
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE FÍSICA

ORDER AND DENSITY FLUCTUATIONS IN THE VICINITY

OF A GRANULAR SOLID-LIQUID-LIKE PHASE TRANSITION

TESIS PARA OPTAR AL GRADO DE DOCTOR EN CIENCIAS MENCIÓN FÍSICA

GUSTAVO EMILIO CASTILLO BAUTISTA

PROFESOR GUÍA:
NICOLÁS MUJICA FERNANDEZ

MIEMBROS DE LA COMISIÓN:
CLAUDIO MOISÉS FALCÓN BEAS

LUIS EUGENIO HAMM HAHN
DINO ENZO RISSO ROCCO

RODRIGO ANTONIO SOTO BERTRÁN

SANTIAGO DE CHILE

JUNIO, 2013





Resumen

Esta tesis se dedica al estudio de las fluctuaciones de densidad, orden y de capilaridad en la vecindad
de una transición de fase granular tipo sólido-líquido que ocurre en una monocapa granular vibrada
de geometría cuasi-bidimensional. En la Parte I introducimos las bases teóricas del trabajo con los
conceptos y definiciones que serán usadas para describir, analizar y discutir los resultados exper-
imentales más adelante. En el capítulo 1 se repasan los modelos microscópicos más importantes
usados para describir la materia granular. Además, se presenta una breve revisión sobre teoría
cinética e hidrodinámica granular. El capítulo 2 aborda los conceptos escenciales para entender la
teoría de las transiciones de fase, tales como la noción de un parámetro de orden y la definición
de exponentes críticos. En la Parte II se presentan en detalle los montajes experimentales usados
para estudiar el problema, junto con los métodos experimentales usados, en particular la detección
de partículas y la detección de la interfase tipo sólido-líquido. En la Parte III, la cual a su vez
está dividida en 3 capítulos, se presentan los resultados. En el capítulo 5 se presenta la descripción
estática de la transición y su caracterización en términos de un parámetro de orden. Se muestra que
esta transición fuera del equilibrio puede ser de primer o segundo tipo dependiendo de la altura de la
celda y la densidad de llenado. Además, ésta se caracteriza por el parámetro de orden orientacional
Q4. Cuando la transición resulta ser de segundo orden, la longitud de correlación asociada ⇠4, el
tiempo de relajación ⌧4, la susceptibilidad estática de Q4, la función de correlación de pares de Q4,
y la amplitud del parámetro de orden obedecen leyes de potencias críticas, con saturaciones debido
a efectos de tamaño finito. Con esto, la transición continua presenta un comportamiento crítico,
con exponente dinámico z consistente con el modelo C de la teoría de fenómenos críticos dinámicos.
Luego, en el capítulo 6 se presentan los resultados concernientes a las fluctuaciones de la interfase
sólido-líquido. En particular se muestra que estas fluctuaciones resultan estar bien descritas por
la teoría de ondas capilares, lo que permite medir la tensión superficial �, y la movilidad M una
vez determinada la energía térmica granular. También se presenta el comportamiento de la tensión
de superficie como función del parámetro de control �, mostrando que para la transición continua
esta disminuye a medida que el sistema se acerca al punto crítico, mientras que para el caso de la
transición abrupta esta es aproximadamente constante. Finalmente, en el capítulo 7 se presentan
los resultados obtenidos a través del estudio de funciones de correlación dinámicas. En particular, se
encuentra la presencia de ondas en el sistema y se obtienen la velocidad de fase y de grupo, tanto de
las ondas longitudinales como transversales. Las conclusiones y perspectivas para el trabajo futuro
son presentadas en el capítulo final.



Abstract

In this thesis we study the density, order and capillary fluctuations in the vicinity of the solid-
liquid-like transition that occurs in a quasi-two-dimensional vibrated granular monolayer. In Part I
we introduce a brief theoretical background with the main concepts and definitions that will be
used to describe, analize and discuss the experimental results. In Chapter 1 we review the most
important microscopic models used to describe granular matter. In addition, we present a brief
and simple review on kinetic theory and the basics of the granular hydrodynamics equations. In
Chapter 2 we deal with the main concepts in the theory of phase transitions, such as the notion of
an order parameter and the definition of the critical exponents. In Part II we present in detail the
experimental setups used to study the problem, along with the experimental methods developed,
concerning the detection of particles and the solid-liquid interface. Part III, which in turn is divided
into three chapters, is about the presentation and discussion of results obtained. In Chapter 5 we
present the static description of the transition and its characterization in terms of an order parameter.
Here we show that the non-equilibrium solid-liquid transition can be of either first- or second-order
type depending on the vertical height and filling density. Besides, this is characterized through the
bond-orientational order parameter Q4. When the transition is a second-order type, the associated
correlation length ⇠4, the relaxation time ⌧4, the zero k limit of Q4 fluctuations (static susceptibility),
the pair correlation function of Q4, and the amplitude of the order parameter obey critical power
laws, with saturations due to finite size effects. Hence, the continuous transition presents critical-
like behavior, with dynamic exponent z consistent with model C of dynamical critical phenomena.
Then, in Chapter 6 we show the results concerning the fluctuations of the solid-liquid interface by
means of a coarse-graining procedure. In particular we demonstrate that these fluctuations turn
out to be well described by the capillary wave theory, which allows us to measure the solid-liquid
interface surface tension �, and mobility M once the granular thermal kinetic energy is determined.
We also present the behavior of the surface tension � as function of the acceleration �, showing
that for the continuous transition, � decreases as we approach the transition, whereas for the abrupt
transition � is almost constant. Finally, in Chapter 7 we present results obtained through the
analysis of density, order and current dynamical correlation functions. In particular we demonstrate
the presence of waves in the system, and measure the phase and group speeds of longitudinal and
transverse waves. Concluding remarks along with perspectives for future work are given in the last
chapter.
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Introduction

« In science there is only physics, all the rest is just stamp collecting. »

Lord Kelvin

Granular materials are ubiquitous in our daily lives. We see them every day; a truck transporting
cement, kids playing with sand in the beach, and even in the kitchen if we think of rice. They are
also very important in pharmaceutical industry, as well as in many minning processes. Nevertheless.
its proper understanding still remains a challenge [1]. But, what is a granular medium? A granular
medium is a collection of macroscopic particles that may interact through many different forms.
The interactions go from dissipative, hard corelike collisions, to capilary bridges in wet sands, van
der Waals forces in most powders, and even electrostatic and magnetic forces when we speak of
long-ranged interactions. In order to give a thorough description of the phenomenon of jamming,
in which the dynamics of a system slows down dramatically as we increase the density or confining
pressure, is necessary to include soft interactions. In our research, we are interested in a dry granular
medium, with only disspatives contact forces involved.

Accordingly, in order to study the dynamics of granular media, the injection of energy is imperative,
and thus in average there is a balance between dissipated and injected power. The injection of
energy is usually made through vibrations or by means of injection of airflows. Despite this seeming
simplicity, properties of granular materials are often different from conventional solids, liquids, and
gases due to the dissipative nature of forces acting on interacting grains, such as inelastic collisions
and friction. They behave as solids, liquids, or gases depending on the nature of the forces that
act upon them and the energy injection rate [1, 2, 3]. These systems present phase transitions and
coexistence. Simple examples are a thin layer of vibrated sand, which for small driving amplitudes
remains solid but can be completely fluidized for larger accelerations, and an avalanche driven by
gravity where a thin layer of grains flows above an almost solid pile (see Fig. 0.0.1).

Granular systems are therefore excellent candidates for studying nonequilibrium phase transitions
[4, 5]. In vibrated thin layers, energy is transferred from the top and bottom lids to the vertical
motion of the grains, which later transfer the energy to the horizontal motion at collisions that are
also dissipative. The sequence breaks the detailed balance, keeping the system out of equilibrium.

1



Chapter 0 Introduction

Figure 0.0.1.: A pile of mustard seeds that is tilted to an angle slightly above the angle of repose, thus
creating an avalanche [2]. Note that the flow ocurrs only in a thin layer of particles, while deeper inside
the pile, the particles do not move.

Recently, several granular systems that undergo phases transitions have been reported [6, 7, 8, 9,
10]. For example, the equilibrium Kosterlitz–Thouless–Halperin–Nelson–Young (KTHNY) theory
has proven useful in the two dimensional (2D) melting of granular monolayers [10, 11]. In the
KTHNY scenario, the two-dimensional melting consists of two continuous transitions, the first from
a crystalline phase (algebraically decaying positional order and long-range orientational order) to an
hexatic phase (short-range positional order and algebraically decaying orientational order) by means
of the unbinding of dislocation pairs. Then the hexatic phase melts into an isotropic phase (liquid
with only short-range order) by unbinding of disclination pairs [12].

One particular system is a vibrated fluidized granular monolayer composed of N hard spheres of
diameter d confined in a shallow cell of height L

z

< 2d (typically L
z

⇡ 1.7d–1.9d). Under proper
conditions, solid and liquid phases can coexist at mechanical equilibrium. Considering that the
parameters to vary in the system are the particle density and the dimensionless acceleration im-
posed on the system, this transition occurs at low densities for high accelerations, and high densities
for low accelerations, indicating a clear line between a “pure fluid” region from the region of solid-
liquid coexistence [6, 9]. The solid clusters can present different order symmetries, like square or
hexagonal, depending on forcing, geometrical, and particle parameters. It has been reported that
for L

z

⇡ 1.7d–1.9d and for a large range of filling densities, the most compact structure in quasi
two dimensions is made of two layers of square symmetry. The more compact hexagonal structure
formed by two layers needs a larger vertical gap or larger densities [9]. In this thesis we present
an experimental study of this solid-liquid granular phase transition. In Fig. 0.0.2 we observe an
time-averaged image showing this two-phase coexistence.

The physical mechanism behind this transition was unknown until some years ago, when it was found
that the solid-liquid granular transition is macroscopically triggered by a negative compressibility
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0.1 Objectives

Figure 0.0.2.: Left: Time-averaged image of particle positions showing the two-phase coexistence. Right:
3D rendering of instantaneous particle positions [6].

like in the van der Waals phase coexistence, even though the system does not satisfy the hypothesis
used in atomic systems [8]. Aditionally, it was also shown that the transition is mediated by waves,
and that the crystals in the system interact through them. Moreover, due to inelasticy and friction
these waves decay rapidly. By means of a coarse-graining procedure the waves were found to have
a group velocity of c = 5� 50 cm/s.

After important breakthroughs towards the understanding of the problem were done in the lasts
years [6, 8, 9], several interesting questions remained unanswered. Hence, the main objectives of this
thesis are to characterize the true nature of the transition; in other words we would like to find the
right order parameter that characterizes the transition, in order to decide whether the transition is
a first or second order kind. If it turns out to be a second order phase transition, are there critical
exponents that can be measured experimentally? If so, can we describe the critical exponents by
means of the standard theory of critical phenomena? On the other hand, we would also like to
provide a physical description of the liquid-solid-like interface, that is, we would like to characterize
the interface by means of an effective surface tension as it is done in condensed matter physics
when studying classical solid to liquid interfaces. We would also like to obtain a more quantitative
description of the dynamical properties of the system, namely relaxation rates and wave propagation
therein. Is there a more trustworthy method for obtaining the sound speeds in the system?

0.1. Objectives

Accordingly, the main objectives of our research are:

• To study the role of both order and density fluctuations near the solid-liquid granular transi-
tion, given that they seem to be fundamental for the transition that takes place.

• To find one or more order parameters that characterize the solid-liquid granular transition.
Once this is achieved, to make a thorough analysis of the behavior of the order parameter near
the critical point, thus deciding whether it is a continuous or abrupt phase transition.

3



Chapter 0 Introduction

• In the case of an abrupt phase transition, to study hysteresis cycles such as the case of classical
first order phase transitions.

• In the case of a continuous phase transition, to characterize it by means of the theory of critical
phenomena by finding the critical amplitudes and exponents.

• Once the system is above the critical point, to describe the fluctuations of the solid-liquid
interface by means of an effective surface tension.

• To study the dynamical properties of the system, that is, to obtain relaxation times and to
derive dispersion relations and wave speed in a quantitative way.

0.2. Outline

The thesis has the following organization: in Part I we introduce a brief theoretical background with
the main concepts and definitions that will be used to describe, analize and discuss the experimental
results. In Chapter 1 we review the most important microscopic models used to describe granular
matter. In addition, we present a brief and simple review on kinetic theory and the basics of the
hydrodynamics equations. In Chapter 2 we deal with the main concepts in the theory of phase
transitions, such as the notion of an order parameter and the definition of the critical exponents.
In Part II we present in detail the experimental setups used to study the problem, along with
some experimental methods developed, concerning the detection of particles and the solid-liquid
interface. Part III, which in turn is divided into three chapters, is about the presentation and
discussion of results obtained. In Chapter 5 we present the static description of the transition
and its characterization in terms of an order parameter. Then, in Chapter 6 we show the results
concerning the fluctuations of the solid-liquid interface by means of a coarse-graining procedure.
Finally, in Chapter 7 we present the dynamical results obtained through the analysis of some
dynamical correlation functions. Concluding remarks are given in the last chapter.

4



Part I.

Theoretical background





1. Models of granular matter

« Whenever anyone says, “theoretically”, they really mean, “not really”.»

Dave Parmas

In this chapter we introduce the basic concepts of granular matter and its dynamics by means of
the collision rules that account for the behavior of single particles, then we extend the description
to a mesoscopic scale by introducing concepts of kinetic theory and finally provide a set of hydro-
dynamic equations which emerge naturally from kinetic theory for a certain limit. In order to know
the resulting velocities of two colliding particles we should know what are the details of the interac-
tion, whether this interaction conserves energy or not, and specifically on what parameters the force
depends on. In this chapter we review in some detail the different types of interaction in a construc-
tive way, from the simplest case to more complex and realistic ones. From this microscopic view,
it is also possible to derive a mesoscopic description in the context of kinetic theory, which deals
with probabilities and distribution functions, that turns out to be a very useful tool when dealing
with dilute systems. Moreover, kinetic theory provides a firm theoretical base in the derivation of
a hydrodynamical theory that, as in the case of molecular fluids, gives a description of the system
through macroscopic fields such as density, temperature and velocity. We also discuss briefly the
validity and limitations of these theories and how applicable they are.

1.1. Microscopic properties of granular matter

Granular matter is a very diverse field which incorporates many concepts in physics that go from
elasticity to statistical physics. In order to have a good understanding of the variety phenomena
that granular matter displays, it is necessary to have a proper description of the interaction among
grains. These interactions may be of different nature, and many theoretical approaches have been
proposed. Deformation in solids are described by a strain-stress relation. The simplest case is given
by Hooke’s law, which describes pure elastic deformations where the stress depends linearly on the
strain. If we want to give a more accurate description it is necessary to incorporate other factors
such as the deformation rate, which accounts for dissipation in the interaction. That is the case of
viscoelastic deformations, which are characterized by a stress tensor that is the sum of the elastic

7



Chapter 1 Models of granular matter

stress and the dissipative stress, where the elastic stress depends linearly on the deformation and
the dissipative stress depends linearly on the deformation rate.

By supposing isotropy and homogeneity, the elastic properties of a viscoelastic material are charac-
terized just by its Young’s modulus Y , and the Poisson’s ratio ⌫. The Young’s modulus describes
the resistance of the material against compression and extension, whereas the Poisson’s ratio ac-
counts for the transverse deformation when an object is compressed or stretched [13]. To describe
the dissipative stress it is also necessary to know the viscosities ⌘1,2

1. Therefore, the interaction
forces between particles may be obtained as a function of the elastic constants of the material, the
radii of the particles, their relative position and their relative velocity.

1.1.1. Elastic forces

The most simple collision interaction model that we can think of is the one which involves elastic
deformations. In other words, grains deform each other due to static or quasi-static contacts and
the deformations are small compared to the radii of the particles. Elastic deformation also implies
that after the collision the particles recover their original shape and size, i.e., there are no plastic
deformations (see Appendix A for details). Using these assumptions, the force between two spheres
is given by

F
el

= ⇢⇠3/2. (1.1.1)

where ⇢ ⌘ 2Y

3(1�⌫2)

p
Reff , Reff ⌘ R1R2

R1+R2
and ⇠ (t) = R1 + R2 � |~r1 (t)� ~r2 (t)| is the the time-

dependent deformation, whereas in the 2D case the force becomes

F
el

/ ⇠. (1.1.2)

This contact problem was solved for the first time by Heinrich Hertz in 1882 [14]. From 1.1.1 it
is possible to calculate that the maximum deformation h, for a sphere of radius R and density ⇢,
colliding at a speed U0, with a semi-infinite plane is given by

h = 2.2⇢2/5 RU
5/5
0

Y
2/5

, (1.1.3)

where Y is the effective Young modulus and is defined as 1/Y =

�

1� ⌫2
1

�

/Y1 +
�

1� ⌫2
2

�

/Y2. The
collision time ⌧

c

reads
1The constants ⌘1 and ⌘2 are the two independent components of the viscosity tensor ⌘

iklm

for an isotropic body
[13].

8



1.1 Microscopic properties of granular matter

⌧
c

= 6.46⇢2/5 R

U
1/5
0 Y 2/5

. (1.1.4)

For stainless steel spheres of radius R = 0.5 mm, colliding with a glass plate at a speed U0 ⇠ 1

cm/s, the compression distance turns out to be h ⇠ 1µm, while the collisional time is ⌧
c

⇠ 0.1 ms.

1.1.2. Viscous forces

When two particles collide, the deformation changes in time, and a dissipative force arises. The
simplest model that one can think of is the one where the dissipative stress tensor is proportional
to the deformation rate tensor. After some calculations that go beyond the scope of this thesis,
the dissipative force between two spheres of identical material due to viscous effects of the collision
F

diss

, is found to be:

F
diss

=

3

2

A⇢
p

⇠ ˙⇠, (1.1.5)

with

A ⌘ 1

3

(3⌘2 � ⌘1)
2

(3⌘2 + 2⌘1)

"

�

1� ⌫2
�

(1� 2⌫)

Y ⌫2

#

. (1.1.6)

and ⇢ as defined above, and where A is a function which depends on the elastic constant of the bodies
and also on the viscous constants ⌘1, ⌘2, and determines basically the relation between the stress
tensor and the deformation rate tensor. It is important to remark at this point that this approach
also has some limitations. Equation 1.1.6 is valid only if the approaching velocities between the
particles is small compared to the speed of the sound c in the material. Another important issue
has to do with the assumption of the plasticity of the deformation. That is, it is not necessarily true
that after the collision the bodies recover their shape. There have been several attempts to tackle
this, and it is still a matter of debate (see [15] and references therein).

1.1.3. Adhesion forces

If we want to push things a little further, it should be noticed that under some conditions there
exists another force which gives an extra complication to the problem . If the particles are small
(. 100µm), the assumption that the contact force goes to zero when tensile stress is applied is no
longer valid. We pointed out in the previous section (Sec. 1.1.1) that when the overlapping distance
is ⇠, the force exerted on a particle is F / ⇠3/2 for spheres, and F / ⇠ for disks. But if the
overlapping distance ⇠ is comparable to the typical length scale of the van der Waals attraction

9



Chapter 1 Models of granular matter

force, an additional adhesion force appears. Attard & Parker [16] extended the Hertz approach by
modeling the adhesion force using a Lenard-Jones potential yielding

F
a

=

H

6⇡�3

✓

�60
�6

� 1

◆

, (1.1.7)

where � is distance between the surfaces, �0 is the equilibrium distance, and H is the Hamaker
constant of the van der Waals interaction [17].

There is also another type of interaction between grains that becomes particularly important in
powders2. When there is interstitial fluid present, the so-called capillary liquid bridges provide
adhesion which is usually absent in dry granular media. There are several works on the effects of
adhesion forces in the behavior of granular media. It is believed to be responsible of increasing the
repose angle in sandpile avalanches and also responsible of producing a complete new rheology of
granular matter. For details see [15].

Obviously the forces that we have dealt so far are not the only ones that play a role in a collision.
There should be taken into consideration non-plastic deformations, other types of interaction for
adhesive forces, and maybe more importantly the effect of the shape of the particles, which is
probably the most complex issue to deal with.

1.1.4. Restitution coefficient

Until now we have dealt with different types of forces that are present when two particles collide. In
turn, these forces provide the kinematics of particles. From now on, we assume that no adhesion nor
electrostatic force are present, so that particles only interact through elastic and viscous forces. Let
the colliding particles be spheres of identical material and also assume that they do not exchange
tangential momentum. As stated before, the time-dependent deformation reads

⇠ (t) = R1 + R2 � |~r1 (t)� ~r2 (t)| , (1.1.8)

where ~r1 (t) and ~r2 (t) are the position of the particle centers at time t. The relative motion of two
colliding particles may be described by the motion a point particle whose mass is

m
eff

⌘ m1m2

m1 + m2
. (1.1.9)

Hence, the equation of motion of this point particle reads

¨⇠ � ⇢

m
eff

✓

⇠3/2
+

3

2

A
p

⇠ ˙⇠

◆

= 0. (1.1.10)
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1.1 Microscopic properties of granular matter

Figure 1.1.1.: Head-on collision of two spheres.

With ⇠ (0) = 0 and ˙⇠ (0) = u.3 After the collision part of the energy is lost in the interaction, and
the (normal) restitution coefficient quantifies this. Its definition is:

✏ ⌘ �
˙⇠ (t

c

)

˙⇠ (0)
= �

˙⇠ (t
c

)

u
, (1.1.11)

with t
c

defined as the duration of the collision. Using this definition, provided momentum conser-
vation, it is possible the derive the final velocities of the particles after colliding, yielding:

~v
0
1 = ~v1 �

m
eff

m1
(1 + ") (~v12 · ~e)~e

(1.1.12)

~v
0
2 = ~v2 +

m
eff

m1
(1 + ") (~v12 · ~e)~e.

Where ~e is a unit vector pointing from the center of particle 1 to particle 2.
A simple derivation of the restitution coefficient may be performed by doing simple dimensional
analysis. A general form for elastic and dissipative forces is

F
el

= m
eff

K1⇠
↵, F

diss

= m
eff

K2⇠
�

˙⇠� , (1.1.13)

With these, the equation of motion reads

¨⇠ + D1⇠
↵

+ D2⇠
�

˙⇠� = 0, ⇠ (0) = 0, ˙⇠ (0) = u. (1.1.14)
2The standard definition of powders refers to grains of less than 10 µm diameter.
3In this notation, u ⌘ v1 (0) � v2 (0).
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Chapter 1 Models of granular matter

It is possible to define a typical or characteristic length of the collision, and this can be done in
the case of pure elastic deformation (K2 = 0) by equating the kinetic energy m

eff

u2/2 with the
potential energy m

eff

K1⇠
↵+1/ (↵+ 1). Hence,

⇠0 ⌘
✓

↵+ 1

2K1

◆1/(↵+1)

u2/(↵+1). (1.1.15)

From this, it is possible to define a characteristic time which is simple the time required for particle
to cover the distance ⇠ when traveling at a speed u. That is, ⌧0 ⌘ ⇠/u. Therefore, we define the
new dimensionless variables as:

� ⌘ ⇠

⇠0
˙� ⌘

˙⇠

u
¨� ⌘

✓

⇠0
u2

◆

¨⇠. (1.1.16)

And inserting 1.1.16 into 1.1.14 implies,

¨�+ ��� ˙�� +
1 + ↵

2

�↵ = 0, � (0) = 0, ˙� (0) = 1. (1.1.17)

Where the function � is defined by

� (u) ⌘ K2

✓

1 + ↵

2K1

◆(1+�)/(1+↵)

u2(��↵)/(1+↵)+� . (1.1.18)

It is clear from 1.1.17 that material properties or impact velocity just come into play in the function
�, i.e. all the dynamics is captured in the function �. Accordingly, any dependence of the restitution
coefficient on the particular parameters of the collision should be of the form " = " [� (u)] . Now,
we may study some cases:

I. If the restitution coefficient does not depend on the impact velocity u, then 1.1.18 implies that

2 (� � ↵) + � (1 + ↵) = 0. (1.1.19)

For small ˙⇠ it is kind of realistic to assume that the viscous force has a linear dependence on ˙⇠ (� = 0),
hence

• As said before, F
el

/ ⇠ for disks, i.e. ↵ = 1 which implies that F
diss

/ ˙⇠, i.e. � = 0.

• In the 3D case, Hertz law states F
el

/ ⇠3/2, i.e. ↵ = 3/2 and thus F
diss

/ ⇠1/4
˙⇠.
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1.1 Microscopic properties of granular matter

But there are not physical arguments in favor of this last relation, whereby the assumption that
✏ = const is only applicable to 2D mechanics, whereas for the 3D case the result leads to unphysical
phenomena. One of the most remarkable results concerning this unphysical consequence is the so-
called inelastic collapse, which occurs in event-driven simulations of hard inelastic particles with
fixed ". McNamara and Young [18] showed that a constant value of " leads to a divergence in
the number of collisions between two particles in a finite time, dissipating completely the energy
of the relative motion making the particles to move as a cluster. Of course, in reality the number
of interparticle collisions remains finite, because eventually the interval between collisions becomes
comparable to the collision time, and hence the assumption of hard particles is no longer valid.

II. On the other hand, in the case of a viscoelastic interaction the coefficients are ↵ = 3/2, � = 1,
� = 1/2, and therefore � (u) becomes:

� (u) =
3

2

✓

5

4

◆3/5

A

✓

⇢

m
eff

◆2/5

u1/5
=) " = "

"

A

✓

⇢

m
eff

◆2/5

u1/5

#

. (1.1.20)

Now if we assume that " (u) is a well-behaved and smooth function, then we can expand it as a
Taylor series with " (0) = 1, thus

" = 1� C1u
1/5

+ C2u
2/5 ⌥ . . . (1.1.21)

which was derived using very simple arguments, but has also been obtained from a more thorough
analysis [19].

1.1.5. Friction

Hitherto the analysis made has neglected the role of friction in the interparticle interaction, but it is
widely known that it plays a very important role in the behavior of granular systems. Thus, in order
to give a meticulous description of what happens when two particles collide, it becomes imperative
to take into account the effects of friction. It has been an active field of research for the last decades
[20, 21], and it has been proven to be key to understanding many phenomena (see [22] for a review).

Friction arises from complicated intermolecular and surface forces between particles, and it is known
to be hysteretic and strongly non-linear, making its analysis extremely difficult. A simple approach
to grasp the problem is the Coulomb law that is a phenomenological law which states that two grains
are in rest relative to each other if the ratio of the tangential force F t to the normal force Fn is less
than the amount µ

s

, known as the static friction coefficient. That is,

�

�F t

�

�  µ
s

|Fn| . (1.1.22)

Once the particles set into motion, the tangential force F t becomes exactly proportional to Fn,
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Chapter 1 Models of granular matter

�

�F t

�

�

= µ
d

|Fn| , (1.1.23)

where µ
d

is defined as the dynamic friction coefficient. Tab. 1.1.5 shows these coefficients for different
materials.

Material ✏ µ
s

µ
d

Steel 0.6 0.78 0.42
Glass 0.9 0.9-1.0 0.4

Cooper 0.5 1 0.3
Rubber 0.8 1-2 -
Teflon 0.72 0.04 -
Nylon 0.88 0.15-0.25 -

Table 1.1.: Coefficient of restitution ✏, static friction coefficient µ
s

, and dynamic friction coefficient µ
d

for
different materials. Friction coefficients are provided for contact between the same materials [23].

It is important to remark that the Coulomb’s law is just an approximation. There are plenty of
factors that were not taken into consideration. It is well known that when there is contact among
three or more particles, the friction forces are undetermined given that constraints equations are
fewer than stress components. However, there have been several attemps to make contributions in
this subject (see [24] and references therein for a review). Besides, real particles have rotational
degrees of freedom whereby a sliding motion may become a stick-slip motion depending on the
angular speed of the particles. Moreover, non spherical particles complicate things out even more.
Accordingly, in order to simplify things, we introduce the tangential restitution coefficient which is
defined by

"t ⌘ u0t

ut

, (1.1.24)

where ut and u0t are the relative tangential velocities of the particles before and after the collision
respectively. In general "t takes values between �1 < "t < 1. And unlike the normal restitution
coefficient, it depends on both normal and tangential velocities.

1.2. Kinetic theory and hydrodynamics

Given the resemblance of ordinary molecular gases and dilute colliding particles, it is very tempting
to push the analogy a little further by setting into motion all the well-devoleped machinery of
statistical mechanics to describe granular gases. Although there are many fundamental differences
between both systems. As already mentioned, real granular media are composed of inelastic particles,
and it is well known in the literature that even with slightly ineslatic particles, the behavior of the
systems is markedly different. Besides, in granular gases there is no equipartion theorem; Luding and

14



1.2 Kinetic theory and hydrodynamics

McNamara [25, 26] showed numerically that the mean rotational energy differs from translational
kinetic energy for monodisperse spheres. Also, it has been shown that the velocity distribution of
granular gases is non-Maxwellian, and instead it is characterized by a stretched exponential [27, 28,
29]. However, in spite of all these complications, it is possible the give an approximate statistical
description of granular gases, which ultimately gives rise to the Boltzmann-Enskog equation [15].

1.2.1. Boltzmann equation

The main ingredient for the formulation of a kinetic theory is the distribution function f (~r,~v, t)
which is defined such that f (~r,~v, t) d~r d~v gives the number of particles whose positions lie within
the infinitesimal volume d~r about ~r, and their velocities lie within d~v at ~v. So, from its definition
follows that when integrated over the whole phase space,

ˆ
f (~r,~v, t) d~r d~v = N, (1.2.1)

where N is the particles number of the system. The derivation we present next was first obtained
by Boltzmann in 1896, and then generalized by Enskog in 1917, but we follow a more intuitive or
phenomenological approach based on the work by Chapman & Cowling [30]. Now, for the sake of
simplicity we consider identical particles of radius �.

During a time interval �t the number of particles f (~r1, ~v1) d~r1d~v1 in the volume of the phase space
d~r1d~v1 centered at (d~r1, d~v1) can split up into two sources. Direct collisions are collisions in which
particles in this interval are involved. In general, these collisions lead to velocities that are out of the
volume considered, and thus direct collision tend to decrease the number of particles in the volume
d~r1d~v1. Contrary, inverse collisions are collisions of particles that lie outside the velocity interval
(~v1, ~v1 + d~v1), but after the collision they belong to this interval. Hence, inverse collisions in general
tend to increase the number of particles in the considered phase-space volume. In order to quantify
this, we must take the collision rule 1.1.12 using m1 = m2, leading to

~v01 = ~v1 �
(1 + ✏)

2

(~v12 · ~e)~e,
(1.2.2)

~v02 = ~v2 +
(1 + ✏)

2

(~v12 · ~e)~e.

In Fig. 1.2.1 is depicted the scheme of a collision of identical particles. Each scatterer has a well-
defined collision cylinder that accounts for all possibles collisions within the infinitesimal solid angle
d

~
⌦ ⌘ d~e. From the figure we can see that the volume of the collision cylinder V

cc

is:
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Chapter 1 Models of granular matter

Figure 1.2.1.: Collision cylinder for the scattering of particles colliding at a relative velocity ~v
12

⌘ ~v
1

� ~v
2

.
The cylinder accounts for all the particles that hit the surface at a small spot around ~e.

V
cc

= d

~S · ~v12�t,

= �2
d

~
⌦ · ~v12�t,

V
cc

= �2 |~v12 · ~e|�t. (1.2.3)

The number of scatterers in the volume d~r1 is f (~v2, t) d~r1 d~v2. Besides, according to the definition of
the velocity distribution function, the number of particles with velocity ~v1 in the collisional cylinder
is f (~v1, t) d~v1 V

cc

. Therefore, the total number of collisions during the interval �t is

⌫� (~v1, ~v2, ~e, t) = f (~v1, t) f (~v2, t) d~r1 d~v1 d~v2 �
2 |~v12 · ~e|�t. (1.2.4)

Inverse collisions are defined as collisions of particles with velocities ~v01 and ~v02 that after the impact
yield particles with velocities ~v1 and ~v2. So, according to 1.1.12 we have
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1.2 Kinetic theory and hydrodynamics

~v1 = ~v01 �
(1 + ✏)

2

�

~v012 · ~e
�

~e,

(1.2.5)

~v2 = ~v02 +
(1 + ✏)

2

�

~v012 · ~e
�

~e.

Using the same reasoning as before, we can write the number of direct collisions:

⌫+
�

~v01, ~v
0
2, ~e, t

�

= f
�

~v01, t
�

f
�

~v02, t
�

d~r1 d~v
0
1 d~v

0
2 �

2
�

�~v012 · ~e
�

�

�t. (1.2.6)

But, in order to have ⌫+ as a function of ~v1 and ~v2, instead of ~v01 and ~v01 we can invert the relations
of equations 1.2.5,

~v01 = ~v1 �
(1 + ")

2"
(~v12 · ~e)~e,

(1.2.7)

~v02 = ~v2 +
(1 + ")

2"
(~v12 · ~e)~e,

and for the particular case of ✏ = const we get

⌫+
�

~v01, ~v
0
2, ~e, t

�

=

1

"2
f
�

~v01, t
�

f
�

~v02, t
�

d~r1 d~v1 d~v2 �
2 |~v12 · ~e|�t. (1.2.8)

In a more general case, instead of having the term 1/✏2 we have a more complicated function of ",
namely � (✏).
So far we have the direct and inverse collision rate, and by integrating over all possibles velocities
~v2 and over all directions ~e that correspond to an actual impact, it is possible to calculate to total
amount of collisions. Now, it is important to note that for direct collisions, only directions with
~v12 · ~e < 0 lead to an impact, whereas for inverse collisions only directions such that ~v012 · ~e > 0

should be taken into account. Hence the increment in the number of particles in the interval �t is

� |f (~v1, t)| d~r1 d~v1 =

ˆ
d~v2d~e

�

⇥

�

�~v012 · ~e
�

⌫+
�

~v01, ~v
0
2, ~e, t

�

�⇥(�~v12 · ~e) ⌫� (~v1, ~v2, ~e, t)
�

, (1.2.9)

where ⇥ is the Heaviside function,

⇥(x) =

(

1 if x � 0

0 if x < 0.
(1.2.10)
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Chapter 1 Models of granular matter

From the collision rule 1.2.5 it is possible to derive that ~v12 · ~e = �"~v012 · ~e, thus implying that
⇥(~v012 · ~e) = ⇥ (�~v12 · ~e), and noting that changing the ~e ! �~e does not change the first integral
in 1.2.9, using 1.2.8 and 1.2.4 we finally obtain the Boltzmann equation after dividing both sides of
the equation by d~r1d~v1�t and taking the limit �t ! 0,

Df

Dt
(~v1, t) = �2

ˆ
d~v2

ˆ
d~e⇥(�~v12 · ~e) |~v12 · ~e|

⇥

� (") f
�

~v01, t
�

f
�

~v02, t
�

� f (~v1, t) f (~v2, t)
⇤

,

(1.2.11)
@f

@t
(~v1, t) + ~v1 · rf ⌘ I [f ] . (1.2.12)

In the derivation of equation 1.2.12 we made several approximations that are not necessarily true.
One of the most strong assumptions was that the velocities of two colliding particles are not corre-
lated, whereby the joint probability f2 (~r1, ~r2, ~v1, ~v2, t) for two colliding particles is just the product
of the corresponding single-particle distribution functions. This assumption is known as the hypothe-
sis of molecular chaos or Stosszahlansatz according to its historical name given by Boltzmann. This
hypothesis is not always satisfied, and neglecting correlations of velocities should only be appro-
priate for molecular dilute gases, and even for dilute granular gases there is evidence that velocity
correlations are not negligible [31, 32, 33, 34]. The main sources of the observed correlations are the
inelasticity of the collisions, and more importantly the finite-volume effects. It was Enskog at the
beginning of the 20th century who came up with a solution to these problems giving an improved,
but still approximated, relation for the joint probability f2 (~r1, ~r2, ~v1, ~v2, t):

f2 (~v1, ~v2, t) ' g (�) f (~v1, t) f (~v2, t) , (1.2.13)

where g (�) is just the value taken by the pair distribution function g (r) evaluated at r12 = �, and
is also known as the Enskog factor (see Sec. 2.4 for more details). In general g (�) is written in terms
of the packing fraction �, and its specific form depends on the type of interaction that is taken into
consideration4. In physical terms, the Enskog factor accounts for an increment in the collisional rate
due to excluded-volume effects. Thus, the Boltzmann-Enskog equation reads,

@f

@t
(~v1, t) + ~v1 · rf = g (�) I [f ] . (1.2.14)

From 1.2.14 it can be shown that for elastic particles (" = 1), a possible solution for an isolated
system is f (~v, t) ! f

MB

(~v), where f
MB

(~v) is the well-known Maxwell-Boltzmann distribution
function. But for inelastic particles (" < 1), the Maxwellian is no longer a stationary solution and
finite correlations exist.

Despite this straightforward generalization, there are still phenomena that are not not fully captured
by 1.2.14 such as the the alignment of neighboring particles yielding vortices in an otherwise homo-
geneous granular state [35, 36, 37], and the behavior of polyatomic gases, where interactions are not

4For hard-spheres, g (�) = (2��)
2(1��)3

.
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1.2 Kinetic theory and hydrodynamics

only mediated through interparticle distance, but also through their orientation. Besides there is
another complication, by incorporating the extra rotational and vibrational degrees of freedom that
play an important role in the collision rule [38], which we have ignored altogether. As an important
remark, we should say that standard kinetic theory can be formally derived from the BBGKY hier-
archy (Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy) [39, 40, 41] and leads to the Boltzmann
equation at low densities. This thesis does not pretend to give a full and detailed picture of kinetic
theory but just a glimpse.

As a final comment, it should be said that in the more general context of the BBGKY hierarchy, the
s-particle distribution function f (s)

(~v, t) is written as an expansion in a power series of � ⌘ n�3, such
that this distribution is assumed to be f (s)

(~v, t) = f
(s)
0 (~v, t)+�2f

(s)
1 (~v, t)+ . . ., and where equation

1.2.14 is only valid for f
(s)
0 (~v, t), whereas higher order moments must fulfill other recursive relations

(see [40] and references therein for further details). The problem arises due the set of equations is
not closed, that is, the equation for a given moment depends on a higher order moment, and then
in order to have closure the distribution function is conjectured to be a Maxwellian multiplied by
factors that depend on local gradients of hydrodynamical fields.

1.2.2. Granular hydrodynamics

As in the case of molecular gases (or liquids), we can define macroscopic fields for granular gases such
as the number density n (~r, t), the velocity ~V (~r, t) and the temperature T (~r, t) by taking moments
of the Boltzmann function f (~v, t) as follows:

n (~r, t) ⌘
ˆ

d~vf (~r,~v, t) , (1.2.15)

~V (~r, t) ⌘ 1

2n (~r, t)

ˆ
d~v ~vf (~r,~v, t) , (1.2.16)

T (~r, t) ⌘ m

dn (~r, t)

ˆ
d~v
⇣

~v � ~V
⌘2

f (~r,~v, t) , (1.2.17)

where d is the spatial dimension and m is the mass of the particles. The concept of granular
temperature has encountered some opposition in the past, due to concerns about the real meaning
of temperature in systems out-of-equilibrium, since in granular systems it is not associated to a
conserved quantity (energy), but it seems now that the physical community has agreed about its
importance [42, 43]. Provided the distribution function, it is possible to write down conservative
equations of mass, momentum, and energy:
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Dn

Dt
= �nr · ~v, (1.2.18)

mn
D~v

Dt
= �r · � + n~g, (1.2.19)

nc
V

DT

Dt
= �� : �̇ �r · ~q � �

E

, (1.2.20)

where D/Dt = @
t

+~v ·r is the material derivative, ~g is the gravity acceleration and c
V

is the specific
heat at constant volume. The stress tensor �, the energy flux vector ~q, the energy dissipation rate
�

E

are defined by

�
ij

=

ˆ
d~v V

i

V
j

f (~r,~v, t) , (1.2.21)

~q =

1

2

ˆ
d~v V 2~V f (~r,~v, t) , (1.2.22)

�

E

=

⇡
�

1� ✏2
�

�2

8n

¨
d~v1 d~v2 v3

12f (~r1, ~v1) f (~r2, ~v2) . (1.2.23)

The form of these balance equations is the same as for fluids with elastic collisions, except for the last
term in 1.2.20 which is a “sink term” that turns out to be proportional to 1�✏2 and is identified as the
cooling rate. Now, in order to give a complete description of the hydrodynamic fields, constitutive
equations should be provided. For molecular fluids there is no ambiguity about what these relations
should be, however it is unclear whether such a closure exists for granular matter, if the processes
are Markovian or have memory, or even if the interactions are local. For dilute systems, these
constitutive equations for the stress tensor � and the energy flux ~q are found to be:

�
ij

= [p + (⌘ � ⌘
b

) Tr�̇] �
ij

� ⌘�̇
ij

, (1.2.24)

~q = �rT � µrn, (1.2.25)

where p is the isotropic pressure; ⌘ and ⌘
b

5 are the shear and bulk viscosity respectively;  is the
thermal conductivity of the granular material; µ (✏) is a new transport coefficient coupling the heat
flux to a density gradient, which vanishes as " ! 1; and �̇

ij

is the strain rate tensor defined as
�̇

ij

⌘ (@
i

v
j

+ @
j

v
i

) /2.

We can notice that the functional form of the stress tensor is the same as that for fluids with elastic
collisions, except that now ⌘ (") depends on the normal restitution coefficient, as well as  (✏) does in
the Fourier’s law of equation 1.2.25. There have been several attempts to give an equation of state,

5The bulk viscosity ⌘
b

vanishes at low densities.
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1.2 Kinetic theory and hydrodynamics

along with expressions for the transport coefficients that could catch the wide variety of phenomena
present in granular media. Carnahan & Starling [44], and Luding et. al. [45], propose equations of
state for dilute and high-density regimes respectively that have proven to be useful in their range of
validity.6

Granular hydrodynamics has been widely used in the physics community as a tool for describing a
variety of behaviors, such as instabilities, granular convection, patterns in vibrated granular media,
segregation, etc. On the contrary, granular hydrodynamics has not been able to explain the effects of
force chains, nor hysteretic phase transitions from solid to fluid phases (see [46, 2, 47] and references
therein). We should say also that in granular media there is absence of a scale separation, that
is, the ratio between a microscopic time scale ⌧ and a macroscopic time scale, lets say �̇�1, is an
O (1) quantity, unless the particles are nearly elastic (" ⇡ 1) [48]. Hence, the particular system we
study, which is in a high-density regime with inelastic collisions as will be clear later, could be of
great importance to test granular hydrodynamics and could be fundamental to know what are the
ingredients we need to add to it to capture adequately these phenomena.

6In the dilute limit p = nT .
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2. Phase transitions and critical phenomena

« The scientist does not study nature because it is useful; he studies it

because he delights in it, and he delights in it because it is beautiful. If

nature were not beautiful, it would not be worth knowing, and if nature

were not worth knowing, life would not be worth living. »

Henri Poincaré

We know from everyday experience that matter presents itself in different states or phases, and
from elementary school we were taught that they were three states of matter; namely solid, liquid
and gas, but thousands of years ago ancient people believed that there were four: earth, wind, fire
and water. With the development of science in the last centuries, specially in the last one, there
have been discovered many new states. Superfluids and superconductors are startling new states,
liquid crystals used as displays of a great variety of electronic devices is another remarkable example
found in everyday life, along with an immense family of different crystalline states with distinct
structures. The variety of states that a system may be on, depend upon conditions of pressure and
temperature, and hence by varying these conditions the system undergo a phase transition. A simple
case is observed when we boil water in the kitchen: by heating the container where the liquid water
is, we increase the temperature turning liquid water into vapor.

But talking about states of matter and phase transitions there are some questions that naturally
arise; How do we actually define a state of matter? Maybe more importantly, how do we differentiate
two phases? How do you tell that oil and water are in the same state or phase? What is the signature
that a phase transition has taken place? In these chapter we try to answer these questions by giving
a description of some phase transitions in nature and then studying some simple theories, though
approximated, help us capture most of the main features of phase transitions. In the end we also
approach the theory of critical phenomena in some detail.

2.1. States of matter and broken symmetries

In order to have a clear idea of how phase transitions take place, lets think for a while in the case of
water, which is something common to us. Under ambient conditions of pressure and temperature,
water is liquid and its molecules have large kinetic energy. The distance among particles is a trade-off
between the repulsive and attractive parts of the interaction. The molecules move by diffusion and
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Chapter 2 Phase transitions and critical phenomena

the density is isotropic and homogeneous, although there are some density fluctuations spreaded out
through the fluid, which are very short-lived. As we lower the temperature, these density fluctuations
increase in intensity, and persisting for longer times. At even lower temperatures, molecules have less
kinetic energy, the attractive part of the interaction becomes more dominant than before yielding
some bonds among molecules that now begin to appear, besides interparticle distance is smaller.
Consequently, density fluctuations increase in intensity even further and begin to form domains
with certain order that span large portions of the fluid. Finally, at some particular value (0

oC), the
attraction among particles becomes stronger, increasing the density of the system. The bonds are
stronger and rigid, and now these domains convert into a single one that covers the whole system
having a well-defined order. This rigid structure or crystal is made up of molecules whose kinetic
energy is negligible and it is just vibrational energy. Accordingly, as temperature drop below a
critical value, the system undergoes a phase transition. Above the critical temperature, water is
in the liquid phase which is isotropic and homogeneous, which means there is rotational as well as
translational symmetry. But the solid phase does not have those symmetries. Thus, we say there was
an spontaneous break of symmetry. This kind of phase transitions is known as structural transition,
that is, when there is symmetry breaking. Another example of this type of phase transitions is what
happens with the isotropic and nematics phases in some fluids1. We should remark though, that not
all structural phase transitions are disorder-order transitions. There are also solid-solid transitions,
that is, where both phases are ordered but the symmetries of the crystals are not the same. However,
not all phase transitions in nature are associated to any broken symmetry such as the case of the
liquid-vapor transition. In that case, even though there are important differences between them,
both phases have the same symmetries and the principal physical quantity distinguishing the liquid
and the gas phases is their density. Phase transitions that take place between two phases with the
same symmetries are called isostructural transitions. In other words, the system is in a state that has
less symmetry than the Hamiltonian, which in general is invariant under translations and rotations.

Symmtery-breaking transitions may in general be described by an order parameter, which is a variable
that quantifies the degree of order of the phase, and it is usually defined in such a way that it is
zero in the phase with greater symmetry. There are cases, though, where it is not posssible to define
an order parameter, such as the solid-solid transition, since this can be done only if the symmetry
group of one phase is a subgroup of the symmetry group of the other phase.

The order parameter is a field, scalar or vectorial, meaning that it is defined at each point of the
system. To clarify this, lets think of a magnet. At each point ~x = (x, y, z) we have the local
direction of the magnetization vector ~M (~x). Thus, the magnetization can be visuallized as little
vectors attached to each point in space. We know that at given temperature, the magnitude of
the vector ~M is almost constant, | ~M | ⇡ M0, basically depending only on the material itself, but
its direction changes in different parts of the material. We take the magnetization ~M as the order
parameter that describes the state of the system. By the end of the 19th century, Pierre Curie
studied the magnetic properties of matter for his PhD thesis and was able to explain succesfuly the
paramagnetic transition. He showed that if a ferromagnetic material2 is heated above certain critical
temperture, so-called Curie Point, it looses its magnetic properties since the magnetization vector

1Isotropic-nematic phase transitions occurs when the systems is composed of non-spherical particles whose shape
has some preferred direction.

2A ferromagnetic material is defined as being able to hold spontaneous magnetization.
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2.2 Abrupt and continuous phase transitions

~M is no longer oriented in a particular direction, but it becomes isotropic. This transition has been
extensively studied, it is known to be reversible. Whereby when we cooled down the material below
T

c

, it becomes a magnet by breaking the rotational symmetry.

This rather intuitive example of a phase transition and its order parameter might lead you to think
that defining an order parameter is an easy task, but it is not. The choice of the order parameter is
not always easy, because once you have figured out what is really going on in the phase transition,
you have more chances of guessing the right order parameter. Moreover, there are several cases where
there is more than one order parameter, such as the case of the gas-liquid transition on a binary
fluid, or the case of Heisenberg antiferromagnet [49]. In general, there are more than one order
parameter that couple with each other. In Sec. 2.5 we study in some detail the underlying standard
theory of dynamical phase transitions where there is more than one order parameter involved.

2.2. Abrupt and continuous phase transitions

Having clarified what a phase transition is, we now may proceed to clasify them. In the previous
section we discussed about the symmetries that some phases posses, and thus a straightforward
way to clasify them is structural (with symmetry breaking), or isostructural (without symmetry
breaking). On the other hand, we could also clasify them depending on whether they have an
associated latent heat. The latent heat is simply the heat released or absorbed by a body when it
undergoes a process without a change in temperature. In particular, this process could be a phase
transition, and we can have a phase transition without latent heat (l

Q

= 0), or a transition whit
latent heat (l

Q

6= 0) where it is said to be endothermic or exothermic depending on the sign of l
Q

3.
From an experimental point of view, it is more convenient to use this classification given that in
general it is far easier to measure l

Q

than a change in symmetry. Now, lets remember the well-known
Clausius-Clapeyron equation, which is widely used in thermodynamics,

dp (T )

dT
=

s1 � s2

v1 � v2
, (2.2.1)

where s
i

and v
i

are the entropy and volume per particle on each phase. We know also that for
a reversible process �Q = l

Q

= T�S, thus, if l
Q

6= 0 ) s1 6= s2 which implies that the first
derivatives of the Gibbs free energy are discontinuous (S = �@G/@T, V = @G/@p). Hence, this led
Paul Ehrenfest to introduce a new clasification which is based on the continuity of the thermodynamic
potential. According to Ehrenfest, a phase transition is said to be of order n, if the n-th derivative of
the thermodynamic potential is the first quantity to present a discontinuity. Accordingly, if l

Q

6= 0

we have a first-order phase transition, whereas if l
Q

= 0 it is at least a second-order phase transition.
By definition a point in the (p, T ) plane that corresponds to a phase transition in which l

Q

= 0 is
called critical point. An analogous thermodynamical definition is that it is an inflection point of an
isotherm curve on a pV diagram.

3By convention l

Q

> 0 if the system release energy into its sorroundings, and l

Q

< 0 if it absorbes energy from its
sorroundings.
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Exercises 129

to derive formulæ for T , P , and µ in terms of
E, N , and V , and verify eqn 6.75.

(6.9) Gibbs–Duhem. (Thermodynamics, Chem-
istry) �2
As a state function, E is supposed to depend
only on S, V , and N . But eqn 6.76 seems to
show explicit dependence on T , P , and µ as well;
how can this be?
Another answer is to consider a small shift of
all six variables. We know that dE = T dS �
P dV + µ dN , but if we shift all six variables in
Euler’s equation we get dE = T dS � P dV +
µ dN + S dT � V dP + N dµ. This implies the
Gibbs–Duhem relation

0 = S dT � V dP + N dµ. (6.78)

This relation implies that the intensive variables
T , P , and µ are not all independent; the change
in µ is determined given a small change in T and
P .
(a) Write µ as a suitable derivative of the Gibbs
free energy G(T, P, N).
This makes µ a function of the three variables
T , P , and N . The Gibbs–Duhem relation says
it must be independent of N .
(b) Argue that changing the number of particles
in a large system at fixed temperature and pres-
sure should not change the chemical potential.
(Hint: Doubling the number of particles at fixed
T and P doubles the size and energy of the sys-
tem as well.)
The fact that both G(T, P, N) and N are exten-
sive means that G must be proportional to N .
We used this extensivity to prove the Euler re-
lation in Exercise 6.8; we can thus use the Euler
relation to write the formula for G directly.
(c) Use the Euler relation (eqn 6.76) to write a
formula for G = E �TS +PV . Is it indeed pro-
portional to N? What about your formula for µ

from part (a); will it be dependent on N?

(6.10) Clausius–Clapeyron. (Thermodynamics,
Chemistry) �3
Consider the phase diagram in Fig. 6.14. Along
an equilibrium phase boundary, the tempera-
tures, pressures, and chemical potentials of the
two phases must agree; otherwise a flat interface
between the two phases would transmit heat,
shift sideways, or leak particles, respectively (vi-
olating the assumption of equilibrium).
(a) Apply the Gibbs–Duhem relation 6.78 to both
phases, for a small shift by �T along the phase

boundary. Let s1, v1, s2, and v2 be the molecu-
lar entropies and volumes (s = S/N , v = V/N

for each phase); derive the Clausius–Clapeyron
equation for the slope of the coexistence line on
the phase diagram

dP/dT = (s1 � s2)/(v1 � v2). (6.79)

point

Liquid
Solid

Gas

Temperature

Pr
es

su
re Critical

Triple

point

Fig. 6.14 Generic phase diagram, showing the
coexistence curves for solids, liquids, and gases.

It is hard to experimentally measure the en-
tropies per particle; we do not have an entropy
thermometer. But, as you will remember, the
entropy di�erence upon a phase transformation
�S = Q/T is related to the heat flow Q needed
to induce the phase change. Let the latent heat
L be the heat flow per molecule.
(b) Write a formula for dP/dT that does not in-
volve the entropy.

(6.11) Barrier crossing. (Chemistry) �2
In this exercise, we will derive the Arrhenius law
(eqn 6.60)

� = �0 exp(�E/k

B

T ), (6.80)

giving the rate at which chemical reactions cross
energy barriers. The important exponential de-
pendence on the barrier height E is the relative
Boltzmann probability that a particle is near the
top of the barrier (and hence able to escape).
Here we will do a relatively careful job of calcu-
lating the prefactor �0.
Consider a system having an energy U(X), with
an energy well with a local minimum at X = X0

having energy U(X0) = 0. Assume there is
an energy barrier of height U(X

B

) = B across

Figure 2.2.1.: Typical phase diagram showing the coexistence curves for the different phases, the triple
point where the three phases coexist, and also the critical point that is the point beyond which it is
not possible to distinguish the liquid and gaseous phases. As a simple comment we might say that the
solid-liquid coexistence line has negative slope in the case of water, which is an anomalous case, and is
responsible for the well-known fact that ice floats on liquid water, among many other phenomena

Thereby, given that the transition between solid and liquid corresponds to a symmetry breaking,
the coexistence boundary cannot end. Nevertheless, there are systems where this is not true, such
is the case of confined water nanofilms where the transition to a solid phase can be either of first
or second order, depending on the filling density [50]. The reason for this, is the confinement of
ths system. As we lower the spatial dimension of a system, the fluctuations increase in intensity
becoming much more important, allowing to pass from one phase to another continuously above a
critical point. However, as we saw earlier this is not the case for the liquid-gas boundary, and it
is possible to go continuously from one phase to the other, as is depicted in Fig. 2.2.1. The fact
that first order phase transitions have a discontinuity implicate that in general they show hysteresis
and consequently are rate-dependent on the input, meaning in the particular case of the solid-liquid
phase transition that the melting and freezing point do not agree, they just agree if the change of
temperature is performed slow enough for the system to order itself and reach its equilibrium point.
This will be clearer in the next section. Another important difference between first and second order
phase transitions is that given that the later involves a critical point beyond which the two phases in
consideration are basically the same, the fluctuations become increasingly important as the critical
point is approached, thus implying that some physical quantities such as the susceptibility or the
correlation length diverge at the critical point4. This remarkable fact is maybe what makes second-
order phase transitions and critical phenomena so fascinating and have attracted so much attention
in the last decades [2, 51, 52, 53, 8].

4Of course we do not mean a divergence in a sense strictly mathematical, but a physical divergence because of
finite-size effects.
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2.3 Equilibrium critical phenomena

2.3. Equilibrium critical phenomena

2.3.1. van der Waals model

In order to deepen a little further into the features of phase transition and critical phenomena, lets
take a look at the well-known model proposed by van der Waals to describe the behavior of fluid
systems. Basically we can describe this model as an improvement of the ideal gas law by taking into
account finite-size effects and the attraction among particles, but still in the dilute regime. Hence,
the van der Waals state equation for gases is

⇣

p +

a

V 2

⌘

(V � b) = Nk
b

T, (2.3.1)

where the first term accounts for a reduction of the pressure due to the attractive part of the
interaction potential, whereas the (V � b) term comes from estimating the “free volume” available
for the molecules by excluding a hard core contribution. The van der Waals potential that is used
to derive this equation of state is

U (r) =

(

1 r  d

⇠ �
�

�

r

�6
r � d,

(2.3.2)

where � is the typical size of the molecules. Thus, U (r) corresponds to a hard-core potential for
distances smaller than d, and a decaying attractive potential for larger r.

Fig. 2.3.1 shows three diferent isotherms sketched in the pV space. As pointed out earlier, above
the critical temperature T

c

the liquid and vapor phases are undistinguishable, and the isotherms for
T � T

c

approach the ideal gas law pV = Nk
b

T , being independent of the microscopic interation
parameters a and b. As we drop the temperature, the isotherms develop an inflection point that
turns into a saddle point with horizontal tangent. When the system is below the critical temperature
T

c

, which is defined from the spinodal curve5, the system is in the liquid state if we are at small
volumes, or in gaseous state if we are at high volumes. In other words, the liquid phase is stable to
the left of (A) whereas the vapor phase is stable to the right of (D). But, it can be shown that in
the (B � C) region the system is unstable, while the regions (A � B) and (C � D) are where the
liquid and the gas are metastable phases. This can be derived from the stability criteria, that is,
we can show that the condition

�

@2U/@V 2 � 0

�

is equivalent to (@P/@V )

T

 0. Thus, in Fig. 2.3.1,
zones of positive slope correspond to unstable regions. Clearly we do not observe the unstable
solutions, and thus the physical solution below the spinodal curve is the horizontal dashed curve,
which implies that the chemical potentials are the same in both phases, and so thermodynamical
as well as mechanical equilibrium is satisfied6. Therefore this non-analyticity of the pressure p (V )

5A spinodal curve is defined such is the limit of stability of a solution, denoting the boundary of a region of instability
in a phase diagram.

6It can be shown that this statement is equivalent to say that the two bounded areas formed by the isotherm and
the horizontal dashed line are equal.
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Figure 2.3.1.: The van der Waals isotherms sketched. The curve that has an inflection point is the critical
isotherm, and thus below the spinodal curve (dashed line) the two phases coexist.

implies that as we increase the pressure at constant temperature, there is a discontinuous jump
of the volume, or correspondingly, of the density; and hence the associated change in the entropy
per particle s releases a latent heat l

Q

= T (s
g

� s
l

). Accordingly, for T < T
c

, the van der Waals
equation describes a first order phase transition. Notice now that the coexistence region does not
extend beyont T

c

, and from Fig. 2.3.1 it is clear that at precisely T = T
c

the discontinuous jump
becomes zero, or in other words the latent heat at the critical point vanishes and the liquid-gas
phase transition becomes a second order phase transition. Now, we proceed to study what actually
occurs near T

c

. From Fig. 2.3.1 it is easy to observe that we can define the critical point such that

p
c

= p (p
c

, V
c

) ,
@p

@V

�

�

�

�

T

c

,V

c

= 0,
@2p

@V 2

�

�

�

�

T

c

,V

c

= 0. (2.3.3)

But this is equivalent to

p
c

=

Nk
b

T
c

V
c

� b
� N2a

V 2
c

,

@p

@V

�

�

�

�

T

c

,V

c

= � Nk
b

T
c

(V
c

� b)2
+

2N2a

V 2
c

= 0, (2.3.4)

@2p

@V 2

�

�

�

�

T

c

,V

c

=

2Nk
b

T
c

(V
c

� b)3
� 6N2a

V 4
c

= 0.
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By solving this three equations, we straightforwardly obtain (p
c

, T
c

, V
c

):

p
c

=

a

27b2
, k

b

T
c

=

8a

27b
, V

c

=

b

3

. (2.3.5)

Fluid T
c

[K] p
c

[atm] ⇢
c

⇥

g · cm�3
⇤

Water 647.5 218.5 0.325
Alcohol 516.6 63.1 0.28
Ether 476.0 35.5 0.26

Carbon dioxide 304.2 72.8 0.46
Oxygen 154.6 49.7 0.41

Table 2.1.: Critical point parameters for some fluids [54].

Now, by defining p⇤ ⌘ (p � p
c

) /p
c

, ✏ ⌘ (T � T
c

) /T
c

, ' ⌘ (V � V
c

) /V
c

, we can write the dimension-
less form of the van der Waals equation, which turns out to be

1 + p⇤ =
4 (1 + ✏)

1 + 3'/2
� 3

(1 + ')2
. (2.3.6)

From equation 2.3.6, we can conclude that this state equation is independent of the microscopic
parameters a and b, and thus if we measure the pressure, volume and temperature in terms of their
critical values respectively, then the equation of state is the same for all fluids. Accordingly, all
the properties derived from this equation are universal. In other words, according to 2.3.6 any two
fluids with the same p⇤, ✏, ' may be said to be in the corresponding states. Let us take a look at
the relations of 2.3.5. It is straightforward to deduce

Z =

p
c

V
c

k
b

T
c

=

3

8

= 0.375. (2.3.7)

For ideal fluids we have Z = 1. However, for real fluids the experimental value is Z = 0.2 � 0.3.
Hence, we may say that even though van der Waals theory has achieved some improvements in the
description of real fluids, it is a rather simplistic approach, and does not provide a final quantitative
accurate result.

Returning to the calculations, from the cubic equation for ' in 2.3.6 it is possible to show that:

• if ⇡ = 0 and ✏ = 0, we obtain ' = 0 as expected.

• if ✏ > 0, there is just one real solution.

• if ✏ < 0, there are three solutions, but only two of them are stable, as shown in Fig. 2.3.1.
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From 2.3.6 we can derive some properties in the vicinity of the critical point by expandig the equation
and retaining only the lowest-order nonvanishing terms, yielding

p⇤ ⇡ 4✏� 6✏'+ 9✏'2 � 3

2

'3. (2.3.8)

Hence, the cubic critical isotherm (✏ = 0) is readily obtained,

p⇤ ⇡ �3

2

'3. (2.3.9)

Accordingly, if we define the critical exponent � through the relation |p⇤| = p± |'|�, � turns out to
be � = 3.

Besides, we can also compute the vapor pressure curve, because of the antisymmetry near V
c

we may
just set ' = 0 into (2.3.6), and obtain p0 = 4✏. This pressure sets the reference for determining the
change in volume at the phase transition. The coexistence curve is defined as the projection onto
the pV plane of the Fig. 2.3.1, thus 0 ⇡ �6✏'+ 9✏'2 � 3

2'
3, implying

'
g

= �'
l

=

(

0 ✏ � 0

⇡ (�4✏)1/2
+O (✏) ✏ < 0

(2.3.10)
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Fig. 12.6 Universality. (a) Uni-
versality at the liquid–gas critical
point. The liquid–gas coexistence lines
(⇢(T )/⇢

c

versus T/T

c

) for a variety of
atoms and small molecules, near their
critical points (T

c

, ⇢

c

) [54]. The curve is
a fit to the argon data, ⇢/⇢

c

= 1+s(1�
T/T

c

) ± ⇢0(1 � T/T

c

)� with s = 0.75,
⇢0 = 1.75, and � = 1/3 [54]. (b) Uni-
versality: ferromagnetic–paramagnetic
critical point. Magnetization versus
temperature for a uniaxial antiferro-
magnet MnF2 [56]. We have shown
both branches ±M(T ) and swapped
the axes so as to make the analogy with
the liquid–gas critical point (above) ap-
parent. Notice that both the magnet
and the liquid–gas critical point have
order parameters that vary as (1 �
T/T

c

)� with � ⇡ 1/3. (The liquid–
gas coexistence curves are tilted; the
two theory curves would align if we
defined an e↵ective magnetization for
the liquid–gas critical point ⇢e↵ = ⇢ �
0.75⇢

c

(1�T/T

c

) (thin midline, above).
This is not an accident; both are in
the same universality class, along with
the three-dimensional Ising model, with
the current estimate for � = 0.325 ±
0.005 [148, chapter 28].

of falling apart, they become similar to one another! In particular, all

signs of the original lattice structure and microscopic rules have disap-

peared.

4 4Notice in particular the emergent
symmetries in the problem. The large
percolation clusters at p

c

are statis-
tically both translation invariant and
rotation invariant, independent of the
grids that underly them. In addition,
we will see that there is an emergent
scale invariance—a kind of symmetry
connecting di↵erent length scales (as we
also saw for random walks, Fig. 2.2).

Thus we observe in these cases that di↵erent microscopic systems look

the same near critical points, if we ignore the microscopic details and

confine our attention to long length scales. To study this systematically,

we need a method to take a kind of continuum limit, but in systems

which remain inhomogeneous and fluctuating even on the largest scales.

This systematic method is called the renormalization group.

5

The renormalization group starts with a remarkable abstraction: it

5The word renormalization grew out of quantum electrodynamics, where the e↵ective charge on the electron changes size
(norm) as a function of length scale. The word group is usually thought to refer to the family of coarse-graining operations
that underly the method (with the group product being repeated coarse-graining). However, there is no inverse operation to
coarse-graining, so the renormalization group does not satisfy the definition of a mathematical group.

Figure 2.3.2.: Law of corresponding states. The liquid-gas coexistence lines near the critical point for a
variety of atoms showing universality, but where the exponent is not the same as predicted by van der
Waals. The curve is a fit to the argon data, ⇢/⇢

c

= 1 + s (1� T/T
c

) ± ⇢
0

(1� T/T
c

)

� , with s = 0.75,
⇢
0

= 1.75, and � = 1/3 [54].

In Fig. 2.3.2 we observe the law of corresponding states for a variety of gases showing that they
follow ⇢/⇢

c

= 1 + s (1� T/T
c

)± ⇢0 (1� T/T
c

)

� , with s = 0.75, ⇢0 = 1.75 and � = 1/3.
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2.3 Equilibrium critical phenomena

The difference '
g

� '
l

= 2'
g

which is continuous at ✏ = 0 may serve as a definition of the order
parameter that describes this transition.7 Experimental and numerical results do not agree with
this result, but they show that �' ⇠ (�✏)� , with � ' 0.35, which differs from the value � = 1/2
predicted by the van der Waals theory. The reason of the disagreement is that the hard-core repulsion
is just an approximation, and neither another functional form of the potential does give accurate
results. The answer is given by the renormalization theory, which takes into account the effect of
the fluctuations in the system [55]. In the same way, the isothermal compressibility turns out to be:

�
T

= �
✓

@'

@p

◆

✏

⇡ 1

6✏+ 9
2'

2
⇡

8

>

<

>

:

1
6✏ ✏ > 0

1
12|✏| ✏ < 0.

(2.3.11)

Which means �
T

= �± |✏|�� , where � = 1, diverges on both sides of the critical point, but with
different amplitudes �+/�� = 2. By using the thermodynamical relation

� =

V (�N)

2

Nk
b

T
, (2.3.12)

we can conclude that near the critical point there are large density fluctuations. These fluctuations
cause strong light scattering in the system, a phenomenon known as critical opalescence (see [56, 51]
and references therein). As a last result on this section, we calculate how the specific heat behaves.
From thermodynamics we know that

C
V

= T
@S

@T
=

@F

@T
, (2.3.13)

but from the van der Waals equation of state, we can compute the Helmholtz free energy: p =

@F

@V

implies that

F =

ˆ
pdV (2.3.14)

=

ˆ ✓
Nk

b

T

V � b
� N2a

V 2

◆

dV (2.3.15)

F = Nk
b

T ln (V � b) +
N2a

V
+ f (T ) , (2.3.16)

hence, it is clear that in the van der Waals gas the specific heat is the same as in the ideal gas, since
C

V

just depends on the derivative of the constant of integration. So,
7Though in the literature you will find that is far more common to use the difference of densities instead of volumes

as the order parameter, but it is basically the same.
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C
V

= Cideal

V

=

✓

@U

@T

◆

V

=

3

2

Nk
b

T, (2.3.17)

whereby C
V

does not diverge, and following the same idea as before, by writing C
V

= C± |✏|�↵ we
have ↵ = 0.

As a summary, we may say that at the critical isotherm T = T
c

the system undergoes a second-
order phase transition and where some physical quatities become non-analitic, in particular they
diverge with some critical exponents. In the van der Waals model for this particular system we
could find explicitly these exponents, which are ↵ = 0, � = 1/3, � = 1 and � = 3. A summary of
these results is shown in 2.3.2. In the next sections, we take a more phenomenological approach to
determine relations between these exponents, but that gives us a more intuitive notion about critical
phenomena.

2.3.2. Critical exponents

Until now we have not told the whole story. Actually, there are more than just the four exponents
that we have just presented so far. Besides ↵, �, � and �, there are two others exponents associated to
spatial correlations. We define the exponents ⌫ and ⌘ related to the behavior of the pair correlation
function and its structure factor. Since a more extensive discussion about g (r) is presented in
Sec. 2.4, here we only give a brief definition of the exponents themselves. The correlation length ⇠ is
a measure of the range of the correlation function g (r) near the critical point. In the vicinity of the
critical point, the pair correlation function (in a 3D system) follows

g (r) ⇠ e�r/⇠

r
, (2.3.18)

where the correlation length ⇠ diverges with exponent ⌫?,

⇠ ⇠ |✏|⌫? . (2.3.19)

The van der Waals model predicts this exponent takes the value ⌫ = 1/2. In most cases, at the
critical point (T = T

c

, p = p
c

), the pair correlation function decays with increasing distance r in a
power-law form

g (r) ⇠ 1

rD�2+⌘
, (2.3.20)

thereby defining the anomalous exponent ⌘ (D is the dimensionality of the system).8

Everything we have done so far can be put into a more general context. In the particular case of
the liquid-gas phase transition the order parameter that describes the transition may be defined as
the difference of densities between both phases,  = ⇢

l

� ⇢
g

, which is zero above the critical point
8The reason for this name will be clear in Sec. 2.4.
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Exponent Definition Description Value

↵ C
V

=

@F

@T

= C± |✏|�↵ Specific heat at constant volume V = V
c

0

� V
g

� V
l

⇠ |✏|� Order parameter (shape of coexistence curve) 1/2

� �
T

= � 1
V

⇣

@V

@p

⌘

T

⇠ |✏|�� Isothermal compressibility 1

� |p � p
c

| ⇠ |V � V
c

|� Critical isotherm 3

⌘ g (r) ⇠ r�(D�2+⌘) Correlation function (at T = T
c

) 0

⌫? g (r) ⇠ e�r/⇠/r ! ⇠ ⇠ |✏|⌫? Correlation length 1/2

Table 2.2.: Critical exponents of the liquid-gas transition according to the van der Waals theory

because we have just one phase; and takes a non-zero value below T
c

. Accordingly, in order to extend
the definitions of the critical exponents, lets think in a general order parameter  . Thus, instead of
having the specific heat defined as C

V

= (@F/@T ), but now where the Helmholtz free energy F is
now a function of the order parameter  ; analogously now we have  ⇠ |✏|�and consequently, we
may do the same with the other definitions. This generalization is shown in Tab. 2.3.

Exponent Definition

↵ @F [ ]
@✏

⇠ |✏|�↵

�  ⇠ |✏|�

� S (0) ⇡ h 
k

 ⇤
k

i ⇠ |✏|��

�  ⇠ h1/�, at ✏ = 0

⌘ g (r) ⇡ h (r) (0)i ⇠ r�(D�2+⌘)

⌫? g (r) ⇠ e�r/⇠/r ! ⇠ ⇠ |✏|⌫?

Table 2.3.: Extended definitions for the critical exponents.  is the order parameter, and h is an external
field.

This generalization will be very useful later when dealing with more generic second order phase
transitions, and when we compute and compare the critical exponents using different theories.

As a final remark, we should say that measuring critical exponents is an extremely difficult task
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Chapter 2 Phase transitions and critical phenomena

from an experimental point of view. One of the reasons is because in general the physical quantities
that we can actually measure do not follow exactly a power-law, instead they follow

f (t) = A0 |✏|�#
⇣

1 + A1 |✏|✓ + . . .
⌘

✓ > 0, (2.3.21)

where # may be {↵, �, �, �, ⌘, ⌫?}. Therefore, the critical exponent is defined as limiting power law

k ⌘ lim

✏!0

log f (✏)

log |✏| . (2.3.22)

The corrections at the critical point vanish, but they may become important for ✏ > 0. Hence if we
want reliable values for the actual critical exponent, these corrections cannot be neglected. When
measuring a critical exponent there are others difficulties arising. One is related to the finite-size of
the experimental system. The fact that the system in question is not infinite yields a rounding of
the divergence. In adition, normally there is a slightly varying background which has not singular
behavior near T

c

, thus a curve fitting is necessary in order to substract this effect. One last problem
comes from the phenomenon critical slowing down, which means that as T ! T

c

the system takes
longer and longer to equilibrate. As we saw, when the system approaches the critical point, the
correlation length diverges, and so the fluctuating regions become bigger and bigger. Therefore the
system takes longer to relax (correlation time diverges) implying that the experimentalist must wait
for large times to be certain that equilibrium has been reached. A more extensive discussion about
this last point will be given in Sec. 2.5 where we study the dynamics of phase transitions.

2.3.3. Universality and scaling

We have seen in the last two sections that there are several critical exponents, but not all of them are
independent. For example, � is always of order 2⌫? and ↵+2�+� is of order 2. These relations are a
result of scaling properties of correlations functions and thermodynamics quantities near the critical
point and can be derived using a renormalization group. The renormalization group introduced by
Kenneth Wilson in the 70s provided a method for calculating the exponents and established that
in general they depend on the spatial dimension and the symmetry of the order parameter, but not
on the details of the interaction. This was already pointed out for the case of the van der Waals
model. Thus, we say there exist Universality classes, and all transitions in the same univerality class
have the same critical exponents. An easy approach to derive the relations among the exponents is
provided by the scaling hypothesis.

In order to make the derivations of the scaling hypothesis we focus for a while in the ferromagnetic
transition, but the relations obtained will be completely general. The scaling hypothesis states that
the Gibbs potential G (✏, h) is a generalized homogeneous function.9 Thus, this is equivalent to the

9A homogeneous function is a function with multilpicative scaling behaviour, i.e. there exist exponents a and b,

such that f

�
�

a

x, �

b

y

�
= �f (x, y) for any �.
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requirement that there exist two parameters y
✏

and y
h

, such that

f (✏, h) = b�df (by

✏✏, by

hh) (2.3.23)

for any value of the number b. This means that all the critical exponents can be expressed as a
function of y

t

and y
h

, and that if two critical exponents are provided, all others can be determined.

As the the number b can take any value, let us take it to be b = |✏|�1/y

✏ . Then 2.3.23 takes the form,

f (✏, h) = |✏|
d

y

✏ f
⇣

±1, |✏|�
y

h

y

✏ h
⌘

= |✏|
d

y

✏ �
⇣

|✏|�
y

h

y

✏ h
⌘

,

where we have defined �± (x) = f (±1, x). Now lets take a look at the magnetization. From the
Ising model we know that M ⇠ ✏� , thus

M ⌘ 1

k
B

T

@f

@h

�

�

�

�

h=0

(2.3.24)

=

1

k
B

T
|✏|

d�y

h

y

✏ �
0
⇣

|✏|�
y

h

y

✏ h
⌘

(2.3.25)

M ⇠ |✏|
d�y

h

y

✏ (2.3.26)

which implies

� =

d � y
h

y
✏

. (2.3.27)

On the other hand, M must be finite as ✏! 0 and thus �0
(x) = x

d

y

h

�1, because then

M ⇠ |✏|
d�y

h

y

✏

h
d�y

h

y

✏

|✏|
y

h

(d�y

h

)
y

h

y

✏

=) M ⇠ h
d�y

h

y

✏ . (2.3.28)

And using the fact that the critical isotherm is M ⇠ h1/�, we obtain

� =
y

h

d � y
h

. (2.3.29)

Looking at the specific heat (from the previous section we have C
V

⇠ |✏|�↵) we have

C
V

⌘ @2f

@✏2

�

�

�

�

h=0

⇠ |✏|
d

y

✏

�2
=) ↵ =

d

y
✏

� 2 (2.3.30)

In the same way, by using the usual definition for the susceptibility and noting that � ⇠ |✏|�� near
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the critical point we get

� =

1

k
B

T

@2f

@h2

�

�

�

�

h=0

⇠ |✏|
d�2y

h

y

✏

=) � =

2y
h

� d

y
✏

. (2.3.31)

By following a straightforward renormalization procedure we can also obtain the normalized pair
correlation function [55],

g (r) = b�2(d�y

h

)g
⇣r

b
, by

✏✏
⌘

(2.3.32)

g (r) = |✏|
2(d�y

h

)
y

✏

�

⇣

r/|✏|�1/y

✏

⌘

. (2.3.33)

As we saw earlier ⇠ ⇠ |✏|�⌫? , and finally we obtain

⌫? =

1

y
✏

. (2.3.34)

And to obtain the last relation we impose b = r and ✏ = 0 in 2.3.32,

g (r) = r�2(d�y

h

) ⇠ r�(d�2�⌘)
=) ⌘ = d + 2� 2y

✏

. (2.3.35)

Summarizing we have obtained 6 equations for the exponents,

↵ =

d

y
✏

� 2

� =

d � y
h

y
✏

� =

d � 2y
h

y
✏

(2.3.36)

� =

y
h

d � y
h

⌫? = 1/y
✏

⌘ = d + 2� 2y
✏

By solving this set of equations and canceling the terms y
✏

and y
h

, which do not have any physical
relevance, we obtain 4 relations among the exponents that are shown in Tab. 2.4.
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2.4 The pair distribution function and the Ornstein-Zernike theory

Relation Law

↵+ 2� + � = 2 Rushbrooke’s law

� = � (� � 1) Widom’s law

� = ⌫? (2� ⌘) Fisher’s law

⌫?d = 2� ↵ Josephson’s law

Table 2.4.: Summary of the scaling laws.

2.4. The pair distribution function and the Ornstein-Zernike theory

2.4.1. Pair distribution function

Let us first consider the density of a fluid confined in a volume V

n (~r) ⌘
N

X

i=1

� (~r � ~r
i

) (2.4.1)

at the point ~r in the fluid, where ~r
i

is the position of the i-th particle. We know that if the system
is uniform, then hn (~r)i =

⌦

N

V

↵

⌘ n, where

hn (~r)i = 1

Z

1
X

N=0

1

N !h3N

ˆ
dN~r dN~p n (~r) e��(U

N

�µN), (2.4.2)

and we use the notation dN~r = d~r1d~r2 . . . d~r
N

, and dN~p = d~p1d~p2 . . . d~p
N

. Besides, we use the
grand canonical ensemble, which partition function is given by

Z =

1
X

N=0

e�µN

N !h3N

ˆ
dN~r dN~p e��U

N

(~r
i

,~p

i

). (2.4.3)

Now, lets take a look at the quantity defined by

D

n (~r)n
⇣

~r
0
⌘E

=

1

Z

1
X

N=0

1

N !h3N

ˆ
dN~r dN~p n (~r)n

⇣

~r
0
⌘

e��(U
N

�µN), (2.4.4)
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whose properties gives us microscopic information of the system. Hence, we have that the quantity
D

n (~r)n
⇣

~r
0
⌘E

is proportional to the probability of finding a particle in ~r given that we know that

there is a particle in ~r 0 .

By defining

g(~r, ~r
0
) ⌘

D

n (~r)n(~r
0
)

E

n2
, (2.4.5)

which measures the correlations of the fluctuations of the density, we have that if the system is
spatially uniform, i.e. it is invariant under translations, then we can write g(~r, ~r

0
) = g(~r � ~r

0
) and

hn (~r)i = hn(~r 0
)i. Hence, the radial distribution function becomes

g
�

~r � ~r
0�

=

D

n (~r)n(~r
0
)

E

n2
. (2.4.6)

(b)(a)

Figure 2.4.1.: (a) Sketch of the radial distribution function for the hard-core model of fluid. (b) Sketch of
g (r) for the Lennard-Jones model (U (r) ⇠ ar�12 � br�6).

2.4.2. Compressibility and fluctuations

Lets take a look now at the fluctuations of the total number of particles N :

D

(N � hNi)2
E

=

⌦

N2
↵

�
⌦

N
↵2

(2.4.7)

= (k
b

T )

2

✓

@2
lnZ
@µ2

◆

T,V

and from thermodynamics we know that lnZ =

pV

kT

, and thus
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D

(N � hNi)2
E

= (k
b

T )

2

⇢

@2
(pV/kT )

@µ2

�

T,V

(2.4.8)

= k
b

TV

✓

@2p

@µ2

◆

T,V

.

But,
✓

@p

@µ

◆

T,V

=

⌦

N
↵

V
= n, (2.4.9)

then 2.4.8 becomes

D

(N � hNi)2
E

= k
b

TV

(

@
�⌦

N
↵

/V
�

@µ

)

T,V

(2.4.10)

= �hNi k
b

TV

V 2

✓

@V

@µ

◆

T,N

.

Where we have used
✓

@!

@y

◆

x

=

✓

@!

@y

◆

z

+

✓

@!

@z

◆

y

✓

@z

@y

◆

x

. (2.4.11)

By defining the isothermal compressibility

�
T

⌘ � 1

V

✓

@V

@p

◆

T,N

(2.4.12)

= � 1

hNi

✓

@V

@µ

◆

T,N

,

then 2.4.10 becomes
D

(N � hNi)2
E

= hNink
b

T�
T

. (2.4.13)

For an ideal gas, �0
T

= 1/nkT , hence

�
T

�0
T

=

D

(N � hNi)2
E

hNi . (2.4.14)
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On the other hand, lets notice that
D

(N � hNi)2
E

=

⌧ˆ
d~r
n

n (~r)�
D

n (~r)
Eo

ˆ
d~r

0
n

n(~r
0
)�

D

n(~r
0
)

Eo

�

=

ˆ
d~r
ˆ

d~r
0
g
⇣

~r � ~r
0
⌘

(2.4.15)

= V

ˆ
d~r

00
g
⇣

~r
00
⌘

Finally, 2.4.14
�

T

�0
T

=

1

n

ˆ
d~r G (~r) (2.4.16)

As is clearly visible in 2.4.16, a divergent behavior of �
T

near the critical point T
c

corresponds
mathematically to an increase in the range of the pair correlation function g(~r � ~r

0
). In the air,

the correlation length near T
c

becomes as large as the wavelength of light, and thus the density
inhomogeneities scatter light strongly; this phenomenon is known as critical opalescence which was
observed for the first time in 1869, but explained by A. Einstein in 1910 [57].

2.4.3. Ornstein-Zernike theory

Here we give a simple deduction of the Ornstein-Zernike relation, deduce first in 1914. In order to
do so, we must make use of the pair correlacion function g (~r) defined in the previous section. By
inserting 2.4.1 into 2.4.6 we get

g
⇣

~r � ~r
0
⌘

=

*

N

X

i=1

N

X

j=1

� (~r � ~r
i

) �
⇣

~r
0 � ~r

j

⌘

+

� n2. (2.4.17)

By spliting up g
�

~r�~r 0� into a term cooresponding to the correlation of one particle with itself, and
a second term corresponding to the correlation between different particles we have

g
⇣

~r � ~r
0
⌘

⌘ n�
⇣

~r � ~r
0
⌘

+ n2
�

⇣

~r � ~r
0
⌘

. (2.4.18)

We now introduce the direct correlation function C (~r) through its Fourier transform ˆC (~q), where

ˆC (~q) ⌘
ˆ

C (~r) e�i~q·~rd~r ⌘
ˆ

� (~q)

1 + nˆ� (~q)
, (2.4.19)

and ˆ

� (~q) is the Fourier transform of � (~r). An important property is that with this definition of
ˆC (~q) does not depend strongly on temperature. At high temperatures, ˆ

� (~q) is almost zero, then
from 2.4.19 we get ˆC (~q) ⇠ ˆ

� (~q). And near the critical point (T ! T
c

) we know from 2.4.18 that
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ˆ

� (~q = 0) must diverge, then ˆ

� (~q = 0) ! 1 =) ˆC (~q = 0) =

´
C (~r) d~r ⇠ 1/n. Accordingly, the

function C (~r) must remain relatively short-ranged even near the critical point.

By Fourier transforming 2.4.19 we obtain:

�

⇣

~r � ~r
0
⌘

= C
⇣

~r � ~r
0
⌘

+ n

ˆ
C
⇣

~r � ~r
00
⌘⇣

~r
00 � ~r

0
⌘

d~r
00
. (2.4.20)

This last equation is often referred to as the Ornstein-Zernike integral equation, and it may well
serve as a definition for C (~r).

If we define the static strucure factor S (~q) through the Fourier transform of g (~r),

S (~q) ⌘
ˆ

d~r e�i~q·~rg (~r) , (2.4.21)

by using 2.4.18 and 2.4.21 it is straightforward to show that

S (~q) = n + n2
ˆ

� (~q) . (2.4.22)

Thus,
1

n
S (~q) = 1 + nˆ� (~q) =

1

1� n ˆC (~q)
. (2.4.23)

By following the argument of Ornstein and Zernike, we assume that ˆC (~q) can be expanded around
~q = 0 for all temperatures right up to T

c

. For an isotropic system

ˆC (q) = ˆC (0) +

1
X

l=0

"
l

(n, T ) ql, (2.4.24)

0

1

2

3

4

5 10 15 20

Figure 2.4.2.: Typical behavior of the static structure factor S (q) in a Lennard-Jones fluid [58].
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where the coefficients "
l

(n, T ) are given by the Maclaurin’s expansion10,

"
l

(n, T ) =

1

l!

(

@l

ˆC (q)

@ql

)

q=0

/ il

l!

ˆ 1

�1
uldu

ˆ 1

0
rl+2C (r) dr. (2.4.25)

Now we need to make one final assumption; even though we know from its definition that C (r)
must be integrable at T = T

c

, there is no reason to think that all the coefficients "
l

(n.T ) must be
finite. For now, we just assume it so. Accordingly, by truncating the series we have

n

S (q)
= 1� n ˆC (q) = n

n

ˆC (0) + "2 (n, T ) q2
+O

�

q4
�

o

(2.4.26)

= "2 (n, T )

(

1� n ˆC (0)

"2 (n, T )

� nq2
+O

�

q4
�

)

(2.4.27)

= R2
�

2
1 + q2

+O
�

q4
��

, (2.4.28)

where R2 is proportional to the second moment of C (r),

R2 ⌘ �n"2 (n, T ) /
ˆ

r2C (r) d~r, (2.4.29)

and  is related to the zeroth moment,

2
1 ⌘ 1� C (0)

R2
. (2.4.30)

Therefore we find that S (q) at O
�

q2
�

follows a Lorentzian,

S (q)

n
=

R�2

2
1 + q2

. (2.4.31)

As a small remark, from 2.4.16 we have

�
T

�0
T

=

1

n

ˆ
g (~r) d~r

(2.4.32)

=

1

n
S (~q = 0) .

Hence we obtain the relation
S (q = 0) = n2k

b

T�
T

. (2.4.33)

10

"

l

(n, T ) is zero for odds values of l, which is clear from the first integral in 2.4.25, that comes from an angular
integration.
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2.4 The pair distribution function and the Ornstein-Zernike theory

2.4.4. Failure of Ornstein-Zernike theory and Fisher’s solution

By inverting 2.4.21 and using the d-dimensional Fourier transform we have

g (~r) =

ˆ
S (~q) e�~q·~rd~q, (2.4.34)

where the element of volume is d~q = qd�1dq(sin ✓1)
d�2 d✓1d⌦

d�1, q = |~q| and d⌦
d�1 is the solid

angle in d � 1 dimensions. Hence, for an isotropic system 2.4.34 becomes

g (r) =

ˆ
S (q)

⇢ˆ
⇡

0
eiqr cos ✓

(sin ✓1)
d�2 d✓1

�

d⌦
d�1q

d�1dq (2.4.35)

g (r) /
ˆ
⇡

0
S (q)

J
d/2�1 (qr)

(qr)d/2�1
qd�1dq. (2.4.36)

Where we have used the Bessel function of the first kind J
l

(x)11. It was Fisher in 1962 who made
a detailed analysis of this last expression, obtaining:

• Fixed T > T
c

, but let r ! 1,

g (r) / e�r

r(d�1)/2

✓

1 +O
✓

d � 3

r

◆◆

. (2.4.37)

• Fixed r, but let T ! T+
c

,

g (r) /

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(ln r) e�r

�

1 +O
�

1
lnr

��

d = 2

e

�r

r

d = 3

e

�r

r

d�2 (1 +O (r)) d > 3

(2.4.38)

We see that for d = 3 the higher order terms vanish identically in 2.4.37. Hence both cases presented
give the same answer, g (r) / e�r/r.

Accordingly, from 2.4.38 for r ! 1 we have

g (r)
�

�

�

T!T

+
c

/

8

>

<

>

:

ln r d = 2

1
r

d�2 d � 3.

(2.4.39)

Therefore, the Ornstein-Zernike theory predicts that in d = 2 the correlation increases with distance,
which is clearly a non-physical result. In order to settle this issue, Fisher came up with the solution
11It is possible to define this function by means of a Taylor expansion: J

↵

(x) =
P1

m=0
(�1)m

m!�(m+↵+1)

�
x

2

�2m+↵.
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Chapter 2 Phase transitions and critical phenomena

by assuming that in the hydrodynamic regime (d/⇠ . kd ⌧ 1) S (q) behaves as

S (q)
�

�

�

T!T

+
c

/ q⌘�2. (2.4.40)

Thus introducing this new exponent ⌘, which is known by the name anomalous exponent. Conse-
quently, by inverting 2.4.40 we obtain for large r,

g (r)
�

�

�

T!T

+
c

/ r�(d�2+⌘). (2.4.41)
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36 Critical phenomena and scaling

Fig. 2.3. The structure factors of the density and energy fluctuations vs kσ for a 2D Lenard-Jones
fluid close to the gas–liquid critical point. The long-wavelength parts (kσ . 2) represent the critical
fluctuations. A line with a slope of −7/4 = −(2 − η) is included as a guide.

2.1.1 Critical exponents and correlation functions

The critical behavior of Ising systems is characterized by the two relevant field variables,
the magnetic field h and the reduced temperature,

τ = (T − Tc)/Tc. (2.1.1)

The asymptotic critical region is represented by τ < Gi for τ > 0 and h = 0, where Gi
is a (system-dependent) characteristic reduced temperature, called the Ginzburg number
(see Section 4.1). The corrections to the asymptotic critical behavior can be discussed
generally [7], but they will be neglected hereafter. At h = 0 and both for τ > 0 and τ < 0,
the magnetic susceptibility and the specific heats behave as

χ ∼ |τ |−γ , CH ∼ CM ∼ |τ |−α. (2.1.2)

In 2D, the specific-heat singularity is logarithmic (∝ ln |τ |) or α = 0 [8]. The average
energy density m (measured from the critical value) is weakly singular at h = 0 as

m = 〈m̂〉 ∼ |τ |1−α, (2.1.3)

Figure 2.4.3.: Anomalous exponent. The structure factors of the density and energy fluctuations as a
function of kd for a 2D Lenard-Jones fluid close to the gas–liquid critical point. The long-wavelength parts
(kd  1) represent the critical fluctuations. A line with a slope of ⌘� 2 = �7/4 is included as a guide [56].

2.5. Phase transition dynamics

As explained earlier in this chapter, we know there are 6 critical exponents: ↵, �, �, �, ⌘ and ⌫?,
which definition is given in Tab. 2.3. Nevertheless, not all of these exponents are independent of each
other, but there are some simple relations among them (see Tab. 2.4). Therefore, as pointed out
earlier, there exist only 2 independent exponents. A fundamental property of the second-order phase
transitions is their so called universality (see Sec. 2.3.3); i.e. the fact that systems very different from
each other may share the same set of critical exponents. This indicates that the critical behavior does
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2.5 Phase transition dynamics

not depend on microscopic details of the intreactions involved, but only on some general features
of the degrees of freedom, such as the symmetry of the order parameter, the dimensionality, and
whether it is a conserved quantity or not. Therefore, we can assign all system to classes, each with
its own set of exponents.

It was in the early 70s that Hohenberg and Halperin first introduced the theory of dynamical critical
phenomena to study relaxation in equilibrium states [49, 59]. In order to describe the dynamical
properties of a system near its critical point, some aditional exponents had to be introduced. For
example, the critical characteristic time of the order parameter  is related to the correlation length
by means of the dynamical critical exponent z,

⌧ ⇠ ⇠z, (2.5.1)

that is, by defining the exponent ⌫k through the relation ⌧ / "�⌫k , then an equivalent definition of
z is

z ⌘
⌫k
⌫?

. (2.5.2)

For several years it was believed that there were only 3 independent exponents (2 static exponents),
but this was proven wrong. Actually, recent developments have introduced 3 new dynamical expo-
nents (see [60] and references therein), but its study is beyond the scope of this thesis, and we’ll just
focus on z. In the next section we give a brief and summarized review of some of the features of the
dynamical theory of phase transitions.

2.5.1. Ginzburg-Landau free energy

First, we start our analysis by assuming that the phase transition is described by an n-component
real order parameter  

↵

(~x, t). It is also assumed that the variations of  
↵

(~x, t) have wave-vectors
smaller than a specified cutoff ⇤. The free energy is given by

H/T =

ˆ 
1

2

r0 
2
(x) +

1

2

|r |2 + u0

4!

 4
(x)

�

ddr +
F0(T )

T
, (2.5.3)

where

 2 ⌘
n

X

↵=1

 2
↵

, |r |2 =

n

X

↵=1

|r 
↵

|2 , (2.5.4)

and r0, u0 and F0 are regular functions of the temperature T . The time-dependent Ginzburg-Landau
model is chosen in such a way that, in abscence of noise, the system relaxes towards a minimum of
energy; in other words the system reaches the equilibrium probability function

P [ ] =
1

Z exp (�H[ ]/T ) , (2.5.5)

where
Z =

ˆ
d{ } exp (�H[ ]/T ) , (2.5.6)
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Chapter 2 Phase transitions and critical phenomena

is the partition function. Accordingly, this leads to the Markovian equations of motion

@ 
↵

@t
(x, t) = ��

T

�H
� 

↵

(x, t)
+ �h

↵

(x, t) + ⇣
↵

(x, t), (2.5.7)

where h
↵

(x, t) is an arbitrary external field, and ⇣
↵

(x, t) is a Gaussian white noise with correlations

h⇣
↵

i = 0

(2.5.8)
⌦

⇣
↵

(x, t)⇣
↵

0
(x0, t0)

↵

= 2��(x � x0
)�(t � t0)�

↵↵

0 .

The first term in 2.5.7 causes  
↵

to relax towards equilibrium, whereas the noise ⇣
↵

ensures the
fluctuation-dissipation theorem is satisfied [49].

The properties of this model at low frequencies depend crucially on the function �.

• Case A: Non-conserved order parameter
By doing � = ��0r2, then

´
 (x, t)ddx is independent of time, and hence  is a conserved

quantity. Moreover, any perturbation of  will relax very slowly if the wavelength of the
disturbance is large.

• Case B: Conserved order parameter
If � is constant �0, then the temporal derivative of

´
 (x, t)ddx is in general finite, thus at

any T > T
c

, a fluctuation of  relaxes to zero at a finite rate.

Now, it is clear to see that after applying the equation of motion 2.5.7, in both cases A and B,
the energy dentity ✏

 

is not conserved12. One way to satisfy energy conservation is achieved by
introducing the energy as a separate field ✏ (x) coupled to the order parameter  . In the literarure
this is known as the C-model and will be explained later [49, 60, 61, 62].

In order to study how the model behaves, lets consider the simplest case (Gaussian model) u0 = 0

and h
↵

(x, t) = 0. From 2.5.7 we can write the equations of motion in Fourier space:

@ 
k

@t
= ��

k

(k2
+ r0) 

k

+ ⇣
k

, (2.5.9)

where
h⇣

k

(t)⇣
k

0⇤
(t0)i = 2�

k

�(k � k0
)�(t � t0). (2.5.10)

By taking the average of 2.5.9 we get

@h 
k

i
@t

= ��
k

(k2
+ r0)h 

k

i. (2.5.11)

Now, two possibilities arise:
12It is straightforward to show that the energy density has the form ✏

 

(x) = c1 (T ) � 1
2r

(1)
0  

2(x), where r

(1)
0 is a

constant and c1 is defined by c1 ⌘ �T

2 (F0/T )0.
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2.5 Phase transition dynamics

• A-model (non-conserved order parameter)
In this case we have �

k

= �0, and thus is clear to see from 2.5.11 that the characteristic decay
time for the mode k is given by

⌧
k

⇠ 1

�0 (k2
+ r0)

. (2.5.12)

Hence, in the hydrodynamic limit (k ⇠ ⇠�1), ⌧
k

⇠ ⇠2. Therefore, the dynamical exponent in
the A-model is z = 2.

• B-model (conserved order parameter)
Here �

k

= �0k
2, and we obtain for this case,

⌧
k

⇠ 1

�0k2
(k2

+ r0)
. (2.5.13)

Accordingly, in the hydrodynamic limit ⌧
k

⇠ ⇠4, and thus z = 4.

As stated above, the simplest model that takes into account conserved densities is the C-model, which
comprises a static coupling between a non-conserved order parameter  

n

and a scalar conserved
density m. In the abscene of any mode coupling the dynamics of m is purely diffusive, whereas the
dynamics of the order parameter is purely relaxational. Thence, the dynamical equations are

@ ~ 

@t
(x, t) = �� �H

� ~ (x, t)
+ ⌘

 

(x, t), (2.5.14)

@m

@t
(x, t) = ��r2 �H

�m(x, t)
+ ⌘

m

(x, t), (2.5.15)

where,
⌦

⌘
 

i

(x, t)⌘
 

j

(x0, t0)
↵

= 2��(x � x0
)�(t � t0)�

ij

, (2.5.16)
⌦

⌘
m

(x, t)⌘
m

0
(x0, t0)

↵

= �2�r2�(x � x0
)�(t � t0). (2.5.17)

Here �, known as the kinetic exponent, and � known as the Onsager exponent, are the relaxation
rate and the difussive constant of  and m respectively. In this model, the free energy is given by

H =

ˆ ⇢
1

2

r̄0 
2
+

1

2

|r |2 + ū0

4!

 4
(x) +

1

2

a
m

m2
+

1

2

�m 2 � h
m

m

�

ddr. (2.5.18)

With this, the partition function is

Z =

ˆ
d{ }d{m} exp (�H[ , m]/T ) . (2.5.19)

Like in the previous models, Z is the functional integral of all  
n

and m whose variations have
wavenumbers smaller than some cutoff values ⇤ and ⇤

m

respectively. Given that the energy density
itself m represents a noncritical variable entering the Hamiltonian only quadratically, it can be
integrated out exactly in the partition function 2.5.19. Thus,

´
H[ ,m]d{m} ! H[ ], and defining
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the function f( ) = 1
2 r̄0 

2
+

1
2 |r |

2
+

ū0
4!  

4 we obtain
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H[ ] =

ˆ 
1
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✓
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�h

m
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◆

 2
+
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|r |2 + 1
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✓
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m

◆

 4

�
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Hence, by defining r0 and u0 in such a way that

r0 ⌘ r̄0 +
�h

m

a
m

,

(2.5.25)

u0 ⌘ ū0 �
3�2

a
m

.

Therefore, this choice of parameters merely shifts the coupling between the fields but implies that
all the static properties derived from 2.5.18 are equivalent to the corresponding static properties of
a system with just one order parameter  

n

. Nevertheless, this coupling may modify the dynamical
critical behavior. By using techniques of renormalization theory it is possible the conclude that
there exist two different regimes for this C-model [59, 61, 63, 64]. If we have a one-component order
paramter (n = 1), one finds what is called “strong scaling”, i.e.

z
 

= z
m

= 2 +

↵

⌫?
, (2.5.26)

where ↵ is the exponent related to the specific heat, and ⌫? is the critical exponent of the correlation
length ⇠. The second regime corresponds to the n-component order parameter (n � 2), in which the
Langevin equations for  

n

and m are effectively decoupled, leading to a purely diffusive behavior
for the conserved field m (z

m

= 2), whereas the order parameter is described by the A-model with
a dynamical exponent given by

z
 

= 2 + c⌘, (2.5.27)

where ⌘ is the anomalous exponent already defined and c is a constant defined by c = 6 ln (4/3) �
1 +O (✏ = 4� d) [61, 62].
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Part II.

Experimental methods





3. Physical setup

« No amount of experimentation can ever prove me right; a single

experiment can prove me wrong. »

Albert Einstein

In this chapter we describe the main features of the experimental setup. In Sec. 3.1 we give details of
the basic setup used in the first part of the research, whereas in Sec. 3.2 we deal with a more advanced
setup that tried to solve some of the problems that the first one possesed. Both experimental setups
share many features and turned out to give very reliable results. Actually, the main difference have
to do with the way the experimentalist has to perform the levelling of the cell, and accordingly with
the how long the cell stays leveled. Also, some issues concerning the ITO layer of the glass plates
are discussed, along with reproducibility issues that the system presents under some circumstances.

3.1. Basic setup

In this research we used two different configurations that in the end turned out to be fundamental
for our results. The granular system is composed of N ⇠ 10

4 stainless steel spherical particles of
mass m = 4.45 · 10�3 g. In order to study the different possible transitions, first- or second-order
type, two configurations are used: L

z

= 1.83d ± 0.02d and N = 9878, or L
z

= 1.94d ± 0.02d and
N = 11504. We call these 2 configurations (C1) and (C2) respectively. The quasi-two-dimensional
box has lateral dimensions L

x

= L
y

⌘ L = 100d, with d = 1 mm. The box consists of two 10 mm
thick ITO coated glass plates to dissipate electrostatic charges, separated by a square frame. For
configuration 1 (C1), L

z

is fixed by using a steel frame; for configuration 2 (C2), a thin mylar sheet
frame is added. The box is fixed to a base by four posts placed at each corner of the cell. The
base supports an array of high intensity light emitting diodes. An accelerometer, fixed to the base,
allows the measurement of the imposed forcing amplitude. The main advantage of this setup is that
particles are illuminated from below. They are then visualized as dark circles on a white background.
This allows to detect particles in dense clusters, even when particles are partially mounted on top
of each other.

The whole setup is forced sinusoidally with an electro-mechanical shaker, with displacement z (t) =
A sin (!t). Top view images are obtained with a high-speed camera (MotionPro X3) at 10 or 500
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Chapter 3 Physical setup

fps, depending on the particular quantity we wish to measure. For static quantities we measure at
10 fps given that we want uncorrelated data to take averages, however we acquired the images at 500
fps when we need to track some quantities in time. The images acquired have a typical resolution
of 1020 ⇥ 1020 pix2, thus we obtain particles of 10 pix diameter approximately. Particle positions
are determined at subpixel accuracy using an algorithm implemented on C++ & CUDA, and will
be explained in Chapter 4. Results have been obtained by fixing the particle number N , cell height
L

z

, and driving frequency f = !/2⇡ = 1/T = 80 Hz. The dimensionless acceleration � = A!2/g is
varied in the range 1–6.

The sinusoidal signal used to induce the motion of the electromechanical shaker was generated by a
waveform generator (Agilent 3322A). This devise provides a signal with a maximum aplitude of 10
V. The current is measured by means of an ammeter connected in series to the system. Thus, we
control the maximum current the shaker can bear, which is approximately 10 A. The signal is then
sent to a sound amplifier (SKPRO MaxG-1000) which supplies the necessary power for the proper
functioning of the shaker.

The acceleration is measured by means of a piezoelectric accelerometer (B&K 4393) attached at the
bottom of the cell, which sends the acceleration signal to a charge amplifier (B&K 2635), which in
turn sends the amplified signal to a lock-in amplifier (Standford Research SR830). By using a GPIB
(General Purpose Interface Bus), the lock-in amplifier is connected to a computer that saves the
acceleration data and where they are analyzed using the sofware LabView. This sofware computes
the value of the acceleration h�i with the corresponding standard deviation, which is about 0.02%
of h�i. A diagram of the setup is shown in Fig. 3.1.1.

1

2

10
9

8

7
6

5
43

Figure 3.1.1.: Diagram of the experimental setup. (1) Cell; (2) Electromechanical shaker; (3) Acceleremeter;
(4) Amplifier; (5) Wave generator; (6) Charge amplifier; (7) Osciloscope; (8) Lock-in amplifier; (9) High-
speed camera; (10) Computer.

The surface coverage is defined by the filling fraction � = N⇡d2/4L2. For the two different configu-
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3.1 Basic setup

rations, �
C1 = 0.776 and �

C2 = 0.904. In addition to �, a different surface coverage parameter that
is usually used in this system is ⇢ = N/N

max

, where N
max

= 2L2/
�

p
3d2
�

= 11547 is the maximum
number of particles that fit in a single hexagonally close-packed layer at rest on the bottom plate.
A sketch of the configuration which defines N

max

is presented in Fig. 3.1.2.

CAPÍTULO 3. MONTAJE EXPERIMENTAL

d

d
60º

3 d
2

L x

yL

Figura 3.8: Esquema de una monocapa: A la izquierda, se muestra la forma de una
monocapa hexagonal que cubre la superficie completa de un plato. La celda tiene
longitudes L

x

y L
y

. A la derecha, se muestran las distancias para granos de diámetro
d, que permiten definir la densidad � = 1.

La celda es iluminada por su parte inferior con un sistema de leds de alta

luminosidad. Esta forma de iluminación genera imágenes en las cuales las part́ıculas

se observan como puntos negros sobre un fondo blanco. De esta manera, es posible

obtener los centros de los granos (sección 3.3) al interior de la celda. Los granos

utilizados, son esferas de acero de diámetro d = 1[mm]. Una vision superior del

sistema se muestra en la figura 3.4.

A continuación se presentan los dos diferentes montajes utilizados durante

el desarrollo de esta tesis. Se muestra en detalle su configuración y se validan

experimentalmente los resultados obtenidos a partir de ellos.

22

Figure 3.1.2.: Scheme of the hexagonal monolayer that defines the maximum filling density ⇢ = 1.

!(b)

(4)

Figure 3.1.3.: Basic experimental setup. (a) Top view of the system. (b) Side view. (1) high-speed camera,
(2) cell, (3) shaker, (4) accelerometer.

Because � = ⇡⇢/
�

2

p
3

�

, then a single hexagonal close-packed layer corresponds to � ⇡ 0.907. Thus,
for the two configurations, ⇢ = 0.856 and ⇢ = 0.997 respectively. It should be noticed that the
system is not strictly 2D. At the high accelerations explored, particles do overlap partially, so care
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must be taken when comparing our filling fractions with those used in real 2D systems. Another
possible relevant parameter is the volume filling fraction �3D

= N4⇡r3/
�

3L2L
z

�

= �2d/ (3L
z

). For
the two configurations, �3D

= 0.283 and �3D

= 0.311 respectively, indicating that the system is far
from the jamming regime. A sketch of the experimental setup is shown in Fig. 3.1.3.

An important issue is the homogeneity of L
z

through the experimental cell. This height is mea-
sured at a given horizontal position with an optical microscope with the following procedure: (i)
both interior surfaces of each glass plate are marked with a permanent thin pen with short lines,
perpendicular between them (forming a cross when projected); (ii) one surface is focused on the
microscope; (iii) the microscope stage is moved vertically until the other surface is focused; (iv) the
distance L

z

is computed by counting the number of marks on the stage’s vertical control knob (100
µm per turn, 1 µm per division). Following this procedure, L

z

was measured at nine horizontal
positions, placed in a regular grid, three times for each position. Within experimental errors the
glass plates are indeed parallel, where for C1 the height turns out to be L

z

= 1.83d±0.02d, whereas
for C2 is L

z

= 1.94d ± 0.02d. The error bars reported before correspond to the standard deviation
of all 27 measurements for each configuration. The measurements for configuration C1 are shown in
Tab. 3.1.

A B C D E F G H I

first measurement 1.84 1.89 1.80 1.82 1.80 1.77 1.80 1.81 1.84

second measurement 1.83 1.83 1.85 1.83 1.87 1.77 1.82 1.88 1.87

third measurement 1.85 1.85 1.86 1.81 1.82 1.81 1.81 1.82 1.90

Table 3.1.: Measurements of the height L
z

(in mm) of the cell in 9 different points for configuration C1.
The position of the points were the measurements were performed is shown in Fig. 3.1.4.

A B C

D E F

G H I

Figure 3.1.4.: Scheme depicting where the 9 measurements of the height’s cell were made. The points in
the borders are placed approximately at 1.5 cm from the edges.

A second and very important experimental consideration is to minimize electrostatic effects. We
have used two sets of ITO (indium tin oxide) coated glass plates. One set of resistivity 7.5 µ⌦m
and thickness 25 nm (Diamond Coatings Limited), whereas the second set 750 nm thickness, same
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resistivity. This ITO coating works very well for many hours of experimental runs. Eventually, it
does however get damaged by particle collisions. All data presented in this thesis correspond to
reproducible runs where no important damage was noticeable in the ITO coating. In fact, a surface
damaged ITO coating is manifested in important changes of the measured quantities with respect
to those obtained for a new pair of ITO coated glass plates. We conjecture that damage occurs
because of erosion of the ITO coating, which in turn affects particle interactions by an increase of
electrostatic forces and contamination of the system by dust formed from the ITO coating. In order
to characterize the damage due to the particle colisions, some surface images were obtained with an
atomic force microscope (AFM). We believe it was because we were looking in a scale too small for
some imperfections to be noticeable. In order to insure reproducibility, glass plates were changed
periodically during the time duration of all the experimental runs, and all parts of the experiments
are cleaned in an ultrasonic bath before mounting the experimental cell again, including the particles.
Finally, for fixed geometry, particle density and vibration frequency we perform vibration amplitude
ramps, from � & 1 in the liquid phase, increasing A going through the solid-liquid transition that
is reached at � ⌘ �

c

. In order to verify the existence of hysteresis, for some runs we also perform
decreasing amplitude ramps starting slightly above �

c

.

It is important to note that during the research we have used two sets of ITO coated glass plates.
Most of the results presented in the next chapters were obtained with the thin coating, unless stated
otherwise. After we run out of these glass plates we had to use the thick ITO coating by keeping
constant all the other parameters (the definitions of C1 and C2 do not vary). It turned out to be of
great importance in the analysis because we could actually verify whether the transition observed was
still present once we change microscopic quantities, such as the restitution and friction coefficients.
For the new glass plates we showed that solid-liquid transition takes places at a different acceleration
�

c

, given that we changed dissipation in the system.

A third important issue is the mechanical leveling of the whole setup. For the initial experiments a
simple mechanical leveling stage was used. The leveling procedure was quite good and it was verified
through the isotropy of S(~k) and the Fourier components

⌦

⇢̂(~k)
↵

for each experimental run. When
this quantities are plotted versus k

x

and k
y

, there is no preferential direction. For example S (k
x

, k
y

)

shows the characteristic symmetric circular annular shape at kd ⇡ 2⇡ and also at the position of the
pre-peak. In order to ensure a proper level for longer times we designed and implemented another
experimental setup that allowed us to improve this issue.

3.2. Improved setup

The new setup intended to solve the issue that after approximately 24 hours of experimental runs
the level of the whole system tended to be lost. Consequently a new setup was developed. It was
decided that a proper solution would be to put an air-bearing system in place, mounted on an optical
table. In this new configuration we use a an optical table with a hole in the center, through which
the air-bearing system is placed. The air bearing system is mechanically connected through the
shaker by means of a 30 cm long threaded rod. For proper functioning, the air-bearing system is
connected to an air-compressor, supplying a pressure of 60 psi. The scheme of this new setup is
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Chapter 3 Physical setup

Figure 3.1.5.: Images obtained from the AFM at two different scales (50 µm and 20 µm) for a piece of glass
that has not been very used (approximately 15 hours). Notice some holes and impurities produced by the
collisions.

shown in Fig. 3.2.1. Given that the air-bearing has a cylindrical shape and eventually it can rotate,
the system has an extra degree of freedom. Hence, in order to avoid this, we placed four posts, each
one of them attached to a ball of teflon (6mm diameter), in contact in the corners the cell. The
balls of teflon were chosen due to the small friction with steel, thus, without affecting the vertical
motion.

The leveling is carefully done using the same procedure as before. The results with and with out
the air-bearing and optical table system are the same, the main difference is that in the latter case
the leveling is achieved more easily and stays constant for much longer times.

One disadvantage here is that with all the parts added between the cell and the shaker, the system
is much heavier. Thus, we have reduced the maximal acceleration the shaker can provide. For the
actual capabilities of the shaker we use (VTS-100), the maximal force is 100 lbf ⇡ 444.8N, hence
the maximum acceleration peak-to-peak is approximately

�

max

=

100 lbf
5, 5 kg

⇡ 8g, (3.2.1)

which is fine for the typical accelarations explored in our research, but it is rather limited if we
intend to increase the size of the cell.
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3.2 Improved setup

Figure 3.2.1.: Final experimental setup showing the cell mounted on the optical table. In this setup, the cell
is mechanically connected to the shaker by means of a threaded rod. The air-bearing system is connected
to an air-compressor, supplying a pressure of 60 psi.

Figure 3.2.2.: Actual pictures of the setup. Left: Side view showing the air-bearing system attached to
the optical table, along with the four poles used to avoid the rotation of the cell. Right: Threaded rod
conecting the shaker to the air-bearing (not shown).
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4. Particle and interface detection

« The function of an expert is not to be more right than other

people, but to be wrong for more sophisticated reasons. »

David Butler

In this chapter we explain in some detail the basic principles of the algortihm of particle detection as
well as the interface detection. The particle detection used is a least-square fit algorithm and, and as
was pointed out earlier, it is a modification of an open source Matlab code [65]. Some improvements
added to the original code are also discussed, along with some comments on the computing times
required and the upgrades in this regard. We also discuss the details of the detection of the interface
once the system has approached the transition, when both liquid and solid phases are present. We
explain in some detail the different criteria that can be used to detect the interface and also present
the coase-graining procedure which is used to describe it.

4.1. Particle detection

Our array of ilumination, of high intensity light emitting diodes, allows to know with sub-pixel
accuracy the center of almost all the particles in the system, missing about ⇠ 10 out of 10000. This
is achieved by running a code with input parameters the particle diameter, D, and a parameter !
which determines how abrupt is the change between the particle and the white background. The
parameter ! is intimately related to the focus of the image, thus a very sharp image would have a
value ! ⇡ 1 pix, while an image that is not so well focused would have ! > 1 pix. The main idea of
the algortihm is that we can describe an ideal particle by the function

I
p

(~x;D,!) =



1� tanh

✓

|~x| � D/2

!

◆�

/2. (4.1.1)

Fig. 4.1.1 shows this function and an image of the particle obtained from this function.

Then, we find the center of the particles using a least-square fit. Thus, we define the function �2,

�2
(~x0;D,!) ⌘

ˆ
W (~x � ~x0) [I (~x)� I

p

(~x � ~x0;D,!)]2 d~x, (4.1.2)
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Figure 4.1.1.: Particle detection. Left: Function which defines the intensity of an ideal particle. Right:
Image of an ideal particle.

where W (~x � ~x0) is a weight function. The domain of integration is over the area of the experimental
image. With all of this, we can obtain the function �2, which minima correspond to the position of
the center of the particles. So the process of finding the particles is equivalent to finding all of the
minima of chi-squared. We can use convolution to do this easily. By expanding 4.1.2 we get

�2
= I2 ⌦ W � 2I ⌦ (WI

p

) +

⌦

WI2
p

↵

, (4.1.3)

where

f ⌦ g = [f ⌦ g] (~x0) =

ˆ
f (~x) g (~x � ~x0) d~x, (4.1.4)

and

hfi = 1⌦ f. (4.1.5)

For the images we have, we use W (~x � ~x0) = I
p

, then 4.1.3 becomes

�2
= I2 ⌦ I

p

� 2I ⌦ I2
p

+

⌦

I3
p

↵

(4.1.6)

Hence, by computing the convolutions we get the function �2 throughout the image. Later, we
invert the function �2 and establish that every maximum of 1/�2 whose intensity is larger than its
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Figure 4.1.2.: From left to right: Real, calculated and �2 shown for a region of an entire image of our
system. The images are normalized, so that the intensities are approximately 1 inside, and 0 outside of
the particles.

8 neighbors and some threshold would be consider a particle. Thus far, we obtain the center of the
particles with pixel resolution.

In order to obtain sub-pixel accuracy for the particles poistion, we define a new function �2 that is
now dependent on the particles center,

�2
(~x

n

;D,!) ⌘
ˆ

[I (~x)� I
c

(~x � ~x
n

)]

2 d~x, (4.1.7)

where I (~x) is the image to be tracked and I
c

(~x � ~x
n

) is defined by

I
c

(~x � ~x
n

) ⌘
X

n

W
n

(~x) I
p

(~x � ~x0;D,!) . (4.1.8)

W
n

(~x) takes the value 1 if ~x is inside the Voronoi area of particle n, and 0 otherwise. By minimazing
this function with respect to the positions ~x

n

, we get the particles center with sub-pixel resolution.

@�2
(~x⇤

n

;D,!)

@~x
n

= 0 (4.1.9)

Similarly, we then find the parmeters D and ! according to the real image, instead of the approx-
imated values. In this regard, we now minimize the new function �2 with respect to D⇤ and !⇤.
With this pair of new values we repeat the process of finding the particles center with sub-pixel
accuracy, and finally obtain the position of the particles for each image.

With this procedure, for our actual images, the algorithm works quite well in the fluidized regime
(loosing 10-20 particles of 10000); but when the system presents both fluid and solid phases the
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Chapter 4 Particle and interface detection

rutine tended to miss many particles in dense zones, in particular where the top layer particles are
placed in the valleys that the bottom particles form. Accordingly, a final step to the algorithm was
added. To find these missed particles, the new step in the routine looks at the difference image, i.e.
the image constructed from the “found particles” substracted from the real image. In this difference
image, particles that were missed will appear as dots on a white background (i.e. the difference
image will have “particles” where the difference between the real and constructed image is high).
We then run all the previous routine until the minimization of D and ! on this difference image,
and appends the found particle locations to the original position array. This process is repeated
until either no more new particles are found (usually in one or two iterations) or 7 iterations have
been achieved (an empirically stable upper bound).

Figure 4.1.3.: Particle detection. Test image showing the particle detection. Green crosses correspond to
particles in the liquid phase, whereas red crosses correspond to particles in the solid phase.

In Fig. 4.1.3 we present a zoomed image showing the interface between the liquid and solid phases
illustrating the position of the particles found through the algorithm explained above. After estab-
lishing some criterion (that will be explained in detail in Chapter 6) we can also distinguish whether
the particle is in the “solid phase” or in the “liquid phase”. When the system presents the dense solid
cluster, the routine provides very good results, though not perfect. In average, for each image we
miss about 0.1-0.2% of the total amount of particles.

In the beginnings of the experiment the original Matlab code was translated to C language by Mauri-
cio Cerda due mainly that the C code allowed much more faster calculations, but we still required
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4.2 Bond-orientational order parameter and interface detection

almost 2 weeks to compute the positions of one-day of experimental runs (typical experimental runs
consist of at least 30 video acquisitions, one for each A, of about 3300 images each. Hence, the
complete number of images to analyze for a single experimental run is about 105.) and therefore an-
other improvement was done. Thanks to Juan Silva we could implement a modified C++ & CUDA
code that allows faster computation for large number of particles and also the parallelization of the
particle detection image analysis using a cluster of computers, reducing computation time to about
100 images per minute [66, 67].

4.2. Bond-orientational order parameter and interface detection

In the quasi-2D geometry the solid phase consists of two square interlaced layers instead of the
single hexagonal layer that is characteristic of 2D systems [9]. These interlaced square lattices, when
projected in 2D, result also in a square lattice. If particles in the solid phase are permanently in
contact such that grains are close packed, then the unit cell per layer should have an area d ⇥ d,
implying that the projected lattice should have a Voronoi area equal to d2/2. Two local parameters
can be used to analyze the system. For each particle we can compute its Voronoi cell area, A

v

,
which is inversely proportional to the local density, and also the 4-fold local order parameter, Q4,
that is defined as [53]

Qj

4 =

1

N
j

N

j

X

s=1

e4i↵

j

s . (4.2.1)

Here, N
j

is the number of nearest neighbors of particle j and ↵j

s

is the angle between the neighbor
s of particle j and the x axis. For a particle in a square lattice, |Qj

4| = 1 and the complex phase
measures the square lattice orientation respect to the x axis. For computing Qj

4, the information
of nearest neighbors is obtained by Voronoi tessellation. However, the square lattice is particularly
unstable; for a perfect square lattice, a small amount of noise in particle positions would induce
many particles to finish with more that four nearest neighbors in the Voronoi construction. This
results in pairs of neighbors that share within their Voroinoi cells one side of length much shorter
than the one in a perfect square lattice. As a consequence, even if the local structure is almost square
based, |Qj

4| would be considerably lower than 1. Thus, an additional condition is used: neighbors of
a given particle that share a Voronoi edge whose length is shorter than d/4 are discarded as nearest
neighbors in the computation of Qj

4. This ensures that |Qj

4| ⇡ 1 in those dense clusters that visually
present a square symmetry.

Fig. 4.2.2 presents the probability distribution function (PDF) of normalized Voronoi areas 2A
v

/d2

and local order parameter |Q4| obtained from 3000 images, for which the system is indeed phase
separated. The Voronoi area, A

v

, is normalized by d2/2, the corresponding Voronoi area for closed
packed two square interlaced layers. Fig. 4.2.3 shows the marginal PDF, defined as

PDF(A
v

) =

ˆ
PDF(|Q4|, Av

)dA
v

, (4.2.2)

PDF(|Q4|) =

ˆ
PDF(|Q4|, Av

)d|Q4|. (4.2.3)
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Chapter 4 Particle and interface detection

Figure 4.2.1.: Typical Voronoi tesselation for a zoomed image.

From the joint and marginal PDFs (Fig. 4.2.2 and Fig. 4.2.3 respectiveley) we can state that there
is clearly a superposition of three distributions: a wide distribution related to the liquid phase,
around |Q4| ⇡ 0.2 and 2A

v

/d2 ⇡ 2; another more localized and stronger peak related to the solid
phase, close to |Q4| = 1 and 2A

v

/d2 ⇡ 1.3; and a third small peak of more ordered particles in
a dense phase, with |Q4| ⇡ 0.55 and 2A

v

/d2 ⇡ 1.4, which correspond to small density and order
fluctuations in the system. In general, the normalized Voronoi area of particles in the solid phase
is larger than 1, implying that particles are slightly separated (in average). A separation distance
of 0.15d is enough to shift this peak from 1 to 1.3. For classifying particles in the solid or liquid
phase three simple criteria can be established. The first one is to use only A

v

, defining a critical
value Ac

v

(2Ac

v

/d2 ⇡ 1.5) such that particles with A
v

lower (larger) than this value are labelled as
solid (liquid) particles. A second criterion is to use only local order. If |Q4| > Qc

4 (|Q4| < Qc

4), then
the particle is in the solid (liquid) phase. A third possibility is to use both quantities, such that if
A

v

6 Ac

v

and |Q4| > Qc

4 are both satisfied, then the particle is considered to be in the solid phase.
We have verified that our results are not sensitive to which condition we use (see Sec. 6.5), and for
simplicity we choose the second condition, with |Qc

4| = 0.7. However, the first criterion also detects
particles that are less ordered but dense, adding a thin liquid-like layer, with intermediate order,
around the solid cluster.

As it it will be clear in Chapter 5 we conclude that Q4 is a more appropriate order parameter to
characterize the liquid to solid transition, compared to the local density. Indeed the correlations of
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4.2 Bond-orientational order parameter and interface detection

Figure 4.2.2.: Probability density function of normalized Voronoi areas 2A
v

/d2 and local order parameter
|Q

4

| obtained from 3000 images (about 2.8 ⇥ 10

6 pairs of A
v

and |Q
4

| values), for which the system is
indeed phase separated. The criterion for solid-liquid identification relies on the valley obtained around
|Q

4

| = 0.7 that is almost independent of A
v

. The color code indicated in the vertical bar is the logarithm
(base 10) of the PDF. Contour plots are shown for log

10

[PDF(|Q
4

|,A
v

)] = �2, �1, �0.5, 0, 0.1, 0.2, 0.3,
0.5, 1.
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Figure 4.2.3.: Projected probability density functions of normalized Voronoi areas 2A
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/d2 (a) and local
order parameter |Q
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| (b) obtained from 3000 images. The minimum obtained for |Q
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| = 0.7 is chosen as
criterion for solid-liquid identification.
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Figure 4.2.4.: Map of |Qj

4

| in real space. Particles are classified in the solid or liquid phase using the criterion
defined in the text. The solid line with dots shows the interface detection. The dashed line corresponds
to the average interface obtained from 7000 images acquired at 500 fps. The solid white circle shows the
center of mass of particles in the largest solid cluster.

Q4 showed critical divergencies at the critical point, while those of the local density were insensitive
to the transition.

Fig. 4.2.4 shows a typical example of the solid-liquid interface detection. For each image, particles
that are in a solid or liquid phase are labeled using the previously defined criterion. Also for each
image, particles belonging to the same cluster are identified, as well as the largest cluster in each
image. This cluster of course corresponds to the largest, most stable, solid cluster that is present
when the driving acceleration exceeds the critical value. Then, for each image the center of mass of
particles that belong to the largest solid cluster is determined. Using all the centers of masses from
a stack of images, the global center of mass is determined.

The next step then corresponds to detect those particles that are at the solid-liquid interface of the
largest solid cluster for each image. This is done by an angle coarse-graining procedure. From the
position of the global center of mass, the position of the solid particle that is the most distant from
this center of mass within an angle�✓ is determined. This is done from ✓1 = 0

� until ✓
N

= 360

���✓,
following ✓

i

= ✓1 + (i� 1)�✓. Thus, for each ✓
i

, there is a pair of coordinates (xb

i

, yb

i

) of the particle
that is in the largest solid cluster and that is the most distant to the global center of mass, thus
at the solid-liquid boundary. For simplicity, we describe each of these particles by the coordinates
(✓b

i

, rb

i

), which are polar coordinates of each particle respect to the reference system fixed at the
global center of mass. The final step is to interpolate these coordinates to a set where the angles are
equally spaced, such that ✓int

i

= ✓1+(i�1)�✓/2, and we end up with the set of coordinates (✓int
i

, rint
i

).
It is this set of coordinates that is used for the Fourier analysis presented in this study. Fig. 4.2.4
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also shows that in general the interface is rather smooth, except for some “jumps”. These jumps are
artificial, as they arise because we force the interface to be described by a single-evaluated function
rint
i

= rint
i

(✓int
i

), which is not always the case. Because of the adopted procedure for the interface
determination, we necessarily end with a few of these jumps for each image. However, theses jumps
do not contribute to the low wavenumber modes that turn out to be relevant for this study. This is
explicitly shown in Sec. 6.6, where we discuss the validity of the small slope approximation.
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5. Static analysis and critical phenomena

« It is a capital mistake to theorize before one has data. Insen-

sibly one begins to twist facts to suit theories instead of theories

to suit facts. »

Sherlock Holmes

We present some of the results of the study on density and order fluctuations in the vicinity of
the solid-liquid- like transition that occurs in a vibrated quasi-two-dimensional granular system.
The two-dimensional projected static and dynamic correlation functions are studied. We show that
density fluctuations, characterized through the structure factor, increase in size and intensity as
the transition is approached, but they do not change significantly at the transition itself. The
dense, metastable clusters, which present square symmetry, also increase their local order in the
vicinity of the transition. This is characterized through the bond-orientational order parameter Q4,
which in Fourier space shows an Ornstein-Zernike-like behavior. Depending on the filling density
and vertical height, the transition can be of first- or second- order type. In the latter case, the
associated correlation length ⇠4, the relaxation time ⌧4, the zero k limit of Q4 fluctuations (static
susceptibility), the pair correlation function of Q4, and the amplitude of the order parameter obey
critical power laws, with saturations due to finite size effects. Their respective critical exponents
are ⌫? = 1, ⌫k = 2, � = 1, ⌘ = 0.67 and � = 1/2, whereas the dynamical critical exponent
z = ⌫k/⌫? = 2. These results are consistent with model C of dynamical critical phenomena, valid
for a nonconserved critical order parameter (bond-orientation order) coupled to a conserved field
(density). We also discuss at the end of the chapter the universality of the exponents, and whether
the concepts formulated in Sec. 2.3.3 can be applied.

5.1. Overview

Recently, several granular systems that undergo interesting phase transitions have been reported
[8, 68, 9, 69, 70, 71, 72, 73, 6, 10, 74]. One particular system is a vibrated fluidized granular monolayer
composed of N hard spheres of diameter d confined in a shallow cell of height L

z

< 2d (typically
L

z

⇡ 1.7d � 1.9d). Under proper conditions, solid and liquid phases can coexist at mechanical
equilibrium [68, 9, 6, 74]. The solid clusters can present different order symmetries, like square or
hexagonal, depending on forcing, geometrical, and particle parameters. It has been reported that
for L

z

⇡ 1.8d � 1.9d and for a large range of filling densities, the most compact structure in quasi
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Chapter 5 Static analysis and critical phenomena

two dimensions is made of two layers of square symmetry. The more compact hexagonal structure
formed by two layers needs a larger vertical gap or larger densities [9]. The critical amplitude
above which there is coexistence decreases with increasing density. Many of the previous works on
granular phase transitions focus on the similarities or comparisons of such nonequilibrium systems
with equilibrium phase transitions [68, 9, 6, 10, 74, 75]. For example, the equilibrium KTHNY
theory has proven useful in the two dimensional (2D) melting of granular monolayers [10]. Here we
focus on a dynamical critical phase transition in a nonequilibrium quasi-2D granular system. We
present an experimental study of the solid-liquid phase transition in a vibrated fluidized granular
monolayer. The solid phase consists of two square interlaced layers, stabilized by the collisions with
the top and bottom walls and the confining pressure exerted by the liquid phase [8, 9]. We focus on
density and bond-orientation order fluctuations in the vicinity of the transition. We show that the
transition can be continuous or abrupt depending on the cell’s height and filling density. Density
fluctuations show a crossover behavior at the transition, whereas the order shows strong fluctuations.
In the continuous case several magnitudes show critical-like behavior making it possible to measure
five independent critical exponents. These results are consistent with model C of dynamical critical
phenomena [49], valid for a nonconserved critical order parameter (bond- orientation order) coupled
to a conserved field (density).

0

0

2(a) (b)

Figure 5.1.1.: (a) 3D rendering of instantaneous particle positions. A closeup of the interface between both
the liquid (blue) and solid phases (red and white). The two layers of particles forming pyramyds of square
base are clearly visible. (b) Phase diagram for the granular system, here A = 0.15d and f = 75 Hz [9, 6].

5.2. Static structure function

All the results presented in this chapter were obtained from videos of approximately 3300 images
taken at 10 fps using the thin ITO coated glass plates of 25 nm thickness, unless otherwise stated.

Particle positions ~r
j

(t) in the plane (x, y) are determined for each time t. Experimentally, there is
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no access to the z coordinate. Thus, the 2D microscopic density field Fourier components are

b⇢(~k, t) =

ˆ
d2r ei~r·~k⇢(~r, t) =

N

X

j=1

ei

~

k·~r
j

(t). (5.2.1)

The static structure factor S(~k) measures the intensity of density fluctuations in Fourier space:

S(~k) =

h|b⇢(~k, t)� hb⇢(~k, t)i|2i
N

, (5.2.2)

where h i denotes time averaging. In general h⇢(~k)i 6= 0, due to inhomogeneities induced by boundary
conditions. The wave vectors are computed from ~k = ⇡(n

x

ı̂+n
y

|̂)/L, where n
x

, n
y

2 N. In the liquid
phase (� < �

c

) we have verified that the system is isotropic, S(~k) = S(k), where |~k| ⌘ k. In the
phase separated regime this quantity is not well defined as density fluctuations should in principle
behave differently in each phase. However, as it is not easy to determine �

c

precisely, we use this
quantity as a possible relevant measurement in the vicinity of the solid-liquid phase separation, even
above the critical amplitude.
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Figure 5.2.1.: S(k) in the large wavelength limit for four different accelerations, � = 2.13, 2.74, 3.18 and
4.79 (C2). Open symbols correspond to raw S(k) data, whereas solid symbols correspond to averages using
windows k 2 [nk

min

, (n + 1)k
min

] for integer n > 1, where k
min

= ⇡/L. Error bars correspond to standard
deviations. The inset shows S(k) for a larger range of k for � = 3.64.

Fig. 5.2.1(a) presents S(k) obtained for C2 (the qualitative features are the same for both con-
figurations and their differences will pointed out explicitly later). The main figure presents the
long-wavelength range, kd 6 1, for four � below �

c

. The inset presents S(k) for a larger range of k.
It has the usual form expected for liquids with short range order, but with a pre-peak located in the
range kd = 0.1� 0.3. The associated density fluctuations are indeed visible by simple visual inspec-
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Figure 5.2.2.: Top: Pre-peak maximum S
max

⌘ S(k = k⇤
), which occurs at k = k⇤. Bottom: Associated

length scale ⇠ = ⇡/k⇤ as functions of � for C1 (left) and C2 (right).

tion. The pre-peak is characterized by its maximum value at k⇤, Smax ⌘ S(k⇤
), and the associated

characteristic length scale ⇠ = ⇡/k⇤. These quantities are plotted in Fig. 5.2.2(b-c) as functions of �
for increasing amplitude ramps and for both configurations. They both increase as the transition is
approached. The difference between configurations is mainly manifested in the shape of each curve,
being their final values (near the transition) very similar, Smax ⇡ 0.5 � 0.8 and ⇠/d ⇡ 20 � 30.
By observing visually the persistence of the solid clusters we conclude that for C1 the transition is
located at �

c

⇡ 2. For C2 it is more difficult to determine with the same precision but it is found to
be �

c

⇠ 5. However, neither Smax or ⇠ show evident changes at these values. Density fluctuations
do not show critical behavior, but they are needed to create regions of high order. Similar density
fluctuations have been observed in amorphous materials [76, 77], which have been consistently re-
lated to the existence of medium-range-crystalline-order. In our case, medium range order will be
analyzed with an appropriate bond-orientational order parameter, which presents critical behavior.
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5.3 Bond-orientational order parameter

5.3. Bond-orientational order parameter

In the vicinity of the transition, fluctuations of high density present the same square symmetry as the
solid phase. In the quasi-2D geometry the solid phase consists of two square interlaced layers instead
of the hexagonal layer that is characteristic of 2D systems [9]. The local order can be characterized
through a fourfold bond-orientational order parameter. This is still valid in our quasi-2D geometry
because the interlaced two-layer square lattices (with unit cell length d in each plane) result also in
a square lattice when projected in two dimensions, with unit cell length

p
2d/2 when the grains are

close packed. The fourfold bond-orientational order parameter per particle is defined as1

Qj

4 =

1

N
j

N

j

X

s=1

e4i↵

j

s , (5.3.1)

where N
j

is the number of nearest neighbors of particle j and ↵j

s

is the angle between the neighbor
s of particle j and the x axis (see Fig. 5.3.1).

↵j

s

Figure 5.3.1.: Definition of the angle ↵j

s

.

In Fig. 5.3.2 we present representative |Qj

4| maps for two accelerations (� = 2.00, and 2.13) for
configuration C1. For � = 2.00 < �

C1
c

, solid ordered clusters are not observed. For � = 2.13 > �

C1
c

a large single solid cluster is observed, which presents some defects but is, comparatively, very stable.
Single solid clusters are also present for intermediate � (for example, for � = 2.09 and 2.04) but they
nucleate or migrate (depending on the acceleration ramp direction) at one of the cell borders, resting
there for long times (not shown here for clarity). For this configuration, the large solid cluster that
is present above the transition is extremely sensitive to small imperfections in the horizontal leveling
of the cell. It is only for � not so close to �C1

c

and for long times that the solid, stable, large cluster
remains in the vicinity of the cell’s center.

As a comparison, we present in Fig. 5.3.3 representative |Qj

4| maps for four accelerations (� = 2.74,
4.18, 5.10 and 5.42) for configuration C2. Well below the transition, solid clusters are very unstable
and small. As � is increased, solid clusters grow, become more ordered and persistent. For � ⇡ �

c

1A similar expression can be written for a sixfold bond- orientational parameter. We have verified that for the
current system and forcing parameters its related global average and Fourier representation do not vary.
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Figure 5.3.2.: Absolute value of 4-fold bond-orientational order parameter Qj

4

in real space for C1, � = 2.00
(a), and 2.13 (b). Color code is described in the legend of each figure. Particles in the solid (liquid) phase
correspond to solid (open) symbols. Only a section of the whole area is shown (0.6L

x

⇥ 0.6L
y

).

solid clusters are still quite unstable, but with longer life times as � is increased further. However,
the main solid cluster remain much less stable that its counterpart in configuration C1.

The corresponding global average and Fourier components of Qj

4 are

h|Q4|i =
*

1

N

N

X

j=1

�

�

�

Qj

4

�

�

�

+

, ˆQ4

⇣

~k, t
⌘

=

N

X

j=1

Qj

4e
i

~

k·~r
j

(t). (5.3.2)

The average h|Q4|i measures the fraction of particles in the ordered phase. This quantity is presented
in Fig. 5.3.4 as function of � for both configurations. Results for increasing (decreasing) ramps are
represented by open (solid) symbols. Two ramp rates are also reported: slow ramps, for which a
quasistatic state has been reached, and fast ramps, for which it has not. The difference between both
configurations is evidenced in the jump of about 10% that is measured for h|Q4|i at the transition
for C1.

Moreover, the position of this jump depends on the ramp rate: for the slow rate the increasing and
decreasing ramp jumps coincide, whereas for faster ramps the increasing (decreasing) ramp jump
occurs at higher (lower) �. We use the slow ramp data to obtain a measurement of the critical
acceleration, �C1

c

= 2.01 ± 0.03. By contrast, the results obtained for C2 show first a linear trend
for low and a clear deviation around � ⇡ 5.1, with no measurable jump. In fact, the deviation
from the linear behavior obeys a supercritical-like law. For � > 5.2 we have fitted the data with
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Figure 5.3.3.: Absolute value of 4-fold bond-orientational order parameter Qj

4

in real space for C2 and
increasing acceleration, � = 2.74 (a), 4.18 (b), 5.10 (c) and 5.42 (d). Color code is described in the legend
of each figure. Particles in the solid (liquid) phase correspond to solid (open) symbols. Only a section of
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).

the function �Q4 = h|Q4|i � QL

4 = c (�� �
c

)

� , where QL

4 is the extrapolation of the linear trend
observed for lower . We obtain c = 0.029± 0.002, �C2

c

= 5.12± 0.01, and the exponent of the order
parameter amplitude is � = 1/2. Within experimental error, the decreasing ramps also coincide
with the increasing ramps in this configuration.

77



Chapter 5 Static analysis and critical phenomena

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

0.3

0.35

0.4

|Q
4|

 

 

2 3 4 5 6
0.4

0.42

0.44

0.46

0.48

K

|Q
4|

(b)

(a)

Figure 5.3.4.: Average global 4-fold bond-orientational order parameter h|Q
4

|i versus � for C1 (a) and C2
(b). Open (solid) symbols represent data obtained for increasing (decreasing) � ramps, with the following
rates: ��/�t ⇡ 0.005 min�1 (4, H) and ��/�t ⇡ 0.02 min�1 (�, •). Continuous lines in (b) correspond
to fits of the linear trend QL

4

= a� + b for 2.5 < � < 5, with a = 0.011± 0.001 and b = 0.380± 0.002, and
a supercritical-like behavior h|Q

4

|i = QL

4

+ c(�� �
c

)

� , with � = 1/2, observed for � & 5.

The curve �Q4 versus � shown in Fig. 5.3.4(b) corresponds to a slowly increasing � ramp. Before
verifying the reproducibility of this result for a slowly decreasing � ramp we run out of the 25 nm
thick ITO coated glass plates. In order to show that the transition is indeed of second order type
in the C2 configuration, we present in Fig. 5.3.5(a) the comparison of h|Q4|i versus � for the thin
and thicker ITO coated plates (25 and 750 nm respectively). For the latter, both increasing and
decreasing � ramps are presented, showing good reproducibility. This figure indeed demonstrates
that the C2 configuration presents a second order type transition, continuous and with no hysteresis.

The qualitative behavior is the same for both ITO coatings. h|Q4|i has a linear dependence on �
below the transition. For both cases there is a clear deviation from this linear trend above a given
threshold. The critical acceleration for the thicker ITO coating case is lower (�

c

⇡ 4.5) than the
one of the thin ITO coating case (�

c

⇡ 5.1), and also the initial linear slope below the transition
is slightly larger for the thick ITO coating case. The deviation from the linear trend observed for
� < �

c

is defined as �Q4 = h|Q4|i�QL

4 , where QL

4 is defined as the extrapolation of the linear trend
over the complete range of �. Fig. 5.3.5(b) presents �Q4 versus � for both cases. The continuous
lines show the supercritical fits �Q4 = c

p
�� �

c

computed for � > �

c

. Finally, as additional
support for the supercritical law, in Fig. 5.3.6 we present �Q2

4 (a) and �Q4 (b) versus the reduced
acceleration " = (� � �

c

)/�
c

, in linear and log-log scales respectively. The fact that the constants
c of the supercritical fits are different is manifested here from the difference between both slopes.
We conjecture that both the differences in �

c

and c between the ITO coatings reflects the difference
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Figure 5.3.5.: (a) h|Q
4

|i versus � for the two ITO coatings: 25 nm thickness (increasing � ramp: 4) and
750 nm thickness (increasing � ramp: �, decreasing � ramp: •). Continuous lines show the linear trend
fit for 2.5 < � < �

c

and the supercritical deviation for � > �

c

. (b) �Q
4

= h|Q
4

|i � QL

4

versus � for
each ITO coating thickness (25 nm: 4, 750 nm: � for both increasing and decreasing � ramps), where
QL

4

= a�+ b is obtained from the linear trend below �
c

. For the thin ITO coating, a = 0.011± 0.001 and
b = 0.380 ± 0.002. For the thick ITO coating, a = 0.016 ± 0.001 and b = 0.359 ± 0.002. The continuous
lines show the supercritical fits �Q

4

= c
p
�� �

c

computed for � > �

c

. The adjusted parameters are
c = 0.029± 0.002 and �

c

= 5.12± 0.01 (25 nm) and c = 0.024± 0.002 and �
c

= 4.48± 0.03 (750 nm). In
sake of clarity just one representative error bar is shown for each case.
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Figure 5.3.6.: (a) �Q2

4

versus " = (���
c

)/�
c

for both ITO coatings. Error bars are not shown for clarity.
The continuous lines correspond to the fitted supercritical laws �Q

4

= c
p
"�

c

. (b) �Q
4

versus " in log-log
scale for both ITO coatings. The continuous line shows the supercritical law ⇠ p

" for comparison. In
sake of clarity just one representative error bar is shown for each case. In both figures ITO coatings are:
25 nm (4) and 750 nm (� for both increasing and decreasing � ramps).

of dissipation parameters that control del particle-wall collisions. The fact that �
c

is lower for the
thicker ITO coating would imply that both friction and normal restitution coefficients are lower
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than those of the thin ITO coated glass plates. A more thorough analysis concerning this issue is
presented in Sec. 5.6.

Consequently, we may say as a summary of this section, the transition for configuration C1 is abrupt,
of first-order type, whereas for C2 it is continuous, of second-order type.

5.4. 4-fold bond-orientational structure factor S
4

(k)

Local order can also be analyzed through its fluctuations in Fourier space by means of the 4-fold
bond-orientational structure factor

S4(
~k) =

h| bQ4(
~k, t)� h bQ4(

~k, t)i|2i
N

. (5.4.1)

As shown in both configurations and for � < �

c

, S4(k) shows an Ornstein-Zernike-like behavior in
the limit kd ⌧ 1,

S4(k) ⇡
S4(0)

1 + (⇠4k)2
, (5.4.2)

where ⇠4 and S4(0) are the 4-fold bond-orientational correlation length and static susceptibility
respectively.
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Figure 5.4.1.: 4-fold bond-orientational structure factor S
4

(k) for several � and for C1 (a) and C2 (b).
The vertical axis is in log

10

scale. Curves obtained for � < �

c

(� > �

c

) are in blue (red). For both
configurations and for � < �

c

, all curves show an Ornstein-Zernike-like behavior in the limit kd ⌧ 1,
S
4

(k) ⇡ S
4

(0)/[1+(⇠
4

k)2]. An example is shown in the inset of (b). For � > �

c

, there are clear differences
between C1 and C2: for the former oscillations are observed, whereas for the latter curves tend to collapse
together.
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Fig. 5.4.1 presents S4(k) for several � for both configurations C1 (a) and C2 (b) in the low wavenum-
ber limit (kd < 1). The acceleration increases in the direction of the arrow. We remind that S(k) and
S4(k) are not well defined at the solid-liquid coexistence. In particular they are not longer isotropic
at the experimental time scale of measurements and fluctuations are different in each phase. Thus,
care must be taken when analyzing this data above �

c

.

An example of the Ornstein-Zernike-like behavior is shown in the inset of Fig. 5.4.1(b) for kd < 0.15,
by rewriting 1/S4(k) ⇡ (1 + (⇠4k)

2
)/S4(0). The continuous curve shows the linear fit between

1/S4(k) and (kd)2, from which ⇠4/d and S4(0) are measured. S4(k) obtained for C1 shows a weak
� dependence. Above the transition it deviates strongly from Ornstein-Zernike law, showing oscil-
lations which are reminiscent of the Fourier transform of a step function. For the C2 configuration
the situation is quite different: the dependence on � is much stronger and curves tend to collapse
together for � & �

c

.
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Figure 5.4.2.: S
4

(0) and ⇠
4

/d versus " for C1 showing an abrupt change of behavior.

For configuration C1, the 4-fold bond-orientational susceptibility S4(0) and normalized correlation
length ⇠4/d vary weakly as the transition is approached, as seen in Fig. 5.4.2. Defining the reduced
acceleration " = (�

c

� �)/�
c

, we obtain that for 0.005 < " < 0.4, S4(0) and ⇠4/d vary in the ranges
0.25� 0.5 and 0.5� 0.7 respectively. The fact that S4(0) < 1 and ⇠4/d < 1 implies that fluctuations
of the global 4-fold bond-orientational order parameter are weak and that there is practically no
order correlation below the first-order-type transition. For C2 the situation is markedly different.
Fig. 5.4.3 shows that S4(0) and ⇠4/d vary strongly as the transition is approached. In the limit "! 0

they both saturate, presumably due to the system’s finite size. For " . 3 ⇥ 10

�2 they saturate to
S4(0) ⇡ 20 and ⇠4/d ⇡ 10 respectively. This figure also demonstrates that both quantities follow
the critical-like behavior,

S4(0) = ã"�� , ⇠4/d =

˜b"�⌫? , (5.4.3)

with the critical exponents � = 1 and ⌫? = 1. The critical divergence with " makes it necessary to
fit the �

c

separately for each case. A detailed study of this is given in Sec. 5.7.

The adjusted critical accelerations are �C2
c

= 5.09 ± 0.07 and �C2
c

= 5.24±0.08 respectively. Within
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Figure 5.4.3.: S

4

(0) and ⇠
4

/d versus " for C2. The fitted critical accelerations for each quantity are �C2

c

=

5.09± 0.07, �C2

c

= 5.24± 0.08 respectively

experimental errors both critical accelerations are very consistent, as well as with the value obtained
from the supercritical behavior of �Q4 (�C2

c

= 5.12 ± 0.01). Notice that now these are obtained
from fits of measured quantities below the transition, whereas before, it was obtained with a fit of
the order parameter above the transition.

In the hydrodynamic regime, d/⇠4 . kd ⌧ 1, S4(k) is expected to present a power law decay

S4(k) ⇡
C1

k(2�⌘) , (5.4.4)

where ⌘ is the critical exponent related to the decay of the pair correlation function g(r) ⇠ rD�2+⌘,
with D the dimensionality. Fig. 5.4.4(a) presents S4(k) in log-log scale for various �. Indeed, as the
transition is approached, curves tend to collapse for shorter wavelengths. They are clearly different
for larger wavelengths as they converge to different static susceptibilities S4(0). In principle, ⌘ must
be obtained for the � as close as possible to �

c

. As the latter is not known with sufficient precision,
we present in figures Fig. 5.4.4(b), Fig. 5.4.4(c) and Fig. 5.4.4(d) S4(k) for three accelerations close
to �

c

(� = 5.04, 5.10 and 5.12). For the highest �, it is not even certain that it is below the
transition or not. The measured critical exponents are ⌘ = 0.70 ± 0.01, ⌘ = 0.67 ± 0.01 and
⌘ = 0.59± 0.01 respectively. Thus, ⌘ varies rather strongly depending on �

c

��. Performing power
law fits constraining k to the range d/⇠4 6 kd 6 1 does not change much these results either:
⌘ = 0.69 ± 0.01, ⌘ = 0.67 ± 0.01 and ⌘ = 0.59 ± 0.01 for � = 5.04, 5.10 and 5.12 respectively. In
conclusion, there is clearly a hydrodynamic regime for which the power behavior is valid, even for
a wider range than predicted. However, the measurement of ⌘ needs to be done extremely close to
�

c

. With the present data, we can state that ⌘ = 2/3 is a good estimation.
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Figure 5.4.4.: (a) S
4

(k) in log-log scale for several � for C2. Acceleration increases in the direction of
the long arrow, with values � = 4.59, 4.71, 4.84, 5.04 and 5.12. We recall that �

c

⇡ 5.1. The short
arrows indicate the position of d/⇠

4

for each � (from right to left for increasing �). As expected, the
hydrodynamic regime becomes wider as the transition is approached and S

4

(k) obeys a power law. (b), (c)
and (d) present results for the three highest accelerations such that � . �

c

, which are plotted separately
for clarity (� = 5.04, 5.10 and 5.12 respectively, the second is not shown in (a) for clarity). Continuous
lines show the power law fits S

4

(k) = C1/k(2�⌘), obtained for wave vectors in the range 0.1 6 kd 6 1.
The respective critical exponents are ⌘ = 0.70± 0.01 (b), ⌘ = 0.67± 0.01 (c) and ⌘ = 0.59± 0.01 (d).

5.5. Dynamic 4-fold bond-orientational structure factor F
4

(k, ⌧) and
critical dynamics

As a final evidence of the observed criticality we now turn to the characterization of the relaxation
time of the metastable solid clusters. The relaxation time is computed through the two-time bond-
orientational correlation function

F4(
~k, ⌧) =

h� bQ4(
~k, t + ⌧)� bQ4(

~k, t)⇤i
N

, (5.5.1)
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where ⇤ stands for the complex conjugate and � bQ4(
~k, t) = bQ4(

~k, t)� h bQ4(
~k, t)i.

Fig. 5.5.1 presents the dynamic 4-fold bond-orientational structure factor F4(k, ⌧) for � = 4.8 and
for several wavelengths kd in semi-log scale. Indeed, this correlation function shows an exponential
decay, F4(k, ⌧) ⇡ F4(k, 0) exp(�⌧/⌧4), from which the relaxation time ⌧4 is measured.

Here, we also obtain a critical-like behavior, which is presented in Fig. 5.5.2(a). The best fit is
obtained for ⌧4/T = c̃"�⌫|| with ⌫|| = 2, for which the adjusted critical acceleration is �C2

c

=

5.12 ± 0.07. The relaxation time also seems to saturate for small ", which occurs at smaller "
for lower k, that is for fluctuations of larger size. Fig. 5.5.2(b) confirms that ⌧4 ⇠ (⇠4)

z, with a
dynamical exponent z = ⌫||/⌫? = 2. As usual, there is critical slowing down in the dynamics. As
a consequence, close to the critical point, stationary states are obtained after a long relaxation has
taken place. Taken that into account, all � ramps for C2 are slow. Also, averages are taken for long
times.

Five critical exponents have been obtained from the analysis of the order parameter. In the standard
notation of critical phenomena these are: � = 1/2, � = 1, ⌘ = 0.67, ⌫? = 1, and z = 2. In
equilibrium, the scaling hypothesis predicts relations among the critical exponents. It is worth
mentioning that the relation obtained in Sec. 2.3.3, � = (2�⌘)⌫?, is not satisfied; while ↵+2�+� = 2

and ⌫?D = 2 � ↵ (D = 2 is the spatial dimension) can be satisfied simultaneously if ↵ = 0. This
exponent, associated in equilibrium to the specific heat divergence, has no interpretation out of
equilibrium. The order parameter in the present case is a non-conserved complex scalar field. Its
dynamics, however, is not expected to be autonomous even close to the critical point as density
fluctuations are needed to create the ordered phase. Although it has been shown that the transition
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Figure 5.5.1.: Dynamic 4-fold bond-orientational structure factor F
4

(k, ⌧) for several kd and � = 4.8, which
shows an exponential decay. Only data above de noise threshold for this correlation function is shown for
each kd.
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Figure 5.5.2.: (a) ⌧
4

/T versus " for C2, for three different low k. The continuous line shows the critical
power law fit, with exponent ⌫|| = 2 for ⌧

4

. The fitted critical acceleration is �C2

c

= 5.12±0.07. (b) ⌧
4

versus
⇠
4

for " > 0.03. The continuous line shows a fit ⌧
4

⇠ (⇠
4

)

z, with the dynamical exponent z = ⌫||/⌫? = 2.

dynamics is mediated by waves [8], momentum density decays fast due to friction. Therefore, the
most appropriate description in the theory of dynamical critical phenomena is model C, in which
a non-conserved order parameter is coupled to a conserved non-critical density [49]. In this case
[49, 62] and in extensions to non-equilibrium dynamics [78] the dynamical exponent is predicted to
be z = 2 + ↵/⌫?, consistent with the measurements if ↵ = 0.

5.6. Universality

In this section we study whether the exponents presented above, in which the thin ITO coated glass
plates (25 nm thickness) were used, are actually universal. That is, what happens if we change one
or some of the microscopic parameters of our system? Do the critical exponents will turn out to
be the same? As was already shown in Fig. 5.3.5, the order parameter h|Q4|i that describes the
transition studied actually presents a critical behavior, and whose critical exponent is � = 1/2. This
was shown to be so for each ITO coating thickness (25 nm and 750 nm). The critical acceleration
obtained for both sets of glasses are �

c

= 5.12± 0.01 and �
c

= 4.48± 0.03 respectively.

By looking at the 4-fold bond-orientational structure factor S4 (k) we find that it also follows a
Lorentzian described by the Ornstein-Zernike theory, from which we can extract the susceptibilty
S (0) and the correlation length ⇠4. These two quantities are shown in Fig. 5.6.1.

Hence, with the new set of glass plates we observe basically the same phenomenon. That is, both
S (0) and ⇠4 follow critical laws, and due to finite size effects, they saturate as the transition is
approached. Accordingly, by doing the same kind of analysis explained earlier, it is possible to
obtain the critical exponents as well as the critical acceleration �

c

from each quantity independently.
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Figure 5.6.1.: S (0) (�) and ⇠
4

(⇤) versus " = (�

c

� �) /�
c

for configuration C2 using the ITO coated glass
plates of 750 nm thickness. The fitted critical accelerations are �

c

= 4.43 ± 0.06 and �
c

= 4.58 ± 0.06
respectively.

The critical exponents turn out to be � = 1 and ⌫? = 1, i.e. within experimental error, they are
the same to the ones obtained using the thin glass plates. The adjusted critical accelerations are
�

c

= 4.43±0.06 and �
c

= 4.58±0.06, obtained from S (0) and ⇠4 respectively. Within experimental
errors both critical accelerations are very consistent, as well as with the value obtained from the
supercritical behavior of �Q4 (�

c

= 4.48± 0.03). As noticed in Sec. 5.4, these critical accelerations
are obtained from fits of measured quantities below the transition, whereas before, it was obtained
with a fit of the order parameter above the transition.

By following the same procedure used in the previous section, it is possible to compute the dynamic
4-fold bond-orientational structure factor F4 (k, ⌧). Similarly to the results shown for the first set of
glass plates, this correlation function shows an exponential decay, F4 (k, ⌧) ⇡ F4 (k, 0) exp (�t/⌧4),
from which the relaxation time ⌧4 is measured. This time is shown in Fig. 5.6.2 for three different
low wavenumbers k.

Here, we also obtain a critical-like behavior, in which the critical exponent is ⌫k = 2 and the critical
acceleration is �

c

= 4.46 ± 0.03. Once again, the value obtained for �
c

is in good agreement with
the values obtained from S (0), ⇠4 and �Q4. Moreover, ⌧4 also shows a saturation for small ", which
occurs at smaller " for lower k, that is for fluctuations of larger size.

Finally, by looking at the anomalous exponent ⌘ we need to analyze the behavior of S4 (k) in the
hydrodynamic regime when the system is very close to the critical point. Given that we can’t know
for sure where the critical point is, we study the behavior of S4 (k) at three different � . �

c

.

As it is clear from Fig. 5.6.3, S4 (k) shows a power law decay in a hydrodynamic regime even wider
than predicted. The measured critical exponents for the three accelerations close to �

c

(� = 4.29,
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/T versus " = (�
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for three different low k using the ITO coated glass plates of
750 nm thickness. The fitted acceleration is �

c

= 4.46± 0.03. The value obtained for the critical exponent
is ⌫k = 2, which implies that z = ⌫k/⌫? = 2.

4.41 and 4.52) are ⌘ = 0.87±0.01, ⌘ = 0.67±0.01 and ⌘ = 0.63±0.01 respectively. Hence, with the
existing data we can say that ⌘ = 2/3 is a good approximation. Moreover, it takes the same value
obtained for the previous set of plates.

As a conclusion of this section, we can say that by changing the microscopic properties of our system
(such as the friction coefficient) we in fact change the critical point (�before

c

⇡ 5.1, �after

c

⇡ 4.5).
Nevertheless all the five exponents independently measured turn out to be the same. In other words,
even though our system is out of equilibrium, it actually presents the property of universality.

5.7. Appendix: Determination of fittings parameters and error
analysis

It has been shown that the solid-liquid-type transition for configuration C2 is continuous. It is
straightforward to demonstrate that the susceptibility S4(0), correlation length ⇠4 and relaxation
time ⌧4 follow diverging critical-like behaviors

S4(0) = ã "�� ,
⇠4
d

=

˜b "�⌫? ,
⌧4
T

= c̃ "�⌫|| , (5.7.1)

where " = (�

c

� �)/�
c

is the reduced acceleration and �
c

is a critical acceleration. However, the
precise determination of �

c

, and therefore the corresponding power law exponents, is not simple.
Initial fits give �

c

in the range 5.1� 5.6 for the thin plates or 4.4� 4.9 for the thicker plates, and �

87



Chapter 5 Static analysis and critical phenomena

10�1 100
10�1

100

101

102

kd

S
4

(k
)

� = 4.29
� = 4.41
� = 4.52

Figure 5.6.3.: S
4

(k) in log-log scale for three different values of � using the ITO coated glass plates of 750 nm
thickness. As expected, the hydrodynamic regime becomes wider as the transition is approached and S

4

(k)
obeys a power law. The fits S

4

(k) = C1k2�⌘ are obtained for wave vectors in the range 0.1 6 kd 6 1.
The critical exponents obtained for � = 4.29, 4.41 and 4.52 are ⌘ = 0.87 ± 0.01, ⌘ = 0.67 ± 0.01 and
⌘ = 0.63± 0.01 respectively.

between ⇡ 1 and ⇡ 1.8 and similar large variations for ⌫? and ⌫||. Additionally, the fitted �
c

can
be quite different depending from which quantity they are obtained. The lack of precision is due to
the arbitrariness in the choice of the range � to be used for the fit.

The most robust procedure that we have found is the analysis of the inverses of these quantities.
Fig. 5.7.1 presents S4(0)

�1, (⇠4/d)�1 and (⌧4/d)�1/2 as functions of �. They all seem to be linear
functions of the acceleration, with some rounding at � ⇠ 5 (or � ⇡ 4.5, depending on the plates’
thickness). Thus, considering the definitions given in equations 5.7.1, we expect � ⇡ ⌫? ⇡ 1 and
⌫|| ⇡ 2. In order to check the robustness of the critical-like behavior we perform two types of fits,
one with an adjustable exponent and other with the exponent fixed to the expected value. These
fits are performed between �i = 2.5 and �fit, which is varied between ⇡ 2.9 and 5.5. This allows to
obtain the fitted parameters as functions of �fit, as well as the fit goodness R2 for each adjustment.
Fig. 5.7.2 presents the result of such procedure in the case of an adjustable exponent � for S4(0)

�1.
Here, only results with high goodness parameter are shown, R2 > 0.98. Fig. 5.7.3 presents the same
but with a fixed exponent � = 1. This procedure is realized for all three inverse quantities. The
summary of the results, with adjustable and fixed exponents is presented in Tab. 5.1. Each parameter
is computed as the average of the set of adjusted parameters obtained for the different �fit values
(for example by averaging the data shown in Fig. 5.7.2 and Fig. 5.7.3 for the parameters related to
S4(0), with adjustable and fixed exponent � respectively). The errors correspond to the standard
deviation of these results. Our conclusion is that one can indeed fix the exponents to � = ⌫? = 1

and ⌫|| = 2.
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Thin ITO coated plates (25 nm)
Free critical exponents

S4 (0) ⇠4/d ⌧4/T

� = 0.95± 0.15 ⌫? = 0.97± 0.21 ⌫k = 1.98± 0.50

�

c

= 4.94± 0.22 �

c

= 5.11± 0.35 �

c

= 5.06± 0.38

ã = 0.47± 0.03 ˜b = 0.41± 0.04 c̃ = 1.11± 0.13

Fixed critical exponents
S4 (0) ⇠4/d ⌧4/T

� = 1 ⌫? = 1 ⌫k = 2

�

c

= 5.09± 0.07 �

c

= 5.24± 0.08 �

c

= 5.12± 0.07

ã = 0.47± 0.01 ˜b = 0.41± 0.01 c̃ = 1.10± 0.03

Thick ITO coated plates (750 nm)
Free critical exponents

S4 (0) ⇠4/d ⌧4/T
� = 1.10± 0.16 ⌫? = 1.10± 0.03 ⌫k = 1.98± 0.21

�

c

= 4.54± 0.18 �

c

= 4.73± 0.03 �

c

= 4.55± 0.18

ã = 0.39± 0.03 ˜b = 0.35± 0.03 c̃ = 1.14± 0.07

Fixed critical exponents
S4 (0) ⇠4/d ⌧4/T
� = 1 ⌫? = 1 ⌫k = 2

�

c

= 4.43± 0.06 �

c

= 4.58± 0.06 �

c

= 4.46± 0.03

ã = 0.41± 0.01 ˜b = 0.37± 0.01 c̃ = 1.17± 0.01

Table 5.1.: Average adjusted parameters with free and fixed critical exponents for both set of glass plates.
Each parameter is computed as the average of the set of adjusted parameters obtained for the different �fit
values. The errors correspond to the standard deviation of these results. ⌧

4

corresponds to the relaxation
times obtained for kd = 0.09.
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6. Capillary-like fluctuations

« Science is facts; just as houses are made of stones, so is sci-

ence made of facts; but a pile of stones is not a house and a

collection of facts is not necessarily science. »

Henri Poincaré

One of the most noticeable collective motion of noncohesive granular matter is clustering under
certain conditions. In particular, when a quasi-two-dimensional monolayer of monodispersed nonco-
hesive particles is vertically vibrated, a solid-liquid-like transition occurs when the driving amplitude
exceeds a critical value. Here the physical mechanism underlying particle clustering relies on the
strong interactions mediated by grain collisions, rather than on grain-grain cohesive forces. In aver-
age, the solid cluster resembles a drop, with a striking circular shape. We experimentally investigate
the coarse-grained solid-liquid interface fluctuations, which are characterized through the static and
dynamic correlation functions in the Fourier space. These fluctuations turn out to be well described
by the capillary wave theory, which allows us to measure the solid-liquid interface surface tension
and mobility once the granular “thermal” kinetic energy is determined. Despite that the system
is strongly out of equilibrium and that the granular temperature is not uniform, there is energy
equipartition at the solid-liquid interface, for a relatively large range of angular wave numbers.
Furthermore, both surface tension and mobility are consistent with a simple order of magnitude
estimation considering the characteristic energy, length, and time scales, which is very similar to
what can be done for atomic systems.

6.1. Overview

Dry granular systems are usually considered to have no surface tension. However, several recent
studies show that non- cohesive or very weakly cohesive granular materials develop phenomena
driven by surface tension, which can be low but not zero. Some remarkable examples are the
Rayleigh-Taylor-like instability in tapped powders [79] and the interfacial instabilities in falling
granular streams, in air [80], and in a vacuum [81]. In other cases, granular systems are shown to
behave as a zero-surface-tension liquid, such as for particle sheets (analog to “water bells”) created
by a granular jet impacting a target [82] and fingering in a granular Hele-Shaw system [83]. In some
cases, a hydrodynamic derivation taking the zero-surface- tension limit succeeds in describing the
observations [82, 83], but in others a finite surface tension is needed [84]. Studying the spinodal
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decomposition in a vibrated noncohesive granular media, recent experiments suggest that the cluster
coalescence is consistent with a curvature driven force, and numerical simulation showed stress tensor
anisotropies, linked to surface tension [85]. The point is to understand how capillary-like features
can emerge out of collections of particles that are known to be almost or completely noncohesive.
Considering either the flow of interstitial air [79, 80] or nano-Newton cohesion forces in the case
of very low external forcing [81], a low effective surface tension depending on the granular system
dynamics was estimated.

As was pointed out earlier, our system can present a transition from a completely fluidized state to
the coexistence of a liquid state with solid (ordered) clusters [53, 8, 6]. It has been recently shown
that such coexistence is triggered by a negative compressibility, as observed in a similar gas-liquid
van der Waals granular transition [69, 73], and that density waves propagate in the system [8]. In
Chapter 5 we showed that depending on the vertical height and filling density the transition can
be of first- or second-order type. For both cases density fluctuations do not show strong variations
at the transition, but local order varies strongly, either abruptly or continuously respectively, with
a critical-like behavior in the second case.

Figure 6.1.1.: Raw image showing both liquid and solid phases.

In this chapter we consider the stationary regime of phase coexistence for both the continuous and
abrupt transitions. Above a critical driving amplitude a unique solid cluster is observed. For the
continuous transition, as it is critical with an associated nonconserved order parameter, the system

94



6.1 Overview

spontaneously develops regions of one phase inside the other. For the abrupt case, some defects
are present in the solid phase but, as shown before, it is much better defined. However for both
cases, in average, the granular cluster exhibits a striking circular shape, like a drop (see Fig. 6.1.1).
We focus on the characterization of the liquid-solid-like interface, which we make coarse-grained,
becoming smooth and simply connected. Our approach is similar to the one proposed in [80], in
analogy with condensed matter at a molecular scale where thermal agitation induces capillary waves
that deform an interface. The coarse-graining procedure, which implementation is described below,
limits the analysis of the capillary waves to large wavelengths and long time scales. Thus, in this
coarse-grained description, we aim to discuss to what extent it is valid to use some of the concepts
of effective surface tension and interface mobility.

For the results first presented below we use the configuration C2, i.e. N = 11504 stainless steel
spherical particles in a shallow box with transverse dimensions L

x

= L
y

= 100d and height L
z

=

1.94d±0.02d, where d = 1 mm is the particle diameter. Two videos were analyzed, with 3500 images
acquired at 500 fps using the thin ITO coated glass plates (25 nm thickness). The filling fraction is
� = N⇡d2/4L2

= 0.904, corresponding to 31% of volumetric filling. We used ITO coated glass plates
25nm thickness and 7.5µ⌦m resistivity. As explained before, for this configuration, a second-order
solid-liquid-like transition occurs when the dimensionless acceleration � = A!2/g reaches a critical
value �

c

⇡ 5.1, at f = 2⇡/! = 80 Hz. In the framework of the solid cluster’s characterization, the
present study is done at � = 6.30± 0.03 and f = 80 Hz.

Later, we present results with the thick ITO coated glass plates (750 nm thickness) and where the
static quantities were obtained from videos acquired at 10 fps, whereas the dynamical quantities
were obtained from videos at 500 fps.

To distinguish the liquid phase from the solid phase, which has square symmetry, we use a criterion
based on Q4, the 4-fold non-conserved local order parameter [53]

Qj

4 =

1

N
j

N

j

X

s=1

e4i↵

j

s . (6.1.1)

Here N
j

is the number of nearest neighbors of particle j and ↵j

s

is the angle between the neighbor s

of particle j and the x axis. For a particle in a square lattice, |Qj

4| = 1. If |Qj

4| > 0.7, which has been
determined empirically (see Sec. 4.2), the particle is considered in the solid phase; otherwise, it is in
the liquid phase. Then, using coarse-grained polar coordinates (�✓ = 2

�), we detect 180 interfacial
particles in each image. The origin of the polar coordinate system is fixed at the time-averaged center
of mass of the solid-like particles. For C2 and � = 6.3 (ITO 25 nm thickness) the time-averaged
interface exhibits a circular shape with a mean radius of R0/d = 22.7 ± 0.4. We have verified that
a slightly different �✓, say between 1.5 and 2.4, gives the same results when the spectra of radius
and kinetic energy fluctuations are analyzed (later in Sec. 6.5 for further details). For �✓ ⇠ 1

�, the
interface detection presents errors due to the crystallographic order of the solid cluster: occasionally
the corresponding angles are close to a plane direction implying that a particle can be detected near
the center of mass, making the interface very noisy. Additionally, for �✓ & 2.4� the detection acts
as a filter for larger m numbers and affects the spectrum accordingly.
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6.2. Non-equilibrium free energy

In this study, we consider a curve-driven interface behavior for the steady state cluster. In condensed
matter, from the classical solid to liquid phases, any interface is microscopically rough due to the
competition between thermal energy and minimization of surface area [86]. The grain-boundary
or solid-liquid interface evolution is involved in processes such as crystallization in solution [87] or
dendritic solidification [88], and controls structural and mechanical properties of many materials [89].
The first interfacial parameter studied is the solid-liquid interface stiffness, �̃ = � + �00, where � is
the surface tension and �00 its second derivative with respect to the spatial coordinate. This is valid
in the small slope approximation, as it is in our case (see Sec. 6.6). In our experiment, we actually
measure �̃, but for simplicity we will use � and refer to it as surface tension. The correction �00 is
indeed usually small [88]. The second parameter is the solid-liquid interface mobility M , defined by
V = M�, with V the interface velocity and  the interface curvature. Inspired by theoretical and
numerical studies on interfacial properties of molecular systems [90, 91], and on an experimental
study of colloidal crystals [92], we attempt to obtain these physical quantities applying a capillary
wave description. In analogy to the capillary theory in condensed matter, we assume that there is a
functional, analog to the free energy, that is minimized in the stationary state and allows to obtain
the dynamics close to the stationary state. This assumption, although no fully justified in non-
equilibrium systems, is made for simplicity and verified a posteriori as its predictions are consistent
with the experimental results. To follow the analogy with equilibrium systems, this functional will
be refered as non-equilibrium free energy.

First, we consider the interface contribution to the non-equilibrium free energy E
�

. In two dimen-
sions, it is related to the cluster’s arc length and by an effective surface tension � such as

E
�

= �

ˆ 2⇡

0

p

R2
+ (@

✓

R)

2 d✓, (6.2.1)

with R(✓, t) the cluster’s radius.

The total non-equilibrium free energy has an additional term, because if we minimize the solid-liquid
interface non-equilibrium free energy, the absolute minimum is at R = 0, that is, no droplet. In
principle, this is solved by adding a Lagrange multiplier that fixes (in average) the total mass (or
equivalently, the area). Then, the total non-equilibrium free energy should be

E = �

2⇡ˆ

0

p

R2
+ (@

✓

R)

2d✓ � µ

2⇡ˆ

0

R2

2

d✓. (6.2.2)

where µ is the Lagrange multiplier, which apart from a proportional factor is equivalent to the
effective chemical potential. The negative sign is arbitrary and it is there to further simplify the
notation. The equilibrium droplet is obtained by minimizing the non-equilibrium free energy. First,
non-uniformities in the radius increase the non-equilibrium free energy, so we assume a circular
shape R = R0. Then, the non-equilibrium free energy is

E = 2⇡�R0 � µ⇡R2
0. (6.2.3)
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To extreme E we take the derivative and equal it to zero. The solution is

R0 =

�

µ
, (6.2.4)

or equivalently µ = �/R0. Note that this last expression shows that we have correctly chosen the
sign for µ in 6.2.2. Now, we linearize about R0. That is, R(✓) = R0 + ✏�R(✓) and keep up to
quadratic terms in ✏ in the energy. Doing the expansion we obtain

E = �

2⇡ˆ

0



R0 + ✏�R + ✏2
(@
✓

�R)

2

2R0

�

d✓ � µ

2

2⇡ˆ

0

⇥

R2
0 + 2✏R0�R + ✏2�R2

⇤

d✓. (6.2.5)

Recalling that µ = �/R0 the linear terms cancel (as it always should happen when doing an expansion
about an equilibrium state) and the final result is
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This expression does not describe our system. Indeed, the non-equilibrium free energy increases due
to deformations of the interface but is decreases when changing globally the radius. That is, R0 is
unstable under changes of the radius. In fact, this inconsistency could have been predicted when
looking at 6.2.3: it is clear that R0 is a maximum and, therefore, un unstable equilibrium.

The origin of the problem

The problem originates in the election of the thermodynamic ensemble. Indeed, when using µ we
moved to the grand canonical ensemble in which the number of particles is not fixed. What we
have found is what is called the Critical Nucleus in the Homogeneous Nucleation Theory. This is
the size we have to overcome to create a droplet that, after reaching that size, will grow indefinitely.
Droplets smaller than this radius will shrink again due to the energy cost of the free surface. The
growth without bound is possible because we are in the grand canonical ensemble where we have
fixed µ and, therefore, there are always available particles to change phase.

The solution

The solution consists of changing the ensemble to one in which we fix the total number of particles.
This is a complicated ensemble to make calculations because we have to take into account the
physical fact that when particles are moved from one phase to another, the supersaturation changes
and therefore the chemical potential is dynamically adjusted. This is precisely what happens when,
working in the canonical ensemble, we prepare the system with a density between the liquid and
solid densities. Clusters of the solid phase will be created, decreasing the density of the remainder
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Chapter 6 Capillary-like fluctuations

part until it reaches the liquid density. To model this solution, we can write in the case of a circular
droplet

E = 2⇡�R0 � µ(R0)⇡R2
0. (6.2.7)

If µ is a decreasing function of R0, a second equilibrium appears (this time stable) at a larger value
of R0. This is the final equilibrium radius of the droplet.

6.3. Full model

Equivalently of using a chemical potential that depends on the radius, we modify 6.2.2 to have a
non-linear dependence on the total mass of the cluster, expression that will be easier to manipulate
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where f is a nonlinear function. For a cluster of area much smaller than the total system area,
f(x) = µx as in 6.2.2. Again, an expansion up to quadratic terms is done obtaining
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where
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The equilibrium radius is such that the linear terms should cancel (as to have a global minimum).
This condition gives

f 0
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that once substituted in 6.3.2 gives
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6.3 Full model

Fourier-transforming the last expression gives
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where
f�R

m

=

1

2⇡

ˆ
�R e�im✓ d✓ (6.3.9)

In 6.3.8 all terms can be correctly interpreted. First, each mode contributes to the non-equilibrium
free energy with a curvature dependence m2, proportional to the surface tension. However, the
modes m = ±1 do not contribute. This is indeed correct because when a circle is slightly (linear
in ✏) perturbed in the modes m = ±1, it is only translated but not deformed (this is related to
the absence of dipolar perturbation of a circle or sphere) and can be directly checked as follows.
Take the radius and do a m = 1 deformation, for example R = R0(1 + ✏ cos(✓)), then it is simple
to check that (x � ✏R0)

2
+ y2

= R2
0, that is the circle is just translated. As there is translational

symmetry these modes should not contribute to the energy. Finally, the last term corresponds to
the increase of energy when the mass of the cluster is changed. To assure that the equilibrium is
stable, the second derivative of f should be negative and its absolute value larger than the first term.
Note, however, that its value is otherwise completely independent of �, that is the mass fluctuations
are independent of the shape fluctuations. In summary, the non-equilibrium free energy about the
equilibrium droplet can be written as

E = E0 +
⇡�

R0
|f�R0|2 +
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X

|m|�2

|f�R
m

|2(m2 � 1), (6.3.10)

where the formal expansion parameter ✏ has been suppressed and � is a new parameter, which has
the same units as �. In experiments, the translational symmetry is not perfect and the cluster has
a tendency to remain in the center of the box. Then, the non-equilibrium free energy should be
modified to

E = E0 +
⇡�

R0
|f�R0|2

| {z }

change in size

+
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R0

⇣
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X
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|f�R
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|2(m2 � 1)

| {z }
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(6.3.11)

with ⌫ a new parameter, with the same units as � and �. This expression is used to derive the
equilibrium power spectrum and the time correlation functions. The parameters � and ⌫ have
physical origins that are different from the surface tension parameter �, so their three values do not
have to be directly related. � corresponds to a measure of solid cluster’s size changes, either by
expansion and contraction (at a fixed number of particles) or by the condensation and evaporation
of particles in and out of the solid cluster. ⌫ corresponds to a measure of how far from the ideal
condition is the current experimental realization. Ideally, ⌫ = 0, which implies that this mode
(translation) is a neutral mode, equivalent to the spatial average for a flat interface (limit k ! 0).
If ⌫ = 0, the m = 1 mode would realize a simple random walk, as discussed in Sec. 6.9. In fact, we
show below that this is not the case. We speculate that the origin of ⌫ > 0 is related to particle’s
vertical dynamics, and thus depends on surface roughness, friction, and top and bottom local wall
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Chapter 6 Capillary-like fluctuations

parallelism. In particular, it depends on the vertical dynamics of the whole solid cluster, which is
still largely unknown.

6.4. Static power spectrum

Starting from 6.3.11, for equilibrium systems the equipartition theorem from statistical mechanics
is invoked. Thus, each normal mode, when configurationally averaged (in our case when time
averaged), contributes k

B

T/2 of energy to the system. Thus, the power spectrum is

h|f�R0|2i =

k
B

TR0

2⇡�
, (6.4.1)

h|f�R±1|2i =

k
B

TR0

2⇡⌫
, (6.4.2)

h|f�R
m

|2i =

k
B

TR0

2⇡�(m2 � 1)

, (6.4.3)

where the last line is valid for |m| > 2. In general, the equipartition theorem is used for the total
kinetic and potential energies (if any) by defining the number of active modes n. Thus, in average

hKi = hUi = n
1

2

k
B

T, (6.4.4)

where K and U are the total kinetic and potential energies respectively. The idea is that active
modes contribute with k

B

T/2 to the total energy, whereas non-active modes do not contribute. The
number of active modes n depends on the particular system, by the number of spatial dimensions
and by the particular atom or molecule interactions (intramolecular and intermolecular). The most
simple example is an ideal monoatomic gas in D

s

dimensions, with no potential energy. In this case,
n = D

s

N , where N is the number of atoms. In our case, we consider that the granular system has an
effective “granular" temperature Te↵ . Although this quantity is commonly referred as a temperature
it has units of energy. A simple version is to consider it equivalent to k

B

T . But, our non-equilibrium
system shows that this effective thermal energy, or granular temperature, has to be defined carefully,
as well as the number of active modes. In our setup, the system is isotropic in the horizontal plane,
but the horizontal thermal energy is different from the vertical one. For the following analysis we
focus our attention to the projected 2D dynamics, which is what can be analyzed experimentally.
In fact, Fig. 6.4.1(b) shows that equipartition can be applied for the horizontal kinetic energy, up
to a given wavenumber (from m = 2 to m ⇡ 30). We now focus on the solid-liquid interface, as a
subsystem of the complete granular system. We recall that the protocol used identifies one interface
particle for each angle interval �✓ = 2

�. Therefore, the interface subsystem consists always in
exactly N

p

= 180 particles. The interface total potential energy is given by 6.3.11. We then consider
equipartition for the total kinetic and potential energies,

hKi = hEi = n
1

2

Te↵ , (6.4.5)
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6.4 Static power spectrum

where n is the number of active modes and Te↵ is the effective granular temperature. The important
issue is that we can measure hKi and express it as a sum of normal modes. Indeed,

hKi = 1

2

N

p

X

i=1

m
p

h~v2
i

i = 1

2
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p

m
p

h~v2i (6.4.6)

where h~v2i = hv2
x

i+ hv2
y

i is the velocity variance. Here, we must stress that because ~v is function of
both ✓ and t, the average h i is a double average, over angles and over time. Both velocity components
can be expressed by Fourier series:
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where ṽx

m

and ṽy

m

are the Fourier components. In practice, because �✓ = 2

�, then the summation
is done for a finite number of modes, from m = �m⇤ to m = m⇤, with m⇤
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/2� 1 = 89. Thus,
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which allows to define the kinetic granular energy per mode,
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|2i. (6.4.9)

For the last two expressions, the angle average has already been performed, and h i is a configurational
(time) average. Next, as we measure for each mode hK

m

i, we can apply hK
m

i = h�E
m

i, where h�E
m

i
corresponds to each mode contribution to
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Thus, the final expressions for the static power spectrum for our system are

h|f�R0|2i =

hK0iR0

⇡�
, (6.4.11)

h|f�R±1|2i =

hK1iR0

⇡⌫
, (6.4.12)

h|f�R|m|>2|2i =

hK|m|>2iR0

⇡�(m2 � 1)

. (6.4.13)

Fig. 6.4.1(a) displays the probability density function (PDF) of particle velocities in the liquid (l)
and solid (s) phases, as well as for the particles at the boundary (b). The PDFs are Gaussian for low
velocities, while they present exponential tails at high velocities. Isotropy between the horizontal
velocity components was verified. The granular temperature T

g

, obtained from the variance of the
velocity distributions, is not uniform. Indeed, because of the collisional and dissipative nature of
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Figure 6.4.1.: (a) Probability density function (PDF) of velocity fluctuations. Open and solid symbols for
x and y components respectively. In the liquid-like domain (⌅), for the solid-liquid boundary particles (•)
and in the solid-like domain (N). (b) Average horizontal kinetic energy spectrum, hK

m

i versus m. The
dashed line shows the equipartition value K

eq

. The inset shows the linear plot for m = 0, ..., 35.

particle interactions, higher particle volume fraction implies higher dissipation and lower T
g

. As
expected, we obtain T l

g

> T b
g

& T s
g

, although the temperature contrast between the phases is small
as compared to [6] because in our case the solid cluster is soft. In Fig. 6.4.1(b) we present the
average horizontal kinetic energy spectrum, hK

m

i versus m. Although the system is strongly out of
equilibrium and that temperature is not uniform, there is energy equipartition between m = 2 and
m ⇡ 30, with an average value Keq = 4.82 ± 0.04 nJ. For comparison, T b

g

⇡ 4.5 nJ. The two
lowest modes have larger energy, hK0i = 8.0 ± 4.7 nJ and hK1i = 5.9 ± 2.8 nJ, and the energy
components decrease for m > 30.

This is the quantity plotted in Fig. 6.4.1(b), which shows equipartition from m = 2 to m ⇡ 30

(corresponding to wavelengths ⇡ 74d to ⇡ 5d). In fact, an average between m = 2 and m = 30 gives
hK

m

i ⌘ Keq = 4.82±0.04 nJ. The two lowest modes, which correspond to global radius fluctuations
and center of mass translations, have higher energy: hK0i = 8.0+4.7

�4.6 nJ and hK1i = 5.9 ± 2.8 nJ.
Their errors are slightly asymmetric due to their asymmetric (non-Gaussian) distribution functions,
which are detailed in the last section of this document. Furthermore, the identity
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p
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⇤
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m=�m
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h|ṽx

m

|2 + ṽy

m

|2i, (6.4.14)

can be verified numerically. Indeed, from the particle velocity distributions (in x and y) and their
variances, we obtain hKi ⇡ 0.80 µJ, whereas from the velocity Fourier components we obtain
hKi ⇡ 0.82 µJ.

Fig. 6.4.2(a) shows a very satisfactory agreement for the experimental power spectrum 6.4.13 with a
1/(m2�1) tendency, within a physically relevant range for the wavenumber m = 6�54, corresponding
to wavelengths 2⇡R0/m ⇡ 3d � 24d. Fitting 6.4.13 to the experimental data gives an effective
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6.5 Capillary-like spectrum for different interface detection conditions

2 4 6 8

−2

0

2

4

6

ln(m2−1)

ln
(<
bR

m2
>/

<K
m

>)

(a)
<bRm

2 >/<Km> = a/(m2 − 1)

a = 2523 ± 61 m2/J

Figure 6.4.2.: Static and dynamic correlation analysis. The continuous lines show the fitted functions. (a)
The ratio h|f�R

m

|2i/hK
m

i versus m2 � 1 in ln-ln scale. The fits are performed within the range for the
wavenumber m = 6� 54, corresponding to wavelengths 2⇡R

0

/m ⇡ 3d � 24d.

surface tension � = 2.9 ± 0.1 µN in two-dimensions, and using L
z

as the third dimension, we get
�3D ⌘ �/L

z

= 1.5 ± 0.1 mN/m. Additionally, � and ⌫ can be measured through the components
m = 0 and m = 1 of h|f�R

m

|2i and hK
m

i, obtaining � = 0.23±0.21 mN, and ⌫ = 0.13±0.11 mN. For
comparison, our measured surface tension �3D is about 50 times smaller than pure water’s surface
tension, but it is much larger than the value 0.1 µN/m estimated for a freely falling dry granular
material [81]. In fact, this latter work demonstrates that nano-Newton cohesive interaction forces,
measured by AFM, are responsible for the surface tension. In our case, the physical mechanism is
not originated by grain-grain cohesion, but from dissipative collisions between particles. Actually,
the effective surface tension of our system can be estimated as � ⇠ T b

g

/d ⇡ 4.5 µN, which implies
�3D ⇠ T b

g

/(dL
z

) ⇡ 2.3 mN/m. This result is consistent with the scaling found in a numerical study
on 3D crystallization of hard spheres, where the fluid-solid surface tension is �3D ⇠ k

B

T/d2 [93].

6.5. Capillary-like spectrum for different interface detection
conditions

In Sec. 4.2 we have presented the interface detection procedure, including the three different criteria
used for the selection of particles in the solid cluster. In the main text we also discuss the validity
of the capillary-like spectrum respect to the choice of the coarse-graining angle �✓. In Fig. 6.5.1 we
present several fluctuation spectra h|f�R

m

|2i/hK
m

i versus m2�1 using the three different criteria and
several coarse-graining angles. The 1/(m2 � 1) dependence is observed for all cases, with variations
on the range of mode numbers m for which is it valid, depending on the specific details of the
detection procedure. For �✓ = 2

� (Fig. 6.5.1(a)) we obtain that for the first criterion the fitted
surface tension results � = 2.0± 0.1 µN. For the second and third criteria, within errors their result
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are equal, � = 2.9 ± 0.1 µN. Fig. 6.5.1(b) and Fig. 6.5.1(c) present spectra for the second criterion
with different coarse-graining angles. These results allow us to conclude that the description of
the fluctuations by the capillary theory is very robust with respect to the details of the interface
detection procedure. However, the numerical parameters of the theory (surface tension and mobility)
are more sensible to the different criteria. In particular, the fact that � is lower for criterion 1 can
be explained recalling that the detection procedure adds a thin liquid-like skin to the solid cluster,
as mentioned in Sec. 4.2. This layer is composed by particles with intermediate order (|Q4| ⇡ 0.55)
but with small Voronoi area (2A

v

/d2 ⇡ 1.4), thus with higher density.
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Figure 6.5.1.: (a) Fluctuation spectra h|f�R
m

|2i/hK
m

i versus m2 � 1 for �✓ = 2

� and the three cluster
selection criteria presented in Sec. 4.2. The vertical dashed lines show the limit values used for the fits:
m = 6...30 for criterion 1, and m = 6...54 for criteria 2 and 3. (b) Fluctuation spectra h|f�R

m

|2i/hK
m

i
versus m2 � 1 for several �✓ using criterion 2. For smaller �✓, noise contaminates the spectrum at higher
m values. For larger �✓, the coarse-graining procedure acts as a filter at larger m. (c) Same as (b) for a
smaller range of m, putting in evidence the discrepancies that appear for larger m.
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6.6 About the small slope approximation

6.6. About the small slope approximation

The small slope approximation is used explicitly in the Taylor expansion of
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are neglected, as well as the higher order terms (h.o.t) that are not shown. As discussed previously,
the contribution of the linear term vanishes in the non-equilibrium free energy. Thus, we are left to
show that the following conditions are indeed fulfilled by our experimentally determined solid-liquid
interfaces:
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These terms contribute to the non-equilibrium free energy through the angle integral. Thus, by
expanding �R in Fourier series, the above expressions become equivalent to show these conditions
are satisfied:

 1 ⌘ h|g�R
m

|4i
8R4

0

⌧ 1, (6.6.5)

 2 ⌘ m2 h|g�Rm

|2i
4R2

0

⌧ 1. (6.6.6)

Here, the brackets h i represent an ensemble average, which in practice is done through time average
of data from many images. These conditions are indeed satisfied, as shown in Fig. 6.6.1. The first
parameter satisfies  1 < 1.7⇥ 10

�6 for all m, whereas the second one,  2 < 8⇥ 10

�3 for all m.
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Figure 6.6.1.: Relative intensity of the correction terms,  

1

= h|]�R
m
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0

) (left) and  

2

=

m2h|]�R
m

|2i/(4R2

0

) (right), to the quadratic form of the non-equilibrium free energy in (6.6.2). Small values
imply that the small slope approximation to the non-equilibrium free energy is valid and the quadratic
form can be used.

6.7. Comparison between both configurations

In this section we present the results obtained for both configurations C1 and C2 using the thick
ITO glass plates. The accelerations used for both cases are � = 2.19 ± 0.01 and � = 5.47 ± 0.01
for C1 and C2 respectively, while the critical accelerations for C1 and C2 are �

c

= 1.98 and �
c

=

4.48± 0.03 respectively. For C1 the value of �
c

is just approximated, given that it was obtained by
eye observation, and not the method presented in Sec. 5.4. The normalized distance to the transition
is " = 0.09 and " = 0.22 for C1 and C2 respectively. By doing the same procedure presented in
Sec. 4.2 we detect the interfaces and then compute the power spectra
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are shown in Fig. 6.7.1.
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6.8 Surface tension as a function of �

From figure Fig. 6.7.1 left, we observe that both C1 and C2 show equipartition. Specifically between
m = 2 and m ⇡ 20 for C1, versus between m = 2 and m ⇡ 30 for C2. The equipartition values
obtained are K

eq

= 2.22 ± 0.03 nJ and K
eq

= 4.44 ± 0.05 nJ respectively. The right plot of
Fig. 6.7.1 shows the ratio

⌦

�

�

g�R
m

�

�

2↵
/ hK

m

i versus m2 � 1 where it is clear that there is an important
difference between both configurations. As shown before, for C2 we observe that the spectrum
actually follows the predicted power law

�

m2 � 1

��1 (6.4.13). However, for C1 we observe that
the ratio

⌦

�

�

g�R
m

�

�

2↵
/ hK

m

i behaves as
�

m2 � 1

��1 at low and high values of m, but at intermediate
values it presents a crossover between these two regimes. In order to clarify this, if we define the
quantity a by a ⌘

⌦

�

�

g�R
m

�

�

2↵
/ hK

m

i ·
�

m2 � 1

�

, then a constant value of a would imply a surface
tension � = R0/ (a⇡). Thus, in Fig. 6.7.2 we plot R0/ (a⇡) versus m2 � 1.
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Figure 6.7.2.: Surface tension � = R
0

/ (a⇡) for C1 and C2.

In Fig. 6.7.2 we observe that whereas C2 presents a constant value of a within a range for the
wave number m = 6 � 50, resulting in a surface tension of � = 2.1 ± 0.2µN, the configuration
C1 shows two relevant regimes; a small wavenumber regime (m = 3 � 6) with a surface tension
approximately � = 5.0 ± 0.2µN, and a large wavenumber regime (m = 20 � 55) yielding a surface
tension � = 2.5 ± 0.03µN. That is, we obtain two values for the surface tension depending on the
scale we are looking at.

6.8. Surface tension as a function of �

Now, we perform the same analysis presented above as a function of � for the configuration C2.
We study the system at 7 different � = {4.76, 4.87, 4.96, 5.08, 5.24, 5.32, 5.47}. We recall that �

c

=

4.48 ± 0.03. Unfortunately, the detection of the interface does not work properly at the lower �,
because for this configuration the crystal is not so well defined near �

c

, even though the system
has crossed the critical point. Thus the detection of the interface only worked for the 4 largest �
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Chapter 6 Capillary-like fluctuations

(" = {0.13, 0.17, 0.19, 0.22}). Hence, we developed a method to extract the surface tension from the
average of the images.

Figure 6.8.1.: Mean images obtained from 3270 images at � = {4.76, 5.08, 5.47} from top to bottom.

From Fig. 6.8.1 we may notice that in average the crystal has a circular shape, thus if we fixed our
reference system in the center of mass we can extract the intensity of the image by projecting at
different angles. The intensity of the image for a value of the angle ✓ is shown in Fig. 6.8.2.
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Figure 6.8.2.: Typical intensity profile of an image at a fixed angle ✓. The red line corresponds to the fit
I (x) = I

max

⇣

1� tanh
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|x|�D/2

w

⌘⌘

+I
min

, where D is basically the diameter of the crystal and w is related
to how abrupt falls the intensity.
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Figure 6.8.3.: Parameter w as a function of ✏ = ���c
�c

obtained by fitting the intensity to the curve I (x) =

I
max

⇣

1� tanh

⇣

|x|�D/2

w

⌘⌘

+ I
min

at 30 different angles equally spaced.

By fitting the curve I (x) = I
max

⇣

1� tanh

⇣

|x|�D/2
w

⌘⌘

+ I
min

to the intensity of the mean image,
we can extract the diameter of the crystal D and the width w, which indicates how abrupt is the
change of intensity. In Fig. 6.8.3 we show w as a function of � obtained from fittings of the intensity
at 30 different angles. For the smallest " only 9 angles were analyzed because the crystal presents
vacancies and an irregular shape, thus, only the angles where the fit works adequately are considered
(R2 > 0.97).

We observe from this figure that w decreases as we increase the distance to the transition. Thus, the
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Chapter 6 Capillary-like fluctuations

crystal becomes much well defined at higher values of �. Hence, we assume that the surface tension
� is related to w by � ⇠ 1/w. That is, we assume that w · � = ⌥ = constant. But, given that for
the higher values of � we can actually detect the interface and thus calculate � from the capillary
fluctuations, we fixed the value of the constant with the cases where the detection of the interface
works properly. In Fig. 6.8.4 we show w/d · � as a function of �.
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13

14

15

16

 

Figure 6.8.4.: w/d ·� for the cases when the detection of the interface actually works. With this four values
we obtained that the value of the constant is ⌥ = 12.5± 0.7µN.

Accordingly, by impossing that � = ⌥/w we obtain the surface tension as a function of �. Besides,
for the higher values of � we can compare the values of � obtained from the assumption � ⇠ 1/w
with the method of detecting the interface. This is shown in Fig. 6.8.5.

From this figure we observe that the surface tension decreases as we approach the critical point,
which is expected, given that the crystal becomes less defined for accelerations near �

c

. This is well
known in the literature for normal liquids, and is known under the name of Eötvös rule [94]. It
states that the surface tension of an arbitrary liquid is given by �V 2/3

= k (T
c

� T ), where V is the
liquid molar volume and k is a constant valid for all liquids

⇣

k = 2.1 · 10�7 J/K · mol2/3
⌘

.

We can also perform the analysis of fitting the intensity of the mean image in configuration C1.
Unfortunately, for the set of data analized we do not have the dynamic information necessary to
compute the spectrum of the kinetic energy hK

m

i, and hence we do not have a way to calibrate
properly the constant ⌥ of the relation � = ⌥/(w/d). In Fig. 6.8.6 we show the parameter w as a
function of � for C1.
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Figure 6.8.5.: � as a function of � for C2. The red circles correspond to the surface tension obtained from
the relation � =
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, with ⌥ = 125± 7. The blue squares were obtained from the usual method of detecting
the interface.
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Figure 6.8.6.: Parameter w as a function of ✏ for configuration C1. We observe that w is almost constant,
yielding a constant surface tension. By using the value obtained before for C1 at large wavelengths, we
may say that the surface tension is constant and approximately � = 5.0± 0.2µN.

From Fig. 6.8.6 we observe that w is almost constant. For small values of ✏ we are very near the
critical point, and the crystal turns out to be not so well defined, thus implying that the first points
of Fig. 6.8.6 are not very reliable given that the crystal has an irregular shape and the value of w
changes abruptly depending on what angles we use to fit the intensity.
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Chapter 6 Capillary-like fluctuations

6.9. Dynamic correlation function: Effective mobility

We now focus on the mobility parameter M and the interface dynamic correlation function. For
an interface of flat geometry, with local height h (x, t), the standard procedure is to consider the
interface local velocity V = @h/@t = M�, where  is the interface’s curvature ( = @

xx

h for a flat
interface in 2D). The Fourier transform of this equation leads to

@A
k

@t
= �M�k2A

k

, (6.9.1)

where we have used the Fourier representation

h(x, t) =
X

k

A
k

(t)eikx. (6.9.2)

When a noise term is included, Langevin equations are obtained, in real and Fourier space respec-
tively:

@h(x, t)

@t
= M

✓

�
@2h(x, t)

@x2
+ ⌘(x, t)

◆

,
@A

k

@t
= M(��k2A

k

+ ⌘
k

(t)), (6.9.3)

where
⌘(x, t) =

X

k

⌘
k

(t)eikx (6.9.4)

is modeled as a white noise term, which is delta correlated

h⌘(x, t)i = 0, (6.9.5)
h⌘(x, t)⌘(x0, t0)i = C�(x � x0

)�(t � t0), (6.9.6)
h⌘

k

(t)i = 0, (6.9.7)
h⌘

k

(t)⌘⇤
k

(t0)i = C�
k,k

0�(t � t0). (6.9.8)

In 2D, if we consider an interface of length L between two semi-infinite phases, then the non-
equilibrium free energy is

E = �

ˆ
L

0

p

1 + (@
x

h)2dx ⇡ �L +

�L

2

X

k

k2|A
k

|2. (6.9.9)

It is straightforward to show that 6.9.1 can be obtained by the general form

@A
k

@t
= �M

L

�E

�A
k

, (6.9.10)

where �E/�A
k

is the functional derivative of E. Applying the same formalism to our case, and
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6.9 Dynamic correlation function: Effective mobility

including noise, from 6.3.11 we obtain the following Langevin equations

@f�R0

@t
= M

✓

� �

R2
0

f�R0 + ⌘0(t)

◆

, (6.9.11)

@f�R±1

@t
= M

✓

� ⌫

R2
0

f�R±1 + ⌘±1(t)

◆

, (6.9.12)

@f�R|m|>2

@t
= M

✓

� �

R2
0

(m2 � 1)

f�R
m

+ ⌘
m

(t)

◆

. (6.9.13)

These Langevin equations have the form ẋ = �x/⌧ + M⌘(t), whose solution is

x(t) = x(0)e�t/⌧

+ M

tˆ

0

e�(t�s)/⌧⌘(s)ds. (6.9.14)

The ensemble average results hx(t)i = hx(0)ie�t/⌧ , and hx(t)i ! 0 for t ! 1. The two time
correlation function is

hx(t)x⇤
(t0)i = h|x(0)|2ie�(t+t

0)/⌧
+

M2C⌧

2

⇣

e�|t�t

0|/⌧ � e�(t+t

0)/⌧
⌘

. (6.9.15)

From here, the following expression for the dynamic correlation function in Fourier space is derived:

hf�R
m

(t)f�R
⇤
m

(0)i = h|f�R
m

|2ie�t/⌧

m , (6.9.16)

where ⌧
m

= R2
0/[M�(m2 � 1)] for |m| > 2, and ⌧0 = R2

0/(M�) and ⌧±1 = R2
0/(M⌫) for m = 0 and

m = ±1 respectively, are the relaxation times.

The inset of Fig. 6.9.1 displays an example of the good agreement for the predicted exponential
decay. The data for t > 0.2 s and for m > 18 are very noisy and not considered for the analysis.
Fig. 6.9.1(b) shows that ⌧�1

m

does increases linearly with (m2 � 1). Using the value of �, we obtain
M = 2.8 ± 0.8 m3J�1s�1. We remark that for an atomic system simulation [90], the mobility in
two-dimensions scales as M ⇠ l3

c

/(k
B

Tt
c

), with k
B

T the thermal agitation, l
c

and t
c

characteristic
length and time respectively. In our case, considering k

B

T = T b
g

, l
c

⇠ d and t
c

⇠ d/
q

h~v2
bi, yields

the same order of magnitude for the mobility M ⇡ 10 m3J�1s�1.

Now, evaluating 6.9.15 at t = t0, the static power spectrum is used in long time limit of

h|x(t)|2i = h|x(0)|2ie�2t/⌧

+

M2C⌧

2

⇣

1� e�2t/⌧

⌘

, (6.9.17)

which gives the constant C = 2hK
m

i/(⇡R0M). Finally, the mean square displacement is

h|�R|2i = h|x(t)� x(0)|2i. (6.9.18)
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Figure 6.9.1.: Decay time ⌧�1

m

versus (m2 � 1). Inset shows an example of hf�R
m

(t)f�R
⇤
m

(0)i (m = 18).

From 6.9.14 we obtain

x(t)� x(0) = x(0)(e�t/⌧ � 1) + M

tˆ

0

e�(t�s)/⌧⌘(s)ds, (6.9.19)

thus

h|x(t)� x(0)|2i = h|x(0)|2i(e�t/⌧ � 1)

2
+ M2

tˆ

0

tˆ

0

e�(2t�s�s

0)/⌧ h⌘(s)⌘⇤(s0)idsds0, (6.9.20)

= h|x(0)|2i(e�t/⌧ � 1)

2
+

M2C⌧

2

⇣

1� e�2t/⌧

⌘

, (6.9.21)

where we have used the fact that hx(0)⌘(s)i = hx(0)ih⌘(s)i = 0, for s > 0, and the double integral is
solved as before. We remind that the long time limit of 6.9.17 gives M2C⌧/2 = h|x(t)|2i = h|x(0)|2i,
allowing to simplify 6.9.21, leading to the following expression for the mean square displacement

h|x(t)� x(0)|2i = M2C⌧
⇣

1� e�t/⌧

⌘

. (6.9.22)

Finally, replacing the expression for C in terms of the energy per mode,

h|x(t)� x(0)|2i = h|�R
m

|2i = 2hK
m

iM⌧
m

⇡R0

⇣

1� e�t/⌧

m

⌘

. (6.9.23)

The Langevin description can be studied considering the mean square-displacements for the m = 0, 1
modes. Indeed, from 6.9.23

h|�R0,1|2i =
2MhK0,1i⌧0,1

⇡R0

⇣

1� e�t/⌧0,1

⌘

, (6.9.24)
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where �R0,1 =

f�R0,1(t) � f�R0,1(0). For short times t ⌧ ⌧0,1, a diffusive behavior is expected
for each mode, h|�R0,1|2i ⇡ 2D0,1t, with D0,1 = MhK0,1i/(⇡R0), which is the analog of the
fluctuation-dissipation relation used in atomic simulations for flat geometries [90, 91]. Fig. 6.9.2
displays h|�R

m

|2i as a function of time for m = 0 and m = 1. Fits are shown using h|�R
m

|2i =
A

m

[1�exp(�t/⌧
m

)]+c
m

, where c
m

reflects the fact that the Langevin equation does not capture the
initial ballistic regime. The predicted saturation is observed for long times. From the fitted values
we obtain � = 0.19± 0.12 mN, ⌫ = 0.06± 0.03 mN, M0 = 1.3± 0.9 m3J�1s�1, and M1 = 1.8± 1.0
m3J�1s�1. The mean square-displacements are known to have poor convergent properties and the
presented results were obtained using only two trajectories. Despite this numerical uncertainty,
the qualitative shape of h|�R

m

|2i is reproduced and the fitted values are in the correct order of
magnitude, showing the that the interface dynamics is consistent with the Langevin model.
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Figure 6.9.2.: Mean square displacement analysis for m = 0 (�) and m = 1 (⇤). Each curve is the result of
the average of two realizations. The solid lines correspond to fits h|�R

m

|2i = A
m

[1�exp(�t/⌧
m

)]+c
m

. The
fitted parameters are A

0

/d2 = 0.599±0.005, c
0

/d2 = 0.175±0.004, ⌧
0

= 2.09±0.06 s, A
1

/d2 = 1.47±0.03,
c
1

/d2 = 0.131± 0.004, ⌧
1

= 5.03± 0.17 s.

6.10. Appendix: Error analysis

Both |f�R
m

|2 and K
m

have large fluctuations. Their distributions are strongly non-Gaussian, which
implies that the corresponding error analysis has to be realized carefully. For example, the measured
average kinetic energy for m = 0 is 8.0 nJ, whereas its standard deviation is 7.9 nJ. Thus, the error
related to this measurement is not its standard deviation. In fact, the associated error has to be
computed with a generalized criterion. When a measurement of a quantity x is performed, the usual
procedure is to assign the standard deviation �

x

as error to the average hxi of a set of data. For a
Gaussian distribution, the range [hxi � �

x

, hxi+ �
x

] corresponds to a confidence interval of ⇡ 68%,
meaning that if a new measurement is performed, it has a 68% probability to be in this range.

Fig. 6.10.1(a) shows that K0 obeys a Boltzmann distribution, strongly non-Gaussian. Fig. 6.10.1(b)
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Figure 6.10.1.: (a) Probability density function, PDF, and (b) cumulative density function, CDF, of K
0

for
one realization. In (a), the continuous line shows a Boltzmann distribution fit, PDF(K

0

) = A exp(�K
0

/B),
with A = 0.14±0.02 (nJ)�1 and B = 8.1±0.4 nJ. In (b), the vertical solid line corresponds to the average
hK

0

i = 8.5 nJ; the vertical dashed lines show the limits for which 16% of the data is below hK
0

i � ��,
and 16% is above hK

0

i+ �
+

, with �� = 6.9 nJ and �
+

= 7.1 nJ. For the other realization, hK
0

i = 7.5 nJ,
�� = 6.2 nJ and �

+

= 6.1 nJ.
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Figure 6.10.2.: (a) Probability density function, PDF, and (b) cumulative density function, CDF, of K
1

for
one realization. In (a), the continuous line shows a generalized Poisson distribution fit, log[PDF(K

1

)/d] =
�a(K

1

+ b) + c log[a(K
1

+ b)], with a = 0.32 ± 0.04 (nJ)�1, b = �0.02 ± 0.60 nJ, c = 1.0 ± 0.5 and
d = 0.33 ± 0.06 (nJ)�1. In (b), the vertical solid line corresponds to hK

1

i = 6.1 nJ; the vertical dashed
lines show hK

1

i � �� and hK
1

i + �
+

, with �� = 4.1 nJ and �
+

= 4.1 nJ. For the other realization,
hK

1

i = 5.7 nJ, �� = 3.8 nJ and �
+

= 3.8 nJ.

presents the cumulative distribution function (CDF) of the data presented in Fig. 6.10.1(a). The
adopted criterium is the following: errors �� and �+ are computed by estimating the values of the
measured quantity that insure that 16% of the data is lower than hK0i���, and 16% is larger than
hK0i + �+. Thus, 68% of the data lies in the range [hK0i � ��, hK0i + �+]. The same procedure
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is realized for each mode m. Fig. 6.10.2(a) shows that K1 obeys a generalized Poisson distribution,
also strongly non-Gaussian. We have not yet a satisfactory explanation of why this fit seems to
work very well, so it must be considered as a phenomenological fit. The distribution’s asymmetry
affects less the measured error bars. For the particular realization shown in this figure, �� = 4.1 nJ
and �+ = 4.1 nJ, with hK1i = 6.1 nJ. However, the average is clearly larger than the most probable
value Kmp

1 = 3.0 nJ (also known as the maximum likelihood value). For m > 2, all K
m

obey the
generalized Poisson distribution. Furthermore, between m = 2 and m ⇡ 30 they all collapse on a
single curve, which is consistent with the observed equipartition. The fluctuations of |f�R

m

|2 also
obey similar non-Gaussian, asymmetric distributions. Their error bars are computed using the same
procedure described above. For both |f�R

m

|2 and K
m

the final asymmetric error bars are computed
by averaging two independent realizations, thus reducing the total error. Because the asymmetries
in the errors for both |f�R

m

|2 and K
m

are small, the reported error bars in the paper correspond
to the maximum of �� and �+, which allow an easier computation of errors when quantities with
uncertainty are combined (sum, difference, multiplication or division) or when they are used for
computing another quantity by means of a non-linear function.
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7. Dynamic analysis and waves

« If your experiment needs statistics, you ought to have done a

better experiment. »

Ernst Rutherford

In Chapter 5 we presented a thorough analysis on some of the static properties of the system, in
particular we focus on the static structure factor S (k) and the 4-bond orientational order parameter
S4 (k). We showed that the system may be described by a conserved field ⇢ coupled to a non-
conserved order parameter �Q4. But what about the dynamic properties? What is the dynamics of
both density and order fluctuations? How are the dynamics of both solid and liquid domains once the
transition has occured? In this chapter some experimental results on the dynamics of the system
are presented. We characterize the time dependence of the fluctuations by means of dynamical
correlation functions such as the current correlation function J(~k, t), and the intermediate coherent
scattering function F (

~k, t).

7.1. Overview

In a recent work by Clerc et.al [8], where a quasi-one dimensional system was studied, two main
results were obtained. By measuring the effective granular pressure, they showed that macroscop-
ically the solid-liquid granular transition is triggered by a negative compressibility, like in the van
der Waals phase coexistence (see Sec. 2.3.1). The second important conclusion of this work is that
the transition is mediated by waves, and that crystals in the system interact through them.

By a process of coarse-graining it is possible to obtain density ⇢, as well as momentum ⇢ hvi, as a
function of time. Typical space-time diagrams are shown in Fig. 7.1.1. From space time diagrams
they could show that momentum pulses are created from fluctuations, they propagate throughout the
system, and then decay due to inelasticity and friction. By means of this coarse-graining procedure
they reported that the group speed of waves is c ⇡ 5� 50 cm/s. The large uncertainty comes from
the difficulty to choose where exactly a pulse appears and where it decays.

Therefore, from these results, a natural step to follow would be to try to study these waves in a
more quantitave way. Besides, by using the criterium explained in Sec. 4.2 to distinguish between
the two phases, we can characterize these waves in each phase separately.
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Figure 4 Density and longitudinal momentum space–time diagrams for early stages of the solid cluster formation. a,b, Experimental results for ρ and ρ〈vx〉
respectively obtained for f= 70Hz, A= 0.1d, Ly = 6.2mm, ρo ≈ 1 and Nm = 630. Time and space are normalized by oscillation period T= 1/ f and d respectively.
c,d, Molecular dynamics simulational results for ρ and ρ〈vx〉 respectively, with ρo = 1, Ly = 6.2d, Lz = 1.8d, Lx = 90d, f= 70Hz and A= 0.1d. e,f, Results from the
damping van der Waals normal form, equation (1), in the limit where noise, friction and viscosity are important, ε = −0.5, u0 = −0.155, η = 0.5, ν = 1.0 and σ = 0.2.
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(a) (b)

Figure 7.1.1.: Density (a) and momentum (b) space-time diagram respectively for a quasi-2D system (L
x

=

90d, L
y

⇡ 6d and L
z

= 1.8d) vibrated at f = 70 Hz. Solid lines in (a) and (b) corresponds to ⇢ = 1 [8].

7.2. Intermediate coherent scattering function F (~k, t)

As a reminder, we define a particle to be in the solid phase whenever its 4-bond orientational
order parameter |Qj

4| is larger than some critical value |Qc

4| ⇡ 0.7, which depends on the forcing
amplitude �. The results presented in this chapter come from videos taken at an acquisition rate of
facq = 500 Hz, where each video has 3300 images. Besides, all the dynamical correlation functions
presented below are calculated from an ensemble average of 45 videos, all of them acquired at the
same acceleration �. We study 4 different situations; by using the two configurations C1 and C2
previously defined1, we sudy the case when the system is in the homogeneous regime (� < �

c

) and
when the system presents both liquid and solid phases coexisting (� > �

c

). In particular, we study
the cases presented in Tab. 7.1 for the thick ITO glass plates.

C1 C2
� < �

c

1.32± 0.01 2.60± 0.01

� > �

c

2.19± 0.00 5.23± 0.01

Table 7.1.: Cases studied. Each one of all the four cases are procesed by means of an ensemble average
of 45 videos. In configuration C1, the critical acceleration is �C1

c

= 1.98, and was obtained by direct
observation of the system, not by means of the method presented in Sec. 5.4. In C2 the critical acceleration
is �C2

c

= 4.48± 0.03.

Hence, the first quantity that we study is the intermediate scattering function F (

~k, t) which is defined
as

F
⇣

~k, t
⌘

⌘ h⇢̂ (k, t) ⇢̂⇤ (k, 0)i � h⇢̂ (k, t)i h⇢̂⇤ (k, 0)i
N

, (7.2.1)

1Both configurations are defined such as C1: N = 9878, L

z

= 1.81d and C2: N = 11504, L

z

= 1.94d.
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~k, t)

where the brackets h i denote an ensemble average, and ⇢̂ (k, t) is the Fourier transform of ⇢ (r, t).
A typical behavior of F (k, t) for a molecular liquid is shown in Fig. 7.2.1. Hence, we observe that
at very low and large wavenumbers the function presents a pure exponential decay, whereas for
intermediate kd, it shows some oscilations. S. Dalgıç / Materials Chemistry and Physics 103 (2007) 183–189 187

Fig. 4. Normalized intermediate scattering function F(q,t) for liquid Cu at
T = 1453 K.

In Fig. 4, F(q,t) exhibits an ossicilatory behaviour which per-
sists up to q ≈ 2qp/3, with the amplitude of osscilations being
stronger for the smaller q values. This typical behaviour has been
found for other liquid metals near melting by either computer
simulations or theory [21]. A different behaviour has been noted
for the results obtained from the M-EAM and FZ-EAM models.
It is well known that F(q,t) is closely connected to the dynamic
structure factor S(q,ω), which is obtained by a time Fourier trans-
form of the F(q,t). The results obtained for the S(q,ω) are shown
in Fig. 5 for a range of wave vectors up to q ≈ 3qp/2.

In Fig. 5, the dynamic structure factor shows weak side peaks,
indicative of collective density excitations, up to q ≈ 2.5 A−1.
Although the similar shape of the peaks at the lowest q values
cannot be observed in the results for other EAM models. How-

ever there is no experimental and theoretical data in order to
compare the presented results.

2.4. Transport properties

The self-diffusion coefficients D for liquid copper can be
obtained from the velocity autocorrelation function or from the
mean square displacement (E) relations using the EAM based
effective pair potentials and static structures. The values of D
have calculated at different temperatures just above melting
point, i.e. in the liquid state from the long time behaviour of the
mean square displacements of the atoms. The obtained D values
near its melting have presented in Table 1 by comparing with
the experimental data and the results of previous calculations.
The values of D obtained in this work using the correspond-
ing GK and E relations are mutually consistent. Thus, Table 1
is included the results of GK relation for self-diffusion coef-
ficients. Note that the pair potential approximation gives the
values of D which are approximately 10% lower than the cor-
responding each EAM versions. That was noted by Alemany et
al. in the VC-EAM calculations [6].

In order to determine the time dependence of self-diffusion
coefficient, the results for the self-diffusion coefficients are plot-
ted versus temperature in Fig. 6 along with the experimental and
available theoretical results. The self-diffusion coefficient D of
liquid copper has been calculated at temperatures above melt-
ing point, i.e. in the liquid state. These calculations are limited
within a temperature range of 1373–2000 K.

As seen in Fig. 6 that the present results for DK(P)-EAM
are found to be in reasonable agreement with recent study of
Mitrokhin [24] and some what previous theories. However, the

Fig. 5. Dynamic structure factor S(q,ω) for several q values, obtained from DK-EAM model for liquid Cu at T = 1423 K.

Figure 7.2.1.: Normalized intermediate scattering function F (k, t) for liquid Cu at T = 1453 K [95]. At
low wavenumbers (large wavelengths), oscillations are observed, indicative of propagation of sound waves.
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Figure 7.2.2.: F (k, t) as a function of time for different low wavenumbers, for the case (C1, � < �

c

).
The situation is similar to the other cases. It is clear that F (k, t) follows an exponencial decay law,
F (k, t) ⇡ F (k, 0) exp (�t/⌧

F

), from which we can extract the characteristic time ⌧ . Only data above de
noise threshold for this correlation function is shown for each kd.

The behavior of F (k, t) in our case is shown in Fig. 7.2.2 for C1 and C2, where there is no phase
separation. As can be seen from this figure, we have that at short times, the intermediate scattering
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Chapter 7 Dynamic analysis and waves

function follows an exponential decay law F (k, t) ⇡ F (k, 0) exp (�t/⌧
F

). By fitting F (k, t) with
this exponential decay, we can extract the time ⌧

F

for each wavenumber k. The results obtained for
the 4 cases analyzed are presented in Fig. 7.2.3.
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Figure 7.2.3.: Inverse of the decay time ⌧
F

for the 4 cases studied. The fits were done in the region where
F (k, t) /F (k, 0) � 9 · 10�2. The errorbars come from errors derived from the fits.

We observe from Fig. 7.2.3 that ⌧�1
F

increases monotonically with k. Besides, for the case (C1,
� > �

c

) the time seems to behave like ⌧�1 ⇡ ak2
+ b, whereas for the other cases such a simple

behavior is less clear.

On the other hand, as was pointed out above, we can also distinguish whether a particle is the solid
phase, or the liquid phase. By computing the histograms of |Qj

4| for each case, we detect the minimun
that is between the 2 main peaks corresponding to each phase. This is depicted in Fig. 7.2.4. When
the system is far below the critical point (� < �

c

), this minimum is not so well defined, in particular
for C1 configuration, given that the number of particles in the solid phase is small compared to
the total number particles N . Besides, it is easy to notice that these solid particles are “isolated”
from each other. Therefore, even though we can define a minimun in the histogram, it is not clear
whether we can actually define the correlation functions for each phase separately.

Hence, with the computed |Q4| critical values, we can obtain the intermediate scattering functions for
each phase, F

sol

(k, t) and F
liq

(k, t). These are shown in Fig. 7.2.5 along with F (k, t). According to
this figure, we observe that F (k, t) follows a pure exponential decay F (k, t) = F (k, 0) exp (�t/⌧

F

)

(see above), whereas both phases follow separately a “two-step” exponential decay. That is, there
are two decay times ⌧1 and ⌧2, with ⌧2 ⌧ ⌧1, that are related to F

sol/liq

(k, t) through the relation

F
sol/liq

(k, t) ⇡ A1 exp(�t/⌧1 (k)) + A2 exp (�t/⌧2 (k)) . (7.2.2)

One possible interpretation, is that the short time ⌧1 is related to the fact that ⇢ is not conserved,
that is, the particles change of identity or state (solid or liquid). The stay at an specific phase during
a characteristic time ⌧1, while ⌧2 is related to a long time dominated by the hydrodynamics.
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Figure 7.2.4.: Histograms of |Qj

4

| for the 4 cases studied, obtained from statistics of 300 images. The critical
values are |Qc

4

| = 0.715, |Qc

4

| = 0.735, |Qc

4

| = 0.705, |Qc

4

| = 0.740.
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Figure 7.2.5.: Intermediate scattering functions for the case (C1, � > �

c

) computed separetely for the solid
phase, the liquid phase and the whole system (F

sol

(k, t), F
liq

(k, t) and F (k, t) respectively) for kd = 0.15.
The other cases show fundamentally the same behavior, that is, F (k, t) decays with a pure exponential
law, whereas both phases decay according to F

sol/liq

(k, t) ⇡ A
1

exp(�t/⌧
1

(k)) + A
2

exp (�t/⌧
2

(k)) .
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As was stated before, it is not clear if the distinction between both phases when the system has
not yet crossed the transition would lead to consistent physical results. On the other hand, there is
something that should be noticed. That is, when F (k, t) is computed for one phase only, it presents
this “two-time” decay. However, when computed using all the particles, the contribution of all of
them seems to cancel out, yielding a pure exponential decay.
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Figure 7.2.6.: (a)-(b) Decaay times ⌧
1

(left) and ⌧
2

(right) obtained from fits of equation 7.2.2 for both phases
in configurations C1(top) and C2(bottom), respectively. For configuration C1 we present the data in a
semilog scale, given that there is a difference of almost two orders of magnitude between the different
times.

The decay times ⌧1 and ⌧2 obtained from the fits of F
sol

(k, t) and F
liq

(k, t) are presented in Fig. 7.2.6.
We observe that when the system is above the transition (� > �

c

), the long times ⌧1 are vey similar
between the two phases in C2, while in C1 there is a factor ⇡ 10 between them. Besides, they
seem to follow a cuadratic behavior 1/⌧ ⇠ ⌫k2

+ µ. In the literature it is well known that this kind
of behavior is expected for the decay time of some dynamical correlation functions, in which the
coefficient µ is associated to the friction, whereas the term ⇠ ⌫k2 comes from the viscosity term
in the hydrodynamic equations (see [40] and references therein). In Sec. 7.4.1 we give a brief and
simple derivation of this relation for the case of the transverse current correlation function J

t

(k, t),
given that the transverse current is uncoupled from all the other transport properties. Hence, in this
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7.3 Dynamic 4-fold bond-orientational structure factor F4 (k, t)

scheme the results presented imply that in C1, µ
s

< µ
l

; whereas in C2 we have the opposite: µ
s

> µ
l

.
Regarding the short times ⌧2, we can see that in all the cases they seem to be constant throughout
k, except for very low k, where in some cases the intermediate scatering function is “contaminated”
by the forcing frequency of f = 80 Hz. This is more noticeable at low modes, making the fits not
very reliable at short times in this region.

7.3. Dynamic 4-fold bond-orientational structure factor F
4

(k, t)

We now turn to the characterization of the relaxation time of the metastable solid clusters. The
two-time bond-orientational correlation function is defined by

F4(
~k, ⌧) =

h� bQ4(
~k, t + ⌧)� bQ4(

~k, t)⇤i
N

, (7.3.1)

where ⇤ stands for the complex conjugate and � bQ4(
~k, t) = bQ4(

~k, t)� h bQ4(
~k, t)i. Given the property

of the 4-fold orientational order paramter, |Qj

4| = 1 for particles in a square symmetry, the main
contribution in F4 (k, t) comes from the solid particles. At the frequency we acquired the images
(500 Hz), we are not able to see any significant behavior in F4 (k, t) for the liquids particles alone,
because it decays too fast to be captured at 500 Hz, and hence with our capabilities we see that it is
governed by noise. In Fig. 7.3.1 we show the behavior of F4 (k, t). Within experimental error, both
F sol

4 (k, t) and F all

4 (k, t) follow the same laws, except by some proportionality constant. Therefore,
in the analysis of F4 (k, t) we will not make the distinction between both phases, and we just compute
it by adding up all the terms in the equation 7.3.1.
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Figure 7.3.1.: Typical F
4

(k, t) for all the particles, and only the solid particles for kd = 0.11. We present
here the results for the configuration C1, but C2 is analogous. We see that if � < �

c

, we have a pure
exponential decay, whereas when � > �

c

, F
4

(k, t) shows the same feature of a “two-time” exponential
decay presented in F (k, t). Unlike the results shown in Sec. 5.5, here we can see a rapid decay time which
is not visible in F

4

(k, t) for Fig. 5.5.1. This is because now we acquired the images at 500 Hz, and not at
10 Hz as for the data presented in Sec. 5.5 and [53].

From Fig. 7.3.1, when � < �

c

, we fit an exponential decay law and obtain the characteristic time
for F4 (k, t) . This is shown in Fig. 7.3.2. We observe that ⌧4 is roughly a constant for both
configurations, besides we obtain ⌧C1

4 < ⌧C2
4 . Meanwhile, when the system is above the critical

point (� > �

c

), for the two-time decay we fit F4 (k, t) as the sum of two exponential functions,
F4 (k, t) ⇡ A1 exp (�t/⌧1) + A2 exp (�t/⌧2). We then can extract both times ⌧1 and ⌧2, which are
shown in Fig. 7.3.3.
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) +

A
2

exp (�t/⌧
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) for C1 and C2.
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Again, we have that the short times ⌧2, the fits are not very reliable at the very low k, especially for
C2. But, with some certainty we obtain that ⌧2 is approximately a constant. On the other hand,
we have that ⌧C1

1 seems to follow a law like ⌧�1 ⇠ ak2
+ b, but just for very low k. However, for C2

the situation is markedly diferent, ⌧C2
2 follows in very good aggrement ⌧C2

2 ⇠ ⌫k2
+ µ in the whole

range of kd studied.

7.4. Current correlation function J (k, t)

Finally we focus our attention to the current correlation function. We start by defining the current
density

j (r, t) =
N

X

l=1

v
l

(t) � (r� r
l

(t)) . (7.4.1)

With this, the current correlation function, is defined as

J
↵�

�

�

�r� r0
�

� , t
�

=

hj
↵

(r0, 0) j
�

(r, t)i
N

, (7.4.2)

where ↵ and � denote cartesian indices. For a system with spherical symmetry (radial in our case),
only the pure longitudinal and transverse components J

l

and J
t

are relevant. By Fourier transforming
J
↵�

(r, t) we obtain

J
↵�

(k, t) =
hj⇤k↵ (0) jk� (t)i

N
, (7.4.3)

with

jk↵ =

N

X

l=1

v
l↵

(t) eik·r
l

(t). (7.4.4)

From 7.4.3 it is possible to extract the longitudinal and transverse parts of the current correlation
by means of

J
↵�

(k, t) =
k
↵

k
�

k2
J

l

(k, t) +

✓

�
↵�

� k
↵

k
�

k2

◆

J
t

(k, t) . (7.4.5)

where �
↵�

is the Kronecker delta function. Hence, the standard definitions for J
l

(k, t) and J
t

(k, t)
are

J
l

(k, t) =

*

1

N

N

X

i,j=1

⇣

k̂ · v
i

⌘

(t)
⇣

k̂ · v
j

⌘

(0) eik·(r
i

(t)�r
j

(0))

+

,

(7.4.6)

J
t

(k, t) =

*

1

N

N

X

i,j=1

⇣

k̂⇥ v
i

⌘

(t)
⇣

k̂⇥ v
j

⌘

(0) eik·(r
i

(t)�r
j

(0))

+

.
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Besides, it is straightforward to show that

J
l

(k, t) = � 1

k2
@2

t

F (k, t) , (7.4.7)

where F (k, t) is the intermediate scattering function previously defined. This last equation implies
that the content of information is the same in both functions, however it will be clear that some
spectral properties, such as the collective modes in the system, are more easily obtained in J

l

(k, !)
rather in F (k, !)2 [96, 97].

7.4.1. Transverse current correlation function J
t

(k, t)

A phenomenological relation between current and gradient of the density, which plays the same role
as the Fick’s rule of difussion, is the Newtonian form of the stress tensor:

⌧
↵�

(r, t) = �
↵�

p (r, t)� ⌘

⇢

✓

@j
↵

(r, t)
@r

�

+

@j
�

(r, t)
@r

↵

◆

� �
↵�

r · j (r, t)
✓

⌘
B

⇢
+

2

3

⌘

⇢

◆

, (7.4.8)

where p is the local pressure, ⌘ the shear viscocity, and ⌘
B

the bulk viscocity. Combining this with
the momentum conservation, one obtains the Navier-Stokes equation of fluid dynamics

@

@t
j (r, t) +rp (r, t)� ⌘

Mn
r2j (r, t)� 1

Mn

✓

⌘
B

+

1

3

⌘

◆

rr · j (r, t) = 0, (7.4.9)

where ⌫ = ⌘/Mn is the kinematic viscocity.

Given that we are only interested in the shear viscocity, it is sufficient to consider only the transverse
part of the current. We therefore divide j (r, t) into longitudinal and transverse parts

j (r, t) = j
l

(r, t) + j
t

(r, t) , (7.4.10)

where,

r · j
t

(r, t) = 0,

(7.4.11)
r⇥ j

l

(r, t) = 0.

Thus, inserting j
t

(r, t) into the Navier-Stokes equations we get

@

@t
j
t

(r, t) =
⌘

Mn
r2j

t

(r, t) . (7.4.12)

From this, one finds that the transverse current correlation function is given by

J
t

(k, t) = v2
0 exp

�

�⌫k2t
�

. (7.4.13)

2

J

l

(k, !) and F (k, !) are the temporal Fourier transfom of J

l

(k, t) and F (k, t) respectively.
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7.4 Current correlation function J (k, t)

It should be kept in mind that these last equations are valid only at long times and small k. This
last equation is the hydrodynamic expression for the transverse current correlation function. Its
form indicates that J

t

(k, t) dissipate exponentially in time at a rate equal to ⌧�1
k

= ⌫k2, which is
also the half-width at half maximum of J

t

(k, !).

By introducing a dissipative term �µj in 7.4.9, the solution for J
t

(k, t) becomes

J
t

(k, t) = v2
0 exp

�

�
�

⌫k2
+ µ

�

t
�

, (7.4.14)

and hence, the dissipative time is now

⌧ (k) =
1

⌫k2
+ µ

. (7.4.15)

In Fig. 7.4.1 we show the transverse current correlation function for a hard-sphere system. We
observe that for the low wavenumber, the function decays exponentially. However, at the high
value of kd, J

t

(k, t) is negative at an intermediate time, implying that the relation expressed in
7.4.13 for J

t

(k, t) is an inadequate description, given that according to it, J
t

(k, t) should always be
positive. Therefore, viscoelastic effects should be taken into account, and hence we conclude that
the kinematic viscosity ⌫ must depend on the wavelength and the frequency [98, 99]. In other word,
in order to have transverse current waves we need to add an inertial term (second derivative) to the
equation 7.4.12.

3) Fluctuaciones de densidad y funciones de 
correlación

Comportamiento visco-elástico

“Generalized hydrodynamics”, Alder & Alley, Phys. Today (Jan. 1984)
Vogelsang & Hoheisel, Phys. Rev. A Vol. 35, 1786 (1987) 

45

Figure 7.4.1.: Transverse current correlation function for a hard-sphere fluid at a density corresponding to
V/V

0

= 1.6 and for wavenumbers kd = 0.76 (open symbols), and kd = 2.28 (closed circles) using molecular
dynamics. The solid lines represent the hydrodynamic calculations [98].

We will focus in the meantime on the case where the system is far from the critical point (� < �

c

)
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for both configurations C1 and C2. In this regime, we surprinsingly have the same kind of behavior
of viscoelasticity, as it is evident in Fig. 7.4.2.
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Figure 7.4.2.: Transverse current correlation function J
t

(k, t) for our system in the case (C1, � < �

c

). In
the case (C2, � < �

c

), the situation is the same.

It is clear from Fig. 7.4.2 that at the low wavenumber kd = 0.09, J
t

(k, t) shows a pure exponential
decay, whereas at kd = 1.65 it clearly crosses through zero and then has some damped oscilations.
These oscilations at high wavenumbers become manifest in the Fourier transform of J

t

(k, t) shown
in Fig. 7.4.3.

Figure 7.4.3.: Fourier transform of the transverse current correlation function J
t

(k, t) in the case (C1,
� < �

c

). The case (C2, � < �

c

) presents the same basic features.
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7.4 Current correlation function J (k, t)

In Fig. 7.4.3 we observe clearly the forcing frequency of f = 80 Hz, specially at low k. Besides,
we can also notice that for wavenumbers approximately kd . 0.7 the Fourier transform of J

t

(k, t)
takes very high values, but there is not a well defined peak, but instead a maximum value at f = 0.
However, for larger wavenumbers (kd & 0.7), the Fourier transform does present a peak that has
moved away from zero, showing the same phenomenon of viscoelasticy presented before.
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Figure 7.4.4.: Transverse current correlation function J
t

(k, t) showing the “two-time” decay for the solid
phase, while the liquid phase shows a pure exponential decay.
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Figure 7.4.5.: Decay time of the transverse current correlation function J
t

(k, t) for the two configurations
(left: C1, right: C2). For the solid particles showing the “two-time” exponential decay, and the liquid
phase which shows a pure exponential decay.

By computing J
t

(k, t) for each solid and liquid phases separately we obtain Fig. 7.4.4. Again, we
observe this same “two-time” decay feature for J

t

(k, t) for the solids particles, whereas for the liquids
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particles we have a pure exponential decay. By fitting Jsol

t

(k, t) = A1 exp (�t/⌧
s1)+A2 exp (�t/⌧

s2)

and J liq

t

(k, t) = B1 exp (�t/⌧
l

), for both the liquids and solids particles respectively we obtain the
results presented in Fig. 7.4.5.

From this figure, while ⌧
l

and ⌧
s1 show in excellent agreement a behavior according to ⌧ ⇠ ⌫k2

+ µ,
the short time ⌧

s2 for the solid phase is nearly a constant. Thus, a possible interpretation is that
while the solid particles are trapped by the their neighbors, its characteristic time ⌧2 is dominated
by the friction µ. However in the hydrodynamic regime, it is dominated by an effective viscosity.
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Figure 7.4.6.: Transversal current correlation function for the solids particles Jsol

t

(k, t) when � > �
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at
kd = 0.22.
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Figure 7.4.7.: Example of J
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(k, !) for kd = 0.43. The continuous blue line is obtained by fitting a degree
5-polynomial in order to obtain !

max

.

In contrast to what we have just shown, when the system has already crossed the transition (� > �

c

),
i.e. the system is no longer homogeneous but it presents the two phases coexisting, the transverse
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7.4 Current correlation function J (k, t)

current correlation function J
t

(k, t) does actually presents oscilations in the solid phase. This is
shown in Fig. 7.4.6. Hence, we from Fig. 7.4.6 by computing the fourier transform to J

t

(k, t) we
obtain J

t

(k, !). An example of J
t

(k, !) for kd = 0.43 is shown in Fig. 7.4.7.

Therefore, by extracting the frequency where J
t

(k, !) is maximum, we obtain the speed of the sound
waves along with its dispersion relation. These relations are shown in Fig. 7.4.8. We can conclude
that approximately the dispersion relation for the waves in the solid seems to obey a linear law
! ⇠ k. Besides, the speeds found (c ⇠ 8 � 20 cm/s depending on k) are in very good agreement
with the results found by Clerc et.al in [8].
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7.4.2. Longitudinal current correlation function J
l

(k, t)

Lets take a look now at the longitudinal current correlation function J
l

(k, t). It is well known in the
literature that it presents damped oscilations in a wide range of wavenumbers [40, 97]. In Fig. 7.4.9
we show J

l

(k, t) obtained from molecular dynamics simulations for a granular system of N = 2 · 105

spherical particles with periodic boundary conditions.HYDRODYNAMIC CORRELATION FUNCTIONS OF A . . . PHYSICAL REVIEW E 83, 011301 (2011)
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FIG. 8. (Color online) Longitudinal current correlation as a
function of time for several densities. Inset: Variation with q.

speed of sound can be obtained from the maximum of Cl(q,ω).
The peak position ωmax as a function of the wave number q is
shown in Fig. 10. As shown in the inset, the peak position does
not depend on ε. For small wave numbers a linear dispersion
is observed (dashed lines in Fig. 10), while deviations from
linear behavior for larger wave numbers are more pronounced
for denser systems.

V. FLUCTUATING HYDRODYNAMICS

In this section we compute S(q,ω) from fluctuating
hydrodynamics. Our presentation follows closely the work of
van Noije et al. [19], except that we take care to conserve
momentum at each instant in time, thereby avoiding a
divergence of the static structure factor.

The hydrodynamic equations for the number density n and
the flow velocity u without driving are the same as for an
elastic fluid. However, the equation for the temperature differs
due to the energy dissipation in collisions and the energy input
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FIG. 9. (Color online) Longitudinal current correlation as a
function of angular frequency.
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FIG. 10. (Color online) Position of the maximum ωmax longitu-
dinal current correlation Cl(q,ω). Solid lines and filled symbols are
for ε = 0.9, and dashed lines indicate linear fits with slopes as listed
in Table III. Inset: Comparison ωmax for ε = 0.9 (solid lines) and for
ε = 0.8 (dash-dotted lines).

due to driving:

∂tT = DT %T − 2p

dn
∇u − & + mξ 2

0 + θ. (13)

Here we present results in d = 3 dimensions. The energy dis-
sipation due to collisions, &, is estimated as & = 2T νcoll

1−ε2

2d
with collision frequency νcoll. The input of kinetic energy due
to driving is given by mξ 2

0 , p denotes the pressure, DT the
thermal diffusivity, and the noise θ will be specified below.

For a granular medium, Fourier’s law should be generalized
[29] to include a contribution to the heat current q due to
density gradients: q = −κ∇T + µ∇n. For elastic systems the
transport coefficient µ has to vanish. For inelastic systems
it has been estimated by various means [29–31]. It turns
out that the coefficient µ is very small for driven systems.
Garzó and Montanero [32] have computed it for the stochastic
thermostat under consideration and compared it to the undriven
system (see Fig. 3 in Ref. [32]). For the parameters under
consideration, µ/κ is less than 13% and has been neglected.
We have also ignored nonlinear terms involving the flow field
because we consider only linear hydrodynamics.

In the stationary state the energy dissipation in collisions
and the energy input due to driving balance on average:

&0 = mξ 2
0 . (14)

We expand in fluctuations around the stationary state: n =
n0 + δn, T = T0 + δT , and & = &0 + δ&. The collision
frequency should be proportional to the density, the pair
correlation function at contact χ , and the thermal velocity,
νcoll ∝ nχT 1/2; hence linearization around the stationary state
&0 yields & ∼ &0(1 + δn

n0
+ 1

χ
dχ
dn

δn + 3δT
2T0

).
Following van Noije et al. [19], we consider a hydrody-

namic description of a granular fluid based on conservation
of particle number and momentum and the relaxation of
temperature to its stationary value T0. The transverse mo-
mentum decouples so that we are left with three equations

011301-5

Figure 7.4.9.: Longitudinal current correlation function for a hard-sphere granular fluid. Several packing
fractions ⌘, and different normal restitution coefficients " are studied [96].

In our system, we observe that J
l

(k, t) basically does not show significant differences between the
two configurations C1 and C2. Hence, in Fig. 7.4.10 we show the behavior of J

l

(k, t) for C1 only.
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Figure 7.4.10.: J
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(k, t) in our system for C1 computed for all the particles, and each phase separately at
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.
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We observe from Fig. 7.4.10 that both Jall

l

(k, t) and J liq

l

(k, t) do not change much between the two
regimes. However Jsol

l

(k, t) shows a rapid decay for � < �

c

, whereas for � > �

c

it shows damped
oscilations. Therefore, just as we did before, we can obtain the Fourier transform of J

l

(k, t). The
Fourier transform of J liq

l

(k, t) is shown in Fig. 7.4.11.

Figure 7.4.11.: Fourier transform of the longitudinal current correlation function J liq

l

J (k, t) for (C1,� >
�

c

). The other cases show basically the same.
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Figure 7.4.12.: Left: Dispersion relation of the sound waves for both configurations C1 and C2 when � < �

c

.
Right: Longitudinal sound speed of the waves in the liquid.

Again, we can observe from Fig. 7.4.11 the forcing frequency (f = 80 Hz), along with a low frequency
peak which is related to the sound waves in the system [40, 96, 97, 100]. Hence, a rough estimate of
the sound speed may be obtained from the maximum of J

l

(k, !).
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Therefore, by extracting the frequency where J
l

(k, !) is maximum, we obtain the speed of the
longitudinal sound waves along with its dispersion relation. They are both shown in Fig. 7.4.12.

From Fig. 7.4.12 we can say that in both configurations, at low wavenumbers (kd)2 < 0.5, the
frequency seems to obey a law ! ⇠ ⌫k2

+ µ. In consideration of the sound speed c
l

, it seems to
have some different regimes. The velocity decreases with kd up to kd ⇡ 0.3, and an opposite slope
is observed above, with a change about kd ⇡ 0.5, where it becomes more difficult to say something
due to the large dispersion of the data. Nevertheless, these observations are intimately related to
a relaxation scenario. Finally, when the system has already approached the transition (� > �

c

),
we have the two phases well differentiated and we can compute the sound waves for each phase
separately. This is shown in Fig. 7.4.13.
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Figure 7.4.13.: Dispersion relation and phase speed of the waves in both solid and liquid phases. Top:
configuration C1. Bottom: configuration C2. We added the case of the transverse waves in the solid for
its comparison.

Hence, from this figure we may conclude that the longitudinal waves seem to follow a law !
l

⇠ ⌫k2
+µ

in both phases, whereas the trasverse waves obey ! ⇠ k. Nevertheless, to conclude about these
dispersion relations still require more analysis given that the data are still very noisy and at low kd
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is difficult to distinguish between linear and quadratic behaviors. However, we have that at low kd,

csol

l

> cliq

l

csol

l

> csol

t

(7.4.16)
cliq

l

& csol

t

,

which is also satisfied in molecular systems [13]. From the dispersion relations we can obtain the
group speed of the waves for both configurations, which are shown in Fig. 7.4.14. Given that the
data for the dispersion relations are noisy, we computed the group speeds by smoothing the curves
shown in Fig. 7.4.13. This was done by averaging f (k) in 100 windows k 2 [nk

min

, (n + 1) k
min

] for
integer n � 1, where k

min

= ⇡/L. From Fig. 7.4.14 we observe that in C1, the group velocity is
almost constant c

g

⇠ 5 � 10 cm/s, except at very low kd where it increases by a factor ⇠ 5. In C2
the situation is somewhat different given that c

g

does not vary much as a function of kd. However,
the data are much more noisy and hence, there is not a clear tendency.
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Figure 7.4.14.: Group speed of the waves in both solid and liquid phases. Left: Configuration C1. Right:
Configuration C2.

Accordingly, in this chapter we presented several results dealing with the dynamics of some correla-
tions functions. We extract the characteristic times associated for each phase separately. Besides, we
can also obtain dispersion relations as well as the phase and group speed of the waves that propagate
in the system in both phases, though a more detailed interpretation of these results will be matter
of future work.
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« Research is what I’m doing when I don’t know what I’m doing. »

Wernhern von Braun

In this thesis we have studied the density, order and capillary fluctuations in the vicinity of the
solid-liquid-like transition that occurs in a quasi-two-dimensional vibrated granular monolayer. By
means of the experimental setups presented in Chapter 3, and the widely used tools of statisti-
cal mechanics and hydrodynamics we investigated the role of the fluctuations and the static and
dynamics properties of the system.

In the first part of this thesis we have demonstrated that the non-equilibrium solid-liquid transition
that occurs in a shallow, quasi-two-dimensional granular system can be of either first- or second-order
type depending on the vertical height and filling density. This seems counterintuitive, because it is
widely believed that a solid-liquid phase transition can only be of first-order. However, motivated by
observations inside carbon nanotubes recent molecular dynamic simulations show that in confined
water nanofilms the transition to a solid phase can be either of first or second order, depending on
the filling density [50].

In our experiments, for both cases, density fluctuations do not show strong variations at the tran-
sition. In fact, we showed that the static structure factor S (k) actually presents a peak at low
wavenumbers, called the first sharp diffraction peak (FSDP) in the amorphous materials commu-
nity, which is related to the existence of medium range crystalline order [76]. In our case, the
characteristic length ⇠ of the these structures in the system do not show critical behavior.

On the contrary, local order varies strongly, either abruptly in the first-order type transition,
or continuously in the second-order type configuration. This is characterized through the bond-
orientational order parameter Q4, which in Fourier space shows an Ornstein-Zernike-like behavior.
When the transition is a second-order type, the associated correlation length ⇠4, the relaxation time
⌧4, the zero k limit of Q4 fluctuations (static susceptibility), the pair correlation function of Q4,
and the amplitude of the order parameter obey critical power laws, with saturations due to finite
size effects. Their respective critical exponents are ⌫? = 1, ⌫k = 2, � = 1, ⌘ = 0.67 and � = 1/2,
whereas the dynamical critical exponent z = ⌫k/⌫? = 2. The five static exponents were measured
independently of each other. Hence, the continuous transition presents critical-like behavior, with
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dynamic exponent z consistent with model C of dynamical critical phenomena, valid for a non-
conserved critical order parameter (bond-orientation order) coupled to a conserved field (density).
Aditionally, by changing both bottom and top lids of the cell, we show that these static exponents,
as well as the dynamic exponent z, are indeed universal, because within experimental error they do
not vary as we change the microscopic properties of the system (dissipation).

In the second part of our results we present an experimental study of the coarse-grained solid-liquid
interface fluctuations, which are characterized through the static and dynamic correlation functions
in Fourier space. We have demonstrated that these fluctuations turn out to be well described by the
capillary wave theory, which allows us to measure the solid-liquid interface surface tension �, and
mobility M once the granular “thermal” kinetic energy is determined. Both quantities are consistent
with a simple order of magnitude estimation considering the characteristic energy, length, and time
scales, which is very similar to what can be done for atomic systems. The scaling of the effective
surface tension with the granular temperature T b

g

suggests that the particles’ kinetic energy plays
the role of the cohesive energy that originates the capillary-like phenomenon in molecular liquids.
It would be interesting to relate the kinetic energy to a collisional pressure in each phase. For
this purpose, the unexpected result of energy equipartition of the surface Fourier modes should be
included in any theoretical approach. By doing so, we could handle the surface tension concept
by thinking in terms of pressure difference, as defined by the hydrodynamic law of Laplace. This
would allow to couple a particle’s scale study (e.g., by accounting for collisions, cross section, and
contact duration) to a macroscopic description and would raise the question of particle pressure
in granular media, well known for homogeneous gas fluidized beds [101], but still open for dense
granular flows. We also show that in configuration C1 the system presents two well defined regimes;
a small wavenumber regime (m = 3� 6) with a surface tension �1, and a large wavenumber regime
(m = 20� 55) with a surface tension �2, where �1 > �2. On the other hand, by analyzing directly
the images, we showed that in C1 the surface tension is almost constant as a function of �, whereas
in C2 it increases as we increase �.

In the third and final part of this thesis we show that the dynamical correlation functions density-
density and order-order, present exponential decays. We have demonstrated that the inverse of
the characteristic times either follow a quadratic law or are roughly constant, depending on the
temporal scale we observe. On the other hand, the current correlation function, in its transverse
and longitudinal parts, shows a rather richer behavior. We showed by means of its Fourier transform
that it actually presents oscilations, confirming in a more quantitave way some results previously
found [8]. By handling the current correlation function for each phase separately, we obtained
dispersion relations as well as phase and group wave speeds for each phase and for each component
of the current. We obtained that the longitudinal waves in both phases seem to obey ! ⇠ ak2

+ b,
while the transverse waves in the solid the dispersion relation is linear ! ⇠ ak. An interesting result
that we found is that at high wavenumbers, the transverse part of the current does present waves in
the liquid phase, thus indicating a viscoelastic behavior as it is found in some molecular fluids [98].

In order to further extend our work, one way would be to study other correlation functions. That
is, so far we have explored density-density, order-order and current-current correlations functions,
but it would be interesting to study correlations such as of density-order or even to study higher
order correlations such as the susceptiblities functions that are widely used in other systems to study
dynamical heterogeneities [102, 103, 104, 105].
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Another possibility is to study the phase of the imaginary 4-bond orientational order parameter Qj

4,
and not just its absolute value. This quantity because would provide information about the relative
orientation between the crystals, something that could be crucial when � > �

c

and the system has
not yet reached its stationary state, while the crystals are still moving and interacting until they
coalesce into one big cluster.

For the future, an interesting thing to do would be to study what happens for other heights of the
cell, i.e. to explore a more extended region in the phase space. Under some other conditions of
frequency, filling density and height, is already known that the system presents structures different
than the squared studied by us. Hence, the order parameter would not be �Q4 as in our case, but
probably the global parameter �Q6. For heights of the cell larger than 2d, some new experimental
methods would have to be used, given that with the actual setup it would not be possible to observe
particles in the bottom layers.
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Appendices





A. Hertzian contact force

By defining the strain tensor
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where u
i

(~r) is the displacement field at the point ~r, the simplest relationship between strain and
stress is1
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which is just the well know Hooke’s law. Where �ij

(~r) describes the i-component of the force acting
on a unit surface which is normal to the direction j. The constants E1 and E2 are related to Y and
⌫ by
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Now, if we call P (x, y) the pressure acting on the surface of the semi-space z > 0, the displacement
field in the bulk is (see [106] and references therein)
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where G
ik

is the corresponding Green function. For the problem that we want to solve now we only
need the z-component of the displacement on the surface z = 0. Thus, the only component needed
is [13]

G
zz

(x, y, z = 0) =

1� ⌫2

⇡Y

1

p

x2
+ y2

=

�

1� ⌫2
�

⇡Y

1

r
. (A.0.5)

1Einstein convention is used. Repeated indices are implicitly summed over.
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Chapter A Hertzian contact force

Figure A.0.1.: Two colliding bodies in the Hertz scheme. Dashed lines represent the original shape of the
bodies, whereas continuous lines correspond to the actual shape of the particles when they are in contact.

As we can see from Fig. A.0.1 that the equation
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holds in the region of contact. If we choose the axis to be the principal axis of the system, equation
A.0.6 becomes
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where the constants A1 and A2 are related to the radii of curvature of the surfaces in contact [13]
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Here R1, R2 and R0
1, R0

2 are respectively the principal radii of curvature of both bodies in contact
and ' is the angle between the planes corresponding to the curvature radii R1 and R0

1.

From A.0.4 and A.0.5, A.0.7 becomes
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where r =

q

(x � x0
)

2
+ (y � y0)2. This is an integral equation for the unknown variable P

z

(x, y).
We can notice now that the left-hand side of this equation is commonly found in potential theory.
Actually, by using the identity
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whose domain of integration is the elliptical area x02/a2
+y02/b2

= 1, which just comes from calculat-
ing the potential from a uniformly charged ellipsoid [13]. By looking at equations A.0.9 and A.0.10
we can see that both equations contain integrals of the same type, while the right-hand sides contain
quadratic forms of the same type also. Therefore, we can conclude that the contact area is an ellipse
with semi-axis a and b and that the pressure is of the form P

z

(x, y) = const
p

1� x2/a2 � y2/b2.
But we also know that the total force acting between the bodies is F
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dy0, thus

the constant may be found from this, resulting
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By inserting equation A.0.11 into equation A.0.9 we obtain
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And from these, it is possible to determine the semi-axis a and b of the contact surface.

So far we have solved completely the problem of two bodies of convex surfaces when put into contact.
The previous analysis made us possible to determine the shape of the surface of contact and to obtain
the semi-axis a and b, the displacement u

z

and u0
z

within each body, as well as obtain the pressure
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P
z

(x, y) on the surface of contact. Now, we focus on the particular case of two spheres of the same
material of radii R1 and R2. In this case, A1 = A2 = 1/2R1 + 1/2R2. And from symmetry it is
clear that a = b. From equation A.0.15 it is possible to obtain a, which reads
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✓

DR1R2

R1 + R2

◆1/3

. (A.0.16)

Inserting this into A.0.13 we obtain

F
el

= ⇢⇠3/2, (A.0.17)

where ⇢ ⌘ 2Y
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p
Reff and Reff ⌘ R1R2

R1+R2
. Using similarity arguments it is also possible to

conclude that for two bodies of any shape2, the relation F
el

↵ ⇠3/2 still holds, but now with a
different constant of proportionality. This contact problem was solved for the first time by Heinrich
Hertz in 1882 [14].3

2Always under the assumption of arbitrary shaped convex bodies.
3A similar analysis can be made for the 2D case yielding F

el

↵ ⇠.
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1. Gustavo Castillo, Nicolás Mujica, and Rodrigo Soto. Fluctuations and criticality of a
granular solid-liquid-like phase transition. Physical Review Letters, 109(9), 2012.

We present an experimental study of density and order fluctuations in the vicinity of the
solid-liquid-like transition that occurs in a vibrated quasi-two-dimensional granular system.
The two-dimensional projected static and dynamic correlation functions are studied. We show
that density fluctuations, characterized through the structure factor, increase in size and in-
tensity as the transition is approached, but they do not change significantly at the transition
itself. The dense, metastable clusters, which present square symmetry, also increase their local
order in the vicinity of the transition. This is characterized through the bond-orientational
order parameter Q4, which in Fourier space obeys an Ornstein-Zernike behavior. Depending
on filling density and vertical height, the transition can be of first or second order type. In the
latter case, the associated correlation length ⇠4, relaxation time ⌧4, zero k limit of Q4 fluctua-
tions (static susceptibility), the pair correlation function of Q4, and the amplitude of the order
parameter obey critical power laws, with saturations due to finite size effects. Their respective
critical exponents are ⌫? = 1, ⌫|| = 2, � = 1, ⌘ = 0.67, and � = 1/2, whereas the dynamical
critical exponent z = ⌫||/⌫? = 2. These results are consistent with model C of dynamical crit-
ical phenomena, valid for a non-conserved critical order parameter (bond-orientation order)
coupled to a conserved field (density).

2. Li-Hua Luu, Gustavo Casillo, Nicolás Mujica and Rodrigo Soto. Capillarylike fluctuations
of a solid-liquid interface in a noncohesive granular system. Physical Review E, 87
040202(R), 2013.

One of the most noticeable collective motion of non-cohesive granular matter is clustering
under certain conditions. In particular, when a quasi-two-dimensional monolayer of mono-
disperse non-cohesive particles is vertically vibrated, a solid-liquid-like transition occurs when
the driving amplitude exceeds a critical value. Here, the physical mechanism underlying par-
ticle clustering relies on the strong interactions mediated by grain collisions, rather than on
grain-grain cohesive forces. In average, the solid cluster resembles a drop, with a striking circu-
lar shape. We experimentally investigate the coarse-grained solid-liquid interface fluctuations,
which are characterized through the static and dynamic correlation functions in the Fourier
space. These fluctuations turn out to be well described by the capillary wave theory, which
allows us to measure the solid-liquid interface surface tension and mobility once the granular
“thermal" kinetic energy is determined. Despite the system is strongly out of equilibrium and
that the granular temperature is not uniform, there is energy equipartition at the solid-liquid
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interface, for a relatively large range of angular wave-numbers. Furthermore, both surface
tension and mobility are consistent with a simple order of magnitude estimation considering
the characteristic energy, length and time scales, which is very similar to what can be done for
atomic systems.
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