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DELIBERATION AND ITS EFFECT ON VOTING: NASH BAYESIAN
EQUILIBRIUM WITH COMMUNICATION AND ENDOGENOUS

INFORMATION ACQUISITION

We analyze the amount of information acquired by agents in the case where they make
their decisions based only in their private beliefs versus the case where they can exchange
information. In other words, we model the information acquisition when communication be-
tween agents is available. We focus on committees or decision panels that are comprised of
a collection of agents sharing a common goal, having a joint task, and possessing the ability
to communicate at no cost. We focus in unanimity as a voting rule and show that if commu-
nication is available, then agents may have incentives to acquire information only when they
share information. Intuitively, we would expect that information sharing decreases the incen-
tives to exert effort and observe a free rider problem. However, our results show that, under
fairly conditions, communication creates incentives to acquire information. Our analysis puts
in evidence the importance of incorporate communication when information acquisition is
analyzed. Also, we discuss extensions on the voting rule and costly communication.

In our model, a committee of experts has to decide on behalf of the public (or an organi-
zation) whether to implement a project or to maintain the status quo. Committee members
have common preferences. The problem is that the consequences of the project are uncertain.
In the first stage, agents acquire costly information and receive a private signal about the
state of the world. Then, agents deliberate and vote. The committee reaches a decision in
two stages. In the first stage, the communication stage, each member can share his privately
held view with the other members. We assume that members simultaneously reveal their
views. In the second stage, the voting stage, members cast their votes simultaneously, and
votes are aggregated using unanimity as a voting rule.

Our results show that, in the voting stage, agents vote strategically in both cases, when
information is shared and when is not. That is, agents may vote against their signal. In
the communication stage, we find that agents may not have incentives to communicate their
signal, even if communication is costless. Finally, we find that if the number of agents is
big enough, then each agents prefers to communicate their signal and acquire information.
Contrary to the intuition, we find conditions such that the free rider effect is not observed
and communication creates more incentives to acquire information.
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Analizamos la cantidad de información adquirida por los agentes, en el caso donde toman
sus decisiones en base a creencias privadas versus el caso donde existe intercambio de infor-
mación. En otras palabras, modelamos la adquisición de información cuando los agentes
tienen la opción de comunicar y deliberar. Nos enfocamos en comités o paneles de decisión
compuestos por un grupo de agentes que comparten una meta común, una tarea conjunta,
y que poseen la habilidad de comunicarse sin costo. Consideramos la unanimidad como
regla de votación y demostramos que si existe la oportunidad de comunicar, entonces los
agentes podŕıan tener incentivos a adquirir información sólo cuando comunican. Intuitiva-
mente, esperaŕıamos que el compartir información decrezca los incentivos a realizar esfuerzo
y observar un efecto free rider. Sin embargo, nuestros resultados muestran que, bajo ciertas
condiciones, la comunicación genera incentivos a adquirir información. Nuestro análisis deja
en evidencia, la importancia de incorporar comunicación cuando se analiza la adquisición
de información. Además, discutimos extensiones sobre la regla de votación y comunicación
costosa.

En nuestro modelo, un comité de expertos debe decidir, en representación del público (o
una organización), si implementar un proyecto o mantener el status quo. Los miembros del
comité tienen preferencias comunes. El problema es que existe incertidumbre acerca de las
consecuencias del proyecto. En la primera etapa, los agentes adquieren información costosa y
reciben una señal privada acerca del estado del mundo. Luego, los agentes deliberan y votan.
El comité alcanza una decisión en dos etapas. En la primera etapa, la etapa de comunicación,
cada miembro puede compartir su información privada con los demás. Suponemos que los
agentes revelan su señal simultáneamente. En la segunda etapa, la etapa de votación, cada
miembro vota simultáneamente, donde los votos son agregados utilizando como regla de
votación la unanimidad.

Nuestros resultados muestran que, en la etapa de votación, los agentes votan estratégicamente
en ambos casos, cuando la información es compartida y cuando no. Esto es, los agentes votan
en contra de su señal. En la etapa de comunicación, encontramos que los agentes pueden
no tener incentivos en comunicar su señal, incluso cuando la comunicación no tiene costo.
Finalmente, encontramos que si el número de agentes es lo suficientemente grande, entonces
cada miembro prefiere comunicar su señal y adquirir información. Contrario a la intuición,
encontramos condiciones tales que el efecto free rider no se observa, y la comunicación crea
más incentivos a adquirir información.
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y compañeras de Universidad, quienes me entregaron todo su apoyo en los momentos más
dif́ıciles. A Denisse Navarrete que ha estado conmigo desde siempre. También a mis amigos y
amigas de la vida, que siempre han encontrado la forma de distraerme y contenerme cuando
ha sido necesario. A Gonzalo Islas, por guiarme y aconsejarme en todas mis decisiones.

III



CONTENTS CONTENTS

Contents

1 Introduction 2

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Model 6

2.1 Description and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Strategy Profile and Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Results 9

3.1 Voting Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Communication Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Information Acquisition Stage . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Conclusions 21

4.1 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 References 27

A Proofs 30

A.1 Proof Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A.2 Proof Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A.3 Proof Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.4 Proof Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A.5 Proof Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.6 Proof Proposition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.7 Proof Proposition 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.8 Proof Corollary 1 and Corollary 2 . . . . . . . . . . . . . . . . . . . . . . . . 52

1



Chapter 1

Introduction

1.1 Motivation

We do not live in a silent world, committees and jurors deliberate and exchange infor-

mation before making a decision. Therefore, collective decision benefits from the possibility

of information exchange and discussion before a decision is made. Moreover, compare to

individual decision making, decisions taken by a group might be based on more or better

information than individual decisions. In the same context, decision making process also

requires information acquisition, where agent learn about the state of the world and de-

crease the uncertainty before reaching a decision. In other words, agents have to educate

themselves and learn about which option is better. The present thesis models a collective

decision processes involving deliberation and information acquisition under unanimity rule.

We focus on committees or decision panels that are comprised of a collection of agents

sharing a common goal, having a joint task, and possessing the ability to communicate at no

cost. Decisions in business are made by, management teams, audit committees, and boards of

governors. Tenure and promotion decisions in academia and law firms are typically made by

committees. Also, important decisions are made by committees. The Federal Open Market

Committee (Federal Reserve System) and the Governing Council (European Central Bank)

decide on monetary policy. In the European Parliament, there are seventeen committees

dealing with internal policies and three committees dealing with external policies. Important

national policy decisions are made by the Council of Ministers and not by a single minister.

The health care profession makes extensive use of expert consensus panels.

Situations where decision makers need to make effort before reached a decision are com-

mon. For example, refereeing process, where an editor requires the opinions of a number

of experts who must read the paper (acquire information) in order to give an opinion as to
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CHAPTER 1. INTRODUCTION

publication. Analogously, in committees which screen applicants to a programme, the com-

mittee members must gain information about the applicant’s qualifications and likelihood of

success in order to evaluate whether to admit her. Finally, in trial juries it is important that

jurors pay attention to the evidence in order to make an informed judgement.

In our model, a committee of experts has to decide on behalf of the public (or an organi-

zation) whether to implement a project or to maintain the status quo. Committee members

have common preferences. The problem is that the consequences of the project are uncertain.

We model information acquisition when communication between agents is available. In the

fist stage, agents acquire costly information according to some increasing and convex cost

function. Then, agents deliberate and vote. The committee reaches a decision in two stages.

In the first stage, the communication stage, each member can share his privately held view

with the other members. We assume that members simultaneously reveal their views. In

the second stage, the voting stage, members cast their votes simultaneously, and votes are

aggregated using unanimity as a voting rule.

1.2 Related Literature

One of the first to show the importance of communication on jury models was Coughlan

[7]. He extended the Feddersen and Pesendorfer’s [11] model, allowing limited communi-

cation among jurors and considering a pre-voting stage. He shows that voters reveal their

information truthfully if and only if their preferences are sufficiently close and that jurors

have no incentives to vote strategically in the final vote. Therefore, when information is

shared, all jurors either agree that the defendant is guilty or agree that the defendant is

not guilty. This result contradicts, Feddersen and Pesendorfer, that unanimous jury ver-

dicts lead to strategic voting and imply a higher probability of convicting the innocent than

simple majority rule. Gerardi and Yariv [12], also suggests the importance of incorporate

communication in models of collective choice. They analyze a model of jury decision making

in which jurors deliberate before casting their votes and show that deliberations render these

equivalent with respect to the sequential equilibrium outcomes they generate.

Other important contribution is Austen-Smith and Feddersen [2]. They consider a com-

mittee of three agents who need to choose one of two alternatives. Each agent has private

information on two dimensions: perfect information concerning her preferences and noisy

information concerning the state of the world. They model deliberations as a one round

process in which all agents simultaneously send public messages. They find that majority

rule induces more information sharing and fewer decision making errors than unanimity. An

3



CHAPTER 1. INTRODUCTION

extension is Austen-Smith and Feddersen [3] look at a similar environment in which any

number of agents can publicly send arbitrary messages before casting their votes. They pro-

vide conditions under which unanimity cannot induce full revelation of private information

in equilibria comprised of weakly undominated strategies. Furthermore, if full revelation is

possible under unanimity, then it is possible under any other rule.

In a similar way, there has been some experimental work on voting with communication.

Guarnaschelli, McKelvey, and Palfrey [15] constructed an experiment replicating Coughlan’s

[7] setup. They present experimental results on groups facing a decision problem analogous

to that faced by a jury, and find evidence of strategic voting under the unanimity rule where

a large fraction of subjects vote for a decision analogous to conviction even when their pri-

vate information indicates a state analogous to innocence. In conclusion, they noted that

during deliberations, voters tend to expose their private information but not to the full ex-

tent as predicted by Coughlan’s [7] results. Recently, Goeree and Yariv [14] conducted an

array of experiments testing for the effects of free form communication on jury outcomes.

Their results show that when deliberation is prohibited, different institutions generate sig-

nificantly different outcomes, tracking the theoretical comparative statics. Deliberation,

however, significantly diminishes institutional differences and uniformly improves efficiency.

Furthermore, communication protocols exhibit an array of stable attributes: messages are

public, consistently reveal private information, provide a good predictor for ultimate group

choices, and follow particular (endogenous)sequencing.

There is another literature related with decision making process that considers informa-

tion acquisition where communication between agents is not available. According to the

‘rationally ignorance’ hypothesis, in large elections voters will not have an incentive to ac-

quire political information before voting because each agent has small probability of affecting

the outcome. In Down’s [9] words:

If all others express their true views, he [the voter] gets the benefit of a well

informed electorate no matter how well informed he is; if they are badly informed,

he cannot produce those benefits himself. Therefore, as in all cases of individual

benefits, the individual is motivated to shirk his share of the costs: he refuses to

get enough information to discover his true views. Since all men do this, the

election does not reflect the true consent of the governed.

Martinelli [19], in agreement with Down’s rational ignorance hypothesis, finds that indi-

vidual investment in political information declines to zero as the numbers of voters increases.

However, if the marginal cost of information is near zero for nearly irrelevant information,

there is a sequence of equilibria such that the election outcome is likely to correspond to the

4



CHAPTER 1. INTRODUCTION

interests of the majority for arbitrarily large numbers of voters. Thus, ‘rationally ignorant’

voters are consistent with a well informed electorate. In the same line, Persico [21] analy-

ses the design of voting mechanism, where the problem is to choose two parameters which

determine the incentive to acquire information and the efficiency with which information is

aggregated. The first parameter is the number of committee members and the second is the

voting rule. Persico finds that a voting rule that requires unanimity to upset the status quo

can be optimal only if the information available to each committee member is sufficiently

accurate. Intuitively, each agent makes her decision conditional on the pivotal probability,

where members are pivotal when all other members vote to switch from the status quo. If

the individual information is noisy, committee members probably will have different percep-

tions about the best policy and the pivotal probability decreases. Then, if information is

costly and must be acquired before the voting stage, committee members will not acquire

it. In conclusion, committee members may not invest in information because they expect

that their vote will not influence the final decision. Related with the information acquisition,

Triossi [24] proves that contrary to the most optimistic positions about direct democracy,

majoritarian elections can fail to aggregate information, when voters have heterogeneous

skills. Informational inefficiencies can be partially corrected by improving the skills of the

electorate as the population increase or by limiting participation to most competent citizens.

Results are consistent with Rousseau view that an educated citizenry is necessary for a well

functioning democracy.

Our results show that, in the voting stage, when information is not shared agents vote

strategically. Accorging to Feddersen and Pesendorfer’s [11], this increases the provability of

taking the wrong decision. On the contrary, as in Coughlan [7], if communication between

agents is available, then all agents will vote in the same direction.

In the communication stage, we find that agent may have incentives to deviate and

communicate their signal. Moreover, as communication is costless agents have incentive to

deviate and communicate their signal. However, we also show that in particular cases, agents

may not have incentives in communicate their signal. As in Coughlan [7], we find that agents

share their information truthfully because they have common preferences.

Finally, in the effort decision stage, we find that if n is big enough, then each agents

prefers to communicate their signal and acquire information. Contrary to the intuition,

we do not find a free rider problem and communication creates more incentives to acquire

information. This result is contrary to Mukhopadhaya [20] who finds a free rider problem if

the number of jurors increases. Our results puts in evidence the importance of incorporate

communication when information acquisition is analyze.
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Chapter 2

Model

2.1 Description and Assumptions

Consider a committee with n ≥ 3 members who have to decide, on behalf of the public

(or an organization), whether to implement a project or to reject it and maintain the status

quo. The project’s payoff depends on a fixed parameter p and a stochastic term µ = {−h, h}.
There are two possible states of the world: the project is a success or is a failure. We denote

by G (Good) the state of the world in which the project is successful and by B (Bad) the

state in which the project fails. Each state has equal prior probability.

Agents have identical preferences over decisions and states. By normalization, if the

project is rejected each agent receives zero. If the project is implemented and the state of

the world is G, each agent receives p + h. On the contrary, if the project is implemented

and the state of the world is B each agent receives p− h. Moreover, we assume i) p < 0 to

capture the idea that without information the status quo is prefer and ii) p+h > 0 implying

that the decision will depend on the value of the stochastic term.

At the beginning of the game, agents simultaneously acquire information êi ∈ [0, 1].

Information is costly, denoted by C(êi). We assume that C(0) = 0, C ′(·) > 0 and C ′′(·) > 0.

After the information acquisition, each agent receives a private signal, si = g (the ‘good

signal’) or si = b (the ‘bad signal’) about the true state. A signal is fully informative with

probability êi. If si is informative, then P(S = G | si = g) = 1 and P(S = B | si = b) = 1.

A signal is uninformative with probability 1− êi. An uninformative signal does not contain

information about the state of the world, then si is randomly drawn from {b, g} with P(b) = 1
2
.

Deliberation takes place in two stages. In the first stage, the communication stage, each

agent i can communicate her private signal. In the second stage, the voting stage, agents vote

for N or Y and no abstentions are allow. We assume that signals are sent simultaneously,
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CHAPTER 2. MODEL

and that votes are cast simultaneously. As a voting rule, we consider unanimity.

2.2 Timing

• Nature randomly chooses S ∈ {B,G} with P(B) = 1
2
.

• Each player i chooses êi ∈ [0, 1].

• Each player i observes si ∈ {b, g} such that:

P(si = g|S = G) = P(si = b|S = B) =
1 + êi
2

P(si = b|S = G) = P(si = g|S = B) =
1− êi
2

• Each player chooses between communicating (C) or not communicating (NC) her pri-

vate signal .

• Each player i votes for N or Y .

Figure 1. Timing of the game

2.3 Strategy Profile and Equilibrium

We focus on symmetric strategy profiles and symmetric equilibriums, where agents with

the same information will choose the same strategy. The amount of information acquired

for each agent i is denoted by ê ∈ [0, 1]. As an analogous interpretation, let us say that

7



CHAPTER 2. MODEL

committee members can exert effort and learn about the state of the world, then each agent

receives a private signal with certain level of precision that depends on the effort. As in

Martinelli [19], each agent makes her effort decision conditional on being pivotal.

The communication decision for each agent i is described by φs : (0, 1) → {0, 1}, where

φs = 1 represents the fact that each agent communicates her signal s ∈ {b, g} given the

effort decision ê. Let us say that we have Full Disclosure when all agents communicate both

signals and Full Non-Disclosure when all agents conceal both signals. A Partial Disclosure-g

is when each agent communicates only the ‘good signal’ and Partial Disclosure-b is when

each agent communicates only the ‘bad signal’. In this stage, we find the conditions under

which each case is a symmetric Nash Equilibrium. As in Coughlan [7], this stage can be

interpreted as a pre-voting stage, where agents may share information before voting.

The voting behavior for each agent i is described by a strategy mapping σ : (0, 1) ×
{0, ..., n} × {0, ..., n} → [0, 1], with σ being the probability of voting for Y , given the effort

made and the number of signals observed. As in Feddersen and Pessendorfer [11], we allow

committee members to vote strategically. We say that agents vote informatively if each

agent votes for Y with probability one after observing the ‘good signal’ and always votes

for N after observing the ‘bad signal’, and vote strategically if they vote for Y with positive

probability after observing the ‘bad signal’.

An equilibrium is a triple (ê, φs, σ). We say that agents acquire information or exert

effort if ê > 0. An equilibrium is a Full Disclosure Equilibrium if agents communicate both

signals, and is a Full Non-Disclosure Equilibrium if agents conceal both signals. In the same

way, an equilibrium is a Partially Disclosure Equilibrium if agents communicate at least one

signal.

We conclude this section with a note on equilibria. As the signals become common

knowledge in the communication stage before members vote we use subgame perfection. We

focus on equilibria in which agents make all their decision conditional on being pivotal.

8



Chapter 3

Results

3.1 Voting Stage

In this stage, we characterize the voting strategies that are symmetric Nash Equilibriums

under each possible communication case. In other word, we define the voting equilibriums

under Full Non-Disclosure, Partially Disclosure and Full Disclosure. It is important to

note, that all voting behaviors will depend on the level of effort exert by agents. We assume

rational agents, then each committee member makes her voting decision conditional on being

pivotal. Also, we focus in equilibriums where the project is implemented with strictly positive

probability.

First we analyze the voting decision under Full Non-Disclosure where all agents conceal

information about their signal, then each agent votes conditional on her private information

and conditional on the pivotal probability. As in Feddersen and Pesendorfer [11], we allow

agents to vote strategically, where σg and σb represent the probability that each agent votes

for Y conditional on receiving the ‘good signal’ and the ‘bad signal’ respectively. Let γS

represents the probability that each agent votes for Y in state S ∈ {B,G}, then:

γG = σg

(
1 + ê

2

)
+ σb

(
1− ê

2

)

γB = σg

(
1− ê

2

)
+ σb

(
1 + ê

2

)
Under unanimity rule, for any symmetric strategy profile and for any given agent, we

define P(piv|S) as the probability that n − 1 other agents vote for Y in state S ∈ {B,G}.

9



CHAPTER 3. RESULTS

The probability that each committee member is pivotal conditional on the state is:

P(piv|G) =

[
σg

(
1 + ê

2

)
+ σb

(
1− ê

2

)]n−1

P(piv|B) =

[
σg

(
1− ê

2

)
+ σb

(
1 + ê

2

)]n−1
The pivotal probability in state S is strictly decreasing in the number of agents when

0 < γS < 1. As n increases, the probability that one vote change the final outcome decreases.

Moreover, as n goes to infinity, the pivotal probability in state S goes to zero.

The probability that one vote change the outcome also depends on the probability that

the signal received is correct given the state. If σg > σb, then P(piv|G) is increasing in ê and

P(piv|B) is decreasing in ê. Intuitively, if the precision over the signal increases, in state

G more agents will receive the ‘good signal’ and the pivotal probability increases. On the

contrary, in state B more agents will receive the ‘bad signal’ and the pivotal probability

decreases.

Under Full Non-Disclosure, we characterize the symmetric Nash Equilibriums where the

project is implemented with strictly positive probability. Let en represent the minimum level

of effort needed to vote for Y after observing the ‘good signal’. Since agents vote conditional

on being pivotal, then this is the minimum level of effort needed to vote for Y after observing

n ‘good signals’. And en−1 represent the maximum level of effort needed to vote for N after

observing the ‘bad signal’ or n− 1 ‘good signals’. We find that agents vote informatively if

en−1 > ê ≥ en and vote strategically if ê ≥ en−1.

Proposition 1. Voting Equilibriums under Full Non-Disclosure

Suppose ê ∈ (0, 1) and that all agents conceal their signal, then under unanimity rule the sym-

metric Nash Equilibriums where the project is implemented with strictly positive probability

are:

(σ∗g , σ
∗
b ) =

(1, 0) if en−1 > ê ≥ en

(1, β1) if ê ≥ en−1

where en and en−1 are decreasing in p, h and n; and β1 is increasing in p, h and n.

Proof. See Appendix.

Note that vote always for N is also a symmetric Nash Equilibrium in the voting stage.

Since the pivotal probability is zero, there is no incentive to deviate.

According to Proposition 1, the project is rejected if the effort is not high enough. Even

if all agents have received the ‘good signal’, all agents prefer to maintain the status quo

10
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because there is not sufficient information that supports implementation and the expected

benefit received from the project is negative. Then, for en > ê, each agent votes for N

independent of the signal received. This is intuitive, since p < 0.

Agents vote informatively when en−1 > ê ≥ en. If agent i receives the ‘good signal’ and

is pivotal, she will vote for Y with probability one because the precision over the signal is

sufficiently high such that the expected benefit from making the right decision in state G is

higher than the expected cost of making the wrong decision in state B. On the contrary,

if agent i receives the ‘bad signal’ and is pivotal, she will not be willing to implement the

project because the expected cost of making the wrong decision in state B is greater than

the expected benefit from making the right decision in state G.

Finally, we have the case where each agent votes strategically. Agent i will vote for Y

with strictly positive probability after observing the ‘bad signal’ because the precision over

the signal is high enough such that the expected benefit from making the right decision in

state G is equal to the expected cost of making the wrong decision in state S = B.

The mixed strategy β1 is increasing in p, h and n. The pivotal scenario implies that all

other agents have received the ‘good signal’, then if n increases more agents receive the ‘good

signal’ in state G and agent i will be willing to vote for Y with a higher probability. If p

increases, the cost from making the wrong decision in state B decreases and the benefit from

making the right decision in state G increases, then agent i will be more willing to vote for

Y after observing the ‘bad signal’ and β1 increases. If h increases, the expected benefit from

making the right decision in state G increases more than the expected cost from making the

wrong decision in state B, then β1 increases.

The minimum and maximum amount of effort required to vote informatively are decreas-

ing in n. This result is intuitive. If n increases, more agents have received the ‘good signal’

in the pivotal scenario, then after observing the ‘good signal’, she will be willing to vote

for Y for a smaller precision over the signal. On the contrary, if agent i observes the ‘bad

signal’, she will vote N if and only if the precision over the signal is small enough since all

other agents have received the ‘good signal’.

Moreover, the minimum and maximum amount of effort required to vote informatively

are also decreasing in p and h. If p increases, the benefit from making the right decision in

state G increases and the cost from making the wrong decision in state B decreases. Since

agent i has more incentives to implement the project, she will vote for Y for smaller levels

of precision over the signal. In the other hand, if the stochastic term h increases, the benefit

from making the right decision in state G and the cost from making the wrong decision in

state B both increases. However, the expect utility received from implement the project in

state G increases more than the expected disutility from implement the project in state B.
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If agent i receives the ‘good signal’, she votes for Y conditional on a smaller level of precision

and if agent i receives the ‘bad signal’, she votes for N conditional on a smaller level of

precision over the signal.

In the next section we analyze the communication decision, then we need to characterize

the voting rule if agent i deviates from the symmetric conceal information strategy. Since

agent i will vote according to her private information, let σg and σb represent the probability

that agent i votes for Y after observing the ‘good signal’ and the ‘bad signal’ respectively.

Now, suppose agent i receives and communicates her signal, then all other agents but i

will vote according to her private signal and agent i’s signal. Let σgg and σgb represent the

probability that all other agents but i votes for Y after observing agent i’s ‘good signal’

and their private ‘good signal’ and ‘bad signal’ respectively. And, let σbg and σbb represent

the probability of voting for Y after observing agent i’s ‘bad signal’ and their private ‘good

signal’ and ‘bad signal’ respectively.

In this case, the probability that each agent votes for Y in state S and the probability

that agents are pivotal in state S, both change from the previous definition. For example,

suppose agent i has received the ‘good signal’ and communicates it, then the probability

that each agent j 6= i votes for Y in state S is:

γjG = σgg

(
1 + ê

2

)
+ σgb

(
1− ê

2

)

γjB = σgg

(
1− ê

2

)
+ σgb

(
1 + ê

2

)
Under unanimity rule, for any symmetric strategy profile and for any given voter, we

define P(pivj|S) as the probability that agent j 6= i is pivotal in state S is:

P(pivj|G) = σg

[
σgg

(
1 + ê

2

)
+ σgb

(
1− ê

2

)]n−2

P(pivj|B) = σg

[
σgg

(
1− ê

2

)
+ σgb

(
1 + ê

2

)]n−2
The probability that agent i is pivotal in state S is:

P(pivi|G) =

[
σgg

(
1 + ê

2

)
+ σgb

(
1− ê

2

)]n−1

P(pivi|B) =

[
σgg

(
1− ê

2

)
+ σbb

(
1 + ê

2

)]n−1
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Note that agent i can vote for N or Y after observing the ‘good signal’ or the ‘bad

signal’ . If she votes for N , then the project is not implemented and all other agents are

never pivotal. We focus in voting equilibriums where the project is implement with strictly

positive probability, then we analyze the case where σg and σb are strictly positive. Formally:

Proposition 2. Voting Equilibriums if one agent deviates from Full Non-Disclosure

Suppose ê ∈ (0, 1) and that all agents but i conceal information. If agent i receives the ‘good

signal’ and communicates it, then under unanimity rule the symmetric Nash Equilibriums

where the project is implemented with strictly positive probability are:

(σ∗g , σ
∗
gg, σ

∗
gb) =

(1, 1, 0) if en−1 > ê ≥ en

(1, 1, β2) if ê ≥ en−1

where β2 is increasing in p, h, n and ê.

On the contrary, if agent i receives the ‘bad signal’ and communicates it, then under una-

nimity rule the symmetric Nash Equilibriums where the project is implemented with strictly

positive probability are:

(σ∗b , σ
∗
bg, σ

∗
bb) =

(1, 1, 0) if en−2 > ê ≥ en−1

(1, 1, β3) if ê ≥ en−2

where en−2 is decreasing in p, h and n; and β3 is increasing in p, h and n.

Proof. See Appendix.

In all the symmetric Nash Equilibriums where the project is implemented with strictly

positive probability, after communicating the ‘good signal’ or the ‘bad signal’, agent i dele-

gates her voting decision and always votes for Y with probability one.

The fact that agent i communicates her signal changes the mixed voting strategy after

observing the ‘bad signal’. Moreover, β2 > β1 and β1 > β3. The intuition behind this results

is as follows. If agent i observes and communicates the ‘good signal’ and agent j observes the

‘bad signal’, this information cancels out with agent i’s signal, and agent j will be willing to

vote for Y with a higher probability. On the contrary, if agent i receives the ‘bad signal’ and

communicates it, then all other agents will be willing to vote for Y with a smaller probability

after observing the ‘bad signal’ because there is more evidence against implementation.

Communication also changes the boundaries needed to vote informatively when agent i

receives the ‘bad signal’. If agent i receives the ‘bad signal’ and reveals it, then all agents

have information against implementation. Then, when agent j receives the ‘good signal’, she

13
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will be willing to vote for Y if the effort is equal or higher than en−1, since only n− 1 agents

receive the ‘good signal’ when she is pivotal. And, if agent j receives the ‘bad signal’, she

will vote for N for higher amounts of effort because the evidence against implementation is

greater.

On the contrary, the boundaries needed to vote informatively do not change if agent i

receives and communicates the ‘good signal’. This is intuitive. Since agent j is pivotal when

all other agents have received the ‘good signal’, the expected benefit from making the right

decision in state G and the expected cost from making the wrong decision in state B are the

same with and without communication.

Finally, we analyze the cases where all agents communicate at least one signal, then each

agent votes conditionally on the pivotal probability. We characterize the voting equilibriums

under Full Disclosure, Partially Disclosure-g and Partially Disclosure-b cases. Our results

show that the voting decision depends on the amount of effort and the total number of signals

observed. Let Ng represent the number of ‘good signals’ observed by each agent and eNg the

minimum effort such that each agent will be willing to vote for Y after observing Ng ‘good

signals’.

Proposition 3. Voting Equilibriums under Full Disclosure and Partially Dis-

closure

Suppose n odd and ê ∈ (0, 1). Consider the following cases: I) all agents communicate their

signal, II) all agents communicate only the ‘good signal’, and III) all agents communicate

only the ‘bad signal’. Then, under any voting rule, the symmetric Nash Equilibrium where

the project is implemented with strictly positive probability is σ∗ = 1 if Ng ≥ n−1
2

+ 1 and

ê > eNg , where eNg is decreasing in p, h and Ng.

Proof. See Appendix.

According to Proposition 3, agent i will vote for Y if two conditions are met. First, there

is a necessary but not sufficient condition over the number of signals observed. Secondly, we

have a condition related to the amount of effort.

As in Coughlan [7], if agents share information in the pre voting stage or communication

stage, then during the voting stage all agents will either agree to implement the project or

agree to maintain the status quo.

It is important to note that the voting rule is equivalent in cases I), II) and III). The

intuition is as follows. Suppose n odd and consider the case where all agents communicate the

‘good signal’ and conceal the ‘bad signal’, then agent i will vote for Y if she observes at least
n−1
2

+ 1 ‘good signals’ and ê > eNg . Now, consider the case where all agents communicate
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the ‘bad signal’ and conceal the ‘good signal’, then agent i will vote for Y if she observes

no more than n−1
2

‘bad signals’ and ê > eNb
. In the later case, if agent i observes an ‘empty

signal’ from agent j, she believes that agent j has received the ‘good signal’ and will vote

for Y if she observes at least n−1
2

+ 1 ‘empty signals’, which is equivalent to say that she

has observed at least n−1
2

+ 1 ‘good signals’. Then, without loss of generality, we define the

voting rule in each case conditional on the number of ‘good signals’ observed.

The minimum level of precision required to vote for Y is decreasing in Ng. This is

intuitive. If the number of ‘good signals’ observed increases, there is more evidence that

supports implementation. Then, agent i will be willing to vote for Y for a smaller amounts

of information.

In summary, if agents communicate their signal, then each agent will vote for Y if they

have observed at least half plus one of good signals in the communication stage. This

implicates that given any voting rule, if communication is available between agents, they

will behave as under majority rule.

3.2 Communication Stage

In this stage we analyze if Full Non-Disclosure, Partially Disclosure and Full Disclosure

are or not symmetric Nash Equilibrium given the voting rules found in the previous section.

Also, we define the condition over which the equilibriums exist. It is important to note that a

strategic agent will condition her decision on the voting stage; that is, her signal can change

the final outcome during the voting stage.

First we analyze if Full Non-Disclosure is a symmetric Nash Equilibrium. Our results

show, that agents have no incentive to deviate from the conceal information strategy after

observing the ‘good signal’ and have incentives to deviate and communicate the ‘bad signal’.

Proposition 4. Full Non-Disclosure

Consider the symmetric voting equilibriums defined in Proposition 1 and Proposition 2. Sup-

pose ê ∈ (0, 1), then Full Non-Disclosure is always a symmetric Nash Equilibrium in the

communication stage for en−1 > ê.

Proof. See Appendix.

Agents have no incentive to deviate from the conceal information strategy after observing

the ‘good signal’. This is intuitive. Suppose agent i has received the ‘good signal’ and all

other agents conceal information. When en > ê, for any communication decision, there is no

evidence that supports implementation and the project is rejected, then agent i is indifferent
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between communicating or concealing her signal. When en−1 > ê ≥ en, each agent votes

informatively and communication does not change the expected utility given the pivotal

probability, then agent i does not communicate the ‘good signal’. The interesting case is

when ê > en−1, where agents votes for Y with a positive probability after observing the ‘bad

signal’. The expected utility for agent i when she chooses φg = 0 is always greater than the

expected utility when she chooses φg = 1. The intuition is as follows. If agent i deviates and

communicates her signal, since β2 > β1, the pivotal probability increases in both states and

the expected benefit from making the right decision in state G decreases and the expected

cost from making the wrong decision in state B increases. Then, agent i conceals the ‘good

signal’.

On the contrary, agent i has incentives to deviate and communicate the ‘bad signal’.

Suppose agent i has received the ‘bad signal’ and all other agents conceal information.

When en > ê, for φg = 1 and φg = 0, there is no evidence that supports implementation

and the project is rejected, then agent i is indifferent between communicating or concealing

her signal. When en−1 > ê ≥ en, for φg = 1 and φg = 0, the project is not implemented

and agent i is indifferent between communicating or concealing her signal. Now, suppose

en−2 > ê ≥ en−1. If agent i does not communicate her signal, she will vote for Y according

to the mixed strategy profile β1 and will receive an expected payoff equal to zero; and if

she communicates her signal, she will vote for Y and will delegate the final decision to

other agents and her expected utility will be strictly positive. Then agent i will conceal

information. Finally, consider ê ≥ en−2, where the only difference with the previous case

is that all other agents who received the ‘bad signal’ will vote for Y with strictly positive

probability. Then agent i will conceal information.

Now we characterize Full Disclosure, Partial Disclosure-g and Partial Disclosure-b. A

rational agent will make her communication decision conditional on the pivotal probability in

the voting stage, where agent i might be decisive in the number of signals needed to vote for

Y given a fixed amount of effort. Without loss of generality, we characterize the symmetric

Nash Equilibriums conditional on the number of ‘good signals’, because each agent i can

infer the number of ‘good signals’ from the number of ‘bad signals’.

Proposition 5. Partially Disclosure and Full Disclosure

Consider the symmetric voting equilibriums defined in Proposition 3. Suppose ê ∈ (0, 1), then

Full Disclosure, Partial Disclosure-g and Partial Disclosure-b are symmetric Nash Equilib-

riums in the communication stage.

Proof. See Appendix.

This result is intuitive. If communication is costless then agents always have incentives
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to communicate their signal and aggregate information. An interesting case is when com-

munication is costly. We will discuss this result as an extension of the model in the next

chapter.

3.3 Information Acquisition Stage

In the following section, we characterize the information acquisition or effort decision

given the results found in the previous two sections. Each agent i makes the effort decision

conditional on being pivotal. As in Martinelli [19], we find that in large elections C ′(0) = 0

is a necessary and sufficient condition for the existence of an equilibrium with information

acquisition. Moreover, in our model, we can consider that even if the expected benefit

received from the implementation of the project is close to zero, agents have incentives to

acquire information. Also, our results how that if n is sufficiently high, then agents will exert

effort only if communication is available.

As an abuse of notation, let us represent the effort decision for agent i as ei. Let G(ei)

represent the expect utility received for each agent i under Full Non-Disclosure. According to

Preposition 4, Full Non-Disclosure is a symmetric Nash Equilibrium in the communication

stage only for en−1 > ei, then:

G(ei) =


−C(ei) if en > ei

1
2
(p+ h)

(
1+ê
2

)n−1 (1+ei
2

)
+ 1

2
(p− h)

(
1−ê
2

)n−1 (1−ei
2

)
− C(ei) if en−1 > ei ≥ en

In this case, agent i is pivotal when n − 1 other agents vote for Y , where each agent

votes for Y with probability one after observing the ‘good signal’ and always votes for N

after observing the ‘bad signal’. Since agents do not communicate their signal, there is not

pivotal probability in the communication stage.

According to Preposition 5, Full Disclosure, Partially Disclosure-g and Partially Disclosure-

b are always Nash Equilibriums. Suppose n odd and let H(ei) represent the expect utility

that each agent i, which is equivalent under the three cases, then:

H(ei) =

−C(ei) if en > ei

1
2

(n−1)!
(n−1

2 )!(n−1
2 )!

(p+ eih)
(
1+ê
2

)n−1
2
(
1−ê
2

)n−1
2 − C(ei) if ei ≥ en

Note that, each agent i is pivotal when n−1
2

other agents receive the ‘good signal’ in the
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communication stage. Since all agents vote for Y or N in the voting stage after communi-

cating their signal, we consider the pivotal case in the communication stage.

As in Martinelli [19], the following Proposition states states that C ′(0) = 0 is a necessary

and sufficient condition for the existence of an equilibrium with information acquisition, and

characterizes this equilibrium.

Proposition 6. Information acquisition

Consider Proposition 4 and 5, then:

• If C ′(0) = 0, there is an equilibrium with information acquisition and it is unique,

where e∗i solves:

– For Full Non-Disclosure:

1

4
(p+ h)

(
1 + ê

2

)n−1
− 1

4
(p− h)

(
1− ê

2

)n−1
= C ′(ei) (3.1)

– For Full Disclosure and Partially Disclosure:

1

2

(
n− 1
n−1
2

)
h

(
1 + ê

2

)n−1
2
(

1− ê
2

)n−1
2

= C ′(ei) (3.2)

• If C ′(0) > 0, there is some n such that for every n ≥ n (holding the other parameters

of the model constant) there is no equilibrium with information acquisition.

Proof. See Appendix.

Our results show that agents will acquire information if C ′(0) = 0. Intuitively, if the

marginal cost of acquire information is zero in ei = 0, then agents have incentives to acquire

a strictly positive amount of information and the solution is not biding. Even if n goes to

infinity or the expected benefit received from the implementation of the project is close to

zero, agents will acquire information according to the FOCs (3.1) and (A.6).

Also, we find that agents may no have incentive in acquire information if C ′(0) > 0. In

this case, if the expected benefit received from implement the project is close to zero and the

marginal cost is strictly positive for any level of effort, then agent will no have incentives to

acquire information. Moreover, if n increases then agents will not acquire information, since

the expect benefit from implementation decreases with the number of agents.

Finally, we find that there is an equilibrium where agents communicate their signal and

acquire information. Even under unanimity rule, agents behave and acquire information

according to a majority rule.
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Proposition 7. Suppose C ′(0) > 0 and h high enough, then there is some n such that for

every n ≥ n (holding the other parameters of the model constant) there is an equilibrium

where agents communicate and acquire information.

Proof. See Appendix.

Intuitively, if n increases the expected benefit received under Full Non-Disclosure con-

verges to zero faster than the expected benefit received under Full Disclosure, Partially

Disclosure-g and Partially Disclosure-b. We can conclude that, if communication is avail-

able between agents, then they will acquire information even if n is big.

3.4 Example

Consider n = 11, p = −0.5, h = 20 and C(ei) = (ei + 0.001)2. Under Full Non-Disclosure

the expected utility is given by:

Figure 1. Full Non-Disclosure Expected Utility

On the other hand, under Full Disclosure, Partially Disclosure-g and Partially Disclosure-b

the expected utility is given by:
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Figure 2. FD, PD-g and PD-b Expected Utility

It is easy to see that agents prefer communicate their signal and acquire information.
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Conclusions

Our main conclusion is that communication affects the amount of information acquired.

Moreover, if n is big, agents may have incentives to acquire information only when com-

munication is available. Intuitively, we would expect that information sharing decrease the

incentives to exert effort and observe a free rider problem. However, our results show that

communication creates incentives to acquire information when n is high enough. Our analysis

puts in evidence the importance of incorporate communication when information acquisition

is analyze.

According to the literature, we find that agents vote strategically if deliberation is not

consider, and do not vote strategically if communication is incorporated. Moreover, as we

consider a pre voting stage, agents share information and vote for the same option during the

voting stage. Also, our results show that agents communicate their signal if communication

is costless.

As interesting extension is consider any supermajority rule and analyze information ac-

quisition when communication is available. Intuitively, we expect the same result. Since the

expected benefit received under any supermajority should converge to zero faster than ma-

jority rule. Now, we analyze the communication’s equilibrium if sharing information is costly.

We find that the existence of equilibriums change and depends on the communication’s cost,

where more educated agent have more incentives in deliberate.

4.1 Extension

As an extension, consider costly communication where agents can communicate the signal

s ∈ {b, g} with a cost ε > 0. We find that Full Non-Disclosure may be an equilibrium in the

communication stage for higher levels of effort. Formally, let EUFN
b represents each agent’s
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expected utility when she communicates the ‘bad signal’, then:

Corollary 1. Full Non-Disclosure

Consider the symmetric voting equilibriums defined in Proposition 1 and Proposition 2. Sup-

pose ê ∈ (0, 1) and ε > 0, then:

1) For en−1 > ê, Full Non-Disclosure is always a symmetric Nash Equilibrium.

2) For ê ≥ en−1, Full Non-Disclosure is a symmetric Nash Equilibrium in the communi-

cation stage , if ε > EUFN
b , where:

EUFN
b =



(p+h)( 1+ê
2 )

n−1
( 1−ê

2 )+(p−h)( 1−ê
2 )

n−1
( 1+ê

2 )
( 1+ê

2 )
n−1

( 1−ê
2 )+( 1−ê

2 )
n−1

( 1+ê
2 )

if en−2 > ê ≥ en−1

(p+h)[( 1+ê
2 )+β3( 1−ê

2 )]
n−1

( 1−ê
2 )+(p−h)[( 1−ê

2 )+β3( 1+ê
2 )]

n−1
( 1+ê

2 )
[( 1+ê

2 )+β3( 1−ê
2 )]

n−1
( 1−ê

2 )+[( 1−ê
2 )+β3( 1+ê

2 )]
n−1

( 1+ê
2 )

if ê ≥ en−2

Proof. Appendix.

As we find in Proposition 4, even if information is costless, agents have no incentive

to deviate from the conceal information strategy after observing the ‘good signal’. When

communication is costly, agent i may not have incentives to deviate and communicate the

‘bad signal’. Suppose agent i has received the ‘bad signal’ and all other agents conceal

information. When en > ê, for φg = 1 and φg = 0, there is no evidence that supports

implementation and the project is rejected, then agent i does not communicate her signal.

When en−1 > ê ≥ en, for φg = 1 and φg = 0, the project is not implemented and agent

i prefers to conceal information. Now, suppose en−2 > ê ≥ en−1. If agent i does not

communicate her signal, she will vote for Y according to the mixed strategy profile β1 and

will receive an expected payoff equal to zero; and if she communicates her signal, she will

vote for Y and will delegate the final decision to all other agents and her expected utility

will be strictly positive. Then agent i will conceal information if the communication’s cost

is higher than the positive expected utility received from implement the project. Finally,

consider ê ≥ en−2, where the only difference with the previous case is that all other agents

who received the ‘bad signal’ will vote for Y with strictly positive probability. Then agent i

will conceal information conditional on the communication’s cost.

Now, consider Full Disclosure, Partial Disclosure-g and Partial Disclosure-b. Let EUPD
g

represents each agent’s expected utility when she communicates the ‘good signal’ and EUPD
b

represents each agent’s expected desutility after concealing the ‘bad signal’.
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Corollary 2. Partially Disclosure and Full Disclosure

Consider the symmetric voting equilibriums defined in Proposition 3. Suppose n odd, ê ∈
(0, 1) and ε > 0, then:

1) Full Disclosure where agents communicate both signals is not a symmetric Nash Equi-

librium in the communication stage.

2) For en > ê, Partially Disclosure where agents communicate only the ‘good signal’ and

Partially Disclosure where agents communicate only the ‘bad signal’ are not symmetric

Nash Equilibriums in the communication stage.

3) For ê ≥ en, Partially Disclosure where agents communicate only the ‘good signal’ is a

symmetric Nash Equilibrium in the communication stage when agents believe that only

the ‘bad signals’ are being concealed and EUPD
g ≥ ε, where:

EUPD
g =



(p+h)( 1+ê
2 )

n−1
2 +1

( 1−ê
2 )

n−1
2 +(p−h)( 1−ê

2 )
n−1
2 +1

( 1+ê
2 )

n−1
2

( 1+ê
2 )

n−1
2 +1

( 1−ê
2 )

n−1
2 +( 1−ê

2 )
n−1
2 +1

( 1+ê
2 )

n−1
2

if ê ≥ en−1
2

+1

(p+h)( 1+ê
2 )

Ng( 1−ê
2 )

n−Ng
+(p−h)( 1−ê

2 )
Ng( 1+ê

2 )
n−Ng

( 1+ê
2 )

Ng( 1−ê
2 )

n−Ng
+( 1−ê

2 )
Ng( 1+ê

2 )
n−Ng if en−1

2
+1 > ê ≥ en

and eNg−1 ≥ ê > eNg

4) For ê > en, Partially Disclosure where agents communicate only the ‘bad signal’ is a

symmetric Nash Equilibrium in the communication stage when agents believe that only

the ‘good signals’ are being concealed and −ε ≥ EUPD
b , where:

EUPD
b =



(p+h)( 1+ê
2 )

n−1
2 ( 1−ê

2 )
n−1
2 +1

+(p−h)( 1−ê
2 )

n−1
2 ( 1+ê

2 )
n−1
2 +1

( 1+ê
2 )

n−1
2 ( 1−ê

2 )
n−1
2 +1

+( 1−ê
2 )

n−1
2 −1

( 1+ê
2 )

n−1
2 +1

if ê ≥ en−1
2

+1

(p+h)( 1+ê
2 )

Ng−1
( 1−ê

2 )
n+1−Ng

+(p−h)( 1−ê
2 )

Ng−1
( 1+ê

2 )
n+1−Ng

( 1+ê
2 )

Ng−1
( 1−ê

2 )
n+1−Ng

+( 1−ê
2 )

Ng−1
( 1+ê

2 )
n+1−Ng if en−1

2
+1 > ê > en

and eNg−1 ≥ ê > eNg

Proof. See Appendix.

Partially Disclosure are symmetric Nash Equilibriums conditional on the communica-

tion’s cost. Nevertheless, if en > ê, the Partially Disclosure are not Nash Equilibriums. This

is intuitive. Since agents always vote for N , independent of the number of signals observed,

they strictly prefer conceal information.
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Consider ê > en−1
2

+1. In this case, the signal’s precision is high enough such that each

agent always votes for Y after observing Ng ‘good signals’ (when Ng ≥ n−1
2

+ 1), then agent

i makes her communication decision conditional on being pivotal in the minimum number

of ‘good signals’ needed to vote for Y . In the Partially Disclosure-g, agent i communicates

her ‘good signal’ if the expected utility received after observing n−1
2

+ 1 ‘good signals’ is

greater than the communication’s cost. The intuition is as follows. Agents believe that only

the ‘bad signals’ are being concealed, then each agent strictly prefers conceal information

after observing the ‘bad signal’; because under the agent’s belief, the project will not be

implemented and there is no need to communicate her signal. On the contrary, if agent

i receives the ‘good signal’ and does not communicate it, the project is not implemented

under the agent’s beliefs, then agent i communicates the ‘good signal’ conditional on the

communication’s cost and the expected utility received from implementation. In the Partially

Disclosure-b, agent i communicates her ‘bad signal’ if the expected utility received after

observing n−1
2

‘good signals’ is more negative than the communication’s cost. Agents believe

that only the ‘good signals’ are being concealed, then each agent strictly prefers conceal

information after observing the ‘good signal’; because under the agent’s belief, the project is

implemented and there is no need to communicate her signal. But, if agent i receives the ‘bad

signal’, under agent’s belief, the project is implemented and the expected utility received is

negative. Then, agent i communicates the ‘bad signal’ conditional on the communication’s

cost.

Finally, consider en−1
2

+1 ≥ ê > en, where agent i is decisive in the number of signals needed

to vote for Y given a fixed level of precision over the signal. In this case, agent i makes her

communication decision comparing the expected utility received given Ng−1 versus Ng ‘good

signals’. Nevertheless, when eNg−1 > ê = eNg , the expected utility from implementation is

zero and agents never communicate, then agents might have incentives to communicate her

signal when eNg ≥ ê > eNg . In the Partial Disclosure Equilibrium-g, agent i communicates

her ‘good signal’ if the expected utility received after observing Ng ‘good signals’ is greater

than the communication’s cost. Under agent’s beliefs, the project is not implemented after

observing Ng − 1, then agent i communicates her ‘good signal’ if the expected utility is high

enough. In the Partial Disclosure Equilibrium-b, agent i communicates her ‘bad signal’ if

the expected utility received after observing Ng − 1 ‘good signals’ is more negative than the

communication’s cost. In this case, if agent i does not communicate her signal, she receives

a negative expected utility, then agent i communicates the ‘bad signal’ conditional on the

communication’s cost.

The remaining case is when agents communicate both signal. We find that Full Disclo-

sure is never a Nash Equilibrium in the communication stage. This result is intuitive. If
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communication is costly, agents never communicate both signal because always there is an

incentive to deviate.

Through a numeric example, we analyze how the structure of communication equilibriums

change for every ê ∈ (0, 1) if the communication’s cost increases. Consider n = 10, p = −5

and h = 5, 8.

Figure 2. ε = 0

Suppose communication is costless (Figure 2). According to Preposition 5, Full Disclosure

and Partially Disclosure are symmetric Nash Equilibriums for every ê. Each agent strictly

prefers to communicate her signal when ê ≥ en and will be indifferent between communicate

her signal or not when en > ê. On the contrary, Full Non-Disclosure is a symmetric Nash

Equilibrium only for en−1 > ê, where agents are indifferent between communicate or not.

Then, when communication is costless agents have incentive to aggregate information.

Figure 3. ε = 0, 45

Suppose costly communication, with ε = 0, 45 (Figure 3). In this case, Full Disclosure

is not a symmetric Nash Equilibrium because agents have incentives to deviate and conceal

information. Since communication is costly, they will never communicate both signals. In

the other hand, Full Non-Disclosure is a symmetric Nash Equilibrium for higher levels of

precision over the signal. For en−2 ≥ ê, the communication’s cost is greater than the expected

benefit received from deviate after observing the ‘bad signal’, then each agent conceals both

signals.

The interesting cases are the Partially Disclosure, which are symmetric Nash Equilib-

riums conditional on the level of precision over the signal. In the Partially Disclosure-g,

agents deviate when the communication’s cost is greater than the expected utility received

after communicating the ‘good signal’. For ê > en
2
+1, the expected utility received after com-

municating is increasing in the precision’s signal, then Partially Disclosure-g is a symmetric

Nash Equilibrium in the last part of the interval, where the expected utility is high enough,

such that agents will communicate. For en
2
+1 ≥ ê > en, the expected utility received after
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communicating is increasing in the precision’s signal in each interval eNg−1 ≥ ê > eNg , where

Ng−1 ≥ n
2

+ 1, then Partially Disclosure-g is a symmetric Nash Equilibrium in the last part

of each interval. In the Partially Disclosure-b, agents deviate when the communication’s

cost is greater than the negative expected utility received after concealing the ‘bad signal’.

For ê > en
2
+1, the expected utility received after concealing the ‘bad signal’ is constant and

equal to p, then agents communicate her signal if −ε ≥ p. For en
2
+1 ≥ ê > en, the negative

expected utility received after concealing is increasing in the precision’s signal in each inter-

val eNg−1 ≥ ê > eNg , where Ng − 1 ≥ n
2

+ 1, then Partially Disclosure-b is a symmetric Nash

Equilibrium at the beginning of each interval.

Figure 4. ε = 0, 75

Suppose the communication’s cost increases (Figure 4). In this case, Full Non-Disclosure

is a symmetric Nash Equilibrium for higher levels of information. This is intuitive. Given the

communication is costly, agents will have less incentive in communicate their signal, because

the expected benefit receives from communicate decreases. Moreover, Partially Disclosure-

g and Partially Disclosure-b are Nash Equilibriums only for higher levels of information,

because only in that case the expected benefit from communicate is positive.

As we can see, costly communication change the symmetric Nash Equilibriums in the

communication stage. And it is an interesting extension.
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29



Appendix A

Proofs

A.1 Proof Proposition 1

Proof. Suppose ê ∈ (0, 1) and φg = φb = 0. Since agents do not aggregate information, each

agent will vote according to her private signal and the pivotal probability under unanimity

rule. Let γS represents the probability that each agent votes for Y in state S ∈ {B,G},
then:

γG = σg

(
1 + ê

2

)
+ σb

(
1− ê

2

)
γB = σg

(
1− ê

2

)
+ σb

(
1 + ê

2

)
where σg and σb represent the probability that each agent votes for Y conditional on receiving

the ‘good signal’ and the ‘bad signal’ respectively.

Under unanimity rule, for any symmetric strategy profile and for any given voter, we define

P(piv|S) as the probability that n − 1 other voters vote for Y in state S ∈ {B,G}. The

probability that agent i is pivotal in state S is:

P(piv|G) = γn−1G =

[
σg

(
1 + ê

2

)
+ σb

(
1− ê

2

)]n−1

P(piv|B) = γn−1B =

[
σg

(
1− ê

2

)
+ σb

(
1 + ê

2

)]n−1
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Let EU g represent the expected utility that each agent receives from vote for Y after observ-

ing the ‘good signal’, then:

EU g = (p+ h)P(G|piv, s = g) + (p− h)P(B|piv, s = g)

⇒ EU g = (p+ h)
γn−1G

(
1+ê
2

)
γn−1G

(
1+ê
2

)
+ γn−1B

(
1−ê
2

) + (p− h)
γn−1B

(
1−ê
2

)
γn−1G

(
1+ê
2

)
+ γn−1B

(
1−ê
2

)
Let EU b represent the expected utility that each agent receives from vote for Y after observing

the ‘bad signal’, then:

EU b = (p+ h)P(G|piv, s = b) + (p− h)P(B|piv, s = b)

⇒ EU b = (p+ h)
γn−1G

(
1−ê
2

)
γn−1G

(
1−ê
2

)
+ γn−1B

(
1+ê
2

) + (p− h)
γn−1B

(
1+ê
2

)
γn−1G

(
1−ê
2

)
+ γn−1B

(
1+ê
2

)
Agent i strategy profile depends on EU g and EU b, where:

σg =


1 if EU g > 0

[0, 1] if EU g = 0

0 if EU g < 0

σb =


1 if EU b > 0

[0, 1] if EU b = 0

0 if EU b < 0

Note that σg = 0 and σb = 0 is always a symmetric Nash Equilibrium, since the pivotal

probability is zero there is not incentive to deviate. It is easy to check that (0,1) and (1,1)

are never a symmetric Nash Equilibriums in the voting stage and (1,0) is a symmetric Nash

Equilibrium conditional on the effort decision.

Suppose σg = 1 and σb = 0 ∀j 6= i, then agent i votes σg = 1 if EU g ≥ 0. This condition

holds if and only if:

ê ≥ (h− p) 1
n − (p+ h)

1
n

(h− p) 1
n + (p+ h)

1
n

= en

Suppose σg = 1 and σb = 0 ∀j 6= i, then agent i votes σb = 0 if EU b ≤ 0. This condition

holds if and only if:

ê ≤ (h− p)
1

n−2 − (p+ h)
1

n−2

(h− p)
1

n−2 + (p+ h)
1

n−2

= en−1

Then, σg = 1 and σb = 0 is a Nash Equilibrium if en−1 ≥ ê ≥ en.

For a symmetric mixed strategy profile (σg, σb) to be an equilibrium, an agent who receives

si ∈ {b, g} must be indifferent between vote for Y and N . Agent i will be indifferent between

vote for Y and vote for N whenever she receives signal si ∈ {b, g} if and only if γG = γB = 0.

Therefore, we check the mixed strategy profiles such that EU g = 0 or EU b = 0 hold.
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Let EU g = 0, then:

σg =
(h− p)

1
n−1

(
1−ê
2

) 1
n−1
(
1+ê
2

)
− (p+ h)

1
n−1

(
1+ê
2

) 1
n−1
(
1−ê
2

)
(p+ h)

1
n−1

(
1+ê
2

) n
n−1 − (h− p)

1
n−1

(
1−ê
2

) n
n−1

σb

or σg = α1σb.

The mixed strategy σg depends on ê and σb ∈ {0, 1}, where:

σg =



α1 > 0 if σb = 1 and ê > en

α1 < 0 if σb = 1 and en > ê

0 if σb = 0

[0, 1] if ê = en

Suppose σb = 1 and ê > en, then we check the following cases:

• Suppose ê ≥ − p
h
> en and σb = 1, then σg = α1 ∈ [0, 1] ∀j 6= i. If EU g = 0 holds,

then agent i votes σb = 0 since EU b < 0. Thus, σg = α1 and σb = 1 is not a Nash

Equilibrium.

• Suppose ê = en, then σb = 0 and σg ∈ [0, 1] ∀j 6= i. Agent i will be indifferent between

vote for Y and vote for N whenever she receives signal si = g. If EU g = 0 holds, then

agent i votes σb = 0 since EU b < 0. Thus, σg = 1 and σb = 0 is a Nash Equilibrium.

Let EU b = 0, then:

σb =
(p+ h)

1
n−1

(
1−ê
2

) 1
n−1
(
1+ê
2

)
− (h− p)

1
n−1

(
1+ê
2

) 1
n−1
(
1−ê
2

)
(h− p)

1
n−1

(
1+ê
2

) n
n−1 − (p+ h)

1
n−1

(
1−ê
2

) n
n−1

σg

or σb = β1σg.

The mixed strategy σb depends on ê and σg ∈ {0, 1}, where:

σb =



β1 > 0 if σg = 1 and ê > en−1

β1 = 0 if σg = 1 and ê = en−1

β1 < 0 if σg = 1 and ê < en−1

0 if σg = 0

Therefore, we check the following cases:

• Suppose ê > en−1 and σg = 1, then σb = β1 ∈ [0, 1] ∀j 6= i. If EU b = 0 holds, then

agent i votes σg = 1 since EU g > 0. Thus, σg = 1 and σb = β1 is a Nash Equilibrium.
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• Suppose ê = en−1, then σb = 0 and σg ∈ [0, 1] ∀j 6= i. Agent i will be indifferent

between vote for Y and vote for N whenever she receives signal si = b. If EU b = 0

holds, then agent i votes σg = 1 since EU g > 0. Thus, σg = 1 and σb = 0 is a Nash

Equilibrium.

Consider en, it is easy to see that:

∂en
∂p

=
−2(p+ h)

1
n (h− p) 1

n

[
1

(h−p) + 1
(p+h)

]
n
[
(h− p) 1

n + (p+ h)
1
n

]2 < 0

∂en
∂h

=
2(p+ h)

1
n (h− p) 1

n

[
1

(h−p) −
1

(p+h)

]
n
[
(h− p) 1

n + (p+ h)
1
n

]2 < 0

∂en
∂n

=
2(p+ h)

1
n (h− p) 1

n [Ln(p+ h)− Ln(h− p)]

n2
[
(h− p) 1

n + (p+ h)
1
n

]2 < 0

Consider en−1, it is easy to see that:

∂en−1
∂p

=
−2(p+ h)

1
n−2 (h− p)

1
n−2

[
1

(h−p) + 1
(p+h)

]
(n− 2)

[
(h− p)

1
n−2 + (p+ h)

1
n−2

]2 < 0

∂en−1
∂h

=
2(p+ h)

1
n−2 (h− p)

1
n−2

[
1

(h−p) −
1

(p+h)

]
(n− 2)

[
(h− p)

1
n−2 + (p+ h)

1
n−2

]2 < 0

∂en−1
∂n

=
2(p+ h)

1
n−2 (h− p)

1
n−2 [Ln(p+ h)− Ln(h− p)]

(n− 2)2
[
(h− p)

1
n−2 + (p+ h)

1
n−2

]2 < 0

Consider the mixed strategy β1, it is easy to see that:

∂β1
∂p

=
2ê(p+ h)

1
n−1 (h− p)

1
n−1

(
1+ê
2

) 1
n−1
(
1−ê
2

) 1
n−1

[
1

(p+h)
+ 1

(h−p)

]
(n− 1)

[
(h− p)

1
n−1

(
1+ê
2

) n
n−1 − (p+ h)

1
n−1

(
1−ê
2

) n
n−1

]2 > 0

∂β1
∂h

=
2ê(p+ h)

1
n−1 (h− p)

1
n−1

(
1+ê
2

) 1
n−1
(
1−ê
2

) 1
n−1

[
1

(p+h)
− 1

(h−p)

]
(n− 1)

[
(h− p)

1
n−1

(
1+ê
2

) n
n−1 − (p+ h)

1
n−1

(
1−ê
2

) n
n−1

]2 > 0
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∂β1
∂n

=
−ê(p+ h)

1
n−1 (h− p)

1
n−1

(
1−ê
2

) 1
n−1
(
1+ê
2

) 1
n−1

(n− 1)2
[
(h− p)

1
n−1

(
1+ê
2

) n
n−1 − (p+ h)

1
n−1

(
1−ê
2

) n
n−1

]2
[
Ln(p+ h)− Ln(h− p) + Ln

(
1− ê

2

)
− Ln

(
1 + ê

2

)]
> 0

∂β1

∂
(
1+ê
2

) =
(h− p)

2
n−1

(
1+ê
2

) 2
n−1 − (p+ h)

2
n−1

(
1−ê
2

) 2
n−1

(n− 1)
[
(h− p)

1
n−1

(
1+ê
2

) n
n−1 − (p+ h)

1
n−1

(
1−ê
2

) n
n−1

]2+

2(p+ h)
1

n−1 (h− p)
1

n−1

(
1−ê
2

) 1
n−1
(
1+ê
2

) 1
n−1

[
1

( 1+ê
2 )
− 1

( 1−ê
2 )

] [(
1−ê
2

)2 − (1+ê
2

)2]
(n− 1)

[
(h− p)

1
n−1

(
1+ê
2

) n
n−1 − (p+ h)

1
n−1

(
1−ê
2

) n
n−1

]2 > 0

A.2 Proof Proposition 2

Proof. Suppose ê ∈ (0, 1) and φg = φb = 0 ∀j 6= i.

Case 1: Agent i deviates after observing the ‘good signal’

Suppose agent i receives si = g and she chooses φg = 1. Let σg represent the probability

that agent i votes for Y given that she observed the ‘good signal’. On the other hand, the

voting strategy for all other agents j 6= i depends on their private information and agent i’s

signal. Let σgg and σgb represent the probability that agent j 6= i votes for Y conditional on

receiving the ‘good signal’ and the ‘bad signal’ respectively. The probability that each agent

j 6= i votes for Y in state S is:

γjG = σgg

(
1 + ê

2

)
+ σgb

(
1− ê

2

)

γjB = σgg

(
1− ê

2

)
+ σgb

(
1 + ê

2

)
Under unanimity rule, for any symmetric strategy profile and for any given voter, we define

P(pivj|S) as the probability that agent j 6= i is pivotal in state S is:

P(pivj|G) = σgγ
n−2
G = σg

[
σgg

(
1 + ê

2

)
+ σgb

(
1− ê

2

)]n−2
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P(pivj|B) = σgγ
n−2
B = σg

[
σgg

(
1− ê

2

)
+ σgb

(
1 + ê

2

)]n−2
The probability that agent i is pivotal in state S is:

P(pivi|G) = γn−1G =

[
σgg

(
1 + ê

2

)
+ σgb

(
1− ê

2

)]n−1

P(pivi|B) = γn−1B =

[
σgg

(
1− ê

2

)
+ σbb

(
1 + ê

2

)]n−1
Let EU g

i represent the expected utility that agent i receives from vote for Y after observing

the ‘good signal’, then:

EU g
i = (p+ h)P(G|pivi, si = g) + (p− h)P(B|pivi, si = g)

⇒ EU g
i = (p+ h)

γn−1G

(
1+ê
2

)
γn−1G

(
1+ê
2

)
+ γn−1B

(
1−ê
2

) + (p− h)
γn−1B

(
1−ê
2

)
γn−1G

(
1+ê
2

)
+ γn−1B

(
1−ê
2

)
Let EU gg

j represent the expected utility that agent j 6= i receives from vote for Y after

observing the ‘good signal’, then:

EU gg
j = (p+ h)P(G|pivj, si = g, sj = g) + (p− h)P(B|pivj, si = g, sj = g)

⇒ EU gg
j = (p+ h)

γn−2G σg
(
1+ê
2

)2
γn−2G σg

(
1+ê
2

)2
+ γn−2B σg

(
1−ê
2

)2
+ (p− h)

γn−2B σg
(
1−ê
2

)2
γn−2G σg

(
1+ê
2

)2
+ γn−2B σg

(
1−ê
2

)2
Let EU gb

j represent the expected utility that agent j 6= i receives from vote for Y after

observing the ‘bad signal’, then:

EU gb
j = (p+ h)P(G|pivj, si = g, sj = b) + (p− h)P(B|pivi, si = g, sj = b)

⇒ EU gb
j = (p+ h)

γn−2G σg

γn−2G σg + γn−2B σg
+ (p− h)

γn−2B σg

γn−2G σg + γn−2B σg

Agent i strategy profile depends on EU g
i , where:
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σg =


1 if EU g

i > 0

[0, 1] if EU g
i = 0

0 if EU g
i < 0

Agent j 6= i strategy profile depends on EU gg
j and EU gb

j , where:

σgg =


1 if EU gg

j > 0

[0, 1] if EU gg
j = 0

0 if EU gg
j < 0

σgb =


1 if EU gb

j > 0

[0, 1] if EU gb
j = 0

0 if EU gb
j < 0

Note that σg = 0, σgg = 0 and σgb = 0 is always a symmetric Nash Equilibrium, since the

pivotal probability is zero there is not incentive to deviate. We focus in strategy profiles

where the project is implemented with strictly positive probability, where it is easy to check

that (1,1,1) and (1,0,1) are never symmetric Nash Equilibrium in the voting stage. We find

that (1,1,0) is a symmetric Nash Equilibrium conditional on the effort decision.

Suppose σgg = 1 and σgb = 0, then agent i votes σg = 1 if EU g
i ≥ 0. This condition holds if

and only if:

ê ≥ (h− p) 1
n − (p+ h)

1
n

(h− p) 1
n + (p+ h)

1
n

= en

Suppose σg = 1, σgg = 1 and σgb = 0, then agent j votes σgg = 1 if EU gg
j ≥ 0. This condition

holds if and only if:

ê ≥ (h− p) 1
n − (p+ h)

1
n

(h− p) 1
n + (p+ h)

1
n

= en

Suppose σg = 1, σgg = 1 and σgb = 0, then agent j votes σgb = 0 if EU gb
j ≤ 0. This condition

holds if and only if:

ê ≤ (h− p)
1

n−2 − (p+ h)
1

n−2

(h− p)
1

n−2 + (p+ h)
1

n−2

= en−1

Then σg = 1 , σgg = 1 and σgb = 0 is a Nash Equilibrium if en−1 ≥ ê ≥ en.

For a mixed strategy profile (σg, σgg, σgb) to be an equilibrium, an agent who receives the

‘good signal’ or the ‘bad signal’ must be indifferent between vote for Y and N . Agent i

will be indifferent between vote for Y and vote for N when she receives signal si = g if

EU g
i = 0. On the other hand, agent j 6= i will be indifferent between vote for Y and vote for

N whenever she receives signal sj ∈ {b, g} if EU gg
j = 0 and EU gb

j = 0.

It is easy to see that these three equalities hold simultaneously if and only if γG = γB = 0.

Note that, if σg = 0, then EU gg
j = 0 and EU gb

j = 0. Therefore, we check the mixed strategy

profiles such that EU gg
j = 0 or EU gb

j = 0 hold when σg > 0.
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Let EU gg
j = 0, then:

σgg =
(h− p)

1
n−2

(
1−ê
2

) 2
n−2
(
1+ê
2

)
− (p+ h)

1
n−2

(
1+ê
2

) 2
n−2
(
1−ê
2

)
(p+ h)

1
n−2

(
1+ê
2

) k
n−2 − (h− p)

1
n−2

(
1−ê
2

) k
n−2

σgb

or σgg = α2σgb.

The mixed strategy σgg depends on ê and σgb ∈ {0, 1}, where:

σgg =



α2 > 0 if σgb = 1 and ê > en

α2 < 0 if σgb = 1 and en > ê

0 if σgb = 0

[0, 1] if ê = en

Suppose σgb = 1 and ê > en, then we check the following cases:

• Suppose ê ≥ (h−p)
1
2−(p+h)

1
2

(h−p)
1
2+(p+h)

1
2
> en and σgb = 1, then σgg = α2 ∈ [0, 1]. If EU gg

j = 0

holds, then σgb = 0 since EU gb
j < 0. Thus, σg = 1, σgg = α2 and σgb = 1 is not a Nash

Equilibrium.

• Suppose ê = en, then σgb = 0 and σgg ∈ [0, 1]. Agent j will be indifferent between vote

for Y and vote for N whenever she receives signal sj = g. If EU gg
j = 0 holds, then

σg = 1 and σgb = 0 since EU g
i > 0 and EU gb

j < 0. Thus, σg = 1, σgg = 1 and σgb = 0 is

a Nash Equilibrium.

Let EU gb
j = 0, then:

σgb =
(p+ h)

1
n−2

(
1+ê
2

)
− (h− p)

1
n−2

(
1−ê
2

)
(h− p)

1
n−2

(
1+ê
2

)
− (p+ h)

1
n−2

(
1−ê
2

)σgg
or σgb = β2σgg.

The mixed strategy σgb depends on ê and σgg ∈ {0, 1}, where:

σgb =



β2 > 0 if σgg = 1 and ê > en−1

β2 = 0 if σgg = 1 and ê = en−1

β2 < 0 if σgg = 1 and ê < en−1

0 if σgg = 0

Therefore, we check the following cases:
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• Suppose ê > en−1 and σgg = 1, then σgb = β2 ∈ [0, 1]. If EU gb
j = 0 holds, then σg = 1

and σgg = 1 since EU g
i > 0 and EU gg

j > 0. Thus, σg = 1, σgg = 1 and σgb = β2 is a

Nash Equilibrium.

• Suppose ê = en−1, then σgb = 0 and σgg ∈ [0, 1]. Agent i will be indifferent between

vote for Y and vote for N whenever she receives signal si = b. If EU gb
j = 0 holds, then

σg = 1 and σgg = 1 since EU g
i > 0 and EU gg

j > 0. Thus, σg = 1, σgg = 1 and σgb = 0

is a Nash Equilibrium.

Consider the mixed strategy β2, it is easy to see that:

∂β2
∂p

=
ê(p+ h)

1
n−2 (h− p)

1
n−2

[
1

(p+h)
+ 1

(h−p)

]
(n− 2)

[
(h− p)

1
n−2

(
1+ê
2

)
− (p+ h)

1
n−2

(
1−ê
2

)]2 > 0

∂β2
∂h

=
ê(p+ h)

1
n−2 (h− p)

1
n−2

[
1

(p+h)
− 1

(h−p)

]
(n− 2)

[
(h− p)

1
n−2

(
1+ê
2

)
− (p+ h)

1
n−2

(
1−ê
2

)]2 > 0

∂β2
∂n

=
ê(p+ h)

1
n−2 (h− p)

1
n−2 [Ln(h− p)− Ln(p+ h)]

(n− 2)2
[
(h− p)

1
n−2

(
1+ê
2

)
− (p+ h)

1
n−2

(
1−ê
2

)]2 > 0

∂β2

∂
(
1+ê
2

) =

[
(p+ h)

1
n−2 + (h− p)

1
n−2

] [
(h− p)

1
n−2 − (p+ h)

1
n−2

]
[
(h− p)

1
n−2

(
1+ê
2

)
− (p+ h)

1
n−2

(
1−ê
2

)]2 > 0

Case 2: Agent i deviates after observing the ‘bad signal’

Suppose agent i receives si = b and she chooses φb = 1. Let σb represent the probability that

agent i votes for Y given that she observed the ‘bad signal’. Let σbg and σbb represents the

probability that agent j 6= i votes for Y conditional on receiving the ‘good signal’ and the

‘bad signal’ respectively. The probability that each agent j 6= i votes for Y in state S is:

γjG = σbg

(
1 + ê

2

)
+ σbb

(
1− ê

2

)

γjB = σbg

(
1− ê

2

)
+ σbb

(
1 + ê

2

)
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Under unanimity rule, for any symmetric strategy profile and for any given voter, we define

P(pivj|S) as the probability that agent j 6= i is pivotal in state S is:

P(pivj|G) = σbγ
n−2
G = σb

[
σbg

(
1 + ê

2

)
+ σbb

(
1− ê

2

)]n−2

P(pivj|B) = σbγ
n−2
B = σb

[
σbg

(
1− ê

2

)
+ σbb

(
1 + ê

2

)]n−2
The probability that agent i is pivotal in state S is:

P(pivi|G = γn−1G =

[
σbg

(
1 + ê

2

)
+ σbb

(
1− ê

2

)]n−1

P(pivi|B) = γn−1B =

[
σbg

(
1− ê

2

)
+ σbb

(
1 + ê

2

)]n−1
Let EU b

i represent the expected utility that agent i receives from vote for Y after observing

the ‘bad signal’, then:

EU b
i = (p+ h)P(G|pivi, si = b) + (p− h)P(B|pivi, si = b)

⇒ EU b
i = (p+ h)

γn−1G

(
1−ê
2

)
γn−1G

(
1−ê
2

)
+ γn−1B

(
1+ê
2

) + (p− h)
γn−1B

(
1+ê
2

)
γn−1G

(
1−ê
2

)
+ γn−1B

(
1+ê
2

)
Let EU bg

j represent the expected utility that agent j 6= i receives from vote for Y after

observing the ‘good signal’, then:

EU bg
j = (p+ h)P(G|pivj, si = b, sj = g) + (p− h)P(B|pivj, si = b, sj = g)

⇒ EU bg
j = (p+ h)

γn−2G σb

γn−2G σb + γn−2B σb
+ (p− h)

γn−2B σb

γn−2G σb + γn−2B σb

Let EU bb
j represent the expected utility that agent j 6= i receives from vote for Y after

observing signal the ‘bad signal’, then:

EU bb
j = (p+ h)P(G|pivj, si = b, sj = b) + (p− h)P(B|pivj, si = b, sj = b)
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⇒ EU bb
j = (p+ h)

γn−2G σb
(
1−ê
2

)2
γn−2G σb

(
1−ê
2

)2
+ γn−2B σb

(
1+ê
2

)2
+ (p− h)

γn−2B σb
(
1+ê
2

)2
γn−2G σb

(
1−ê
2

)2
+ γn−2B σb

(
1+ê
2

)2
Agent i strategy profile depends on EU b

i , where:

σb =


1 if EU b

i > 0

[0, 1] if EU b
i = 0

0 if EU b
i < 0

Agent j 6= i strategy profile depends on EU bg
j and EU bb

j , where:

σbg =


1 if EU bg

j > 0

[0, 1] if EU bg
j = 0

0 if EU bg
j < 0

σbb =


1 if EU bb

j > 0

[0, 1] if EU bb
j = 0

0 if EU bb
j < 0

It is easy to see that σb = 0, σbg = 0 and σbb = 0 is a Nash Equilibrium, since the pivotal

probability is zero there is not incentive to deviate. We focus in strategy profiles where the

project is implemented with strictly positive probability, where it is easy to check that (1,1,1)

and (1,0,1) are never symmetric Nash Equilibrium in the voting stage. We find that (1,1,0)

is a symmetric Nash Equilibrium conditional on the effort decision.

Suppose σbg = 1 and σbb = 0, then σb = 1 if EU b
i ≥ 0. This condition holds if and only if:

ê ≥ (h− p)
1

n−2 − (p+ h)
1

n−2

(h− p)
1

n−2 + (p+ h)
1

n−2

= en−1

Suppose σb = 1, σbg = 1 and σbb = 0 ∀j 6= k, then agent k votes σbg = 1 if EU bg
k ≥ 0. This

condition holds if and only if:

ê ≥ (h− p)
1

n−2 − (p+ h)
1

n−2

(h− p)
1

n−2 + (p+ h)
1

n−2

= en−1

Suppose σb = 1, σbg = 1 and σbb = 0 ∀j 6= k, then agent k votes σbb = 0 if EU bb
k ≤ 0. This

condition holds if and only if:

ê ≤ (h− p)
1

n−4 − (p+ h)
1

n−4

(h− p)
1

n−4 + (p+ h)
1

n−4

= en−2
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Then σb = 1 , σbg = 1 and σbb = 0 is a Nash Equilibrium if en−2 ≥ ê ≥ en−1.

For a mixed strategy profile (σb, σbg, σbb) to be an equilibrium, an agent who receives the

‘good signal’ or the ‘bad signal’ must be indifferent between vote for Y and N . Agent i

will be indifferent between vote for Y and vote for N when she receives signal si = b if

EU b
i = 0. On the other hand, agent j 6= i will be indifferent between vote for Y and vote for

N whenever she receives signal sj ∈ {b, g} if EU bg
j = 0 and EU bb

j = 0.

It is easy to see that these three equalities hold simultaneously if and only if γG = γB = 0.

Note that, if σb = 0, then EU bg
j = 0 and EU bb

j = 0. Therefore, we check the mixed strategy

profiles such that EU bg
j = 0 or EU bb

j = 0 hold when σb > 0.

Let EU bg
j = 0, then:

σbg =
(h− p)

1
n−2

(
1+ê
2

)
− (p+ h)

1
n−2

(
1−ê
2

)
(p+ h)

1
n−2

(
1+ê
2

)
− (h− p)

1
n−2

(
1−ê
2

)σbb
or σbg = α3σbb.

The mixed strategy σbg depends on ê and σbb ∈ {0, 1}, where:

σbg =



α3 > 0 if σbg = 1 and ê > en−1

α3 < 0 if σbg = 1 and en−1 > ê

0 if σbg = 0

[0, 1] if ê = en−1

Suppose σbb = 1 and ê > en−1, then α ∈]1,+∞[. Therefore, we check the following case:

• Suppose ê = en−1, then σbb = 0 and σbg ∈ [0, 1] ∀j 6= k. Agent k will be indifferent

between vote for Y and vote for N whenever she receives signal sk = g. If EU bg
k = 0

holds, then σb = 1 and σbg = 0 since EU g
i > 0 and EU bb

k < 0. Thus, σb = 1, σbb and

σbg = 0 is a Nash Equilibrium.

Let EU bb
j = 0, then:

σbb =
(p+ h)

1
n−2

(
1−ê
2

) 2
n−2
(
1+ê
2

)
− (h− p)

1
n−2

(
1+ê
2

) 2
n−2
(
1−ê
2

)
(h− p)

1
n−2

(
1+ê
2

) n
n−2 − (p+ h)

1
n−2

(
1−ê
2

) n
n−2

σbg

or σbb = β3σbg.

The mixed strategy σbb depends on ê and σbg ∈ {0, 1}, where:
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σbb =



β3 > 0 if σbg = 1 and ê > en−2

β3 = 0 if σbg = 1 and ê = en−2

β3 < 0 if σbg = 1 and ê < en−2

0 if σbg = 0

Therefore, we check the following cases:

• Suppose ê > en−2 and σbg = 1, then σbb = β3 ∈ [0, 1] ∀j 6= k. If EU bb
k = 0 holds, then

σb = 1 and σbg = 1 since EU b
i > 0 and EU bg

k > 0. Thus, σb = 1, σbg = 1 and σbb = β3

is a Nash Equilibrium.

• Suppose ê = en−2, then σbb = 0 and σbg ∈ [0, 1] ∀j 6= k. Agent i will be indifferent

between vote for Y and vote for N whenever she receives signal si = b. If EU bb
k = 0

holds, then σb = 1 and σbg = 1 since EU b
i ) > 0 and EU bg

k > 0. Thus, σb = 1, σbg = 1

and σbb = 0 is a Nash Equilibrium.

Consider en−2, it is easy to see that:

∂en−2
∂p

=
−2(p+ h)

1
n−4 (h− p)

1
n−4

[
1

(h−p) + 1
(p+h)

]
(n− 4)

[
(h− p)

1
n−4 + (p+ h)

1
n−4

]2 < 0

∂en−2
∂h

=
2(p+ h)

1
n−4 (h− p)

1
n−4

[
1

(h−p) −
1

(p+h)

]
(n− 4)

[
(h− p)

1
n−4 + (p+ h)

1
n−4

]2 < 0

∂en−2
∂n

=
2(p+ h)

1
n−4 (h− p)

1
n−4 [Ln(p+ h)− Ln(h− p)]

(n− 4)2
[
(h− p)

1
n−4 + (p+ h)

1
n−4

]2 < 0

Consider the mixed strategy β3, it is easy to see that:

∂β3
∂p

=
2ê(p+ h)

1
n−2 (h− p)

1
n−2

(
1+ê
2

) 2
n−2

(
1−ê
2

) 2
n−2

[
1

(p+h) +
1

(h−p)

]
(n− 2)

[
(h− p)

1
n−2

(
1+ê
2

) n
n−2 − (p+ h)

1
n−2

(
1−ê
2

) n
n−2

]2 > 0

∂β3
∂h

=
2ê(p+ h)

1
n−2 (h− p)

1
n−2

(
1+ê
2

) 2
n−2

(
1−ê
2

) 2
n−2

[
1

(p+h) −
1

(h−p)

]
(n− 2)

[
(h− p)

1
n−2

(
1+ê
2

) n
n−2 − (p+ h)

1
n−2

(
1−ê
2

) n
n−2

]2 > 0
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∂β3
∂n

=
−ê(p+ h)

1
n−1 (h− p)

1
n−1

(
1−ê
2

) 1
n−1

(
1+ê
2

) 1
n−1

(n− 1)2
[
(h− p)

1
n−1

(
1+ê
2

) n
n−1 − (p+ h)

1
n−1

(
1−ê
2

) n
n−1

]2
[
Ln(p+ h)− Ln(h− p) + Ln

(
1− ê
2

)
)− Ln

(
1 + ê

2

)]
> 0

∂β3

∂
(
1+ê
2

) =
(h− p)

2
n−2

(
1+ê
2

) 4
n−2 − (p+ h)

2
n−2

(
1−ê
2

) 4
n−2

(n− 2)

[
(h− p)

1
n−2

(
1+ê
2

) n
n−2 − (p+ h)

1
n−2

(
1−ê
2

) n
n−2

]2+
2(p+ h)

1
n−2 (h− p)

1
n−2

(
1−ê
2

) 2
n−2

(
1+ê
2

) 2
n−2

[
1

( 1+ê
2 )
− 1

( 1−ê
2 )

]
(n− 2)

[
(h− p)

1
n−2

(
1+ê
2

) n
n−2 − (p+ h)

1
n−2

(
1−ê
2

) n
n−2

]2
[(

1− ê
2

)2

−
(
1 + ê

2

)2
]
> 0

A.3 Proof Proposition 3

Proof. Suppose ê ∈ (0, 1). We check the equilibriums in each case:

I) Consider φg = φb = 1. Since agents aggregate information, agent i’s pivotal probability

is the same under any voting rule. Suppose agent i is pivotal and let EU represent the

expected utility that agent i receives from vote for Y after observing Ng and Nb, then:

EU = (p+ h)P(G|Ng, Nb) + (p− h)P(B|Ng, Nb)

Agent i strategy profile depends on EU , where:

σ =


1 if EU > 0

[0, 1] if EU = 0

0 if EU < 0

We have a necessary, but not sufficient, condition over Ng (or equivalently Nb) such

that agent i will be willing to voter for Y :

(p+ h)

(
1 + ê

2

)2Ng−n

≥ (h− p)
(

1− ê
2

)2Ng−n
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This inequality holds if Ng >
n
2
. Then for n even Ng ≥ n

2
+ 1 and Ng ≥ n+1

2
for n odd.

Suppose that the prior inequalities hold, then we have a condition over ê such that

agent i will vote for Y :

ê >
(h− p)

1
2Ng−n − (p+ h)

1
2Ng−n

(h− p)
1

2Ng−n + (p+ h)
1

2Ng−n

= eNg

II) Consider φg = 1 and φb = 0. Since agents aggregate information, agent i can infer Nb

from Ng and the symmetric Nash equilibrium is the same as I).

III) Consider φg = 0 and φb = 1. Since agents aggregate information, agent i can infer Ng

from Nb and the symmetric Nash equilibrium is the same as I).

Suppose Ng ≥ n
2

+ 1 or Ng ≥ n+1
2

hold, then:

∂eNg

∂p
=
−2(p+ h)

1
2Ng−n (h− p)

1
2Ng−n

[
1

(h−p) +
1

(p+h)

]
(2Ng − n)

[
(h− p)

1
2Ng−n + (p+ h)

1
2Ng−n

]2 < 0

∂eNg

∂h
=

2(p+ h)
1

2Ng−n (h− p)
1

2Ng−n

[
1

(h−p) −
1

(p+h)

]
(2Ng − n)

[
(h− p)

1
2Ng−n + (p+ h)

1
2Ng−n

]2 < 0

∂eNg

∂n
=

2(p+ h)
1

2Ng−n (h− p)
1

2Ng−n

(2Ng − n)2
[
(h− p)

1
2Ng−n + (p+ h)

1
2Ng−n

]2 [Ln(h− p)− Ln(p+ h)] > 0

∂eNg

∂Ng
=

4(p+ h)
1

2Ng−n (h− p)
1

2Ng−n

(2Ng − n)2
[
(h− p)

1
2Ng−n + (p+ h)

1
2Ng−n

]2 [Ln(p+ h)− Ln(h− p)] < 0

A.4 Proof Proposition 4

Proof. Suppose ê ∈ (0, 1) and let ε ≥ 0 represent the communication’s cost. Consider the

case where all other agents but i conceal both signals. Let EU1 represents agent i’s expected

utility after communicating her signal and EU0 represents agent i’s expected utility after

concealing her signal.

Suppose agent i has received si = g. We need to check the following cases:

44



APPENDIX

• If en > ê, then EU1 = −ε and EU0 = 0. Therefore, φg = φb = 0 is a symmetric Nash

Equilibrium in the communication stage.

• If en−1 ≥ ê ≥ en, then:

EU1 =
(p+ h)

(
1+ê
2

)n
+ (p− h)

(
1−ê
2

)n(
1+ê
2

)n
+
(
1−ê
2

)n − ε

and

EU0 =
(p+ h)

(
1+ê
2

)n
+
(
1+ê
2

)n
+
(
1−ê
2

)n(
1+ê
2

)n
+
(
1−ê
2

)n
Since EU0 = EU1 + ε, then φg = φb = 0 is a symmetric Nash Equilibrium in the

communication stage.

• If ê > en−1, then:

EU1 =
(p+ h)

[(
1+ê
2

)
+ β2

(
1−ê
2

)]n−1 (1+ê
2

)
+ (p− h)

[(
1−ê
2

)
+ β2

(
1+ê
2

)]n−1 (1−ê
2

)[(
1+ê
2

)
+ β2

(
1−ê
2

)]n−1 (1+ê
2

)
+
[(

1−ê
2

)
+ β2

(
1+ê
2

)]n−1 (1−ê
2

) − ε

and

EU0 =
(p+ h)

[(
1+ê
2

)
+ β1

(
1−ê
2

)]n−1 (1+ê
2

)
+ (p− h)

[(
1−ê
2

)
+ β1

(
1+ê
2

)]n−1 (1−ê
2

)[(
1+ê
2

)
+ β1

(
1−ê
2

)]n−1 (1+ê
2

)
+
[(

1−ê
2

)
+ β1

(
1+ê
2

)]n−1 (1−ê
2

)
Since β2 > β1, then EU0 > EU1 + ε. Therefore, φg = φb = 0 is a symmetric Nash

Equilibrium in the communication stage.

Suppose agent i has received si = b. We check the following cases:

• If en > ê, then EU1 = −ε and EU0 = 0. We can conclude that φg = φb = 0 is a

symmetric Nash Equilibrium in the communication stage.

• If en−1 > ê ≥ en, then EU1 = −ε and EU0 = 0. Then φg = φb = 0 is a symmetric

Nash Equilibrium in the communication stage.

• If en−2 ≥ ê ≥ en−1, then EU0 = 0 and

EU1 =
(p+ h)

(
1+ê
2

)n−1 (1−ê
2

)
+ (p− h)

(
1−ê
2

)n−1 (1+ê
2

)(
1+ê
2

)n−1 (1−ê
2

)
+
(
1−ê
2

)n−1 (1+ê
2

) − ε
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Then φg = φb = 0 is a symmetric Nash Equilibrium in the communication stage if:

ε >
(p+ h)

(
1+ê
2

)n−1 (1−ê
2

)
+ (p− h)

(
1−ê
2

)n−1 (1+ê
2

)(
1+ê
2

)n−1 (1−ê
2

)
+
(
1−ê
2

)n−1 (1+ê
2

)
• If ê > en−2, then EU0 = 0 and

EU1 =
(p+ h)

[(
1+ê
2

)
+ β3

(
1−ê
2

)]n−1 (1−ê
2

)
+ (p− h)

[(
1−ê
2

)
+ β3

(
1+ê
2

)]n−1 (1+ê
2

)[(
1+ê
2

)
+ β3

(
1−ê
2

)]n−1 (1−ê
2

)
+
[(

1−ê
2

)
+ β3

(
1+ê
2

)]n−1 (1+ê
2

) − ε

Then φg = φb = 0 is a symmetric Nash Equilibrium in the communication stage if:

ε >
(p+ h)

[(
1+ê
2

)
+ β3

(
1−ê
2

)]n−1 (1−ê
2

)
+ (p− h)

[(
1−ê
2

)
+ β3

(
1+ê
2

)]n−1 (1+ê
2

)[(
1+ê
2

)
+ β3

(
1−ê
2

)]n−1 (1−ê
2

)
+
[(

1−ê
2

)
+ β3

(
1+ê
2

)]n−1 (1+ê
2

)

A.5 Proof Proposition 5

Proof. Suppose ê ∈ (0, 1) and let ε ≥ 0 represent the communication’s cost. Consider the

following cases: I) all agents communicate their signal, II) all agents communicate the ‘good

signal’ and conceal the ‘bad signal’, and III) all agents communicate the ‘bad signal’ and

conceal the ‘good signal’.

Suppose agent i deviates, then in each case, agent i can be pivotal in the number of signals

needed to vote for Y given a fixed amount of information acquire. Without loss of gener-

ality, we characterize the symmetric Nash Equilibriums conditional on the number of ‘good

signals’, because agent i can infer the number of ‘bad signals’ from the number of ‘good

signals’.

Let EU1 represents agent i’s expected utility after communicating her signal and EU0 rep-

resents agent i’s expected utility after concealing her signal.

Case A: For en ≥ ê, agent i is not pivotal

• Suppose agent j 6= i believes that agent i is not communicating signal si = g.

If agent i receives si = g and is pivotal, then EU0 = 0 and EU1 = −ε.
If agent i receives si = b and is pivotal, then EU0 = 0 and EU1 = −ε.

• Suppose agent j 6= i believes that agent i is not communicating signal si = b.
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If agent i receives si = g and is pivotal, then EUi(ê, 0) = 0 and EUi(ê, 1) = −ε.
If agent i receives si = b and is pivotal, then EUi(ê, 0) = 0 and EUi(ê, 1) = −ε.

Cases I), II) and III)

If agent j 6= i believes that agent i is not communicating signal si = g, then agent i φg = 0

and φb = 0.

If agent j 6= i believes that agent i is not communicating signal si = b, then agent i φg = 0

and φb = 0.

Therefore, for en ≥ ê, φg = φb = 1; φg = 1 and φb = 0; and φg = 0 and φb = 1 are not

symmetric Nash Equilibriums in the communication stage.

Case B: For n odd and ê > en−1
2

+1, agent i is pivotal in the minimum

number of signals

• Suppose agent j 6= i believes that agent i is not communicating signal si = g.

If agent i receives si = g and is pivotal, then:

EU0 =
(p+ h)

(
1+ê
2

)n−1
2

+1 (1−ê
2

)n−1
2 + (p− h)

(
1−ê
2

)n−1
2

+1 (1+ê
2

)n−1
2(

1+ê
2

)n−1
2

+1 (1−ê
2

)n−1
2 +

(
1−ê
2

)n−1
2

+1 (1+ê
2

)n−1
2

and

EU1 =
(p+ h)

(
1+ê
2

)n−1
2

+1 (1−ê
2

)n−1
2 + (p− h)

(
1−ê
2

)n−1
2

+1 (1+ê
2

)n−1
2(

1+ê
2

)n−1
2

+1 (1−ê
2

)n−1
2 +

(
1−ê
2

)n−1
2

+1 (1+ê
2

)n−1
2

− ε

If agent i receives si = b and is pivotal, then EU1 = −ε and:

EU0 =
(p+ h)

(
1+ê
2

)n−1
2
(
1−ê
2

)n−1
2

+1
+ (p− h)

(
1−ê
2

)n−1
2
(
1+ê
2

)n−1
2

+1(
1+ê
2

)n−1
2
(
1−ê
2

)n−1
2

+1
+
(
1−ê
2

)n−1
2
(
1+ê
2

)n
2

• Suppose agent j 6= i believes that agent i is not communicating signal si = b.

If agent i receives si = g and is pivotal, then EU0 = 0 and:

EU1 =
(p+ h)

(
1+ê
2

)n−1
2

+1 (1−ê
2

)n−1
2 + (p− h)

(
1−ê
2

)n−1
2

+1 (1+ê
2

)n−1
2(

1+ê
2

)n−1
2

+1 (1−ê
2

)n−1
2 +

(
1−ê
2

)n−1
2

+1 (1+ê
2

)n−1
2

− ε

If agent i receives si = b and is pivotal, then EU0 = 0 and EU1 = −ε.
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Case I)

If agent j 6= i believes that agent i is not communicating signal si = g, then agent i φg = 0.

If agent j 6= i believes that agent i is not communicating signal si = b, then agent i φb = 0.

Therefore, for ê > π
(
n
2

+ 1
)
, φg = φb = 1 is not a symmetric Nash Equilibrium in the

communication stage.

Case II)

If agent j 6= i believes that agent i is not communicating signal si = g, then agent i φg = 0.

If agent j 6= i believes that agent i is not communicating signal si = b, then agent i φb = 0

and φg = 1 if:

(p+ h)
(
1+ê
2

)n−1
2

+1 (1−ê
2

)n−1
2 + (p− h)

(
1−ê
2

)n−1
2

+1 (1+ê
2

)n−1
2(

1+ê
2

)n−1
2

+1 (1−ê
2

)n−1
2 +

(
1−ê
2

)n−1
2

+1 (1+ê
2

)n−1
2

≥ ε

Therefore, for ê > π
(
n
2

+ 1
)
, φg = 1 and φb = 0 is a symmetric Nash Equilibrium in the

communication stage under the belief on the path if the expected benefit received from com-

municate is greater or equal than the communication’s cost.

Case III)

If agent j 6= i believes that agent i is not communicating signal si = b, then agent i φg = 0.

If agent j 6= i believes that agent i is not communicating signal si = g, then agent i φg = 0

and φb = 1 if:

−ε ≥ EU0 =
(p+ h)

(
1+ê
2

)n−1
2
(
1−ê
2

)n−1
2

+1
+ (p− h)

(
1−ê
2

)n−1
2
(
1+ê
2

)n−1
2

+1(
1+ê
2

)n−1
2
(
1−ê
2

)n−1
2

+1
+
(
1−ê
2

)n−1
2
(
1+ê
2

)n−1
2

+1

Therefore, for ê > en
2
+1, φg = 0 and φb = 1 is a symmetric Nash Equilibrium in the com-

munication stage under the belief on the path if the expected negative benefit received from

communicate is greater or equal than the communication’s cost.

For n even is analogous.

Case C: For n and en
2
+1 ≥ ê > en or en−1

2
+1 ≥ ê > en, agent i is pivotal in Ng

Consider eNg−1 ≥ ê > eNg , where Ng − 1 ≥ n
2

+ 1.

• Suppose agent j 6= i believes that agent i is not communicating signal si = g.
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If agent i receives si = g and is pivotal, then:

EU0
i =

(p+ h)
(
1+ê
2

)Ng
(
1−ê
2

)n−Ng
+ (p− h)

(
1−ê
2

)Ng
(
1+ê
2

)n−Ng(
1+ê
2

)Ng
(
1−ê
2

)n−Ng
+
(
1−ê
2

)Ng
(
1+ê
2

)n−Ng

and

EU1 =
(p+ h)

(
1+ê
2

)Ng
(
1−ê
2

)n−Ng
+ (p− h)

(
1−ê
2

)Ng
(
1+ê
2

)n−Ng(
1+ê
2

)Ng
(
1−ê
2

)n−Ng
+
(
1−ê
2

)Ng
(
1+ê
2

)n−Ng
− ε

If agent i receives si = b and is pivotal, then EU1 = −ε and:

EU0 =
(p+ h)

(
1+ê
2

)Ng−1 (1−ê
2

)n+1−Ng
+ (p− h)

(
1−ê
2

)Ng−1 (1+ê
2

)n+1−Ng(
1+ê
2

)Ng−1 (1−ê
2

)n+1−Ng
+
(
1−ê
2

)Ng−1 (1+ê
2

)n+1−Ng

• Suppose agent j 6= i believes that agent i is not communicating signal si = b.

If agent i receives si = g and is pivotal, then EU0 = 0 and:

EU1 =
(p+ h)

(
1+ê
2

)Ng
(
1−ê
2

)n−Ng
+ (p− h)

(
1−ê
2

)Ng
(
1+ê
2

)n−Ng(
1+ê
2

)Ng
(
1−ê
2

)n−Ng
+
(
1−ê
2

)Ng
(
1+ê
2

)n−Ng
− ε

If agent i receives si = b and is pivotal, then EU0 = 0 and EU1 = −ε.

Case I)

If agent j 6= i believes that agent i is not communicating signal si = g, then agent i φg = 0.

If agent j 6= i believes that agent i is not communicating signal si = b, then agent i φb = 0.

Therefore, for eNg−1 ≥ ê > eNg , φg = φb = 1 is not a symmetric Nash Equilibrium in the

communication stage.

Case II)

If agent j 6= i believes that agent i is not communicating signal si = g, then agent i φg = 0.

If agent j 6= i believes that agent i is not communicating signal si = b, then agent i φb = 0

and φg = 1 if:

(p+ h)
(
1+ê
2

)Ng
(
1−ê
2

)n−Ng
+ (p− h)

(
1−ê
2

)Ng
(
1+ê
2

)n−Ng(
1+ê
2

)Ng
(
1−ê
2

)n−Ng
+
(
1−ê
2

)Ng
(
1+ê
2

)n−Ng
≥ ε

Therefore, for eNg−1 ≥ ê > eNg , φg = 1 and φb = 0 is a symmetric Nash Equilibrium in

the communication stage under the belief on the path if the expected benefit received from

communicate is greater or equal than the communication’s cost.
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Case III)

If agent j 6= i believes that agent i is not communicating signal si = b, then agent i φb = 0.

If agent j 6= i believes that agent i is not communicating signal si = g, then agent i φg = 0

and φb = 1 if:

−ε ≥
(p+ h)

(
1+ê
2

)Ng−1 (1−ê
2

)n+1−Ng
+ (p− h)

(
1−ê
2

)Ng−1 (1+ê
2

)n+1−Ng(
1+ê
2

)Ng−1 (1−ê
2

)n+1−Ng
+
(
1−ê
2

)Ng−1 (1+ê
2

)n+1−Ng

Therefore, for eNg−1 ≥ ê > eNg , φg = 0 and φb = 1 is a symmetric Nash Equilibrium in the

communication stage under the belief on the path if the expected negative benefit received

from communicate is greater or equal than the communication’s cost.

Consider eNg−1 > ê = eNg .

• Suppose agent j 6= i believes that agent i is not communicating signal si = g.

If agent i receives si = g and is pivotal, then EU0 = 0 and EU1 = −ε.
If agent i receives si = b and is pivotal, then EU0 = 0 and EU1 = −ε.

• Suppose agent j 6= i believes that agent i is not communicating signal si = b.

If agent i receives si = g and is pivotal, then EU0 = 0 and EU1 = −ε.
If agent i receives si = b and is pivotal, then EU0 = 0 and EU1 = −ε.

Cases I), II) and III)

If agent j 6= i believes that agent i is not communicating signal si = g, then agent i φg = 0

and φb = 0.

If agent j 6= i believes that agent i is not communicating signal si = b, then agent i φg = 0

and φb = 0.

Therefore, for eNg−1 > ê = eNg , φg = φb = 1; φg = 1 and φb = 0; and φg = 0 and φb = 1 are

not symmetric Nash Equilibriums in the communication stage.

50



APPENDIX

A.6 Proof Proposition 6

Proof. Consider Proposition 4 and 5. In the Full Non-Disclosure case, the expected utility

is given by:

G(ei) =


−C(ei) if en > ei

1
2
(p+ h)

(
1+ê
2

)n−1 (1+ei
2

)
+ 1

2
(p− h)

(
1−ê
2

)n−1 (1−ei
2

)
− C(ei) if en−1 > ei ≥ en

Suppose C ′(0) > 0, then it is easy to see that for en > ei the optimal level of effort is zero.

In the other hand, if en−1 > ei ≥ en and the solution is interior, the optimal level of effort

e∗i solves:

1

4
(p+ h)

(
1 + ê

2

)n−1
− 1

4
(p− h)

(
1− ê

2

)n−1
= C ′(ei)

The global optimum will depend on the parameters and the cost’s function.

Now, suppose n goes to infinity. Then, the expected benefit received from the implementation

of the projects goes to zero. If C ′(0) > 0, then for some n the optimal solution is zero. On

the contrary, if C ′(0) = 0 agents will acquire information.

In the Full Disclosure and Partially Disclosure cases, the analysis is equivalente and if the

solution is interior, the optimal level of effort e∗i solves:

1

2

(
n− 1
n−1
2

)
h

(
1 + ê

2

)n−1
2
(

1− ê
2

)n−1
2

= C ′(ei)

It is easy to check that the solutions are unique, since both functions are strictly concave.

A.7 Proof Proposition 7

Consider Proposition 6. The expect utility under Full Non-Disclosure converges to zero as
1

2n−1 and the expected utility under any form of communication converges to zero a 1√
π(n−1)

.

It is easy to see, that:

Limn→∞n

[
1√

π(n− 1)
− 1

2n−1

]
Converges to +∞, then the expected benefit received from the project goes to zero faster

under Full Non-Disclosure than under Full Disclosure, Partially Disclosure-g and Partially

Disclosure-b.
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A.8 Proof Corollary 1 and Corollary 2

Proof. Corollary 1, directly from Preposition 4. Corollary 2, directly from Preposition 5.
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