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El presente trabajo explora y analiza el uso de herramientas de procesamiento de señales
que son comunes en áreas de Ingeniería Eléctrica y Pronóstico y Gestión de Salud en el
análisis de series de tiempo financieras. El objetivo principal de este trabajo es detectar
eventos de alto riesgo en una etapa temprana. De esta forma, el algoritmo propuesto emplea
la fuerte relación entre volatilidad y riesgo y detecta clusters de alta volatilidad mediante el
uso de la información obtenida de los procesos de estimación a través de Filtro de Partículas.

Para alcanzar el objetivo mencionado, se utiliza la representación de espacio-estado es-
tocástica uGARCH para modelar la volatilidad de retornos compuestos continuamente. Dada
la no-observabilidad de la volatilidad, se implementan dos esquemas de Filtro de Partículas
para su estimación: los enfoques clásico y sensible al riesgo. Este último incluye el uso de una
Distribución de Pareto Generalizada como propuesta para el funcional de riesgo (y distribu-
ción de importancia) para asegurar la asignación de partículas en regiones del espacio-estado
que están asociadas a variaciones rápidas de volatilidad del sistema.

Para evaluar correctamente el rendimiento de las rutinas de filtrado, se han generado seis
conjuntos de datos, donde ambos el estado y las mediciones son conocidas. Además, se ha
realizado un análisis de sensibilidad sobre los seis conjuntos de datos, para así obtener los
parámetros que permiten la mejor estimación de volatilidad. De estos resultados, se calculan
valores promedios de parámetros que son luego utilizados en el esquema de detección.

La etapa de detección explora tres diferentes técnicas. Primero, se propone la utilización
de un test de hipótesis entre las estimaciones a priori y a posteriori de las distribuciones de
probabilidad del Filtro de Partículas Sensible al Riesgo. Segundo, se utiliza el Discriminante
de Fisher para comparar las estimaciones a posteriori de las densidades entre el Filtro de
Partículas Clásico y el Sensible al Riesgo. Finalmente, se utiliza la Divergencia de Kullback-
Leibler de la misma forma que el Discriminante de Fisher. Los algoritmos propuestos son
probados en los datos generados artificialmente y en datos de acciones de IBM.

Los resultados demuestran que el Filtro de Partículas Sensible al Riesgo propuesto supera
la precisión del Filtro de Partículas en momentos de alzas no esperadas de volatilidad. Por
otra parte, el test de hipótesis empleado en el proceso de filtrado sensible al riesgo detecta
correctamente la mayoría de las alzas repentinas de volatilidad que conducen a la detección
temprana de clusters de alta volatilidad. Finalmente, los algoritmos de detección propuestos
basados en Discriminante de Fisher y Divergencia de Kullback-Leibler llevan a resultados
donde la detección no es posible.
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Summary

This work explores and analyzes the use of signal processing tools common in areas of Elec-
trical Engineering and Prognostics and Health Management in financial time series analysis.
The main objective of this work is to detect high risk events in an early stage. The proposed
algorithm employs the strict relation between volatility and risk and detects high volatility
clusters by the use of information obtained through a Particle Filter estimation process.

To achieve the aforementioned objective, the stochastic state-space uGARCH represen-
tation is used to model the volatility of continuously compounded returns. Given the non-
observability of volatility, two Particle Filter frameworks are implemented for its estimation,
which include classic and risk sensitive approaches. The latter includes the use of the Gene-
ralized Pareto Distribution as the proposed risk functional (and importance density distri-
bution) to ensure the allocation of particles in regions of the state-space that are associated
with sudden changes in the volatility of the system.

To correctly assess the performance of the filtering routines, six data sets have been
generated, where both the state and the measurements are known. A sensibility analysis
over these six data sets is performed in order to obtain the parameters that permit the best
estimation of volatility. From these results, average parameters are calculated in order to use
them in the detection scheme.

The detection stage explores three different techniques. First, a proposed hypothesis test
between the prior and posterior probability density function estimates of the Risk Sensitive
Particle Filtering process is used. Second, the Fisher Discriminant is used to compare the
posterior probability density function estimates of the Particle Filter and Risk Sensitive
Particle Filter. Finally, the Kullback-Leibler Divergence is used in the same sense as the
Fisher Discriminant. The proposed algorithms are tested in the artificially generated data
and in IBM stock market data.

Results demonstrate that the proposed Risk Sensitive Particle Filter slightly outperforms
the Classic Particle Filter in terms of accuracy, in events where unexpected volatility rises
occur. Moreover, the hypothesis test employed in the risk sensitive filtering process correctly
detects most of the sudden volatility variations conducive to early detection of high volati-
lity clusters. Finally, the proposed detection scheme based on the Fisher Discriminant and
Kullback-Leibler Divergence is conducive to results where detection is not possible.
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5.7 Estimation error ĪEX for different parameter values for data set GARCH5.
This table shows the results for ση = 0.7. The minimum error (shaded in
gray) is obtained for σα,β = 0.02, Rth = 0.6. . . . . . . . . . . . . . . . . . . 36

5.8 Summary of sensibility analysis for the Classic Particle Filter . . . . . . . . . 37
5.9 Detection results for GARCH0 data set early high volatility cluster detection. 49
5.10 Detection results for GARCH1 data set early high volatility cluster detection. 50
5.11 Detection results for GARCH2 data set early high volatility cluster detection. 51
5.12 Detection results for GARCH3 data set early high volatility cluster detection. 52
5.13 Detection results for GARCH4 data set early high volatility cluster detection. 53
5.14 Detection results for GARCH5 data set early high volatility cluster detection. 54
5.15 Parameter estimation of the GARCH(1,1) model through maximum likelihood

for IBM’s returns series between September 12th, 2005 and September 1th, 2009. 63

xiii



xiv



List of Figures

1.1 NASDAQ Composite value for the period January 1st, 2008 to December 31st,
2009. The data show sthe extreme value drop occurring in October 2008. . . 1

4.1 IBM’s adjusted closing stock prices and corresponding daily returns from
1st, 1962 to May 17th, 2013. Notice the dashed lines from September 12th, 2005
to September 1st, 2009. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 IBM’s adjusted closing stock prices and corresponding daily returns from
September 12th, 2005 to September 1st, 2009. This figure represents the de-
tails between the dashed blue lines of Figures 4.1a and 4.1b. . . . . . . . . . 23

4.3 Comparison between qPF (σ
2
k|σ

2(i)
k−1) and qRSPF (σ

2
k|σ

2(i)
k−1). In this example, σ2(i)

k−1 =
5× 10−4, α = 0.2, β = 0.6, ω = 1.0468× 10−5, and σ2

η = 0.7. . . . . . . . . . . 27
4.4 Examples of prior and posterior densities of the RSPF in a volatility filtering

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Hypothesis test example. The filled area under the smoothed prior density

represents the 70% confidence interval for the smoothed prior density. Here,
the null hypothesis is accepted. . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Volatility estimation of GARCH0 data set using optimal parameters. Refer to
Table 5.2 for percentage error. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Volatility estimation of GARCH1 data set using optimal parameters. Refer to
Table 5.3 for error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Volatility estimation of GARCH2 data set using optimal parameters. Refer to
Table 5.4 for error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Volatility estimation of GARCH3 data set using optimal parameters. Refer to
Table 5.5 for error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 Volatility estimation of GARCH4 data set using optimal parameters. Refer to
Table 5.6 for error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.6 Volatility estimation of GARCH5 data set using optimal parameters. Refer to
Table 5.7 for error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.7 Volatility estimation of GARCH0 data set using average parameters. . . . . 44
5.8 Volatility estimation of GARCH1 data set using average parameters. . . . . 44
5.9 Volatility estimation of GARCH2 data set using average parameters. . . . . 45
5.10 Volatility estimation of GARCH3 data set using average parameters. . . . . 45
5.11 Volatility estimation of GARCH4 data set using average parameters. . . . . 46
5.12 Volatility estimation of GARCH5 data set using average parameters. . . . . 46
5.13 Hypothesis test-based detection for data set GARCH0. . . . . . . . . . . . . 49

xv



5.14 Hypothesis test-based detection for data set GARCH1. . . . . . . . . . . . . 50
5.15 Hypothesis test-based detection for data set GARCH2. . . . . . . . . . . . . 51
5.16 Hypothesis test-based detection for data set GARCH3. . . . . . . . . . . . . 52
5.17 Hypothesis test-based detection for data set GARCH4. . . . . . . . . . . . . 53
5.18 Hypothesis test-based detection for data set GARCH5. . . . . . . . . . . . . 54
5.19 PDF comparison-based detection for data set GARCH0. . . . . . . . . . . . 57
5.20 PDF comparison-based detection for data set GARCH1. . . . . . . . . . . . 58
5.21 PDF comparison-based detection for data set GARCH2. . . . . . . . . . . . 59
5.22 PDF comparison-based detection for data set GARCH3. . . . . . . . . . . . 60
5.23 PDF comparison-based detection for data set GARCH4. . . . . . . . . . . . 61
5.24 PDF comparison-based detection for data set GARCH5. . . . . . . . . . . . 62
5.25 Early hypothesis test-based detection of high volatility clusters in IBM’s stock

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xvi



Chapter 1

Introduction

Electrical Engineering is a discipline which deals with systems and information processing.
It uses tools that are transversal to many areas of knowledge; including various branches
of Mathematics, Physics, Computer Science, Economics, and even Psychology. Moreover,
Electrical Engineering intersects dramatically with different areas of Finance, where signal
processing tools (also know as time series analysis) and Information Theory are of paramount
importance.

In the past decades, there have been events in the financial world that have led to chaos
and desperation in the societies of the occidentalized world. Figure 1.1 shows the big market
fall of year 2008, where about 40% of the market value was lost. These rare events are
studied by researchers in the areas of extreme event modeling (Embrechts et al., 1997) and
in analysis of financial time series (Tsay, 2010). The intention of this work is to explore
the use of tools that are well-known in Electrical Engineering and Prognostics and Health
Management (PHM) in financial time series analysis, specifically in the early detection of
high risk events. This is achieved through the extrapolation of estimation and detection
schemes for high risk and low-likelihood events that can be found in PHM to the case of
detection of extreme and rare events occurring in the stock market.

Volatility is a key abstraction in finance, since it is the concept necessary to quantify risk.
Its calculation makes possible the computation of other features related to risk, such as Value
at Risk (VaR). Informally, volatility is defined as the standard deviation of the continuously
compounded returns of a price series. Albeit its straightforward definition, there are various
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NASDAQ Composite

Figure 1.1: NASDAQ Composite value for the period January 1st, 2008 to December 31st,
2009. The data show sthe extreme value drop occurring in October 2008.
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problems related to volatility. From the perspective of state-space modeling of financial
time series, where volatility is the state and measurements are the continuously compounded
returns, volatility is a non-observable state. Consequently, the resulting volatility value is
intrinsically related to the modeling technique and the employed estimation scheme. Given
that volatility is necessary to detect high risk events, it is necessary to estimate its value
accurately and precisely, and to propose detection frameworks based on the estimates of this
non-observable state.

The description of the problem leads to the introduction of the specific objectives of this
work. The volatility model used is the uGARCH (unobserved GARCH) model (Tobar, 2010),
which is a stochastic extension of the well-known GARCH(1,1) (Generalized Autoregressive
Conditional Heteroskedasticity) model (Bollerslev, 1986). In particular, this work focuses
in a first instance on the implementation of a Classic Particle Filtering framework (Gordon
et al., 1993; Bergman, 1999; Doucet et al., 2000; Maskell and Gordon, 2001; Arulampalam
et al., 2002), and the proposition and implementation of a Risk Sensitive Particle Filter
(Thrun et al., 2002) for the estimation of volatility. Moreover, the information derived from
these estimation schemes is used to propose three different detection algorithms, including
an hypothesis test-based detection scheme, a Fisher Discriminant-based detection scheme,
and a Kullback-Leibler Divergence-based detection scheme. The proposed algorithms are
tested with simulated data (where volatility is known) and IBM’s stock market data, where
volatility is estimated.

The structure of the document is as follows. Chapter 2 includes key concepts of Finance,
such as formal definitions of returns and volatility, and introduces two volatility models.
Chapter 3 sets the base for Bayesian estimation of time-varying variables, such as volatility.
In particular, the tracking problem from a Bayesian perspective is introduced, and Monte
Carlo integration is presented as the foundation of Particle Filters. These algorithms are
carefully explained, and implementation problems are mentioned together with the currently
employed solutions to these problems. Finally, different distance measures for probability
density functions are introduced, which set the base for two of the proposed detection algo-
rithms. Chapter 4 describes the implementation details for data generation and acquisition,
explains details about the employed filtering frameworks and describes the use of the detec-
tion schemes. In Chapter 5, performance measures are presented, and filtering and detection
performance are discussed for simulated and real data. Chapter 6 offers the conclusions of
this work.

As a note, this document employs the following code for the presentation of figures:

• Data is always presented in black,
• Classic Particle Filter estimates are presented in blue,
• Risk Sensitive Particle Filter estimates are presented in red,
• Confidence intervals are presented in transparent cyan,
• Prior estimates are drawn in dashed lines (- -),
• Posterior estimates are drawn in continuous lines (–),
• Training intervals are presented as red transparent rectangular blocks,
• Regime shifts are drawn as gray dashed lines (- -),

2



• Detections are shown as magenta circles (over data) and as blue stems,
• Ground truth for detection algorithms is illustrated with green asterisks.

3



Chapter 2

Financial Time Series

Financial time series analysis is concerned with the theory and practice of asset valuation
over time (Tsay, 2010). A key aspect that differentiates financial time series analysis from
other diciplines is that both financial theory and its empirical time series contain an element
of uncertainty. For example, there are various definitions of asset volatility, and for a stock
return series, the volatility is not directly observable. As a result of the added uncertainty,
statistical theory and methods play an important role in financial time series analysis.

This chapter sets the theoretical foundation to analyze financial time series. In particular,
Section 2.1 presents mathematical definitions of returns and volatility that sets the base
for volatility modeling. In this same section, their behavior and properties are presented.
Section 2.2 introduces volatility models, which try to capture the empirically observed charac-
teristics. Section 2.3 concludes.

2.1 Returns and Volatility

The study of varying assets usually deals with returns, rather than asset prices. According
to (Tsay, 2010), there are two main reasons for using returns instead of prices:

• They are a complete and scale-free summary of the investment opportunity,
• They posses more attractive statistical properties than prices.

There are various possible definitions of asset returns, each with their own properties and
applications. This work is founded upon the definition of continuously compounded returns,
given in Definition 2.1.

Definition 2.1 (Continuously Compounded Return (Tsay, 2010)) The natural logarithm
of the simple gross return of an asset is called the continuously compounded return or log
return:

rk = log
pk
pk−1

, (2.1)

4



where pk corresponds to the asset price at time k.

One can represent the returns as the sum of a conditional expected return µk|k−1 and an
innovation component uk, that is (Rachev et al., 2008):

rk = µk|k−1 + uk, (2.2)

where µk|k−1 = E[rk|Σk−1], and Σk−1 denotes the information up to time k − 1. This in-
formation set includes, for example, past asset returns and information about past trading
volume. A further decomposition gives:

rk = µk|k−1 + σk|k−1ϵk, (2.3)

where σk|k−1 > 0 is the volatility and ϵk ∼ N (0, 1) is an independent and identically dis-
tributed (iid) process. Definition 2.2 formally introduces the concept of volatility.

Definition 2.2 (Conditional Volatility (Rachev et al., 2008)) Conditional volatility is defined
as

σ2
k|k−1 = Var[rk|Σk−1] = E[(rk − µk|k−1)

2|Σk−1], (2.4)

where µk|k−1 = E[rk|Σk−1] is the conditional expected value of the returns and Σk−1 is the
σ-algebra generated by the variables observed up to time k − 1.

Empirical evidence shows some features that interestingly relate returns and volatility.
First, volatility is not constant, therefore returns are heteroskedastic (Rachev et al., 2008).
Moreover, clusters of high and low returns may be observed, a phenomenon first observed by
(Mandelbrot, 1963). This characteristic implies that volatility also comes in clusters. Second,
volatility displays an asymmetric behavior towards positive and negative return variations,
since it tends to be higher when the market falls. This phenomenon is known as the leverage
effect. Third, volatility evolves over time in a continuous manner. Fourth, volatility does not
diverge to infinity.

Volatility is important in the analysis of financial time series for diverse reasons. In parti-
cular, it has a strict relation with risk, and provides a simple approach towards the calculation
of Value at Risk (VaR). According to (Tsay, 2010), volatility also plays an important role
in asset allocation, and modeling the volatility of a time series can improve efficiency in
parameter estimation and the accuracy in interval forecasting.

These two concepts set the foundation for the application of signal processing tools in the
analysis of financial time series, and are the basic principles to be used in this work.

2.2 Volatility Models

Volatility modeling rises as a necessity to better understand the structure of returns series. In
state-space models, volatility is considered a variable that drives a dynamics process, which
conditions a measurement process for the returns. Classic statistical analysis of time series
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is used for the construction of these models, such as autocorrelation functions and partial
autocorrelation functions of the square of the returns series.

Empirical data shows that returns processes exhibit excess kurtosis, skewness and heavier
tails than the normal distribution (Rachev et al., 2008; Tsay, 2010). Moreover, since present
volatility depends on past volatilities, it is clear that today’s returns depend on yesterday’s
returns, as described in Equation 2.3. Volatility models try to explain these features. This
section describes the well-known GARCH model and a stochastic variation –the uGARCH
model–, which are attempts to explain these observed characteristics.

2.2.1 The GARCH model

The GARCH model, first presented by (Bollerslev, 1986), is widely used to model volatility
because it provides a large degree of flexibility in capturing empirically observed features of
returns, and because of the ease of parameter estimation.

Definition 2.3 (GARCH model (Rachev et al., 2008)) The GARCH(1,1) model is given by

σ2
k|k−1 = ω + αu2

k−1 + βσ2
k−1|k−2, (2.5)

rk = µk|k−1 + σk|k−1ϵk, (2.6)

where uk = rk − µk|k−1 = σk|k−1ϵk, and ω > 0. Moreover, α, β > 0 to ensure that σ2
k|k−1 > 0,

for any time step k.

From Definition 2.3, using Equation 2.6 in 2.5 results in:

σ2
k|k−1 = ω + ασ2

k−1|k−2ϵ
2
k−1 + βσ2

k−1|k−2, (2.7)

where ϵ2k−1 ∼ χ2
1. Equation 2.7 shows that new information in the volatility process is

embodied by the term ϵ2k−1, this is, the innovations in the volatility process are driven by the
previous step innovations of the returns process.

To guarantee the convergence of σ2
k|k−1, it is necessary that α+ β < 1. To prove this fact,

note that σ2
k|k−1 and ϵ2k are independent (Tobar, 2010):

E[σ2
k|k−1ϵ

2
k] = E[(ω + αϵ2k−1σ

2
k−1|k−2 + βσ2

k−1|k−2)ϵ
2
k]

= E[ωϵ2k] + E[αϵ2k−1σ
2
k−1|k−2ϵ

2
k] + E[βσ2

k−1|k−2ϵ
2
k]

= ωE[ϵ2k] + αE[ϵ2k−1σ
2
k−1|k−2]E[ϵ2k] + βE[σ2

k−1|k−2]E[ϵ2k]
= E[ϵ2k](ω + αE[ϵ2k−1σ

2
k−1|k−2] + βE[σ2

k−1|k−2])

= E[ϵ2k]E[σ2
k|k−1]. (2.8)

With the result from Equation 2.8 and considering that ϵk ∼ N (0, 1) implies that E[ϵ2k] = 1,
it is possible to calculate the expected value of σ2

k|k−1:

E[σ2
k|k−1] = E[ω + αϵ2k−1σ

2
k−1|k−2 + βσ2

k−1|k−2]

= ω + αE[ϵ2k−1]E[σ2
k−1|k−2] + βE[σ2

k−1|k−2]

= ω + (α + β)E[σ2
k−1|k−2]. (2.9)
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Expression 2.9 proves that α + β < 1 is needed for E[σ2
k|k−1] < ∞. The value of α + β is

known as the GARCH process persistence parameter, since it determines the speed of the
mean-reversion of volatility to its long-term average. A higher value for α + β implies that
the effect of the shocks of volatility, u2

k, dies out slowly (Rachev et al., 2008). Empirical
evidence shows that the value of α + β is usually close to 1.

The GARCH(1,1) model has interesting properties that make it suitable for volatility
modeling and easy practical handling, including:

• Parameter selection may be easily accomplished through maximum likelihood,

• If α + β < 1, then the process is stationary in the weak sense,

• It is able to model volatility clusters,

• Can partially explain nonnormality of asset returns.

These reasons make the GARCH(1,1) a widely used alternative for volatility modeling.
Nevertheless, the evolution of volatility in the GARCH(1,1) is conditionally deterministic
(see Equation 2.7), not allowing possible statistical analysis of volatility. Inference of statis-
tical properties such as asymmetry, kurtosis, and confidence intervals is simply not possible
in estimation and prediction problems. These difficulties lead to the development of the
uGARCH model.

2.2.2 The uGARCH model

The uGARCH model (Tobar, 2010) assumes that the dynamics of volatility are not driven by
the observed process uk = rk − µk|k−1. Instead, they are driven by a non-observable process
u′
k which has the same distribution as uk.

Definition 2.4 (uGARCH model (Tobar, 2010)) The uGARCH model is given by

σ2
k = ω + ασ2

k−1η
2
k + βσ2

k−1, (2.10)
rk = µ+ σkϵk, (2.11)

where rk is a process of returns, σk is the stochastic volatility, µ ∈ R+, ω ∈ R+, α, β > 0 are
parameters, and α + β < 1. Furthermore, ϵk ∼ N (0, 1) and ηk ∼ N (0, σ2

η) are iid processes
for every time step k.

It is necessary to note from Definition 2.4 that the subscripts are not written conditionally:
At time step k, σ2

k is not known without uncertainty, given Σk−1.

To completely define the model, it is necessary to present the state transition distribution
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p(σ2
k|σ2

k−1) and the likelihood p(rk|σ2
k):

p(σ2
k|σ2

k−1) =
1√

2πασ2
k−1(σ

2
k − ω − βσ2

k−1)
exp

(
ω + βσ2

k−1 − σ2
k

2ασ2
k−1

)
, σ2

k ≥ ω + βσ2
k−1

(2.12)

p(rk|σ2
k) =

1√
2πσ2

k

exp

(
−(rk − µ)2

2σ2
k

)
. (2.13)

The derivation of p(σ2
k|σ2

k−1) in this case has considered that ηk ∼ N (0, 1) and therefore,
η2k ∼ χ2

1 (Tobar, 2010). To derive an expression for the state transition distribution when
ηk ∼ N (0, σ2

η) and σ2
η is the variance of the Normal distribution that is not necessarily equal

to 1, it is imperative to calculate the probability density function of η2k. According to the
Fundamental Theorem for the distribution of g(X) (Papoulis and Pillai, 2002, chap. 5, pg.
130), η2k = X has an analytical probability density function:

fX(x) =
1√

2πσ2
ηx

exp

[
− x

2σ2
η

]
. (2.14)

Using Expression 2.14, it is possible to recalculate p(σ2
k|σ2

k−1):

p(σ2
k|σ2

k−1) = p(ω + ασ2
k−1η

2
k + βσ2

k−1|σ2
k−1)

=
∂

∂σ2
k

P[ω + ασ2
k−1η

2
k + βσ2

k−1 < σ2
k]

=
∂

∂σ2
k

P

[
η2k <

σ2
k − ω + βσ2

k−1

ασ2
k

]
=

1√
2πσ2

η

(
σ2
k−ω+βσ2

k−1

ασ2
k

) exp

[
σ2
k − ω + βσ2

k−1

2σ2ασ2
k

]
∂

∂σ2
k

(
σ2
k − ω + βσ2

k−1

ασ2
k

)

=
1√

2πσ2
ηασ

2
k−1

(
σ2
k − ω + βσ2

k−1

) exp [σ2
k − ω + βσ2

k−1

2σ2
ηασ

2
k

]
. (2.15)

Notice that σ2
η is introduced as a scale factor. The calculation and presentation of Ex-

pression 2.15 makes possible the use of a generic Particle Filtering approach for volatility
estimation in this model.

2.3 Final Words

In this chapter, an introduction of basic concepts of financial time series has been given. No-
tions such as returns and volatility have been defined, and the problem of volatility modeling
has been addressed through the introduction of two models, each one representing one of the
two possible trends for volatility analysis: the GARCH model, which considers that the dy-
namics of the process are deterministic and completely known at time k with measurements
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up to time k− 1, and the uGARCH model that considers that the dynamics of volatility are
driven by a non-observable process η2k ∼ χ2

1.

These definitions open the path for the possibility of volatility estimation in a Bayesian
framework, in which the a posteriori p(σ2

k|rk) may be inferred. The estimated statistics
involved in this algorithm also let one define hypotheses tests. These subjects are addressed
in the following chapters.
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Chapter 3

A Bayesian Framework for Volatility
Estimation and Event Detection

Monte Carlo (MC) methods and Markov Chain Monte Carlo (MCMC) methods have been
widely used to approximate integrals and probability density functions (Tobar, 2010). Never-
theless, their use in Bayesian inference is not direct, since this problem involves a sequence of
time-variant probability density functions, while MCMC assumes that the objective density
is time-invariant. This prompted the development of a sequential version of Monte Carlo
integration, one that is able to use measurements to improve recursive estimation.

The first section of this chapter introduces the tracking problem, which gives insight into
the problems encountered in a Bayesian filtering framework. The following section presents
Monte Carlo integration and the importance sampling method. This opens the possibility to
explore the Particle Filter and the Risk Sensitive Particle Filter. Finally, distance measures
for probability density functions are given, which are the core of detection schemes proposed
in the following chapters.

3.1 The Tracking Problem

Many problems in time series analysis can be formulated with the help of state-space models.
These models consider a transition equation that describes the prior distribution of a hidden
Markov process {xk; k ∈ N}, called the state process, and an observation equation describing
the likelihood of the observation {zk; k ∈ N} (Doucet et al., 2000). To define the problem of
tracking, consider the state-space model (Arulampalam et al., 2002)

xk = f(xk−1, vk−1), (3.1)
zk = h(xk, wk), (3.2)

where f(·, ·) is a state-transition function with corresponding {vk−1, k ∈ N} iid innovation
process, and h(·, ·) is the observation function with {wk, k ∈ N} its corresponding iid noise
process. In particular, the objective of tracking is to recursively estimate xk from all available
measurements z1:k = {zi; i = 1, . . . , k} up to time k.
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Within a Bayesian framework, all relevant information about x0:k given the observations
z0:k can be obtained from the posterior distribution p(x0:k|z0:k). In many applications, ne-
vertheless, it is sufficient to calculate the marginal conditional distribution p(xk|z0:k). In
particular, the intention of the Bayesian approach is to recursively construct p(xk|z1:k), using

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
. (3.3)

In principle, p(xk|z1:k) might be obtained in two stages: prediction and update. Let one
assume that the initial probability density function p(x0|z0) ≡ p(x0) and p(xk−1|zk−1) are
available. The prediction step involves using the system dynamics in Equation 3.1 to obtain
the prior probability density function of the state at time k via the Chapman-Kolgomorov
equation (Arulampalam et al., 2002; Papoulis and Pillai, 2002):

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (3.4)

At time step k, a new measurement becomes available, which may be used to update the
prior distribution p(xk|z1:k−1). Considering that the normalizing constant p(zk|z1:k−1) can be
expressed as

p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|z1:k−1)dxk, (3.5)

one can calculate the posterior distribution p(xk|z1:k), using Equations 3.4 and 3.5 in 3.3:

p(xk|z1:k) =
p(zk|xk)

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1∫
p(zk|xk)p(xk|z1:k−1)dxk

. (3.6)

Expression 3.6 forms the basis for the Bayesian optimal solution in the mean square
error sense. In most cases, this expression is only conceptual, and cannot be determined
analytically. In a restricted set of cases, the optimal solution may be found (Kalman, 1960).
This is possible only if the noises vk and wk are additive and Gaussian and the functions
f(·, ·) are h(·, ·) are linear. The following sections builds upon Monte Carlo integration to
describe a general algorithm for suboptimal solutions to Expression 3.6.

3.2 Monte Carlo Integration

The problem of tracking described in the previous section presents no analytical solution for
a vast majority of applications; since Expressions 3.4 and 3.5 can be calculated only for a
small subset of models and noise processes. To attack this problem, it is necessary to use
numerical techniques to approximate the integrals in order to obtain an estimate p̂(xk|z1:k)
of the posterior distribution.

A common problem encountered in applied statistics deals with the numerical calculation
of expressions such as:

I =

∫
Rn

g(x)dx. (3.7)
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Monte Carlo methods for numerical integration regard problems of the form (Bergman,
1999):

I =

∫
Rn

f(x)π(x)dx, (3.8)

where π(x) is a positive function that integrates to unity,

π(x) ≥ 0, I =

∫
Rn

π(x)dx = 1. (3.9)

Many of the problems that can be defined as Expression 3.7 can be converted into Ex-
pression 3.8 through a suitable transformation g(x) = f(x)π(x). The assumptions imposed
over π(x) resemble a probability density function, and in a Bayesian context, the density of
interest is the posterior density of the parameters given the observed data, i.e., π(x) = p(x|z)
(see Equations 3.4 and 3.5).

The Monte Carlo methods rely on the assumption that it is possible to draw N >> 1
samples {x(i)}Ni=1 distributed according to π(x). The Monte Carlo estimate of the integral in
Expression 3.8 is formed by taking the average over the set of samples

fN =
1

Ns

Ns∑
i=1

f(x(i)), (3.10)

where Ns is assumed to be large. If the samples in the set {x(i)}Ns
i=1 are independent, fNs will

be an unbiased estimate and will almost surely converge to I,

P

(
lim

Ns→∞
fNs = I

)
= 1, (3.11)

by the strong law of large numbers. Moreover, if the variance of f(x),

σ2 =

∫
Rn

(f(x)− I)2 π(x)dx =

∫
Rn

f 2(x)π(x)dx− I2, (3.12)

is finite, the central limit theorem yields convergence in distribution of the error:

lim
Ns→∞

√
Ns(fNs − I) ∼ N (0, σ2). (3.13)

The convergence results in Equation 3.11 and Equation 3.13 are asymptotic, so the ap-
proximation error tends to zero as Ns → ∞. In fact, Expression 3.11 yields that the error
ε = fNs − I of the Monte Carlo estimate is of order ε = O(N

−1/2
s ), independent of the state

dimension n. This results in an interesting characteristic from a filtering perspective, since
one can control the approximation error for the estimation as a function of the samples used.

The factorization of Expression 3.7 presented in Expression 3.8 has some interesting im-
plications that need further revision. The effectiveness of the method depends deeply on
how the factorization g(x) = f(x)π(x) is performed. Since the set {x(i)}Ns

i=1 is automatically
chosen from π(x), one can conclude that the more informative π(x) is compared to f(x), the
better the choice of automatic samples will be. This claim is verified by Expression 3.13,
where the relative smoothness of f(x) compared to π(x) determines the size of the variance
σ2.
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3.3 Importance Sampling

Importance sampling arises as a method for sampling from π(x) when this distribution is
not part of the standard probability density functions, such as the exponential family. In
the Bayesian framework, where the factorization g(x) = f(x)π(x) is given, if one deals with
π(x) = p(x|z), where p(x|z) comes from a nonlinear/non-Gaussian model, it is not always
possible to extract samples from π(x). Therefore, a more general approach towards sampling
is necessary to have a general sequential Monte Carlo filtering algorithm.

Importance sampling deals with a proposal distribution q(x) from which is easy to generate
samples (Bergman, 1999). The general assumption on the importance function q(x) is that
the support set covers the support of π(x), this is, π(x) > 0 ⇒ q(x) > 0 for all x ∈ Rn.
Under this assumption, any integral of the form 3.8 can be rewritten into

I =

∫
Rn

f(x)π(x)dx =

∫
Rn

f(x)
π(x)

q(x)
q(x)dx. (3.14)

A Monte Carlo estimate is computed by generating Ns ≫ 1 independent samples from
q(x), and forming the weighted sum:

fNs =
1

Ns

Ns∑
i=1

f(x(i))w(x(i)), where w(x(i)) ∝ π(x(i))

q(x(i))
(3.15)

are the importance weights.

If the normalizing factor of the density π(x) is unknown, the importance weights in Ex-
pression 3.15 can be evaluated up to a normalizing factor. Then, the weights can be formed
using a function proportional to the target density and then normalized afterwards, forming
the estimate:

fNs =
1

Ns

∑Ns

i=1 f(x
(i))w(x(i))∑Ns

i=1 w(x
(i))

, where w(x(i)) ∝ π(x(i))

q(x(i))
(3.16)

This technique is practically applied in the Bayesian framework. Although the esti-
mate 3.16 is biased for finite Ns, the law of large numbers and central limit theorem hold.

The importance sampling principle works as the basis for the most common Particle Filter
algorithms. These are introduced in the following section.

3.4 Particle Filters

Particle Filters are a class of algorithms developed to solve Expression 3.6 through sequential
Monte Carlo simulations when the integrals are intractable due to possible nonlinearities in
the model involved or noise processes that do not possess standard distributions. Solving
these integrals is achieved through the importance sampling principle. The key idea is to
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represent the required posterior density function by a set of random samples which serve as
support points with associated weights and to compute estimates based on these samples and
weights. As the number of samples becomes very large, this Monte Carlo characterization
becomes an equivalent representation to the usual functional description of the posterior
probability density function, and the Particle Filter approaches the optimal Bayesian state
in the mean square error sense.

According to (Arulampalam et al., 2002), to develop the details of the algorithm, let
{x(i)

0:k, w
(i)
k }Ns

i=1 denote a random measure that characterizes the posterior probability density
function p(x0:k|z1:k), where {x(i)

0:k, i = 0, . . . , Ns} is a set of support points with associated
weights {w(i)

k , i = 1, . . . , Ns} and x0:k = {xj, j = 0, . . . , k} is the set of all states up to time
k. The weights are normalized such that

∑
iw

(i)
k = 1. Then, the posterior density at k can

be approximated as:

p(x0:k|z1:k) ≈
Ns∑
i=1

w
(i)
k δ(x0:k − x

(i)
0:k). (3.17)

The former approximation may be obtained using an importance density q(x0:k|z1:k), and
the weights are calculated using Equation 3.16 in the sequential case:

w
(i)
k ∝ p(x

(i)
0:k|z1:k)

q(x
(i)
0:k|z1:k)

. (3.18)

To effectively use Expression 3.18 in a sequential algorithm, it is necessary to express 3.18
in a recursive manner. At each iteration, one could have samples constituting an approxi-
mation to p(x0:k−1|z1:k−1) and want to approximate p(x0:k|z1:k) with a new set of samples. If
the importance density is chosen to factorize such that (Doucet et al., 2000; Arulampalam
et al., 2002):

q(x0:k|z1:k) = q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1) (3.19)

= q(x0|z0)
k∏

j=1

q(xj|x0:j−1, z0:j), (3.20)

then one can obtain samples x
(i)
0:k ∼ q(x0:k|z1:k) by augmenting each of the existing samples

x
(i)
0:k−1 ∼ q(x0:k−1|z1:k−1) with the new state x

(i)
k ∼ q(xk|x(i)

0:k−1, z1:k). Then, the weights are
updated recursively using (Arulampalam et al., 2002):

w
(i)
k ∝ w

(i)
k−1

p(zk|x(i)
k )p(x

(i)
k |x(i)

k−1)

q(x
(i)
k |x(i)

k−1, zk)
, (3.21)

and the posterior filtered density p(xk|z1:k) can be approximated as:

p(xk|z1:k) ≈
Ns∑
i=1

w
(i)
k δ(xk − x

(i)
k ), (3.22)

where the weights are defined in Expression 3.21. This algorithm is generally called Sampling
Importance Sampling (SIS), and denotes the simplest form to solve Equation 3.6. Neverthe-
less, to obtain good performance from the algorithm, some issues need to be addressed
properly.
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3.4.1 The Degeneracy Problem

A common problem with the SIS algorithm is the negligible weight all but one particle has
after some iterations. (Doucet et al., 2000) have shown that the variance of weights can only
increase over time, and therefore it is not possible to avoid this problem. This phenomenon
produces that only one particle has a significant contribution to the overall estimation, and
thus, heavy computational effort is lost.

A common measure for degeneracy is (Kong et al., 1994; Maskell and Gordon, 2001):

Neff =
Ns

1 +Var [w∗i
k ]
, (3.23)

where w∗i
k = p(x

(i)
k |z1:k)/q(x(i)

k |x(i)
k−1, zk) is referred to as the true weight. Expression 3.23

cannot be evaluated and as a consequence, the approximation

ˆNeff =
1∑Ns

i=1

(
w

(i)
k

)2 (3.24)

must be used, where w
(i)
k are the normalized weights. Big weight unconditional variance

implies great variations in weight values and hence, small values of ˆNeff indicate severe de-
generacy. Different techniques have been used to confront this problem, in which resampling
methods and selection of an adequate importance density are mentioned.

3.4.2 Resampling

One of the methods to overcome the problem of degeneracy is resampling whenever the
unconditional variance of the weights is high, this is, Neff < NT , where NT is a given
threshold. The idea behind resampling is to concentrate on the particles which possess more
weight and discard the particles with negligible weight. There are various techniques to do so.
In this work, residual resampling is used (see Algorithm 2 in (Maskell and Gordon, 2001)).

3.4.3 Importance Density Selection

The selection of the importance density is crucial for the correct performance of the filter
being implemented. Since the importance density defines the position where particles are
evaluated, incorrect integration domains may lead to poor estimations or high degeneracies.

The importance density function which minimizes the variance of the true weights w
(i)∗
k ,

conditioned upon x
(i)
k−1 and zk has been shown to be (Doucet et al., 2000; Maskell and Gordon,

2001):

q(xk|x(i)
k−1, zk)opt = p(xk|x(i)

k−1, zk) (3.25)

=
p(zk|xk, x

(i)
k−1)p(xk|x(i)

k−1)

p(zk|x(i)
k−1)

. (3.26)

15



Substituting Expression 3.26 into 3.21 yields:

w
(i)
k ∝ w

(i)
k−1p(zk|x

(i)
k−1) (3.27)

= wk−1

∫
p(zk|x′

k)p(x
′
k|x

(i)
k−1)dx

′
k. (3.28)

This choice of importance density is optimal since for a given x
(i)
k−1, w

(i)
k takes the same value

whatever sample is drawn from q(xk|x(i)
k−1, zk)opt. Nevertheless, it is almost never possible to

draw samples from this importance density.

A common and convenient important density is:

q(xk|x(i)
k−1, zk) = p(xk|x(i)

k−1). (3.29)

Substitution of Expression 3.29 over 3.21 yields:

w
(i)
k ∝ w

(i)
k−1p(zk|x

(i)
k ). (3.30)

This is one of the most common elections for the importance density since it is intuitive and
simple to implement.

3.5 Risk Sensitive Particle Filters

Particle Filters described in Section 3.4 approximate p(xk|z0:k) through a random set of Ns

particles. The position of the particles and consequent performance of the filter is greatly
determined by the importance density q(xk|x(i)

k−1, zk) from which particles are drawn. The
structure of the Particle Filter algorithm and importance densities usually employed do
not regard the problem of high risk and low-likelihood event tracking. In the case where
unlikely events may conduce to great loss or high costs, it is natural extend the Particle
Filter algorithm to track these low probability states.

The Risk Sensitive Particle Filter is proposed as an extension of the ‘Classic’ Particle
Filter, where the particles are generated from an importance density that is the product of
the combination of the posterior density function and a risk functional.

Risk Sensitive Particle Filters generate samples that are distributed according to (Thrun
et al., 2002):

q(xk|x(i)
k−1, zk) = γkr(xk)p(xk|z1:k), (3.31)

where
γk =

1∫
r(xk)p(xk|z1:k)

(3.32)

is a normalizing constant that ensures that the importance density is indeed a probability
density function. Hence, the position of samples are generated according to the likelihood of
a certain state event x

(i)
k and its risk r(x

(i)
k ).
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Considering the former approach, the Classic Particle Filter needs a simple modification.
First, the initial set of particles x

(i)
0 is generated from γ0r(x0)p(x0), and Expression 3.30 is

updated to

w
(i)
l =

r(x
(i)
k )p(zk|x(i)

k )

r(x
(i)
k−1)

. (3.33)

To find an adequate risk functional, authors in (Thrun et al., 2002) formulate a Markov
Decision Process and define it over an extended state-space ⟨x, c⟩. c ∈ {0, 1} is a binary
variable that models the event of correct tracking (ck = 1) or incorrect tracking (ck = 0).
Then, the known probabilities are extended to:

p(⟨xk, ck⟩|⟨xk−1, ck−1⟩) = p(xk|xk−1)p(ck|ck−1) (3.34)
p(zk|⟨xk, ck⟩) = p(zk|xk) (3.35)

p(⟨x0, c0⟩) = p(x0)p(c0) (3.36)
C(⟨xk, ck⟩) = C(xk), (3.37)

where the only unknown components are p(c0) and p(ck|ck−1). In (Thrun et al., 2002), the
Markov Decision Process is solved via value iteration.

Another approach that may be used for Risk Sensitive Particle Filters is to select an
importance density q(xk|x(i)

k−1, zk) with higher likelihoods for state values associated to higher
risk. One may assume that for a particular importance density, a risk functional exists, and
therefore, Expression 3.21 is used for updating the weights.

3.6 Online Parameter Estimation with Particle Filters

In the context of state estimation, it is sometimes necessary to handle an online estimation
scheme for a model parameter vector. Although parameters α and β have been presented as
fixed in the GARCH(1,1) and uGARCH models, this is not necessarily adequate. The stock
market suffers from variations and regime shifts, and these variations may be considered as
parameter changes through time. This is true not only for time series derived from the stock
market, but for a diverse range of applications where state tracking is intended.

To understand the problems of parameter estimation outside a Bayesian context, let θ be
a vector parameter. The maximum likelihood estimate of the vector parameter θ is obtained
by maximizing the log-likelihood function (Kitagawa and Sato, 2001):

l(θ) = log[L(θ)] =
κ∑

k=1

log[p(zk|z1:k−1, θ)], (3.38)

where

p(zk|z1:k−1, θ) =

∫
p(zk|xk, θ)p(xk|z1:k−1, θ)dxk (3.39)

needs to be approximated through Monte Carlo.
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The maximization of Expression 3.38 for the estimation of θ is not always direct, and
approximations over Expression 3.39 make this method impractical, due to the high com-
putational costs involved if parameter estimation is intended for every time step. Thus, a
different perspective is necessary to approach the online parameter estimation problem. This
idea is attacked through the artificial evolution of parameters.

The first ideas about introducing random disturbances to particles were proposed by
(Gordon et al., 1993). In their work, the authors propose to introduce random disturbances
to the positions of particles (called roughening penalties) in order to combat degeneracy. This
idea has been extended in order to estimate online a vector of fixed model parameters, which
is referred to as artificial evolution (Liu and West, 2001). Artificial evolution of parameters is
a simple and powerful idea, nevertheless, it requires careful handling because of the inherent
model information loss given by the consideration of time-varying parameters that are fixed.

Instead of estimating the vector parameter θ through maximum likelihood, the Bayesian
framework may be introduced to estimate θ online. This is achieved by augmenting the state
vector xk with unknown parameters θ as:

x′
k =

[
θk
xk

]
, (3.40)

where θk = θ implies the consideration of an extended model where parameters are time-
varying. Then, an independent, zero-mean normal increment is added to the parameter at
each time step (Liu and West, 2001):

θk = θk + ζk, (3.41)
ζk ∼ N (0,Wk), (3.42)

where Wk is a variance matrix and θk and ζk are conditionally independent given Σk. The key
motivation is that the artificial evolution of parameters gives new values for each iteration,
and thus, weight assignment in Particle Filters considers the likelihood of the state and
parameter values.

3.7 Distance Measures for Probability Density Functions

The current chapter describes Particle Filters (Sections 3.4 and 3.5), which aim to solve
the Bayesian tracking problem through Monte Carlo simulations. In particular, Section 3.4
describes how prior and posterior estimates are formulated through a Bayesian estimation
framework.

Detection schemes are commonly based in the comparison of probability density func-
tions generated from data. This comparison may be executed through different techniques,
including hypothesis tests and computation of the distance between probability densities.
Considering that Particle Filter outputs are obtained as probability density functions (prior
and posterior), it seems straightforward to process the estimates in order to propose a de-
tection scheme. As a consequence, it is necessary to introduce distance measures suitable for
the comparison of probability density functions.
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3.7.1 Fisher Discriminant

The Fisher Linear Discriminant is a tool developed in the area of pattern recognition in order
to find the optimum line in terms of class separability. Suppose that there exists a set of n
d-dimensional samples x1, . . . , xn, in which n1 < n are in the subset D1 and are labelled w1

and n2 < n are in the subset D2 and labelled as w2. If we form a linear combination of the
components of x, we obtain the scalar dot product (Duda et al., 2000):

y = w · x, (3.43)

which divides the corresponding set of of n samples y1, . . . , yn into subsets Y1 and Y2. Geo-
metrically, if ∥w∥ = 1, each yi is the projection of the corresponding xi onto the line in the
direction of w.

The Fisher Discriminant maximizes the criterion function

J(w) =
|m1 −m2|2

s21 + s22
(3.44)

over the linear function w · x to find the line that best separates both classes. In this case,
mi is the sample mean, and s2i is the class variance.

In this work, the criterion presented in Equation 3.44 is used as a distance measure
between estimated probability density functions, where mi and s2i are directly obtained from
the probability density function estimates.

3.7.2 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence is a measure of the distance between two probability
measures. In statistics, it arises as an expected logarithm of the likelihood ratio (Cover
and Thomas, 2006). In essence, the KL divergence measures the inefficiency of assuming
that a given distribution is q(x) when the true distribution is p(x). In other words, the KL
divergence quantifies the necessary amount of information that needs to be used to represent
p(x) through q(x).

Definition 3.1 (Kullback-Leibler Divergence (Cover and Thomas, 2006)) The relative en-
tropy or Kullback-Leibler distance between two probability mass function p(x) and q(x) is
defined as

D(p(x)∥q(x)) =
∑
x∈X

p(x) log
p(x)

q(x)
(3.45)

= EX∼p

[
log

(
p(X)

q(X)

)]
. (3.46)

Definition 3.1 uses the convention 0 log 0
0
= 0, 0 log 0

q
= 0, and p log p

0
= ∞. Thus, if there

is any symbol x ∈ X such that p(x) > 0 and q(x) = 0, then D(p(x)∥q(x)) = 0.
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3.8 Final Words

In this chapter, an introduction of the general concepts of Bayesian estimation frameworks
has been presented. The Bayesian tracking problem has been introduced, and theoretical
foundations for the understanding of the Particle Filter algorithms have been explained.
Moreover, the development of the Classic Particle Filter algorithm has been shown, with
usual implementation problems and possible solutions. Finally, some information has been
given about the possibilities of information processing that the Particle Filter algorithm
opens, and subsequently, two tools for this processing have been presented.

The exhibition and understanding of these tools open the path for the implementation
details addressed in the following chapter.
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Chapter 4

Implementation of Volatility Estimation
using Particle Filters for a High
Volatility Cluster Detection Scheme

The present chapter describes the implementation details followed to create a high volatility
cluster detection scheme. In Chapter 2, it was mentioned that volatility is a non-observable
variable from a given returns time series. Given this fact, to correctly implement, analyze,
and assess a Bayesian filtering framework, it is necessary to use simulated data as ground
truth.

The GARCH volatility model allows one to create a volatility time series -after defining
some parameters- and consequently generating a returns series for the given volatility at
every time step. This is useful to measure the effectiveness of estimation frameworks and
detection schemes. The structure of this chapter includes a detailed description of the data
sets that will be used in Section 4.1. Section 4.2, on the other hand, shows specific aspects
about the use of Particle Filters for volatility estimation. Finally, the detection scheme is
presented in Section 4.3.

4.1 Data

The assessment of Bayesian estimation frameworks and detection schemes requires data sets
where observations and the state are known for every instant in a given period. This allows
the evaluation of filtering schemes and consequent comparison of the implemented techniques.
Given that the volatility of a returns series is a non-observable variable, it is mandatory to
generate data sets where the algorithms can be tested and fine-tuned. This section provides
details about artificially generated data used during this work, and presents the acquisition
and post-processing necessary to apply the proposed algorithms in stock market data.
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Table 4.1: GARCH(1,1) model parameters for each data set. The arrow (→) indicates a
change in the parameter value at time step 250. Note that parameters µ and ω are constant
for each set.

Parameter
Data set GARCH0 GARCH1 GARCH2 GARCH3 GARCH4 GARCH5

µ 9× 10−4 9× 10−4 9× 10−4 9× 10−4 9× 10−4 9× 10−4

ω 10× 10−6 10× 10−6 10× 10−6 10× 10−6 10× 10−6 10× 10−6

α 0.20 → 0.10 0.20 → 0.12 0.20 → 0.14 0.20 → 0.16 0.20 → 0.18 0.20 → 0.20
β 0.60 → 0.85 0.60 → 0.80 0.60 → 0.75 0.60 → 0.70 0.60 → 0.65 0.60 → 0.60

4.1.1 Simulated Data

The simulated data has been generated using a GARCH(1,1) model, where parameters α
and β are chosen in such a way that α + β is a value close to 1, as described in Section 2.2.
In observed financial time series, it is not possible to assure that the values of the parameters
α and β are fixed for a given time window. For this reason, volatility time series are created
using time-dependent parameters over the studied time span. In particular, time series of 500
steps have been generated, with a parameter change in the step 250. This change resembles
a regime shift in the market (Tobar, 2010).

The model used for data generation is:

σ2
k|k−1 = ω + αu2

k−1 + βσ2
k−1|k−2, (4.1)

rk = µ+ uk, (4.2)

where µk|k−1 = µ and ω are considered constant parameters in the considered time span, and
σ2
0 = 0.5× 10−4.

The implemented method for data generation creates data sets in which there are large
volatility variations and small volatility variations. These are necessary for the correct as-
sessment of the proposed detection algorithm.

4.1.2 Stock Market Data

The definition of volatility introduced in Chapter 2 considers the price time series of assets,
which do not include stock market indexes such as NASDAQ Composite. In (Tsay, 2010),
many of the examples for volatility concepts are given for the value of IBM stocks over time.
For this reason, a section of IBM daily stock prices is used to apply the developed algorithm
for early high volatility cluster detection. The data is extracted from (Yahoo!Finance, 2013),
with information between January 1st, 1962 and May 17th, 2013 for a total of 12933 data
points. The data considered for filtering is the adjusted closing price, which is commonly used
for analysis of historical data. Figure 4.1 shows the data extracted from (Yahoo!Finance,
2013). Dashed lines have been used to show the data in which the proposed algorithm is
applied, which corresponds to 1000 data points between September 12th, 2005 and September
1st, 2009. This data set includes the dramatic market fall occurred in October 2008 (see
Figure 4.2).
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(a) Adjusted closing price.
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Figure 4.1: IBM’s adjusted closing stock prices and corresponding daily returns from 1st, 1962
to May 17th, 2013. Notice the dashed lines from September 12th, 2005 to September 1st, 2009.
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Figure 4.2: IBM’s adjusted closing stock prices and corresponding daily returns from Septem-
ber 12th, 2005 to September 1st, 2009. This figure represents the details between the dashed
blue lines of Figures 4.1a and 4.1b.
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4.2 Filtering Details

4.2.1 Estimation of Model Parameters

Model parameters α and β have a high impact on volatility series. These parameters have
the power to drive the variation speed of a volatility series and to control the average of the
series over time. Hence, it is of great importance to have good estimates of both parameters
to adequately estimate volatility.

In financial time series, it is impossible to know if parameters α and β are fixed for a given
time window in a data set. Therefore, it is necessary to estimate these parameters online. This
work includes two stages of parameter estimation: Estimation through maximum likelihood
in a training set and online estimation in test data points.

Estimation through Maximum Likelihood

Parameter estimation has been performed in both simulated data sets and stock market
data through maximum likelihood. This is plausible due to the similar structure in both the
GARCH(1,1) model and the uGARCH model. In particular, this task has been accomplished
using the garchfit function available in the Financial Toolbox of MATLAB R⃝.

In the simulated data sets, parameter estimation is performed using the first 150 steps
for each returns time series. For IBM’s stock prices, parameter estimation is performed over
the first 200 time steps of the returns time series. These estimations are used as the initial
conditions for online parameter estimation.

Online Estimation

Section 3.6 describes the reasons for using online parameter estimation in a Particle Filtering
scheme. In this work, parameters α and β of the uGARCH model are allocated into an
extended state vector,

(xk)
′ =

 αk

βk

σ2
k

 , (4.3)

where αk and βk are parameters considered to be time-variant, and are called pseudo-particles.

Maximum likelihood estimates α0 and β0 are used to compute the initial conditions α1

and β1, which include a random perturbation for every particle i:

α
(i)
1 = N (α0, 0.1 · α0), (4.4)

β
(i)
1 = N (β0, 0.1 · β0). (4.5)

24



The initial conditions are used to drive the noise variance of the parameters in the extended
state vector (see Equation 3.40):

α
(i)
k ∼ N (α

(i)
k−1, α

(i)
1 σ2

α,β) (4.6)

β
(i)
k ∼ N (β

(i)
k−1, β

(i)
1 σ2

α,β) (4.7)

There are two major drawbacks with this method:

• P[α(i)
k < 0] > 0 and P[β(i)

k < 0] > 0, ∀i, k,

• P[α(i)
k + β

(i)
k > 1] > 0, ∀i, k,

both of which are not permitted in the uGARCH model. In particular, they have been
addressed in the following way:

• For each α
(i)
k < 0, let α

(i)
k = 10−5. Similarly, for each β

(i)
k < 0, let β

(i)
k = 10−5.

• The Particle Filter self-regulates from the cases where α(i)
k +β

(i)
k > 1, provided that these

cases have very low likelihood, which translate into very low values of corresponding
weights. Hence, no saturation condition has been used for the upper bound.

4.2.2 Particle Filters

Volatility estimation in both simulated data and stock market data has been performed
using two different Particle Filtering schemes, including classic and risk sensitive approaches.
The estimation is performed using 100 particles. Due to the inherent randomness of the
filtering processes, these are repeated 10 times. Also, both filters are implemented with a
resampling stage, where residual resampling is used. Next, details about each particular filter
are presented.

Classic Particle Filter

The Classic Particle Filter (PF) for volatility estimation in the uGARCH model has been
implemented using an importance density equal to

qPF (xk|x(i)
k−1, zk) = p(σ2

k|σ
2(i)
k−1). (4.8)

A closed Expression for p(σ2
k|σ

2(i)
k−1) has been given in Equation 2.15. Thus, samples are

generated according to:
σ
(i)
k ∼ p(σ2

k|σ
2(i)
k−1), (4.9)

which leads to the following weight update equation:

w
(i)
k = w

2(i)
k−1p(rk|σ

2(i)
k ). (4.10)
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Risk Sensitive Particle Filter

In the search for an importance density function that could be used to propose a risk sensitive
approach towards volatility estimation, it was necessary to find a distribution with very
specific characteristics. First, the probability density function needs a localization parameter
that lets both the Classic Particle Filter’s (PF) and Risk Sensitive Particle Filter’s (RSPF)
importance density have the same support. Second, the RSPF’s importance density should
have a fatter tail than the PF’s density. The proposed RSPF uses the Generalized Pareto
Distribution as the importance density function, which is commonly used to model the tails
of other distributions; since it is able to model exponential, polynomial and even finite tails.

Definition 4.1 (Generalized Pareto Distribution (Embrechts et al., 1997; Mathworks, 2013))
The probability density function of the Generalized Pareto Distribution (GPD) is defined by

fGPD(x|k, σ, θ) =


1
σ

[
1 + k x−θ

σ

]−1− 1
k if

{
k > 0, for θ < x

k < 0, for θ < x < σ/k
1
σ
exp

[
−x−θ

σ

]
if k = 0, for θ < x

(4.11)

This distribution has two special cases, where it is reduced to other distributions:

• If k = 0 and θ = 0, the generalized Pareto distribution is equivalent to the exponential
distribution.

• If k > 0 and θ = σ/k, the generalized Pareto distribution is equivalent to the Pareto
distribution.

As Definition 4.1 states, the probability density function of the GPD has three parameters.
These can be interpreted as follows:

• k: Shape parameter,
• σ: Scale parameter,
• θ: Threshold (location) parameter.

These parameters cannot take any value if one wants to assure the convergence of the first
and second moments of the the GDP, since

E[X] = θ +
σ

1 + k
, for k < 1,

Var[X] =
σ2

(1− k)2(1− 2k)
, for k < 1/2, (4.12)

Considering that the variance is defined for k < 1/2, the parameters of the probability density
function of the GPD have been used in the following way to utilize it as the importance density
of the RSPF:

k = 0.49,

σ = 0.3σ
2(i)
k−1,

θ = ω + β
(i)
k−1σ

2(i)
k−1,

(4.13)
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Figure 4.3: Comparison between qPF (σ
2
k|σ

2(i)
k−1) and qRSPF (σ

2
k|σ

2(i)
k−1). In this example, σ2(i)

k−1 =
5× 10−4, α = 0.2, β = 0.6, ω = 1.0468× 10−5, and σ2

η = 0.7.

where β
(i)
k is the ith pseudo-particle for the online estimation of the uGARCH parameter

β. Parameter k has been fixed in the aforementioned value to reproduce the shape of
p(σ2

k|σ2
k−1) (see Equation 2.15). Parameter σ gives the scale to fGPD(x|k, σ, θ). Given that

max{fGPD(x|k, σ, θ)} = 1/σ, using a scaled previous-step particle, a desired fat tail with
similar shape to p(σ2

k|σ2
k−1) is obtained. Parameter θ sets the location of the density of the

GPD and is set to be equivalent to ω + β
(i)
k−1 (see Equation 2.12), this is, the support of

fGPD(x|k, σ, θ) is set to be equivalent to the support of p(σ2
k|σ2

k−1). Hence, the importance
density function employed is

qRSPF (xk|x(i)
k−1, zk) = fGPD(σ

2
k|0.49; 0.3σ

2(i)
k−1;ω + β

(i)
k−1σ

2(i)
k−1). (4.14)

Particles are drawn from

σ
2(i)
k ∼ fGPD(σ

2
k|0.49; 0.3σ

2(i)
k−1;ω + β

(i)
k−1σ

2(i)
k−1), (4.15)

and the weight update equation is

w
(i)
k = w

(i)
k−1

p(rk|σ2(i)
k )p(σ

(i)
k |σ(i)

k−1)

fGPD(σ
2(i)
k |0.49; 0.3σ2(i)

k−1;ω + β
(i)
k−1σ

2(i)
k−1)

. (4.16)

A visual comparison of qPF (xk|x(i)
k−1, zk) and qRSPF (xk|x(i)

k−1, zk) is shown in Figure 4.3. Notice
that both importance densities are defined over the same support, and qRSPF (xk|x(i)

k−1, zk) has
a fatter tail than qPF (xk|x(i)

k−1, zk). Hence, the design conditions for the RSPF’s importance
density are met.

4.3 Detection

4.3.1 Detection through Hypothesis Test

Section 3.4 describes that Particle Filters consist mainly of two steps: prediction and up-
date. The Particle Filter, such as any other Bayesian filtering framework, predicts through
model dynamics (Expression 3.1), and updates the estimation with the new measurement.
Therefore, for every time step, the Particle Filter produces a prior estimate and a posterior
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Figure 4.4: Examples of prior and posterior densities of the RSPF in a volatility filtering
process.

estimate:

Prior: p̂(xk|z1:k−1) =
Ns∑
i=1

w
(i)
k−1δ(xk − x

(i)
k ), (4.17)

Posterior: p̂(xk|z1:k) =
Ns∑
i=1

w
(i)
k δ(xk − x

(i)
k ), (4.18)

Differences between prior and posterior densities may be considerable if model dynamics
diverge from actual measurements. This is the case when unlikely events such as unexpected
market falls or machine ruptures occur. Figure 4.4 shows the vast differences that may occur
between prior and posterior density estimates. A detection scheme through hypothesis test
exploits these differences to design rapid change detectors in the estimated state.

The designed test considers the following hypotheses:

• H0: A new high volatility cluster is starting.

• H1: There is no presence of new high volatility clusters.

To accept or reject the null hypothesis H0, the implemented test considers the 70% con-
fidence interval of the prior density, and contrasts it with the mean of the posterior density.
The confidence interval is calculated using Parzen windows (Principe, 2010) and a Normal
kernel, whose bandwidth σkernel is obtained through Silverman’s thumb rule (Principe, 2010).
In particular, the following steps have been implemented for every time step k:

1. Calculate the maximum of the particle cloud: maximum = max{σ2(i)
k }.

2. Obtain 100 support points equivalently spaced between [0, 1.5 ·maximum]. The length
of the support is increased in a 50% to correctly model the tails of the distributions.

3. Find the likelihoods for every point in the newly defined support through Parzen win-
dows.

4. Obtain the support point where the 70% of the total mass of the density is covered.

If the mean of the posterior density is greater than the 70% interval bound of the prior density,
the null hypothesis is accepted. Figure 4.5 shows an example of the designed hypothesis test,
where an unlikely event occurs and the null hypothesis H0 is accepted.
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Figure 4.5: Hypothesis test example. The filled area under the smoothed prior density rep-
resents the 70% confidence interval for the smoothed prior density. Here, the null hypothesis
is accepted.

4.3.2 Detection using the Fisher Discriminant

The previously presented framework involves volatility estimates from both Classic and Risk
Sensitive Particle Filtering approaches. In particular, one obtains

pPF (σ
2
k|rk) =

Ns∑
i=1

w
(i)
k δ(σ2

k − σ
2(i)
k ), (4.19)

pRSPF (σ
2
k|rk) =

Ns∑
i=1

w
(i)
k δ(σ2

k − σ
2(i)
k ). (4.20)

The Fisher criterion is used to calculate the distance between the two weighted clouds of
particles for every time step k of the filtering process as a function of the first two moments
of the probability density functions.

4.3.3 Detection using the Kullback-Leibler Divergence

The Kullback-Leibler Divergence defined in Section 3.7.2 considers an equivalent support X
for densities p(x) and q(x). Given that the supports for the posterior distributions pPF (σ

2
k|rk)

and pRSPF (σ
2
k|rk) are obtained through Monte Carlo simulations, the KL divergence cannot

be calculated between Particle Filter estimates. Moreover, the marginal densities p(σ2
k)

and p(rk) cannot be calculated, so a theoretically accurate computation of the conditional
densities cannot be introduced for the calculation of the KL divergence.

To calculate an approximation of this measure, Parzen windows are used to obtained
a smooth version of the estimates pPF (σ

2
k|rk) and pRSPF (σ

2
k|rk) over a previously defined

common support. The method includes the following steps for every k in the filtering window:

1. Calculate maximum = max{σ2(i)
k (PF ), σ

2(i)
k (RSPF )}.

2. Obtain 100 support points equivalently spaced between [0, 1.5 ·maximum]. The length
of the support Σ has been increased in a 50% to correctly model the tails of the
distributions.

3. Find the likelihoods for every point in the newly defined support.
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As in the case of the calculation of confidence intervals, Silverman’s thumb rule has been
used to obtain a reasonable bandwidth σkernel.

The used approximation is

D(pPF (σ
2
k|rk)∥pRSPF (σ

2
k|rk)) ≈

∑
σ2∈Σ

pPF (σ
2
k|rk) log

pPF (σ
2
k|rk)

pRSPF (σ2
k|rk)

. (4.21)
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Chapter 5

Results

This chapter describes the results obtained for volatility estimation using Particle Filters, and
detection of high risk events using information derived from the filtering process. During the
training stage, parameter selection for the setup of the PF algorithm is achieved through a
sensibility analysis and subsequent selection through the smallest associated estimation error
(in percentage). These results are used to select the PF algorithm parameters to be utilized in
the detection scheme, where estimation through PF is crucial. After the parameter selection
stage, results for three different detection approaches are presented.

Performance measures introduced in this chapter may only be used in simulated data,
where the true volatility is known. Hence, quantitative results showing performance measures
results are presented for simulated data, and qualitative results are presented for returns series
derived from IBM stock prices.

The chapter is organized as follows. First, the performance measure used for Particle Filter
estimates is presented, and an evaluation scheme for the detection framework is proposed.
Filtering results are then introduced, which include parameter selection. Finally, detection
results using the hypothesis test proposed in the previous chapter and distance measures for
probability density functions are shown.

5.1 Performance measures

Chapters 2 and 4 describe the non-observability property of volatility. In this regard, this
section presents the steps followed to give a possible solution for this problem. Performance
measures described in this section assume knowledge of the ground truth data, and as a
consequence, results may be analyzed only in simulated data. The following sections consider
σ̂2
k as the estimated volatility and σ2

k as the true volatility (this is, the ground truth).
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5.1.1 Accuracy Indicator for Particle Filter estimates

Performance of Particle Filters, including the Classic and Risk Sensitive approaches, is com-
pared in terms of error (in percentage). The performance indicator is defined as follows:

iEX(k) =
|σ̂2

k − σ2
k|

σ2
k

· 100. (5.1)

Given that iEX(k) is defined for every time step k of the filtering process, one can obtain an
average of iEX(k) over the filtering time window Ti, . . . , Tf :

IEX =
1

Tf − Ti

Tf∑
k=Ti

iEX(k) =
1

Tf − Ti

Tf∑
k=Ti

|σ̂2
k − σ2

k|
σ2
k

· 100. (5.2)

Furthermore, given that IEX is defined only for one filtering process, one can obtain an
average of IEX over the amount of realizations of the filtering process, which include 10 in
this work:

ĪEX =
1

10

10∑
n=1

IEX(n). (5.3)

In particular, index ĪEX serves as the base to compare the error (in percentage) for each
filtering process, for each set of parameters. Hence, the best set of parameters is obtained
by observing the smaller index ĪEX .

5.1.2 Detection Performance

The detection scheme based on the hypothesis test approach that was proposed in the previ-
ous chapter has as an output indicatrix function that shows the time instants where volatility
starts to increase. To correctly measure the effectiveness of this algorithm, it is necessary to
label the time steps in which there is a considerable increase in true volatility, which is in
essence subjective. To solve this problem, the one-step net differences of the ground truth
volatility data series have been calculated. This first step lets one obtain direct information
regarding increments in volatility. Next, a histogram is built with the volatility net differences
obtained in the training interval, which accumulates the statistics of volatility increases. One
can define a threshold using the value where the X% of mass has been obtained. This thresh-
old defines over the time series a limit for volatility increases that are considerable, and lets
one create the detection ground truth to which the detector performance is contrasted.

Detection results are presented using confusion matrixes, and the following statistical
measures are calculated:

• Positive Predictive Value ≜ TP
TP+FP

is the proportion of positive results that are cor-
rectly detected,

• Negative Predictive Value ≜ TN
FN+TN

is the proportion of negative results that are
correctly detected,
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• Sensitivity ≜ TP
TP+FN

is the proportion of true positive results from all positive results,

• Specificity ≜ FP
FP+TN

is the proportion of true negative results out of all negative results,

• Accuracy ≜ TP+TN
TP+TN+FP+FN

is the proportion of all correctly classified results and all
results.

In all these definitions, TP stands for the number of true positives, FP stands for the number
of false positives, FN stands for the number of false negatives and TN stands for the number
of true negatives.

5.2 Estimation through Particle Filters

5.2.1 Fitting GARCH Parameters

The first step towards a filtering process starts with the estimation of model parameters
that are used as the initial conditions in the extended GARCH model (refer to 4.2.1). As
previously mentioned, for the uGARCH model this can be achieved by maximum likelihood,
assuming that the model is in fact a GARCH model.

Table 5.1 shows the results of parameter estimation for the simulated data sets. The
parameters are obtained using the garchfit function of MATLAB R⃝ over the training window
of each data set. The true values for this time window are α = 0.2 and β = 0.6 for every data
set. From Table 5.1, GARCH1 is the data set that obtains the poorest parameter estimates
from data contained within the training window.

This estimation has direct incidence over the filtering process, since these values are used as
initial conditions for the extended uGARCH model, where the dynamics are non-observable.
Initial conditions in non-observable systems are of great importance in the outcome of the
a Bayesian filtering process. If the system is non-observable, the state may follow one of an
infinite number of possible paths that match the current observations. Therefore, accurate
initial conditions are necessary to achieve an unbiased estimate of the state.

Table 5.1: Parameter estimation using MATLAB R⃝’s garchfit function from the Financial
Toolbox.

Parameter
Data set GARCH0 GARCH1 GARCH2 GARCH3 GARCH4 GARCH5

α 0.2094 0.1477 0.2194 0.2612 0.2903 0.1149
β 0.6307 0.2768 0.5682 0.6699 0.5237 0.6533

α+ β (< 1) 0.8401 0.4245 0.7876 0.9311 0.8140 0.7682
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5.2.2 Particle Filter Parameter Selection

This subsection presents the results of the sensibility analysis of parameters of the Classic
Particle Filter. These parameters have been tested to find the combination that minimizes
the estimation error ĪEX . The tested parameters include Rth (resampling threshold), σα,β

(pseudo-particle standard deviation), and ση (process noise).

To find the parameter values that minimize the estimation error, the following parameter
mesh is used:

• Rth = {0.5, 0.6, 0.7},

• σα,β =


0.0010, 0.0015, 0.0020, 0.0025, 0.0030
0.0035, 0.0040, 0.0050, 0.0075, 0.0100
0.0125, 0.0150, 0.0175, 0.0200, 0.0225
0.0250, 0.0275, 0.0300, 0.0350, 0.0400

,

• ση = {0.5, 0.6, 0.7}.

It should be noted that the selected values that are employed to create the mesh for σα,β

were placed at irregular intervals. Since there is a tendency to have better estimations with
lower values of σα,β, a better resolution has been given to the interval of smaller values.

Every set of parameters is used to run 10 times each filtering process over the complete
time window T = {1, . . . , 500} of every set of simulated data (GARCH0 to GARCH5). The
error is computed over the interval T ′ = {151, . . . , 500}, which excludes the training interval.

Tables 5.2 through 5.7 show the percentage error for the mean of the 10 filtering routines
for each set of parameters. Since results are 3-dimensional, the tables show the results for
ση = 0.7, which is the noise process value that minimizes the error for every data set.

The first thing to note in Tables 5.2 to 5.7 is that the minimum percentage error for the
filtering process on these data sets is bounded approximately between 16% and 30%. Second,
it is very important to notice that errors are very similar for each one of the columns of the
tables. This means that the resampling threshold Rth has a limited impact on the estimates
when contrasted to the ground truth from an accuracy perspective. This is very important
since one can simply employ an average of Rth over all data sets without loosing estimation
accuracy, or simply select the value that is most often the best value. Also, data shows that
minimization occurs over a convex space which lets one assume that there is in fact a set of
parameters which minimize the estimation error. These results also demonstrate that higher
noises (this is, greater particle variability) do not translate into better estimates. In fact,
there is a small subset of the parameter space where Bayesian filters such as the Particle
Filter may work properly.

Table 5.8 shows the summary of selected parameters for each data set and its arithmetic
mean, calculated using the information for every data set. This table clearly shows that
the data sets GARCH0, GARCH2 and GARCH3 conduce to similar parameter values when
minimizing the estimation error; in fact, the values for the parameter σα,β are in the same
scale. On the other hand, data sets GARCH1, GARCH4 and GARCH5 introduce a major
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Table 5.2: Estimation error ĪEX for different parameter values for data set GARCH0. This
table shows the results for ση = 0.7. The minimum error (shaded in gray) is obtained for
σα,β = 0.0075, Rth = 0.6.

σα,β

0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 0.0050 0.0075 0.0100

Rth

0.5 45.6831 42.6858 39.8083 36.6233 33.045 34.0999 32.5206 30.8759 32.5593 32.3207
0.6 45.3273 43.9501 39.2128 37.0836 35.0476 32.6049 32.5007 30.9371 30.5472 34.6344
0.7 44.9466 44.6572 40.4360 37.7934 34.2450 33.0747 32.4398 31.5625 31.222 30.9074

σα,β

0.0125 0.015 0.0175 0.02 0.0225 0.025 0.0275 0.03 0.035 0.04

Rth

0.5 33.1869 33.2365 35.4018 35.4773 35.0612 36.7213 36.0474 38.4826 40.5602 39.4100
0.6 33.1350 33.0238 34.4899 33.2348 33.7765 35.4858 37.0154 39.1493 38.0483 41.2012
0.7 30.7984 34.9421 35.6370 34.6434 34.2616 35.1727 35.4310 38.5281 37.9884 40.6167

Table 5.3: Estimation error ĪEX for different parameter values for data set GARCH1. This
table shows the results for ση = 0.7. The minimum error (shaded in gray) is obtained for
σα,β = 0.0350, Rth = 0.6.

σα,β

0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 0.0050 0.0075 0.0100

Rth

0.5 51.0611 51.2075 50.1367 50.1331 47.4300 48.0407 46.5103 44.3850 38.7528 30.2866
0.6 51.4037 50.8755 50.6492 49.4681 49.1941 47.3560 47.2149 45.0067 36.1592 31.3635
0.7 51.4245 50.8909 50.8915 49.6318 48.5846 47.6203 47.2209 45.2000 36.7997 30.1693

σα,β

0.0125 0.015 0.0175 0.02 0.0225 0.025 0.0275 0.03 0.035 0.04

Rth

0.5 26.1898 23.0201 21.7539 21.6545 21.4255 20.5647 20.3163 19.9770 19.7330 19.9307
0.6 27.4839 25.0151 22.8430 21.6427 20.7188 21.0935 20.1355 19.7223 19.4162 20.1503
0.7 27.4139 24.1124 22.9076 21.5613 21.4261 20.0818 20.5648 20.6290 19.9582 20.0205

Table 5.4: Estimation error ĪEX for different parameter values for data set GARCH2. This
table shows the results for ση = 0.7. The minimum error (shaded in gray) is obtained for
σα,β = 0.0035, Rth = 0.5.

σα,β

0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 0.0050 0.0075 0.0100

Rth

0.5 34.3502 33.6726 30.2761 25.4804 26.3638 22.9285 24.0401 25.2195 26.1182 27.6950
0.6 37.5176 34.6301 29.5473 27.0985 24.4056 24.1667 23.2317 24.6105 26.1960 28.6836
0.7 35.7616 32.7430 30.3254 25.2158 23.6773 23.4249 23.9162 23.0610 27.1241 28.2041

σα,β

0.0125 0.015 0.0175 0.02 0.0225 0.025 0.0275 0.03 0.035 0.04

Rth

0.5 28.1978 29.1794 32.9497 31.5485 32.0718 34.6276 34.7882 36.1947 40.2270 41.2393
0.6 27.6064 28.2799 29.7254 31.1746 32.4882 33.5473 33.9458 35.5584 37.3276 40.2381
0.7 27.6898 28.2368 31.0338 31.9597 31.7439 35.0622 35.9027 33.3601 36.5086 41.3087
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Table 5.5: Estimation error ĪEX for different parameter values for data set GARCH3. This
table shows the results for ση = 0.7. The minimum error (shaded in gray) is obtained for
σα,β = 0.0035, Rth = 0.7.

σα,β

0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 0.0050 0.0075 0.0100

Rth

0.5 19.3664 20.0746 17.8894 17.7761 18.0384 17.3640 16.3491 18.7394 19.4852 22.1763
0.6 18.1588 17.5985 17.4676 17.9119 17.2962 17.4517 18.1153 17.9320 19.3590 20.3719
0.7 19.7638 18.9000 18.2602 18.5192 17.4313 16.1627 17.2223 18.4436 18.9302 21.1907

σα,β

0.0125 0.015 0.0175 0.02 0.0225 0.025 0.0275 0.03 0.035 0.04

Rth

0.5 24.1930 26.4535 27.9966 31.0447 32.1416 33.1691 35.9803 38.5001 38.3597 41.2628
0.6 24.5801 25.5974 29.5183 31.5754 32.1902 32.8693 37.5007 37.0170 39.5580 42.0956
0.7 24.3899 26.4036 27.6496 29.5650 35.0783 31.5716 37.9800 35.0379 39.5324 43.3656

Table 5.6: Estimation error ĪEX for different parameter values for data set GARCH4. This
table shows the results for ση = 0.7. The minimum error (shaded in gray) is obtained for
σα,β = 0.0150, Rth = 0.7.

σα,β

0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 0.0050 0.0075 0.0100

Rth

0.5 20.3345 19.4469 19.5720 19.9932 19.1090 19.1984 19.1401 19.5118 19.1902 19.3141
0.6 20.7905 19.9680 20.1165 20.6015 19.2363 19.0756 18.9305 19.5775 19.1778 19.3428
0.7 20.2243 19.7580 19.7437 19.2649 19.0240 19.2841 18.7612 19.3580 19.5441 19.2978

σα,β

0.0125 0.015 0.0175 0.02 0.0225 0.025 0.0275 0.03 0.035 0.04

Rth

0.5 18.9925 19.0681 19.3370 20.2175 19.5165 20.0991 20.9024 21.6774 22.6824 23.5475
0.6 19.5260 19.4372 19.9382 19.8127 19.2165 19.9946 20.8392 20.8295 21.2633 22.8528
0.7 19.5867 18.7214 19.5339 19.8361 19.1170 19.9311 19.7897 22.1874 21.7869 21.8020

Table 5.7: Estimation error ĪEX for different parameter values for data set GARCH5. This
table shows the results for ση = 0.7. The minimum error (shaded in gray) is obtained for
σα,β = 0.02, Rth = 0.6.

σα,β

0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 0.0050 0.0075 0.0100

Rth

0.5 31.9090 32.5511 33.8042 32.3486 33.4068 34.2595 33.6950 33.3682 33.0455 32.0685
0.6 31.7091 32.0966 32.1253 32.6127 33.1701 33.0996 33.2717 31.6672 30.9641 31.2875
0.7 31.5928 32.4281 31.2327 33.4183 32.7725 32.2182 32.6587 33.3244 32.4323 32.9893

σα,β

0.0125 0.015 0.0175 0.02 0.0225 0.025 0.0275 0.03 0.035 0.04

Rth

0.5 30.5636 31.8657 31.2062 30.6622 30.7736 30.1174 30.6500 31.6419 32.5699 32.3242
0.6 30.9969 31.7978 30.5992 29.7220 31.4580 31.4766 30.9374 31.5223 31.9582 33.3153
0.7 31.4595 30.6166 30.4844 30.6546 31.1387 30.7421 31.8942 30.9111 30.6593 33.3628
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Table 5.8: Summary of sensibility analysis for the Classic Particle Filter

Parameter
Data set GARCH0 GARCH1 GARCH2 GARCH3 GARCH4 GARCH5 Mean

Rth 0.6 0.7 0.5 0.7 0.7 0.6 0.63
σα,β 0.0075 0.0350 0.0035 0.0035 0.0150 0.0200 0.0141
ση 0.7 0.7 0.7 0.7 0.7 0.7 0.7

Minimum error ĪEX 30.5472 19.4162 22.9285 16.1627 18.7214 29.7720 22.9247
α+ β (< 1) 0.8401 0.4245 0.7876 0.9311 0.8140 0.7682 0.7609

difference in this parameter value (there is a difference of one order of magnitude). Careful
examination of the rows and columns of Table 5.6 (GARCH4) and Table 5.7 (GARCH5)
shows that the error index ĪEX is relatively constant for the parameters σα,β and Rth for
these data sets. Nevertheless, this behavior is not present in Table 5.3 (GARCH1). Error
values increase hugely towards the left side of the columns of Table 5.3. This most probably
occurs due to the poor estimation of initial conditions through maximum likelihood. Since
the initial conditions are far from the ideal values, more variability is needed in the artificial
evolution equations included within the Particle Filter algorithm in order to effectively learn
and find the correct intervals where these parameters lie.

The inherent non-observability issues of volatility imply that using an average value for
σα,β over all the data sets where the filtering process is applied will result in poor estimations
for the data set GARCH1.

To choose specific parameter values Rth, σα,β and ση, it is necessary to consider that
parameters Rth and ση have a very small incidence in the estimation error given the parameter
mesh. Thus, both of these parameters are set to 0.7. For parameter σα,β, if one considers the
arithmetic mean, results for the GARCH1 data set are far from optimum. Nevertheless, this
is the proposed value used in the detection scheme. As a summary, the values considered for
the proposed detection algorithms are the following:

Rth = 0.6,

σα,β = 0.0141,

ση = 0.7.

(5.4)

5.2.3 Estimation Results

Filtering results with optimum parameters for each data set

This subsubsection presents the results obtained for volatility estimation using the optimum
parameters for the Classic Particle Filtering processes. These parameters have also been
applied and used in the RSPF. Results are shown in Figures 5.1 to 5.6.

Analysis of the estimation performance in each data set uncovers many interesting findings
that need to be addressed. The comments about results are discussed separately for every
data set.
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• GARCH0 (Figure 5.1): In this data set, parameters α and β of the GARCH model
change dramatically at time step 250. This regime shift introduces a particular diffi-
culty for the learning process of the Particle Filters, since adaptation needs to occur
throughout the window. In particular, low volatility periods (period between time steps
150 and 250, except for the high volatility cluster) are not tracked correctly, given that
only the trend is followed (slow reaction to changes). There is a small reaction towards
tracking the high volatility cluster around time step 200, but the result is very biased.
The behavior of the filtering scheme changes vastly after time step 300, where the filter
is able to adapt. Estimation between time steps 350 and 500 has notable results.

• GARCH1 (Figure 5.2): Similar to data set GARCH0, there is a large change in the
parameters α and β for the simulated data at time step 250. Up to time step 250,
both the PF and RSPF are only able to track the trend of the volatility curve, but
there is no reaction to sudden changes. This behavior changes in time step 250, where
there is a tendency towards capturing rapid volatility changes. The filter demonstrates
the results of the learning process at time step 290, where a hefty volatility cluster
occurs. There is correct tracking of volatility shape with a very small estimation bias.
This occurs between time steps 290 and 500, which corresponds to the end of the time
window.

• GARCH2 (Figure 5.3): This filtering process presents extremely low quality estimation
results, with biased estimations and deficient tracking in sudden state variations. As
a matter of fact, employed noises are too small for the Particle Filters to learn in the
first 100 time steps of the filtering process. The first big volatility cluster after time
step 150 is somewhat correctly tracked, but between this event and time step 300,
only trends are followed and there is poor rapid change tracking. The performance
of these algorithms rises after time step 300, where variations of volatility are more
efficiently followed. In fact, estimation bias diminishes considerably towards the end of
the filtering window.

• GARCH3 (Figure 5.4): There is excellent filtering performance throughout the time
window. Accurate estimation, excellent shape tracking. For this data set, only about
100 time steps are necessary for the algorithm to learn and adapt.

• GARCH4 (Figure 5.5): Similar to data set GARCH3, very good state estimation, with
accurate results and very good tracking of sudden volatility changes. The training
window is enough time to learn from the data.

• GARCH5 (Figure 5.6): This data set presents the poorest estimation results among
the 6 data sets presented. Both the PF and the RSPF are not able to learn from the
data, and only trend tracking is possible. Although there is decent reaction towards
abrupt changes from low to high volatility, the PF and RSPF estimations are not able
to react in cases where volatility diminishes. Since shape tracking extremely deficient,
it is expected to have faulty detections in this data set.

The algorithms need around 300 to 400 data points to learn and correctly adapt to the
observed data. In general, there is good tracking of trends before this turning point, but if
the algorithm is able to adapt properly, both tendency and shape are correctly tracked.

One important aspect from these results is that estimation performance depends vastly
on the value σα,β. Previous experiments demonstrate that low values of σα,β (this is, lower
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than the optimum) result in underestimation of both PF approaches, while higher values of
σα,β are conducive to overestimation of volatility. From the purpose of tracking the shape of
the envelope that characterizes the evolution of volatility in time, this is irrelevant, unless
the filters lose the ability to track due to lack of particle variability. Given these results,
it could be convenient to separate σα,β into σα and σβ (this is, to consider separate sources
of uncertainty on each pseudo-particle that extends the model). This is important for two
reasons: First, is it necessary to understand that α multiplies the process noise ση and
therefore, the process noise in the extended uGARCH model is the result of the multiplication
of two random variables: αk ∼ N (αk−1, α1σα) and η2k. Second, variables α and β introduce
different behaviors in the model, since the former is associated to innovations and the latter
is associated to the memory of the model.

In Chapter 2, the value of α + β in the GARCH model was introduced as the “process
persistence parameter, since it determines the speed of the mean-reversion of volatility to its
long-term average. A higher value for α+β implies that the effect of the shocks of volatility,
u2
k, dies out slowly”. In Table 5.8, the estimated value of α + β was included for each data

set. Although there is no apparent relation between the filtering performance of the Particle
Filters and the value of α + β, there is in fact one relation that needs attention: The two
data sets in which the estimated value of α was bigger, the filtering performance was more
accurate and errors were systematically lower (Tables 5.5 and 5.6).

From a detection perspective, it is necessary to notice that the RSPF is usually more
capable of tracking correctly sudden rises of volatility. In these cases, estimations of the
RSPF are better than the PF estimations, since the latter tends to under estimate. This
seems a natural result considering the construction of both PFs: The RSPF grants more
resolution to high volatility areas, resulting in a better estimation of sudden volatility rises.

Continuing with the PF and RSPF comparison, the PF usually outperforms the RSPF in
terms of estimation accuracy. Albeit sudden volatility changes from low to high values, the
PF is less biased than the RSPF.

As a final comment, one should notice that the RSPF outperforms the Classic PF in terms
of 1-step prediction in cases where volatility experiences sudden increments. This occurs due
to the construction of the uGARCH model, in comparison to the GARCH model. Comparing
both dynamics equations,

GARCH: σ2
k|k−1 = ω + αu2

k−1 + βσ2
k−1|k−2,

uGARCH: σ2
k = ω + ασ2

k−1η
2
k + βσ2

k−1,

where uk = σk|k−1ϵk, the innovations process in the GARCH model depends on the value of
the previous step of the returns process, while the volatility dynamics of the uGARCH model
are time independent of the returns series. Since the simulated data was generated according
to a GARCH model and cases associated with filtering through PF schemes is based on the
uGARCH model, this 1-step prediction in sudden volatility rises is possible.
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Figure 5.1: Volatility estimation of GARCH0 data set using optimal parameters. Refer to
Table 5.2 for percentage error.
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Figure 5.2: Volatility estimation of GARCH1 data set using optimal parameters. Refer to
Table 5.3 for error.
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Figure 5.3: Volatility estimation of GARCH2 data set using optimal parameters. Refer to
Table 5.4 for error.
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Figure 5.4: Volatility estimation of GARCH3 data set using optimal parameters. Refer to
Table 5.5 for error.
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Figure 5.5: Volatility estimation of GARCH4 data set using optimal parameters. Refer to
Table 5.6 for error.
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Figure 5.6: Volatility estimation of GARCH5 data set using optimal parameters. Refer to
Table 5.7 for error.

42



Filtering results with averaged parameters (as used in detection scheme)

This subsubsection presents the results obtained for volatility estimation using the average
parameters for the Classic Particle Filtering processes (Expression 5.4). These parameters
have also been applied and used in the RSPF. Results are shown in Figures 5.7 to 5.12.

The previous subsubsection describes the phenomenon of over and underestimation related
to the selected value of σα,β. Given that the previous experiment showed results for the
optimum value of this parameter, this situation was not apparent. Nonetheless, the new
experiment makes this behavior palpable. A detailed analysis for each filtering process is
given below.

• GARCH0 (Figure 5.7): The filtering process shows overestimation after the filters have
adapted to the data in data set GARCH0. This is produced by the higher than optimum
value of σα,β employed. This results in Particle Filters that clearly have less problems
in learning from the data, which results in a more accurate shape tracking along the
filtered time window.

• GARCH1 (Figure 5.8): An opposite behavior for the filtering process of GARCH1
may be observed, in contrast to GARCH0. The corresponding figure clearly shows
underestimation of the state. Nevertheless, an interesting result is that shape tracking is
extremely accurate, which is essential for the correct operation of the proposed detection
algorithms.

• GARCH2 (Figure 5.9): Filters in data set GARCH2 have clearly less problems in
learning from the data with the average parameters. This behavior translates into
results with more accurate shape tracking. There is better accuracy in the estimation
of sudden and vast volatility changes.

• GARCH3 (Figure 5.10): Results for this data set are extremely interesting because of
the ample robustness of the filtering performance to variations of the value σα,β. Shape
tracking and estimation accuracy are almost intact in contrast to the use of optimum
parameters.

• GARCH4 (Figure 5.11): A similar analysis can be presented for data set GARCH4 with
respect to GARCH3. Although some accuracy is lost and mild high volatility clusters
around time step 300 are not perfectly tracked, the overall filtering performance is very
good. In this data set, filters are very robust to variations in the value of the parameter
σα,β.

• GARCH5 (Figure 5.12): Filtering performance for data set GARCH5 is extremely poor.
Albeit trend tracking is available, there is no learning throughout the filtering window
and consequently, sudden volatility changes are poorly tracked. For this reason, it is
extremely unlikely for the proposed detectors to work correctly.

The anomalous behavior occurring in data sets GARCH1 (Figure 5.8) and GARCH5
(Figure 5.12) may be explained again by the estimation through maximum likelihood of
parameter α.

Comparing the performance of the PF and RSPF, one needs to compare the behavior
of these filters in Figures 5.7 to 5.11 (which exclude data set GARCH5). In comparison
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to the previous experiment with optimum parameters, there is again a clear response from
the RSPF towards estimating correctly sudden changes in volatility from low to high values.
This is correct for sudden changes, since the PF tends to be less biased in average. This
behavior is extremely important for the detection scheme, since correct performance from
the proposed detection techniques can be obtained even though the optimal parameters are
not used in simulated or real data.
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Figure 5.7: Volatility estimation of GARCH0 data set using average parameters.
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Figure 5.8: Volatility estimation of GARCH1 data set using average parameters.
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Figure 5.9: Volatility estimation of GARCH2 data set using average parameters.

Time [days]
0 50 100 150 200 250 300 350 400 450 500

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

(a) Returns.

Time [days]
0 50 100 150 200 250 300 350 400 450 500

0

0.2

0.4

0.6

0.8

1
× 10

-3

Volatility

PF estimation

RSPF estimation

(b) Volatility.

Figure 5.10: Volatility estimation of GARCH3 data set using average parameters.
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Figure 5.11: Volatility estimation of GARCH4 data set using average parameters.
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Figure 5.12: Volatility estimation of GARCH5 data set using average parameters.

46



5.3 Detection using a Hypothesis Test

This section presents results obtained from the proposed hypothesis test to capture early
rises in volatility. Figures 5.13 to 5.18 show these results. In all these figures, there are
five subfigures which correspond to (a) price series, (b) returns series, (c) volatility series,
RSPF prior and posterior estimation, and confidence interval, (d) volatility net differences,
and (e) detection points. These set of subfigures encapsulate the associated information in
the detection process, and help the reader comprehend the different aspects of the detection.

Figures 5.13 to 5.17 (notice the exclusion of data set GARCH5) show that the detector
works correctly, since it is able to capture early rises of volatility which transform into
high volatility clusters. This does not occur for data set GARCH5, in which estimation
is extremely deficient and as a consequence, the detector does not work. The detector can
also be interpreted as a local peak detector in the returns series, which is expected. Since
the hypothesis test contrasts the dynamics of the model (prior) and the updated dynamics
through the observations (posterior), it is clear that detections will occur mainly when local
peaks of returns occur.

A detailed analysis of the results for each of the data sets is given ahead.

• GARCH0 (Figure 5.13): The filtering process and consequent detection in this data
set offer early detection of both of the greatest high volatility clusters. There is also
excellent detection in high volatility sub-clusters over high volatility regions. In parti-
cular, the cluster around time step 200 is detected and the cluster after time step 300
is detected. Over the last 200 filtering steps, rapid variations over the volatility cluster
are also detected. Nevertheless, the proposed performance measure does not count
detections of high volatility sub-clusters, which explains the low positive predictive
value, given the relatively high number of false positives.

• GARCH1 (Figure 5.14): All of the high volatility clusters are detected, except for
the high volatility variation due to regime shift at time step 250. This regime shift
introduces a notorious mean variation in volatility, which the test is not able to capture,
since there are no vast variations in the returns series. High volatility sub-clusters
around time step 350 are also detected. From the performance measures perspective,
the detector excels in this data set, given that there are no false positives and only 2
false negatives in 350 time steps, leading to a positive predictive value equal to 1.0.

• GARCH2 (Figure 5.15): As in the previous cases, all of the high volatility clusters are
promptly detected. Nevertheless, in this data set there is a tendency towards higher
sensibility in the detection process, since lower variations of volatility are identified as
well. This behavior is observable in time steps 230 approximately, and various times
between time steps 250 and 300. Given that the ground truth detection points in this
data set leads to 8 false negatives, sensitivity of the test is not good. Nevertheless,
positive predictive value has a fair value of 0.8666.

• GARCH3 (Figure 5.16): Table 5.11b shows a peculiarly low positive predictive value
of 0.1818 in data set GARCH3. The reason for this low value may be observed in
Figure 5.16d, where occurring detections are considered to be false positives due to the
high value of the proposed threshold. Despite the very low positive predictive value,
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qualitative analysis of Figures 5.16c and 5.16e show that there is extremely accurate
detection of higher volatility episodes along the filtered time window. All of the major
sudden volatility rises are detected, except for the higher volatility episode starting at
approximately time step 320. Continuing over this line of thought, the detector works
as expected, although the performance measures do not correctly express the actual
detector capacity.

• GARCH4 (Figure 5.17): The detection scheme applied to data set GARCH4 produces
very similar results to the observed ones in data set GARCH3. An extremely low value
of 0.0769 for the positive predictive value is given by the low value of detections classified
as true positives (only 1) and the high value of detections classified as false positives
(12). The high amount of false positives is given by the position of the proposed
threshold. Nonetheless, a qualitative analysis of Figures 5.17c and 5.17e denotes that
most of the rapid volatility variations are detected. High volatility clusters present in
time steps 170, 270, 360, 390, 440 and 470 are detected, while only small clusters in
time steps 240, 260 and 480 are missed.

• GARCH5 (Figure 5.18): This data set presents an anomalous behavior given the low
quality of estimation. As previously analyzed, the RSPF is only capable of tracking
the trend of the state, but it is not able to learn given the bias in the estimation of
the parameter α of the model uGARCH. This data set demonstrates that the proposed
hypothesis test-based detection scheme needs a decent shape tracking from the RSPF
in order to work in a proper manner.

The detection results obtained through a proposed hypothesis test show that the detector
is very sensitive even to mild high volatility clusters. This translates into the difficulty of
measuring correctly the performance of the algorithm, since there is no possible definable hard
limit between low and high volatility clusters. In fact, one can only use a diffuse definition.
Other results that need to be addressed correspond to the robustness of the algorithm to the
employed value of σα,β in the estimation stage. This parameter has tremendous implications
over the estimation performance, but not over detection performance. If shape is tracked
correctly, the hypothesis test-based detector performs exceptionally well, even under extreme
estimation biases.

From an evaluation of the performance standpoint, the proposed threshold for introducing
ground truth points for detection is not fair with the detection outcome (in the sense of
positive predictive value). This produces low values in performance measures that do not
exactly correspond to the observed outcome in qualitative analysis. Moreover, accuracy is not
a very good indicator of performance since the amount of ground truth points for detection
is extremely low compared to the length of the filtered time window.

The proposed method for calculating the threshold intrinsically assumes that the mean
volatility augments throughout the filtering window, given that it is calculated using only
very rare volatility changes in the training period. Since the training window is not neces-
sarily representative of the studied time span, there might be occasions where the proposed
performance scheme for detection may not be fair with the actual detection results. This
phenomenon occurs when the value α + β augments during the studied time span. This is
present in the detection results of data set GARCH4, where a positive predictive value of
0.0769 does not correspond to the quality of the detections appreciable in Figure 5.17.
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Figure 5.13: Hypothesis test-based detection for data set GARCH0.

Table 5.9: Detection results for GARCH0 data set early high volatility cluster detection.

Condition
H0 H1

Test outcome H0 4 6
H1 0 340

(a) Confusion matrix.

Positive Predictive Value 0.4000
Negative Predictive Value 1.0000

Sensitivity 1.0000
Specificity 0.9826
Accuracy 0.9828

(b) Performance measures.
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Figure 5.14: Hypothesis test-based detection for data set GARCH1.

Table 5.10: Detection results for GARCH1 data set early high volatility cluster detection.

Condition
H0 H1

Test outcome H0 10 0
H1 2 338

(a) Confusion matrix.

Positive Predictive Value 1.0000
Negative Predictive Value 0.9941

Sensitivity 0.8333
Specificity 1.0000
Accuracy 0.9942

(b) Performance measures.
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Figure 5.15: Hypothesis test-based detection for data set GARCH2.

Table 5.11: Detection results for GARCH2 data set early high volatility cluster detection.

Condition
H0 H1

Test outcome H0 13 2
H1 8 327

(a) Confusion matrix.

Positive Predictive Value 0.8666
Negative Predictive Value 0.9761

Sensitivity 0.6190
Specificity 0.9939
Accuracy 0.9714

(b) Performance measures.
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Figure 5.16: Hypothesis test-based detection for data set GARCH3.

Table 5.12: Detection results for GARCH3 data set early high volatility cluster detection.

Condition
H0 H1

Test outcome H0 4 18
H1 0 328

(a) Confusion matrix.

Positive Predictive Value 0.1818
Negative Predictive Value 1.0000

Sensitivity 1.0000
Specificity 0.9479
Accuracy 0.9485

(b) Performance measures.
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Figure 5.17: Hypothesis test-based detection for data set GARCH4.

Table 5.13: Detection results for GARCH4 data set early high volatility cluster detection.

Condition
H0 H1

Test outcome H0 1 12
H1 0 337

(a) Confusion matrix.

Positive Predictive Value = 0.0769
Negative Predictive Value = 1.0000

Sensitivity = 1.0000
Specificity = 0.9651
Accuracy = 0.9657

(b) Performance measures.
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Figure 5.18: Hypothesis test-based detection for data set GARCH5.

Table 5.14: Detection results for GARCH5 data set early high volatility cluster detection.

Condition
H0 H1

Test outcome H0 1 0
H1 7 342

(a) Confusion matrix.

Positive Predictive Value = 1.0000
Negative Predictive Value = 0.9799

Sensitivity = 0.1250
Specificity = 1.0000
Accuracy = 0.9800

(b) Performance measures.
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5.4 Detection using Fisher Discriminant and Kullback-
Leibler Divergence

This section presents, describes, and analyzes the results obtained by comparing the infor-
mation obtained from the PF and RSPF filtering schemes in the simulated data sets. As
previously described, the Fisher Discriminant (FD) and Kullback-Leibler Divergence (KLD)
are tools to compare probability density functions. Therefore, it is natural to compare the
estimated probability density functions by two different filtering schemes through these tools.
In this section, the posterior distributions of both particle filtering schemes are compared,
using average parameters obtained from the sensibility analysis of Section 5.2.2.

The results are introduced graphically, in a manner similar to what has been previously
presented. These results are shown in Figures 5.19 through 5.24. In particular, subfigures (d)
and (e) show both the values for the Fisher Discriminant and the Kullback-Leibler Divergence
for every time step, respectively.

The results are presented analyzing each data set, in the same structure that has been
used to discuss estimation results and hypothesis test-based detection results.

• GARCH 0 (Figure 5.19): The use of the FD in this data set lets one manually detect
the volatility cluster around time step 200. Rises of the FD in the same time steps
where sudden volatility rises occur may be observed. Nevertheless, the use of the FD
is not determinant. The KLD rises do not show any visual qualitative correlation with
the behavior of ground truth volatility.

• GARCH 1 (Figure 5.20): The FD is extremely close to 0 in this set until approximately
time step 292, where there is a considerable rise in volatility. Since both the PF and
RSPF give extremely similar estimates before time step 290, this is an expectable
result. The big spike around time step 290 effectively detects the sudden volatility
change. Nonetheless, other rapid state variations are not detected. With respect to the
KLD, there is again no apparent correlation between volatility variations and divergence
value.

• GARCH 2 (Figure 5.21): In this data set, the FD is able to capture high volatility
clusters in an early stage three times: Around time step 170, in time step 430 and
again around time step 470. Nevertheless, there is no detection for the biggest high
volatility cluster starting at time step 300. With respect to the KLD, spike detecting
the high volatility cluster at time step 170 coincides with the behavior of the FD.
However, the are no other significant detections represented through spikes in its value
that correspond to rapid state variations.

• GARCH 3 (Figure 5.22): This set of data is extremely favorable for the use of the FD,
since there are rises in its value only when there are abrupt volatility changes. This
response could lead to the use of a threshold for an automatic detection framework.
On the other hand, the KLD suffers from the same problems present in the previous
data sets.

• GARCH 4 (Figure 5.23): Again, presented results show that the FD rises when there
are brusque rises in volatility. This behavior again could lead to the use of a threshold
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to determine positive detections. On the other hand, the KLD suffers from the same
problems, and spikes in its value are not representative of the events present in the
estimation process.

• GARCH 5 (Figure 5.24): Data set GARCH5 clearly shows that neither the FD, nor
the KLD are robust against low quality estimations for the volatility process. As in the
case of the hypothesis test-based detection, these detection tools need from a decent
estimation performance in order to perform adequately.

There are general conclusions that cover the results for each one of the data sets. Compa-
rison of the Kullback-Leibler Divergence’s performance and the Fisher Discriminant’s perfor-
mance show that the former is more noisy than the latter. There are several factors that may
explain this behavior. The Kullback-Leibler Divergence considers all of the infinite moments
of the probability density functions when comparing them. Given that the Fisher Discrimi-
nant only uses the first and second moments, more information may produce noisier results
in this experiment. Additionally, the analysis includes multimodal distributions, which may
intrinsically produce higher values for the Kullback-Leibler Divergence, given its sensibility
towards higher valued moments. Since the Fisher Discriminant does not discriminate between
uni and multimodal distributions, it is reasonable to obtain less noisy results.

Another likely reason for the noisy results presented by the Kullback-Leibler Divergence
is the approximations in its calculation. There are two main noise sources:

1. No consideration of the conditional values probability densities,
2. Redefinition of the posterior probability density functions of the PF and RSPF to get

equal supports for correct evaluation.

Since there is no possibility to calculate the Kullback-Leibler Divergence without approxi-
mations, it is unfortunately not possible to quantify the error introduced with these approxi-
mations. Nonetheless, it is clear that these approximations do not lead to a correct tool for
early detection of high volatility clusters using Particle Filter estimates.

These tools are also important because they cannot aid the detection process by setting
a detection threshold (as was possible, although with problems, in the hypothesis test-based
detection). Albeit some clear detections from the Fisher Discriminant, this proposed algo-
rithm may not be used as the base for an automatic algorithm for alert generation in the
case of high-risk events.

In these results, there is a tendency of the Fisher Discriminant to perform well in cases
where the filtering algorithms perform well. In data sets GARCH3 and GARCH4, the es-
timation is very accurate, and there are evident signs of detection from part of the Fisher
Discriminant. In data set GARCH5, where estimation is extremely deficient, the Fisher
Discriminant performs poorly.
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Figure 5.19: PDF comparison-based detection for data set GARCH0.
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Figure 5.20: PDF comparison-based detection for data set GARCH1.
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Figure 5.21: PDF comparison-based detection for data set GARCH2.

59



Time [days]
0 50 100 150 200 250 300 350 400 450 500

95

100

105

110

115

120

125

130

(a) Prices.

Times [days]
0 50 100 150 200 250 300 350 400 450 500

-0.06

-0.04

-0.02

0

0.02

0.04

(b) Returns.

Time [days]
0 50 100 150 200 250 300 350 400 450 500

0

0.2

0.4

0.6

0.8

1

× 10
-3

Volatility

PF estimatin

RSPF estimation

(c) Volatility estimation.

Time [days]
0 50 100 150 200 250 300 350 400 450 500

0

2

4

6

8
× 10

-6

(d) Fisher discriminant.

Time [days]
0 50 100 150 200 250 300 350 400 450 500

0

0.5

1

1.5

2

2.5

3

(e) Kullback-Leibler divergence.

Figure 5.22: PDF comparison-based detection for data set GARCH3.
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Figure 5.23: PDF comparison-based detection for data set GARCH4.
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Figure 5.24: PDF comparison-based detection for data set GARCH5.
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5.5 Case Study: Early Detection of High Volatility Clus-
ters in IBM’s Stock Data

IBM stock price series are usually used as examples for the study of returns series and
volatility series (Tsay, 2010). There are various episodes since the year 1962 which are
interesting events to explore, including the market falls of 1987 and 2008. As mentioned in
Section 4.1.2, the data employed for this case study involves adjusted closing prices between
September 12th, 2005 and September 1st, 2009.

The data observed here does not include the ground truth values for volatility, which
means that volatility can only be estimated and therefore, there is no possibility to quantify
the detector’s performance. Analysis is solely based upon observation of the obtained results
and qualitative interpretation of the data.

Table 5.15 displays the estimated parameters for the GARCH(1,1) model in the first 200
data points of the series, which serve as the training period. The parameters ω and µ are
left fixed in the extended uGARCH model, while estimations of α and β are used as initial
conditions for the online estimation of these parameters. The estimation exhibits a very low
value for α, while β has a large value. Given that α + β = 0.9881 and that evidence shows
that usually α + β is close to 1, one might assume that the estimation is good. Given that
the value of α is small, the pseudo-particle standard deviation used is equal to σα,β = 0.04.
Moreover, Rth = 0.7 and ση = 0.7.

Figure 5.25 exhibits the obtained results from volatility estimation and early detection of
high volatility clusters. In particular, details about the adjusted price series, returns series,
volatility estimation, detections and the training window may be observed. Analysis of this
Figure 5.25c shows that volatility estimation of both the PF and the RSPF are extremely
close, and the differences between most estimations occur, although mildy, in sudden volatility
rises, where the RSPF has a faster reaction towards unlikely values. This is more visible at
the beginning of bigger high volatility clusters, from time step 500 and onwards.

Estimations obtained from the RSPF are used as the base of the hypothesis test-based
detector, which showed the best results in the previous sections. One may observe that most
of the small high volatility clusters between time steps 200 and 500 are detected. There
are some false positives and false negatives, but these are minor. In the time window that
includes time steps 500 to 1000, all of the major volatility clusters are detected in a very
early stage, including the high volatility cluster starting at time step 750, conducive to the

Table 5.15: Parameter estimation of the GARCH(1,1) model through maximum likelihood
for IBM’s returns series between September 12th, 2005 and September 1th, 2009.

GARCH parameter Value
ω 2.5690×10−6

α 0.0647
β 0.9234
µ 6.9333×10−4
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big stock market drop of the year 2008. Moreover, in this time window, there are only 2 false
positives, which occur after the last high volatility cluster. All of the other detections need
to be considered true positives.
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Figure 5.25: Early hypothesis test-based detection of high volatility clusters in IBM’s stock
data.
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Chapter 6

Conclusion

This work presents and explores tools commonly used in Electrical Engineering for the early
detection of high volatility clusters, to create an algorithm to manage high risk events from
an early stage. The development of the proposed detection framework involves several stages
that are addressed sequentially, including the creation of simulated volatility time series, the
implementation of a Classic Particle Filtering scheme and the proposal of a Risk Sensitive
Particle Filter and its posterior implementation, both used as tools for volatility estimation.
After parameter selection and subsequent evaluation of estimation accuracy in performance,
three proposed algorithms for early detection of high volatility clusters are implemented and
tested, both in simulated time series and IBM’s stock market data.

The implementation of the Classic Particle Filter and the Risk Sensitive Particle Filter
demonstrate that these approaches need attention in the area of volatility estimation, since
they can offer excellent estimation performance. Nevertheless, non-observability issues can
produce poor estimation results, and this problem needs to be correctly addressed. Analysis
of the parameter estimation of the GARCH model together with the sensibility analysis
including noise values demonstrate that estimation performance is extremely dependent on
four aspects:

1. Correct initial conditions for particle population,
2. Adequate characterization of process noise sources,
3. Correct initial conditions of pseudo-particles if the state-space model has been extended

to include online parameter estimation,
4. Adequate characterization of process noise sources for pseudo-particle variability within

artificial evolution-based approaches.

Inadequate values can lead to algorithms with inability to learn, or extremely biased esti-
mates. Moreover, there is an important relationship between items 3 and 4: If estimates
of the GARCH model (which in this case are used as the initial conditions) are too low or
inaccurate, higher noise values for these pseudo-particles are needed to improve the learning
capabilities of the PF algorithm. As a consequence, the parameter σα,β should be sepa-
rated into σα and σβ, this is, use a separate dispersion value for the noise process of each
pseudo-particle which extends the model.
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A performance comparison between the Classic Particle Filter and the proposed Risk
Sensitive approach shows that the Risk Sensitive algorithm behaves better for purposes of
tracking sudden volatility changes from low to high values. The greater particle resolution
offered by the Risk Sensitive Particle Filter in areas of high volatility give this algorithm a
very high performance in these cases.

From a detection perspective, the behavior of the Risk Sensitive Particle Filter is extremely
important. This filtering approach, combined with the proposed detection technique based on
the contrast of prior and posterior estimations of the Risk Sensitive Particle Filter through
a hypothesis test proves that early detection of high volatility clusters is possible with a
small error. Important aspects associated with the performance ensure that the detection
is extremely robust to biased estimates, which are related to sub-optimal dispersion values
of noise. In particular, if the Particle Filter does not lose the ability to learn and track the
shape of volatility, the proposed hypothesis test-based detector excels in early detection of
high volatility clusters.

With respect to the detection techniques based on the comparison of probability density
function estimates, the proposed algorithms do not offer accurate detections. The imple-
mented computation of the Kullback-Leibler Divergence produces extremely noisy results,
which do not lead to any correlation of its value and volatility behavior. In the case of the
Fisher Discriminant, there are a small number of cases where detection is very accurate, but
there are many other cases where no detection occurs.

The Particle Filter and Risk Sensitive Particle Filter lead to excellent estimations of
volatility if care is taken upon non-observability issues. The proposed detection scheme
based on the hypothesis test of prior and posterior estimations of the Risk Sensitive Particle
Filter leads to very good results. Nevertheless, the performance approach used to measure
the detection error does not capture the effectiveness of the detector and therefore, qualitative
analysis should be considered rather than presented confusion matrixes. Setting the limit
between high and low volatilities is a complex task, and needs further exploration.

With respect to future work, there are many aspects of this work that need more attention.
In a first instance, there are many parameters of the Risk Sensitive Particle Filter (such as
the parameters of the Generalized Pareto Distribution) which were not considered in the
sensibility analysis. The estimation of the filter and subsequent detection performance of the
detector may depend greatly upon these parameters. Moreover, a sensibility analysis of the
hypothesis test parameters should also be considered.

The performance measure used in the hypothesis test-based detector needs revision. As
discussed earlier, the threshold used to set the limit between high and low variations is diffuse,
and needs greater attention. It is extremely important to consider if the volatility rises or
lowers throughout the considered time window. This is definitely a challenging problem,
where aspects of prediction may be necessary.

On the other hand, the proposed algorithm sets a detection framework that might be
introduced in other volatility models. In particular, it would be interesting to experiment
with models such as the EGARCH (and stochastic extensions if available). The EGARCH
model considers volatility rises and falls asymmetrically, which is a product of the leverage
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effect. This is very interesting from a detection and risk management perspective.
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