (Reyes et al. 2009, Reyes y Méndez 2010, Méndez et al. 2011a). Esto estaría evidenciando un cambio en las estrategias de asentamiento, donde el aprovechamiento de reparos rocosos es reemplazado por sitios a cielo abierto (Méndez et al. 2011a), algunos de los cuales son trabajados en esta investigación.
Producto de las condiciones ambientales más secas entre los años 4.200 y 2.900 cal. AP (Markgraf et al. 2007), pudo haberse fomentado una reorganización de la movilidad que haya llevado a algunas poblaciones a explorar espacios antes impenetrables, tales como las zonas boscosas hacia la desembocadura de los ríos al Oeste (Méndez y Reyes 2008). De hecho, entre ~2.650 y 2.350 años cal. AP se observa que existió una ampliación en los rangos de movilidad hacia espacios boscosos, alejándose de la estepa. Esto coincide con cambios en la vegetación de ambos ambientes (estepa y bosque), y permite pensar en un panorama tardío de exploración (Borrero 1989-90), para esta zona de bosques (Reyes et al. 2009).

Algunos ejemplos de sitios arqueológicos de éste periodo son: Alero El Toro (Méndez et al. 2006) en el bosque siempreverde, con fechas de 2.550 a 2.450 años cal. AP, Winchester 1 (CIS 074, Reyes et al. 2007) en la transición bosque-estepa, el cual posee materiales asignables al Holoceno Tardío, y Apelleg, que corresponde a un conjunto de tres sitios a cielo abierto, donde pese a ser predominantes los artefactos líticos, también están presentes restos óseos, de cerámica, de vidrio y de metal. Estos sitios tienen fechas de entre 1.150 y 650 años cal. AP (Reyes et al. 2009).

Para este periodo, nos queda describir el hallazgo de restos humanos en el área de estudio. En Alto río Cisnes fue hallado un chenque disturbado, que aun contenía los restos biológicos de un individuo, y que nos permite caracterizar al menos a un representante de las poblaciones que ocuparon estos territorios en tiempos tardíos. El cuerpo fue fechado en 1.500 años AP (1.534 a 1.411 años cal. AP), (Reyes y Méndez 2010), y mantuvo en vida una dieta abrasiva propia de grupos cazadores recolectores terrestres. Los restos indican que el individuo era de sexo masculino, de alrededor de 35±5 años y de rasgos asignables a la población amerindia. Presenta además patologías orales relacionadas al uso de la boca como instrumento de trabajo.

En los últimos siglos, ya en tiempos históricos, nuevos factores influyeron en el modo de vida de las poblaciones que habitaban estos valles, aun cuando éstas no hubieran mantenido un contacto directo con los europeos. Como indica Borrero, podemos pensar que “todas las culturas patagónicas registradas en las fuentes históricas, estaban más o menos transformadas, independientemente de su cercanía a los frentes de avance de la Conquista.” (Borrero 2001:146). Aparecen así “nuevos factores de diferenciación
cultural” (Mena 2000:26), tales como ciertas costumbres mapuches (incluyendo la alfarería y la lengua), el caballo, nuevas ‘materias primas’ para la manufactura de artefactos, como el vidrio y el metal, e inclusive las bebidas alcohólicas.

El extenso territorio del sector norte de Patagonia, tanto del lado oriental como occidental de la Cordillera de los Andes, parece haber sido un espacio ideal como zona de caza (tanto de guanaco, como de ganado bagual), y existe documentación histórica de la presencia de grupos indígenas, por ejemplo en el sector de Appeleg. La cuenca del Alto río Cisnes (entre otras) tuvo una alta densidad poblacional, posiblemente en la forma de tolderías semipermanentes, como las registradas en las nacientes del lago Fontana (Velázquez et al. 2005). Estas dinámicas habrían tenido lugar hasta que las presiones ejercidas por la llegada de los primeros colonos a estos valles, y los intereses de los Gobiernos de Chile y Argentina, obligaron a un gran número de indígenas a desplazarse, para luego dar pie a infames procesos como las conocidas Campañas del Desierto, durante la segunda mitad del siglo XIX. En la cuenca del río Aysén, el primer colonos parece haber sido Juan Richards, el cual se estableció en el sector del río Ñirehuao antes de 1.897. M. Underwood, otro explorador y colonos, residente en la zona de 16 de Octubre (Esquel), mantuvo animales en el Alto río Cisnes desde 1.901 (Velázquez et al. 2005). La ciudad de Coyhaique fue fundada en 1.929, pese a que para esa fecha ya había sido un importante centro regional, el “centro y motor de la vida en toda aquella vasta zona” (Ibáñez 1972-1973:306-307) por décadas, en el contexto de la Sociedad Industrial de Aisén, ya que en ese lugar se ubicaba la administración general de la estancia, desde 1.903. A su vez, el valle del Simpson recibe a sus primeros pobladores chilenos en 1.903, y el pueblo de Balmaceda, en la cuenca del río Simpson, nace en 1.917, siendo reconocido por el estado en 1.920 (Ibáñez 1972-1973).
MARCO TEÓRICO Y CONCEPTUAL

Estrategias tecnológicas y gestión de recursos líticos

El registro arqueológico representa para nosotros la materialización de un porcentaje significativo de la conducta humana, y nos expresa, entre otras cosas, la particular relación que estableció con su entorno un determinado grupo humano, a la vez que nos habla de organización social y de estrategias económicas y tecnológicas. El material lítico, en el caso de las sociedades cazadoras recolectoras, constituye una ‘ventana al pasado’ particularmente atractiva de explorar, ya que permea gran parte de las actividades de estos grupos: desde las actividades ligadas al uso del instrumental, hasta ser en ocasiones condicionante de la movilidad o de la existencia de relaciones de intercambio intergrupales. Podemos entender el uso, obtención, producción y mantenimiento de artefactos, como uno de los principales mecanismos usados por las personas para reducir el riesgo (Torrence 1989a y 1989b). Por estas y otras razones, es que los artefactos líticos representan para los arqueólogos evidencia invaluable del comportamiento humano en sus dimensiones técnicas, económicas, e incluso sociales (Pelegrin 1990:116).

Como indica Andrefsky (1994), entendemos que la tecnología lítica guarda relación con la movilidad y la organización social de las sociedades, y por ende, de su particular relación con el entorno. El ambiente en el cual se sitúan, representado como un esquema de recursos dados, es visto como una serie de posibilidades a las cuales se enfrentan los individuos, y lo que vendrá a definir su modo de vida serán sus decisiones y selecciones. En otras palabras, "Humans are viewed as decision makers within a variable environment; ecological structure is viewed as conditioning behavior to some degree. Optimal or suitable choices among alternatives can be understood only within the context of environmental conditions and available technological capabilities." (Nelson 1991:60).

La importancia de estudiar los materiales líticos, recae en reconocer a éstos como parte fundamental de la dinámica socioeconómica de las sociedades cazadoras-recolectoras, una vez que entendemos economía como el manejo de los recursos de toda clase (Jeske 1989). Las estrategias económicas de las sociedades, y por ende su organización tecnológica, se ven condicionadas en parte por las
condicionantes impuestas por su entorno natural, particularmente en relación a la distribución y predictibilidad de los recursos (Hayden et al. 1996), de modo que la oferta regional de materias primas líticas pudo influenciar en cierta medida la movilidad y organización tecnológica de estas poblaciones.

Para esta investigación, rescatamos el marco conceptual de la “Organización de la Tecnología” de Margaret Nelson, el cual comprende a la tecnología (y hasta cierto punto se ejemplifica a través del material lítico) como respuestas a los problemas que impone el ambiente a los individuos; es decir, como parte de una estrategia que desarrollan las poblaciones para enfrentarse a su entorno social y ambiental. La organización de la tecnología se define como “the study of the selection and integration of strategies for making, using, transporting, and discarding tools and the materials needed for their manufacture and maintenance. Studies of the organization of technology consider economic and social variables that influence those strategies.” (Nelson 1991:57). Uno de los grandes aportes de los estudios insertos en esta corriente teórica, es el enfatizar las dinámicas de comportamiento tecnológico; es decir, los planes o estrategias que guían el componente tecnológico del comportamiento humano. Intentar comprender el uso del espacio en la Prehistoria es un objetivo relevante, ya que se sostiene que los planes tecnológicos (incluyendo el diseño de herramientas, su manufactura, uso, descarte y reutilización) responden a la disponibilidad de recursos, tanto como a estrategias económicas y sociales. Así, los estudios de organización de la tecnología expanden nuestra visión de la función de las herramientas, para incluir variables correspondientes a estrategias tecnológicas (Nelson 1991:57). Éstas sopesan problemáticas económicas y sociales, por una parte, y condiciones ambientales por otra, y son implementadas a través del diseño y la distribución espacial de las actividades (Nelson 1991:57). Así, el contenido de los conjuntos instrumentales estudiados debe ser comprendido en términos de estrategias que responden a variables situacionales concretas, ya que las decisiones tecnológicas orientadas a la subsistencia se realizan en consideración a expectativas respecto de las condiciones futuras que deberán ser enfrentadas; es decir, existe un elemento de planificación, que se anticipa a eventos futuros, y se refleja en la existencia de “backup strategies”, para poder hacer frente a situaciones inesperadas (Binford 1979:275-276). Siguiendo a Binford, entendemos que las poblaciones cazadoras recolectoras se organizan distintamente para llevar a cabo diferentes tipos de tareas, de modo que las razones que tuvieron para ocupar un espacio, y las actividades realizadas allí,
varían entre sitios generados por miembros de un mismo sistema cultural, y es por eso que es esperable que tales sitios presenten diferencias funcionales entre sí (Binford 1979:285). Como complemento de lo anterior, podemos agregar que: “The differential organization of gear (...) may result in differences in assemblage content, as a clue to the logistical function of the sites” (Binford 1979:285). Esta diferenciación funcional también es aplicable a nivel del instrumental: “We should expect different designs and reduction strategies for functionally similar tools, depending among their intended technological roles, given variable situations of tool demand and adequacy of gear provisions. Normative ideas of technically and morphologically ‘homogeneous’ industries should be abandoned as a general set of expectations; rather we should expect that developing situationally responsive alternative ways of doing things has adaptive significance within most cultural systems” (Binford 1979:286).

Al buscar una definición de ‘estrategia tecnológica’ acorde con esta propuesta, encontramos que los conceptos de estrategia y tecnología son ambos concebidos como factores claves en la resolución de los problemas que significan para las personas el medio natural y sociocultural en el cual están insertos. Nelson define estrategia como “procesos que ayudan a la resolución de problemas, y que responden a condiciones creadas por la relación dinámica existente entre los seres humanos y su ambiente” (Nelson 1991:58). A su vez, Torrence define tecnología como “un medio a través del cual las personas pueden resolver problemas impuestos tanto por factores externos, ambientales, como por necesidades sociales internas” (Torrence 1989a:1). Las estrategias tecnológicas pueden ser descritas, entonces, como un conjunto de conductas que contribuyen a la adaptación humana (Jochim 1981, en Nelson 1991:59), en lugar de un agregado de objetos (tecnología) que son resultado de tal adaptación.

Siguiendo la línea de pensamiento anterior, Escola define la ‘tecnología lítica’ como: “todas las actividades involucradas en la adquisición de materias primas, manufactura, distribución, uso, mantenimiento, reciclado y descarte de artefactos líticos. Sin embargo, la concepción organizativa de la tecnología le otorga a la tecnología misma y a sus productos -los artefactos- un rol dinámico dentro de los sistemas culturales” (Escola 2004:49).

Los estudios de organización de la tecnología han descrito tres estrategias tecnológicas diferentes: curativa, expeditiva y oportunista. Estas no corresponden a sistemas mutuamente excluyentes, sino a opciones de planificación que se

La segunda estrategia tecnológica mencionada corresponde a la expeditiva. Ésta supone un mínimo esfuerzo tecnológico, bajo condiciones en las cuales el momento y lugar de uso son altamente predecibles (Nelson 1991:64). Podemos decir que “While curation anticipates the need for materials and tools at use locations, expediency anticipates the presence of sufficient material and time.” (Nelson 1991:64). Las estrategias expeditivas pueden entenderse como “poco conservadas” entendiendo la curatividad como una propiedad de las cosas, donde los atributos de maximización de vida útil, diseños elaborados, anticipación de materias primas y conductas de reciclaje no juegan un rol importante (Shott 1996).

La tercera estrategia, oportunista, comprende aquellos comportamientos tecnológicos que no son planificados, sino que son respuesta a condiciones inmediatas e imprevistas. Los diseños de instrumentos, y la distribución espacial de éstos, están condicionados principalmente por el contexto ambiental y conductual en el cual fueron ocupados, mientras que aquellos correspondientes a las estrategias curativa y expeditiva son condicionados tanto por el contexto, como por la planificación estratégica en la cual se insertan (Nelson 1991:65).

Otro concepto relevante es el de ‘paisaje lítico’, el cual es definido como: “la disponibilidad y distribución física de las materias primas líticas en un espacio geográfico determinado” (Gould y Siggers 1985:124). Este concepto, denota la relación dinámica que existe entre el esquema natural de recursos y las estrategias y decisiones culturales que existen en torno a su explotación. Esta relación podría ampliarse a todo el rango de actividades que manifiestan relaciones entre los individuos y su entorno natural, entendiendo que éste condiciona la creación del
espacio doméstico, al proporcionar los materiales a partir de los cuales puede éste ser generado, a la vez que condiciona las actividades que podrán llevarse a cabo (Nielsen 2001).

Destacando el rol fundamental que juega el paisaje lítico en las estrategias y modo de vida de las poblaciones cazadoras recolectoras, Andrefsky sostiene que la disponibilidad de materias primas líticas puede ser el factor más importante en la organización de la tecnología. “Although studies (...) have shown that amount of effort expended in tool production tends to correlate with type of settlement strategy, the ethnographic record suggests that the availability of lithic raw materials plays a primary role in the amount of effort expended to produce various types of tools” (Andrefsky 1994:23).

El estudio de las materias primas en contextos arqueológicos, puede darnos información acerca de relaciones de intercambio entre grupos de cazadores recolectores, o patrones de movilidad de los mismos, si logramos determinar el origen local o foráneo de las rocas presentes en las muestras. Un análisis más profundo de esta información, podría ayudar a recrear patrones de movilidad estacional, o describir los territorios anteriormente habitados por el grupo en cuestión (Odell 2003:89-90).

Resulta necesario mencionar la relación que consideramos existe entre función de sitio y diversidad artefactual lítica, ya que esto constituye un pilar fundamental en este trabajo. Para esto seguimos a Andrefsky, quien nos indica que la función de sitio no puede establecerse solamente a partir de la morfología de las piezas encontradas, sino que por el contrario, es la determinación de la función de las mismas lo que debemos utilizar para realizar tal inferencia (Andrefsky 1998). En otras palabras, “One cannot ‘give meaning’ to the archaeological record in terms of ‘conventions’, as has been done routinely in the past. The assignment of meaning to properties of the archaeological record must rest on a solid understanding of the processes which operated in the past to generate the patterns remaining for us to observe today” (Binford 1979:286). Y de la misma manera, la determinación de función de sitio es preferible realizarla dentro de un esquema que incluya una perspectiva local y regional (Andrefsky 1998).

En relación a la labor interpretativa del análisis lítico, cabe recordar que es el conjunto de piezas, y las interrelaciones entre ellas la base que da pie a nuestro
trabajo analítico, y no la descripción focalizada en piezas llamativas, proveniente de partes seleccionadas del conjunto arquefactual o las cadenas operativas. Odell nos recuerda que “stones come to archaeologists in bunches of associated objects –this is partly how we recognize that they were humanly produced in the first place. The trick is not in ascertaining what each individual objects mean, though that would be helpful, but in deriving meaningful relationships among the artifacts and in the assemblage as a whole” (Odell 2003:87). Estudios etnográficos y análisis de microhuellas de uso, han probado a este autor que los instrumentos líticos empleados por grupos cazadores recolectores son usados para variadas funciones, y a la vez, para cada tarea o necesidad, existe un número de posibilidades artfactuales que pueden cumplir tal propósito, incluyendo productos de ciertos segmentos de la cadena operativa que a simple vista podrían ser categorizados como desechos. Esto prueba la necesidad de no excluir del análisis ciertos productos de las cadenas operativas o ciertas tipologías de artefactos, ya que todos ellos pueden entregar información valiosa, y es el análisis de la totalidad de las piezas en conjunto lo que permite acercarnos a una adecuada interpretación de los contextos arqueológicos en estudio. De todas maneras, esto no quita que algunos objetos o atributos contienen más información que otros (Odell 2003:88), o que nos ayudan a responder las preguntas específicas que nos formulamos.

Otro concepto a considerar es el de Cadena Operativa. La compleja secuencia de producción serial de lascas y/o láminas requiere de un ‘monitoreo crítico’ de la situación y de las decisiones tomadas a lo largo del proceso de talla. Para esto, es necesaria la capacidad de evocar mentalmente el producto deseado (Pelegrin 1990:117). Estos procesos mentales se materializan en una serie de acciones que ordenan no sólo el proceso de talla o de producción del instrumental lítico, sino también la adquisición y selección de materias primas, la preparación de los núcleos, el uso de los artefactos, su reciclaje y descarte. El estudio de las cadenas operativas, por ende, permite vislumbrar cada una de estas operaciones, para comprender la secuencia completa de acciones y decisiones que mediaron en la realización de los conjuntos líticos que hallamos en contextos arqueológicos; acciones y decisiones que están insertas en el quehacer habitual de las poblaciones, como parte de las ya mencionadas estrategias tecnológicas. Como señala Binford, “Tools may be differentially designed, manufactured, used, and discarded, in response to their intended roles in the technology. (…) The manufacturer takes into
consideration in the selection of raw material, design, and fabrication of the tool its intended role in the technology” (Binford 1979:285-286).

Apoyando la idea anterior, podemos sostener que al estudiar los conjuntos líticos, conocemos las estrategias tecnológicas y las conductas que les dieron origen, y en cuyo contexto se tornan significativos, ya que “types are associations of variables resulting from patterned behavior; it is the behavior behind the patterns, not the types themselves, that is important” (Spaulding 1973, 1977 en Nelson 1991:84).

Movilidad y organización espacial

Para estudiar los conjuntos líticos de Alto Simpson y Alto Cisnes en su dimensión espacial, debemos entender la información que obtengamos a nivel regional, entendiendo a las poblaciones humanas como componentes de ecosistemas (Borrero 1989-90). Para ello, Borrero (1989-90, 1994-95) ha desarrollado un modelo ecológico y biogeográfico para entender el poblamiento de Patagonia desde una visión continua. Este modelo incluye tres etapas, en las cuales el poblamiento de las estepas patagónicas se entiende como un flujo multidireccional, dependiendo de la jerarquía de los espacios disponibles en cada sucesiva expansión (Borrero 1989-90). La primera etapa corresponde a la Fase de Exploración, que describe la dispersión inicial de los grupos humanos hacia una zona vacía (Borrero 1989-90:134). Estos grupos probablemente tenían rangos de acción muy grandes, dentro de los cuales se desplazaban a través de rutas naturales, y utilizaban espacios no óptimos. Se caracteriza también por una cierta discontinuidad ocupacional, tanto a escala local como regional, y un número de sitios considerablemente menor al de tiempos posteriores, con una baja redundancia en las ocupaciones. La segunda etapa es de Colonización, y se refiere a la consolidación inicial de grupos humanos en sectores determinados del espacio, con rangos de acción especificados (Borrero 1989-90:134). Se espera que los sitios tengan un uso más repetitivo y se presenten en grupos más o menos discretos, producto de la falta de superposición de los rangos de acción; estos rangos de acción debieran ser más restringidos que los de la primera fase. La tercera y última fase es de Ocupación Efectiva, y se refiere a la reconfiguración de las ocupaciones humanas dentro de un territorio donde todo el espacio deseable está siendo ocupado, debido a la colonización de espacios antes inexplorados o escasamente aprovechados, al crecimiento poblacional y el consecuente aumento en la densidad poblacional, a los cambios medioambientales y el significativo
cambio observado en la oferta regional de recursos de toda índole, entre otros factores. Estos cambios tuvieron importantes consecuencias, fundamentales de conocer a la hora de estudiar contextos correspondientes a este periodo. Algunas de estas consecuencias son ajustes poblacionales, deriva cultural, un aumento en la competencia por la ocupación de los espacios más productivos, mayor territorialidad, redundancia de ocupaciones, la aparición de nuevos mecanismos sociales para ordenar el uso del espacio (“desde actividades guerreras hasta un calendario ritual panregional” Borrero 1989-1990:135), competencia por el uso de recursos, entre otros. Los cazadores recolectores presentan “una variedad muy grande de estrategias adaptativas en distintos lugares de la estepa patagónica” (Borrero 1989-90:135). Las expectativas que esto genera para el registro arqueológico incluyen alta visibilidad arqueológica, aunque baja resolución, debido a la superposición de rangos de acción producto de la mayor densidad poblacional, y una marcada reducción espacial de tales rangos de acción. Debido a esto último, se espera que hayan aparecido mecanismos alternativos para el aprovisionamiento de materias primas de calidad excepcional (Borrero 1989-1990). Esta última fase, de ocupación efectiva, es la que más nos interesa, ya que dada la cronología ocupacional de los sitios arqueológicos hallados en sectores colindantes a los valles en estudio, sería esperable que para el Holoceno tardío las poblaciones cazadoras recolectoras hayan alcanzado un conocimiento tal de estos valles, que les sería posible identificar y ocupar diferencialmente los espacios según su oferta de recursos y otras características (esta hipótesis será evaluada más adelante).
MATERIAL Y MÉTODO

There is no universal method. There are no universal standards. But there are historically contingent standards implicit in successful practices. (Chalmers 1982:26)

Escala analítica

Nuestra discusión, más que a nivel de sitio, es a nivel de valle, ya que esta investigación pretende evaluar la ocupación humana de los sectores de estudio, en relación al aprovechamiento de recursos líticos y la movilidad de las poblaciones cazadoras recolectoras que los habitaron durante el Holoceno Tardío. En consecuencia, lo que nos resulta relevante es, más que las particularidades de cada sitio, la suma de las partes, es decir cada valle como un todo, y en relación a otros sectores aledaños, especialmente considerando que las poblaciones que estudiamos son altamente móviles, con amplios rangos de acción.

Por diversas razones, los sectores a estudiar fueron aproximados bajo escalas diferentes, y no se realizaron los mismos trabajos en todos ellos. En el caso de Alto Cisnes, se realizaron prospecciones y luego se excavaron segmentos de los sitios arqueológicos considerados más significativos, pero la prospección se focalizó en registrar sitios arqueológicos, sin considerar posibles fuentes de materias primas líticas. En Alto Simpson, debido a restricciones en los permisos de acceso y de trabajo en muchos espacios en Coyhaique, los trabajos se centraron en los alrededores de la ciudad de Balmaceda y un área restringida de Coyhaique Alto (Punta del Monte), y las prospecciones en busca de fuentes de materias primas se restringieron a estas zonas.

Recuperación de la muestra arqueológica

Los sectores en los cuales se realizaron las prospecciones arqueológicas se escogieron a partir de características cualitativas, tales como cercanía a cursos de agua, rasgos del relieve e hitos geográficos. La realización de estas prospecciones tuvo como objetivos la ubicación de los asentamientos humanos en los sectores
en estudio, la caracterización de la magnitud del registro distribucional y la recuperación de material diagnóstico (tecnológico y tipológico) (Méndez et al. 2006:87).

Para el diseño de las prospecciones, se comenzó por reunir información cartográfica, geológica, ambiental y fotografías satelitales, además de la observación directa de geoformas y vegetación local (Reyes et al. 2006). Los sectores fueron delimitados mediante coordenadas UTM, y fueron cubiertos por grupos de trabajo de entre tres y cuatro personas, las cuales siguieron transectas definidas cardinalmente de 150 metros de separación. A esto se sumó una prospección dirigida, enfocada en hitos geográficos llamativos o lugares cuyas características proporcionaban condiciones propicias para el asentamiento.

Todos los sitios arqueológicos y hallazgos aislados fueron registrados, “a través de criterios estandarizados contemplando variables de georeferencia, formales cualitativas (i.e. proximidad y tipo de fuente de agua, tipo y características del sitio, geoforma de emplazamiento, vegetación dominante, agentes de disturbación, visibilidad, sedimentos dominantes, densidad, disposición, tipos y características de los materiales), cuantitativas (i.e., inclinación de la superficie, dimensiones del sitio, distancia al agua y altitud) e inferenciales (i.e. asignación funcional, asignación histórico cultural, potencial de intervención futura).” (Reyes et al. 2006:77-78).

Las concentraciones de cinco o más artefactos fueron catalogadas como sitios arqueológicos; en consecuencia, los hallazgos aislados comprenden entre una y cuatro piezas. También se consideraron como sitios algunos lugares que presentaban huellas antrópicas distintivas o evidencias de la intervención humana sobre el espacio. Tanto los sitios arqueológicos como los hallazgos aislados fueron geoposicionados, lo que fue aprovechado para generar ploteos de algunas unidades seleccionadas, que describen la distribución de los materiales dentro de los sitios más destacados (como es el caso de varias unidades de Appeleg 1). En relación al levantamiento de material para su posterior análisis en laboratorio, sólo se extrajo de los sitios y hallazgos aislados materiales representativos y diagnósticos, y que tuvieran relación con los objetivos del proyecto bajo cuyo alero se realizaron los terrenos; es decir, artefactos que presentaran características tecnológicas o temporales distintivas (Reyes et al. 2006). Ya que esta muestra corresponde a material superficial, el tamaño de las piezas supone un sesgo
inevitable al recuperar material, lo cual puede favorecer la presencia de artefactos de mayor tamaño, en desmedro de los más pequeños (Schiffer 1996).

En ambos sectores de estudio se realizaron también unidades de excavación en sitios seleccionados por el hallazgo de material en superficie y/o características del contexto espacial (por ejemplo, reparo rocoso). Sin embargo, no se encontraron depósitos estratigráficos, producto de lo cual los dos conjuntos de material lítico que componen la muestra corresponden exclusivamente a sitios en superficie.

Cabe destacar que el volumen de terreno estudiado es proporcional a los segmentos revisados en los valles de los ríos Cisnes, Ibáñez, Jeinemeni y Chacabuco, de manera que los resultados obtenidos en cada una de estas investigaciones resultan comparables.

Recuperación de la muestra de materias primas

En el caso de Alto Cisnes, la determinación de cuáles son los recursos líticos disponibles localmente, no comprendió una búsqueda sistemática de fuentes y variabilidad de materias primas, y la generación de bases de datos para establecer la oferta local de recursos líticos, sino que ésta se estableció en base a la carta geológica existente para el lugar, el trabajo de geólogos asociados al proyecto FONDECYT (Sepúlveda 2006), y el análisis de los materiales arqueológicos levantados del lugar. En Alto Simpson, en cambio, en los trabajos de terreno contemplaron prospecciones pedestres para buscar posibles fuentes tanto primarias como secundarias, de modo que pudo compararse la muestra arqueológica con la base de recursos líticos disponible localmente.

Para la etapa de recolección de datos, resulta fundamental la planificación y realización de prospecciones pedestres, con el fin de ubicar posibles fuentes de aprovisionamiento de materias primas líticas, y para evaluar la oferta local de estos recursos.

La búsqueda de materias primas se realizó en los mismos sectores seleccionados para las prospecciones arqueológicas (los hallazgos fueron producto tanto de búsquedas dirigidas como de hallazgos fortuitos), además de la realización de
transectas en cajas de ríos seleccionadas fuera de las unidades de prospección. La decisión de cuáles rocas levantar estuvo definida por su calidad para la talla, y también por el tamaño de la roca. De cada lugar de recolección de muestras, se recabó información contextual, tal como fotografías digitales, georreferenciación vía GPS, cercanía a sitios arqueológicos, entre otros.

Se consideraron tanto fuentes primarias como secundarias de materias primas (Gould 1978), éstas últimas correspondiendo principalmente a cajas de ríos. Además se realizó una diferenciación entre cursos de ríos mayores y menores, ya que si bien ambos representan zonas de acumulación de rocas procedentes desde diversos lugares de una región, se espera que el río principal represente rocas provenientes de sectores más lejanos, mientras que los afluentes pueden indicar de mejor manera ‘qué es lo local’. Cabe mencionar que pese a que se consideró la búsqueda de fuentes de aprovisionamiento tanto primarias como secundarias, sólo se encontró una correspondiente a la primera categoría, un basalto de baja calidad.

Metodología de análisis lítico

Para dar respuesta a nuestra pregunta de investigación, nos focalizamos en los cuatro atributos de los artefactos líticos que nos entregan más información, es decir, su morfología, función, tecnología y materia prima (Odell 2003).

Análisis petrológico de materias primas líticas

Se consideró la identificación de las materias primas, tanto en los conjuntos arqueológicos como en las muestras obtenidas de las prospecciones, con el fin de establecer la oferta local de recursos líticos, y determinar qué rocas están siendo traídas de otros sectores, siguiendo y corrigiendo metodologías implementadas en la región (Méndez 2004). Distinguir entre materias primas locales y foráneas (y realizar una comparación entre la oferta regional y los tipos de rocas halladas en los conjuntos arqueológicos), nos permite hablar de movilidad o relaciones de intercambio con otras localidades, y de posibles intenciones de las poblaciones para ocupar estos territorios.

Para la adecuada identificación y caracterización de este conjunto, fueron seleccionadas algunas de ellas (a partir de su representatividad y cualidades para la
talla), a partir de las muestras de materias primas locales recogidas en Alto Simpson y Coyhaique Alto, y de los conjuntos arqueológicos de Alto Cisnes (Sepúlveda 2006, 2011). Este análisis petrográfico permitió describir con certeza los recursos líticos que conforman tanto la oferta natural como los conjuntos arqueológicos de Alto Cisnes y Alto Simpson.

Una variable a considerar será la calidad de las rocas, la cual será definida de acuerdo a su aptitud para la talla (Aragón y Franco 1997), aunque sin dejar de considerar que el conjunto incluye artefactos que corresponden a la categoría de lítica piqueteada y pulida (por ejemplo, boleadoras y manos de moler). Para evaluar la oferta local de estos recursos, seguimos el modelo propuesto por Franco (2004a y 2004b), quien realiza una integración entre el espacio y la disponibilidad de materias primas. Franco plantea una distinción entre fuentes de abastecimiento primarias y secundarias, y también una clasificación de las materias primas líticas según su disponibilidad: la inmediata vecindad, las locales cercanas, las locales lejanas y las no locales. La consideración de la calidad de los recursos líticos nos es relevante ya que es esperable que esta característica haya sido un aspecto crucial de la toma de decisiones que supone la selección de materias primas, su aprovechamiento y su transporte, pese a que otros factores como la oferta regional y la movilidad de las poblaciones hayan sido condicionantes.

En nuestro caso, distinguimos entre cuatro categorías de calidades de rocas: muy buena (1), buena (2), regular (3) y baja (4). La primera categoría está reservada para piezas de grano fino, como la obsidiana y de sílices de calidad excepcional, mientras que la segunda incluye la mayor parte de las muestras de sílice y otras rocas sílicas de buena calidad, tales como dacitas, tobas silicificadas y riolitas. En la tercera categoría destacan rocas de grano medio como las andesitas, basaltos, dacitas, tobas y riolitas. Por último, las rocas de baja calidad incluyen varias rocas de grano grueso, como andesitas, dioritas y otras inidentificables, además de rocas de grano medio o fino pero que presentan características tales como inclusiones, clivajes y/o burbujas que dificultan la talla.

Adicionalmente, tanto en Alto Cisnes como en Alto Simpson se obtuvieron muestras de obsidianas, para ser sometidas a análisis geoquímicos (ICP-MS, Charles Stern, University of Colorado), tal como ya se había hecho con muestras
provenientes de otros valles de la región, con el objetivo de conocer las dinámicas de aprovechamiento y transporte de esta materia prima en Patagonia Occidental.

Análisis tecnológico y tipológico morfofuncional de las muestras arqueológicas

Los conjuntos arqueológicos de Alto Cisnes y Alto Simpson fueron sometidos a diversas clases de análisis para determinar las características tecnológicas y morfofuncionales de ambos conjuntos, análisis que fueron realizados en el laboratorio de Arqueología de la Universidad de Chile. La realización de esta actividad nos permitió conocer las actividades que se realizaron en los sitios que estudiamos, de manera de poder inferir una función de sitio para ellos, establecer las características tecnológicas de los procesos de talla, conocer también el aprovechamiento y gestión de materias primas líticas, para que una vez reunida esta información, pudiéramos entrar a discutir aspectos de la movilidad y la organización espacial de las poblaciones cazadoras recolectoras durante el periodo en cuestión. Nuestros resultados fueron discutidos a partir del ya mencionado modelo de la Organización de la Tecnología (Nelson 1991, Binford 1979, Andrefsky 1994, 1998).

Se realizó una caracterización morfofuncional de las categorías artefactuales presentes, siguiendo el método clasificatorio de Aschero (1983) y el método analítico propuesto por Jackson (2002). Tal y como propone Jackson, nuestro estudio incluyó la realización de una clasificación morfofuncional que nos permitió definir categorías genericas tanto de instrumentos como de sub-productos del proceso de talla. Tales categorías fueron descritas basándose en criterios funcionales, morfológicos, tecnológicos, métricos y petrográficos (Jackson 2002:28-29). Cabe mencionar que el análisis funcional fue realizado mediante la observación macroscópica de huellas de uso, y teniendo en consideración que “tools were often multi-functional, rendering determinations of specific tasks problematic, but some tool types served a dominant functional mode” (Odell 2003:184). Definiciones y características morfofuncionales de varios tipos instrumentales presentes en los conjuntos pueden encontrarse en Piel-Desruisseaux (1989) y en Andrefsky (1998).

Para esta etapa del análisis, los atributos de los artefactos que fueron considerados son: fractura de la pieza, matriz, dimensiones, y para los
instrumentos, se considera además la extracción de astillas, la técnica de astillamiento, el ángulo, la formatización, y finalmente la atribución de una tipología. La fractura de la pieza hace referencia a la presencia o ausencia de talón, rasgo que se emplea para definir si ésta se encuentra completa, o si sólo se conserva una porción, ya sea proximal, medial o distal. La matriz, a su vez, indica si la pieza fue manufacturada a partir de (o corresponde a) un derivado de talla, un núcleo, un guijarro o un clasto indefinido. El tamaño de la pieza se estableció mediante el posicionamiento de estas en circunferencias de diversos tamaños, con intervalos de un cm, y cuidando que la pieza no entre en contacto con el perímetro de las circunferencias. En el caso de los instrumentos, es relevante identificar la técnica de astillamiento, que puede ser percusión dura, percusión blanda, presión, uso, pulido, o bien una combinación de percusión dura y blanda, o percusión blanda y presión. La extracción de astillas hace referencia al posicionamiento de las extracciones en el instrumento, y puede ser marginal simple o doble, bimarginal simple, doble o simple opuesto, facial, facial marginal simple o bimarginal, o bien bifacial. En el caso de la medición de los ángulos de los filos activos, ésta se realizó a través de un goniómetro en intervalos de 15º, dando pie a la presencia de ángulos rasantes, muy oblicuos, obtusos, abruptos, obtusos y muy obtusos. Finalmente, se atribuyó a cada pieza una categoría tipológica, en base a un listado preestablecido, pero que sin embargo fue actualizado constantemente según fuera necesario, y se determinó si el instrumento resultaba o no formatizado. Los tipos de artefactos que incluye son los siguientes: desecho de retoque (DDR), desecho de talla (DDT), desecho de desbaste bifacial (DDB), derivado de núcleo (DDN), punta de proyectil, preforma, bifaz, raspador, raedera, cuchillo, cepillo, muesca (ausente), denticulado, tajador (ausente), lasca retocada, subproducto, núcleo, mano de moler, percutor y boleadora.

Cuando nos referimos a instrumentos formales o informales, lo hacemos en función de la definición de tales hecha por Andrefsky (1994). Un instrumento formal hace referencia a un artefacto en cuya producción se invirtió un esfuerzo, ya sea que haya sido manufacturado en un solo episodio de talla, o progresivamente a través de varios episodios de retoque y reavivado. Andrefsky sitúa a los instrumentos formales en el extremo de un continuo, en cuyo otro extremo se encuentran los instrumentos informales o expeditivos. Los instrumentos formales son herramientas flexibles, es decir, han sido diseñadas
para ser reavivadas en variadas ocasiones, y tienen el potencial para ser rediseñadas para su utilización en diversas funciones. Esta categoría incluye bifaces, núcleos preparados e instrumentos sobre láminas. En contraste, las herramientas informales (que incluye la tecnología expeditiva) requieren muy poco o nada de esfuerzo en su producción, no son estandarizadas y pueden ser catalogadas como casuales. Se estima que esta clase de artefactos fueron manufacturados, usados y descartados en un corto periodo de tiempo.

Se realizó también un análisis tecnológico de las piezas (Andrefsky 1998), y para ello se registró otra serie de variables, como tipo de talón, preparación del borde, presencia de aristas paralelas, presencia de corteza, técnica de extracción, espesor del talón, y para los instrumentos también se consideró la forma de la sección, tanto longitudinal como transversal y las coordenadas polares de astillamiento. En el caso de la preparación del borde y la presencia de aristas paralelas, la información recabada fue la presencia o ausencia de tal atributo. El tipo de talón, en cambio, incluye diez posibilidades, siendo estas un talón natural (con corteza), plano, facetado, pseudofacetado, rebajado, indeterminable, desgastado, ausente por fractura, ausente por talla, u otro. La corteza se registró como presente en un 0%, 25%, 50%, 75% o bien un 100% de la pieza. La técnica de extracción puede corresponder a percusión dura, percusión blanda o presión, y el espesor del talón fue medido mediante el uso de un pie de metro. En el caso de los instrumentos, la forma de la sección puede ser plano/plano, trapezoidal, plano/convexo, cóncavo convexo, elipsoidal, biconvexo, subtriangular, irregular u otro. Por último, las coordenadas polares de astillamiento se emplean para determinar cuánto de la superficie de la pieza muestra evidencias de retoque, y esto se determina posicionando el instrumento sobre este sistema de coordenadas bidimensional, el cual dividimos en ocho segmentos en que cada uno de ellos equivale a la octava parte del total de la circunferencia. De esta manera, a cada instrumento atribuimos un número entre el uno y el ocho, según cuánto de la superficie haya sido retocada. Esta información nos ayuda a determinar el grado de formatización y/o uso que presenta cada artefacto.

Además se realizó una identificación de los productos de las diversas etapas de la cadena operativa presentes en los conjuntos, según criterios que incluyen desde la tipología de los artefactos, hasta el porcentaje de corteza que éstos posean. El estudio de las cadenas operativas supone el análisis de los desechos, derivados de
núcleo, núcleos e instrumentos, en consideración con el rol que juegan en la secuencia de talla, ya que representan a las actividades que conforman el proceso de manufactura de instrumental lítico, es decir la obtención de matrices, el desbaste de guijarros y el procesamiento de los núcleos, la elaboración de instrumentos, el retoque y el reavivado de los filos. En consecuencia, todas las categorías mencionadas cobran importancia, al ser piezas claves en la comprensión de los procesos tecnológicos que tuvieron lugar en los sitios arqueológicos en estudio.

Los resultados de estos análisis fueron analizados con la ayuda de programas estadísticos, principalmente Microsoft Excel 2007, y la generación de gráficos y tablas. Como se ha señalado, la información obtenida en terreno fue ordenada mediante la generación de una base de datos que registra atributos principalmente tecnológicos, pero también petrográficos, tipológicos y tafonomíaicos. A partir de la caracterización tecnofuncional de los diferentes conjuntos estudiados, se definió la función de sitio y otras características de los distintos contextos. Tal y como sugiere Jackson, “los resultados de los análisis anteriores fueron (...) interpretados de acuerdo con la información contextual y asociaciones significativas (…)” (Jackson 2002:31). Esto ya que “The logic of the relationship between technological organization and distribution, and the premises upon which inferences are based, should be tested and applied with regard to context and in conjunction with other aspects of formation processes” (Nelson 1991:78).

El problema temporal
Un importante problema que enfrenta nuestra investigación, derivado de la ausencia de depósitos estratigráficos, es la imposibilidad de atribuir una cronología absoluta a los conjuntos artefactuales recuperados. Este análisis tecnológico y morfofuncional nos ayudará a resolver este problema mediante la generación de una cronología relativa, para lo cual también se evaluará la erosión diferencial y la comparación con fuentes bibliográficas de estudios que han enfrentado este mismo problema en otros valles cercanos a nuestra área de estudio. Por esta razón, dentro del análisis lítico, se incluirá la descripción del nivel de erosión diferencial que tengan las piezas (Borrazzo 2006, 2007), información que fue evaluada para intentar entregar una cronología relativa a los materiales, y para contrastar las condiciones ambientales a las cuales estuvieron expuestos los materiales, según se haya observado en terreno (Méndez et al. 2010b). La erosión diferencial “da cuenta de la existencia de intensidades diferentes de
alteración y/o la presencia de distintos tipos de fenómenos registradas sobre la superficie de un mismo artefacto. Un ejemplo de la primera situación sería una lasca cuya cara ventral presentara una abrasión más intensa que la registrada en su cara dorsal. En el segundo caso, se incluye la existencia de alteraciones producto de diferentes agentes segregadas espacialmente en la superficie del artefacto (p.e., abrasión en una cara y anillos de oxidación en otra)” (Borrazzo 2007:139).

Análisis espacial

Esta investigación contribuye al utilizar una novedosa metodología de análisis y procesamiento de datos, el SIG, o Sistema de Información Geográfico. Este recurso nos permitió profundizar en la comprensión de los sitios en relación con las características de la geografía del espacio circundante, otros asentamientos y hallazgos conocidos y las posibles fuentes de aprovisionamiento de recursos (destacando los recursos líticos). Además, facilitó la comparación entre las dos áreas de estudio. Para esto, ha sido necesario implementar una perspectiva espacial o territorial de los datos y la información recabada en terreno. De partida, los datos obtenidos deben poseer una ubicación definida mediante georreferenciación, y se registra a la vez un conjunto de atributos cualitativos de diversa índole de los sitios arqueológicos y lugares de búsqueda y recolección de materias primas líticas, que favorecerán y enriquecerán la creación de la plataforma de SIG, y el posterior análisis de la información.

Los datos obtenidos serán correlacionados con la información geológica del lugar obtenida previamente, comparados con las materias primas presentes en la muestra arqueológica, y finalmente incluidos en el SIG, junto con imágenes satelitales, información ambiental, los sitios arqueológicos encontrados, y otros elementos.

Para la realización del SIG, se utilizaron los programas Global Mapper y ArcView 3.3, e incluirá ambos sectores de estudio (Alto Cisnes y Alto Simpson). Al respecto es necesario mencionar que existen antecedentes de uso de SIG para el valle del Cisnes (Quemada 2008).
Síntesis de la muestra

Los materiales fueron obtenidos en campañas de terreno realizadas en el marco de los proyectos FONDECYT 1050139 y 1090027, y corresponden a piezas líticas provenientes de los sectores Alto río Cisnes, por una parte, y Alto río Simpson, por otra. De esta manera se conforman dos conjuntos de sitios y materiales arqueológicos, que fueron prestos a comparación, según los objetivos de esta investigación. Por características del registro hallado en estos valles, se trata en su totalidad de material superficial.

En relación al sector de Alto Cisnes, sólo fueron considerados los materiales provenientes de sitios arqueológicos correspondientes al periodo en cuestión (Holoceno Tardío), es decir, los sitios Appeleg 1 y 2 y El Deshielo. En el caso de Alto Simpson, la totalidad de sitios y hallazgos aislados recuperados parece corresponder a tiempos tardíos, de manera que fueron incluidos en la muestra. Cabe agregar que el bajo número de hallazgos obliga a no excluir ninguno de ellos, para que la muestra sea significativa. Además, la alta diversidad artefactual y de características espaciales y ambientales de los sitios, refuerza la necesidad de considerar el total de ellos en este estudio.

Cabe destacar que la mayoría de los hallazgos y sitios arqueológicos comprendidos en esta investigación son sitios a cielo abierto, lo que constituye un importante aporte a la arqueología regional, ya que, como se ha sostenido anteriormente, la ausencia de hallazgos de sitios arqueológicos de estas características en la región, parece responder más a un sesgo en el diseño de las investigaciones y los objetivos que éstas se han propuesto en el pasado, y no a una característica de las ocupaciones humanas del sector.
Acciones técnicas

- Revisión bibliográfica acerca de la prehistoria de las áreas de Alto Cisnes, Alto Simpson y valles aledaños, contemplando tanto la secuencia de ocupaciones humanas y sus características, como la evolución del entorno natural.

- Recopilación de antecedentes geológicos y cartográficos, para complementar las fuentes arqueológicas, y dar nuevas luces en relación a la evolución del entorno natural y el paisaje lítico local.

- Diseñar y realizar prospecciones en el sector de Alto Simpson, para evaluar la oferta local de recursos líticos, e identificar posibles fuentes de aprovisionamiento de materias primas líticas.

- Recuperación de materiales arqueológicos a partir de intervenciones estratigráficas y levantamientos superficiales, en el sector de Alto Simpson.

- Analizar la muestra arqueológica lítica proveniente de los sectores de Alto Cisnes y Alto Simpson (materias primas, categorías morfofuncionales y característica tecnológicas). Realización de dibujos técnicos de piezas seleccionadas.

- Analizar la muestra de materias primas disponibles en Alto Simpson y Coyhaique Alto levantados en terreno. Realización de análisis petrológicos macroscópicos.

- Reunir los resultados obtenidos en un SIG explicativo, a partir del geoposicionamiento sobre cartografía y fotografías aéreas, para así contrastar el escenario de recursos líticos con la evidencia arqueológica (materias primas, movilidad, selectividad de emplazamientos).

- Redacción de la tesis.
RESULTADOS

Arqueología de Alto río Simpson

Las unidades de material arqueo-superficial halladas en Alto Simpson consisten en pequeñas concentraciones de artefactos líticos, que incluyen entre 1 y 17 piezas. Son 20 hallazgos aislados (de entre 1 y 3 piezas) y 12 sitios arqueológicos (figura 2). Todos estos corresponden a localidades a cielo abierto, ubicados en contextos ambientales y geográficos diversos (en un área de deflación eólica, dentro de un parche boscoso, en la estepa, etc.). El conjunto recuperado se caracteriza por su naturaleza fragmentaria, lo cual se traduce en la ausencia de evidencias de cadenas operativas completas, además de otras características que mencionaremos en los acápites siguientes.

![Mapa del área de estudio](image)

Figura 2. Mapa del área de estudio señalando las unidades arqueológicas, y su relación con hitos geográficos. En morado encontramos los lugares de
recolección de materias primas; en rojo, los sitios arqueológicos encontrados en Alto Simpson; en blanco, los cuatro sitios con mayor cantidad de material: La Frontera, Aysén Sur, Tapera Sandoval y Pendiente Ministro 2.

En el sitio Alero Ministro se realizó un sondeo para evaluar su potencial estratigráfico; sin embargo, no se encontró material arqueológico en estratigrafía durante la excavación realizada. Éste sitio fue escogido para sondeo debido a la presencia de material superficial y al potencial que le otorgaba su categoría de refugio rocoso (Méndez et al. 2011c). Otras excavaciones realizadas en los sectores de Coyhaique y Coyhaique Alto, fuera de nuestra área de estudio, dieron igual resultado, inclusive las realizadas en Punta del Monte 2 (Bate 1970b), gran refugio rocoso con variadas pinturas rupestres y abundante material lítico superficial.

Los cuatro sitios con mayor cantidad de material arqueológico (Tapera Sandoval, La Frontera, Aysén Sur y Pendiente Ministro 2) serán abordados en mayor profundidad, y cabe mencionar que todos ellos se encuentran asociados a una fuente de agua permanente, a entre 15 y 250 metros de ella. Tapera Sandoval se emplaza en una planicie de pendiente suave y vegetación boscosa, y se encuentra afectado por la erosión eólica. La Frontera se encuentra en una ladera de pendiente suave a media, en un ambiente que combina la estepa arbustiva y el bosque, y también se ve afectado por la erosión eólica. Aysén Sur, a su vez, se emplaza en una ladera de pendiente media a marcada, y al igual que ocurre en La Frontera, el sector combina características de estepa arbustiva y de bosque, y se ve disturbado por acción del viento. Por último, Pendiente Ministro 2 se encuentra sobre una ladera boscosa de pendiente marcada, y a diferencia de los anteriores, no se ve afectado mayormente por la erosión eólica.

Tafonomía de los conjuntos líticos de Alto río Simpson

Para el sector de Alto Simpson, nos queda hacer referencia a la información formacional del conjunto lítico estudiado, para lo cual nos focalizaremos en el grado de erosión diferencial que se observa en la muestra arqueológica. Del total de 75 piezas, cincuenta y nueve, es decir un 78,6% del total, muestra algún grado de erosión (figura 3). Un 8% corresponde a las piezas “muy erosionadas”, mientras que las “erosionadas” incluyen un 25,3%, y las “levemente erosionadas”
un 45,3%. Si comparamos los resultados obtenidos para los cuatro sitios con mayor cantidad de material arqueológico de Alto Simpson, observamos que se presentan dos tendencias, una mayoría de piezas levemente erosionadas (En los sitios Aysén Sur y La Frontera) y una mayoría erosionada (Pendiente Ministro 2 y Tapera Sandoval). Las piezas no erosionadas son escasas (salvo en La Frontera), destacando el caso de Aysén Sur, donde todas las piezas muestran algún grado de erosión, y más escasas aun son aquellas muy erosionadas, contabilizándose tan sólo tres para todos los sitios. Esta información nos indica que en todos estos sitios los conjuntos arqueológicos fueron afectados por la erosión, siendo Pendiente Ministro 2 el más afectado, y La Frontera, el más protegido de ésta. La presencia de erosión diferencial puede ser consecuencia de varios factores, que incluyen una posible cronología más temprana de los asentamientos, o bien que los conjuntos se vieron más afectados por la abrasión eólica y/o fluvial debido a las características geomorfológicas del sector donde se emplazan los sitios.

<table>
<thead>
<tr>
<th>No erosionada</th>
<th>Levemente erosionada</th>
<th>Erosionada</th>
<th>Muy erosionada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aysén Sur</td>
<td>0,0%</td>
<td>66,7%</td>
<td>16,7%</td>
</tr>
<tr>
<td>La Frontera</td>
<td>35,7%</td>
<td>42,9%</td>
<td>21,4%</td>
</tr>
<tr>
<td>Pendiente Ministro 2</td>
<td>14,3%</td>
<td>14,3%</td>
<td>42,9%</td>
</tr>
<tr>
<td>Tapera Sandoval</td>
<td>16,7%</td>
<td>33,3%</td>
<td>50,0%</td>
</tr>
</tbody>
</table>

Figura 3. Grado de erosión diferencial en los cuatro sitios con mayor cantidad de material de Alto Simpson.
Oferta regional de recursos líticos

El estudio de la disponibilidad natural de rocas en el sector de Alto Simpson se basó en la búsqueda pedestre sistemática de muestras, que posteriormente fueron analizadas mediante una evaluación petrográfica (Sepúlveda 2011). Estas prospecciones se focalizaron en las cuencas de ríos y afluentes presentes en el territorio considerado para esta investigación, a lo que se suman los recorridos propios de las prospecciones arqueológicas, que tuvieron el doble propósito de buscar material arqueológico, y evaluar y seleccionar las rocas disponibles de buena y regular calidad para la talla.

En estas prospecciones destaca el hallazgo de una fuente natural de basalto, en el cerro Galera Chico, la cual, sin embargo, resultó ser de baja calidad, y en el área prospectada no se encontró evidencia arqueológica de que este material haya sido aprovechado.

Los resultados del análisis petrográfico indican que las muestras estudiadas corresponden en su mayoría a rocas volcánicas y a sílice microcristalina de origen hidrotermal, y en menor medida a rocas sedimentarias afectadas por procesos hidrotermales (Sepúlveda 2011).

<table>
<thead>
<tr>
<th>Materia prima</th>
<th>Proveniencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basalto</td>
<td>Cerro Galera Chico</td>
</tr>
<tr>
<td>Roca volcánica rica en sílice, probablemente toba (90%)</td>
<td>Cerca de BAL 029</td>
</tr>
<tr>
<td>Sílice microcristalina</td>
<td>Cerro Galera Chico</td>
</tr>
<tr>
<td>Roca sedimentaria calcárea silicificada</td>
<td>Cerro de BAL 022</td>
</tr>
<tr>
<td>Toba de lapilli río-dacítica</td>
<td>Cerca de Aysén Sur</td>
</tr>
<tr>
<td>Basalto</td>
<td>Cerca de Aysén Sur</td>
</tr>
<tr>
<td>Toba de lapilli río-dacítica</td>
<td></td>
</tr>
<tr>
<td>Andesita</td>
<td></td>
</tr>
<tr>
<td>Basalto</td>
<td></td>
</tr>
<tr>
<td>Sílice microcristalina</td>
<td></td>
</tr>
<tr>
<td>Sílice microcristalina rojiza, cortada por vetillas de sílice cristalina</td>
<td>Cerca de Aysén Sur</td>
</tr>
<tr>
<td>Toba de lapilli río-dacítica</td>
<td></td>
</tr>
<tr>
<td>Materias primas</td>
<td>Localización</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sílice microcristalina</td>
<td>Cuenca río Oscuro</td>
</tr>
<tr>
<td>Andesita</td>
<td>Cuenca río Oscuro</td>
</tr>
<tr>
<td>Toba de lapilli río-dacítica</td>
<td>Cuenca río Oscuro</td>
</tr>
<tr>
<td>Toba (90%)</td>
<td>Cuenca río Aysén</td>
</tr>
<tr>
<td>Andesita (principalemente vidrio)</td>
<td>Cuenca río Aysén</td>
</tr>
<tr>
<td>Basalto</td>
<td>Cuenca río Aysén</td>
</tr>
<tr>
<td>Sílice microcristalina</td>
<td>Cerca de BAL 019</td>
</tr>
<tr>
<td>Andesita (60%)</td>
<td>Cerca de BAL 019</td>
</tr>
<tr>
<td>Sílice microcristalina</td>
<td>Cerca de BAL 019</td>
</tr>
<tr>
<td>Riolita</td>
<td>Cerca de BAL 019</td>
</tr>
<tr>
<td>Riolita</td>
<td>Cerca de BAL 019</td>
</tr>
<tr>
<td>Limolita</td>
<td>Cerca de BAL 019</td>
</tr>
</tbody>
</table>

Tabla 1. Materias primas presentes naturalmente en Alto Simpson. Los porcentajes otorgados a algunas piezas representan el grado de certeza de la identificación; las demás muestras tienen un 100% de certeza. Ver Sepúlveda (2011).

La tabla 1 refleja la variabilidad de la oferta natural de recursos líticos del área, la cual incluye variados sílices microcristalinos, basaltos, tobas, riolitas, andesitas y limolita. La mayoría de estas fluctúan entre calidades buenas a regulares, siendo excepcionales las muestras encontradas de muy buena calidad para la talla, las cuales se limitan a sílicenes microcristalinas.

La información obtenida a partir del muestreo sistemático en terreno se complementó con la evaluación petrográfica de una selección de piezas provenientes del conjunto arqueológico (tabla 2), las cuales, naturalmente, son de procedencia indeterminada. Estas muestras fueron seleccionadas por ser representativas de la totalidad del conjunto. Los resultados indican la presencia de dacita, sílice, jaspe, toba y basalto. De éstas sólo el jaspe y la dacita no se encuentran entre el listado anterior de rocas de disponibilidad natural en Alto Simpson. La dacita, sin embargo, sabemos que es parte de la oferta local (Charles Stern comunicación personal, 2010).

<table>
<thead>
<tr>
<th>Materia prima</th>
<th>Proveniencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roca volcánica, probable dacita (60%)</td>
<td>BAL 037</td>
</tr>
<tr>
<td>Sílice microcristalina o roca sedimentaria calcárea silicificada</td>
<td>BAL 018</td>
</tr>
<tr>
<td>Jaspe</td>
<td>BAL 013, La Frontera</td>
</tr>
<tr>
<td>Toba de lapilli rio-dacítica, con textura soldada</td>
<td>BAL 023</td>
</tr>
<tr>
<td>Basalto</td>
<td>BAL 013, La Frontera</td>
</tr>
<tr>
<td>Toba (60%)</td>
<td>BAL 028</td>
</tr>
</tbody>
</table>

Tabla 2. Materias primas provenientes del conjunto arqueológico de Alto Simpson. Los porcentajes otorgados a algunas piezas representan el grado de certeza de la identificación.

Un aporte de gran relevancia fue el hallazgo de obsidiana negra de Pampa del Asador, tanto en el sector de Alto Simpson como también en los sectores aledaños inmediatamente al Este (Coyhaique) y al Norte (Coyhaique Alto). Como muestra la tabla 3, existen tras piezas de obsidiana PDA confirmada para Alto Simpson, correspondientes a desechos de talla de los sitios Tapera Sandoval, La Frontera y BAL 039.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Sitio</th>
<th>Tipología</th>
<th>Color</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BAL011</td>
<td>Desecho</td>
<td>Negra</td>
<td>PDA1</td>
</tr>
<tr>
<td>2</td>
<td>COY008</td>
<td>Preforma</td>
<td>Negra</td>
<td>PDA1</td>
</tr>
<tr>
<td>3</td>
<td>BAL013</td>
<td>Desecho</td>
<td>Negra</td>
<td>PDA2</td>
</tr>
<tr>
<td>4</td>
<td>CYA001</td>
<td>Desecho</td>
<td>Negra</td>
<td>PDA1</td>
</tr>
<tr>
<td>5</td>
<td>CYA001</td>
<td>Desecho</td>
<td>Negra</td>
<td>PDA1</td>
</tr>
<tr>
<td>6</td>
<td>CYA001</td>
<td>Desecho</td>
<td>Negra</td>
<td>PDA1</td>
</tr>
<tr>
<td>7</td>
<td>CYA001</td>
<td>Desecho</td>
<td>Negra</td>
<td>PDA3c</td>
</tr>
<tr>
<td>8</td>
<td>BAL039</td>
<td>Desecho</td>
<td>Negra</td>
<td>PDA1</td>
</tr>
<tr>
<td>9</td>
<td>CYA002</td>
<td>Desecho</td>
<td>Negra</td>
<td>PDA1</td>
</tr>
<tr>
<td>10</td>
<td>CYA002</td>
<td>Desecho</td>
<td>Negra</td>
<td>PDA2</td>
</tr>
</tbody>
</table>

Tabla 3. Análisis ICPMS sobre muestras de obsidiana y tipos identificados. PDA: Pampa del Asador. Las siglas BAL representan sitios de Alto Simpson
(alrededores de la ciudad de Balmaceda), mientras que COY y CYA corresponden a Coyhaique y Coyhaique Alto, respectivamente.

Cadenas operativas y aprovechamiento de materias primas líticas en Alto río Simpson

En este acápite y los siguientes, algunas categorías (particularmente la tecnocio-tipología, ver anexo 3) fueron agrupadas o se omitió parte de los resultados en tablas y gráficos, para evitar la presentación de información muy minoritaria o que no resulte pertinente, como por ejemplo la presencia de ciertas materias primas o categorías artefactuales muy escasamente representadas. La información completa, sin embargo, puede encontrarse en los anexos.

En el conjunto arqueológico de Alto Simpson están presentes evidencias de todas las etapas de la secuencia de reducción lítica, aunque en ningún sitio arqueológico se encontraron cadenas operativas completas, es decir, la secuencia de reducción completa de una materia prima determinada. De 75 artefactos, un 16% corresponde a núcleos, un 25,3% a desechos de toda clase, un 32% a derivados de núcleo y un 26,6% a productos terminados.

<table>
<thead>
<tr>
<th>Materia prima</th>
<th>Derivados de núcleo</th>
<th>Desechos</th>
<th>Núcleos</th>
<th>Productos terminados</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andesita</td>
<td>3</td>
<td>2</td>
<td></td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Basalto</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Dacita</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Diorita</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Obsidiana negra</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Riolita</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Sílice</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>Toba</td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Total general</td>
<td>24</td>
<td>19</td>
<td>12</td>
<td>20</td>
<td>75</td>
</tr>
</tbody>
</table>

Tabla 4. Segmento de la cadena operativa según materias primas.
Las poblaciones cazadoras recolectoras que habitaron el sector de Alto Simpson, aprovecharon rocas de variadas cualidades y calidades. De un total de 75 piezas completas, un 32% son de diversos tipos de sílice, siendo ésta la materia prima más abundante. Le sigue la dacita, con un 22,6%, y la andesita y el basalto, ambos con un 12%. También se observa la presencia de obsidiana negra, aunque sea en la forma de una sola pieza. Al asociar materias primas con los productos de la secuencia de producción lítica (tabla 4), obtenemos que tanto para los núcleos como para sus derivados, la materia prima más común es la dacita, mientras que en el caso de los productos terminados y los desechos de talla, es el sílice. Lo primero puede tener relación con la alta disponibilidad de dacitas de buena calidad disponibles naturalmente en Alto Simpson. Llama la atención el que, si bien existen representadas en el conjunto evidencias de todas las etapas de la secuencia de reducción, no podemos decir lo mismo si analizamos cada materia prima por separado. Aunque cuatro de los ocho tipos de rocas (basalto, dacita, riolita y sílice) están presentes en todas las categorías, no se encontraron evidencias de cadenas operativas completas en el sector.

<table>
<thead>
<tr>
<th>Segmento Cadena Operativa</th>
<th>Buena</th>
<th>Mala</th>
<th>Muy buena</th>
<th>Regular</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derivados de núcleo</td>
<td>4</td>
<td>1</td>
<td>19</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Desechos</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>Núcleos</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Productos terminados</td>
<td>8</td>
<td>3</td>
<td>9</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Total general</td>
<td>19</td>
<td>6</td>
<td>4</td>
<td>46</td>
<td>75</td>
</tr>
</tbody>
</table>

Tabla 5. Segmento de la cadena operativa según calidad de la materia prima.

En relación a la calidad de las rocas aprovechadas (tabla 5), más de la mitad del conjunto corresponde a calidades regulares, que incluyen andesitas, basaltos, dacitas, riolitas, sílices y tobas. Esta tendencia se repite en los productos de todos los segmentos de la secuencia de reducción, destacándose el caso de los derivados de núcleo. Las únicas piezas de rocas de muy buena calidad se concentran en la categoría de desechos.

Piezas correspondientes a todos los segmentos de la cadena operativa presentan algún porcentaje de corteza (tabla 6), pese a que sólo un núcleo y un derivado de núcleo tienen más del 75% de su superficie cubierta por corteza. Tanto en el caso de los productos terminados, como de los derivados de núcleo y desechos, la mayoría de las piezas (un 56% del conjunto) presentan un 0% de corteza, es decir, corresponden a lascas de desbaste secundario, o a artefactos cuya corteza ha sido removida mediante talla. Sólo en el caso de los núcleos, son mayoría los que poseen una cuarta parte de su superficie con corteza (un 50%). En sólo 13 (17,3%) piezas la corteza comprende más del 50% de su superficie. Estas 13 piezas incluyen tanto instrumentos (3 cepillos) como núcleos (n=4), derivados de núcleo (n=5) y un subproducto.

<table>
<thead>
<tr>
<th>Materia prima</th>
<th>Clasto indefinido</th>
<th>%</th>
<th>Derivado de talla</th>
<th>%</th>
<th>Guijarro</th>
<th>%</th>
<th>Núcleo</th>
<th>%</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andesita</td>
<td>8</td>
<td>88,8</td>
<td>1</td>
<td>11,1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basalto</td>
<td>7</td>
<td>77,7</td>
<td>2</td>
<td>22,2</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dacita</td>
<td>12</td>
<td>70,5</td>
<td>5</td>
<td>29,4</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diorita</td>
<td>1</td>
<td>33,3</td>
<td>1</td>
<td>33,3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obsidiana negra</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>14,2</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riolita</td>
<td>6</td>
<td>85,7</td>
<td>3</td>
<td>12,5</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silice</td>
<td>20</td>
<td>83,3</td>
<td>1</td>
<td>4,1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toba</td>
<td>3</td>
<td>60</td>
<td>2</td>
<td>40</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total general</td>
<td>1</td>
<td>1,3</td>
<td>58</td>
<td>77,3</td>
<td>75</td>
<td></td>
<td>15</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 7. Relación entre materias primas y tipo de matriz de la muestra de Alto Simpson.

En el conjunto arqueológico se registran, además de 58 derivados de talla y 15 núcleos, un clasto indefinido y un guijarro, de diorita y de sílice, respectivamente (tabla 7). Mientras que entre los derivados de núcleo destacan los artefactos de sílice, seguidos por la dacita, esta proporción se invierte en el caso de los núcleos. Dicho de otra manera, la mayoría de las materias primas se presentan como derivados de talla y como núcleos, siendo muy excepcional el caso del clasto indefinido, el guijarro y la pieza de obsidiana, que representan las únicas variaciones a la anterior afirmación.

Para entender la arqueología de Alto Simpson a escala de sitio, nos concentraremos en aquellos que poseen más de cinco piezas completas, que en este caso corresponden a cuatro: Tapera Sandoval (6 piezas completas), La Frontera (14), Aysén Sur (6) y Pendiente Ministro 2 (7), lo que da un total de 33 piezas para estos sitios. Cabe recordar que, si consideramos la totalidad de sitios y hallazgos aislados encontrados en Alto Simpson, obtenemos un total de 75 piezas completas, de un universo de 102.

<table>
<thead>
<tr>
<th></th>
<th>Tapera Sandoval</th>
<th>La Frontera</th>
<th>Aysén Sur</th>
<th>Pendiente Ministro 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andesita</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Basalto</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dacita</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Diorita</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obsidiana negra</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Riolita</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sílice</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Toba</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Figura 4. Aprovechamiento de materias primas en los principales sitios del sector.

El sitio Tapera Sandoval (figura 4) tiene dos piezas de dacita, dos de diorita y dos de sílice. Aquí la secuencia se encuentra incompleta (figura 5), ya que sólo tenemos desechos, núcleos y productos terminados, estando ausentes los derivados de núcleo. Podemos destacar también que los productos terminados (66,6% del total) son considerablemente más que los núcleos y desechos (16,6% en ambos casos), cuando sería esperable que particularmente los desechos fueran más abundantes que los productos terminados, si se hubiera realizado un proceso de talla integral, lo cual viene a reafirmar el carácter fragmentario de la muestra.

El sitio La Frontera cuenta con más del doble de piezas que el anterior, de las cuales la mitad corresponde a dacitas, seguidas por un 21,4% de andesitas. En La Frontera, se encuentran evidencias de todas las fases de la secuencia de reducción lítica, aunque como hemos señalado anteriormente, no existen evidencias de la realización de cadenas operativas completas en ninguno de estos sitios. La categoría tecno-tipológica más abundante la conforman los desechos (35%), seguidos por los núcleos (28,5%). Aysén Sur, por su parte, también cuenta con un número preponderante de dacitas, que alcanzan el 66,6% del conjunto. En el caso de Aysén Sur, sólo encontramos un núcleo y cinco derivados de núcleo, correspondiendo respectivamente a un 16,6% y un 83,3% del total. Finalmente, en Pendiente Ministro 2 predominan los sílices, con un 57,1%. En Pendiente Ministro 2, al igual que en La Frontera, se observan productos de todas las fases de la secuencia de reducción lítica, siendo mayoría los desechos (57,1%). Tanto los derivados de núcleo como los núcleos y los productos terminados presentan sólo una pieza, un 14,2% del total.

Como nos indica la figura 4, existe una notable variabilidad en cuanto a las materias primas presentes en estos cuatro sitios, siendo el sílice la única que está presente en todos ellos. Otras como el basalto, la obsidiana negra y la toba, sólo existen en un sitio cada una. En general, la materia prima más abundante es la dacita, y cabe destacar que La Frontera es el que presenta más diversidad, con 6 tipos distintos (cabe recordar que coincide con que este es el sitio con mayor número de piezas, superando largamente a los demás).
Figura 5. Segmentos de la secuencia de reducción láctica representados en los principales sitios del sector.

De estos cuatro sitios, sólo dos de ellos presentan evidencias de todas las fases de la secuencia de reducción, Pendiente Ministro 2 y La Frontera. Aysén Sur es el único sitio que no presenta productos terminados, mientras que sólo Tapera Sandoval no incluye derivados de núcleo. La categoría menos representada es la de los núcleos, con siete piezas, mientras que la más abundante es la de los desechos, con diez.

Una característica relevante en el conjunto estudiado es la presencia de aristas paralelas en el anverso de los derivados de talla, sean estos desechos, derivados de núcleo o instrumentos, ya que pueden denotar una intencionalidad en la producción de láminas. Las aristas paralelas denotan que las piezas fueron extraídas de núcleos preparados formalmente o formatizados, lo que significa que se destinó un esfuerzo adicional en su producción (Andrefsky 1994), para maximizar el aprovechamiento de la materia prima al adelgazar las extracciones, y generar en éstas una mayor superficie de filo activo mediante la producción de láminas. En este caso, un 25,3% del total de 63 piezas completas de Alto Simpson (el conjunto de 75 menos los núcleos) halladas en Alto Simpson posee aristas paralelas. De los cuatro sitios arqueológicos mencionados, tres de ellos
incluyen piezas con aristas paralelas. En esos tres sitios, se identificaron seis piezas de un total de veinticinco que poseen esta característica (un 24%), donde Aysén Sur y La Frontera presentan una proporción de 1:4 entre piezas con y sin aristas paralelas. En relación a los productos de las distintas etapas de la secuencia de reducción lítica en estos sitios (tabla 8), podría decirse que las aristas paralelas están presentes en un 25% de los derivados de núcleo, un 10% de los desechos, y lo que parece más relevante, un 42.8% de los productos terminados, aunque el número de piezas es demasiado bajo como para hablar de tendencias significativas. Sin embargo, es relevante considerar la existencia de esta característica tecnológica en la muestra lítica de Alto Simpson. Las aristas paralelas están presentes en tres categorías artefactuales, que son las láminas retocadas, las lascas retocadas y los raspadores.

<table>
<thead>
<tr>
<th>Secuencia de reducción por sitio</th>
<th>// Ausente</th>
<th>// Presente</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aysén Sur</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Derivados de núcleo</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>La Frontera</td>
<td>8</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Derivados de núcleo</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Desechos</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Productos terminados</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Pendiente Ministro 2</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Derivados de núcleo</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Desechos</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Productos terminados</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tapera Sandoval</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Desechos</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Productos terminados</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total general</td>
<td>19</td>
<td>6</td>
<td>25</td>
</tr>
</tbody>
</table>

Tabla 8. Segmento de la cadena operativa y presencia o ausencia de aristas paralelas. El total de 63 piezas representa el total del conjunto descontando los núcleos.

Acerca de la relación entre presencia de aristas paralelas y técnica de extracción (tabla 9), las primeras están presentes en el 42.8% de las piezas talladas mediante...
percusión blanda, mientras que en el caso de la percusión dura, la cifra se reduce a un 16,6%. Esto es consistente con la generación intencional de núcleos formatizados para la extracción de delgadas láminas de roca, como se explicaba anteriormente.

<table>
<thead>
<tr>
<th>Aristas paralelas por sitio</th>
<th>Percusión blanda</th>
<th>Percusión dura</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aysén Sur</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Ausente</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Presente</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>La Frontera</td>
<td>2</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Ausente</td>
<td>2</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Presente</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Pendiente Ministro 2</td>
<td>5</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Ausente</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Presente</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Tapera Sandoval</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Ausente</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total general</td>
<td>7</td>
<td>18</td>
<td>25</td>
</tr>
</tbody>
</table>

Tabla 9. Relación entre técnica de extracción de la pieza y presencia o ausencia de aristas paralelas.

La técnica de percusión dura fue utilizada con todas las materias primas presentes en el conjunto arqueológico, salvo la obsidiana negra (tabla 10). Ésta fue extraída mediante percusión blanda, al igual que la mitad de los tipos de rocas presentes en el conjunto. Sólo se encontró una evidencia de extracción mediante presión, sobre una pieza de sílice. En total, esto significa que el 72% del conjunto correspondiente a estos cuatro sitios fue extraído mediante percusión dura, y un 28% mediante percusión blanda. Podemos destacar que en los sitios Aysén Sur y Tapera Sandoval sólo se observa percusión dura, en La Frontera hay percusión blanda, aunque sólo en un 25% del conjunto, mientras que Pendiente Ministro 2 es el único sitio del sector donde la talla mediante percusión blanda es predominante.
Tabla 10. Relación entre materia prima y técnica de extracción de la pieza. Ver original en Anexos.

<table>
<thead>
<tr>
<th>Técnica de extracción por sitio</th>
<th>Andesita</th>
<th>Dacita</th>
<th>Riolita</th>
<th>Sílice</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aysén Sur</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>La Frontera</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Pendiente Ministro 2</td>
<td></td>
<td>2</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Percusión blanda</td>
<td></td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Percusión dura</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tapera Sandoval</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percusión dura</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total general</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td>7</td>
<td>22</td>
</tr>
</tbody>
</table>

Tanto en el caso de los desechos, como de los derivados de núcleo y los productos terminados, la mayoría de las piezas fue tallada mediante percusión dura. Por otra parte, cabe destacar que ninguna de las piezas talladas a través de percusión blanda presenta corteza.

Categorías tecno-tipológicas presentes en las unidades

Si bien la muestra arqueológica proveniente de Alto Simpson es pequeña, con tan sólo 75 artefactos, ésta posee una variabilidad tecno-tipológica que contempla trece categorías, incluyendo diversos tipos de desechos y de instrumentos, así como núcleos y derivados de núcleos (figura 6). Si revisamos las categorías tecno-tipológicas representadas en los cuatro mayores sitios del sector (tabla 11), observamos que sólo uno de ellos no presenta instrumentos, Aysén Sur. Los demás los incluyen, aunque en diferentes proporciones. Es notable que cada categoría artefactual esté presente en un sólo sitio. Tapera Sandoval es el único que presenta más de un tipo de instrumento, al incluir cepillos y un raspador, los cuales representan actividades de procesamiento de madera y de cuero. Las tres
lascas retocadas de La Frontera equivalen a instrumentos de corte, al igual que la lámina retocada de Pendiente Ministro 2.

Figura 6. Dibujos técnicos de algunas piezas de la muestra arqueológica de Alto Simpson. 1: Cepillo proveniente del sitio BAL 003. 2 y 3: Raspador y cepillo del sitio Tapera Sandoval. 4: Raspador del sitio Irineo Valdez. 5, 6 y 7: Dos núcleos provenientes de La Frontera; las piezas de las dos primeras imágenes reensamblan. 8: Derivado de núcleo de Alero Ministro. 9: Lámina retocada de Pendiente Ministro 1. 10: Lámina retocada del sitio Pendiente Ministro 2. 11: Raspador del sitio Pendiente Ministro 3.

Una vez descritos los hallazgos correspondientes a los principales sitios ubicados en Alto Simpson, podemos hacer referencia también a otros instrumentos
destacables, encontrados en sitios menores o como hallazgos aislados. Estos incluyen tres lascas y una lámina retocada, éstas últimas siempre consideradas formales por sus características tecnológicas, además de tres raspadores, dos cepillos, un bifaz de sílice y un cuchillo de andesita. Si tomamos en consideración todos los instrumentos que no forman parte de los cuatro sitios anteriormente mencionados, observamos que la gran mayoría de ellos son de carácter informal (nueve de doce, un 75%), y la mitad están hechos sobre sílice.

<table>
<thead>
<tr>
<th>Tecno-tipología</th>
<th>Tapera Sandoval</th>
<th>La Frontera</th>
<th>Pendiente Ministro 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cepillo</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Lámina retocada</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lasca retocada</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Raspador</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla 11. Categorías artefactuales halladas en los mayores sitios de Alto Simpson.

Si evaluamos la relación entre tipo de instrumento y materia prima (tabla 12), observamos que el sílice y la dacita son las más ubicuos, con dos categorías de cuatro, mientras que la andesita sólo fue identificada en el caso de dos lascas retocadas. Ésta categoría artefactual es la única que incluye dos materias primas para su realización; las otras tres se limitan a un tipo de roca. Si observamos esta misma relación concentrándonos en la calidad de las rocas, tenemos que los cepillos sólo presentan calidades regular y mala (lo cual es consistente con los tipos de rocas necesarios para la realización de trabajos sobre madera), la lámina retocada y el raspador son de rocas de buena calidad, mientras que las lascas retocadas son de calidad regular.

<table>
<thead>
<tr>
<th>Tecno-tipología por sitio</th>
<th>Andesita</th>
<th>Dacita</th>
<th>Sílice</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Frontera</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Lasca retocada</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Pendiente Ministro 2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Lámina retocada</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Tapera Sandoval</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cepillo</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Raspador</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 12. Categorías tecno-tipológicas y materia prima empleada.

En relación a la técnica de astillamiento de los instrumentos (tabla 13), el astillamiento por uso sólo fue observado en la lámina y las lascas retocadas, lo cual es consistente con el aprovechamiento de los filos vivos de estas piezas. La percusión dura sólo se empleó en la manufactura de los cepillos, cuyas materias primas así lo demandan.

<table>
<thead>
<tr>
<th>Técnica de astillamiento por sitio</th>
<th>Cepillo</th>
<th>Lámina retocada</th>
<th>Lasca retocada</th>
<th>Raspador</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Frontera</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percusión dura y uso Uso</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pendiente Ministro 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uso</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tapera Sandoval</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Percusión blanda y presión</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Percusión dura</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total general</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Tabla 13. Categoría tecno-tipológica y técnica de astillamiento de los instrumentos.

De los 8 instrumentos de estos sitios, sólo la cuarta parte de ellos son formatizados (tabla 14), que corresponden a un raspador y una lámina retocada. En el caso de las lascas retocadas, su carácter informal puede dar cuenta del aprovechamiento de los filos vivos de los derivados de núcleo. Cabe mencionar que los dos instrumentos formales son de sílice.

<table>
<thead>
<tr>
<th>Tecno-tipología por sitio</th>
<th>Formal</th>
<th>Informal</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Frontera</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Lasca retocada</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Pendiente Ministro 2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

62
Tabla 14. Formatización de los instrumentos de Alto Simpson.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th></th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tapera Sandoval</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Cepillo</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Raspador</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total general</td>
<td>2</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

Arqueología del sector alto del valle del río Cisnes

Los trabajos arqueológicos en el sector alto del valle del río Cisnes han dado a conocer una serie de sitios de características diversas (figura 7), los cuales incluyen la presencia de una cantera taller lítica, en torno a la cual se registraron varios sitios contiguos, una serie de estructuras funerarias de cronología tardía, tipo chenque (n=13), varios sitios bajo reparo rocoso y tres concentraciones líticas (Reyes et al. 2006, 2007, Reyes y Méndez 2010), sobre las cuales se focaliza este trabajo. Éstas corresponden a Appeleg 1 (CIS 009), Appeleg 2 (CIS 018) y El Deshielo (CIS 008). La primera se subdivide en 49 unidades de concentración superficial, de las cuales se efectuó recolecciones en las número 1, 4, 6, 10, 15, 16, 19, 20, 21, 25, 27, 29, 36, 37, 38, 46, 47 y 49, mientras que El Deshielo se subdivide en las concentraciones 1 y 2 (que por sus características se le considera a ambas concentraciones como una sola unidad para este trabajo).
Figura 7. Mapa del área de estudio señalando las unidades arqueológicas, y su relación con hitos geográficos. Los puntos rojos señalan la ubicación de las unidades arqueológicas encontradas en Alto Cisnes, y en blanco, los tres sitios destacados en este trabajo: El Deshielo, Appeleg 1 y Appeleg 2.

Appeleg 1 consiste en una extensa dispersión de materiales de diversa índole, donde la mayoría corresponde a restos líticos, distribuidos en un amplio sector de dunas. Se emplaza en un ambiente estepario abierto, aprovechando un sistema de médanos (que implican la presencia de reservas de agua, leña y variadas especies faunísticas) y quedades producidas por la deflación eólica en las dunas, que proveen de reparo. El sitio incluye unidades discretas, de entre 2 y 10 metros de diámetro, en un área total de 145,000 m². Appeleg 2 corresponde a un sitio a cielo abierto, y ocupa 10,000 m². Se encuentra a 915 msnm, asociado a una fuente de agua estacionaria intermitente, en una planicie correspondiente a un médano arenoso con vegetación de estepa arbustiva. Por su parte, El Deshielo se compone de dos concentraciones de material lítico a cielo abierto. La
concentración nº1, de mayor tamaño, contempla un total de sesenta y dos piezas (de las cuales sesenta se consideran completas), de diversas categorías líticas. El sitio se emplaza a 100 metros del curso del río Cisnes, “en una cárcava adyacente a una barranca de 20 m de altura, formada por deshielos estacionales” (Méndez et al. 2010b:86). Las concentraciones 1 y 2 contemplan una superficie de 1.300 m² y 900 m² respectivamente, y cabe destacar que la mayor parte de las piezas se encuentran en un corredor de pendiente abrupta generado producto de la erosión eólica. Se realizaron sondeos en el sitio, mas no se encontró material cultural en estratigrafía (Méndez et al. 2010b).

Tafonomía del conjunto lítico de Alto Cisnes

Al evaluar el grado de erosión diferencial del conjunto, observamos que un 63,5% de las piezas presentan algún grado de erosión. Específicamente, un 6,3% están ‘muy erosionadas’, un 21,5% ‘erosionadas’, el 35,5% ‘levemente erosionada’, y el 36,4% no presenta ningún grado de erosión. Esta información se vuelve más significativa cuando comparamos los resultados obtenidos para las diferentes unidades del sector (figura 8). En la gran mayoría de ellas, son predominantes las piezas que presentan algún grado de erosión (sólo en las unidades 20 y 21 de Appeleg 1 la mayor parte de éstas no está erosionada). En cuatro de las ocho unidades, imperan las piezas levemente erosionadas, y si bien los líticos muy erosionados son minoritarios si consideramos el conjunto de las unidades de Alto Cisnes, el sitio El Deshielo escapa de esta tendencia, ya que se observa un aumento progresivo en el número de piezas mientras mayor es el grado de erosión, y es el único sitio en el cual la mayor parte del conjunto artefactual se encuentra muy erosionado. Esto se conduce con las características geográficas del área en que se emplaza El Deshielo, mencionadas en el acápite anterior. En un principio, esto llevó a los investigadores a atribuir la ocupación de este sitio a cronologías tempranas, pese a que esta noción fue posteriormente descartada, una vez que se correlacionó el grado de erosión diferencial y la ubicación espacial de las piezas. Este ejercicio evidenció que existía una relación entre el nivel de abrasión eólica de los artefactos, y las condiciones de viento actual del lugar en que se encontraron, lo que indica que las marcadas huellas de abrasión que presentan estos materiales, corresponden a un proceso reciente en el sentido del viento actual que erosiona el contexto, o en otras palabras, la distribución de la abrasión tiene un correlato con el patrón de deflación de la
duna y, por ende, un origen “relativamente” reciente (Méndez et al. 2010b:87). De esta manera, es posible concluir que los vestigios de erosión diferencial no son necesariamente indicadores de una cronología más temprana, ya que no significa que el conjunto estuvo expuesto por más tiempo, al menos para el sector de Alto Cisnes.

![Gráfico de erosión diferencial](image)

Figura 8. Grado de erosión diferencial en las ocho unidades con mayor número de piezas de Alto Cisnes.

Oferta regional de recursos líticos

Para el curso superior del río Cisnes, se realizó una caracterización inicial de los tipos de rocas disponibles en el entorno circundante, a partir de una determinación macroscópica (Sepúlveda 2006). Pese a que no se realizaron recorridos pedestres para evaluar la oferta de recursos líticos en la localidad, los investigadores observaron en terreno la presencia de materias primas de baja
calidad en el entorno inmediato, y posiblemente rocas de muy buena calidad en el entorno circundante (Méndez 2006).

Destaca el hallazgo de un tipo local de obsidiana en los faldos occidentales del cerro El Chueco (Méndez et al. 2008), en la forma de rodados irregulares distribuidos en un área amplia, como fuente secundaria. Cabe mencionar que ésta presenta una baja calidad para la talla y el tamaño de los rodados es insuficiente para cualquier clase de uso o talla. Su escasísima frecuencia en sitios inmediatos con correcto control cronológico sugiere que no representó una alternativa a las fuentes conocidas hasta el momento. Entre las últimas, Pampa del Asador, ubicada a alrededor de 400 km en dirección Sur (figura 1), y Sacanana y Sierra Negra, >400 km al Noreste, sí se encuentran representadas a través de muestras de obsidiana recuperadas en los sitios arqueológicos de Alto Cisnes (Méndez et al. 2012, Stern et al. 2011). Además se observa la presencia de una cantera-taller lítica de uso restringido, fuente de una riolita de calidad media, y de la cual el hallazgo de varios sitios contiguos sería prueba de su aprovechamiento.

El citado trabajo de Sepúlveda (2006) se realizó a partir de 7 muestras de rocas disponibles localmente en la estepa del curso alto del río Cisnes, y se determina que las rocas muestreadas corresponden principalmente a sílice microcristalina y a rocas volcánicas (tabla 15).

<table>
<thead>
<tr>
<th>Procedencia</th>
<th>Materia Prima</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 007</td>
<td>Brecha hidrotermal (riolita como protolito)</td>
</tr>
<tr>
<td>CIS 014</td>
<td>Toba riolítica ignimbrita</td>
</tr>
<tr>
<td></td>
<td>Riolita</td>
</tr>
<tr>
<td>CIS 015</td>
<td>Riolita brechizada</td>
</tr>
<tr>
<td>CIS 044</td>
<td>Obsidiana</td>
</tr>
<tr>
<td></td>
<td>Basalto</td>
</tr>
<tr>
<td></td>
<td>Obsidiana</td>
</tr>
<tr>
<td>CIS 046</td>
<td>Obsidiana</td>
</tr>
<tr>
<td>CIS 053</td>
<td>Toba de lapilli cristalina riolítica</td>
</tr>
<tr>
<td>8NHA1</td>
<td>Sílice microcristalina</td>
</tr>
</tbody>
</table>

Esta muestra incluye rocas de calidad buena y regular para la talla. Sin perjuicio de lo anterior, cabe mencionar que la inexistencia de información procedente de prospecciones pedestres sistemáticas para evaluar la oferta local de recursos líticos, no permite determinar el origen local o alóctono de estas materias primas. Un argumento en favor de la presencia de mecanismos de abastecimiento de tipo “inserto” (sensu Binford 1979), es la ausencia de espacios formalmente destinados a la extracción de rocas de alta calidad (Méndez 2006), cuya única excepción es la ya mencionada cantera-taller de riolita. Si bien esto no descarta la posible presencia de rocas de alta calidad en la forma de rodados en las cuencas del río y sus afluentes, o de guijarros disponibles en sectores cercanos, esta posibilidad se mantiene como remota.

<table>
<thead>
<tr>
<th>Procedencia</th>
<th>Materia prima</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 009 unidad 37</td>
<td>Andesita</td>
</tr>
<tr>
<td>CIS 009 unidad 21</td>
<td>Arenisca fina, silicificada (90%)</td>
</tr>
<tr>
<td>CIS 009 unidad 10</td>
<td>Andesita (principalmente vidrio)</td>
</tr>
<tr>
<td>CIS 009 unidad 21</td>
<td>Andesita basáltica</td>
</tr>
<tr>
<td>CIS 009 unidad 37</td>
<td>Andesita</td>
</tr>
<tr>
<td>CIS 009 unidad 21</td>
<td>Diorita, de grano fino (hipabasal)</td>
</tr>
</tbody>
</table>

Tabla 16. Materias primas provenientes del conjunto arqueológico. El porcentaje (90%) otorgado a la segunda pieza representa el grado de certeza de la identificación; las demás muestras tienen 100% de certeza. Ver Sepúlveda (2011).

Para complementar la información obtenida mediante el muestreo no sistemático realizado en terreno (tabla 16), se seleccionaron algunas muestras del conjunto arqueológico, correspondientes a las materias primas más representadas en éste, para ser analizadas y determinar de manera más precisa el tipo de roca al que pertenecen; esto debido a la posibilidad que estos tipos rocosos fueran efectivamente locales. Para esto, sólo fueron seleccionadas muestras de calidad regular, debido a que las materias primas de buena y muy buena calidad más representadas en el Cisnes corresponden a diversos sílices cuya identificación resulta menos compleja. Como se aprecia en la tabla 16, la mayor cantidad de
materias primas dentro de esta categoría de calidad, son andesitas de diversos tipos, y también encontramos dioritas y areniscas. En términos generales, las muestras de rocas corresponden en su mayoría a rocas volcánicas y en menor medida a rocas sedimentarias afectadas por procesos hidrotermales (Sepúlveda 2011).

Cadenas operativas y aprovechamiento de materias primas líticas en Alto río Cisnes

A diferencia de lo observado en Alto Simpson, en el sector alto del valle del río Cisnes no sólo están presentes evidencias de todas las etapas de la secuencia de reducción lítica, sino que también se han identificado cadenas operativas completas en algunas de las unidades estudiadas, es decir, evidencia de que en algunas de ellas el descarte de los procesos de talla se encuentra mejor representado. De un total de 801 piezas, un 38,5% corresponden a desechos de diversos tipos, un 34,9% corresponden a derivados de núcleo, un 21,7% a productos terminados, y un 4,7% a núcleos. En el valle del Cisnes, se ha encontrado evidencia del aprovechamiento de varios tipos de rocas, entre los cuales destaca el uso del silice, por lejos el más abundante, representando el 67,04% del total (tabla 17). La segunda roca más aprovechada es la andesita, con un 19,6%.

<table>
<thead>
<tr>
<th>Materia prima</th>
<th>Derivados de núcleo</th>
<th>Desechos</th>
<th>Núcleos</th>
<th>Productos terminados</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andesita</td>
<td>69</td>
<td>61</td>
<td>2</td>
<td>25</td>
<td>157</td>
</tr>
<tr>
<td>Basalto</td>
<td>3</td>
<td>10</td>
<td></td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Dacita</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Diorita</td>
<td>6</td>
<td>13</td>
<td></td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>MP grano grueso</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>Obsidiana negra</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>Riolita</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Sílice</td>
<td>175</td>
<td>211</td>
<td>32</td>
<td>119</td>
<td>537</td>
</tr>
<tr>
<td>Toba</td>
<td>9</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>Vidrio riolítico</td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total general</td>
<td>280</td>
<td>309</td>
<td>38</td>
<td>169</td>
<td>796</td>
</tr>
</tbody>
</table>
Tabla 17. Segmento de la secuencia de reducción lítica según materias primas.

El conjunto arqueológico de Alto Cisnes incluye una alta proporción de piezas de sílice, el cual conforma el 67,5% del total. Si dividimos el conjunto en cuatro categorías, según los productos de los distintos segmentos de la secuencia de reducción lítica, observamos que en todas ellas el sílice es preponderante, seguido de la andesita, y otras materias primas que son considerablemente minoritarias (el caso de los núcleos resulta excepcional salvo en la mayoría de sílices, como indica la tabla 17). Cabe destacar también que sólo cinco de los doce tipos de rocas identificados en el valle (andesita, rocas de grano grueso, obsidiana negra, sílice y toba) están presentes en todas las categorías de esta secuencia, es decir, incluyen núcleos, derivados de núcleo, desechos y productos terminados.

<table>
<thead>
<tr>
<th>Segmento de cadena operativa</th>
<th>Muy buena</th>
<th>Buena</th>
<th>Mala</th>
<th>Regular</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derivados de núcleo</td>
<td>38</td>
<td>141</td>
<td>21</td>
<td>80</td>
<td>280</td>
</tr>
<tr>
<td>Desechos</td>
<td>45</td>
<td>165</td>
<td>15</td>
<td>84</td>
<td>309</td>
</tr>
<tr>
<td>Núcleos</td>
<td>1</td>
<td>34</td>
<td>1</td>
<td>2</td>
<td>38</td>
</tr>
<tr>
<td>Productos terminados</td>
<td>7</td>
<td>113</td>
<td>20</td>
<td>33</td>
<td>173</td>
</tr>
<tr>
<td>Total general</td>
<td>91</td>
<td>453</td>
<td>57</td>
<td>199</td>
<td>800</td>
</tr>
</tbody>
</table>

En cuanto a la calidad de estas materias primas, la mayor parte del conjunto (un 56,5%) corresponde a rocas de buena calidad, mientras que un 24,8% son de calidad regular, un 11,3% son de muy buena calidad, y un 7,1% son de mala calidad para la talla. Entre las materias primas de muy buena calidad están las piezas de obsidiana y algunas de sílice, mientras que la categoría de rocas de buena calidad destacan la mayoría de los sílices. Las rocas de calidad regular son más variadas, incluyendo ocho tipos de rocas, entre las cuales predominan las andesitas. Al asociar la calidad de las materias primas con los productos de las etapas de la secuencia de reducción lítica, observamos que en las cuatro categorías imperan las rocas de calidad buena, seguidas en todos los casos por calidades regulares (tabla 18). Vale destacar el caso de los núcleos, donde se hace muy patente la predominancia de materias primas buenas, donde las demás calidades equivalen tan sólo al 8,3% en conjunto.
Materia prima	0	0,25	0,5	0,75	1	Total general
Andesita | 86 | 51 | 16 | 2 | | 155
Basalto | 10 | 3 | | | | 13
Dacita | 1 | 4 | 1 | | | 6
Diorita | 10 | 7 | 3 | | | 20
MP grano grueso | 6 | 6 | 2 | 1 | 2 | 17
Obsidiana negra | 11 | 2 | | | | 13
Riolita | 2 | | | | | 2
Sílice | 478 | 50 | 9 | | | 537
Toba | 11 | 8 | 2 | | | 21
Vidrio riolítico | 3 | | | | | 3
Total general | 618 | 131 | 33 | 3 | 2 | 787

Tabla 19. Porcentaje de corteza que presentan las distintas materias primas.

En relación a la presencia de corteza en las piezas (tabla 19), observamos que la mayor parte del conjunto (un 77,1%) no la presenta, y el número de piezas representadas resulta inversamente proporcional al porcentaje de corteza.

Segmento de cadena operativa	0	0,25	0,5	0,75	1	Total general
Derivados de núcleo | 210 | 64 | 6 | | | 280
Desechos | 253 | 38 | 18 | | | 309
Núcleos | 30 | 5 | 2 | 1 | | 38
Productos terminados | 125 | 24 | 7 | 2 | 2 | 160
Total general | 618 | 131 | 33 | 3 | 2 | 787

Tabla 20. Segmento de la cadena operativa según porcentaje de corteza.

Al igual que en Alto Simpson, todos los segmentos de la cadena operativa incluyen artefactos que presentan algún porcentaje de corteza (tabla 20), aunque sólo tres de ellos tienen el 75% de su superficie con corteza (un núcleo y dos productos terminados), y en dos casos esta llega al 100% (dos productos terminados). En todos los casos, la mayor parte no presenta corteza, seguidos
por piezas con un 25% de corteza, y en menor proporción, por artefactos cuya superficie está cubierta en un 50%.

<table>
<thead>
<tr>
<th>Materia prima</th>
<th>Clasto indefinido</th>
<th>Derivado de talla</th>
<th>Guijarro</th>
<th>Núcleo</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andesita</td>
<td>1</td>
<td>146</td>
<td>6</td>
<td>3</td>
<td>156</td>
</tr>
<tr>
<td>Basalto</td>
<td>13</td>
<td>1</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Dacita</td>
<td>6</td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Diorita</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>MP grano grueso</td>
<td>2</td>
<td>11</td>
<td>8</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>Obsidiana negra</td>
<td></td>
<td>12</td>
<td></td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Piedra pome</td>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Riolita</td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sílice</td>
<td>2</td>
<td>503</td>
<td></td>
<td>31</td>
<td>536</td>
</tr>
<tr>
<td>Toba</td>
<td></td>
<td>19</td>
<td></td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>Vidrio riolítico</td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total general</td>
<td>9</td>
<td>735</td>
<td>15</td>
<td>39</td>
<td>798</td>
</tr>
</tbody>
</table>

Tabla 21. Relación entre materias primas y tipo de matriz de la muestra de Alto Cisnes.

El conjunto arqueológico de Alto Cisnes incluye una considerable mayoría de derivados de talla (tabla 21), con un 91,7% del total. Dentro del conjunto de los derivados de talla, destacan los artefactos de sílice, que corresponden al 68,4%, y los de andesita, con un 19,8%. Los artefactos de sílice también destacan entre los núcleos, donde equivalen a un 79,4% de esta categoría. En relación a su aptitud para la talla, la mayor parte de los derivados de talla son de buena calidad (un 56,7%), seguidos por los de calidad regular (25,8%).

Tal como hicimos en el caso del conjunto arqueológico de Alto Simpson, para comprender de mejor manera el sector de Alto Cisnes a escala de sitio, nos centraremos en aquellos que tienen más de cinco piezas completas, que para este sector corresponden a nueve sitios: El Deshielo (65 piezas completas), Appeleg 1 unidad 10 (34), Appeleg 1 unidad 16 (15), Appeleg 1 unidad 20 (51), Appeleg 1 unidad 21 (75), Appeleg 1 unidad 27 (74), Appeleg 1 unidad 37 (380), y Appeleg 2 (72), lo cual nos da un total de 766 piezas completas para estos sitios. Este
número aumentaría a 801 piezas completas, sin embargo, si consideráramos la totalidad de sitios y hallazgos aislados encontrados en Alto Cisnes, de un universo de 1259 piezas en total (completas e incompletas).

El sitio El Deshielo (CIS 008), contiene una mayoría de artefactos de sílice, seguidos por andesitas. Además, destaca la presencia en este sitio de cinco de las doce piezas de obsidiana negra recuperadas en Alto Cisnes. En Appeleg 1, hallamos que en la unidad 10 mantiene su dominio el sílice, pero en segundo lugar encontramos materias primas de grano grueso, a diferencia de otras unidades de Appeleg 1, donde este lugar lo ocupa la andesita. La unidad 16 del mismo sitio también muestra una tendencia anómala, ya que es la única que no contiene andesita. En cambio, encontramos rocas de grano grueso y diorita, además de una mayoría de sílice. En la unidad 20 el sílice alcanza una importante mayoría, con un 86,2%, seguido muy de lejos por otros cinco tipos de rocas, incluyendo un ejemplar de piedra pómex. No ha sido posible determinar la función que pudieron haber cumplido estos guijarros de piedra pómex, que no
presentan alteraciones aparentes, no obstante se sabe que fueron transportadas e integradas a los contextos habitacionales intencionalmente, ya que éstas no forman parte de la oferta local de recursos líticos. La unidad 21 es, junto con la n°37, la que presenta una mayor variabilidad de materias primas, contabilizándose once. Destaca nuevamente el sílice, seguido por la andesita, y completan el conjunto otros diez tipos de rocas, en una proporción que fluctúa entre un 1,3% y un 6,6%. La unidad 27 presenta un total de seis materias primas, y al igual que la mayoría de las unidades mencionadas, predomina el sílice, seguido por la andesita. La última unidad de Appeleg 1, y la mayor también, es la número 37. Ésta comprende un total de 380 piezas, un 68,4% de las cuales son de sílice, seguidas por un 20,5% de andesitas. Como se señaló anteriormente, es (junto con la unidad 21) la unidad con mayor diversidad de materias primas de Alto Cisnes, y a las dos ya mencionadas se suma un número relativamente alto de dióritas, tobas y basaltos (en comparación con la presencia de este tipo de roca en las demás unidades), además de la presencia de cuatro piezas de obsidiana negra. El último sitio de esta selección es Appeleg 2, en el cual nuevamente observamos que predomina el sílice, seguido por un porcentaje menor de andesitas.

A partir de lo anterior, y si observamos la figura 9, podemos señalar que en todos los sitios mencionados, la materia prima más representada es el sílice, seguido por la andesita. Las únicas excepciones a lo afirmado en relación a la andesita, son los casos de Appeleg 1 unidad 16, que no presenta andesita y Appeleg 1 unidad 20, donde ésta tiene un bajo número de piezas, similar al de las tobas. Además, en la mayoría de las unidades hay materias primas que están presentes con tan solo una pieza. La mayoría de las unidades muestra una variabilidad considerable de materias primas, en mayores o menores cantidades.
En relación a las cadenas operativas (figura 10), observamos que en todas las unidades están presentes evidencias de todas las fases del proceso de reducción lítica, en mayor o menor proporción. Podemos concluir entonces, que de estas nueve unidades, todas presentan evidencias de la realización de secuencias de reducción lítica completas. La proporción en la cual están presentes núcleos, derivados de núcleo, desechos y productos terminados, sin embargo, varía notablemente, destacando por ejemplo la abundante presencia de productos terminados en El Deshielo, la alta proporción en que se encuentran los derivados de núcleo en Appeleg 1 unidad 10, o los desechos en Appeleg 1 unidades 20 y 37. Esta variabilidad sería un reflejo de diferencias en las actividades de talla que se realizaron en estos asentamientos, sugiriendo que la acción de descarte de instrumental fue más acentuada en El Deshielo, mientras que en la unidad 10 de Appeleg 1 parece haber primado la extracción de lascas, y en cambio, en las unidades 20 y 37 de Appeleg 1 habría sido preponderante la fase de terminación de instrumentos. Cabe mencionar que, como señala Binford, el descarte del instrumental relacionado con el desgaste natural de un instrumento era realizado generalmente dentro del campamento residencial, y no en el campo donde tenía lugar la actividad en la que tal instrumento sería utilizado (Binford 1979).

En relación a la presencia de aristas paralelas en el conjunto arqueológico de Alto Cisnes (tabla 22), observamos que el 47,5% del total de 642 piezas tienen aristas paralelas. Si lo asociamos a los productos de las cadenas operativas, un 60,1% de los derivados de núcleo tiene esta característica, al igual que un 31,3% de los desechos y un 54,5% de los productos terminados, lo que equivale a un porcentaje significativo, particularmente en el primer y el último caso. Esto sugiere que en gran parte del conjunto se destinó un esfuerzo adicional en su producción (sensu Andrefsky 1994), que incluye la generación de núcleos formatizados destinados a la producción de láminas, lo que estaría implicando (entre otras características) un carácter más conservado para el conjunto de Alto Cisnes. Las categorías artefactuales que presentan aristas paralelas incluyen un cuchillo, láminas y lascas retocadas, una preforma, raederas y raspadores. Si realizamos este análisis unidad por unidad, encontramos que en cuatro de las ocho unidades el número de piezas que posee aristas paralelas supera al número que no las tiene, y que incluso en los otros cuatro casos, el porcentaje de piezas con esta característica es considerable.
<table>
<thead>
<tr>
<th>Appeleg 1 Unidad 16</th>
<th>3</th>
<th>5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percusión blanda</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Appeleg 1 Unidad 20</td>
<td>20</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>16</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Appeleg 1 Unidad 21</td>
<td>25</td>
<td>35</td>
<td>60</td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>21</td>
<td>31</td>
<td>52</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Appeleg 1 Unidad 27</td>
<td>32</td>
<td>30</td>
<td>62</td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>19</td>
<td>22</td>
<td>41</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>13</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>Appeleg 1 Unidad 37</td>
<td>167</td>
<td>131</td>
<td>298</td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>120</td>
<td>121</td>
<td>241</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>47</td>
<td>10</td>
<td>57</td>
</tr>
<tr>
<td>Appeleg 2</td>
<td>28</td>
<td>32</td>
<td>60</td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>15</td>
<td>24</td>
<td>39</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>13</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>El Deshielo</td>
<td>21</td>
<td>27</td>
<td>48</td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>5</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>16</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>Total general</td>
<td>312</td>
<td>287</td>
<td>599</td>
</tr>
</tbody>
</table>

Tabla 23. Relación entre técnica de extracción de la pieza y presencia o ausencia de aristas paralelas. Se excluyó la técnica de presión.

Al relacionar la presencia de aristas paralelas con la técnica de extracción (tabla 23), nos encontramos con que para el conjunto de ocho unidades, el 54.9% de las piezas talladas mediante percusión blanda tienen aristas paralelas, mientras que en el caso de la percusión dura, ésta cifra se reduce a un 26.5%. Como observamos en la tabla, la tendencia de una mayor proporción de piezas con aristas paralelas entre derivados de talla extraídos mediante percusión blanda, en desmedro de aquellas extraídas mediante percusión dura, se observa para todas las unidades de Alto Cisnes.
<table>
<thead>
<tr>
<th>Técnica de extracción</th>
<th>Andesita</th>
<th>Diorita</th>
<th>Obsidiana negra</th>
<th>Sílice</th>
<th>Toba</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appeleg 1 Unidad 10</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>13</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>2</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Appeleg 1 Unidad 16</td>
<td>1</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Appeleg 1 Unidad 20</td>
<td>1</td>
<td></td>
<td>32</td>
<td>2</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>1</td>
<td></td>
<td></td>
<td>29</td>
<td>1</td>
<td>31</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Appeleg 1 Unidad 21</td>
<td>16</td>
<td>2</td>
<td>1</td>
<td>34</td>
<td>4</td>
<td>57</td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>33</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>6</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Appeleg 1 Unidad 27</td>
<td>19</td>
<td>1</td>
<td>1</td>
<td>39</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>31</td>
<td>1</td>
<td>41</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>11</td>
<td></td>
<td></td>
<td>8</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Appeleg 1 Unidad 37</td>
<td>65</td>
<td>11</td>
<td>3</td>
<td>205</td>
<td>7</td>
<td>291</td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>38</td>
<td>4</td>
<td>3</td>
<td>183</td>
<td>5</td>
<td>233</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>27</td>
<td>7</td>
<td></td>
<td>22</td>
<td>2</td>
<td>58</td>
</tr>
<tr>
<td>Appeleg 2</td>
<td>9</td>
<td></td>
<td></td>
<td>45</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>6</td>
<td></td>
<td></td>
<td>31</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Percusión dura</td>
<td>3</td>
<td></td>
<td></td>
<td>14</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>El Deshielo</td>
<td>16</td>
<td>5</td>
<td>27</td>
<td>1</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>3</td>
<td>3</td>
<td>20</td>
<td>1</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Percusión dura</td>
<td>13</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Total general</td>
<td>130</td>
<td>17</td>
<td>11</td>
<td>403</td>
<td>15</td>
<td>576</td>
</tr>
</tbody>
</table>

Tabla 24. Relación entre materia prima y técnica de extracción de la pieza, considerando cinco de las materias primas más representadas. Ver detalle en anexo 10.

La técnica de talla mediante percusión dura fue utilizada en un 24,1% de los casos, mientras que la percusión blanda fue usada en un 75,9%, lo cual convierte a esta última en la técnica de extracción más empleada en Alto Cisnes. Esto se puede observar en la tabla 24, que nos muestra que esta tendencia se replica en
todas las unidades exceptuando la unidad número 16, donde la percusión dura es superior, aunque por tan solo una pieza. La percusión dura fue empleada en todas las rocas identificadas para el conjunto de Alto Cisnes, salvo la riolita, una roca volcánica indefinida (además de los ejemplares de piedra pómex, que no fueron trabajados). La percusión blanda, por su parte, sólo dejó de ser empleada sobre la roca volcánica indefinida (que corresponde a un lito discoidal). La extracción mediante presión se identificó en un número más reducido de materias primas, incluyendo sólo basalto, obsidiana negra y sílice.

Categorías tecno-tipológicas presentes en las unidades

El conjunto de artefactos arqueológicos hallados en Alto Cisnes, incluye una amplia variabilidad tipológica y morfofuncional, la cual incluye veinte categorías diferentes, como se observa en el anexo 11.

Existen algunos instrumentos distintivos, tales como un lito discoidal y un disco natural de andesita, provenientes de Appeleg 1 unidad 37 (ver imágenes en anexo 26). A la vez, podemos caracterizar el hallazgo de cuatro puntas de proyectil triangulares pedunculadas, de sílice de buena calidad, todas las cuales tienen tres centímetros de tamaño, y son altamente formatizadas, y probablemente corresponden a puntas de flecha. Más allá de estas características, estas puntas presentan una significativa variabilidad tipológica, como se observa en la figura 12, y sugieren una temporalidad tardía, posiblemente posteriores a los 1000 años AP (Mena 1991). Otros artefactos distintivos son un gran raspador enmangable de andesita, proveniente de la unidad 1 de Appeleg 1, un peso lítico proveniente de la unidad 20, “probablemente para tensar cueros en el trabajo de su raspado” (Méndez 2006:24), una pequeña cuenta de collar perteneciente a la unidad 16, y una boleadora proveniente de la unidad nº16, la cual presenta una particular forma ‘de pera’, y está cubierta de abundante pigmento rojo, lo cual no fue observado en ninguna otra pieza en ambos valles. En relación a estos instrumentos, observamos que si bien en Appeleg 1 existe evidencia de ocupaciones tempranas, éstas son minoritarias, y la mayor parte de los conjuntos encontrados corresponde a tiempos tardíos, como se observa en las características tecno-tipológicas que presentan las piezas en la figura 12.
Figura 11. Categorías tecno-tipológicas, presentes en los sitios de Alto Cisnes.

Ver detalle en anexo 12.

Pero más allá de tales excepciones, y en adición a los núcleos, derivados de núcleo, desechos, clastos indefinidos y guijarros que ya hemos mencionado, la muestra incluye una diversidad de instrumentos, que consisten en bifaces, boleadoras, cepillos, cuchillos, cuentas, discos pulidos, guijarros pulidos, láminas y lascas retocadas, un lito discoidal, machacadores, manos de moler, percutores, pesos líticos, preformas, puntas de proyectil, raederas y raspadores. Estos instrumentos pueden agruparse según su función, como se muestra en la figura 11. De esta manera, logramos inferir las actividades que pudieron realizarse en cada una de estas unidades arqueológicas. En El Deshielo apreciamos una predominancia de instrumentos destinados al corte y al procesamiento de cueros, aunque existe una amplia variabilidad artefactual y funcional, mostrando la amplia gama de actividades que se llevaron a cabo en este lugar. En Appeleg 1, si consideramos todas las unidades, vemos que la única categoría funcional que no se encuentra representada es la molienda, todas las demás están presentes en mayor o menor medida. Mientras que el procesamiento de maderas se concentra en la unidad 21, los instrumentos ligados a la caza sólo se hallaron en las unidades
16 y 37. Las restantes cuatro categorías se encuentran mayormente representadas, es decir, los instrumentos de corte, multifuncionales, de procesamiento de cueros y de producción de líticos; estas dos últimas categorías son las únicas presentes en todas las unidades.

Figura 12. Dibujos técnicos de algunas piezas de la muestra arqueológica de Alto Cisnes. 1: Punta de proyectil proveniente del sitio Appeleg 1 unidad 37. 2: Raspador de Appeleg 1 sin unidad. 3: Cuchillo de Appeleg 1 s/u. 4: Núcleo de Appeleg 1 u27. 5: Raedera de Appeleg 1 u10. 6: Bifaz de Appeleg 1 u10. 7: Raspador de Appeleg 1 u10. 8: Bifaz de Appeleg 1 u21. 9: Bifaz de Appeleg 1 u36. 10: Punta de proyectil de Appeleg 1 u37. 11: Raspador de Appeleg 1 u37. 12:
Raspador de Appeleg 1 u37. 13: Punta de proyectil de Appeleg 1 u37. 14: Punta de proyectil de Appeleg 1 u38. 15: Boleadora de Appeleg 2. 16: Cepillo de El Deshielo. 17: Raspador de El Deshielo. 18: Lámina retocada de El Deshielo.

Visto de otra manera, observamos que el número de funciones artefactuales varía en cantidad en las distintas unidades, fluctuando entre tres y cinco por unidad, siendo las unidades 10 y 16 las menos variadas, y las número 21 y 37 las que incluyen más tipos tecno funcionales. En el caso de Appeleg 2, se identificaron cuatro categorías de un total de siete, lo cual nos permite inferir la realización de actividades relativas a la caza, al corte, al procesamiento de cueros y la talla lítica. Podemos destacar entonces que, si bien la mayoría de las categorías funcionales están presentes en varias unidades, existen dos categorías que se ven restringidas a uno o dos sitios. Es el caso de la actividad de molienda, que sólo se observa en El Deshielo, y el procesamiento de maderas, que se limita a El Deshielo y a la unidad 21 de Appeleg 1. Esto representa una importante diferencia entre el sitio El Deshielo y las diversas unidades de ambos sitios de Appeleg.

<table>
<thead>
<tr>
<th>Grupos funcionales</th>
<th>Andesita</th>
<th>Basalto</th>
<th>Dacita</th>
<th>Diorita</th>
<th>MP grano grueso</th>
<th>Obsidiana negra</th>
<th>Riolita</th>
<th>Sílice</th>
<th>Toba</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multifunción</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Procesamiento madera</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Corte</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Molienda Producción</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>Producción lítica</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Caza</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Procesamiento cuero</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>Total general</td>
<td>25</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>150</td>
<td>7</td>
<td>200</td>
</tr>
</tbody>
</table>

Al evaluar la relación existente entre grupos funcionales de instrumentos y materia prima (tabla 25), observamos que algunas materias primas están presentes en la mayoría de las categorías funcionales, como es el caso de la andesita, el sílice, y en menor medida, las rocas de grano grueso. Otras se encuentran más restringidas a ciertas clases instrumentales. Visto de otra manera, algunas categorías artefactuales están presentes en variados tipos de rocas, como es el caso de la producción de líticos y el procesamiento de cueros, mientras otras se limitan a pocas de ellas. En el caso de los instrumentos de molienda y multifuncionales, sólo se manufacturaron sobre un tipo de materia prima, que en el primer caso son las rocas de grano grueso, y en el segundo, el sílice. Estas tendencias se reflejan a nivel de las unidades, sirviendo de excepciones a esta regla los casos en que se observa la ausencia de alguna de las categorías mencionadas en ciertas unidades (por ejemplo, de andesitas en las unidades 10 y 16). Cabe destacar que los únicos grupos funcionales presentes en todas las unidades, son el procesamiento de cueros y la producción de instrumentos líticos, pese a que las materias primas de estos instrumentos variarán entre las distintas unidades. A su vez, los menos ubicuos son los instrumentos de molienda (presentes sólo en El Deshielo) y de procesamiento de madera (Appeleg 1 unidad 21 y El Deshielo).

<table>
<thead>
<tr>
<th>Grupos funcionales</th>
<th>Percusión dura</th>
<th>Percusión blanda</th>
<th>Presión</th>
<th>Uso</th>
<th>Presión y uso</th>
<th>Percusión blanda y presión</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrumento de caza</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Instrumento de corte</td>
<td>2</td>
<td>8</td>
<td>25</td>
<td>2</td>
<td>5</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>Instrumento de molienda</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Multifunción</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td>1</td>
<td>2</td>
<td>23</td>
<td>8</td>
<td>11</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Procesamiento de madera</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Producción de líticos</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Total general</td>
<td>10</td>
<td>7</td>
<td>39</td>
<td>26</td>
<td>10</td>
<td>19</td>
<td>111</td>
</tr>
</tbody>
</table>

En relación a la técnica de astillamiento de los instrumentos (tabla 26), se registraron trece categorías diferentes, entre las cuales son más comunes la presión, el astillamiento ocasionado por el uso de la pieza, la combinación de percusión blanda y presión, y la combinación de presión y uso. Pese a esto, algunas de estas técnicas no se encuentran presentes en todas las unidades, ya que por ejemplo, en las unidades 10 y 16 de Appeleg 1 están ausentes el astillamiento mediante presión, uso, o la combinación de ambas. Las únicas unidades que presentan todas las categorías de astillamiento son las número 21 y 27 de Appeleg 1.

<table>
<thead>
<tr>
<th>Grupos funcionales</th>
<th>Formal</th>
<th>Informal</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrumento de caza</td>
<td>9</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Instrumento de corte</td>
<td>18</td>
<td>35</td>
<td>53</td>
</tr>
<tr>
<td>Instrumento de molienda</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Multifunción</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td>48</td>
<td>1</td>
<td>49</td>
</tr>
<tr>
<td>Procesamiento de madera</td>
<td>7</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Producción de lítics</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Total general</td>
<td>90</td>
<td>43</td>
<td>133</td>
</tr>
</tbody>
</table>

Tabla 27. Formatización de los instrumentos de Alto Cisnes. Ver anexo 17 para detalle por unidad.

Del total de 133 instrumentos que incluye el conjunto, y que entran en las categorías de grupos funcionales, el 67,7% de ellos se considera formatizado (tabla 27), que corresponden a bifaces, boleadoras, cepillos, cuchillos, una cuenta pequeña, láminas y lascas retocadas, un lito discoidal, un machacador, tres manos de moler, un peso, preformas, puntas de proyectil, raederas y raspadores. En relación a los grupos funcionales, destaca el que todos los instrumentos de caza y de molienda sean formatizados, al igual que casi la totalidad de los destinados al procesamiento de cueros (todos salvo un instrumento de la unidad 20 de Appeleg 1) y maderas (siendo la excepción un instrumento de la unidad 21). Por el contrario, y tal como señalamos en relación a la muestra de Alto Simpson, la alta
proporción instrumentos informales en la categoría de instrumentos de corte, da cuenta del aprovechamiento de los filos vivos de los derivados de núcleo, en la forma de lascas y láminas retocadas. De hecho, los únicos casos donde el número de instrumentos de corte formales superan a los informales son la unidad 37 deAppeleg 1 y el sitio El Deshielo, y es por una diferencia de tan sólo dos y una piezas, respectivamente.
DISCUSIÓN

Un factor relevante al comparar las dos grandes unidades que nos proponemos en esta memoria, es el evidente menor tamaño del conjunto de Alto Simpson, donde tan sólo se recuperaron setenta y cinco piezas completas, un número considerablemente menor a las 801 piezas de Alto Cisnes. El menor tamaño del conjunto de Alto Simpson se refleja a la vez en una menor variabilidad en cuanto a materias primas empleadas, categorías tecno-tipológicas y, como parecen indicar nuestros resultados, actividades realizadas en los diversos sitios arqueológicos identificados en el sector.

Oferta regional de recursos líticos en Aysén Centro Norte, y su aprovechamiento durante el Holoceno Tardío.

Los conjuntos arqueológicos tanto de Alto Simpson como de Alto Cisnes dan cuenta del aprovechamiento de una considerable variabilidad de rocas, que sin embargo presenta importantes diferencias entre ambos valles (tabla 28). Estas materias primas encontradas en contextos arqueológicos pueden provenir tanto del entorno inmediato de los sitios, como de fuentes distantes, característica que es posible establecer mediante el análisis de la oferta local. En ambos valles se identificó una única fuente primaria de materia prima, la cual en Alto Simpson consiste en un afloramiento de basalto de baja calidad, que no presenta evidencias de haber sido aprovechado, y en Alto Cisnes equivale a una fuente de riolita de calidad regular, la cual no obstante, sí fue utilizada como cantera y taller. En relación a las fuentes secundarias, y si bien la metodología de recuperación de esta información no fue similar en ambos casos, se observa que la oferta local incluye en ambos casos rocas volcánicas y sílices microcristalinas, a lo cual se agregan rocas sedimentarias en el caso de Alto Simpson. En el conjunto de Alto Simpson, al comparar la oferta local con las materias primas presentes en los sitios arqueológicos, encontramos que dos tipos de rocas que aparecen en estas últimas no fueron identificadas como parte de la oferta local (dioritas y obsidianas). En el caso de la obsidiana negra, presente en las muestras de ambos valles, la fuente de origen pudo ser identificada mediante análisis químicos, correspondiendo a Pampa del Asador. Al realizar el mismo ejercicio en Alto Cisnes, encontramos que ocho de las doce materias primas de la muestra arqueológica no se identificaron como parte de la oferta local, pese a que la
ausencia de muestreos sistemáticos naturalmente influye negativamente en el grado de certeza de esta afirmación. Algunas de esas ocho materias primas corresponden al mencionado caso de la obsidiana negra, la roca volcánica indefinida que corresponde al lito discoidal, y materias primas de grano grueso. En relación a estas últimas, es presumible que formen parte del entorno inmediato de los sitios, pese a no haber sido muestreadas, ya que estos muestreos utilizaron como criterio principal la aptitud de las rocas para la talla. Como se observa, las materias primas presentes en los contextos arqueológicos de Alto Cisnes son considerablemente más variadas (incluye doce categorías, versus ocho de Alto Simpson), y parecen abarcar un porcentaje mayor de rocas alóctonas transportadas desde distancias indefinidas, mientras que en Alto Simpson casi la totalidad de las materias primas identificadas en el conjunto arqueológico son rocas disponibles naturalmente en el valle.

<table>
<thead>
<tr>
<th>Atributo</th>
<th>Alto Simpson</th>
<th>Alto Cisnes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variabilidad de materias primas</td>
<td>Baja</td>
<td>Media/alta</td>
</tr>
<tr>
<td>Materia prima más aprovechada</td>
<td>No determinable por el reducido tamaño de la muestra</td>
<td>Sílice</td>
</tr>
<tr>
<td>Calidades de materias primas</td>
<td>Mayormente regular</td>
<td>Mayormente alta</td>
</tr>
<tr>
<td>Variabilidad intsuitios</td>
<td>Alta</td>
<td>Media/Baja</td>
</tr>
<tr>
<td>Proveniencia de materias primas</td>
<td>Principalmente local</td>
<td>Principalmente foráneo</td>
</tr>
<tr>
<td>Fuentes de obsidiana identificadas</td>
<td>Pampa del Asador</td>
<td>Pampa del Asador, Sacanana y Sierra Negra</td>
</tr>
<tr>
<td>Estrategia tecnológica (Nelson 1991)</td>
<td>Mayormente expeditiva</td>
<td>Mayormente conservada</td>
</tr>
</tbody>
</table>

En ambos valles las materias primas más empleadas fueron las rocas sileices, aunque en Alto Cisnes conforman el 67,5% del conjunto, más del doble que en Alto Simpson (32%). La proporción en la que se presentan otras materias primas
difiere notablemente. Esto repercute en las calidades de rocas de las muestras arqueológicas, donde apreciamos que mientras que en Alto Cisnes destaca la buena calidad, en Alto Simpson son mayoría las materias primas regulares. Por su parte, las rocas de muy buena calidad son prácticamente inexistentes en Alto Simpson, mientras que en Alto Cisnes conforman un 11,3% del conjunto. El número de piezas que no presenta corteza también es más alto en Alto Cisnes.

Si bien las unidades arqueológicas estudiadas en ambos valles presentan una importante variabilidad en relación a las materias primas aprovechadas, en Alto Cisnes se observa una tendencia definida que se replica en la gran mayoría de los sitios (una mayoría de piezas de sílice, seguidas de andesitas). En Alto Simpson, sin embargo, se observa una variabilidad mucho mayor inter-sitio, ya que no se observan tendencias importantes, salvo la presencia de sílices en todas las unidades, aunque en proporciones diversas.

A partir de lo anterior, podemos inferir que en Alto Simpson se favoreció el empleo de materias primas disponibles localmente, y sólo se ingresó desde otras localidades un porcentaje muy menor de los tipos de rocas que conforman el conjunto arqueológico. Las rocas que conforman la oferta local fueron empleadas para un mayor número de categorías morfofuncionales. Por ejemplo, podemos mencionar que el único cuchillo presente en la muestra es de andesita, de manera que existe una mayor diversidad de rocas empleadas en cada categoría tipológica. En Alto Cisnes ocurre lo contrario, ya que el número de materias primas alóctonas parece ser considerablemente mayor. Esto sugiere la anticipación de condiciones inadecuadas para su preparación o presencia, debido a que como señala Margaret Nelson (1991), el costo en tiempo y energía empleados en el transporte de rocas de buena calidad para la talla, se justifica por la anticipación de condiciones difíciles. En Alto Simpson, entonces, se estaría frente al caso opuesto, donde se observa un mínimo esfuerzo en el transporte de materias primas desde otras localidades, lo cual sugiere una estrategia tecnológica distinta, donde se anticipa la existencia de materias primas suficientes como para satisfacer las necesidades de las poblaciones cazadoras recolectoras que habitaron este territorio, en relación a las actividades que allí se realizaron. Si bien es cierto que lo conservado y lo expeditivo pueden ser vistos en ambos casos, esto constituye una generalización de las tendencias tecnológicas principales. Como nos señala Andrefsky (1994), la disponibilidad de rocas de buena calidad para la talla es un
factor de fundamental importancia en la organización de la tecnología. Sin embargo, cabe mencionar que el transporte de un gran número de rocas de buena calidad, como es el caso de Alto Cisnes, puede también responder a la capacidad de carga del grupo y a la escala de movilidad de las poblaciones cazadoras-recolectoras, sin que esto signifique necesariamente un esfuerzo extra en su procuramiento, pese a que esto no quita que “among mobile hunters and gatherers raw materials are generally procured as elements of an embedded strategy, and are obtained in anticipation of future needs” (Binford 1979:280).

Tecnología de los conjuntos líticos de Aysén Centro Norte

Al evaluar comparativamente las características tecnológicas de ambos valles, veremos nuevamente divergencias significativas. En primer lugar, sólo en Alto Cisnes se identificaron evidencias de cadenas operativas completas, que nos señalan que en las unidades arqueológicas allí ubicadas se llevaron a cabo secuencias de reducción lítica completas, donde una misma materia prima se trabajó desde las etapas iniciales de desbaste primario, hasta el retoque y reavivado de instrumentos. Este no es el caso de Alto Simpson, donde si bien se encuentran piezas correspondientes a todas las etapas de trabajo lítico, no existen cadenas operativas completas en ninguna unidad superficial muestreada.

En Alto Simpson se observa una mayor proporción de núcleos y de productos terminados, mientras que Alto Cisnes posee más desechos y derivados de núcleo, lo que sugiere que en este último sector se realizó un número considerablemente mayor de episodios de talla. Esto puede responder al carácter residencial que se postula para sus tres sitios principales (Appeleg 1, Appeleg 2 y El Deshielo), ya que al encontrarse en éstos, sus habitantes habrían tenido una mayor disponibilidad de tiempo para trabajar en la creación y reparación de su kit artefactual (Binford 1979, Nelson 1991). En cuanto a los derivados de talla, notamos que en Alto Cisnes la presencia de aristas paralelas es bastante más usual que en Alto Simpson, llegando a constituir casi el 50% del conjunto, mientras que en Alto Simpson alcanza la cuarta parte. Esto refleja el uso de núcleos formatizados y un interés particular en la producción de láminas, lo que significa una mayor inversión de tiempo y esfuerzo implicado en la actividad de tallar. Todas las unidades destacadas de Alto Cisnes incluyen aristas paralelas, alcanzando inclusive en la mitad un número superior al 50%, mientras que en
Alto Simpson sólo tres de los cuatro sitios incluyen esta característica, y en una proporción menor a la observada en Alto Cisnes. En ambos casos, un porcentaje importante de las piezas talladas mediante percusión blanda lleva aristas paralelas, pese a que este porcentaje es mayor en el valle del río Cisnes. La técnica de extracción también es un criterio relevante de comparación entre ambos valles, ya que mientras que en Alto Cisnes la técnica más empleada fue la percusión blanda (75,9%), en Alto Simpson corresponde a la percusión dura, que cuenta con un 72%.

Los instrumentos que integran la muestra de Alto Cisnes presentan un alto grado de formatización (67,7%), mientras que en Alto Simpson sólo la cuarta parte del conjunto tiene carácter formal. En el caso de los instrumentos de corte, en ambos valles se observa que un número significativo de ellos es informal, lo cual tiene relación con el aprovechamiento de los filos vivos de los derivados de núcleo. Como hemos señalado, la proporción de instrumentos formales en ambos valles responde a una serie de factores, entre los cuales juega un importante rol la disponibilidad natural de rocas de calidad apta para la talla, aunque como señala Andrefsky, “specific technological variations are best explained in the full context of specific examples, and that every case may have unique conditions that contribute to the final organization of technology” (Andrefsky 1994 31).

A modo de síntesis, podemos decir que el sector de Alto Cisnes incluye contextos de gran tamaño y alta complejidad, particularmente en el caso de El Deshielo y Appeleg 1. En cambio, la muestra de Alto Simpson es muy pequeña y de naturaleza fragmentaria, además de ser un registro con baja capacidad de detección. Se observa un registro incompleto (por ejemplo en relación a las cadenas operativas), e inconsistente con cualquier actividad de procesamiento lítico, el cual además presenta un número excepcionalmente bajo de piezas. El conjunto de Alto Cisnes es significativamente más formatizado que el de Alto Simpson, en todas sus categorías tecno-tipológicas, y se observa que se dedicó una mayor cantidad de tiempo y trabajo a su realización y mantención. El conjunto de Alto Simpson, en cambio, es en mayor medida informal, salvo por un bajo número de piezas cuyo diseño mostró mayor elaboración. Estas características, sumadas a las entregadas en el acápite anterior relativas al aprovechamiento y tratamiento de las materias primas, nos permite atribuir a cada uno de estos valles una estrategia tecnológica diferente, mayormente
expeditiva en Alto Simpson, y conservada en Alto Cisnes, ya que en el primer caso nos enfrentamos a un conjunto que denota un mínimo esfuerzo tecnológico en su producción, la cual tiene como correlato condiciones en las cuales el momento y lugar de uso son altamente predecibles (Nelson 1991). En el segundo caso, en cambio, observamos la preparación por adelantado de las materias primas, y que atributos tales como la maximización de la vida útil, los diseños elaborados y conductas de reciclaje juegan un rol sustantivo (Shott 1996), lo cual se atribuye a una estrategia que anticipa la ausencia de materias primas de calidad y/o la existencia de condiciones desfavorables para su preparación (Nelson 1991). No obstante lo anterior, en ambos valles se aprovecharon recursos locales como parte de una estrategia oportunista, particularmente en relación al aprovechamiento de materias primas de calidades regular y mala para la talla.

En relación a la vida útil de los artefactos dentro de estas categorías, esta característica también puede denotar una diferencia entre ambos sectores de estudio. Si la formatización de los instrumentos tiene como una de sus consecuencias la maximización de su vida útil, y en cambio, los instrumentos informales usualmente son manufacturados, utilizados y descartados en un periodo de tiempo relativamente corto (Andrefsky 1994:22), es significativo que el conjunto de Alto Cisnes presente una mayor cantidad de piezas y una proporción mayor de instrumentos formatizados, mientras que el conjunto de Alto Simpson, además de ser reducido en número, presenta una mayoría de instrumentos informales. Esto parece sostener la existencia de ocupaciones no sólo reiteradas, sino también de mayor duración en Alto Cisnes, y de ocupaciones breves en Alto Simpson, noción que es fortalecida por otras características, tales como el hecho que no se hayan observado sitios residenciales en Alto Simpson.

Asignación temporal de los sitios de Aysén Centro Norte

En el sector de Alto Cisnes, más específicamente en El Deshielo, algunas características del sitio nos permiten decir que el reducido tamaño del sitio, la significativa similitud tecnológica entre sus materiales y la uniformidad de las categorías morfofuncionales observadas, nos sugieren que El Deshielo corresponde a una sola ocupación, pese a que debido a las características del lugar donde se emplaza, es posible que haya sufrido procesos de coadunación de distintas ocupaciones.
A diferencia de lo descrito para el sitio anterior, Appeleg 1 es un conjunto multicomponente, que parece ser resultado de múltiples ocupaciones diacrónicas, ya que el sitio es mucho más extenso, y presenta una amplia variabilidad de categorías artefactuales y soluciones tecnológicas. El sitio parece representar un conjunto superficial promediado (sensu Borrero). El hallazgo de piezas que sugieren ser tempranas (Jackson y Méndez 2007), y también artefactos históricos como metales y vidrios (Velásquez et al. 2007), apoya la noción de que este sitio fue reocupado en numerosas ocasiones. Entre estos datos, una punta de proyectil triangular de base convexa, proveniente de la unidad 38 (Méndez et al. 2006), es similar a ejemplares recuperados en el Componente Temprano (11.000 y 9.500 años cal. AP) de Baño Nuevo 1 (Mena y Stafford 2006), en el valle del río Nirehuao. La mayor parte del conjunto, entre ellos fragmentos cerámicos, sin embargo, sugiere una cronología tardía (Velásquez et al. 2007). Se obtuvieron dos edades en termoluminiscencia, que entregaron fechas de 1.290 ±130 y 740 ±80 años cal. AP (Velásquez et al. 2007). En base a las características formales y tecnológicas de los conjuntos líticos, se sostiene esta asignación cronológica relativa para la mayoría de las unidades de Appeleg 1: “La asociación entre pequeños a medianos raspadores frontales, la tecnología de láminas de tamaño pequeño y la presencia de varias morfologías de puntas de proyectil triangulares con aletas y pedúnculo, en atención a los antecedentes regionales, nos permiten suponer que el asentamiento se ubique temporalmente dentro de los últimos 1.500 a 1.000 años” (Velásquez et al. 2007). Prueba de esto es la notable presencia de fragmentos de cerámica, hallados en superficie, en cantidades relativamente altas (n=44) para los sitios tardíos de Patagonia occidental (en comparación con los valles de los ríos Chacabuco e Ibáñez, por ejemplo, Mena y Lucero 2004). Corresponderían a un mínimo de tres vasijas restringidas monocromas, de probable uso doméstico, y que presentan rasgos formales distintivos, tales como un tratamiento de superficie muy homogéneo (alisado tanto en el interior como el exterior de las piezas), colores en la gama de los cafés, un espesor promedio de 5.28 mm y decorados de tipo ‘impresiones’, que parecieran corresponder a la impronta de una uña repetida formando una hilera (Sanhueza 2006). La decoración incisa que poseen algunos de ellos (n=4), al parecer son análogas a los “incisos rítmicos” más tempranos del área pampeana bonaerense, por lo que tendrían más relación con esta área lejana que con la Araucanía chilena (Quiroz 2006). Temporalmente, estos incisos estuvieron
presentes en Patagonia desde el 1.500 AP, o un poco después, entre el 1.300 y el 1.200 AP (Politis et al. 2001, Orquera 1987).

Para Appeleg 2, la baja frecuencia de materiales permite suponer, al igual que en El Deshielo, que correspondería a los restos materiales de una sola ocupación. Esta sería de cronología tardía, como parecen indicar la presencia de raspadores frontales de núcleos unidireccionales, boleadoras esferoidales con surco ecuatorial y tecnología laminar (en la forma de láminas y núcleos preparados). Estas evidencias son características del Holoceno Tardío en la región (Gradín et al. 1979, Mena 1991, Méndez 2006, Méndez et al. 2006).

En Alto Simpson la situación se vuelve más compleja, ya que el reducido conjunto no incluye instrumentos diagnósticos que nos permitan sugerir con un cierto grado de certeza una cronología absoluta, y la ausencia de material arqueológico en estratigrafía impide la realización de fechaciones en los sitios encontrados. La única evidencia corresponde a un pequeño raspador en uña encontrado en el río Ministro, en el sitio Pendiente Ministro 3, en las proximidades del mencionado Pendiente Ministro 2. Sin embargo, podemos utilizar como referencia una serie de tres fechas que se obtuvieron en un sector más alto de la misma cuenca, en el sector de Coyhaique Alto. Se trata de la cueva de Punta del Monte 2, que ya ha sido descrita anteriormente, y en la cual se recuperaron fechas 14C de 4.980 ±40 AP y 246 ±34 AP, realizadas sobre hueso (Lama guanicoe) y carbón, respectivamente (Méndez et al. 2012). Además, a partir de una muestra de madera quemada proveniente de Punta del Monte 1, un extenso taller lítico (Bate 1970) asociado a la cueva recién mencionada, se obtuvo una fecha 14C de 1.330 ±30 AP (Méndez et al. 2012). Si bien estos dos sitios arqueológicos se ubican a cerca de 50 km de Alto Simpson, es relevante considerar que por su ubicación estratégica, Punta del Monte pudo haber servido como un importante refugio a la entrada a los faldos occidentales de la cordillera, y es posible que se haya encontrado dentro del rango de acción de las poblaciones que habitaron Alto Simpson. Los fechados radiocarbónicos más próximos a nuestra área de estudio se realizaron a 110 km de distancia, en el sitio Alero Mazquirarán, en territorio argentino, y dieron edades de ~200 años AP (Pérez de Micou et al. 2010). Este fechado brinda un marco temporal relativo para Alto Simpson.
Función de los conjuntos materiales de Aysén Centro Norte

El sector de Alto Cisnes incluye tres grandes conjuntos de variada complejidad y tamaño (tabla 29). En El Deshielo predominan los productos terminados, seguidos de los derivados de núcleo, los núcleos y un número reducido de desechos. Dentro de la primera categoría, observamos que los instrumentos se pueden agrupar en seis categorías funcionales diferentes, lo que nos habla de la realización de un importante número de actividades en el sitio, que incluyen la caza, el corte, la molienda, el procesamiento de cueros y maderas, y la talla lítica. Esto sugiere que El Deshielo tuvo una probable función residencial, con una importante orientación al abastecimiento y trabajo de la madera, debido a la alta proporción de artefactos relacionados con actividades domésticas, y un importante número de cepillos. Las actividades de procesamiento de madera que sugiere esta última categoría, se ratifican por el emplazamiento del sitio, inmediatamente adyacente a un sector boscoso (anexo 37).

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Cadenas operativas</th>
<th>Actividades realizadas</th>
<th>Función</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appeleg 1</td>
<td>Completas. En la unidad 10 de Appeleg 1 prima la extracción de lascas; en las unidades 20 y 37, la fase de terminación de instrumentos.</td>
<td>Actividades de caza, corte, procesamiento de cueros y maderas, producción de líticos</td>
<td>Gran conjunto habitacional</td>
</tr>
<tr>
<td>Appeleg 2</td>
<td>Completas, se observan en igual medida la extracción de lascas, la terminación de instrumentos y el descarte.</td>
<td>Actividades de caza, corte, procesamiento de cuero y producción de líticos</td>
<td>Residencial de uso breve</td>
</tr>
<tr>
<td>El Deshielo</td>
<td>Completas, destaca el descarte de instrumental</td>
<td>Actividades de caza, corte, molienda, procesamiento de maderas y cueros, producción lítica</td>
<td>Residencial</td>
</tr>
</tbody>
</table>

Tabla 29. Resumen comparativo de las principales características de los sitios estudiados de Alto Cisnes.
El sitio Appeleg 1 ha sido definido como “el único conjunto habitacional mayor del valle” (Méndez et al. 2006), lo cual es coherente con los resultados obtenidos en este trabajo. Al igual que El Deshielo, presenta una gran variabilidad artefactual y de categorías funcionales, aunque se distingue de aquel sitio por su carácter multicomponente y la complejidad que significa la presencia de múltiples unidades asociadas, que conforman un conjunto mayor. Si consideramos Appeleg 1 como un todo, podemos afirmar que en el sitio se realizaron actividades de caza, corte, procesamiento de cueros y maderas, producción de líticos, y se observan además instrumentos multifuncionales. En el sitio se hallaron también instrumentos de molienda, los cuales sin embargo no fueron recuperados. Incluye implementos de uso doméstico, que sostienen la realización de actividades domésticas propias de sitios residenciales, como fogones. Si consideramos las distintas unidades de Appeleg 1, vemos que las categorías funcionales difieren considerablemente entre una y otra. Este hecho, sumado a la evidencia que sugiere que el sitio sufrió procesos de coadunación de distintas ocupaciones, y que fue utilizado en variadas ocasiones, nos sugiere que a través del tiempo Appeleg 1 pudo haber tenido más de una función. Sosteniendo la noción del carácter habitacional del conjunto, Velázquez y colaboradores nos indican que “La prioridad de categorías morfo-funcionales atribuidas a la realización de actividades domésticas, que involucran principalmente el procesamiento y consumo de recursos, aboga en favor de esta idea. De forma minoritaria se identificó indicadores de tecnología de apropiación, bolas líticas y puntas de proyectil, las cuales se interpretan como depositadas en el ámbito habitacional en atención a posibles conductas de remplazo en las armas arrojadizas” (Velásquez et al. 2007:126).

El sitio Appeleg 2 ha sido descrito como un campamento residencial de uso breve, lo cual es coherente con nuestros resultados. En este lugar se encontró evidencias de la realización de actividades de caza, corte, procesamiento de cuero y producción de líticos, que se condicen con prácticas domésticas (el instrumento de caza representaría el descarte de instrumentos, en un contexto de preparación y reparación del artefactual empleado en labores realizadas en otros sectores). No están presentes, sin embargo, instrumentos de molienda.

En Alto Simpson nos encontramos con una realidad muy diferente, debido al reducido tamaño del conjunto, y su carácter fragmentario. Por estas razones no es posible determinar con claridad la función que habrían cumplido estos sitios.
en el pasado. Podemos, sin embargo, caracterizar estos sitios a partir de la información con la que contamos, y que nos permite al menos enumerar una serie de actividades que se llevaron a cabo en este valle. De esta manera, podemos establecer que de los cuatro sitios que cuentan con un mínimo de cinco piezas completas, Aysén Sur es el único que no incluye instrumentos de ninguna clase. Lo anterior sugiere que procesos de ocultamiento y removilización de materiales están confluyendo en que no se puedan determinar funciones discretas a modo de propuesta. Se compone en cambio de un núcleo y cinco derivados de núcleo, de tres materias primas diferentes, por lo que la única actividad que podemos afirmar que se llevó a cabo es la talla lítica. El sitio Tapera Sandoval presenta características muy distintas, ya que además de contar con un núcleo y un desecho, incluye cuatro instrumentos destinados a labores específicas, como son el procesamiento de cueros y de maderas. Esta última categoría destaca por su relevancia, ya que el hecho que tres de los cuatro instrumentos del sitio sean cepillos, sugiere una fuerte orientación de Tapera Sandoval hacia la explotación de recursos de bosque. Por su parte, el sitio Pendiente Ministro 2 muestra una predominancia de la actividad de talla lítica, pese a que como hemos señalado, ninguno de estos sitios incluye cadenas operativas completas; de hecho, este sitio cuenta con tan sólo siete piezas. No obstante, la presencia de un núcleo y seis derivados de talla, y el hecho de que el único instrumento corresponda a una lámina retocada, sugiere que la principal actividad que se realizó en el sitio fue la producción de líticos, a lo que se suma la acción de corte que representa la lámina. El último sitio es La Frontera, el cual si bien cuenta con una mayor cantidad de piezas (n=14), describe la realización de tan sólo dos actividades, que corresponden a la producción de líticos y el corte, en la forma de tres láminas retocadas.

En relación a Alto Simpson, podemos decir entonces que la actividad más generalizada es la producción lítica, en sus variadas formas, y hay evidencias también de procesamiento de maderas, de cueros, y actividad de corte. Pero la naturaleza fragmentaria del conjunto nos sugiere que la muestra arqueológica recuperada en terreno refleja tan sólo una fracción de las actividades que se llevaron a cabo en estos sitios, y por esta razón es que no podemos determinar con seguridad las funciones a las que respondieron estas ocupaciones.
Uso del espacio en Aysén Centro Norte

Como hemos señalado a lo largo de este trabajo, los sectores altos de los valles de los ríos Simpson y Cisnes presentan un número considerable de similitudes geográficas, medioambientales, climáticas y de recursos disponibles (figura 13). Cabe preguntarse entonces, ¿cómo explicamos las diferencias sustanciales que se observan en relación a la ocupación prehistórica de ambos valles?. Para intentar dar respuesta a esta pregunta, es relevante considerar las características del entorno natural en el cual se insertaron las conductas y acciones humanas. Para esto, debemos recordar que tales características medioambientales se considera que juegan un rol central en la toma de decisiones y la organización de la movilidad y la tecnología. Si bien el medio ambiente no es el único factor a considerar, y en ningún momento se considera como factor determinante, sí se plantea como condicionante del actuar humano. De esta manera, se reconoce que el descubrimiento de una correlación positiva entre cambios medioambientales y humanos puede deberse tanto a una relación causa-efecto, como a una co-ocurrencia o coincidencia (Dincauze 2000).
Figura 13. Mapa del área de estudio señalando las principales unidades arqueológicas encontradas en Alto Cisnes y Alto Simpson, y su relación con hitos geográficos. Los puntos morados simbolizan los sitios de recolección de materias primas; los rojos, los tres principales sitios de Alto Cisnes, y en blanco, sus equivalentes de Alto Simpson.
La característica más evidente y particular del conjunto de Alto Simpson es su carácter fragmentario, a lo que se suma el bajísimo número de piezas recuperadas, tanto así que puede ser considerada como un ‘espacio vacío’ (Méndez et al. 2011b). Para esto, es probable que existan al menos dos factores relevantes, las características de las ocupaciones humanas que se llevaron a cabo en este lugar, y aspectos tafonómicos y procesos de formación de sitios que pueden haber contribuido a dificultar la visibilidad de los restos de tales ocupaciones. En relación a lo segundo, Alto Simpson presenta en la actualidad un ecosistema de estepa, donde los sectores de bosque se limitan a parches de reducido tamaño. Durante el Holoceno Tardío, en los momentos en que se estima ocurrió la ocupación prehistórica de este territorio, la vegetación presentaba un aspecto contrastante al actual, donde el bosque ocupaba una extensión predominante, lo cual ocurrió hasta comenzado el siglo XX, cuando los grandes incendios provocados por la colonización ganadera modificaron radicalmente el entorno. El bosque retrocedió y la estepa fue ganando territorio, producto de la erosión y el arrastre de sedimentos desde las laderas. Este proceso generó altas tasas de depositación sedimentaria en los planos, lo cual tuvo como consecuencia la alteración de los restos arqueológicos. Al comprender la ocupación de este espacio por parte de sociedades cazadoras-recolectoras, ya no en un contexto de estepa sino que de bosque, cambian las expectativas para la presencia humana, y las características de la muestra arqueológica estudiada cobran más sentido. Para un ambiente de estas características, se esperarían incursiones más limitadas y condicionadas a cursos de movilidad naturales (Méndez et al. 2011c).

En relación a las ventajas y limitaciones que supone un ecosistema boscoso para las ocupaciones humanas, los bosques proveen de una amplia gama (en comparación con la estepa) de recursos vegetales comestibles, y animales pequeños y usualmente solitarios, dispersos en un área donde la visibilidad es baja. La estepa ofrece, en cambio, un reducido número de especies gregarias, principalmente guanaco (*Lama guanicoe*) y, en menor medida, ñandú (*Pteronemia pennata*). Se ha sostenido que los ambientes boscosos resultan adversos a ocupaciones de larga duración de cazadores-recolectores, siendo en cambio la alta movilidad la solución más óptima (Mena 1995, Silveira 1999, Méndez y Reyes 2008). Una posible respuesta se encuentra en las condiciones climáticas que afectaron la zona durante el Holoceno Tardío. Entre los años 4.200 y 2.900 AP
se presentaron condiciones más secas (Markgraf et al. 2007), que pudieron ocasionar una redistribución y disminución de los recursos de la estepa, fomentando una reorganización de la movilidad tanto hacia el oriente como el occidente, en búsqueda de condiciones más favorables (Méndez y Reyes 2008, Reyes et al. 2009). En el valle del río Cisnes, la presencia humana estuvo limitada a la estepa hasta los 2.800 años AP, momento en el cual comenzaron una serie de incursiones hacia los bosques, visitas estacionales reiteradas aunque breves, por parte de las mismas poblaciones (Méndez y Reyes 2008, Reyes et al. 2009). De esta manera, tenemos que los sectores de estepa se ocuparon en fechas mucho más tempranas que los bosques, y llegado el Holoceno Medio, ambos espacios fueron aprovechados de forma contemporánea, como prueban las ocupaciones fechadas en los sitios El Chueco, Las Quemas y El Toro, ubicados respectivamente en la estepa, un sector de transición bosque-estepa, y el bosque siempreverde (Méndez y Reyes 2008). Esto se traduce en una ampliación de los rangos de movilidad y el aprovechamiento de nuevos espacios más allá de la estepa, que al menos en el valle del Cisnes acontecieron entre los ~2.650 y 2.350 años cal. AP. Todo esto guarda similitudes con lo que Luis Borrero (1989-90) denomina *panorama tardío de exploración*, caracterizado por una alta movilidad y la ocupación de nuevos ambientes (Reyes et al. 2009). De todos modos, los asentamientos en la estepa continuaron siendo predominantes en los valles andinos de Aysén (Mena 2000, Mena y Lucero 2004, Méndez y Velásquez 2005, Reyes et al. 2009).

Dentro de este contexto, tanto Alto Simpson, que corresponde a un espacio boscoso, como Alto Cisnes, que pertenece a la estepa abierta, parecen haber sido ocupados estacionalmente durante al menos parte del Holoceno Tardío, Alto Cisnes durante la temporada estival (como lo sugiere la información faunística y botánica de El Chueco, Méndez et al. 2011a), y Alto Simpson posiblemente durante el invierno, cuando las condiciones en la estepa se tornaban muy duras para la habitabilidad. En Alto Simpson, a diferencia de Alto Cisnes, no se ha descubierto evidencias que permitan establecer qué espacios pudieron haber sido ocupados el resto del año. Al respecto, Méndez et al. (2011b) postulan que posiblemente, estas ocupaciones se ubican en esa latitud en territorio argentino, en función de los hallazgos de Pérez de Micou et al. Todo esto, sin embargo, de momento no pasa de ser una conjetura teórica, y deberá ser contrastado empíricamente. Cabe recordar que estas ocupaciones tardías tuvieron lugar en un
contexto socio-cultural extremadamente complejo, y que en estos espacios ‘marginales’ se vivieron cruces de poblaciones, conflictos y rápidas transformaciones culturales (Velázquez et al. 2007). Alto Simpson, a diferencia de Alto Cisnes, habría tenido entonces un poblamiento inicial tardío, y como señalan Méndez et al., “Diferencias tan profundas entre valles cercanos supone dinámicas más complejas de entendimiento del panorama regional de lo que se había presupuesto” (Méndez et al. 2011b:7). El bajo número de sitios respondería a que el área fue utilizada como parte de incursiones de baja intensidad desde las estepas orientales al bosque. Alto Simpson sería entonces comparable al área del Cisnes Medio (sitios Winchester 1 y 2, y Alero Las Quemas), que cuentan con fechas posteriores a los 2.700 años cal. AP (Méndez et al. 2011b:6).

Dentro de este esquema, la gestión de recursos líticos se debió haber visto fuertemente condicionada por la organización tecno-espacial y los espacios aprovechados por las poblaciones cazadoras-recolectoras durante el Holoceno Tardío, ya que como nos señala Binford, las materias primas recolectadas y utilizadas pueden ser consecuencia de la escala de movilidad de las poblaciones, e incluso es esperable que las materias primas aprovechadas varíen estacionalmente, si consideramos que la explotación de diferentes áreas geográficas se ve condicionada por la estacionalidad, y “lithic raw materials would generally be obtained within the context of normal subsistence procurement schedules” (Binford 1979:284).
CONCLUSIÓN

En este trabajo se pretendió caracterizar la organización tecnológica y espacial de las ocupaciones de los sectores de Alto Cisnes y Alto Simpson, durante el Holoceno Tardío. Para esto se studiaron los conjuntos líticos encontrados en estos contextos, y se evaluó la oferta local de recursos líticos, previo trabajo en terreno para la recuperación tanto de la muestra arqueológica como de materias primas. Además, se realizó una exhaustiva revisión bibliográfica y se recopilaron antecedentes geológicos y cartográficos. Para comprender de mejor manera esta problemática desde una perspectiva espacial, se realizó un SIG que complementa al análisis lítico.

En relación con nuestro problema de investigación, se propuso como hipótesis que durante el Holoceno Tardío, los valles en cuestión mostraron una etapa de ocupación efectiva del territorio (Borrero 2000), que supone el conocimiento de la distribución y la explotación eficiente de los recursos líticos. Lo anterior es más evidente en Alto Cisnes por la evidencia comparada de sitios fechados que establecen presencia humana desde los 11.500 cal. AP. En el caso de Alto Simpson, no se entiende la ocupación sin entender otros sectores colindantes como Coyhaique Alto o río Mayo, que pudieron estar vinculados funcionalmente. Además, se concluyó que la ocupación de estos dos valles se vio condicionada por sus características ambientales particulares, lo cual se tradujo en diferencias en el registro arqueológico. En consecuencia, los conjuntos arqueológicos provenientes de estos dos sectores son altamente contrastantes entre sí, siendo aquel correspondiente a Alto Cisnes considerablemente más abundante y variado funcionalmente. Las materias primas aprovechadas son de buena calidad, y en un alto porcentaje, parecieran ser alóctonas. Los dos mayores sitios, Appeleg 1 y El Deshielo, parecen ser multicomponentes, y al menos Appeleg 1 fue ocupado desde fechas tempranas. En el caso de Alto Simpson, los sitios arqueológicos son muy pequeños y de naturaleza fragmentaria, y los recursos líticos aprovechados son en su gran mayoría locales, y de calidad regular. En estos sitios se encontró evidencia de un reducido número de actividades, y parecen corresponder a un único momento ocupacional en todos los casos. Estas diferencias parecen haber respondido (al menos en parte) a las características ambientales de cada uno de estos valles, ya que Alto Simpson parece haber
tenido un ecosistema de bosque, muy diferente al actual, mientras que Alto Cisnes tenía un ambiente de estepa abierta, que mantiene hasta hoy en día.

En relación al otro postulado mencionado en la hipótesis, nos encontramos con que la ocupación de Alto Simpson constituyó un *panorama tardío de exploración*, gatillado por cambios medioambientales que modificaron el esquema de recursos en la estepa, y habrían forzado a las poblaciones cazadoras-recolectoras a bajar durante la temporada invernal hacia sectores más protegidos, a los cuales correspondía Alto Simpson cuando mantenía un ecosistema de bosque. Este mismo fenómeno habría ocurrido en Alto Cisnes desde los 2.800 años cal. AP (Méndez y Reyes 2008), donde las poblaciones habrían abandonado la estepa de altura (900 msnm) durante el invierno, para situarse en sectores más occidentales de la misma cuenca. No obstante, el sector alto del valle habría seguido siendo ocupado en estos tiempos de cambios ambientales. Entonces, para ambos sectores observamos que los espacios boscosos o de transición bosque-estepa (Alto Simpson y Cisnes medio y bajo) habrían presentado un panorama tardío de ocupación, mientras que Alto Cisnes sí se habría dado una ocupación efectiva del territorio, pese a que el carácter estacional de su ocupación habría influido en un aprovechamiento poco intensivo del sector.

Finalmente, cabe destacar el importante rol que juega el estudio de la tecnología lítica en el estudio de las sociedades cazadoras-recolectoras, ya que a partir del estudio de este material es posible conocer aspectos de la vida de estas poblaciones tales como su organización espacial, economía, organización tecnológica y gestión de recursos, entre otros. No obstante, reconocemos que para una apropiada comprensión de los contextos arqueológicos debiéramos poder evaluar otras clases de evidencias, como restos óseos y otros restos orgánicos, por ejemplo. Lamentablemente, esto no es posible al tratarse de material superficial. Esperamos que este trabajo constituya un aporte a la arqueología regional, donde aún persisten más preguntas que respuestas, y aún existen muchos espacios no estudiados. Todo esto constituye un interesante desafío, y a futuro, podremos comparar de mejor manera los resultados obtenidos en la presente investigación con aquellos de zonas aledañas, para avanzar en el conocimiento de la prehistoria aysenina.
REFERENCIAS CITADAS

Instituto Nacional de Antropología y Pensamiento Latinoamericano y Sociedad Argentina de Antropología, Buenos Aires.

Méndez, C., O. Reyes, A. Nuevo, y C. Contreras. 2010b. Criterios para evaluar ocupaciones tempranas en sitios arqueológicos superficiales, Aisén norte, Chile.
Manuscrito enviado a actas XVII Congreso Nacional de Arqueología Argentina. En: Informe proyecto FONDECYT 1090027 año 1, Santiago.

ANEXOS

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Nombre</th>
<th>Nº de piezas</th>
<th>Cadena Operativa</th>
<th>Tecno-tipología</th>
<th>Materia Prima</th>
<th>Corteza</th>
<th>Erosión diferencial</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAL 011</td>
<td>Tapera Sandoval</td>
<td>10</td>
<td>Núcleo (n=1), Desechos (n=5), Productos terminados (n=4)</td>
<td>Cepillo (n=3), Raspador (n=1)</td>
<td>Diorita (n=2), Dacita (n=4), Sílice (n=3), Riolita (n=1)</td>
<td>0% (n=3), 25% (n=1), 50% (n=5), 75% (n=1)</td>
<td>1,2,3</td>
</tr>
<tr>
<td>BAL 012</td>
<td>Irineo Valdés</td>
<td>5</td>
<td>Núcleo (n=1), Desechos (n=2), Productos terminados (n=2)</td>
<td>Raspador (n=1), Instrumento indeterminado (n=1)</td>
<td>Toba (n=1), Riolita (n=1), Sílice (n=3)</td>
<td>0% (n=3), 25% (n=2)</td>
<td>2,3</td>
</tr>
<tr>
<td>BAL 013</td>
<td>La Frontera</td>
<td>17</td>
<td>Núcleo (n=4), DDN (n=2), Desechos (n=8), Productos terminados (n=3)</td>
<td>Lasca retocada (n=3)</td>
<td>Sílice (n=1), Basalto (n=1), Riolita (n=1), Andesita (n=4), Toba (n=1), Dacita (n=9)</td>
<td>0% (n=9), 25% (n=6), 50% (n=2)</td>
<td>1,2,3,4</td>
</tr>
<tr>
<td>BAL 015</td>
<td>Puente Viejo</td>
<td>3</td>
<td>DDN (n=3)</td>
<td>Basalto (n=2), Riolita (n=1)</td>
<td>0% (n=1), 25% (n=1), 50% (n=1)</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>BAL 019</td>
<td>Aysén Sur</td>
<td>7</td>
<td>Núcleo (n=1), DDN (n=6)</td>
<td>Dacita (n=5), Andesita (n=1), Sílice (n=1)</td>
<td>0% (n=2), 25% (n=3), 50% (n=1), 75% (n=1)</td>
<td>2,3,4</td>
<td></td>
</tr>
<tr>
<td>BAL 022</td>
<td>Alero Ministro</td>
<td>2</td>
<td>DDN (n=1), Desechos (n=1)</td>
<td>Sílice (n=1), Basalto (n=1)</td>
<td>0% (n=1), 25% (n=1)</td>
<td>2,4</td>
<td></td>
</tr>
<tr>
<td>BAL 023</td>
<td>Pendiente Ministro 1</td>
<td>5</td>
<td>DDN (n=4), Productos terminados (n=1)</td>
<td>Lámina retocada (n=1)</td>
<td>Dacita (n=1), Sílice (n=1), Toba (n=2),</td>
<td>0% (n=1), 25% (n=3), 50% (n=1)</td>
<td>1,2</td>
</tr>
<tr>
<td>Código</td>
<td>Localidad</td>
<td>Número</td>
<td>Componentes</td>
<td>Herramienta</td>
<td>Material</td>
<td>Porcentaje</td>
<td>Notas</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>--------</td>
<td>---------------------------------------</td>
<td>------------------------------</td>
<td>---------------------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>BAL 024</td>
<td>Pendiente Ministro 2</td>
<td>9</td>
<td>Núcleo (n=1), DDN (n=2), Desechos (n=5), Productos terminados (n=1)</td>
<td>Lámina retocada (n=1)</td>
<td>Sílice (n=4), Riolita (n=4), Obsidiana (n=1)</td>
<td>0% (n=8), 25% (n=1)</td>
<td>1,2,3,4</td>
</tr>
<tr>
<td>BAL 026</td>
<td>Aysén Sur 2</td>
<td>3</td>
<td>DDN (n=1), Desechos (n=2)</td>
<td></td>
<td>Basalto (n=2), Dacita (n=1)</td>
<td>25% (n=2), 50% (n=1)</td>
<td>2</td>
</tr>
<tr>
<td>BAL 027</td>
<td>Hornillo</td>
<td>4</td>
<td>Núcleo (n=1), DDN (n=2), Desechos (n=1)</td>
<td></td>
<td>Basalto (n=2), Andesita (n=1), Riolita (n=1)</td>
<td>25% (n=3), 50% (n=1)</td>
<td>1,2</td>
</tr>
<tr>
<td>BAL 029</td>
<td>Pendiente Ministro 3</td>
<td>8</td>
<td>DDN (n=3), Desechos (n=4), Productos terminados (n=1)</td>
<td>Raspador (n=1)</td>
<td>Sílice (n=2), Andesita (n=2), Riolita (n=4)</td>
<td>0% (n=8)</td>
<td>1,2,3</td>
</tr>
<tr>
<td>BAL 035</td>
<td>Estancia Peede Norte</td>
<td>4</td>
<td>Núcleo (n=1), DDN (n=3)</td>
<td></td>
<td>Sílice (n=4)</td>
<td>0% (n=3), 50% (n=1)</td>
<td>3</td>
</tr>
<tr>
<td>BAL 002</td>
<td>Hallazgo aislado</td>
<td>1</td>
<td>DDN (n=1)</td>
<td></td>
<td>Andesita (n=1)</td>
<td>25% (n=1)</td>
<td>4</td>
</tr>
<tr>
<td>BAL 003</td>
<td>Hallazgo aislado</td>
<td>2</td>
<td>Productos terminados (n=2)</td>
<td>Cepillo (n=2)</td>
<td>Andesita (n=1), Basalto (n=1)</td>
<td>25% (n=2)</td>
<td>2,3</td>
</tr>
<tr>
<td>BAL 004</td>
<td>Hallazgo aislado</td>
<td>2</td>
<td>Productos terminados (n=2)</td>
<td>Lasca retocada (n=1), Raspador (n=1)</td>
<td>Sílice (n=1), Toba (n=1)</td>
<td>0% (n=2)</td>
<td>1</td>
</tr>
<tr>
<td>BAL 005</td>
<td>Hallazgo aislado</td>
<td>1</td>
<td>Productos terminados (n=1)</td>
<td>Bifaz (n=1)</td>
<td>Sílice (n=1)</td>
<td>0% (n=1)</td>
<td>3</td>
</tr>
<tr>
<td>BAL 014</td>
<td>Hallazgo aislado</td>
<td>1</td>
<td>Núcleo (n=1)</td>
<td></td>
<td>Sílice (n=1)</td>
<td>0% (n=1)</td>
<td>2</td>
</tr>
<tr>
<td>BAL</td>
<td>Hallazgo aislado</td>
<td></td>
<td>DDN (n=2)</td>
<td></td>
<td>Dacita (n=1)</td>
<td>25% (n=1)</td>
<td>1</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>---</td>
<td>-----------</td>
<td>---</td>
<td>---------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>BAL</td>
<td>Hallazgo aislado</td>
<td>1</td>
<td>Desechos (n=1)</td>
<td></td>
<td>Sílice (n=1)</td>
<td>25% (n=1)</td>
<td>4</td>
</tr>
<tr>
<td>BAL</td>
<td>Hallazgo aislado</td>
<td>1</td>
<td>DDN (n=1)</td>
<td></td>
<td>Dacita (n=1)</td>
<td>50% (n=1)</td>
<td>4</td>
</tr>
<tr>
<td>BAL</td>
<td>Hallazgo aislado</td>
<td>1</td>
<td>DDN (n=1)</td>
<td></td>
<td>Basalto (n=1)</td>
<td>0% (n=1)</td>
<td>2</td>
</tr>
<tr>
<td>BAL</td>
<td>Hallazgo aislado</td>
<td>1</td>
<td>Núcleo (n=1)</td>
<td></td>
<td>Dacita (n=1)</td>
<td>50% (n=1)</td>
<td>4</td>
</tr>
<tr>
<td>BAL</td>
<td>Hallazgo aislado</td>
<td>1</td>
<td>Productos terminados (n=1)</td>
<td></td>
<td>Lasca retocada (n=1)</td>
<td>Diorita (n=1)</td>
<td>0% (n=1)</td>
</tr>
<tr>
<td>BAL</td>
<td>Hallazgo aislado</td>
<td>2</td>
<td>DDN (n=1), Desechos (n=1)</td>
<td></td>
<td>Andesita (n=1), Sílice (n=1)</td>
<td>0% (n=1), 50% (n=1)</td>
<td>2</td>
</tr>
<tr>
<td>BAL</td>
<td>Hallazgo aislado</td>
<td>3</td>
<td>Desechos (n=2), Productos terminados (n=1)</td>
<td></td>
<td>Lasca retocada (n=1)</td>
<td>Sílice (n=1)</td>
<td>0% (n=3)</td>
</tr>
<tr>
<td>BAL</td>
<td>Hallazgo aislado</td>
<td>1</td>
<td>Desechos (n=1)</td>
<td></td>
<td>Basalto (n=1)</td>
<td>0% (n=1)</td>
<td>2</td>
</tr>
<tr>
<td>BAL</td>
<td>Hallazgo aislado</td>
<td>1</td>
<td>DDN (n=1)</td>
<td></td>
<td>Basalto (n=1)</td>
<td>0% (n=1)</td>
<td>3</td>
</tr>
<tr>
<td>BAL</td>
<td>Hallazgo aislado</td>
<td>1</td>
<td>DDN (n=1)</td>
<td></td>
<td>Sílice (n=1)</td>
<td>0% (n=1)</td>
<td>2</td>
</tr>
<tr>
<td>BAL</td>
<td>Hallazgo aislado</td>
<td>1</td>
<td>Productos terminados (n=1)</td>
<td></td>
<td>Cuchillo (n=1)</td>
<td>Andesita (n=1)</td>
<td>0% (n=1)</td>
</tr>
<tr>
<td>BAL</td>
<td>Hallazgo aislado</td>
<td>1</td>
<td>Desechos (n=1)</td>
<td></td>
<td>Sílice (n=1)</td>
<td>0% (n=1)</td>
<td>2</td>
</tr>
<tr>
<td>Sitio</td>
<td>Nombre</td>
<td>Concentración/Unidad</td>
<td>Nº de piezas</td>
<td>Cadena Operativa</td>
<td>Tecno-tipología</td>
<td>Materia Prima</td>
<td>Corteza</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>--------------------------</td>
</tr>
<tr>
<td>CIS</td>
<td>El Deshielo</td>
<td>Concentración 1</td>
<td>62</td>
<td>Núcleo (n=5), DDN (n=17), Desechos (n=3), Productos</td>
<td>Cepillo (n=6), Raspador (n=9), Raedera</td>
<td>Obsidiana negra (n=5), Dacita (n=1), Sílice (n=31),</td>
<td>0% (n=35), 25% (n=17),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>terminados (n=37)</td>
<td>(n=1), Bifaz (n=1), Boleadora (n=3),</td>
<td>Andesita (n=20), Basalto (n=1), Toba silicificada (n=1), MP</td>
<td>50% (n=5), Indet. (n=5)</td>
</tr>
<tr>
<td>CIS</td>
<td>El Deshielo</td>
<td>Concentración 2</td>
<td>5</td>
<td>Núcleo (n=1), Productos terminados (n=4)</td>
<td>Raspador (n=2), Mano de moler (n=1),</td>
<td>Sílice (n=2), Andesita (n=1), Toba (n=1), MP grano grueso (n=1)</td>
<td>0% (n=1), 25% (n=3), 50% (n=1)</td>
</tr>
<tr>
<td>CIS</td>
<td>Appeleg</td>
<td>Unidad 1</td>
<td>1</td>
<td>Productos terminados (n=1)</td>
<td>Raspador (n=1)</td>
<td>Andesita (n=1)</td>
<td>0% (n=1)</td>
</tr>
</tbody>
</table>

Anexo 1. Tabla descriptiva sector Alto Simpson.
<table>
<thead>
<tr>
<th>CIS 009</th>
<th>Appeleg 1</th>
<th>Unidad 4</th>
<th>2</th>
<th>Productos terminados (n=2)</th>
<th>Punta de proyectil (n=1), Bifaz (n=1)</th>
<th>Sílice (n=2)</th>
<th>0% (n=2)</th>
<th>1,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS 009</td>
<td>Appeleg 1</td>
<td>Unidad 6</td>
<td>1</td>
<td>Productos terminados (n=1)</td>
<td>Lasca retocada (n=1)</td>
<td>Sílice (n=1)</td>
<td>0% (n=1)</td>
<td>2</td>
</tr>
<tr>
<td>CIS 009</td>
<td>Appeleg 1</td>
<td>Unidad 10</td>
<td>54</td>
<td>Núcleo (n=5), DDN (n=39), Desechos (n=7), Productos terminados (n=3)</td>
<td>Raspador (n=1), Raederoa (n=1), Bifaz (n=1)</td>
<td>Obsidiana negra (n=1), Diorita (n=1), Sílice (n=34), Andesita (n=6), Vidrio riolítico (n=2), Toba (n=1), Riolita (n=1), MP grano grueso (n=8)</td>
<td>0% (n=38), 25% (n=14), 50% (n=1), 75% (n=1)</td>
<td>1,2,3,4</td>
</tr>
<tr>
<td>CIS 009</td>
<td>Appeleg 1</td>
<td>Unidad 15</td>
<td>1</td>
<td>Productos terminados (n=1)</td>
<td>Lasca retocada (n=1)</td>
<td>Toba (n=1)</td>
<td>0% (n=1)</td>
<td>3</td>
</tr>
<tr>
<td>CIS 009</td>
<td>Appeleg 1</td>
<td>Unidad 16</td>
<td>21</td>
<td>Núcleo (n=1), DDN (n=12), Desechos (n=4), Productos terminados (n=3)</td>
<td>Raspador (n=1), Boleadora (n=1), Cuenta (n=1), Clasto indefinido (n=1)</td>
<td>Diorita (n=1), Sílice (n=15), Piedra talcosa (n=1), Toba (n=1), MP grano grueso (n=3)</td>
<td>0% (n=15), 25% (n=3), 50% (n=1), Indet. (n=2)</td>
<td>1,2,3</td>
</tr>
<tr>
<td>CIS 009</td>
<td>Appeleg 1</td>
<td>Unidad 19</td>
<td>1</td>
<td>Productos terminados (n=1)</td>
<td>Lasca retocada (n=5)</td>
<td>Sílice (n=1)</td>
<td>0% (n=1)</td>
<td>1</td>
</tr>
<tr>
<td>CIS 009</td>
<td>Appeleg 1</td>
<td>Unidad 20</td>
<td>68</td>
<td>Núcleo (n=4), DDN (n=18), Desechos (n=33), Productos</td>
<td>Raspador (n=3), Bifaz (n=2), Lasca retocada (n=5), Guijarro con pulido (n=1), Peso (n=1), Clasto indefinido</td>
<td>Diorita (n=1), Sílice (n=59), Andesita (n=4), Piedra pome (n=1), Toba (n=2),</td>
<td>0% (n=59), 25% (n=6), 75% (n=1), 100%</td>
<td>1,2,3,4</td>
</tr>
<tr>
<td>Unidad</td>
<td>Lugar</td>
<td>Núcleo (n=1), DDN (n=44), Desechos (n=38), Productos terminados (n=15)</td>
<td>Cepillo (n=2), Raspador (n=3), Raeder (n=1), Bifaz (n=1), Lasca retocada (n=6), Lámina retocada (n=2), Clasto indefinido (n=4)</td>
<td>MP grano grueso (n=1)</td>
<td>Obsidiana negra (n=1), Dacita (n=1), Silex (n=55), Andesita (n=26), Basalto (n=6), Toba (n=5), MP grano grueso (n=2), Diorita (n=2), Riolita (n=1), Vidrio riolítico (n=1), Piedra pome (n=2)</td>
<td>0% (n=69), 25% (n=23), 50% (n=7), 100% (n=1), Indet. (n=2)</td>
<td>1,2,3,4</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Unidad 21</td>
<td>102</td>
<td>terminados (n=12)</td>
<td>(n=1)</td>
<td>(n=1), Indet. (n=1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidad 25</td>
<td>1</td>
<td>DDN (n=1)</td>
<td>Silex (n=1)</td>
<td>0% (n=1)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidad 27</td>
<td>142</td>
<td>Núcleo (n=4), DDN (n=64), Desechos (n=57), Productos terminados (n=15)</td>
<td>Cuchillo (n=1), Raspador (n=3), Bifaz (n=1), Lasca retocada (n=9), Preforma (n=1), Guijarro (n=1), Cono de termofractura (n=1)</td>
<td>(n=1), Diorita (n=4), Silex (n=98), Andesita (n=34), Basalto (n=1), Toba (n=2), MP grano grueso (n=1), Vidrio riolítico (n=1)</td>
<td>0% (n=124), 25% (n=13), 50% (n=4), Indet. (n=1)</td>
<td>1,2,3,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS 009</td>
<td>Appeleg 1</td>
<td>Unidad</td>
<td>Número</td>
<td>DDN (n=1), Productos terminados (n=1)</td>
<td>Lasca retocada (n=1)</td>
<td>Sílice (n=2)</td>
<td>0% (n=2)</td>
<td>2</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Appeleg 1</td>
<td>Unidad 29</td>
<td>2</td>
<td>DDN (n=1), Productos terminados (n=1)</td>
<td>Lasca retocada (n=1)</td>
<td>Sílice (n=2)</td>
<td>0% (n=2)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Appeleg 1</td>
<td>Unidad 36</td>
<td>3</td>
<td>Productos terminados (n=3)</td>
<td>Raspador (n=1), Bifaz (n=2)</td>
<td>Sílice (n=3)</td>
<td>0% (n=3)</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>Appeleg 1</td>
<td>Unidad 37</td>
<td>670</td>
<td>Núcleo (n=9), DDN (n=235), Desechos (n=389), Productos terminados (n=33)</td>
<td>Cuchillo (n=1), Raspador (n=17), Raedera (n=3), Bifaz (n=2), Punta de proyectil (n=3), Percutor (n=1), Lasca retocada (n=3), Lámina retocada (n=1), Lito discoidal (n=1), Disco pulido (n=1), Colorante (n=1), Cono de termofractura (n=2), Clasto indefinido (n=1)</td>
<td>Obsidiana negra (n=7), Dacita (n=2), Sílice (n=484), Andesita (n=120), Basalto (n=22), Toba (n=11), MP grano grueso (n=2), Vidrio riolítico (n=3), Piedra pome (n=1), Diurita (n=15), Riolita (n=1), Volcánica indefinida (n=1)</td>
<td>0% (n=568), 25% (n=69), 50% (n=28), 75% (n=1), Indet. (n=4)</td>
<td>1,2,3,4</td>
<td></td>
</tr>
<tr>
<td>Appeleg 1</td>
<td>Unidad 38</td>
<td>1</td>
<td>Productos terminados (n=1)</td>
<td>Punta de proyectil (n=1)</td>
<td>Sílice (n=1)</td>
<td>0% (n=1)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Appeleg 1</td>
<td>Unidad 46</td>
<td>3</td>
<td>DDN (n=1), Productos terminados (n=2)</td>
<td>Raedera (n=1), Punta de proyectil (n=1)</td>
<td>Sílice (n=3)</td>
<td>0% (n=2), 25% (n=1)</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>Appeleg 1</td>
<td>Unidad 47</td>
<td>3</td>
<td>DDN (n=1), Productos terminados (n=2)</td>
<td>Lasca retocada (n=1), Punta de proyectil (n=1)</td>
<td>Obsidiana negra (n=2), Sílice (n=1)</td>
<td>0% (n=3)</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>CIS 009</td>
<td>Appeleg 1</td>
<td>Unidad 49</td>
<td>3</td>
<td>DDN (n=2), Productos terminados (n=1)</td>
<td>Lasca retocada (n=1)</td>
<td>Sílice (n=2), Andesita (n=1)</td>
<td>0% (n=2), 25% (n=1)</td>
<td>1,2</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>---</td>
<td>--------------------------------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>----</td>
</tr>
<tr>
<td>CIS 009</td>
<td>Appeleg 1</td>
<td>Otras unidades</td>
<td>15</td>
<td>DDN (n=4), Desechos (n=1), Productos terminados (n=10)</td>
<td>Cuchillo (n=1), Raspador (n=4), Lasca retocada (n=3), Punta de proyectil (n=2)</td>
<td>Sílice (n=14), Andesita (n=1)</td>
<td>0% (n=12), 25% (n=3)</td>
<td>1,2,3,4</td>
</tr>
<tr>
<td>CIS 018</td>
<td>Appeleg 2</td>
<td>99</td>
<td>Núcleo (n=7), DDN (n=32), Desechos (n=41), Productos terminados (n=19)</td>
<td>Raspador (n=4), Bifaz (n=1), Boleadora (n=1), Lasca retocada (n=9), Lámina retocada (n=4), Dacita (n=3), Sílice (n=76), Andesita (n=11), Basalto (n=4), Toba (n=2), MP grano grueso (n=2), Riolita (n=1)</td>
<td>0% (n=74), 25% (n=20), 50% (n=5)</td>
<td>1,2,3,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anexo 2. Tabla descriptiva sector Alto Cisnes.
Anexo 3. Agrupación según grupos funcionales.

<table>
<thead>
<tr>
<th>Materia prima</th>
<th>0</th>
<th>0,25</th>
<th>0,5</th>
<th>0,75</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andesita</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Basalto</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Dacita</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>Diorita</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Obsidiana</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Técnica de extracción por sitio</td>
<td>Andesita</td>
<td>Basalto</td>
<td>Dacita</td>
<td>Diorita</td>
<td>Obsidiana negra</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>Aysén Sur</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percusión dura</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Frontera</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percusión blanda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pendiente Ministro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Tapera Sandoval</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Percusión dura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total general</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Anexo 4. Porcentaje de corteza que presentan las distintas materias primas en Alto Simpson.

Anexo 5. Relación entre materia prima y técnica de extracción de la pieza en Alto Simpson.
<table>
<thead>
<tr>
<th>Materia prima</th>
<th>Muy buena</th>
<th>Buena</th>
<th>Regular</th>
<th>Mala</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andesita</td>
<td>139</td>
<td>15</td>
<td>154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basalto</td>
<td>13</td>
<td>1</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dacita</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diorita</td>
<td>4</td>
<td>17</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP grano grueso</td>
<td>3</td>
<td>19</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obsidiana negra</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piedra pome</td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riolita</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sílice</td>
<td>76</td>
<td>415</td>
<td>15</td>
<td>506</td>
<td></td>
</tr>
<tr>
<td>Toba</td>
<td>5</td>
<td>15</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Vidrio riolítico</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Volcánica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>indefinida</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total general</td>
<td>88</td>
<td>424</td>
<td>196</td>
<td>57</td>
<td>765</td>
</tr>
</tbody>
</table>

Anexo 6. Calidad de las materias primas presentes en el conjunto arqueológico de Alto Cisnes.
<table>
<thead>
<tr>
<th>Material</th>
<th>Derivados de núcleo</th>
<th>Desechos</th>
<th>Núcleos</th>
<th>Productos terminados</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dacita</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Diorita</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>MP grano grueso</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Obsidiana negra</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Piedra pome</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Riolita</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sílice</td>
<td>18</td>
<td>11</td>
<td>44</td>
<td>39</td>
<td>51</td>
</tr>
<tr>
<td>Toba</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Vidrio riolítico</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Volcánica indefinida</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total general</td>
<td>34</td>
<td>15</td>
<td>51</td>
<td>75</td>
<td>65</td>
</tr>
</tbody>
</table>

Anexo 7. Aprovechamiento de materias primas en los principales sitios de Alto Cisnes.
Appeleg 2	23	23	7	19	72
El Deshielo	15	3	6	41	65
Total general	271	309	37	149	766

Anexo 8. Segmentos de la cadena operativa representados en los principales sitios de Alto Cisnes.

<table>
<thead>
<tr>
<th>Cadenas operativas por sitio</th>
<th>// Ausente</th>
<th>// Presente</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appeleg 1 Unidad 10</td>
<td>16</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>Derivados de núcleo</td>
<td>14</td>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>Desechos</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Productos terminados</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Appeleg 1 Unidad 16</td>
<td>4</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Derivados de núcleo</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Desechos</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Productos terminados</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Appeleg 1 Unidad 20</td>
<td>22</td>
<td>17</td>
<td>39</td>
</tr>
<tr>
<td>Derivados de núcleo</td>
<td>6</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Desechos</td>
<td>11</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>Productos terminados</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Appeleg 1 Unidad 21</td>
<td>27</td>
<td>36</td>
<td>63</td>
</tr>
<tr>
<td>Derivados de núcleo</td>
<td>10</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>Desechos</td>
<td>12</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>------------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Productos terminados</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appeleg 1 Unidad 27</td>
<td>36</td>
<td>30</td>
<td>66</td>
</tr>
<tr>
<td>Derivados de núcleo</td>
<td>13</td>
<td>18</td>
<td>31</td>
</tr>
<tr>
<td>Desechos</td>
<td>16</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>Productos terminados</td>
<td>7</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Appeleg 1 Unidad 37</td>
<td>184</td>
<td>144</td>
<td>328</td>
</tr>
<tr>
<td>Derivados de núcleo</td>
<td>50</td>
<td>77</td>
<td>127</td>
</tr>
<tr>
<td>Desechos</td>
<td>120</td>
<td>54</td>
<td>174</td>
</tr>
<tr>
<td>Productos terminados</td>
<td>14</td>
<td>13</td>
<td>27</td>
</tr>
<tr>
<td>Appeleg 2</td>
<td>27</td>
<td>34</td>
<td>62</td>
</tr>
<tr>
<td>Derivados de núcleo</td>
<td>5</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>Desechos</td>
<td>15</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Productos terminados</td>
<td>7</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>El Deshielo</td>
<td>21</td>
<td>27</td>
<td>47</td>
</tr>
<tr>
<td>Derivados de núcleo</td>
<td>8</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>Desechos</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Productos terminados</td>
<td>12</td>
<td>19</td>
<td>31</td>
</tr>
<tr>
<td>Total general</td>
<td>337</td>
<td>305</td>
<td>642</td>
</tr>
</tbody>
</table>

Anexo 9. Segmento de la cadena operativa y presencia o ausencia de aristas paralelas en Alto Cisnes. El total de 763 piezas representa el total del conjunto descontando los núcleos.
<table>
<thead>
<tr>
<th>Técnica de extracción por sitio</th>
<th>Andesita</th>
<th>Basalto</th>
<th>Dacita</th>
<th>Diorita</th>
<th>MP grano grueso</th>
<th>Obsidiana negra</th>
<th>Riolita</th>
<th>Sílice</th>
<th>Toba</th>
<th>Vidrio riolítico</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appeleg 1 Unidad</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td></td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>2</td>
<td></td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Appeleg 1 Unidad</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Appeleg 1 Unidad</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td>2</td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td>1</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>Percusión dura</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Presión</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Appeleg 1 Unidad</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>36</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>33</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>53</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>6</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Presión</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Appeleg 1 Unidad</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>19</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>39</td>
<td>1</td>
<td></td>
<td>1</td>
<td>62</td>
</tr>
<tr>
<td>Percusión blanda</td>
<td>8</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>31</td>
<td>8</td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>Percusión dura</td>
<td>11</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Tecno-tipología</td>
<td>Percusión dura</td>
<td>Percusión blanda</td>
<td>Presión</td>
<td>Pulido</td>
<td>Uso</td>
<td>Pulido y dura</td>
<td>Pulido y blanda</td>
<td>Otros</td>
<td>Inde t.</td>
<td>Total general</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>------------------</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td>----------------</td>
<td>-----------------</td>
<td>-------</td>
<td>---------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Bifaz</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Boleadora</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Cepillo</td>
<td>6</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Clasto indefinido</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Cuchillo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cuenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Clase</td>
<td>Cantidad</td>
<td>Cantidad</td>
<td>Cantidad</td>
<td>Cantidad</td>
<td>Cantidad</td>
<td>Cantidad</td>
<td>Cantidad</td>
<td>Cantidad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disco pulido</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guijarro</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guijarro pulido</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lámina retocada</td>
<td>1</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lasca retocada</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>17</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>1</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lito discoidal</td>
<td>1</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machacador</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mano de moler</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percutor</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peso</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preforma</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punta de proyectil</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raedera</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raspador</td>
<td>1</td>
<td>2</td>
<td>21</td>
<td>1</td>
<td>10</td>
<td>13</td>
<td>1</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total general</td>
<td>9</td>
<td>9</td>
<td>41</td>
<td>2</td>
<td>32</td>
<td>5</td>
<td>28</td>
<td>33</td>
<td>15</td>
<td>174</td>
<td></td>
</tr>
</tbody>
</table>

Anexo 11. Categoría tecno-tipológica y técnica de astillamiento de los instrumentos en Alto Cisnes. Otros: percusión blanda y uso; percusión blanda, presión y uso; percusión dura y pulido; percusión dura y uso; presión y uso; y pulido y uso.
<table>
<thead>
<tr>
<th>Tecno-tipología</th>
<th>Appeleg 1 Unidad 10</th>
<th>Appeleg 1 Unidad 16</th>
<th>Appeleg 1 Unidad 20</th>
<th>Appeleg 1 Unidad 21</th>
<th>Appeleg 1 Unidad 27</th>
<th>Appeleg 1 Unidad 37</th>
<th>Appeleg 2 El Deshielo</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifaz</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Boleadora</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Cepillo</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Cuchillo</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cuenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Disco natural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>con pulido</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Guijarrro con</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>pulido</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lámina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>retocada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lasca retocada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Lito discoidal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Machacador</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mano de moler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Núcleo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>retocado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Percutor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Peso</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Preforma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Punta proyectil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Raeder</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Raspador</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>17</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>Total general</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>15</td>
<td>15</td>
<td>33</td>
<td>19</td>
<td>41</td>
</tr>
</tbody>
</table>

Anexo 12. Categorías tecno-tipológicas, presentes en los sitios de Alto Cisnes.

<table>
<thead>
<tr>
<th>Tecno-tipología</th>
<th>Andesita</th>
<th>Basalto</th>
<th>Dacita</th>
<th>Diorita</th>
<th>MP grano grueso</th>
<th>Obsidiana negra</th>
<th>Riolita</th>
<th>Sílice</th>
<th>Toba</th>
<th>Volcánica indefinida</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifaz</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Boleadora</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Cepillo</td>
<td>7</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Cuchillo</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Cuenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Disco pulido</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Guijarro con pulido</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Lámina retocada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td>12</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Lasca retocada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>35</td>
<td>3</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>Lito discoidal</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Machacador</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Mano de moler</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Núcleo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>32</td>
<td>2</td>
<td>38</td>
</tr>
<tr>
<td>Percutor</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Peso</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Preforma</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Tecno-tipología</td>
<td>Formal</td>
<td>%</td>
<td>Informal</td>
<td>%</td>
<td>Total general</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>-----</td>
<td>----------</td>
<td>-----</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bifaz</td>
<td>2</td>
<td>33,3</td>
<td>4</td>
<td>66,6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boleadora</td>
<td>5</td>
<td>100</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cepillo</td>
<td>7</td>
<td>87,5</td>
<td>1</td>
<td>12,5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuchillo</td>
<td>3</td>
<td>100</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuenta</td>
<td>1</td>
<td>100</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disco pulido</td>
<td></td>
<td></td>
<td>1</td>
<td>100</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guijarro pulido</td>
<td></td>
<td></td>
<td>1</td>
<td>100</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lámina retocada</td>
<td>14</td>
<td>93,3</td>
<td>1</td>
<td>6,7</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lasca retocada</td>
<td>2</td>
<td>4,4</td>
<td>43</td>
<td>95,6</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lito discoidal</td>
<td>1</td>
<td>100</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machacador</td>
<td>1</td>
<td>100</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mano de moler</td>
<td>3</td>
<td>100</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peso</td>
<td>1</td>
<td>100</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preforma</td>
<td>2</td>
<td>40</td>
<td>3</td>
<td>60</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punta de proyectil</td>
<td>10</td>
<td>100</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grupos funcionales</th>
<th>Andesita</th>
<th>Basalto</th>
<th>Dacita</th>
<th>Diorita</th>
<th>MP grano grueso</th>
<th>Obsidiana negra</th>
<th>Riolita</th>
<th>Sílice</th>
<th>Toba</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appeleg 1 Unidad 10</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multifunción</td>
<td></td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Producción de lícticos</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appeleg 1 Unidad 16</td>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumento de caza</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Producción de lícticos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appeleg 1 Unidad 20</td>
<td>1</td>
<td></td>
<td></td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumento de corte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multifunción</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Producción de lícticos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appeleg 1 Unidad 21</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumento de corte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multifunción</td>
<td>Procesamiento de cuero</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procesamiento de madera</td>
<td>3</td>
<td>1</td>
<td>15</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Producción de líticos</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appeleg 1 Unidad 27</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>30</td>
<td>3</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumento de corte</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multifunción</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td>1</td>
<td>1</td>
<td>16</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Producción de líticos</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appeleg 1 Unidad 37</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td>1</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumento de caza</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumento de corte</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Deshielo</td>
<td>12</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>126</td>
<td>1</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumento de caza</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumento de corte</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumento de molienda</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procesamiento de madera</td>
<td></td>
</tr>
<tr>
<td>Producción de líticos</td>
<td>1</td>
<td></td>
<td>1</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total general</td>
<td>23</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>127</td>
<td>6</td>
<td>173</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anexo 15. Categorías tecno-tipológicas y materia prima empleada en Alto Cisnes.

<table>
<thead>
<tr>
<th>Grupos funcionales</th>
<th>Percusión blanda</th>
<th>Percusión blanda y presión</th>
<th>Percusión dura</th>
<th>Presión y uso</th>
<th>Presión</th>
<th>Uso</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appeleg 1 Unidad 10</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Multifunción</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Appeleg 1 Unidad 16</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Appeleg 1 Unidad 20</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumento de corte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Multifunción</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Producción de líticos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Appeleg 1 Unidad 21</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Instrumento de corte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Multifunción</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Procesamiento de madera</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Appeleg 1 Unidad 27</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Instrumento de corte</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Multifunción</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Producción de líticos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Appeleg 1 Unidad 37</td>
<td>1</td>
<td>2</td>
<td>23</td>
<td>1</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumento de caza</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumento de corte</td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multifunción</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td>1</td>
<td>2</td>
<td>15</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appeleg 2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Instrumento de corte</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Producción de líticos</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Deshielo</td>
<td></td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>Instrumento de corte</td>
<td></td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumento de molienda</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procesamiento de madera</td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Producción de líticos</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total general</td>
<td>7</td>
<td>19</td>
<td>10</td>
<td>10</td>
<td>39</td>
<td>26</td>
<td>111</td>
</tr>
</tbody>
</table>

Anexo 16. Categoría tecnof-tipológica y técnica de astillamiento de los instrumentos en Alto Cisnes.
<table>
<thead>
<tr>
<th>Grupos funcionales</th>
<th>Formal</th>
<th>Informal</th>
<th>Total general</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appeleg 1 Unidad 10</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Multifunción</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Appeleg 1 Unidad 16</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Instrumento de caza</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Appeleg 1 Unidad 20</td>
<td>3</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Instrumento de corte</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Multifunción</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Producción de líticos</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Appeleg 1 Unidad 21</td>
<td>9</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>Instrumento de corte</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Multifunción</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Procesamiento de madera</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Appeleg 1 Unidad 27</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Instrumento de corte</td>
<td>1</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Multifunción</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Producción de líticos</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 Unidad 37</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>Instrumento de caza</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Instrumento de corte</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td>19</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Appeleg 2</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Instrumento de caza</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Instrumento de corte</td>
<td>4</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Producción de líticos</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>El Deshielo</td>
<td>32</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>Instrumento de caza</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Instrumento de corte</td>
<td>7</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Instrumento de molienda</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Procesamiento de cuero</td>
<td>12</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Procesamiento de madera</td>
<td>6</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Producción de líticos</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total general</td>
<td>90</td>
<td>43</td>
<td>133</td>
</tr>
</tbody>
</table>

Anexo 17. Formatización de los instrumentos de Alto Cisnes.
Imágenes de los conjuntos líticos de Alto Simpson:

Anexo 18. Imágenes de la muestra de Aysén Sur.

Anexo 19. Imágenes de la muestra de La Frontera.
Anexo 20. Imágenes de la muestra de Pendiente Ministro 2.

Anexo 21. Imágenes de la muestra de Tapera Sandoval.

Anexo 22. Imágenes de piezas provenientes de otras unidades de Alto Simpson.
Imágenes de los conjuntos líticos de Alto Cisnes:

Anexo 23. Imágenes de la muestra de El Deshielo.

Anexo 24. Imágenes de la muestra de Appeleg 1 unidad 21.
Anexo 25. Imágenes de la muestra de Appeleg 1 unidad 27.

Anexo 26. Imágenes de la muestra de Appeleg 1 unidad 37.
Anexo 27. Imágenes de piezas provenientes de otras unidades de Appeleg 1.

Anexo 28. Imágenes de la muestra de Appeleg 2.
Imágenes de las muestras de materias primas por sector:

Anexo 29. Materias primas correspondientes a la muestra arqueológica de Alto Cisnes.

Anexo 30. Materias primas correspondientes a la muestra arqueológica de Alto Simpson.

Imágenes de los sitios arqueológicos de Alto Simpson:

Anexo 33. La Frontera.

Anexo 34. Pendiente Ministro 2.
Anexo 35. Tapera Sandoval.

Imágenes de los sitios arqueológicos de Alto Cisnes:

Anexo 38. Appeleg 1.