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Fully nonlinear elliptic equations and semilinear
fractional elliptic equations

Abstract

This thesis is divided into six parts.

The first part is devoted to prove Hadamard properties and Liouville type the-
orems for viscosity solutions of fully nonlinear elliptic partial differential equations
with gradient term

M (|z], D*u) + o (|2])| Du| + f(2,u) <0, z€Q, (1)

where 0 = RY or an exterior domain, the functions o : [0,00) — R and f :
2 x (0,00) — (0, 00) are continuous which satisfy some extra conditions.

In the second part, we study existence of boundary blow up solutions for semi-
linear fractional elliptic equations

(=A)u(x) + [uf~tu(z) = h(z), =€,
u(z) =0 z € Q°, (2)
im0 200 u(r) = +00,
where p > 1, Q is an open bounded C? domain of RV (N > 2), the operator (—A)*
with a € (0,1) is the fractional Laplacian and h : @ — R is a continuous func-

tion which satisfies some extra conditions. Moreover, we analyze the uniqueness and
asymptotic behavior of solutions to problem .

The main goal of the third part is to investigate positive solutions for fractional
elliptic equations

(=A)u(x) + [uf~ u(x

u(x

0, z€Q\C,
0, €9 (3)

~—  —

lim,eone, 2—e u(x) = +00,
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where p > 1 and 2 is an open bounded C? domain of RY(N > 2), C C Q is the
boundary of domain G which is C? and satifies G C 2. We consider the existence of
positive solutions for problem . In the meantime, we further analyze uniqueness,
asymptotic behaviour and nonexistence to problem .

In the forth part, we study the existence of weak solutions to (F) (—A)*u+g(u) =
v in an open bounded C? domain Q of RY(N > 2) which vanish in Q¢ where
a € (0,1), v is a Radon measure and ¢ is a nondecreasing function satisfying some
extra hypotheses. When g satisfies a subcritical integrability condition, we prove the
existence and uniqueness of a weak solution for problem (F) for any measure. In the
case where v is a Dirac mass, we characterize the asymptotic behavior of solutions
to (F). In addition, when g(r) = |r|*~1r with k supercritical, we show that a condi-
tion of absolute continuity of the measure with respect to some Bessel capacity is a
necessary and sufficient condition in order (F) to be solved.

The purpose of fifth part is to investigate weak and strong singular solutions
of semilinear fractional elliptic equations. Let p € (0, ﬁ) a € (0,1), k > 0 and
Q Cc RY(N > 2) be an open bounded C? domain containing 0 and &y be the Dirac
mass at 0, we study that the weak solution of (E); (—A)%u + u? = kdg in 2 which
vanishes in Q€ is a weakly singular solution of (E*) (—A)*u+u? = 0in Q\ {0} with
the same outer data. Moreover, we study the limit of weak solutions of (E); when
k — oo. For p € (0,1 + Qﬁ], the limit is infinity in . For p € (1 + %O‘, %m), the
limit is a strongly singular solution of (E*).

Finally, in sixth part we study semilinear fractional elliptic equation (E1) (—A)%u
+€g(|]Vu|) = v in an open bounded C? domain € of RY(N > 2), which vanish in ¢,
where € = £1, a € (1/2,1), v is a Radon measure and ¢ : Ry — R, is a continuous
function. We prove the existence of weak solutions for problem (E1) when g is
subcritical. Furthermore, the asymptotic behavior and uniqueness of solutions are

described when € = 1, v is a Dirac mass and g(s) = s with p € (0, ﬁaﬂ)

Key words: Hadamard property, Liouville type theorem, Viscosity solution, Ful-
ly nonlinear elliptic PDE, Fractional Laplacian, Existence, Uniqueness, Asymptotic
behavior, Blow-up solution, Radon measure, Dirac mass, Green kernel, Bessel ca-
pacities, Isolated singularity, Weak solution, Weak singular solution, Strong singular
solution.



Resumen

Esta tesis esta dividida en seis partes.

La primera parte estd dedicada a probar propiedades de Hadamard y teoremas
del tipo de Liouville para soluciones viscosas de ecuaciones diferenciales parciales
elipticas completamente no lineales con término gradiente

M~ (x|, D*u) + o(|z])|Du| + f(z,u) <0, x€Q, (4)

donde © = R" o un dominio exterior, las funciones o : [0,00) = Ry f : 2x(0,00) —
(0,00) son continuas las cuales satisfacen algunas condiciones extras.

En la segunda parte se estudia la existencia de soluciones que explotan en la
frontera para ecuaciones elipticas fraccionarias semilineales

(=A)*u(z) + [ul’~ u(z
u(z

meeﬂ,x—)aﬂ TL(.Z’) = +00,

h(z), x€Q,
0

)
) z € Q°, (5)

donde p > 1, Q es un dominio abierto acotado C? de RN (N > 2), el operador (—A)*
con a € (0,1) es el Laplaciano fraccionario y h : 2 — R es una funcion continua la
cual satisface algunas condiciones extras. Por otra parte, analizamos la unicidad y
el comportamiento asimptoético de soluciones al problema .

El objetivo principal de la tercera parte es investigar soluciones positivas para
ecuaciones elipticas fraccionarias

, 1€ Q\C,
. xe Qe (6)

lim,eco\c, 2—e u(x) = +00,

(=A)*u(@) + [uf'~u(z) =0
)=0

u(x

donde p > 1y Q es un dominio abierto acotado C? de RN(N > 2), C C Q es el



frontera de dominio G que es C? y satisface G C ). Consideramos la existencia
de soluciones positivas para el problema @ Mas atn, analizamos la unicidad, el
comportamiento asimptotico y la no existencia al problema @

En la cuarta parte, estudiamos la existencia de soluciones débiles de (F) (—A)*u+
g(u) = v en un dominio © abierto acotado C? de RN (N > 2) el cual se desvanece en
¢, donde a € (0,1), v es una medida de Radon y ¢ es una funcion no decreciente
satisfaciendo algunas hipdtesis extras. Cuando g satisface una condicion de integra-
bilidad subcritica, probamos la existencia y unicidad de una soluciéon débil para el
problema (F) para cualquier medida. En el caso donde v es una masa de Dirac, car-
acterizamos el comportamiento asimptotico de soluciones a (F). Asimismo, cuando
g(r) = |r|*~'r con k supercritico, mostramos que una condicién de absoluta con-
tinuidad de la medida con respecto a alguna capacidad de Bessel es una condicién
necesaria y suficiente para que (F) sea resuelta.

El proposito de la quinta parte es investigar soluciones singulares débiles y fuertes
de ecuaciones elipticas fraccionarias semilineales. Sean p € (0, ﬁ% a € (0,1),
k>0yQcRN(N > 2) un dominio abierto acotado C? conteniendo a 0 y d; la
masa de Dirac en 0, estudiamos que la solucion débil de (E) (—A)%u+ uP = kdp en
) la cual se desvanece en ¢ es una solucion débil singular de (E*) (—A)*u+u? =0
en 2\ {0} con el mismo dato externo. Por otra parte, estudiamos el limite de
soluciones débiles de (E)j, cuando k — oo. Para p € (0,14 22], el limite es infinito
en ). Parap € (1+ QWO‘, %), el limite es una solucion fuertemente singular de (E*).

Finalmente, en la sexta parte estudiamos la ecuacion eliptica fraccionaria semilin-
eal (E1) (—=A)?u+eg(|Vu|) = v en un dominio € abierto acotado C? de RN (N > 2),
el cual se desvanece en ¢, donde e = +1, o € (1/2,1), v es una medida de Radon y
g : Ry — R, es una funcion continua. Probamos la existencia de soluciones débiles
para el problema (E1) cuando g es subcritico. Ademas, el comportamiento asimp-
totico y la unicidad de soluciones son descritas cuando ¢ = 1, v es una masa de

Dirac y g(s) = s? con p € (0, N—]Qvori-l)'

Palabras claves: Propiedad de Hadamard, Teorema del tipo de Liouville, solu-
ciones Viscosas, EDP elipticas completamente no lineales, Laplaciano fraccionario,
Existencia, Unicidad, Comportamiento asimptotico, Soluciones blow-up, Medida de
Radon, Masa de Dirac, Nicleo de Green, Capacidades de Bessel, Singularidad ais-
lada, Soluciones débiles, Soluciones singulares débiles, Soluciones singulares fuertes.
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Résumé

Cette thése est divisée en six parties.

La premiére parties est consacrée a 1’étude de propriétés de Hadamard et a
I'obtention de théorémes de Liouville pour des solutions de viscosité d’équations
aux dérivées partielles elliptiques complétement non-linéaires avec des termes de
gradient,

M~ (|z], D*u) + o(|z])|Du| + f(z,u) <0, x€Q, (7)
ot  est ou bien RY ou bien un domaine extérieur, et les fonctions o : [0,00) — R
et f:Q x (0,00) — (0,00) sont continues et vérifient certaines conditions.

Dans la seconde partie nous étudions l'existence de grandes solutions, c’est a
dire de solutions que explosent au bord, d’équations elliptiques fractionnaires semi
linéaires

(—A)u(@) + utu(z) = h(z), =€,
u(z) =0, z € Q°, (8)
im0 0 a0 u(r) = 400,

ott p > 1, Q est un ouvert borné de classe C? de RV (N > 2), (—A)* avec a € (0,1)
est le Laplacien fractionnaire et h : {2 — R est continue et vérifie des conditions de
croissance qui seront précisées. En outre nous étudions les questions d’unicité et de
comportement asymptotique des solutions du probléme (8)).

Le but essentiel de la troisime partie est d’étudier les solutions positives de
I’équation elliptique fractionnaire

(—A)u(z) + [ufflu(z) =0, z€Q\C,
u(x) =0, xe€qe, (9)

ot p > 1 et Q est un domaine borné de classe C? de RN(N > 2), C C Q est le
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bord d’'un domaine G de classe C? tel que G C €. Nous intéressons a I'existence
de solutions positives au probléme @D Par la méme occasion, nous analysons aussi
les questions d’unicité, de comportement asymptotique et, le caséchéant, la non-
existence de solutions au probléme @D

Dand la quatriéme partie nous étudions ’existence de solutions faibles a I’équation
(=A)*u + g(u) = v dans un domaine de classe C? borné Q C RY(N > 2), qui
s’annulent dans Q°, ou @ € (0,1), v est une mesure de Radon et g une fonction
croissante vérifiant une condition de croissance. Quand ¢ satisfait & une condition
intégrale de sous-criticalité, nous montrons 'existence et 1'unicité de solutions au
probléme (F) pour n'importe quelle mesure bornée. Dans le cas ot v est une mesure
de Dirac, nous caractérisons le comportement asymptotique des solutions de (F).
En outre, quand g(r) = |r|*~!r avec k sur-critique nous obtenons une condition
nécessaire portant sur une mesure v positive pour que le probléme (F) admette une
solution, sous forme d’une condition d’absolue continuité de la mesure par rapport
a une certaine capacité de Bessel.

L’objectif de la cinquiéme partie est d’étudier les propriétés des solutions sin-
guliéres de solutions d’équations elliptiques fractionnaires semi-linéaires. Soit p €
(0, 5=), @ € (0,1), k > 0, 2 C RN(N > 2) est un domaine borné de classe C?
contenant 0 et Jy la mesure de Dirac en 0. Nous montrons que la solution faible wuy
de (Ex) (—A)%u + uP = kdy qui s’annule dans Q° est une solution singuliére faible
de (E*) (=A)%u 4+ w? = 0 dans © \ {0} vérifiant la méme condition dans Q°. En
outre, nous montrons que lorsqur k tend vers 'infiniet 0 <p <1+ Qﬁ, la limite de
uy, est infinie dans tout 2, alors que cette limite est une solution de (E*) fortement
singuliére quand 1 + %‘ <p< ﬁ

Dand la sixiéme partie nous étudions les équations de la forme (E1) (—A)%u +
€g(|Vu|) = v dans un domaine borné¢ Q C RY(N > 2) de classe C? qui s’annulent
dans Q°, ou e = +1, a € (1/2,1), v est une mesure de Radon et g : R, — R, une
fonction continue. Nous montrons 1'existence de solutions du probléme (E1) quand
g vérifie une condition intégrale de sous-criticalité. En outre, nous analysons aus-
si les questions d’unicité, de comportement asymptotique au probléme (E1) quand

e = +1, v est mesure de Dirac, g(s) = s? avec p € (0, #aﬂ)

Mots clefs: Propriété d’Hadamard, Théoréme de typr Liouville, Solutions de cis-
cosité, Equations elliptiques complétement non-linéaires, Laplacien fractionnaire,
Existence, Unicité, Comportement asymptotique, Grandes solutions, Mesures de
Radon, Mesure de Dirac, Noyau de Green, Capacité de Bessel, Singularités isolées,
Solutions faibles, Singularité faible, Singularité forte.
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Introduction

This thesis is to study Liouville theorems for fully nonlinear elliptic equations, to
do research for large solutions of semiliear fractional elliptic equations and to inves-
tigate weak solutions of semiliear fractional elliptic equations involving measures.

0.1. Liouville type theorems for fully nonlinear el-
liptic equations with gradient term

In the study of nonlinear elliptic equations in bounded domains, non-existence
results for entire solutions of related limiting equations appear as a crucial ingredient.
In the search for positive solutions for semi-linear elliptic equations with nonlinearity
behaving as a power at infinity, one is interested in the non-negative solutions of the
equation

Au+u? =0, in R (10)

The question is for which value of p, typically p > 1, this equation has or has
no solution. This has been one of the motivations that has pushed forward the
study of Liouville type theorems for general equations in RY and in unbounded
domains like cones or exterior domains. On the other hand, the understanding of
structural characteristics of general linear or nonlinear operators has been another
motivation for advancing the study of Liouville type theorems that have attracted
many researchers. See the work in [1L 2 19] 611, [86].

If we consider the Pucci’s operators instead of the Laplacian, the question set
above becomes very interesting, since most of the techniques used in the case of the
Laplacian are not available. The Liouville type theorem for the equation analogous
to equation has not been proved in full generality, but only in the radial case.
On the other hand, the Liouville type theorem for non-negative solutions of

M u+uP <0, in RY, (11)

has been studied in full extent by Cutri and Leoni [45] and generalized in various
directions by Felmer and Quaas [52, 54l 5] Capuzzo-Dolcetta and Cutri [30] and
Armstrong and Sirakov [3]. In all these cases the solutions of the inequality are

17



considered in the viscosity sense.

In a recent paper, Armstrong and Sirakov in [4] made significant progress in the
understanding of the structure of positive solutions of equations generalizing ,
shading light even for equations of the form

Au+ f(u) <0, in RY. (12)

They propose a general approach to non-existence and existence of solutions of the
general inequality
Q(u) + f(z,u) <0, in RY, (13)

where the second order differential operator () satisfies certain scaling property, it
possesses fundamental solutions behaving as power asymptotically and it satisfies
some other properties, common to elliptic operators, like a weak comparison princi-
ple, a quantitative strong comparison principle and a very weak Harnack inequality,
see hypothesis (H1)-(H5) in [4]. Regarding the nonlinearity f, the results in [4] un-
ravel a very interesting property, that is, that the behavior of the function f only
matters near v = 0 and for x large. These results are new even for the case of
(12). Moreover, the authors in [4] are able to apply their approach to equation (L3
in exterior domains without any boundary condition, providing another truly new
result.

It is the purpose of this chapter 1 to extend the results described above in order
to include elliptic operators with first order term. The introduction of a first order
term may brake the scaling property of the differential operator and it allows for
the appearance of non-homogeneous fundamental solutions, not even asymptotical-
ly. Thus, the approach in [4] cannot be applied to this more general situation and
we have to find different arguments. Interestingly, to prove our results we use the
more elementary approach taken in the original work by Cutri and Leoni, where the
Hadamard property, obtained through the comparison principle, is combined with
the appropriate choice of a function to test the equation. The underline principle
is the asymptotic comparison between the solutions of the inequality and the fun-
damental solution. This can be interpreted as the interaction between the elliptic
operator, including first order term, and the nonlinearity (the zero order term).

We start the precise description of our results by recalling the definition of the
Pucci’s operators. In chapter 1, we consider

M (5, D) = A1) S e+ A Y e, (14

e; >0 e; <0
where ey, ..., ey are the eigenvalues of D?u, A\, A : [0,00) — R are continuous, g
and Ay are positive constants and
0< X <Ar) SA(r) <A< +oo, Vr=|z|, »€RY. (15)

18



Our purpose is to study the non-negative solutions of
M= (r, D*u) + o(r)|Dul + f(z,u) <0, in €, (16)

with Q = RY or an exterior domain and o : [0,00) — R and f : Q x (0,00) —
(0, 00) are continuous functions. By an exterior domain we mean a set Q = RY \ K
connected, where K is nonempty compact subset of RV.

We consider the fundamental solutions for the second order differential operator
¢, : (0,00) = Rin given (1.41)) and (1.42)), which are non-trivial radially symmetric
solutions of

M= (r,D*u) + o(r)|Du| =0, in RY\ {0}, (17)
satisfying

(i) 1 is increasing and either lim, . ¥ (r) = 00 or lim,_,, ¥ (r) = 0 and

(ii) ¢ is decreasing and either lim, ., ¢(r) = —00 or lim,_,» ¢(r) = 0.

Now we are in a position to make precise assumptions about the interaction
between the differential operator and the nonlinearity. We assume that

(f1) f:92x(0,00) = (0,00), A\, A,0:[0,00) — R are continuous.

(f2) We have
2

,
1i _ =
r:|ach\r—l>oo 14+0_ (T’)Tf(x’ 8) o0
uniformly on compact subsets of (0,00). Here and in what follows o_ =
max{—o,0}.

In order to state the next assumption we need a definition. Given p > 0, a > 1,
k>0 and 7 > 0 we define

2

Uy(r) = 29T {# fnf f(‘”’s)}. (18)

(p(T) 2€Bar\Br T)T +1 ko(ar)<s<p S

We assume:

(f3) Iflim, .o () = 0 then we assume the existence of constants g > 0 and a > 1
such that, defining
h(k) = limsup Wy (7),
T—00

one of the following holds:

(i) for all k£ > 0 we have h(k) = oo or

19



(ii) for all £ > 0 we have

0 < liminf ¥y(7) and lim h(k) = oo (19)

T—00 k—o00

and there is a constant C € R such that

ro(r) > C, for all r > 0. (20)

Now we state our first Liouville type theorem for inequality in RV:

Theorem 0.1.1 Assume that f satisfies (f1), (f2) and (fs). Then inequality (16))
in RN does not have a non-trivial viscosity solution u > 0.

We observe that hypothesis (f5) does restrict f when lim, ., ¢(r) = —o0.

Regarding hypotheses (f2) and (f3) we would like to notice that they are natural
extensions of hypotheses (f2)—(f3) in [4], when o # 0 and the fundamental solution
¢ is not necessarily power-like. Thus, we are generalizing the results in [4] in the
case of a one-homogeneous differential operator in RY. It is also interesting to notice
that hypotheses (fy) and (f3) appear explicitly and in a natural way in our proof of
the theorem.

When the condition (i) is satisfied we say that inequality is sub-critical and
when condition (ii) holds, we say it is critical. In case of

Au+ uP <0,

we say the inequality is sub-critical when p < N/(N —2) and when p = N/(N —2) it
is critical. When p > N/(N — 2) we say the inequality is super-critical and here the
existence of positive solution holds. Accordingly, we would like to define a notion
of super-criticality the cases (i) and (ii) do not hold. However, in Theorem we
provide an example where there is no solution in a super-critical sub-region, showing
that further study is required to understand the critical boundary.

In the case of an exterior domain, we need to consider also the interaction between

the differential operator and the nonlinearity at co. We need a definition in order to
state our assumptions. Given g > 0, a > 1, k > 0 and 7 > 0 we define

b= 20 o | : feo)

G = i
+(7) Y(ar) xeég\BT o-(r)r+1 “Ssg’iw(m) s

<

Now we assume that

(f1) If lim, ,o ¥(r) = oo then we assume the existence of constants p > 0 and
a > 1 such that, defining

h(k) = limsup Wy (7),

T—00
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one of the following holds:
(i) for all k > 0 we have h(k) = co or

(ii) for all £ > 0 we have

0 < liminf ¥,(7) and lim h(k) = oo (21)

T—00 k—0t

and there is a constant C' € R such that holds.

For an exterior domain we have the following non-existence result.

Theorem 0.1.2 Assume that Q is an exterior domain and f satisfies (f1), (f2),
(f3) and (f1). Then inequality (16]) in @ does not have a non-trivial viscosity solution
u > 0.

We observe that hypothesis (fy) does restrict f when lim,_,., ¥ (r) = 0.

As for (f3), hypothesis (fy) is the natural extension of (f4) in [4] to our case.
Here we allow o # 0 and ¢ not power-like, thus generalizing [4].

In case of (f4) we may also define the notion of criticality for (16| in an analogous
way as for (f3). Since here the behavior of f is relevant at zero and infinity mixed
cases appear, as for example, an inequality critical at 0 and sub-critical at oo or vice
verse.

In the proofs of Theorem [0.1.1] and [0.1.2] we use some basic properties of the
functions

m(r) = ml’enér u(z), mo(r)= xeé{l\me u(z) and M(r) = xl’élgr u(z) (22)
in connection with the fundamental solutions, as given by the Hadamard property
provided in Theorem[I.4.3] Then we test the equation with an adequate function and
we use the asymptotic assumptions on f and the fundamental solutions to obtain a
contradiction with the existence of non-trivial non-negative solutions. In the proofs
of our theorems we only consider a = 2.

For the existence of positive solutions of , it is nature to consider the super-
critical assumption, that is, the case when hypotheses (f3) and (f4) are not satisfied,
which means

liminf Wy(7) =0 or limsuph(k) < oo

T—00 k—s00
and

liminf W, (7) = 0 or limsup h(k) < oo,

T—00 k—)OO
where h, h, Uj and U, were defined in (fs) and (f;). We observe that super-
criticality holds when h(k) = 0 or h(k) = 0 for any k > 0, but it is not true that
under this notion of super-criticality a positive solution of always exists.
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Finally, we consider a Liouville type theorem in the case f is a linear function,
that is, f(z,s) = h(z)s, that interestingly can be proved using the same techniques
considered in the nonlinear case. This problem has been recently studied by Rossi
[89] after some previous work by Berestycki, Hamel and Nadirashvili [20], Berestycki,
Hamel and Roques [21] and Berestycki, Hamel and Rossi [22]. Rossi [89] proved a
Liouville type theorem for generally unbounded domains, assuming that

lim inf u(z) +1

It is clear that when Q is an exterior domain then dist(z,02) < |z|, so that
implies a linear growth constraint on u. Thus, it is interesting to investigate the
existence or non-existence of positive solutions of the corresponding equation when
does no longer hold. Here is our result:

Theorem 0.1.3 Let u be a viscosity nonnegative solution of
M (r, D*u) + o(r)|Du| + h(z)u <0, in Q, (24)
where 2 1s an exterior domain. Assume further that A and A satisfy and that

(hy) h:RY - R and o : Ry — R are continuous, h is positive and o is negalive.

(hy) There exists a function r : Ry — Ry of class C* such that
lim #'(r) =0 (25)
r—00

and there is a constant p > 1 such that

1 < k(r) r(n?z(< lo(s)] < p, forall r> 0. (26)

(hs) There exists a sequence r, — oo such that

lim inf {h(r) — e%(QAO + 1)02(7“)} > 0. (27)

n—00 r&(rp—K(rn),rn)

Then u = 0.
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0.2. Semilinear fractional elliptic equations

0.2.1. Large solutions to semilinear fractional elliptic equa-
tions

In 1957, a fundamental contribution due to Keller [66] and Osserman [84] is the
study of the nonlinear reaction diffusion equation

—Au+h(u) =0, in Q,
(28)

limxeﬂ,x—ﬂ?Q u(x) = +00,

where  is an open bounded C? domain of RY(N > 2) and h is a nondecreasing
positive function. They proved that this equation admits a solution if and only if h

satisfies
oo ds
< +o00, (29)
1 H(s)

where H(s) = [ h(t)dt, that in the case of h(u) = u? means p > 1. This integral
condition on the non-linearity is known as the Keller-Osserman criteria. The solution
of found in [66] and [84] exists as a consequence of the interaction between the
reaction and the diffusion term, without the influence of an external source that
blows up at the boundary. Solutions exploding at the boundary are usually called
boundary blow up solutions or large solutions. From then on, the result of Keller
and Osserman has been extended by numerous mathematicians in various ways,
weakening the assumptions on the domain, generalizing the differential operator
and the nonlinear term for equations and systems. The case of h(u) = u!} with
p = 3% is studied by Loewner and Nirenberg [72], where in particular uniqueness
and asymptotic behavior were obtained. After that, Bandle and Marcus [6] obtained
uniqueness and asymptotic for more general non-linearties h. Later, Le Gall in [70]
established a uniqueness result of problem in the domain whose boundary is
non-smooth when h(u) = u3. Marcus and Véron [74, [75] extended the uniqueness of
blow-up solution for in general domains whose boundary is locally represented
as a graph of a continuous function when h(u) = % for p > 1. For another interesting
contributions to boundary blow-up solutions see |5l [7, [44], [47, 48], 59, [73, [87].

During the last years there has been a renewed and increasing interest in the
study of linear and nonlinear integral operators, especially, the fractional Laplacian,
motivated by great applications in physics and by important links on the theory of
Lévy processes, refer to [23] 26] 27, 52, 54L (5] 57, 85, 00]. In a recent work, Felmer
and Quaas [51] considered an analog of where the Laplacian is replaced by the
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fractional Laplacian

, 1 €Q° (30)

meeﬂ,maaﬂ U(QT) = to00,

where Q is an open bounded C? domain of RY(N > 2), p > 1 and the fractional
Laplacian operator is defined as

(—A)*u(z) = —1/R TP — (31)

2 N ’y‘N+2a

with o € (0,1) and §(u, z,y) = u(x +y) +u(xr —y) — 2u(z). The authors proved the
existence of a solution to (30 provided that g explodes at the boundary and satisfies
other technical conditions. In case the function g blows up with an explosion rate
as d(r)?, with 8 € (—1%, 0) and d(x) = dist(z,09), the solution satisfies

0 < liminf w(z)d(z)™® < limsup u(z)d(x)r—1 < +oo.
€Q,x—00 €N, x—0N

In [51] the explosion is driven by the function g. The external source f has a sec-
ondary role, not intervening in the explosive character of the solution. f may be
bounded or unbounded, in later case the explosion rate has to be controlled by
d(x)—%cp/(p—l).

One interesting question not answered in [51] is the existence of a boundary blow
up solution without external source, that is assuming g = 0 in Q¢ and f = 0 in €,
thus extending the original result by Keller and Osserman, where solutions exists
due to the pure interaction between the reaction and the diffusion terms. It is the
purpose of chapter 2 to answer positively this question and to better understand
how the non-local character influences the large solutions of and what is the
structure of the large solutions of with or without sources. Comparing with the
Laplacian case, where well possedness holds for , a much richer structure for
the solution set appears for the non-local case, depending on the parameters and
the data f and ¢. In particular, Theorem shows that existence, uniqueness,
non-existence and infinite existence may occur at different values of p and «.

Our first result in chapter 2 is on the existence of blowing up solutions driven by
the sole interaction between the diffusion and reaction term, assuming the external
value ¢ vanishes. Thus we will be considering the equation

X

(=A)u(z) + [uf~tu(z) = f(z), z e,
u(x) =0, z € QF°, (32)

meeﬂ,maaﬂ u(x) = +00,
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On the external source f we will assume the following hypotheses

(H1) The external source f:Q — Ris a Cf

loc

(), for some 3 > 0.

(H2) Defining f_(z) = max{—f(z),0} and fi(z) = max{f(x),0} we have

N
]

lim sup f+(x)d(x)% < 400 and lim  f_(z)d(z)r 1 = 0.
E€Q,z—00N €Q,x—00

A related condition that we need for non-existence results
(H2*) The function f satisfies

limsup |f(z)|d(z)** < +oo.
z€Q,x—00N

Now we are in a position to state our first theorem in this part.

Theorem 0.2.1 Assume that €2 is an open, bounded and connected domain of class
C? and a € (0,1). Then we have:

Existence: Assume that f satisfies (H1) and (H2), then there exists To(a) € (—1,0)
such that for every p satisfying

2a
1+2a0<p<]l — ——, 33
o) (33)
the equation (@) possesses at least one solution u satisfying
0 < liminf u(x)d(x)p%al < limsup u(x)d(x);fal < +00. (34)
z€Q,x—00 €Q,z—00

Uniqueness: If [ further satisfies f > 0 in Q, then u > 0 in Q and u is the unique
solution of satisfying .

Nonexistence: If f satisfies (H1), (H2*) and f > 0, then in the following three
cases:

i) For any 7 € (—1,0) \ {—;Tal, To()} and p satisfying or

ii) For any T € (—1,0) and

le—T(a) or (35)
iii) For any 7 € (—1,0) \ {ro()} and
1<p <1+ 20, (36)
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equation does not have a solution u satisfying

0 < liminf w(z)d(z)™" < limsup u(z)d(z)™ " < 4o0. (37)
z€Q,x—00 2€Q,x—00

Special existence for 7 = 15(«). Assume f(x) =0, x € Q and that

2x

T()(Oé) .

20 1o(a)+1 B
T0<a)+ (@) Ap<p<1

max{l —

(38)
Then, there exist constants C7 > 0 and Cy > 0, such that for any t > 0 there is a

positive solution u of equation satisfying

Cld(m)min{m(a)p+2a,0} < td(.I')To(a) . U(l’) < C2d(x)m1’n{ro(a)p+2a,0}. (39)

Remark 0.2.1 We remark that hypothesis (H2) and (H2*) are satisfied when f = 0,
s0 this theorem answer the question on ezistence rised in [51l]. We also observe that
a function f satisfying (H2) may also satisfy

lim x) = —00
xEQ,xEBQf( ) ’
what matters is that the rate of explosion is smaller than %.

For proving the existence part of this theorem we will construct appropriate
super and sub-solutions. This construction involves the one dimensional truncated
Laplacian of power functions given by

+oo t)1 —¢t|™ 1+¢)7" -2
C(T) _ / X(O,l)( )| | + ( + >
0

t1+2a

dt, (40)

for 7 € (—1,0) and where x (1) is the characteristic function of the interval (0,1).
The number 7o(a) appearing in the statement of our theorems is precisely the unique
7 € (—1,0) satisfying C'(7) = 0. See Proposition for details.

Remark 0.2.2 For the uniqueness, we would like to mention that, by using iteration
technique, Kim in [67]] has proved the uniqueness of solution to the problem

—Au+uf =0, in Q,
(41)

U = +00, on 09,
where uy = méx{u,()}, under the hypotheses that p > 1 and §2 is bounded and
satisfying 0 = 0N). Garcia-Melian in [59, [60] introduced some improved iteration

technique to obtain the uniqueness for problem with replacing nonlinear term
by a(x)uP. However, there is a big difficulty for us to extend the iteration technique
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to our problem involving fractional Laplacian, which is caused by the nonlocal
character.

Next we are also interested in considering the existence of blowing up solutions
driven by external source f on which we assume the following hypothesis

(H3) There exists v € (—1 — 2a, 0) such that

0 < liminf f(z)d(zx)™” < limsup f(z)d(z)™7 < 4o0.
2€Q,x—00 2€Q,z—00

Depending on the size of v we will say that the external source is weak or strong. In
order to gain in clarity, in this case we will state separately the existence, uniqueness
and non-existence theorem in this source-driven case.

Theorem 0.2.2 (Existence) Assume that 2 is an open, bounded and connected
domain of class C*. Assume that f satisfies (H1) and let o € (0,1), then we have:

(i) (weak source) If [ satisfies (H3) with
2
—2&—]%§7<—2a, (42)

then, for every p such that holds, equation possesses at least one solution
w, with asymptotic behavior near the boundary given by

0 < liminf u(z)d(x)"7** < limsup u(z)d(x) 7">* < +oo0. (43)
z€Q,x—00 z€Q,z—00

(17) (strong source) If f satisfies (H3) with

2a0
—1-2a<vy< 20— —— 44
o <y<—2a- =5 (44
then, for every p such that
p>142a, (45)

equation possesses at least one solution w, with asymptotic behavior near the
boundary given by

0 < liminf w(z)d(z)”? < lmsup w(z)d(z)™? < +oo. (46)
zeQ,x—00 €N, x—00

As we already mentioned, in Theorem the existence of blowing up solutions
results from the interaction between the reaction v? and the diffusion term (—A)®,
while the role of the external source f is secondary. In contrast, in Theorem [0.2.2]
the existence of blowing up solutions results on the interaction between the external
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source, and the diffusion term in case of weak source and the interaction between
the external source and the reaction term in case of strong source.

Regarding uniqueness result for solutions of (32)), as in Theorem we will
assume that f is non-negative, hypothesis that we need for technical reasons. We
have

Theorem 0.2.3 (Uniqueness) Assume that ) is an open, bounded and connected
domain of class C*, a € (0,1) and f satisfies (H1) and f > 0. Then we have

i) (weak source) the solution of (39) satisfying is positive and unique, and

ii) (strong source) the solution of satisfying ([46]) is positive and unique.

We complete our theorems with a non-existence result for solution with a previ-
ously defined asymptotic behavior, as we see in Theorem We have

Theorem 0.2.4 (Non-existence) Assume that 2 is an open, bounded and con-
nected domain of class C?, a € (0,1) and f satisfies (H1), (H3) and f > 0. Then
we have

i) (weak source) Suppose that p satisfies (35), v satisfies and T € (—1,0) \
{v+ 2a}. Then equation @ does not have a solution u satisfying .

it) (strong source) Suppose that p satisfies [45)), v satisfies and 7 € (—1,0)\
{%} Then, equation does not have a solution u satisfying .

All these results stated so far deal with equation (30) in the case g = 0, but they
may also be applied when g # 0 and, in particular, these result improve those given
in [5I]. In what follows we describe how to obtain this. We start with some notation,
we consider L!(Q°) the weighted L! space in Q¢ with weight

1

= T for all y € RY.

w(y)

Our hypothesis on the external values g is the following
(H4) The function g : Q¢ — R is measurable and g € L1 (Q°).

Given g satisfying (H4), we define

L[ glz+y)
G(.’L‘) = 5 /IRlN Wdy, WS Q, (47)

where
g(x), € Q°.

0, r € Q,
g(x) = { (48)
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We observe that
G(r) = —(=A)%g(z), =€

Hypothesis (H4) implies that G is continuous in € as seen in Lemma and has
an explosion of order d(x)?~2* towards the boundary 95, if g has an explosion of
order d(z)? for some 8 € (—1,0), as we shall see in Proposition We observe
that under the hypothesis (H4), if u is a solution of equation (30)), then u — g is the

solution of
(=A)u(z) + [uP~ru(x) = f(z) + G(x), x €,

u(z) =0, x € Qe (49)
limgcq 200 u(r) = +00,
and vice versa, if v is a solution of (49)), then v + g is a solution of (30).

Thus, using Theorem [0.2.1H0.2.4] we can state the corresponding results of ex-
istence, uniqueness and non-existence for , combining f with g to define a new
external source

F(z) =G(z)+ f(z), xeq. (50)

With this we can state appropriate hypothesis for g and thus we can write theorems,
one corresponding to each of Theorem [0.2.1H0.2.4

Moreover, in chapter 3 we study self-generated interior blow-up solutions to
fractional elliptic equations

(—A)u(z) + [uff~lu(z) =0, z€Q\C,
u(z) =0, x€Q° (51)

HmmEQ\C, z—C U([E) = +o00,

where p > 1, Q is an open bounded C? domain in RY, C C Q is a compact C?
manifold with N — 1 multiples dimensions and without boundary. The explosion of
solutions to near C is governed by a function ¢ : (—1,0] — R, defined as

C(T):/o Lot —2 52)

t1+20‘

This function plays the role of the function C' defined by , but it has certain
differences. In Section 3.2 we prove the existence of a number oy € (0,1) such that
a € [, 1) the function ¢ is always positive in (—1,0), while if & € (0,a) then
there exists exists a unique 71(a) € (—1,0) such that ¢(m () = 0 and ¢(7) > 0
in (—1,7(a)) and ¢(7) < 0 in (11(«),0), see Proposition We notice here that
() > 1o(a) if a € (0, ), where 79(cv) is from Theorem (also see Proposition

for details).
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Throughout this part we denote the distance function

D:Q\C—R;, D(z)=dist(z,C).

(53)

Now we are ready to state our main theorems in chapter 3 on the existence unique-
ness and asymptotic behavior of interior blow-up solutions to equation . These

theorems deal separately the case o € (0, ap) and « € [ayp, 1).

Theorem 0.2.5 Assume that a € (0, ) and the assumptions on Q2 and C as above.

Then we have:

(i) If

2c
T1 (Oé) ’

then problem admits a unique positive solution u satisfying

1+2a<p<1—

2a

0 < liminf u(:v)D(:C)pra1 < limsup wu(z)D(x)r1 < +o0.

z€Q\C,xz—C zeQ\C,x—C
(id) If
, 2x T1 (CK) +1 2a
max{l — + Ay <p<l———.
U@ e (@)

Then, for any t > 0, there is a positive solution u of problem satisfying

i D(z) ™ =1,
s Un)D@)

(731) If one of the following three conditions holds
a) l<p<l+4+2aand7e (-1,0)\{n(a)},
b) 1+2a0<p<1-— 712&) and 7 € (—1,0) \ {m(a), _z%} or

¢) pzl—% and T € (—1,0),

then problem does not admit any solution u satisfying

0 < liminf w(z)D(z)"" < limsup wu(z)D(z) " < +o0.
z€Q\C,z—C z€Q\C,z—C

(54)

(55)

(58)

Theorem 0.2.6 Assume that o € [ap, 1) and the assumptions on Q and C as above.

Then we have:

(2) If p > 1+ 2a, then problem admits a unique positive solution u satisfying

(EER

(73) If p > 1, then problem does not admit any solution u satisfying @ for

any T € (—1,0) \ {—I%}.
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0.2.2. Semilinear fractional elliptic equations involving mea-
sures

In chapter 4, we are concerned with the existence of weak solutions to the semi-
linear fractional elliptic problem

(At glu) =v, in

59
u=0, in Q° (59)

where 2 C R” is an open bounded C? domain, g : R — R is a continuous function
and v is a Radon measure such that [, p°d|v| < +oco for some § € [0,a] and
p(x) = dist(z, Q). The fractional Laplacian (—A)® with o € (0, 1) is defined by

(=8)%u(x) = lim (=A)Zu(z),

€
e—0F

where for € > 0,

oyt = - [P e~ <l (60)
and
0, if telo,¢,
xelt) = {1 if t>e

We remark that is equivalent to ([31]).

When a = 1, the semilinear elliptic problem

—Au+g(u) =v, in £,

(61)
u=0, on S,
has been extensively studied by numerous authors in the last 30 years. A fundamen-
tal contribution is due to Brezis [17], Bénilan and Brezis [10], where v is a bounded
measure in ) and the function g : R — R is nondecreasing, positive on (0, +00) and
satisfies the subcritical assumption:

/1+Oo(g(5) — g(—s))s_Q%ds < 400.

They proved the existence and uniqueness of the solution for problem (61)). Baras and
Pierre [9] studied when g(u) = |u[P~'u for p > 1 and v is absolutely continuous
with respect to the Bessel capacity C2,ﬁa to obtain a solution. In [101] Véron
extended Benilan and Brezis results in replacing the Laplacian by a general uniformly
elliptic second order differential operator with Lipschitz continuous coefficients; he

obtained existence and uniqueness results for solutions, when v € (9, p°) with
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B € [0,1], M(€, p°) denotes the space of Radon measures in €2 satisfying

/Qpﬁd|y| < 400, (62)

in particular, (2, p°) = Mb(Q) is the set of bounded Radon measures, the function
g is nondecreasing and satisfies the S-subcritical assumption:

N+B—1

/1 Oo(g(s) — g(—s))s *v* 2 ds < +00.

The study of general semilinear elliptic equations with measure data have been
investigated, such as the equations involving measures boundary data which was
initiated by Gmira and Véron [62] who adapted the method introduced by Bénilan
and Brezis to obtain the existence and uniqueness of solution. This subject has been
vastly expanded in recent years, see the papers of Marcus and Véron [74, 76, [77, 78,
79|, Bidaut-Véron and Vivier [14], Bidaut-Véron, Hung and Véron [13].

In this chapter, our interesting is to study the existence and uniqueness of solu-
tions of semilinear fractional elliptic problem in a measure framework. Before
stating our main theorem we make precise the notion of weak solution used in this
thesis.

Definition 0.2.1 We say that u is a weak solution of (@), if u e LYQ), glu) €
LY (2, p*dx) and

/Q u(—A)¢ + g(u)lde = /Q cdv, VEeX, (63)

where X, C C(RY) is the space of functions & satisfying:
(i) supp(§) C €,
(11) (—A)*¢(x) exists for all x € Q and |(—A)*¢(z)| < C for some C > 0,

(iii) there exist o € L*(Q), p*dx) and g > 0 such that |(—A)*¢| < ¢ a.e. in Q, for
all € € (0, €).

We notice that for a = 1, the test space X, is used as Cy'*(Q), which has similar
properties like (i) and (ii). The counter part for the Laplacian of assumption (i)
would be that the difference quotient V,, »[u](.) := h7' [0, u(. 4+ he;) — Oy,u(.)] is
bounded by an L!-function, which is true since

h
Vo, nlul(z) = h_l/ ailj,xju(x + se;)ds.
0

We denote by G, the Green kernel of (—A)® in © and by G,[.] the Green operator
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defined by
Galf)(z) = / ol ) fy)dy, ¥ € LNQ, p*da). (64)

For N > 2 a € (0,1) and 8 € [0, a], we define the critical exponent

{ﬁa if /8 € [O’ N?\?aa]a
Ko =

N+ : N-_2
Nooars A g e (F=*2a,qal.

(65)

N

Our main result in this part is the following.

Theorem 0.2.7 Assume that Q@ C RY (N > 2) is an open bounded C* domain,
€ (0,1), B € [0,0] and kap is defined by (65). Let g : R — R be a continuous,
nondecreasing function, satisfying

+o0
g(r)r>0, VYreR and / (9(s) — g(—s))s™ T Fersds < +oo. (66)
1

Then for any v € M(Q, p°) problem (@) admits a unique weak solution u. Further-
more, the mapping: v — u is increasing and

—Gulv-] <u<G,lry] ae in (67)
where vy and v_ are respectively the positive and negative part in the Jordan decom-
position of v.

We note that for « = 1 and 8 € [0, 1), we have

_N+B
N—-2+p

where ki g is given in and the number in right hand side of is from Theorem
3.7 in [I0T]. Inspired by [62] 10T, the existence of solution could be extended in as-
suming that g : 2 x R — R is continuous and satisfies the (N, a, §)-weak-singularity
assumption, that is, there exists ro > 0 such that

klﬁ > (68)

glx,r)r >0, ¥Y(x,r)eQx R\ (—ro,10)),

and
lg(z, )| < g(|r]), V(z,7) € AxR,

where g : [0,00) — [0,00) is continuous, nondecreasing and satisfies that

+0o0
/ G(s)s™ 7 Fasds < 400,
1
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We also give a stability result which shows that problem is weakly closed
in the space of measures (€2, p°). Moreover, we characterize the behaviour of the
solution u of when v = ¢, for some a € Q. We also study the case where
g(r) = |r|*"'r when k > ko g, which doesn’t satisfy (66). We show that a necessary
and sufficient condition in order a weak solution to problem

(=A)u+ |ulfflu=v, in Q

69
u=0, in Q° (69)

to exist where v is a positive bounded measure and vanishes on compact subsets K
of 2 with zero Cy, j» Bessel-capacity.

0.2.3. Weakly and strongly singular solutions of semilinear
fractional elliptic equations

The aim of chapter 5 is to study the properties of the weak solution to problem

(—A)*u +uP = kdy, in €,

u =0, in Q°,

(70)

where ) is an open bounded C? domain of RY(N > 2) containing 0, a € (0, 1),
k>0,pe (0, %) and dy denotes the Dirac measure at 0.

In 1980, Brezis in|16] (also see [10]) obtained that the problem

—Au+u? =kdy in €,

71
u=0 on Of) (71)

admits a unique solution u for 1 < ¢ < N/(N — 2), while no solution exists when
q > N/(N —2). Later on, Brezis and Véron in 18] proved that the problem

—Au+ui=0 in Q\{0},

72
u=0 on 0N (72)

admits only the zero solution when ¢ > N/(N —2). When 1 < ¢ < N/(N —2), Véron
in [100] described all the possible singular behaviour of positive solutions of (72)). In
particular he proved that this behaviour is always isotropic (when (N+1)/(N—1) <
q < N/(N — 2) the assumption of positivity is unnecessary) and that two types of
singular behaviour occur:

(i) either u(z) ~ cxk|z|* as z — 0 and k can take any positive value; u is said to
have a weak singularity at 0, and actually u = uy,

2
(ii) or u(x) ~ cnglx| T as @ — 0; u is said to have a strong singularity at 0, and
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U = Upo = Moo Uk

In a recent work, Chen and Véron [39] derived that for 1+ 22 < p < 2, the

N—2a’
problem
—A)*u+uP =0 in Q\{0},
(=4) \ {0} (73)
u=0 in Q°
admits a solution ug satisfying

i ()| 7T = ¢y, (74)

for some ¢, > 0. Moreover u; is the unique positive solution of in the class set
of

20 20
0 < liminf u(z)|x|»-T < limsupu(z)|z|>-T < +o0. (75)
z—0 z—0

We say that u is a weakly singular solution of if lim sup,_,q |u(z)||2]V 2% < 400,
or strongly singular solution if 1im, o |u(z)||x|V 2% = +o0.

We also in [40] obtained that there exists a unique weak solution to the problem
—A)*u+g(u)=v in €

(=4) (u) (76)
u=0 in €Q°

where g is a subcritical nonlinearity, v is a Radon measure in €. In the fractional
framework, the definition of weak solution is given as follows.

Definition 0.2.2 A functionu € L'(Q) is a weak solution of (76) if g(u) € L*(S2, p*dx)
and

/[u(—A)af + g(u)é]dr = / Edv, VEeX,, (77)
Q Q

where p(z) = dist(x,Q°) and X, C C(RY) is the space of functions & satisfying:
(i) supp(§) C Q.

(i1) (—A)*¢(x) exists for all x € Q and |(—A)*¢(x)| < C for some C > 0,

(iii) there exist o € L*(Q), p*dx) and g > 0 such that |(—A)*¢| < ¢ a.e. in Q, for
all € € (0, ).

According to Theorem [0.2.7with g(s) = |s|P~!s and v = kdy, we have following
result for problem ((70)).

Proposition 0.2.1 Assume that p € (0, %) Then for any k > 0, problem @)

admits a unique weak solution uy satisfying

Galkdo] — Ga[(Galkdo])’] < up < Golkdo] in €. (78)
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Moreover, (i) uy is positive in €);
(17) {uk}r is a sequence increasing functions, i.e.

ug(x) < ugsq(x), Vo e Q. (79)

Here G,[] is the Green operator defined by

GalV](2) = / Gl y)d(y). Vv € M(Q, ™), (30)

where G, is the Green kernel of (—A)* in © x Q. By monotonicity of {ug }r,

Uso(T) 1= kh_)rgo ug(z), Vo e RN\ {0} (81)
and then u.(7) € Ry U {+oc} for z € RN\ {0}.

Our purpose in this chapter is to do further study on the properties of wuy, in-
cluding the regularity and the limit of uy, which is the unique weak solution of (70).

o

2a 2
Theorem 0.2.8 Assume that 1+ ¢ > 7%=,

of (70) and u is given by (81)).
Then uy, s a classical solution of . Furthermore,
(i) ifp € (0,1 + ),

p € (0, %m), uy, 18 the weak solution

Uso(T) = 00, VY € (82)

(i) if p € (1 + Qwa, %);
Uso = Us,

where ug is the solution of satisfying .

The result of part (i) indicates that there is no strongly singular solution to
problem forp e (0,14 Zﬁa), which is different from the result for Laplacian case.
This phenomenon comes from the fact that the fractional Laplacian is a nonlocal
operator, which requires the solution to belong to L'(Q), therefore no barrier can
be constructed for p < 1+ Zﬁ On the contrary, part (i) points out that u, is the
least strongly singular solution of .

2c¢
N-—2a"

Next we consider the case 1+ QWO‘ < It occurs only when

VE-1
4

N<a<l, N=2,3.

In this situation, it is obvious that % <1+ QWO‘ Now we state our second theorem
as following.
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Theorem 0.2.9 Assume that 1+ QWO‘ < N2_a2a, p € (0, ﬁ), uy, 18 the weak solution
of (@) and us 1S given by .
Then uy, s a classical solution of . Furthermore,
(i) if p € (0,5%), then
Uso () = 00, Vo € Q;
(i) if p € (1+ 32, N2_O‘2a), then us 18 a classical solution of and there exist
po >0 and cog > 0 such that

(N—20)p

CO|‘T|_ P < U < U, V€ Bpo(o) \ {O}; (83)

(13i) if p = N%";a, then us 18 a classical solution of and there exist pg > 0 and

c1 > 0 such that

_(N—2a)p
p—1
o T cug<u, Ve Bu(0)\ {0k (84)
(1 + [log(|=|)]) 7=
(iv) if p € (5% 723z )» then
Uoo = Usg,

where ug is the solution of satisfying

We note that Theorem and Theorem do not provide description of

U 1N the region

U= {(a,p) € (0, x (1, )1+ <2 N<p<i4 2
N 2a
1 p1es

U{(a,p) € (0,1) x (1, 25 :
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0.2.4. Semilinear fractional elliptic equations with gradient
nonlinearity involving measure

The purpose of chapter 6 is to study the existence of weak solutions to the
semilinear fractional elliptic problem

(=A)*u+eg(|Vul) =v, in €,

85
u=20, in €Q°, (85)

where @ C RY(N > 2) is an open bounded C? domain, o € (1/2,1), g : Ry
R, be a continuous function, ¢ = 1 or —1 and v € M(Q, p?) with 8 € [0,2a —
1). In particular, we denote 9M°(Q2) = IM(, p°). The associated positive cones are
respectively M (€2, p”) and M (). According to the value of €, we speak of an
absorbing nonlinearity the case € = 1 and a source nonlinearity the case e = —1. In
a recent work, Nguyen-Phuoc and Véron [82] obtained the existence of solutions to
the viscous Hamilton-Jacobi equation

—Au+h(|Vu]) =v, in Q

(86)
u=0, on O0f),

when v € 9MP(Q), h is a continuous nondecreasing function vanishing at 0 which
satisfies

oo _2N-1
/ h(s)s™ NTds < +00.
1

More recently, Bidaut-Véron, Garcia-Huidobro and Véron in [12] studied the exis-
tence of solutions to the Dirichlet problem
—Ayu+€eVul?=v, in Q

(87)
u=0, on 0,

with 1 <p< N,e=1or —1, ¢ >0 and v € M(Q).

Our interest in this part is to investigate the existence of weak solutions to
fractional equations involving nonlinearity in the gradient term and with Radon
measure. In order the fractional Laplacian be the dominant operator in terms of
order of differentiation, it is natural to assume that o € (1/2,1).

Definition 0.2.3 We say that u is a weak solution of (88), if u € L'(Q), |Vu| €
LL.(9), 9| Vul) € LY@, pdz) and

loc
Jlu-2y€ + eg((Vuheids = [ . v e e, 9
Q Q
where X, is defined in Definition [0.2.1]
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Our main result in the case e = 1 is the following.

Theorem 0.2.10 Assume that € = 1 and g : Ry — R, is a continuous function
verifying g(0) = 0 and

“+o00
/ g(s)s " Pads < +oo, (89)
1
where
o N (90)
Pa = N o041

Then for any v € M, (2, p°) with B € [0,2a—1), problem admits a nonnegative
weak solution wu, which satisfies

u, < Gulv]. (91)

When € = —1, we have to consider the critical value p;, ; which depends truly on

[ and is expressed by
N

Pos =N _2a+1+8
We observe that p,, = p, and p 5 < p; when 5 > 0. In the source case, the
assumptions on g are of a different nature from in the absorption case, namely

(92)

(G) ¢g:Ry+— R, is a continuous function which satisfies
g(s) < c1s? + 09, Vs >0, (93)
for some p € (0,p}, 5), where ¢; > 0 and o > 0.

Our main result concerning the source case is the following.

Theorem 0.2.11 Assume that ¢ = —1, v € M(Q, p°) with B € [0,2a — 1) is
nonnegative, g satisfies (G) and

(i) p € (0,1), or

1) p=1 and c¢; is small enough, or

(i) p gh,

(iii) p € (1,p ), o0 and ||v||aneq,pe) are small enough.

Then problem admits a weak nonnegative solution u, which satisfies
u, > Gy lv]. (94)

In the last section of this part, we assume that {2 contains 0 and give pointwise
estimates of the positive solutions

(=A)*u+ |VulP =0y in €,

95
u=0 in €F (95)

39



with 0 < p < p},. Combining properties of the Riesz kernel with a bootstrap argu-

ment, we prove that any weak solution of is regular outside 0 and is actually a
classical solution of

(=A)*u+ [VulP =0 in Q) {0},

96

u=0 in Q° (96)
These pointwise estimates are quite easy to establish in the case a = 1, but much
more delicate when the diffusion operator is non-local. We give sharp asymptotics of
the behaviour of u near 0 and prove that the solution of is unique in the class
of positive solutions.
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Capitulo 1

On Liouville type theorems for fully
nonlinear elliptic equations with
gradient term

Abstract: in this chapte, we prove a Hadamard property and Liouville type
theorems for viscosity solutions of fully nonlinear elliptic partial differential equa-
tions with a gradient term, both in the whole space and in an exterior domain.

1.1. Introduction

In the study of nonlinear elliptic equations in bounded domains, non-existence
results for entire solutions of related limiting equations appear as a crucial ingredient.
In the search for positive solutions for semi-linear elliptic equations with nonlinearity
behaving as a power at infinity, one is interested in the non-negative solutions of the
equation

Au+uw’ =0, in R (1.1)

The question is for which value of p, typically p > 1, this equation has or has
no solution. This has been one of the motivations that has pushed forward the
study of Liouville type theorems for general equations in RY and in unbounded
domains like cones or exterior domains. On the other hand, the understanding of
structural characteristics of general linear or nonlinear operators has been another
motivation for advancing the study of Liouville type theorems that have attracted
many researchers. See the work in [1} 2] 9] 6], [86].

If we consider the Pucci’s operators instead of the Laplacian, the question set
above becomes very interesting, since most of the techniques used in the case of the

! This chapter is based on the paper: H. Chen and P. Felmer, On Liouwville type theorems for fully
nonlinear elliptic equations with gradient term, J. Differential Equations 255, 2167-2195 (2013).
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Laplacian are not available. The Liouville type theorem for the equation analogous
to equation (1.1)) has not been proved in full generality, but only in the radial case.
On the other hand, the Liouville type theorem for non-negative solutions of

M u+uP <0, in RY, (1.2)

has been studied in full extent by Cutrl and Leoni [45] and generalized in various
directions by Felmer and Quaas [52], 54l 55] Capuzzo-Dolcetta and Cutri [30] and
Armstrong and Sirakov in [3]. In all these cases the solutions of the inequality are
considered in the viscosity sense.

In a recent paper, Armstrong and Sirakov in [4] made significant progress in the
understanding of the structure of positive solutions of equations generalizing ((1.2)),
shading light even for equations of the form

Au+ f(u) <0, in RY. (1.3)

They propose a general approach to non-existence and existence of solutions of the
general inequality
Qu) + f(xz,u) <0, in RY, (1.4)

where the second order differential operator () satisfies certain scaling property, it
possesses fundamental solutions behaving as power asymptotically and it satisfies
some other properties, common to elliptic operators, like a weak comparison princi-
ple, a quantitative strong comparison principle and a very weak Harnack inequality,
see hypothesis (H1)-(H5) in [4]. Regarding the nonlinearity f, the results in [4] un-
ravel a very interesting property, that is, that the behavior of the function f only
matters near v = 0 and for x large. These results are new even for the case of
(L.3). Moreover, the authors in [4] are able to apply their approach to equation (1.4)
in exterior domains without any boundary condition, providing another truly new
result.

It is the purpose of this chapter to extend the results described above in order
to include elliptic operators with first order term. The introduction of a first order
term may brake the scaling property of the differential operator and it allows for
the appearance of non-homogeneous fundamental solutions, not even asymptotical-
ly. Thus, the approach in [4] cannot be applied to this more general situation and
we have to find different arguments. Interestingly, to prove our results we use the
more elementary approach taken in the original work by Cutri and Leoni, where the
Hadamard property, obtained through the comparison principle, is combined with
the appropriate choice of a function to test the equation. The underline principle
is the asymptotic comparison between the solutions of the inequality and the fun-
damental solution. This can be interpreted as the interaction between the elliptic
operator, including first order term, and the nonlinearity (the zero order term).

We start the precise description of our results by recalling the definition of the
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Pucci’s operators. In this chapter, we consider

ME(r, D*u) = A(r) Y e+ A(r) Y e (1.5)

e; >0 e; <0
and
M (r, D*u) = M) Y e+ A(r) D e, (1.6)
e; >0 e; <0
where e1,...,exn are the eigenvalues of D*u, A\, A : [0,00) — R are continuous, \g
and Ay are positive constants and
0< X < A1) <A(r) <Ag < +oo, Vr=|z|,7 € RY. (1.7)

Our purpose is to study the non-negative solutions of
M (r, D*u) + o(r)|Du| + f(x,u) <0 in €, (1.8)

with © = RY or an exterior domain and o : [0,00) — R and f : Q x (0,00) — (0, 0)
are continuous. In this chapter, by an exterior domain we mean a set = RV \ K
connected, where K is nonempty compact subset of RV,

We consider the fundamental solutions for the second order differential operator
¢, : (0,00) = Rin given (1.41)) and (1.42)), which are non-trivial radially symmetric
solutions of

M~ (r, D*u) +o(r)|Du| =0, =€ R\ {0}. (1.9)
satisfying
(i) v is increasing and either lim,_,,, ¥ (1) = 0o or lim, . 1(r) = 0 and
(ii) ¢ is decreasing and either lim, ., ¢(r) = —00 or lim, . ¢(r) = 0.

Now we are in a position to make precise assumptions about the interaction
between the differential operator and the nonlinearity. We assume that

(f1) f:Qx(0,00) = (0,00), \,A,0:[0,00) — R are continuous.
(f2) We have

2
r
lim — f(z,s) =
r=|z|—oc 1 + U_(T)Tf( ’ )

uniformly on compact subsets of (0,00). Here and in what follows o_ =

max{—o,0}.
In order to state the next assumption we need a definition. Given p > 0, a > 1,
k>0 and 7 > 0 we define

2

By(r) = 29T g {% fnf f(x’s)}. (1.10)

(p(T) 2€Bar\Br T’)T +1 ko(ar)<s<p S
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We assume:

(f3) Iflim, . () = 0 then we assume the existence of constants > 0 and a > 1
such that, defining
h(k) = limsup W (1),

T—00

one of the following holds:
(i) for all £ > 0 we have h(k) = oo or
(ii) for all £ > 0 we have

0 <liminf ¥y(7) and lim h(k) = o0 (1.11)

T—00 k—o0

and there is a constant C € R such that

ro(r) > C, forallr>0. (1.12)

Now we state our first Liouville type theorem for inequality (1.8) in RY.

Theorem 1.1.1 Assume that [ satisfies (f1), (f2) and (f3). Then inequality (1.8)

in RN does not have a non-trivial viscosity solution u > 0.

We observe that hypothesis (fs;) does restrict f when lim, ., ¢(r) = —o0.

Regarding hypotheses (f2) and (f3) we would like to notice that they are natural
extensions of hypotheses (f2)—(f3) in [4], when o # 0 and the fundamental solution
¢ is not necessarily power-like. Thus, we are generalizing the results in [4] in the
case of a one-homogeneous differential operator in RY. It is also interesting to notice
that hypotheses (fy) and (f3) appear explicitly and in a natural way in our proof of
the theorem.

When the condition (i) is satisfied we say that inequality (1.8]) is sub-critical and
when condition (ii) holds, we say it is critical. In case of

Au+ uP <0,

we say the inequality is sub-critical when p < N/(N —2) and when p = N/(N —2) it
is critical. When p > N/(N — 2) we say the inequality is super-critical and here the
existence of positive solution holds. Accordingly, we would like to define a notion
of super-criticality the cases (i) and (ii) do not hold. However, in Theorem we
provide an example where there is no solution in a super-critical sub-region, showing
that further study is required to understand the critical boundary.

In the case of an exterior domain, we need to consider also the interaction between
the differential operator and the nonlinearity at co. We need a definition in order to
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state our assumptions. Given g >0, a > 1, k£ > 0 and 7 > 0 we define

b= A L e SO

Y(aT) €Bar\B- r)r+ 1 p<s<ky(ar) s

<

Now we assume that

(f1) If lim, oo ¥(r) = oo then we assume the existence of constants p > 0 and
a > 1 such that, defining

h(k) = limsup U, (7),

T—00

one of the following holds:
(i) for all k > 0 we have h(k) = co or
(ii) for all £ > 0 we have

0 < liminf ¥,(7) and lim h(k) = oo (1.13)

T—00 k—0t

and there is a constant C' € R such that (1.12)) holds.

For an exterior domain we have the following non-existence result.

Theorem 1.1.2 Assume that ) is an exterior domain and [ satisfies (f1), (f2),
(f3) and (f4). Then inequality ({1.8) in Q does not have a non-trivial viscosity solution
u > 0.

We observe that hypothesis (fy) does restrict f when lim,_,., ¥ (r) = 0.

As for (f3), hypothesis (fy) is the natural extension of (f4) in [4] to our case.
Here we allow o # 0 and ¢ not power-like, thus generalizing [4].

In case of (f4) we may also define the notion of criticality for (1.8) in an analogous
way as for (f3). Since here the behavior of f is relevant at zero and infinity mixed
cases appear, as for example, an inequality critical at 0 and sub-critical at oo or vice
verse.

In the proofs of Theorem [1.1.1] and [1.1.2| we use some basic properties of the
functions

m(r) = mlenér u(z), mo(r) = a:eEl;?\me uw(z) and M(r)= xléleT u(x) (1.14)

in connection with the fundamental solutions, as given by the Hadamard property
provided in Theorem[I.4.3] Then we test the equation with an adequate function and
we use the asymptotic assumptions on f and the fundamental solutions to obtain a

45



contradiction with the existence of non-trivial non-negative solutions. In the proofs
of our theorems we only consider a = 2.

The interaction between the elliptic operator and the nonlinearity, that is ex-
pressed in hypotheses (f3;) and (fy), is not easy to understand in full generality.
However, beyond the cases studied in [4], there are many interesting examples that
well illustrate the relevance of our results to understand the general structure of
solutions for these equations. In particular, in Section 1.2 we discuss some examples
for the inequality

Au+o(r)|Dul + f(u) >0, in RN, (1.15)

which are not covered in the literature. In the first example we analyze the non-
linearity f(u) = uP with a function o associated to a fundamental solution with
oscillatory power, see . In this case, it is interesting to observe the way to
introduce ¢ which affects the critical power of the nonlinearity. In the second ex-
ample we analyze the case of f(u) = w?(1 + log|u|)” and a function ¢ providing
a fundamental solution matching the non-homogeneous nonlinearity, see (|1.31)). In
this case we analyze the range of p and v for non-existence of solutions to (|1.15]).

For the existence of positive solutions of , it is nature to consider the super-
critical assumption, that is, the case when hypotheses (f3) and (f4) are not satisfied,
which means

liminf ¥y (7) =0 or limsuph(k) < oo

T—00 k—>OC
and

liminf W, (7) = 0 or limsup h(k) < oo,

T—00 k—oo
where h, h, U and U, were defined in (f3) and (f;). We observe that super-
criticality holds when h(k) = 0 or h(k) = 0 for any k > 0, but it is not true that
under this notion of super-criticality a positive solution of always exists, as we
see in Section 1.2 through an example.

In the last part of this chapter we consider a Liouville type theorem in the case
f is a linear function, that is, f(z, s) = h(z)s, that interestingly can be proved using
the same techniques considered in the nonlinear case. This problem has been recently
studied by Rossi [89] after some previous work by Berestycki, Hamel and Nadirashvili
[20], Berestycki, Hamel and Roques [21] and Berestycki, Hamel and Rossi [22]. Rossi
[89] proved a Liouville type theorem for generally unbounded domains, assuming
that (1) 41

. u(z

It is clear that when €2 is an exterior domain then dist(x,09) < |z|, so that
implies a linear growth constraint on w. Thus, it is interesting to investigate the
existence or non-existence of positive solutions of the corresponding equation when

(1.16) does no longer hold. Here is our result:
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Theorem 1.1.3 Let u be a viscosity nonnegative solution of

M (r, D*u) + o(r)|Du| + h(x)u <0, in €, (1.17)
where Q is an exterior domain. Assume further that \ and A satisfy and that
(h1) h:RY =R and o : Ry — R are continuous, h is positive and o is negative.
(ho) There exists a function r : Ry — Ry of class C* such that

lim £'(r) =0 (1.18)

r—00

and there is a constant p > 1 such that

1 < k(r) r(r1§i2<< lo(s)] < p, forall r>0. (1.19)

(hs) There exists a sequence r, — oo such that

lim  inf {h(r) — %5 (20 + 1)02(7«)} > 0. (1.20)

n—00 r&(rpn—~r(rn),rn)

Then u = 0.

1.2. Discussion and examples

We devote this section to present various examples that illustrate the relevance of
our results. We start discussing the relation between o and the fundamental solution,
then we present two examples for Theorem [I.1.T]and we conclude the section with a
theorem related with the concept of super-criticality. We concentrate our discussion
on Theorem regarding inequality in RY in the case of the elliptic operator

Q(r,u) = Au+ o(r)|Dul. (1.21)

We may certainly construct examples for Theorem regarding the inequality in
an exterior domain and for general Pucci’s operators as in our theorems.

In Section 1.3 we study with details the fundamental solutions associated to the
differential operator in equation (|1.8). We see that in the case of @), the decreasing
fundamental solution is given by

o(r) =— /1 siNelioMdrgs 1,

where L, is a constant so that when lim,_,,, ¢(r) exists, it becomes equal to 0, see
Proposition and its proof. With this formula we may construct many examples
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of fundamental solutions with a whole variety of asymptotic behavior. We start
showing the effect of the first order term on the behavior of the fundamental solution.
Our first example is for

d
o(r) = %(sinrlogr), r>1,
properly extended to [0,1). Then we have, for a constant L,
o(r) = —/ st NHIEgs 4w Lo r > 1 (1.22)
1

We observe that this fundamental solution does not behave like a power at infinity.
The second example is given by

o(r) = %(Cos(log logr)logr), r>e,

properly extended to [0,e). The associated fundamental solution does not behave
like a power, not even asymptotically. Its behavior is oscillatory, with slower rate

than (1.22)). For a third example we consider

d
o(r) = —5((a+2—N)logr+loglog7’), r>e, (1.23)

extended to [0,e) as a continuous function with fundamental solution

L r 8717(1
r) = —e*t ds+ L, 1r>e. 1.24
o(r) | Gt t e v (1.21)
This example is different from earlier ones since it is not oscillatory, but with an
asymptotic behavior which is not power-like because of its logarithmic term.

It is interesting to see that we may prescribe explicit fundamental solutions by
providing functions ¢ like
o(r)=e 1 >0, (1.25)

assuming that ¢ is increasing and lim, ., ¢(r) = oo. It is easy to check that this
fundamental solution is obtained when the function o is given by

N_l_/r q”(r)
. q()+q,<r),

o(r) = r > 0. (1.26)

In view of our examples later, we will require ¢ to be such that ro(r) is bounded.
This condition is not necessary to use Theorem [1.1.1] but under this condition (f2)
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and (f3) greatly simplify. Assume that N > 3 and
1
q(r) = (N —2)logr + 5 sin(log(logr))logr, r >e. (1.27)

After some direct calculation, we see that ¢/(r) > 0 and, if o is defined as in ([1.26)),
ro(r) is bounded. In this case, the fundamental solution is
g0<7,) — Tf(N72+% sin(loglogr))’ r Z e,

which is a power exhibiting an oscillatory exponent. In this situation we have

Theorem 1.2.1 Assume that N > 3 and

N -1
l<p< 2, (1.28)
N =3
then there is no positive solution to the nonlinear inequalily
Au+ o(|z])|Du| +uP <0, in RY. (1.29)

This theorem shows the effect of the first order term on the critical exponent. It
is interesting to notice that the critical exponent is enlarged because the dimension
is decreased by 1/2, the amplitude of the oscillatory power.

Proof of Theorem The application of Theorem requires to analyze
the function Uy in (f3), since all other hypotheses are satisfied. Using the definition

of Uy, that p > 1 and that ro(r) is bounded, we find that for r large
Uy (r) = kP~ le a@npta)2logr (1.30)
Computing the exponent, from ([1.27) we see that
—q(2r)p+q(r) = —(N — 2)plog2 — gsin(log(log(%))) log 2
+|-(N=2)(p—1) — gsin(log(log(%))) - %sin(log(log(r))) log .
We claim that there exists a sequence {r,} such that lim,,_,,, r, = oo,
nh_}rgo sin(log(log(2r,))) = —1 and nh_g)lo sin(log(log(r,))) = —1.

Assume the claim is true now, then we get lim,, o, ¥y (r,) = oo if we have —(N —
2)(p—1)+ (p—1)/2+ 2 > 0, which is exactly (1.28). To complete the proof we
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check the claim. We let r,, be the positive solution of the equation

“in (log(log(%n)) + log(log(r,))

5 ):—1, n €N,

that satisfies lim,,_ o ,, = o0. Then we have

sin(log(log(2r,,))) + sin(log(log(r,))) = —2cos (log(log(2rn)/log(rn))) |

2

from where the claim follows, since

lim [sin(log(log(2r,))) + sin(log(log(r,)))] = —2.

n—oo
(I
Now we consider another example for the function
q(r) = (N —2)logr +log(logr), r>e. (1.31)

Its associated fundamental solution is a power with a logarithmic factor

1

= N1 T>1,
rN=2]ogr

o(r)

and ro(r) is bounded, for o as in ((1.26)). Next we apply Theorem to the
nonlinearity f(u) = u?(|logu| + 1)” with differential term @ with o as above.

Theorem 1.2.2 Assume that N > 3 and

l<p< and veR, or

N -2

N L2
=—— and v>———
P=7N_3 =T N2

then there is no positive solution to the nonlinear inequalily
Au+ o(|z])|Du| +uP(|logu| + 1) <0, in RY. (1.32)

This theorem provides an example of a non-existence result where the nonlin-
earity and the fundamental solution are not homogeneous and they match in such
a way that the hypothesis (f3) is satisfied.

Proof of Theorem In this case, the function Wy in (f3) is given by

Wi(r) = keI 21087 | log |k g(or)| 41, (1.33)
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From here and we have
—q(2r)p+q(r) = (N —2)((1 — p)logr — plog2) — plog(log(2r)) + log(log(r)).
From here, there exists a constant C' > 0 so that, for r large, we have

Ui (r) > CkP~ LN =20-D (1o )P~ (logr — log k)".

If p < % with v € Ror p = % with v > — then lim, ., Wi (r) = co. In the

_2_
N-2’

limit case, when p = % with v = —ﬁ, we have lim, o, Uy(r) > CkP~L from
where we complete the proof using Theorem [I.1.1] 0

In the examples discussed above the fact that f(s)/s is decreasing allowed to
get the inner most infimum easily. Then, the monotonicity of the remaining term in
r allowed to get the second infimum and thus ¥, was obtained explicitly. In what
follows we give simplified versions of hypothesis (f3).

Remark 1.2.1 In hypothesis (f3), we may define the function h in a different way,
namely we may consider

hi(k) = liminf Wi(7) or

T—00

2
ho(k) = Timinf 29T w18
r=|z|—o0 QO(T') o_ (7’)7” + 1 kp(ar)<s<p S

These two definitions give rise to two stronger versions of hypothesis (f3). We may
use this condition to deal with the example given by (1.26]).

Remark 1.2.2 If we assume that there exists C' € R such that

2R
/ o(r)dr > C > —o0 (1.34)

R

for each R > 1, for the function hy defined above, we have

2
ho(k) = lminf —— @ L5

r=lz|—o0 O',(T’>7’ + 1 kp(ar)<s<p S

In case f(x,s) = sP and assuming lim, .o o(r) = 0, the function hy becomes

2 p—1
ha(r) = kP~ 1im ﬂ
r—oo o_(r)r 41

We conclude this section discussing an example for the notion of super-criticality
suggested by (f3). For the power nonlinearity and the Laplacian

—Au+uP <0, zeRY,
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it is well known that a solution exists in the super-critical case, that is, when p >

%. In our case, we defined super-critical inequality in the introduction, but our
example below shows that this may not be fully appropriate.

We assume that « and v are positive numbers and p > 1. We let 0 : [0,00) — R

as in (1.23) and f: (0,00) — R be as in
f(s) =5"(|logs| +1)", s € (0,00). (1.35)
Considering the corresponding fundamental solution given in (1.22)), we get

; ; SO(T) a+2  —1
rll{go SO(T) =0 and rli)n;lo W =€ + o .

Next, given k > 0, we find positive constants C' and R such that for r > R

CkP=(logr — log k)¥

re(r=1)=2(log r)r—1

kP~1(logr — log k)”
< Wilr) < Croe=H=2(log r)p=1’

where U, was defined in (1.10). Then we obtain the following three cases:

2 2 2
(Cy) sub —critical p<—+1, or p=—+1 and v > —,
a a a

2 2
(Cy) critical p=—+1 and v=—,
a a

2 2 2
(C3) super — critical p>—+1, or p=—+4+1 and v< —.
a @ o
And we obtain some non-existence and existence results as following:

Theorem 1.2.3 Suppose that ¢ and f are given as above and Q = RY, then:

(i) If (Ch) or (C) holds, then (1.8) does not have a positive solution.
(i) If
2 2 2
p=—+1 and 0<——-1<v<—, (1.36)
a a a

then @ does not have a positive solution.
(i1i) If p > % + 1, then has a positive solution.

We see that the sub-region for (p,«) given in (1.36]) is super-critical, however
we can prove non-existence of a positive solution there. This fact shows that more
analysis in needed to understand the critical boundary in general.
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1.3. Fundamental solutions and basic properties

In this section we construct the fundamental solutions of the nonlinear second
order operator with first order term given in . These special radial solutions
are important tools for understanding the behavior of general viscosity solutions of
(1.9)

We start defining the dimension like numbers, which are relevant in our con-
struction. We let n, N : (0,00) — R be the functions given by

AN ) 1 i ro(r) < AN - 1),
nlr) = { VN it ro(r) > AN — 1), (1.37)
and .
AN -+ ro(r) > —A(r)(N - 1),
N = { N it ro(r) < —A()(N - 1). (1.58)

We also need to consider the following functions

M) re(r) < ARV — 1),
malr) = { A(F) if ro(r) > A@)(N — 1) (139)

and
My(r) = Ar) if ro(r) < =A(r)(N —1),
MIZVA() i ro(r) > —A(r)(NV —1).
Given r; > 0 and constants L, and Ly, we define the functions ¢, : (0,00) — R as
follows:

(1.40)

T s (o) _n) g
SD(T) = _/ Sefrl(MA(‘r) 7 )d ds + L‘P (141)
1
and
T s o(T) N(7) T
Q/J('I") :/ se frl(]\/l,\(f)+ T )d dS+L1/) (142)
1

Proposition 1.3.1 (i) The function ¢ defined in (1.41)), is of class C** and it
satisfies equation . Moreover, ¢ is a decreasing function and, by choosing
the constant L, adequately, it satisfies

lim ¢(r) = —oo or lim ¢(r) =0. (1.43)

r—00 =00

(i1) The function 1) defined in is of class CY' and it satisfies equation .

Moreover, 1 is an increasing function and, by choosing the constant L, ade-
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quately, it satisfies

lim ¢(r) =oc0 or lim ¥(r) = 0. (1.44)

T—00 700

The functions ¢ and 1 satisfying (1.43)) and (L.44), respectively, are called fun-
damental solutions of the operator (|1.9)).

Proof of Proposition We recall that, given a C? radially symmetric function
u(x) = v(|z|), the eigenvalues of D?u are v”(r) with multiplicity 1 and v'(r)/r with
multiplicity N — 1.

(i) By the definition ([1.41)), we have

B e

1 —n(r) N o(r)

and ¢"(r) = . i

p(r) = —re 1k (7).

Then we readily see that ¢'(r) < 0, so that ¢ is a decreasing function, and using

(T.37) and (T.39) we find that

©"(r) >0 if ro(r) <A(r)(N—-1) and
©"(r) <0 it ro(r) > A(r)(N —1).

Thus, whenever ro(r) < A(r)(N — 1), we obtain

M=, D%0) +o(nDe| = Mr)g"(r) + M) 2 (r) — o) (r)
= 0|+ ) - 0] =0
and, whenever ro(r) > A(r)(N — 1), we obtain
N -1

M= (r,D*¢) +o(r)|Dg| = A(r)¢"(r) + A(r) '(r) —o(r)¢'(r)

— /" N-1, 0-<r) ’ -
= A [0+ 20 - S0 o

We conclude then, that ¢ is a solution of equation (|1.9), it is of class C*! and, since
¢ is decreasing, the limit in ([1.43) exists. If it is bounded, we may find L., so that
© has limit equal to zero.

(ii) can be proved in a completely analogous way. O

Remark 1.3.1 We observe that the functions ¢ and 1 are not necessarily convex
or concave and that they may change their concavity along r.

In what follows we derive various properties of the fundamental solutions that
we need in the sequel. We start with properties for the function ¢.
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Lemma 1.3.1 If lim, .o ¢(r) = 0, then there exists a sequence {r,} diverging to
infinity such that

lim r,¢'(r,) = 0. (1.45)
n—o0
Proof. This is equivalent to limsup,_,. 7¢'(r) < 0 implies lim, . p(r) = —oo,
which is obviously true. O

Proposition 1.3.2 Suppose lim, o, ¢(r) = 0 and assume that holds, then
there 1s a constant Co > 0 such that
rg'(r)
p(r)

< Cy, for all r > 1.

Proof. We first see that, from definition of ¢ and (1.12)), we have

(r'(r)) _re"(r)+¢'(r) _ () +2+ ro(r)

¢'(r) ¢'(r) m(r)

> C,
for a certain negative constant C' and all » > 1. Then, since ¢ is decreasing,
(r¢'(r)) < C¢'(r), forall r>1.
Considering the sequence given in Lemma we integrate to obtain
T (1) — 1@’ (r) < Clp(ry) — p(r)), forall n € N.
Then, taking limit as n — oo and using the hypothesis, we find
—r¢(r) < =Ce(r),
from where we conclude, taking Cy = —C. O

Proposition 1.3.3 Assume that lim, ., (1) = 0 and o satisfies

/ZT o(r)dr > C, (1.46)

for some C' € R and for all r > 1. Then, there exists Cy > 0 such that

> Cy, forallr>1.

Proof. By definition of ¢ and hypothesis (1.46)), we have

/ T o(T n(rt
% <2T) _ 2ef'r2 (m;(.,)—)* S_))dT > 2€c(fr2r o(1)dr)—C'log2 >
¢'(r) - -
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for certain constants ¢, C' and Cy. Then, since ¢ is decreasing, we have
©'(2r) < Cop'(r), forallr>1.

Thus, integrating in [r, R], taking limit as R — oo and using the hypothesis we get
the result. O

Next we obtain two other propositions, but now regarding the function .

Proposition 1.3.4 Assume lim, ., ¥ (r) = co and o satisfy (1.13), then there exist
Co > 0 and r; > 0 such that

ry/(r)
< >ry.
o) S Co, forallr>nry
Proof. From ((1.12)) and definition of ¢) we have
(r¢/(r))” _ r"(r) +¢'(r) ro(r)
vl SR TS
for some C' > 0. Let r; be such that ¥ (r1) > 0 and consider that
(rg'(r)) < C¥'(r),
then we integrate in [ry,7] and get
ry(r) ry'(r) — CY(r) r1y'(r1)
< (C+ <C+ = Cy,
() o(r) b(r)
for all » > r; completing the proof. O

Proposition 1.3.5 Assuming that lim, . ¢(r) = oo and o satisfies ({1.46), then
there exists Cy > 0 and r1 > 0 such that

¥(r)
W(2r)

Proof. By definition of ¢ and from ([1.46) we have

> Cy, forallr >ry.

/,r 2r, o(t) N(7)
¢( ) — 2—1€fT (]WX(T)J’» T )dT Z 4007

¥'(2r)

for a certain positive constant Cy, and then

Y (r) > 4Coy' (2r),  for all r > 1.
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We let rg so that 1(2r9) > 0 and we integrate from ry to 7 to obtain

p(r) P(ro) — Cotp(2ro)
T R T o7y

From here we find r; such that the desired inequality holds for all » > r;. a

1.4. The Hadamard property

The Hadamard property and the Liouville type theorems are based on the Strong
Maximum Principle and the Comparison Principle. Here we recall a version of these
principles that are best suited for our purposes. We start with the Comparison
Principle for viscosity solutions:

Theorem 1.4.1 (See Ishii [63].) Let Q C RY be a bounded open set. Let A\, A\ and
o satisfy hypothesis (f1) and the functions A and A satisfy . If uw and v are
respectively super- and sub-solutions in the viscosity sense of

M (r, D*u) + o(|z|)|Du| =0, in Q,

respectively and u > v on OS2, then u > v wn €.
Next we have the Strong Minimum Principle:

Theorem 1.4.2 (See Bardi and Da Lio [8].) Let u be a super-solution in the viscosity
solution of
M (r, D*u) + o(|z])|Du| =0, in Q

If u attains its minimum at an interior point of (), then u is a constant.

Now we are in a position of proving the Hadamard property, a nonlinear Hadamard
theorem. This theorem allows to obtain estimates for the behavior of super-solutions
of (1.9) with regards to fundamental solutions. We have

Theorem 1.4.3 Let Q = RY or an exterior domain and suppose that u € C(§) is
a positive viscosity super-solution of in 2. We let ro > 0 be such that By C
and rqg <1y <ry. Then

(i) if Q =RY, for the function m(r) defined in , we have

. 5&))—_ %;<511>)m<r2> p PO =) Ly <<y (147)

m(r) o(r2) —p(r)
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(13) if Q is an exterior domain, my(r) is defined as in and 1y is large enough
then for all ri < r < ry we have

mo(r) o(r2) ()

(1ii) if Q is an exterior domain and the function M(r) is defined as in , for

ro < r < riy we have

(1.49)

Proof. (i) It is clear that m(r) is positive and non-increasing. By Proposition [1.3.1]
we know that the function ®(r) = Ci(o(r) — p(r1)) + Cy with

m(ry) —m(ri)
p(r2) — p(r1)

satisfies (1.9) for 0 < r; < 7y and ®(r;) = m(r;) and ®(ry) = m(ry). By the
Comparison Principle (Theorem [1.4.1]), we have

C) =

>0 and Cy=m(r)

u(z) > ®(z), v € By, \ By, (1.50)

But, also by the Comparison Principle (Theorem [1.4.1)), we have that m(r) =
min{u(z) |z € RY, |z| = r}, so the conclusion follows from (1.50).

(77) In the case of my we observe that by the Strong Maximum Principle either
mg(r) is constant for all r > rq or m(r) = min{u(z) |z € RY, |z| = r}, forall v > r;
and rq large enough. Then the result is obtained in the same way as for m.

(i7i) Let ry > 1o and
Y(r) — ¢ (ro)
O(r):=M(r|)—5———=, 7€ (10,71),
= M)y = oy TS0

which satisfies (1.9) and we see that ®(r;) = M(r;) < u(z), for all |x| = r; and
0= ®(rg) < wu(z) for all |z| = ro. Then, by the Comparison Principle, we have
¥(r) —(ro)
" < u(x),
¥(r1) — (ro) (@)

for all 1o < r = |z| < ry. On the other hand, by the Strong Maximum Principle we
see that either M (r) is equal to a constant for all » > rq or

M (ry)

M(r) = min{u(z) |z € R, |z| =}, for all 7 > r.
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This completes the proof. O

From Theorem we have

Corollary 1.4.1 Assume that u is a nonnegative viscosity solution of (@ m §2,
the whole space or an exterior domain, then we have

(1) If lim, o o(r) =0, then

mo (7"1)

= o)

@(r) and mo(r) > o(r), forall r>mr >

(17) If lim, o @(1r) = —00, then

m(r) >m(ry) and mo(r) > mo(ry), forall r>r >ro.

Proof. Since ¢ is decreasing, the result follows directly from Theorem taking

ro — 00 in ([1.47) and (1.48]). O

The next proposition provides additional properties of m, my and M.

Proposition 1.4.1 Suppose that u is a positive viscosity solution of @ Let

g(r) = |nf‘n'n u(x).
Then there exists 7 such that g s either strictly increasing or strictly decreasing for
r > 7. Fither mo(r) is constant and M (r) = g(r) strictly increasing or mo(r) = g(r)
is strictly decreasing and M (r) is constant for r > .

Proof. Let r; < ry < r3and g(ry) > g(re) and g(r3) > g(r2), then u has a minimum
point x € B,, \ B,,, which contradicts with Minimum Principle. Then ¢(t) may
change monotonicity just once. So g is decreasing strictly or increasing strictly or first
increasing and then decreasing. In the third case, let 7 be such that ¢ is decreasing
for > 7. From here the result follows if we define mg(r) = minz<, <, u(z). O

1.5. Proof of Theorems [1.1.1] and 1.1.2

In this section we prove Theorems [1.1.1] and [1.1.2l The idea of the proof is to
assume has a solution and use an appropriate test function in order to get the
behavior of u at infinity, which in view of our hypothesis is incompatible with the
Hadamard property proved in the previous section.
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Proof of Theorem [1.1.1} If the fundamental solution satisfies ¢(r) — —oo, then
by Corollary we have

m(r) > m(ry), forr>ry.

Since m(r) is a non-increasing function, we conclude that u attains an interior min-
imum, but then by the Strong Minimum Principle v is constant. From here u = 0
since f(x,s) > 0if s > 0 from our assumption (f;).

If o(r) — 0, then we consider two cases: the critical and subcritical equations.

Subcritical Case. We assume hypothesis (f3) in case (i) holds. We may assume
that v > 0 by the Strong Maximum Principle. From Corollary we have

m(rl)
mir) 2 5

o(r). (1.51)

We also see that m(r) is strictly decreasing. Considering 0 < 7 < R as parameters,
we define the test function

o) = m(r) |1 - { =TV
(R—7)
We observe that ((z) < 0 < u(z) for |z| > R, {(z) = m(7) < u(z) for |z] < 7 and
since m is strictly decreasing, ((Z) = u(Z) at some T with |z| = 7. Therefore, u — (

attains a non-positive global minimum at some point z% such that 7 < |xR| < R.
By definition of viscosity solution we have

fagulag)) < =M™ (r, D*C(a})) — o(|2R)|DC(2F)]- (1.52)
Since ( is radial we directly compute the right hand side and get
f(@g, u(zg))

)
SA(hm(r) { (N1 oliD)\ oy Voo
S TR {“<|xa\ A(\x§|)>(’ g )*}(’ Rl =)

If |2%] = 7, then f(2,u(z})) < 0, contradicting (f;). Thus, we may assume that
T < |z%| < R and we have

L+ o (lzR))(R —7)

(e ulaf)) < Om(r) = o=

(1.53)

for certain constant C' > 0. Now use the hypothesis (f3)(i) to find a sequence {r,}
diverging to infinity so that

lim Wy (r,) = h(ky) = oo, (1.54)

n—00
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with ky = m(ri)/¢(r1). We let 7 = r,, R = 2r, and z, = 23, , and recall that
rn < |2, < 2r,. Next we see that u(z,) — 0 as n — oo, because (1.53) gives

|19J2f($n7u(xn))
41+ o—_(|zal)|znl)

< Cm(ry),

that contradicts (f2) if u(x,,), or a subsequence, is bounded away from zero. Then we
use the monotonicity of m(r)/¢(r) given by (1.51)) and the fact that u(z,) > m(r,)
to obtain )
P )
p(ra) 1+ o(Jznl)ra  uz,)

But this contradicts ([1.54)), since by (1.51)) w(z,) > m(2r,) > kip(2r,), so that
(1.55) gives that Wy (r,) is bounded, completing the proof in this case.

Critical Case. If case (fs;) (ii) holds then there is no contradiction in case
h(k1) < oo.In this case, arguing as above, we obtain u(z, ) — 0 and, using hypothesis

(1.12) and Proposition then
raf (@n, u(z,))

u(zy)

(1.55)

<c, (1.56)

for any sequence {r,} diverging to oo. At this point we claim that

m(r) _

(1.57)

lim
r—00 SO (’I")

Assuming for a moment that (1.57) holds, we find M), for every k so that u(x) >
kp(x), for all |z| > My, consequently, from (1.56)) we obtain that

21 u(r)
) = )

<,

for n large. Since the sequence {r,} is arbitrary, we conclude that h(k) < C for all
k, which is a contradiction that completes the proof of the theorem.

Now we prove the claim (1.57). Let Q, = {z € R : |2] > 7, u(x) < u}, which
7 > 1 and g > 0 appears in (f3). 2, is open and nonempty. Next we consider the
function

[(z) := —p(|z]) log p(||)
and choose 7 > ry such that m(7) < p and ['(z) < pu, for all || = 7 > 7. Then we
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use (1.51)) and the monotonicity of ¢ to find

LN

flau(@)) =k

o(|zl) L+o_(lz))|z]  u()
1 |z f(z,s)
— 4o (|z))]x] meleh<s<n s
ACLI ly|? PP (%)
o(7) veBo\B- 1+ o_([y))|y| me(uh<s<n s
Z k?l\lfkl(T).

From here, taking 7 = |z| and using (1.11]) we obtain

Fz,ulz)) > c£UzD (1.58)

- |x’2 Y

for certain constant C, for all x € Q7. On the other hand, computing directly and
using Proposition we find Cj such that

M~ (r, D?T) + o(r)| DI | > _, 2z 2| > 7. (1.59)

|2 N

Then we let C' := min{ s, —ki/log ¢(7),1} and from 1} 1.58) and (1.59) we
obtain

M= (r, D*(u+€)) + o(r)|D(u+ )| < C(M~(r, D’T") + o(r)| DT|),
for all z € Q- and € > 0. By the choice of C' we have then

ki

— = TI'(f) > Cr(F), forallzecdB;
— log p(7) ) ")

u(z) +e>m(r) > kio(r) =

and, since lim,_,, I'(r) = 0, there is R such that
u(x)+e>e>T(R)>CI(R), forallz€dBg.
We also have and u(z) = p > CT(|z|) for « € (Bg \ B;) N 09, thus
u(x) + e > CT(|z]), z € d(BrN Q).
Then we use the Comparison Principle and then take R — oo and € — 07 to get
u(x) > CT(|z|), =€ Qy,

which implies (1.57)). 0
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Remark 1.5.1 If we have a non-negative super-solution u of and the funda-
mental solution ¢ satisfies o(r) — —oo then u has to be constant. This result is
usually known as Liouville property.

Now we prove Theorem [I.1.2)on the Liouville property in an exterior domain.
Proof of theorem [1.1.2] According to Proposition for some 7 > ry:

Case 1: mg(r) is strictly decreasing and M (r) is constant for r > 7 or

Case 2: M(r) is strictly increasing and mg(r) is constant for r > 7.

We recall the new definition of mg given in the proof of Proposition for
notational convenience, we just write m instead of mg, from now on.

Proof in Case 1: If ¢(r) — 0 as r — oo, the proof follows step by step that of
Theorem A small change is needed in the complementary case: Given r© <
r1 < 12 we use inequality (1.48) and that m(rq) > 0, to find

m(r) > m(r) (1 — gf(ii;))) for r € [ry,m2]. (1.60)

Then, we let ro — oo obtain m(r) > m(ry) for r > rq, which is impossible since

m(r) is strictly decreasing.

Proof in Case 2 and sub-critical: We consider the test function

3
(Rl
(R—7) ’
where R > 7 > 7 are parameters. As in the proof of Theorem [1.1.1] we see that u—(
attains a non-positive global minimum at some point =}, such that r < [2%| < R

and u(zy) < M(R). Then, by the definition of viscosity solution and computing the
differential operator we obtain

C(Jz]) = M(R)

1+ o_(|zk) (R —7)
(R—17)?

f(@g, u(rg)) < CM(R) (1.61)
Assuming that lim, , ¥ (r) = 0 then, by Theorem we have that M(R) is
bounded. Let us choose {r,} diverging to infinity and let 7 = r,,, R = 2r,, and write
r, = x4 . We notice that r, < |2,| < 2r, and u(z,) < M(2ry), so that u(x,) is
bounded. But then, from (1.61)), we find that

7"2

mﬂxn,u(%)) < CM(2r,), (1.62)
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contradiction (fs).

Now we assume that lim, ., ¥(r) = oo and we take, without loss of generality,

that ¢(ro) = 0. From (1.49) and (L.61]) we have

Fohu(eh) _ fOhuh) _ 0B L+ o ()R - 7)
AR VT N (s

Next we use the hypothesis (f4)(i) to find {r,} diverging to infinity so that

nh_}rgo Uy, (ry) = h(ky) = oo, (1.64)
with ky = M(7)/¢(7). We let 7 = r,, R = 2r,, and we write x, = x5 . We notice
that r, < |z,| < 2r, and u(z,) < M(2r,), so that u(z,) < kiu(2r,), where this
last inequality comes from (1.49). Again we have (1.62)), but now we conclude that
M (2r,) and consequently, M (r,) and u(z,) diverge to infinity. Now, from (1.63]) we
have the following inequality that contradicts

@Zj(rn) 7“,% f($n>u($n))
b Tt o(arn  u(m) =

Proof in Case 2 and critical: Under hypothesis (f4)(ii) then there is no contradic-
tion in case h(ki) < co. Arguing as above, using hypothesis 1} and Proposition
[[.3.4 we obtain

roaf (n, u(zn))

for any sequence {r,} diverging to co. At this point we claim that

<, (1.65)

i M)
r—o0 1h(r)

Assuming that the claim is true, for every k there is M, so that

= 0. (1.66)

M(r) < ki(r), for all r > My,
consequently, from (1.65), we obtain that

x T?zf(xm u(r,))

for all n large and then .
lim sup Wy (r,) < C.

n—oo

Since this inequality holds for all sequence {r,} diverging to infinity, we find that

h(k) < C for all k, contradicting (fy)(ii).
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Thus, we only need to prove (1.66) to complete the proof. We define the open
set Q- :={z € Q, |z| > 7, u(x) < 3k1¥(|z|)}, which is nonempty since, given r > 7
we can find z with |Z| = r and u(z) = M(r) < kib(r) < 3ky)(r).

Assume our claim is not true, then there exists k € (0, k] such that

M
i ()

lim oS =k (1.67)

Then we have .
kp(|z]) < M(|2|) < kp(l]), |z > 7

and kv (|z|) < u(z) for all 2 € Q. From here and monotonicity of ¢ we find

ol ) e P T
R TCTEe) o Rt 71 [ PO A
> Ty

Then, from (1.13), there exists ¢ > 0 such that

flz,u(z)) > Cw’g‘i’)’ x € Q. (1.68)
Next we define the auxiliary function
s U(r)
I'(r) = , r=|x|
(r) og (1) |z

Computing directly we obtain

M, D?F) + o(r)|DE| > 25U =L b2y 4 o) D)
log™1(r)

oz (r) — 2 (¥(1)°
log®>(r)  (r)

Since v is the fundamental solution, by Proposition we get

o)
r2log? y(r)

On the other hand we can find r; < r9 < 73 such that

M~ (r,D*T) + o(r)|DT| > —C

log(v(r1)) = n?, log(¥(ry)) =2n* and log(¢(rs)) = 3n?,
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with n € N to be chosen later. We define

w(z) = ]‘If((;) (C(r) —=T(r)), =€ By, \ By,

There exists ng > 0 such that, for n > ng and x € (B,, \ B,,) N Qr, we have
U(r) M (r5)log (rs)

r2log?(1(r)) ¥(rs)
>~ f(zu) > M (7, Du) + o(r)|Dul,

M~ (r, D*w) + o(r)|Dw| > —C

where we used (1.68)). Next we prove that
u(z) = w(|z]), © € O(Bry \ Bry) N €).
This is obvious for |z| = r3 or |x| = ry. For z € (B,, \ B,,) N 0Q: we have

M(T3)10g1/)(7‘3)( Y(r) _ Y(r1) )
¥(r3) logtp(r)  logu(r)

log ¢(r3) . log(rs) P = ule
Tog o) = Vg () = S = ul@).

Then we apply the Comparison Principle to obtain

M(T3)10g¢(7’3)( ¥(r) _ ¥(r1) )
(rs) log(r) logi(ry) )’

for € (B,, \ B,,) N Q. Then we take 2 € 9B,, N Q, and we get

M(?“3)10g¢(7’3)( W(rs) (1) )

w(x)

< kyy(r)

w(z) =

M(’I“Q) Z

¥(r3) log 1(r2) N log i(r1)
and then
M(ry)  M(rs) <§_i)
U(ra) = P(rs) \2 e )’
which is impossible if n is large enough, in view of (L.67). a

1.6. Proof of Theorem

In this section we prove Theorem We observe that part (i) is a consequence
of Theorem In order to prove part (ii) we need a preliminary lemma. Given
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6 > 0 we define
Us(r) = o(r)(—logo(r))’, (1.69)
where r > 7 > e and 7 is such that ¢(7) < 1.

Lemma 1.6.1 Assume the hypothesis of Theorem[1.2.5 and let v > 0 be a solution
of @ Then, for any 6 > 0, there exists Cs € (0,1) such that

u() = CoUs(lel), |2l = T-
Proof. By direct computation we find a constant ¢ > 0 such that

(log |x|) 2™

‘x|2+a

M~ (r, D*Us) + o(r)|DUs| > —c (1.70)

On the other hand, by Hadamard theorem, there exists ¢ > 0 such that u(z) >
cp(|x]), for » > 7 and then there exists C' > 0 such that

, forall |z|>T. (1.71)

If0<5§60:1+y—§and5>0,usingandWeget
M (r, D*Us) + o(r)|DUs| > M~ (r,D*(u+¢)) + o(r)|D(u+¢)|, |z|>T.
By appropriately choosing C' and R we find that
u(z) +e > CUs(|x|), =€ I(Br\ Br),
thus, by the Comparison Principle and letting R — oo and € — 0, we obtain
u(z) > CUs(|z|), =z € B;. (1.72)
For 6 € (6,,(2 + 2)do], we use (1.72) with § = & to get, as in , that

-, (log |])" P07

o) > fa, CUNe) > 2T (1.73)
Then, by making C' smaller if necessary, we obtain
M= (r, D2Us) + o(r)| DUs| = — f(, u), (L.74)

for all § € (05, (24 2)do). Then we use the Comparison Principle as before to prove
that, for certain constant C, we have u(z) > CUs(|z|), for z € BE. Repeating the
argument we can prove similar results for every ¢ > 0. a
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Proof of Theorem [1.2.3((ii). We assume that there exists a positive solution u
of (1.8). By arguments as in the proof of Theorem we find 2, such that
r < |z%| < R and

Alzg)(N +1) + o_(Jag (R —1)

u(zp)’([logu(ry)| + 1) < 3m(r) (R—r)2

From here and the monotonicity of r — %, we obtain

U ow a4 11 < o £0) L (R (R = 1)
(o™ (log ufaf)| + 1) < O FEs =,

At this point we choose R = 2r, we write z, = x}. and we obtain
|z [Pu(z, )P (| log u(z,)| + 1) < C, (1.75)

for certain positive constant C. From here we easily conclude that u(x,) — 0 as
r — 00. Now we choose § > 0 such that

2 20
v——+—>0
o (07

and we use Lemma [[.6.1] to obtain
| [Pu(, )P ([ log u(z, )| + 1) > |2, [*(CUs(2,))P~ (| log(CUs (1)) ] 4 1)”.

From the choice of § and the definition of Us we see that the right hand side diverges
to infinity, while from (1.75) the left hand side is bounded. This is a contradiction
that completes the proof. a

We continue by proving the existence of a positive solutions.

Proof of Theorem [1.2.3{(iii). We consider the function U(z) = ¢(|z|)?, where
6 € (0,1) will be chosen later. By direct computation we find a constant C' > 0 and
R > 0 so that

(log [x|)~

‘x|2+a0

M~ (r, D*U) + o(r)|DU| < —C
for |z| > R. On the other hand, we have

UP(x)(|log U(x)| + 1) < Cla| =" (log |z])"~*".
1 2 1
0=—-|1+——= 1
2 < N ap— 1> =
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and we use our assumption p > 2 +1 to obtain < 1 and (p — 1) > 2. From here
we find R > R such that for all z € By

M~ (r,D*U(z)) + o(r)| DU (x)| + UP(z)(|log U(z)| +1)” < 0. (1.76)
We notice that U.(x) = eU(x) also satisfies (1.76) if ¢ is small, since
M- (r, DU.(x)) + 0(r)| DUL(x)| < —Ce, € By \ By

and
UZ(z)(|logUs(x)| + 1)" = o(e), x € Bg\ By

for € > 0 small enough and C' > 0. Thus ({1.76|) can be extended to BS. Finally we

2

let w be the unique radial solution of the problem

AMw + o(|z])|Dw| = -1 in By,

(1.77)
w=0 on 0By,

and let w. = ew, with € > 0. It is easy to see that there exists ¢y small so that
we, satisfies in Bj. Since w is positive in Bj, there exists £; > 0 such that
we, (x) > U, () for |z| = 1/2. On the other hand U., — oo as r — 0, so there exists
r € (0,1/2) such that w(x) = U, (x) for all |x| = r. Now we define V(z) = U, () if
x € B¢ and V(x) = we,(z) if x € B,, which is a solution of in RY, completing
the proof. O

1.7. Liouville property for f(x,u) = h(x)u

In this section, we study the Liouville type theorem for equation ((1.17)) in exterior
domains, when the functions h and o satisfy (h;), (hy) and (hs3). Before continuing

we give two examples of functions satisfying (hs):

Example 1. ¢ is a negative function such that liminf, ., o(r) = ¢, for some ¢y < 0.

Then there is Ry such that ¢q/2 > o(r) > 2¢y for all » > Ry and we can choose

R(r) = —.
We observe that if lim, ., o(r) = 0, we may change o by o — ¢, with £ > 0 and

small enough so that inequality and (hs) are still satisfied.

Example 2. If ¢ is of class C! and satisfies

lim o(r) = —oo0 and lim ¢'(r)/o*(r) =0,
r—00 r—00

then we just let x = 1/0. If o is not C*, but the first limit still holds and 1/c is
convex, or if it does not differ too much from a convex function, then taking x as
an appropriate approximation of 1/o will work.
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Lemma 1.7.1 Assume that o and  satisfy hypotheses (h1) and (hy). Then ¢(r) —
0 and ¥(r) — o0 as r — oo, and for € > 0, there exists R > Ry such that

e(r)

Y e <(l+¢)e*, VreR.

< (1+ 6)6% and

Proof. As we have observed above, we may always assume that [o(r)| > 0o > 0 for
all 7. We also see from ([1.18)) that for » > R we have x(r) < r/2. Next we see that

/ ﬂﬁmgc/‘ Lir <ot 90k (1.78)
r r—w(r) T

k) T r— k() r

By definition of ¢ and for ¢ > 0, we find R > 0 large such that

(p(r—r(r) _ ¢ —r(r)A—-r(r))
(o (r))’ ' (r)

= (1= () exp ( / - (7;((77)) - @) dT)

< (1+ 8)6%,

where we have used (1.78)) and (1.19)). Then we have

(plr = k() = (L+ )b (p(r), >R
Integrating in [r, R], letting R go to infinity and using the fact that o(r) — 0 we
get the result. Proceeding as above, for € > 0 there exists R so that

e, _

(¥(r) <1+ et (W(r - k(r))), r>R.

Then we integrate in [R, r] and we divide by 9 (r — x(r)) to get

O )
S —n) oy =D (1 WR - fau%))) |
Using that () — oo as r — oo, we get the result. O

Proof of Theorem If w > 0 is a non-trivial solution of (L.17)), then

M (r,D*u) +o(r)|Du| <0, x€Q
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and v > 0 in 2. Then we use Proposition to consider two cases in the proof,
depending on the behavior of mg(r) and M(r), as defined in (1.14]).

Case 1. my(r) is strictly decreasing and M (r) is constant for » > 7. We consider

the test function ,
[l =,
R—r ’

where 7, R are parameters such that R > r > max{r, ro}. Proceeding as in the proof
of Theorem [1.1.1] we obtain 27, such that r < |z7;| < R and

B T Co ) P 2L (11 W D
bllilyuten) < 2R b (S8 = TR (ot = ) (ol ).

C(x) = mo(r)

From here we obtain

20 + o(|) (R — 1) + (N ~ 1)(R - >}

bl ule) < 3ma(r) { ey

mo(r)
w(r)

and then, by the monotonicity of r —

. p(r) {2Ao+0(lﬂf’é|)(3—7“)+(N—1)(3—7“)7’1}
h(lxz]) <3 . 1.79
Next we choose r = R — k(R) with R > R, and we use Lemma to find
o [ 280+ o(|R)w(R) + S
h(|2h]) < (1+¢e)eo SLIGIN (1.80)
" (r(R))

From here, taking R = r,, as in the hypothesis, we obtain

m  inf  [h(r) = (1+e)ed (28 + 1)0(r)] < 0.

n—oo re (7'n _H(T7z),rn)

If € > 0 is chosen properly, we obtain a contradiction with (|1.20)).

Case 2. M(r) is strictly increasing and mq(r) is constant for r > 7. In this case we
replace mg by M(r) in the definition of the test function and we repeat step by step
the proof, using Theorem [I.4.3] and the properties of ¢ given in Lemma [[.7.I]] O
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Capitulo 2

Large solutions to elliptic equations
involving fractional Laplacian

Abstract: in this chaptell] we study existence of boundary blow up solutions
for some fractional elliptic equations

(=A)u(@) + [uf~u(z) = f(z), 2€Q,
u(z) =0, z € QF°, (2.1)
Hm:pGQ, x—08 U(TL’) = +09,
where  is an open bounded domain of class C?, the operator (—A)® with a €
(0,1) is the fractional Laplacian and f : @ — R is a continuous function which

satisfies some extra conditions. Moreover, we analyze the uniqueness and asymptotic
behavior of solutions to problem (2.1)).

2.1. Introduction

In their pioneering work, Keller [66] and Osserman [84] studied the existence of
solutions to the nonlinear reaction diffusion equation

{ —Au+ h(u) =0, in €, (2.2)

U = 400, on 0f,

where €2 is an open bounded domain of R (N > 2) and h is a nondecreasing positive
function. They independently proved that this equation admits a solution if and only

! This chapter is based on the paper: H. Chen, P. Felmer and A. Quaas, Large solution to elliptic
equations involving fractional Laplacian, submitted.
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if h satisfies

/1+00 28(8) < 400, (2.3)

where H(s) = [ h(t)dt, that in the case of h(u) = u? means p > 1. This integral
condition on the non-linearity is known as the Keller-Osserman criteria. The solution
of found in [66] and [84] exists as a consequence of the interaction between the
reaction and the diffusion term, without the influence of an external source that
blows up at the boundary. Solutions exploding at the boundary are usually called
boundary blow up solutions or large solutions. From then on, more general boundary
blow-up problem

{_Au(x) +h(z,u) = f(z), e, (2.4)

limgco, z—a0 u(r) = +00

has been extensively studied, see [B, 6] [7, 44, 47, 48, 50, (9, 72, 73, 74, 87]. It
has being extended in various ways, weakened the assumptions on the domain and
the nonlinear terms, extended to more general class of equations and obtained more
information on the uniqueness and the asymptotic behavior of solution at the bound-
ary.

During the last years there has been a renewed and increasing interest in the
study of linear and nonlinear integral operators, especially, the fractional Laplacian,
motivated by great applications and by important advances on the theory of non-
linear partial differential equations, see 23| 26], 27, B2, 51 (2] B4l 55, 85, 90| for
details.

In a recent work, Felmer and Quaas [51] considered an analog of where the
Laplacian is replaced by the fractional Laplacian

(—A)u(z) + [ufP~u(z) = f(z), z€Q,
u(z) = g(x), x € Q°, (2.5)

meGQ, xz—00 U(ZE) = 100,

where  is a bounded domain in R, N > 2, with boundary 09 of class C?, p > 1
and the fractional Laplacian operator is defined as

(—A)*u(z) = —E/R wry) ) eql

2 Jon Jy|Nr2e
with @ € (0,1) and 0(u,z,y) = u(z + y) + u(x — y) — 2u(x). The authors proved

the existence of a solution to (2.5) provided that g explodes at the boundary and
satisfies other technical conditions. In case the function g blows up with an explosion
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rate as d(x)”, with 3 € (—[%, 0) and d(x) = dist(x,00), the solution satisfies

2«

0 < liminf w(z)d(z)™® < limsup u(z)d(zr)r—1 < +oo.
€N, x—0 z€Q,x—00

In [51I] the explosion is driven by the function g. The external source f has a sec-
ondary role, not intervening in the explosive character of the solution. f may be
bounded or unbounded, in latter case the explosion rate has to be controlled by
d(z) 20/ (1)

One interesting question not answered in [51] is the existence of a boundary blow
up solution without external source, that is assuming g = 0 in Q¢ and f = 0 in ,
thus extending the original result by Keller and Osserman, where solutions exists
due to the pure interaction between the reaction and the diffusion terms. It is the
purpose of this chapter to answer positively this question and to better understand
how the non-local character influences the large solutions of and what is the
structure of the large solutions of with or without sources. Comparing with
the Laplacian case, where well possedness holds for , a much richer structure
for the solution set appears for the non-local case, depending on the parameters and
the data f and g. In particular, Theorem [2.1.1] shows that existence, uniqueness,
non-existence and infinite existence may occur at different values of p and «.

Our first result in this chapter is on the existence of blowing up solutions driv-
en by the sole interaction between the diffusion and reaction term, assuming the
external value g vanishes. Thus we will be considering the equation

(=A)u(@) + [ufu(z) = f(z), z€Q,
u(r) =0, z € Q°, (2.6)
Hma:GQ, z—00 U(ZE) = +00.

On the external source f we will assume the following hypotheses

(H1) The external source f: Q2 — R is a C’foc(Q), for some 8 > 0.

(H2) Defining f_(z) = méx{—f(x),0} and f;(z) = max{f(z),0} we have

limsup fy(z)d(x)?% < +oo and  lim f_(2)d(x)7F = 0.
zeQ,x—00N z€Q,z—00N

A related condition that we need for non-existence results

(H2*) The function f satisfies

limsup |f(z)]d(z)** < +o0.
€N, x—0N
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Now we are in a position to state our first theorem in this chapter.

Theorem 2.1.1 Assume that € is an open, bounded and connected domain of class
C? and « € (0,1). Then we have:

Existence: Assume that f satisfies (H1) and (H2), then there exists To(a) € (—1,0)
such that for every p satisfying

2w

142a0<p<]l — ——, 2.7
) (2.7)
the equation possesses at least one solution u satisfying

0 < liminf u(x)d(a:)% < limsup u(:zc)d(ac)z%!1 < ~00. (2.8)

zeQ,z—00 €N, x—00N

Uniqueness: If f further satisfies f > 0 in €2, then u > 0 in Q and u is the unique

solution of satisfying (2.8).
Nonexistence: If f satisfies (H1), (H2*) and f > 0, then in the following three
cases:

i) For any T € (—1,0) \ {—;Tal, To(@)} and p satisfying or
ii) For any T € (—1,0) and

200
>1-— or 2.9
pz1-—7s (2:9)
iii) For any 7 € (—1,0) \ {7o()} and
1<p<1+2e, (2.10)

equation does not have a solution u satisfying

0 < liminf w(z)d(z)™" < limsup u(z)d(z)™" < 4o0. (2.11)
z€Q,x—00 2€Q,x—00

Special existence for 7 = 7y(a). Assume f(zx) =0, x € Q and that

2a
TQ(OJ) .

Then, there exist constants C7 > 0 and Cy > 0, such that for any t > 0 there is a
positive solution u of equation satisfying

2 1ola) +

1
@) (@) A <p<1-—

(2.12)

max{l —

Cld<x)m1'n{7'o(a)p+2a,0} < td(ﬂ?)m(a) o 'LL(.I') < Czd<x)m1'n{‘ro(a)p+2a,0}. (213)

Remark 2.1.1 We remark that hypothesis (H2) and (H2*) are satisfied when f = 0,
s0 this theorem answer the question on existence rised in [51l]. We also observe that
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a function f satisfying (H2) may also satisfy

lim x) = —00
xEQ,xEBQf( ) ’
what matters is that the rate of explosion is smaller than %.

For proving the existence part of this theorem we will construct appropriate
super and sub-solutions. This construction involves the one dimensional truncated
laplacian of power functions given by

oo DIl —t"+(1+1¢)" =2
)= [ XenOlL =i 1+
0

t1+2a

dt, (2.14)

for 7 € (—1,0) and where x (1) is the characteristic function of the interval (0,1).
The number 74(«v) appearing in the statement of our theorems is precisely the unique
7 € (—1,0) satisfying C'(7) = 0. See Proposition for details.

Remark 2.1.2 For the uniqueness, we would like to mention that, by using iteration
technique, Kim in [67]] has proved the uniqueness of solution to the problem

—Au+ul =0, in Q,
(2.15)

u = 400, on 0f,

where uy = max{u,0}, under the hypotheses that p > 1 and Q is bounded and
satisfying 0Q = 0Q. Garcia-Melidn in [59, [60] introduced some improved iteration
technique to obtain the uniqueness for problem with replacing nonlinear term
by a(z)uP. However, there is a big difficulty for us to extend the iteration technique
to our problem involving fractional Laplacian, which is caused by the nonlocal
character.

In the second part of this chapter, we are also interested in considering the
existence of blowing up solutions driven by external source f on which we assume
the following hypothesis

(H3) There exists v € (—1 — 2a, 0) such that

0 < liminf f(x)d(z)™” < limsup f(x)d(z)”” < +o0.
z€Q,x—00 z€Q,x—00

Depending on the size of v we will say that the external source is weak or strong. In
order to gain in clarity, in this case we will state separately the existence, uniqueness
and non-existence theorem in this source-driven case.

77



Theorem 2.1.2 (Existence) Assume that 2 is an open, bounded and connected
domain of class C*. Assume that f satisfies (H1) and let a € (0,1), then we have:

(i) (weak source) If [ satisfies (H3) with
200
— 20— ——< -2 2.16
«@ po1° v < —2a, ( )

then, for every p such that holds, equation possesses at least one solution
w, with asymptotic behavior near the boundary given by

0 < liminf u(z)d(x)”77** < limsup u(z)d(z)7** < +o0. (2.17)
zEQ,x—00N z€Q,x—00

(17) (strong source) If [ satisfies (H3) with

2
12 <y < 20— —- (2.18)
p—1
then, for every p such that
p>142a, (2.19)

equation possesses at least one solution u, with asymptotic behavior near the
boundary given by

0 < liminf w(z)d(z)”? < lmsup w(z)d(z)™? < +oo. (2.20)
z€Q,x—00 2EQ,x—0N

As we already mentioned, in Theorem the existence of blowing up solutions
results from the interaction between the reaction v? and the diffusion term (—A)®,
while the role of the external source f is secondary. In contrast, in Theorem [2.1.2]
the existence of blowing up solutions results on the interaction between the external
source, and the diffusion term in case of weak source and the interaction between
the external source and the reaction term in case of strong source.

Regarding uniqueness result for solutions of (2.6), as in Theorem we will
assume that f is non-negative, hypothesis that we need for technical reasons. We
have

Theorem 2.1.3 (Uniqueness) Assume that ) is an open, bounded and connected
domain of class C*, a € (0,1) and f satisfies (H1) and f > 0. Then we have

i) (weak source) the solution of satisfying is positive and unique, and
ii) (strong source) the solution of satisfying is positive and unique.

We complete our theorems with a non-existence result for solution with a previ-
ously defined asymptotic behavior, as we saw in Theorem We have
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Theorem 2.1.4 (Non-existence) Assume that 0 is an open, bounded and con-
nected domain of class C*, a € (0,1) and f satisfies (H1), (H3) and f > 0. Then
we have

i) (weak source) Suppose that p satisfies (2.9), v satisfies and T € (—1,0)\
{v+ 2a}. Then equation does not have a solution u satisfying .

i) (strong source) Suppose that p satisfies (2.19), v satisfies and T €
(—1, O)\{%} Then equation does not have a solution u satisfying W

All theorems stated so far deal with equation in the case g = 0, but they
may also be applied when g # 0 and, in particular, these result improve those given
in [51]. In what follows we describe how to obtain this. We start with some notation,
we consider L1 (Q°) the weighted L' space in Q¢ with weight

1

:W, for all y € RY.

w(y)

Our hypothesis on the external values g is the following
(H4) The function g : Q¢ — R is measurable and g € L} (Q°).

Given g satisfying (H4), we define

1 [ gty
G@y_zéNwwﬁa@,er, (2.21)
where _
() 0, x €, (2.22)
r) = _ .
g g(x), x € Q.

We observe that
G(r) = —(=A)"g(x), »€Q.

Hypothesis (H4) implies that G is continuous in ) as seen in Lemma and has
an explosion of order d(z)?~2% towards the boundary 99, if g has an explosion of
order d(z)? for some 3 € (—1,0), as we shall see in Proposition We observe
that under the hypothesis (H4), if u is a solution of equation , then v — g is the
solution of

(=A)*u(@) + [ufP~u(z) = f(z) + G(z), z€Q,
u(r) =0, z € Q°, (2.23)

lim,eq, 2o u(x) = +00

and vice versa, if v is a solution of (2.23)), then v 4 § is a solution of ([2.5).
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Thus, using Theorem [2.1.112.1.4} we can state the corresponding results of exis-
tence, uniqueness and non-existence for (2.5), combining f with ¢ to define a new
external source

F(z) =G(z)+ f(z), xeq. (2.24)

With this we can state appropriate hypothesis for g and thus we can write theorems,
one corresponding to each of Theorem [2.1.1] 2.1.2] 2.1.3|and [2.1.4] Even though, at
first sight we need that G(z) is C’ﬁ)C(Q), actually continuity of ¢ is sufficient, as we
discuss Remark [2.4.1] Moreover, in Remark we explain how our results in this
paper allows to give a different proof of those obtained by Felmer and Quaas in [51],

generalizing them.

2.2. Preliminaries and existence theorem

The purpose of this section is to introduce some preliminaries and prove an
existence theorem for blow-up solutions assuming the existence of ordered super-
solution and sub-solution which blow up at the boundary. In order to prove this
theorem we adapt the theory of viscosity to allow for boundary blow up.

We start this section by defining the notion of viscosity solution for non-local
equation, allowing blow up at the boundary, see for example [27]. We consider the
equation of the form:

(—=A)*u = h(z,u) in Q wu=g in Q° (2.25)

Definition 2.2.1 We say that a function u : (02)¢ — R, continuous in Q and in
LL(RY) is a viscosity super-solution (sub-solution) of if

u > g (resp. u < g) in Q°

and for every point xo € ) and some neighborhood V' of xo with V C Q and for any
¢ € C*(V) such that u(zo) = ¢(xo) and

u(z) > ¢(x) (resp. u(x) < ¢(x)) for allx €V,

defining

u m Ve

) {¢ in V,
u =
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we have
(—=A)*a(zo) 2 h(zmo, u(zo)) (resp.(—A)*u(xo) < h(zo, u(wo)).

We say that u is a viscosity solution of of it 1s a viscosity super-solution and
also a viscosity sub-solution of .

It will be convenient for us to have also a notion of classical solution.

Definition 2.2.2 We say that a function u : (0Q)¢ — R, continuous in Q0 and in
LL(RY) is a classical solution of if (—=A)%u(z) is well defined for all x € §,

(—=A)*u(x) = h(z,u(x)), for allx € Q
and u(z) = g(x) a.e. in Q. Classical super and sub-solutions are defined similarly.

Next we have our first regularity theorem.

Theorem 2.2.1 Let g € LL(RY) and f € CF (Q), with § € (0,1), and u be a
wiscosity solution of

(=A)*u=f in Q wu=g in QF

then there exists y > 0 such that u € C2277(Q)

loc

Proof. Suppose without loss of generality that B; C Q and f € C?(B;). Let 1 be
a non-negative, smooth function with support in By, such that n = 1 in B;/,. Now

we look at the equation
—Aw=nf in RN

By Holder regularity theory for the Laplacian we find w € C?#, so that (—A)'~%w €
C?8  see [94] or Theorem 3.1 in [53]. Then, since

(=A)*(u—(=A)'"*w) =0 in By,

we can use Theorem 1.1 and Remark 9.4 of [29] (see also Theorem 4.1 there), to
obtain that there exist 3 such that u — (—=A)'"™*w € C?***F(B,3), from where we
conclude. O

The Maximum and the Comparison Principles are key tools in the analysis, we
present them here for completitude.

Theorem 2.2.2 (Mazimum principle) Let O be an open and bounded domain of
RY and u be a classical solution of

(—A)*u<0 in O, (2.26)
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continuous in O and bounded from above in RYN. Then u(x) < M, for all v € O,
where M = sup, o u(z) < +00.

Proof. If the conclusion is false, then there exists 2’ € O such that u(z") > M. By
continuity of u, there exists o € O such that

u(zg) = méx u(x) = méax u(z)

z€O z€RN
and then (—A)%*u(xy) > 0, which contradicts (2.26)). O

Theorem 2.2.3 (Comparison Principle) Let u and v be classical super-solution and
sub-solution of

(—=A)*u+ h(u) = f in O,

respectively, where O is an open, bounded domain, the functions f : O — R s
continuous and h : R — R is increasing. Suppose further that w and v are continuous

in O and v(x) < u(x) for all v € O°. Then
u(z) > v(x), ze€O.

Proof. Suppose by contradiction that w = u— v has a negative minimum in zy € O,
then (—A)*w(zg) < 0 and so, by assumptions on u and v, h(u(zg)) > h(v(xg)),
which contradicts the monotonicity of h. a

We devote the rest of the section to the proof of the existence theorem through
super and sub-solutions. We prove the theorem by an approximation procedure for
which we need some preliminary steps. We need to deal with a Dirichlet problem
involving fractional Laplacian operator and with exterior data which blows up away
from the boundary. Precisely, on the exterior data g, we assume the following hy-
pothesis, given an open, bounded set O in RY with C? boundary:

(G) g:0°— Risin LL(O°) and it is of class C? in {z € O¢, dist(z,00) < 6},
where § > 0.

In studying the nonlocal problem (2.5 with explosive exterior source, we have
to adapt the stability theorem and the existence theorem for the linear Dirichlet
problem. The following lemma is important in this direction.

Lemma 2.2.1 Assume that O is an open, bounded domain in RN with C? boundary.
Let w: RY — R:

(i) If w € LL(RY) and w is of class C? in {z € RN d(z,0) < 6} for some § > 0,
then (—A)*w is continuous in O.

(ii) If w € LL(RN) and w is of class C? in O, then (—A)*w is continuous in O.
(i) If w € LL(RY) and w =0 in O, then (—A)%w is continuous in O.
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Proof. We first prove (ii). Let z € Q and n > 0 such that B(z,2n) C Q. Then we
consider

(—A)%u(x) = Ly(x) + Lo(x),

where

6(u,,y) / 6(u,z,y)
Li(x :/ —— 2 dy and Ly(x)= — 77
1(@) By lylNT Y 2() Boge |y[N T2 Y

Since w is of class C? in O, we may write L, as

n 1 1
Li(x) = / {/ / / tw' D*w(z + strw)wdtdsdw} riodr,
0 SN-1J-1J1

where the term inside the brackets is uniformly continuous in (z,7), so the resulting
function L, is continuous. On the other hand we may write Lo as

dy w(z)dz
Lx:—wa/ ——2/ —_—
2(7) (@) B [ylV e Blame |2 — o[V T2

from where L is also continuous. The proof of (i) and (iii) are similar. 0

The next theorem gives the stability property for viscosity solutions in our set-
ting.

Theorem 2.2.4 Suppose that O is an open, bounded and C? domain and h : R — R
is continuous. Assume that (u,), n € N is a sequence of functions, bounded in L. (O°)
and f, and f are continuous in O such that:
(—A) Uy, + h(un) > fo (resp. (—A)*u, + h(u,) < fn) in O in viscosity sense,
U, — u locally uniformly in O,
U, — u in LL(RY), and
fn — f locally uniformly in O.
Then, (—A)*u + h(u) > f (resp. (—A)*u+ h(u) < f) in O in viscosity sense.

Proof. If |u,| < C' in O then we use Lemma 4.3 of [27]. If u,, is unbounded in O,
then u, is bounded in Oy, = {z € O, dist(xz,00) > +}, since u, is continuous in O,
and then by Lemma 4.3 of [27], u is a viscosity solution of (—A)%u -+ h(u) > f in O
for any k. Thus u is a viscosity solution of (—A)*u + h(u) > f in O and the proof
is completed. O

An existence result for the Dirichlet problem is given as follows:

Theorem 2.2.5 Suppose that O is an open, bounded and C? domain, g : O° — R
satisfies (G), f: O — R is continuous, f € C’lﬂoc((’)), with B € (0,1), and p > 0.
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Then there exists a classical solution u of

{(—A)O“U(ﬂf) + [uf~tu(z) = f(z), 2€0,

u(z) = g(x), x e O, (2.27)

which s continuous in O.

In proving Theorem we will use the following lemma:

Lemma 2.2.2 Suppose that O is an open, bounded and C?* domain, f : O — R is
continuous and C > 0. Then there exist a classical solution of

{(—A)au(x) + Cu(z) = f(z), x€O,

(2.28)
u(z) =0, z € O,

which is continuous in O.

Proof. For the existence of a viscosity solution u of , that is continuous in
O, we refers to Theorem 3.1 in [51]. Now we apply Theorem 2.6 of [27] to conclude
that u is C (O), with § > 0, and then we use Theorem to conclude that the
solution is classical (see also Proposition 1.1 and 1.4 in [88]). O

Using Lemma [2.2.2 we find V, a classical solution of

{(_—A)"‘V(x) =-1, z2€0, (2.29)
V(z) =0, x € O°

which is continuous in O and negative in O. it is classical since we apply Theorem
2.6 of [27] to conclude that u is CP (O), with 6 > 0, and then we use Theorem

loc
to conclude that the solution is classical (see also Proposition 1.1 and 1.4 in [8§]).

Now we prove Theorem [2.2.5]

Proof of Theorem . Under assumption (G) and in view of the hypothesis
on O, we may extend g to g in RY as a C? function in {z € RY d(z,0) < 6}. We
certainly have g € LL(R") and, by Lemma (—A)2g is continuous in O. Next
we use Lemma to find a solution v of equation (2.28)) with f(z) replaced by
f(z) — (—=A)*g(x) — Cg(x), where C' > 0. Then we define u = v+ g and we see that
w is continuous in O and it satisfies in the viscosity sense

{(—A)“u(m) + Cu(x) = f(z), x€O0,
u(r) = g(z), z e O

Now we use Theorem 2.6 in [27] and then Theorem to conclude that u is a
classical solution. Continuing the proof, we find super and sub-solutions for (2.27]).
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We define )
ur(z) = A\V(z) + g(z), = € RV,

where A € R and V is given in (2.29). We see that uy(2) = g(x) in O° for any A and
for A large (negative), u, satisfies

(=A)*ur(@) + [ux(@) "~ ua(@) = f(z) > (=A)"g(x) = A = f(z) — |g(2),

for z € O. Since (—=A)?g, g and f are bounded in O, choosing \; < 0 large enough
we find that uy, > 0 is a super-solution of (2.27) with uy, = g in O°.

On the other hand, for A > 0 we have
(=A)%ur() + [un[P~tun (@) = f(z) < (=A)%g(x) = X+ |l g(z) — f(@).

As before, there is Ay > 0 large enough, so that uy, is a sub-solution of (2.27) with
uy, = g in O°. Moreover, we have that uy, < uy, in O and uy, = uy, = g in O°.

Let uy = uy, and define iteratively, using the above argument, the sequence of
functions u, (n > 1) as the classical solutions of

(=8 (z) + Cttn(2) = F(2) + Cttns(2) — [ts Pt 1 (), 7 € O,
un(z) = g(z), x€O°,

where C' > 0 is so that the function 7(t) = Ct — |¢[P~'t is increasing in the interval
(min,es uy, (), méx,es uy, (2)]. Next, using Theorem we get

Ung S Up S Upyr Suy, in O, forallneN.

Then we define u(z) = lim, ;o uy (), for z € O and u(x) = g(z), for x € O° and
we have
uy, <u<uy, in O. (2.30)

Moreover, uy,, uy, € LL(RY) so that u,, — u in LL(RY), as n — oo.

By interior estimates as given in [26], for any compact set K of O, we have that
u,, has uniformly bounded C?(K) norm. So, by Ascoli-Arzela Theorem we have that
u is continuous in K and u, — u uniformly in K. Taking a sequence of compact
sets K, = {z € 0,d(z,00) > 1} and O = U K,,, we find that u is continuous in
O and, by Theorem [2.2.4] u is a viscosity solution of (2.27). Now we apply Theorem
2.6 of [27] to find that u is C? (O), and then we use Theorem con conclude
that u is a classical solution. In addition, u is continuous up to the boundary by
[2.30).
(I

Now we are in a position to prove the main theorem of this section. We prove
the existence of a blow-up solution of (2.6) assuming the existence of suitable super
and sub-solutions.
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Theorem 2.2.6 Assume that ) is an open, bounded domain of class C?%, p>1and
f satisfy ([_{1) Suppose there exists a super-solution U and a sub-solution U of
such that U and U are of class C? in Q, U, U € LL(RY),

U>U in€Q, liminf U(x)=+occ and U=U=0 in Q"

zeQ,x—00
Then there exists at least one solution u of in the wiscosity sense and
U<u<U in Q.

Additionally, if f >0 in Q, then u > 0 n Q.

Proof. Let us consider Q, = {z € Q : d(x) > 1/n} and use Theorem to find a

solution u,, of

{(_A)O‘u(a:) + [ufPtu(z) = f(z),  x€Qy, (2.31)

u(r) = Ulx), z ey,

We just replace O by 2, and define § = ﬁ, so that U(x) satisfies assumption (G).
We notice that €, is of class C? for n > Ny, for certain Ny large. Next we show that
uy, is a sub-solution of (2.31)) in €,,;. In fact, since u, is the solution of (2.31) in

2, and U is a sub-solution of (2.31) in €2, by Theorem [2.2.3]
u, > U in §,.

Additionally, u, = U in ¢. Then, for z € Q,,1 \ Q,, we have

(-8 unle) == [ SEay < (ArUa)

2 ’y‘N+2a —

so that u, is a sub-solution of (2.31)) in ,,;;. From here and since u,,1 is the solution

of (2.31) in Q41 and U is a super-solution of (2.31)) in €,,,1, by Theorem [2.2.3] we

have u,, < u,.1 < U in €, 1. Therefore, for any n > Ny,
U<ty <tpyr <U in Q.
Then we can define the function u as

u(r) = lim wu,(r), 2 € Q and u(x) =0, r € Q°

n—-+00

and we have )
U(r) < u(z) < U(x), 2 €9.

Since U and U belong to L} (RY), we see that u,, — u in LL(RY), as n — oo. Now
we repeat the arguments of the proof of Theorem to find that u is a classical
solution of (2.6). Finally, if f is positive we easily find that u is positive, again by a
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contradiction argument. a

2.3. Some estimates

In order to prove our existence threorems we will use Theorem [2.2.6] so that it is
crucial to have available super and sub-solutions to . In this section we provide
the basic estimates that will allow to obtain in the next section the necessary super
and sub-solutions.

To this end, we use appropriate powers of the distance function d and the main
result in this section are the estimates given in Proposition that provides the
asymptotic behavior of the fractional operator applied to d.

But before going to this estimates, we describe the behavior of the function C
defined in ([2.14)), which is a C* defined in (—1,2). We have:

Proposition 2.3.1 For every a € (0,1) there exists a unique 1o(a) € (—1,0) such
that C(ro(a)) = 0 and

C(r)(t — o)) <0, forallTe (—1,0)\ {m(a)}. (2.32)
Moreover, the function o satisfies

lim 70(a) =0 and lim 79(a) = —1. (2.33)

a—1— a—0t

Proof. We first observe that C'(0) < 0 since the integrand in (2.14)) is zero in (0, 1)
and negative in (1, +00). Next easily see that

lim C(7) = 400, (2.34)

T——17F

since, as 7 approaches —1, the integrand loses integrability at 0. Next we see that
C'(+) is strictly convex in (—1,0), since

Too 1] — ¢ t)log|l —¢ 1+8)7log(l+t¢
C,(T):/ 11— t"xon(®)log|t — ¢ + (A +1)"log(1 +1)
0

t1+2a

and

dt > 0.

’ T — |7 [x (0, (t) log [T — t[]* + (1 + )" [log(1 + )]
(1) = ; 2

The convexity C(-), C'((0) < 0 and (22.34)) allow to conclude the existence and unique-
ness of 79(«) € (—1,0) such that (2.32)) holds. To prove the first limit in (2.33)), we
proceed by contradiction, assuming that for {«,} converging to 1 and 7, € (—1,0)
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such that
To(an) <7< 0.

Then, for a constant ¢; > 0 we have

1

. 2 19
dt > c¢; lim t T dt = +o0

an—1— 0

2 (1 — t)mo@n) 4 (1 4 f)rolen) — 2
t1+2an

lim
an—1— 0

and, for a constant ¢y independent of n, we have

/+0o Ko = £)o@n) 4 (1 4 )molen) — 2
1

t1+204n |dt S 2,

2

contradicting the fact that C'(7(c,)) = 0. For the second limit in (2.33]), we proceed
similarly, assuming that for {«,} converging to 0 and 7y € (—1,0) such that

To(()én) Z To > —1.

There are positive constants ¢; and ¢, we have such that

2 — ¢)7o(an) To(an) _
Xoa(t)(1 =)™ + (1 +1) 2
/ ‘ t1+20én ‘dt S C1
0
and
) +o00 (1 + t)T()(Ocn) -9 ) “+o0 1
Y | e, A s me lim [ aradt = oo,

contradicting again that C'(7o(a,)) = 0. O

Next we prove our main result in this section. We assume that ¢ > 0 is such that
the distance function d(-) is of class C? in A; = {x € Q,d(z) < §} and we define

l(x), €0\ As,
Vi(z) = ¢ d(@)", z € As, (2.35)
0, x € Q°,

where 7 is a parameter in (—1,0) and the function [ is positive such that V, is C?
in (2. We have the following

Proposition 2.3.2 Assume that Q is a bounded, open subset of RN with a C?
boundary and let o € (0,1). Then there exists 61 € (0,0) and a constant C > 1
such that:
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(2) If T € (—1,10(v)), then
1

Ed(a:)T_za < —(=A)*Vo(x) < Cd(z)2*, for all x € As,.

(12) If 7 € (19(),0), then

éd(x)“m < (=A)*Vi(z) < Cd(z)™2*, for all x € As,.

(1ii) If T = 10(v), then

[(=A)V,(2)] < Cd(z)mn{mol@2n(@=2e+1} = g ]l 2 € As,.

Proof. By compactness we prove that the corresponding inequality holds in a neigh-
borhood of any point z € 02 and without loss of generality we may assume that
Z = 0. For a given 0 < n < ¢, we define

Qy={z=(21,7) ERx R, || <1, ]¢'| <}

and QF = {z € Q)1 > 0}. Let ¢ : R¥"' — R be a C? function such that
(21,2') € QN Q, if and only if 2, € (p(2’),n) and moreover, (¢(2'), 2') € 0N for all
|2’| < n. We further assume that (—1,0,---,0) is the outer normal vector of Q at z.
In the proof of our inequalities, we let z = (x1,0), with z; € (0,7/4), be then a
generic point in A, ;. We observe that |z — Z| = d(x) = x1. By definition we have

L[ oWery), L[ (V)
(=A)Vi(z :—/ #der—/ AN&aRLE Y 2.36
AV =3 Jo, Tl D fovg, Y (230
and we see that 5V )
T?x7y
2B Y) gyl < el 2.37
L, e < e (2.37)

where the constant c is independent of x. Thus we only need to study the asymptotic
behavior of the first integral, that from now on we denote by 3 E(z).

Our first goal is to get a lower bound for E(x1). For that purpose we first notice
that, since 7 € (—1,0), we have that

d(z)" > |21 — (2|7, forall ze€ QsNQ. (2.38)

Now we assume that 0 < n < /2, then for all y € (), we have x £y € ()5. Thus

rty e QNQ;sif and only if p(+y') < x1 £y < d and |y/| < 0. Then, by (2.38)), we
have that

Viix+y)=dxz+y) >[xi+yi —e@)], z+yeQsN (2.39)
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and
Vi —y)=d@—y)" >z -y —o(=y)], z—yeQsnQ. (240

On the other side, for y € ), we have that if z +y € Qs N Q¢ then, by definition of
V:, we have V.(x £y) = 0. Now, for y € @, we define the intervals

L = (o) —zi,n—a1) and I = (21 —n,21 — o(—y)) (2.41)

and the functions

I(y) xr, (y)lz +y1 — o)™ + xr(y)ler — v — o(=y)|" — 2a7,
J(y1) X(z1—nan) Y71 = 1" + Xy m—an) (1) |21 + 0|7 — 227,
Ly) = W) = Xcaim—an (@) Ha + w7,

Ly) = xr.() (21 + 31— oW = o1 +wnl"),

where x4 denotes the characteristic function of the set A. Then, using these defini-

tions and inequalities (2.39) and (2.40)), we have that

I(y) J(y1)
E(x) Z/ | |N+20dy:/ | |Ni20dy+E1(x1)+E2(x1), (2.42)
Qn 1Y Qn 1Y
where L)+ Ii(v)
i\Yy) + 1 .
El(l‘l) = / Wdy, 1= 1,2 (243)

n
Here we have considered that

| T

I (y) = - (1) = Xer—nen) (W) Her —

and
Io(y) = xr_(y1) (|21 =y — o(=y)|" = 21 —w|"),
for y = (y1,7y') € RY. We start studying the first integral in the right hand side in

(2.42). Changing variables we see that

J J 1
/ (1) g yr2o / @), gpraip, — Ry),
Q Qn

. |y‘N+2a |Z|N+2a

r1

where

1— 2| 1 T_9
R, :/ X, (21)] 21]|V :r( +2) =2
o | 2|V H2e

1
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and

X(z-1.29(2) (1 + 21)7

Rz—/Q+ |2V 2a dz.
z]

Next we estimate these last two integrals. For R; we see that, for appropriate positive

constants ¢; and ¢

/ Xen(z)[1 —="+ (1 +2)" -2
dz
+oo 21— 21|+ (1 +21)" — 2 1
_ / X1 (21)] 11’4-2& ( V dzl/ Ni2a dz'
0 2] RV-1([2/2 1) 2

= ¢ C(1)

and

dz = —cy 23%(1 + o(1)).

/ Xon )T =2+ (1 +21)" =2
@ ) 2|V F2a

1

Consequently we have, for some constant ¢ that

Ry = c1(C(7) + cai® + o(23%)). (2.44)
For Ry we have that
Ry, = /z’]1 M/ L dZ'dzy < csz3* T (2.45)
a N+2a .
2y " 2 (L[ e

where c¢3 > 0. Here and in what follows we denote by B, the ball of radius ¢ in

RN-1. From (2.44) and (2.45) we then conclude that

/ Jj(vy 13 dy = ] (C(7) + cai® + (7). (2.46)
Q, ly|N2e

Continuing with our analysis we estimate Fj(x1). We only consider the term
I, (y), since the estimate for /_;(y) is similar. We have

- |l’1 + y1|T / T2
/ |N—|—2a / / |N+2a i d ldy = —I Fl(xl)v
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where

p(z12’)

] ’21|T /
(1) /Bn / (21 — 1)2 + |2/|2)(N+20)/2 dzdz'. (2.47)

In what follows we write ¢_(y') = min{¢(y'),0} and ¢, (v') = ¢(v') — ¢—(v'). Next
we see that assuming that 0 < ¢ (/) < C|y/|? for || < n, for given (21, ) satisfying
0< < %ﬁzl) and |Z| < % then

(L—2)+ P> = (1+ %), (2.48)

1 =

if we assume 7 small enough. Thus

<P+($1Z )

T |21|T
F1<x1) S C/Bn/ 1—|—|Z| )N—|—2 ledZ

C +1 |Z,‘2(T+1 d !
< T
> X1 /B@ (1+ ‘Z’| )(N+2a)/2 z

]

< C:C71'+1(x1727+2a71 + 1) < erlnl'n{TJrl»?a*T}_
Thus we have obtained
By (1) > —Ca] 2egmintrl e} (2.49)

We continue with the estimate of Ey(x1). As before we only consider the term I5(y),
I5(y) du — Tz oy — o) 1+y1|Td .
N+2a y - N+2cx yl y
Q, 1Yl B, Joty) - (yf +1y'?)
Tty —e WO — e
/ / 21+ 5 ()| NHL 1+ 41 dysdy/
By o (v)-m (y +ly'?)
z T __ T
L A WP,
By o) ( 21—-751 2+ [y?)
z T __ T
[ [,
By 21 —x1)* + |y | )

—|al”
/ / N+2a dzldy
ByJo_ () (21 —21)2 4+ [¥/]?) 2
= E21(x1 + EQQ( ) (250)

v

v

We observe that Ego(x7) is similar to Fj(z1). In order to estimate Eo(x1) we use
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integration by parts

E21($1) =

1 / =)™ =0 ()™ a0
N+2a N+2a
T+1 (77—331)+|y|)+ (@3 + [y'[2) =
N +2 T+1 T+1
- + a/ / ) Nﬂa (21 — x1)dndy
T+1 Jp,Jo ((z1— ) +\y\) z t1
- A1+A2.

For the first integral we have

1 _ T+l —w_ (v T+1
A > 1/ { 2’0 R (= (y))wa}dy’
THU s, (=2 + P2 (@ + 1Y)

|y,|27—+2 / T—2a47+1
> _0(77) -C Ni2a dy > _C$1 - C.
B, (af +[y'[*)

For the second integral, since 7 € (—1,0) and (21 —p_(¢/))"' —|z1|7"! > 0, we have

that
N—|—20é T+1 = T4+1
Ay / / )) ]|V+12|a 1 (21 - Qil)dzldy/
T+1 Jg, (1 —m)?+ Y2 =

v

N + 2« T
> / / o)A FE T (21 — x1)dzdy
T+1 By (21— )2+ Y2 =+
> C 2T—2a+1/ / /’2’2{ ( 1)d d /
= 3T = Z1 — z10%
1 e Zl . 1 ‘l’ |Z/|2)N452 41
> _04:6%77204“’ (2.51)

where C53,C; > 0 independent of x; and the second inequality used a = z; and
b= —¢_(y) in the fact that (a4 b)"" —a™' < £L for a > 0,0 > 0.

Thus, we have obtained
Ea(1) > —Ca] 2egmintrl et} (2.52)
The next step is to obtain the other inequality for E(z). By choosing ¢ smaller
if necessary, we can prove that

Lemma 2.3.1 Under the reqularity conditions on the boundary and with the ar-
rangements given at the beginning of the proof, there is n > 0 and C > 0 such
that

d(z) > (21— () (1 = C|Z']?)  for all (21,2') € QAN Q,.
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Proof. Since ¢ is C? and Vip(0) = 0, there exist n; € (0,1/8) small and C; > 0
such that Cinm; < 1/4 and

() < Cily'l’, Vo) <Cily|, Yy € B,,. (2.53)

Choosing 7, € (0,71) such that for any z = (z1,2') € Q,, N Q, there exists y’
satisfying (¢(y'),y') € 02N Qy, and d(z2) = |z — (o(y'), y')].

We observe that ¢y’ mentioned above, is the minimizer of

H(Z) = (2 — (@) + |2 =y’ [ <m,
then
—(z1 = e))Vely) + (' —y) =0,
which, together with (2.53) implies that
T=1Z1 < [ =y= 1z —e@)Ve)l < (la] + Cily ) IVe ()
1

< Cilm+Cm)ly'| < 2Cimly'| < Syl

ly

Then
Y| < 2. (2.54)

Denote the points z, (p(v/),y'), (¢(Z), Z') by A, B, C, respectively, and let 6 be
the angle between the segment BC' and the hyper plane with normal vector e; =
(1,0,...,0) and containing C. Then the angle ZC' = 7 — 6. Denotes the arc from
B to C in the plane ABC' by arc(BC'). By the geometry, there exists some point
x = (p(a),2") € arc(BC) such that line BC parallels the tangent line of arc(BC') at
point z. Then, from (2.54) we have |2’'| < max{|Z/|,|y/|} < 2|7| and so, from (2.53)
we obtain

/

tan() = |

/_
z/ “ V()| < [Ve(a')| < Cil'| <2617,

—Z/|

which implies that for some C' > 0,
cos(0) > 1 — C)*. (2.55)
Then we complete the proof using Sine Theorem and ([2.55)

d(z) = %(21 —p(2) > (21 — (2")) sin(g —0)

= (21— p(2)cos(0) > (21 — () (1 - C]Z'[*). O
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From this lemma, by making C' and 7 smaller if necessary we obtain that
d7(2) < (21— () (1+C|Z?) forall z€QNQ,. (2.56)

With © = (21,0) satisfying z, € (0,77/4) as at the beginning of the proof, we have
that d(z) = x; and for any y € @, we see that x £y € 5. We also see that
xty € QN Qs if and only if p(£y') < x; £y < ¢ and |¢| < 6. Then, for
r+y € QnNQs, by we have,

Vi ty) =dlx+y) < (129 —o(£y) 1+ Cly']?). (2.57)
For y € @),,, we define

I3(y) = Cly' Pxr, (y1)|z1 + v — (y)]

and
Ii(—y) = Cly'Pxi_(y)|z1 — 1 — (=),

where I and I_ were defined in (2.41)). Using (2.57) as in (2.42)) we find

oV, x,y I(y
E(l‘l) = / Wdyﬁ/ ’ |]E[+)2ady+E3<£L'1)

n

. / = ]Sfmdywl(xl) + Ex(wn) + Es(o), (258)

where E; and Es were defined in (2.43)) and

E3(I1> _ / ]3(y) + 13(_?/) dy (259)

|y|N+2a

n

We estimate E5(z1) and for that we observe that it is enough to estimate the integral
with one of the terms in (2.59) (the other is similar), say

/ / / ” C\y’\2|x1+y1—w(y’)leyldy,
|y’N+2a B,, e(y')—z1 |y’N+2a

2P|z — o)y
— C T 242 T d d /
By Je) ((z1 — 1)% + |2/]2)(NV+20)/2 “10z
n o1

T

= Cz] 2T (A + Ay), (2.60)

where A; and A, are integrals over properly chosen subdomains, estimated sepa-
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rately.

o(z12") +2 |Z/’2‘21 N p(z12") ‘7—

A = 2L dzd?
1 /Bn /p(xlz ((21—1)2—|—|2’| )(N+2 )/2 Z1az

/|2

|z
(T+1)27+1 /Bn (1+|2/|2)(N+2a)/2

Tl

< ¢ (ﬁ) - (2.62)

€

dz' (2.61)

The inequality in (2.61)) is obtained noticing that the ball B((1,0),1/2) in RY does
not touch the band

() /1] <, 20D o POE) ) oy

T T

if 1 is small enough, and so (z; — 1) +|2/|* > £ + £|2/|>. Then simple integration
gives the next term. Next we estimate A,

_ em)r

A, = 10— = dzydz’
2 o B"I @(112/)_’_1 21_1>2+|Z/| )N+2a /2 1

i dzyd?
W($1Z % Zl — 1)2 + ’Z/|2)(N+20‘)/2 Z1az

< ¢ (ﬁ) o . (2.63)

IN

T

Putting together (2.60)), (2.62)), (2.63)) and (2.59) we obtain

B (I3(y) + I3(—y)) T
E3<x1)_/n ey < . (2.64)

From ([2.47)), but using the other inequality for F}, that is,

o_(212)
*1 |ZI|T /
E@”ZCAWK R
e

and arguing similarly we obtain as in ([2.49))

Ey(x1) < C’xI_MQ:?m{TH’M}. (2.65)
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Then we look at Es(z1) and, as in (2.50), we only consider the term I5(y):

|21 — o (Y)I” = |2a]” I F
= dz 1dy = Egl(l'l).
/ ’y|N+2a /Bn /<p+(y (71 —@1)2 + |y)? )NH

In order to estimate Egl(xl) we use integration by parts

E21 1171

n pr(y)H = (py () Y
- + 1 N+2a / 2 /12 N+ y
n— 1) +|y|) (o (¥) =) + [y

N—i-QCk T+1 T+1
// 24ly) L -(21 = @1)dzdy’
HEEE By Jor(y zl—xl +\y T
1=

N+2a/ / +(y/>>7+1 ZIH (1 — ) dndy]
o+l By, Jmin{p4(y :131} Zl — ZL’I) + |y | )N-EQQ—H .

This integral can be estimated in a similar way as Fa, see (2.51]) and the estimates
given before. We then obtain

Ey(z1) < Cofm—2ett, (2.66)

Then we conclude from (2.36), £.42), 2.46), @-49), 252), @58), 2.64), (2.63)

and (2.66]) that

—(=A)*Vy(z) = Caf 2 (C(r) + O™ TH2h), (2.67)

where there exists a constant ¢ > 0 so that

O (gt Th2edy | < pmintrr2ad, for all small z; > 0.

From here, depending on the value of 7 € (—1,0), conditions (i), (ii) and (iii) follows

and the proof of the proposition is complete. O

We end this section with an estimate we need when dealing with equation (2.5
when the external value g is not zero. We have the following proposition

Proposition 2.3.3 Assume that Q is a bounded, open and C? domain in RY. As-
sume that g € LL(Q°). Assume further that there are numbers 3 € (—1,0), n > 0
and ¢ > 1 such that

< g(x)d(z)™ <e¢, x€Q° and d(z) <n

ol
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Then there exist 1 > 0 and C' > 1 such that G, defined in 7 satisfies
1
Ed(x)ﬁ_%‘ < G(x) < Cd(x)’*, z€A,. (2.68)

Proof. The proof of this proposition requires estimates similar to those in the proof
of Proposition [2.3.2]so we omit it. However, the function C' used there and defined
in 1) needs to be replaced here by C': (=1,0) — R given by

~ o | _ 1|8
- [ ]

We observe that this function is always positive. a

2.4. Proof of existence results

In this section, we will give the proof of existence of large solution to (2.6). By
Theorem we only need to find ordered super and sub-solution, denoted by U
and W, for (2.6) under our various assumptions. We begin with a simple lemma
that reduce the problem to find them only in As.

Lemma 2.4.1 Let U and W be classical ordered super and sub-solution of m
the sub-_domain A_(;. Then there exists \ large such that Uy = U — AV and W) =
W 4+ AV, where V is the solution of , with O = Q, are ordered super and

sub-solution of (2.6)).

Proof. Notice that by negativity V in Q, we have that Uy > U and Wy < W, so
they are still ordered in As. In addition U, satisfies

(A UN+ [OA710N = f(2) = (=A)* U +|UPT'U = f(z) + A >0, in Q.

This inequality holds because of our assumption in As, the fact that (—A)*U +
|U[P~'U — f(z) is continuous in 2\ As and by taking A large enough.

By the same type of arguments we find the W, is a sub-solution of the first
equation in (2.6) and we complete the proof. O

Now we are in position to prove our existence results that we already reduced to
find ordered super and sub-solution of (2.6) with the first equation in As with the
desired asymptotic behavior.

Proof of Theorem (Existence). Define
Uu(z) = pVi(z) and W, (x) = pV(x), (2.69)
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with 7 = —;To‘l. We observe that 7 = —[% € (—1,7(a)) and 7p = 7 — 2, Then by
Proposition and (H2) we find that for x € A5 and § > 0 small

(=) Uu(@) + Uli(x) = f(2) = =Cud(z)™** + pPd(x)™ — Cd(z)",

for some C' > 0. Then there exists a large © > 0 such that U, is a super-solution
of (2.6) with the first equation in As with the desired asymptotic behavior. Now by
Proposition we have that for x € A5 and 6 > 0 small

(AW, (z) + WP(z) — f(z) < —%d(m)T*M + uPd(z)™ — f(z) <0,

in the last inequality we have used (H2) and x> 0 small. Then, by Theorem [2.2.6]
there exists a solution, with the desired asymptotic behavior. O

Proof of Theorem (Special case T = 7y(«)). We define for ¢ > 0,
U(0) = Vit (@) = 4V () and Wye) = V(@) — Vi (0),  (270)

where 7 = min{m(a)p + 2c,0}. If 74 = 0, we write V) = xq and we have

(—A)*Vy(z) = / ;dz x €.

B0 |2 — g|N+2a "

By direct computation, there exists C' > 1 such that

1
Ed(x)_m < (=A)*Vo(z) < Cd(x)™*, x €. (2.71)
We see that 7 € (10(«), 0] and, if 7 < 0, we have 1, — 2a0 = 79()p and

71 — 2o < min{7g(a), 70(a) — 20 + 1o (@) + 1}.

Then, by Proposition [2.3.2l and (2.71), for x € As, it follows that

(—A)QUM(Z’)—F|Uu(x)’p71Uu<£L'> > _Ctd(x)mfn{To(Dl),To(OL)*ZOLﬁ*To(a)‘Fl}
—Clpd(z)™ 2 4 P (z) P,

Thus, letting p = t*/(2C) if i <0 and p =0 if 74 = 0, for a possible smaller § > 0,
we obtain

(~8)°Vule) + [0, @) Up(2) > 0, € Ay,
For the sub-solution, by Proposition [2.3.2| and (2.71)), for x € As, we have

(_A>QW#<«I)+’W;L|I)71WH<$) < Ctd(x)rm’n{fo(a),fo(a)f2a+ro(a)+1}

—gd(x)ﬁ-m + P d(z) P,
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where C' > 1. Then, for ;¢ > 2Ct? and a possibly smaller § > 0
(=A)* Wy (z) + ’Wu|p_1VVu(x) <0, z € 4,

completing the proof. O

Proof of Theorem We define U, and W, as in (2.69). In the case of a
weak source, we take 7 = v + 2o and we observe that v+ 2a > _z% > 79(r) and
p(y+2a) > ~. Using Proposition 2.3.2 and (H3) we find that U, is a super-solution
for 1 > 0 large (resp. W, is a sub-solution for ;1 > 0 small) of with the first

equation in Ag for 6 > 0 small. In the case of a strong source, we take 7 = % and
observe that v < % — 2a. Using Proposition we find

(=AU, [(—A)W,| < Cd(x)r >

By (H3) we find that U, is a super-solution for p large (resp. W, is a sub-solution
for p small) of (2.6) with the first equation in A for ¢ small. 0

Remark 2.4.1 In order to obtain the above existence results for classical solution
to , that is when g is not necessarily zero, we only need use them with F as
a right hand side as given in . Here we only need to assume that g satisfies
(H4). In fact, as above we find super and sub-solutions for , with f replaced by
F'. Then, as in the proof of Theorem we find a viscosity solution of and
then v =wu+ § is a viscosity solution of (2.5). Next we use Theorem 2.6 in [27] and
then we use Theorem to obtain that v is a classical solution of .

Remark 2.4.2 Now we compare Theorem with the result in [51)]. Let us as-
sume that f and g satisfies hypothesis (F0)-(F2) and (G0)-(G3), respectively, given
in [51)]. We first observe that the function F', as defined above, satisfies (H1) thanks
to (GO), (G3) and (F0). Next we see that F satisfies (H2), since (G2), (F1) and
(F2) holds. Here we have to use Proposition . In the range of p given by ,
we then may apply Theorem [2.1.1] to obtain existence of a blow-up solution as given
in Theorem 1.1 in [51)]. We see that the existence is proved here, without assuming
hypothesis (G1), thus we generalized this earlier result. Moreover, here we obtain a
uniqueness and non existence of blow-up solution, if we further assume hypotheses
on f and g, guaranteeing hypothesis (H2*) in Theorem . The complementary
range of p is obtained using Theorem 1.2 for the existence of solutions as given in
Theorem 1.1 in [51] and uniqueness and non-existence as in Theorem 1.8 and 1.4
are truly new results. The hypotheses needed on g to obtain (H3) for the function F
are a bit stronger, since we are requiring in (H3) that the explosion rate is the same
from above and from below, while in (G2) and (G4) they may be different.
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2.5. Proof of uniqueness results

In this section we prove our uniqueness results, which are given in Theorem
and Theorem [2.1.3] These results are for positive solutions, so we assume that the
external source f is non-negative. We assume that there are two positive solutions
u and v of and then define the set

A={ze€Q, u(z)>v(x)}. (2.72)

This set is open, A C Q and we only need to prove that A = (), to obtain that u = v,
by interchanging the roles of v and v.

We will distinguish three cases, depending on the conditions satisfying v and v:

Case a) u and v satisfy (2.7) and (2.8 (uniqueness part of Theorem , Case b)

wand v (2.16) and (2.17) (weak source in Theorem [2.1.3) and Case ¢) u and v with
(2.18)) -(2.20) (strong source in Theorem [2.1.3)).

We start our proof considering an auxiliary function

c(1—|z?)3, x € B1(0),
B L tE 10 -
0, z € B{(0),
where the constant ¢ may be chosen so that V' satisfies

(=A)*V(z) <1 and 0<V(0) = max V(). (2.74)

rzeRN

In order to prove the uniqueness result in the three cases, we need first some
preliminary lemmas.

Lemma 2.5.1 If A, = {z € Q,u(z) — kv(z) > 0} # 0, for k > 1. Then,

OA, N OQ £ 0. (2.75)

Proof. If (2.75) is not true, there exists z € € such that

u(z) — kv(z) = ilel%)ls(u — kv)(z) > 0,

Then, we have
(=A)*(u — kv)(z) > 0,

which contradicts

(=A)*(u—kv)(z) = —u’(x)+ ko’ (z) - (k—1)f(2)
—(k? — k)P (z) < 0. 0

IN
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Lemma 2.5.2 If A, # 0, for k > 1, then

sup(u — kv)(x) = +oo. (2.76)

€

Proof. Assume that M = sup,.q(u — kv)(z) < +o00. We see that M > 0 and there
is no point r € () achieving the supreme of u — kv, by the same argument given
above. Let us consider zy € Ay, r = d(xy)/2 and define

wp =u— kv in RY, (2.77)

Under the conditions of Case a) and b) (resp. Case ¢)), for all x € B,.(xo) N Ay we
have

(—A)wy(z) = —uP(z) + kvP(z) + (1 — k) f(x) < — K072, (2.78)

(resp. < —Kr7). Here we have used that 7 = —2a/(p — 1) and, in Case a) (2.8)) for
v, in Case b) (H3) and (2.16) and in Case ¢) (H3). Moreover, in Case a) we have
considered K, = C(k? — k) and in Cases b) and ¢) K; = C(k — 1) for some constant

C. Now we define o7
. T — 2o
v =gV ( ; )

for z € RY, where V is given in (2.73)), and we see that

w(zo) = 2M (2.79)
and o7
(—A)*w < V(O)T_za’ in B,(zo). (2.80)

Since 7 < 0 (v < —2a in the Case ¢)), by Lemma we can take zo € Ay close
to 012, so that

% < K™ | % < Kyt in Case ¢)).
From here, combining with (2.80), we have that

(—A)*(w, +w)(x) <0, x€ By(x9) N Ag.
Then, by the Maximum Principle, we obtain

wi (7o) + w(zwe) <max{M, sup (wp+w)}. (2.81)
xEBr(xo)ﬂAz
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In case we have

M< sup (wy+w),

xGBr(wo)ﬂAz
then
w(zg) < (wg +w)(xg) < sup  (wg +w)(z)
€ By (w0)NAS
< s w() < lw(w),
€ By (x0)NAS,

which is impossible. So that is false and then, from (2.81)) we get
w(zo) < wy(zo) + w(wg) < M,

which is impossible in view of , completing the proof.

Lemma 2.5.3 There exists a sequence {C,}, with C,, > 0, salisfying

lim C, =0

n—-+00

and such that for all xq € Ay, and k > 1 we have

_ Mn
0< / Mdz S Can_2a7 Vr € B’"(xo)’

(2.82)

(2.83)

(2.84)

where we consider v = d(x0)/2, Qn = {2z € Ay /wp(2) > My} and M, =

maxzea\ A, , Wk(T).

Proof. In Case a): we see that Q, C A,/, and lim,_, ;. |@,| = 0, so that using

(2.11) we directly obtain

wg(z) — M, N9 /
WelZ) — Mn o < S
[ s < o [ dey

r/n
¢ TT—2OL

nN+T ’

r/n
S CT—N—QCV/ tTtN_ldt S
0

where C' depends on Cj and 9€2. We complete the proof defining C,, = —=.

In Case b) we argue similarly using (2.17) and define C,, as before, while in Case

¢) we argue similarly using 1) but defining C,, = ch/p

Now we are in a position to prove our non-existence results.

O

Proof of uniqueness results in Cases a), b) and c). We assume that A # 0,
then there exists k& > 1 such that A; # 0. By Lemma there exists zy € Ay

such that
wy (o) = max{wg(x) [z € Q\ Agey) }-
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Proceeding as in Lemma with the function

K1 T — 2o
= 2y
w(@) = Sy 20
K _
and w(x) = 717“"’+20‘V(¥), in Case ¢),
we see that
o' Kl T2
(—A)*(wg +w)(x) < —5 T, wE B, () N Ay. (2.85)
K .
and  (—A)*(wy +w)(x) < —77”, in Case c). (2.86)

With M, as given in Lemma [2.5.3] we define

- B (w, + w)(z), if w(z) < M,
nlw) = {Mn, it wy(z) > M,, (2:87)

for n > 1. By Lemma we find ng such that

wi(2) — My,
[z — gVt

(=) (2) = (—A)*(wy + w)(x) +2 /
Qng
< 0, in B.(zg) N Ay.

In Case b) we have use (2.16) and in Case c¢) we have use (2.18), to get similar
conclusion. Then, by the Maximum Principle, we get

Wny (T0) < Méx{M,,, sup  (wg, +w)}.
xGBr(xo)ﬂAz

Using the same argument as in (2.83]), we conclude that

sup  (wg, +w) > M,
€ By (x0)NAY,

does not hold and therefore
Wy (T0) = Wi (o) + w(xg) < My, (2.88)

Next, by the definition of M,, we choose x; € Q\ A,,, such that wy(z1) = M,,.
But then we have

wi(x) + w(xg) > w(xy) = %V(O)TT in Case a) and b)
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K
and  wy(xg) +w(z) > w(zg) = 71\/(0)7”+2a in Case c).

Thus, by the asymptotic behavior of v, (2.7)) in Case a), (2.16]) in Case b) and (2.18)

in Case c), we have
rm>niCu(zy) and T2 > 0P > p)PCu(z,)  in Case c).
We recall that in Case a) K7 = C'(k? — k), so from ([2.88))
u(xr) > (14 co)kv(zy), (2.89)

where ¢y > 0 is a constant, not depending on zy and increasing in k. Now we repeat
this process above initiating by z; and k; = k(1 + ¢). Proceeding inductively, we
can find a sequence {z,,} C A such that

w(rm) > (1+ co)"kv(zp),

which contradicts the common asymptotic behavior of u and v.

In the Case b) and c) recall that K; = C(k — 1) and, as before, we can proceed
inductively to find a sequence {z,,} C A such that

w(zy) > (k+meo)v(x,y,),

which again contradicts the common asymptotic behavior of v and v. a

2.6. Proof of our non-existence results

In this section we prove our non-existence results. Our arguments are based on
the construction of some special super and sub-solutions and some ideas used in
Section 2.5. The main portion of our proof is based on the following proposition
that we state and prove next.

Proposition 2.6.1 Assume that ) is an open, bounded and connected domain of
class C?, a € (0,1), p > 1 and f is nonnegative. Suppose that U is a sub or super-

solution of satisfying U = 0 in Q° and for some T € (—1,0). Moreover,

f T > —%7 assume there are numbers € > 0 and § > 0 such that, in case U is a

sub-solution of 7
(—=A)U(z) < —ed(x)™ 2> or f(z)>ed(x)* forx € Aj, (2.90)
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and in case U s a super-solution of 7

(=A)*U(z) > ed(z)"** and f(z) < =d(z)">*, forx € A;. (2.91)

DN

Then there 1s no solution u of such that, in case U 1s a sub-solution,

o Y .,
0< xel%zmxlgfdgu(x)d(x) < xilgrznjggﬂu(x)d(x)
< liminf U(x)d(z)™" (2.92)

z€Q, T—00

or in case U is a super-solution,

0< méléniggg Ulx)d(z)™" < xelsllmxlgg(l u(x)d(z)

< limsup u(z)d(z)™" < oo. (2.93)
z€Q, T—0

We prove this proposition by a contradiction argument, so we assume that u

is a solution of (2.6)) satisfying (2.92) or (2.93)), depending on the fact that U is a

sub-solution or a super-solution. Since f is non-negative we have that u > 0 in (2
and by our assumptions on U, there is a constant Cy > 1 so that, in case U is a
sub-solution

Cyt <wu(x)d(x)™ < U(x)d(x)™™ < Cy, =€ As (2.94)

and, in case U is a super-solution

Cit <U(x)d(x)™™ < u(x)d(x)™™ < Cy, x€ As. (2.95)

Here ¢ is decreased if necessary so that (2.90), (2.91)), (2.94) and (2.95) hold. We
define

U(z) — ku(z), in case U is a sub-solution,
() = . . . (2.96)
u(z) — kU(x), in case U is a super-solution,
where k > 0. In order to prove Proposition we need the following two prelim-
inary lemmas.

Lemma 2.6.1 Under the hypotheses of Proposition|2.6.1. If Ay, = {z € Q ) m(z) >
0} #0, for k > 1. Then,
OAL N O # 0. (2.97)

The proof of this lemma follows the same arguments as the proof of Lemma [2.5.1
SO we omit it.

Lemma 2.6.2 Under the hypotheses of Proposition [2.6.1, If Ay # 0, for k > 1,
then

sup mg(x) = +o00. (2.98)
z€QN
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Proof. If fails, then we have M = sup,.q mx(z) < +oo. We see that M > 0
and, as in Lemma [2.5.2] there is no point = € Q achieving M. By Lemma we
may choose 2y € Ay and r = d(zg)/4 such that B.(zg) C A, where r could be
chosen as small as we want. Here § is as in and (2.91).

In what follows we consider « € B,.(z() N.A; and we notice that 3r < d(x) < 5r.
We first analyze the case U is a sub-solution and 7 < —I%. We have

(=A)*m(z) < =UP(z) + ku”(z) — (k= 1) f(z)
< —( = Dkt (a)
< —OP(KPY — Dkd(2)? < — KT,

where we have used f >0, k > 1, (2.94), K; = 5" 2¢CyP(k*~' — 1)k > 0 and C is
taken from (2.94)). Next we consider the case U is a sub-solution and 7 > _;Tal. By
the first inequality in (2.90)), we have

(—A)me(2) < —ed(x) > + kuP(z) — kf (x)
S —(6 o kCgr2a7T+Tp)d($)T72a S _Kl,r,T*ZOz,

where the last inequality is achieved by choosing r small enough so that (e —
kCgr?e—7t) > £ and K; = 57°*5. On the other hand, if the second inequali-

ty in (2.90) holds, we have

(—A)*mi(z) ku?(z) — (k — l)ed(x)T_zo‘

<
< —((k' . ].)6 . kCgTQO(—T"er)d(x)T—QOL < _KITT—QQ’

where r satisfies (k — 1)e — kCir?e=7+7P > %5 and K; = 57—204%6.

In case U is a super-solution and 7 < —]%, we argue similarly to obtain

(AT (@) < —uP(z) + kU (@) — (k= 1) f(x) < — Ky,
where K, = 572¢Cy?(k?~! — 1)k > 0. Finally, in case U is a super-solution and
T > —}%0‘1, using we find
(AT (@) < —u(x) — ked(@) 2 + f(z) < —Kip™ 2,
with K = 57_2°‘§e > (. Thus, in all cases we have obtained

(—A)mp(x) < —Kir™ 2 2 € B, (z0) N Ag, (2.99)

for some K; = K;(k) > 0 non-decreasing with k. From here we can argue as in
Lemma to get a contradiction. a

Now proof of Proposition is easy.
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Proof of Proposition From ([2.99)), recalling that K; non-decreasing with
k, we can argue as in the proof of uniqueness result in Case b) to get a sequence
() in As such that, for some ky > 1 and k& > 0, in case U is a sub-solution we have

U(xy) > (ko + mk)u(z,,)
and, in case U is a super-solution we have
() > (ko +mk)U(x,).

From here we obtain a contradiction with (2.94)) or (2.95), for m large. O

Proof of non-existence part of Theorem For any ¢t > 0 we construct a
sub-solution or super-solution U of (2.6) such that

xeé}gm Ux)d(z)™" =t, (2.100)

and U satisfies the assumption of Proposition for different combinations of the
parameters p and 7. For ¢t > 0 and u € R we define

Ups = tV; + uVp in RY, (2.101)

where Vy = xq is the characteristic function of Q and V; is defined in (2.35)). It is
obvious that holds for U, for any 1 € R. To complete proof we show that
for any ¢ > 0, there is u(t) such that U, is a sub-solution or super-solution of
(2-6), depending on the zone to which (p, ) belongs.

Zone 1: We consider p > 1 and 7 € (19(a), 0). By Proposition [2.3.2] (), there
exist 01 > 0 and C; > 0 such that

(—=A)*V,(z) > Crd(x)™2, x € As,. (2.102)
Combining with (H2*), for any p > 0, there exists §; > 0 depending on ¢ such that
(=A)*Upp(z) + U (2) = fz) > Citd(z)">* — Cd(x)>* > 0, z € As,.

On the other hand, since V is of class C?, f is continuous in  and Q \ A, is
compact, there exists Cy > 0 such that

[, [(=A)"Vo(@)| < Coy € QN Ay (2.103)
Then, using (2.71)), there exists x> 0 such that

(=A)Upu(z) + UL () = f(2) > =205 + Copn > 0, x € Q\ As,. (2.104)
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We conclude that for any ¢ > 0, there exists p(t) > 0 such that Uy, is a super-
solution of (2.6) and, by (H2*) and (2.102)), it satisfies (2.91)).

Zone 2: We consider p > 1+ 2a and 7 € (— ,—]%). By Proposition W (1)
and (i), there exists d; > 0 depending on ¢ such that

(=A)* Upp(z) + UL (2) — f(2) = —Citd(z)" > + tPd(z)™ — Cd(x)>* > 0, (2.105)

for x € As, and for any p > 0, where we used that 0 > 7 — 2o > 7p. On the other
hand, for z € Q\ As,, (2.104]) holds for some p > 0 and so we have constructed a

super-solution of (2.6).

Zone 3: We consider 1+2a < p<1—-22 and 7 € (—;To‘l, 7o()), which implies

70 ()

that 7p > 7 — 2. By Proposition [2.3.2) (i) and f > 0 in €, there exists d; > 0 so
that for all 4 <0

(—=A)*Ups(z) + UL (2) — f(z) < —Citd(z)" > + tPd(z)™ < 0, (2.106)

for x € As,. Then, using (2.71)) and (2.103)), there exists p = p(t) < 0 such that

(—A)*U,u(x) + UL

w,t

() — f(z) <20y + Copu <0, z€Q\ Ay (2.107)

We conclude that for any ¢ > 0, there exists u(t) < 0 such that Uy, is a sub-

solution of (2.6) and it satisfies (2.90)).

We see that Zone 1, 2 and 3 cover the range of parameters in part (¢) of Theorem

completing the proof in the case.
Zone 4: To cover part (ii) of Theorem we only need to consider p = 1— %
with 7 = 79(a) = —;Tal, which implies that 7p = 7 — 2a < min{7 — 2ac + 7 + 1, 7}.

By Proposition [2.3.2] (ii7), there exists &; > 0 depending on ¢ such that

(—A)U(x) + UL (z) — flx) > —Cytd(z)™@tr=20t7F07) 4 ()™
—Cd(x)™?* >0, x€ A4

for any p > 0. For z € Q\ 45, holds for some p > 0, so we have constructed
a super-solution of (2.6)).

We see that Zones 1, 2 and 4 cover the parameters in part (i) of Theorem [2.1.1]
so the proof is complete in this case too.

Zone 5: We consider 1 < p <1+ 2« and 7 € (—1,79(«)), which implies that
7p > T — 2. By Proposition [2.3.2] (i) and f > 0 in €2, there exists d; > 0 such that

for all © < 0 and = € As,, inequality (2.106)) holds. Then, using (2.71]) and (2.103)),
there exists ;1 = p(t) < 0 such that (2.107) holds and we conclude that for any ¢ > 0,

there exists p(t) < 0 such that U, satisfies the first inequality of (2.90)) and it is
a sub-solution of (12.6)).
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We see that Zones 1 and 5 cover the parameters in part (iii) of Theorem [2.1.1]
This completes the proof. O

Proof of Theorem [2.1.4, Here again we construct sub or super-solutions satisfying
Proposition [2.6.1{to prove the theorem. In the case of a weak source, that is, part (i)
of Theorem [2.1.4] we have p > 1 — % and —2a — I% < v < —2a, which implies

that —1 < 7p(a) < _z% < v+ 2a < 0. We consider two zones depending on 7.

Zomne 1: we consider 7 € (7 + 2a,0), so we have 7 < 7p and 7 < 7 — 2. By
Proposition [2.3.2] (i¢) and (H3), we have that, for any ¢ > 0 there exist d; > 0,
C7 > 0 and C5 > 0 such that

(=A)*Upp(z) + UL (2) = f(z) < Citd(z) > + tPd(z)™ — Cod(z)? < 0, (2.108)

for z € A, and any g < 0. On the other hand, using (2.71) and (2.103)) we find
w = pu(t) < 0 such that (2.107) holds for x € Q\ As,. We conclude that for any
t > 0, there exists u(t) < 0 such that U, is is a sub-solution of (2.6) and by (H3),

it satisfies (2.90)).
Zone 2: we consider 7 € (—1,v + 2a). For 7 € (19(a),y + 2) in case 1p() <
v + 2a, by Proposition [2.3.2] (i) there exists d; > 0, depending on ¢, such that

(—A)*Us(x) + UP (2) — f(w) > Cytd(x)™2 — Cod(x)? > 0, (2.109)

for z € As, and any p > 0. For 7 € (=1, 79(a)] N (=1, + 2a), we have 7p < v and
Tp < T — 2a, so by Proposition [2.3.2] (i) and (i), there exists &; > 0 dependent of ¢
such that holds for any p > 0, while for x € Q\ As,, holds for some
p > 0. We conclude that for any ¢ > 0, there exists p(t) > 0 such that Uy, is a
super-solution of and by (H3) it satisfies (2.91), completing the proof in the

weak source case.

Next we consider the case of strong source, that is part (ii) of Theorem [2.1.4]
Here we have that
1<t < _ e < 0.
p p—1
Here again we have two zones, depending on the parameter 7.

Zone 1: we consider T € (%, 0), in which case we have 7 — 2a > 7 and 7p > 7.
Then there exist 9; > 0, C; > 0 and C5 > 0 such that holds for any pu <0
and using and (2.103), there exists u = wu(t) < 0 such that holds
for x € Q\ As,. Thus, for any ¢ > 0 there exists pu(t) < 0 such that U,y , is a
sub-solution of and (H3) implies the first inequality of (2.90).

Zone 2: we consider 7 € (—1, %), in which case we have 7p < 7—2a and 7p < 7.
Then there exist 6; > 0, C; > 0 and C5 > 0 such that holds for z € A;, and
p > 0. We see also that for z € Q\ As,, inequality holds for some p > Oand

110



so for any ¢ > 0, there exists x(t) > 0 such that Uy, is a super-solution of (2.6).
This completes the proof of the theorem. O
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Capitulo 3

Self-generated interior blow-up
solutions in fractional elliptic
equation with absorption

Abstract: in this chapte, we study positive solutions to problem involving
the fractional Laplacian
(—A)*u(z) + [uff~lu(z) =0, ze€Q\C,
u(z) =0, x € Q°, (3.1)
lim,eco\c, z—e u(x) = +00,
where p > 1 and Q is an open bounded C? domain in RV, C C Q is a compact C?
manifold with V—1 multiples dimensions and without boundary, the operator (—A)®*
with a € (0,1) is the fractional Laplacian. We consider the existence of positive

solutions for problem (3.1)). Moreover, we further analyze uniqueness, asymptotic
behaviour and nonexistence to (3.1)).

3.1. Introduction

In 1957, a fundamental contribution due to Keller in [66] and Osserman in [84]
is the study of boundary blow-up solutions for the non-linear elliptic equation

{—Au+h(u):0 in £, (32)

lim,eq 200 u(r) = +oo.

!This chapter is based on the paper: H. Chen, P. Felmer and A. Quaas, Self-generated interior
blow-up solutions in fractional elliptic equation with absorption, submitted.
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They proved the existence of solutions to (3.2) when h : R — [0,400) is a local-
ly Lipschitz continuous function which is nondecreasing and satisfies the so called
Keller-Osserman condition. From then on, the result of Keller and Osserman has
been extended by numerous mathematicians in various ways, weakening the as-
sumptions on the domain, generalizing the differential operator and the nonlinear
term for equations and systems. The case of h(u) = v/ with p = ££2 is studied
by Loewner and Nirenberg [72], where in particular uniqueness and asymptotic be-
havior were obtained. After that, Bandle and Marcus [6] obtained uniqueness and
asymptotic for more general non-linearties h. Later, Le Gall in [70] established a
uniqueness result of problem in the domain whose boundary is non-smooth
when h(u) = u3. Marcus and Véron [75] [74] extended the uniqueness of blow-up so-
lution for in general domains whose boundary is locally represented as a graph
of a continuous function when hA(u) = «% for p > 1. Under this special assumption
on h, Kim [67] studied the existence and uniqueness of boundary blow-up solution
to (3.2) in bounded domains € satisfying 9Q = 9. For another interesting contri-
butions to boundary blow-up solutions see for example Kondratev, Nikishkin [6§],
Lazer, McKenna [69], Arrieta and Rodriguez-Bernal [5], Chuaqui, Cortézar, Elgueta
and J. Garcfa-Melian [44], del Pino and Letelier [47], Diaz and Letelier [48], Du and
Huang [50], Garcia-Melian [59], Véron [99], and the reference therein.

In a recent work, Felmer and Quaas [51]] considered a version of Keller and Osser-
man problem for a class of non-local operator. Being more precise, they considered
as a particular case the fractional elliptic problem

(=A)*u(z) + [ulftu(z) = f(z), z€Q,
u(z) = g(x), x € Qe (3.3)
HmeQ, z—00 U(ZE) = +00,

where p > 1, f and ¢ are appropriate functions and 2 is a bounded domain with C?
boundary. The operator (—A)® is the fractional Laplacian which is defined as

N 1 d(u, z,y)
with a € (0,1) and (u, z,y) = u(x + y) + u(z — y) — 2u(z).

In [51] the authors proved the existence of a solution to (3.3) provided that
g explodes at the boundary and satisfies other technical conditions. In case the
function g blows up with an explosion rate as d(z)”, with 3 € [—Z%, 0) and d(z) =
dist(x,09), it is shown that the solution satisfies

0 < liminf w(z)d(z)™ < limsup u(x)d(x)i%1 < +00.
z€Q,z—00 €Q,z—00

Here the explosion is driven by the external value g and the external source f has a
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secondary role, not intervening in the explosive character of the solution.

More recently, Chen, Felmer and Quaas [33] extended the results in [51] studying
existence, uniqueness and non-existence of boundary blow-up solutions when the
function ¢ vanishes and the explosion on the boundary is driven by the external
source f, with weak or strong explosion rate. Moreover, the results are extended
even to the case where the boundary blow-up solutions in driven internally, when
the external source and value, f and g, vanish. Existence, uniqueness, asymptotic
behavior and non-existence results for blow-up solutions of are considered in
[33]. In the analysis developed in [33], a key role is played by the function C' :
(—1,0] — R, that governs the behavior of the solution near the boundary. The
function C' is defined as

oo O =t +(1+6)7—2
C(r):/ XonOR -t + 1+ -2
0

142 (35)
and it possess exactly one zero in (—1,0) and we call it 79(c). In what follows we
explain with more details the results in the case of vanishing external source and
values, that is f = 0 in €2 and g = 0 in Q¢ which is the case we will consider in this
paper. In Theorem 1.1 in [33], we proved that whenever

2x

14+2a<p<]l — ——,
To(@)

then problem (3.3)) admits a unique positive solution u such that

0 < liminf u(:v)d(x)% < limsup u(yc)cl(yc)z%1 < +00.
Sy 2€Q,z—0
On the other hand, we proved that when p > 1, then problem (3.3 does not admit
any solution u such that

0 < liminf w(z)d(z)™" < limsup u(z)d(z)™ " < 400, (3.6)

€Q,z—00N €N, z—0Q
for any 7 € (—1,0) \ {7o(«), —pzfo‘l}. We observe that the non-existence result does
not include the case when u has an asymptotic behavior of the form d(x)™(®), where

To(v) is precisely where C' vanishes. We have a a special existence result in this case,
precisely if

20 To(ar) + 1 _ 2a
@) @ P oy

then, for any ¢ > 0, problem (3.3) admits a positive solution u such that

max{1l —

If d(z)™™@ =1,
e o (@) ()
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Motivated by these results and in view of the non-local character of the fractional
Laplacian we are interested in another class of blow-up solutions. We want to study
solutions that vanish at the boundary of the domain 2 but that explodes at the
interior of the domain, near a prescribed embedded manifold. From now on, we
assume that 2 is an open bounded domain in RY with C? boundary, and that there
is a C?, (N — 1)-dimensional manifold C without boundary, embedded in €2, such
that, it separates €2 \ C in exactly two connected components. We denote by €
the inner component and by €2, the external component, that is ; N9 = @ and
0y N OO = 99Q. Throughout the paper we will consider the distance function

D:Q\C—R,, D(z)=dist(z,C). (3.7)
Let us consider the equations, for i = 1, 2,

(—A)u(z) + [ufflu(z) =0, =z €,

u(z) =0, x € Qf, (3.8)

h,m:ceﬂi, z—0Q; U(Jf) = 100,
which have solutions u; and wus, for ¢+ = 1, 2 respectively, in the appropriate range of
the parameters. In the local case, that is, @ = 1, these two solutions certainly do not
interact among each other, but when o € (0,1), due to the non-local character of
the fractional Laplacian and the non-linear character of the equation the solutions

on each side of ) interact and it is precisely the purpose of this paper to study their
existence, uniqueness and non-existence.

In precise terms we consider the equation
(—A)*u(z) + [uflu(z) =0, xe€Q\C,
u(z) =0, x € Q°, (3.9)
lim,eone, z—e u(x) = +00,

where p > 1, Q and C C () are as described above. The explosion of the solution
near C is governed by a function ¢ : (—1,0] — R, defined as

o(r) = /;Oo L=+ =2, (3.10)

t1+2a

This function plays the role of the function C' used in [33], but it has certain dif-
ferences. In Section 3.2 we prove the existence of a number oy € (0,1) such that
a € [ag, 1) the function c is always positive in (—1,0), while if a € (0,ap) then
there exists exists a unique 7(«) € (—1,0) such that ¢(m(a)) = 0 and ¢(7) > 0
in (—1,7(a)) and ¢(7) < 0 in (71(«),0), see Proposition We notice here that
71(a) > () if a € (0, ap).
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Now we are ready to state our main theorems on the existence uniqueness and
asymptotic behavior of interior blow-up solutions to equation ({3.9). These theorems
deal separately the case a € (0,ap) and a € [ag, 1).

Theorem 3.1.1 Assume that a € (0,a9) and the assumptions on Q and C. Then

we have:
() If )
!
1+2a<p<l— ——, 3.11
p @) (3.11)
then problem admits a unique positive solution u satisfying
0 < liminf u(x)D(x)% < limsup u(x)D(:zc)z%1 < +00. (3.12)
z€Q\C,z—C 2€O\C,x—C
(i2) If
2 1 2
max{1— 20 @Oy g 2 (3.13)
71 () 71 () 71()

Then, for any t > 0, there is a positive solution u of problem satisfying

1§ D(x) (@ — ¢, 3.14
xeg\lg;HCU(x) (z) (3.14)

(1ii) If one of the following three conditions holds

a) 1<p<1+2aand7 e (-1,0)\{n(a)},

b) 1+2a<p<l- 2 and 1€ (=1,0)\ {n(a), -5} or

71 (e

c) le—Q—”') and T € (—1,0),

71 (a
then problem does not admit any solution u satisfying

0 < liminf w(z)D(z)™" < limsup wu(z)D(z)™ " < +o0. (3.15)
z€Q\C,xz—C z€Q\C,z—C

We observe that this theorem is similar to Theorem 1.1 in [33], where the role of
To(c) is played here by 7i(«). A quite different situation occurs when a € [ap, 1)
and the function ¢ never vanishes in (—1,0). Precisely, we have

Theorem 3.1.2 Assume that a € [ag, 1) and the assumptions on Q and C. Then
we have:

(2) If p > 1+ 2a, then problem admits a unique positive solution u satisfying
.

(17) If p > 1, then problem does not admit any solution u satisfying for
any T € (—1,0) \ {_z% :
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Comparing Theorem with Theorem we see that the range of existence
for the absorption term is quite larger for the second one, no constraint from above.
The main difference with Theorem with vanishing f and g occurs when «
is large and the function ¢ does not vanish, allowing thus for existence for all p
large. This difference comes from the fact that the fractional Laplacian is a non-
local operator so that in the interior blow-up, in each of the domains ; and (),
there is a non-zero external value, the solutions itself acting on the other side of C.

The proof of our theorems is obtained through the use of super and sub-solutions
as in [33]. The main difficulty here is to find the appropriate super and sub-solutions
to apply the iteration technique to fractional elliptic problem . Here we make
use of some precise estimates based on the function ¢ and the distance function D
near C.

Acknowledgements. The authors thanks Peter Bates for proposing the problem.

3.2. Preliminaries

In this section, we recall some basic results from [33] and obtain some useful
estimate, which will be used in constructing super and sub-solutions of problem

(3.9). The first result states as:

Theorem 3.2.1 Assume that p > 1 and there are super-solution U and sub-solution
U of problem such that

U>U inQ\C, liminf U(z)=+o00, U=U=0 in Q"

z€Q\C,z—C -
Then problem admits at least one positive solution u such that

U<u<U in Q\C.

Proof. The procedure is similar to the proof of Theorem 2.6 in [33], here we give
the main differences.

Let us define Q,, :={z € Q| D(z) > 1/n} then we solve

(—A)%u, (x) + |un [P uy(x) =0,  z € Qy,

un(z) =U, x € . (3.16)
To find these solutions of (3.16)) we observe that for fix n the method of section 3
of [51] applies even if the domain is not connected since the estimate of Lemma 3.2
holds with 6 < 1/2n (see also Proposition 3.2 part ii) in [33]), form here sub and

super-solution can be construct for the Dirichlet problem and then existence holds
for (3.16) by an iteration technique (see also section 2 of [33] for that procedure).
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Then as in Theorem 2.6 in [33] we have

U<y, <upyey <U in Q.
By monotonicity of u,, we can define

u(z) == lim w,(z), x € Q and wu(x):=0, x € Q°.

n—-+o00

Which, by a stability property, is a solution of problem (3.9)) with the desired prop-
erties. 0

In order to prove our existence result, it is crucial to have available super and
sub-solutions to problem (3.9). To this end, we start describing the properties of
¢(7) defined in (3.10)), which is a C? function in (—1,0).

Proposition 3.2.1 There exists a unique ag € (0,1) such that
(i) For o € [ap, 1), we have ¢(T) > 0, for all T € (—1,0);

(i1) For any a € (0,ap), there exists unique 7 () € (—1,0) satisfying
>0, if 7e(-1,n(a)),
cor) ¢ =0, if 7=mn(a), (3.17)
<0, if 7€ (m(a),0)
and
lim 7(a) =0 and lim 7(a)=—1. (3.18)
a—agy a—0t

Moreover, 71(a)) > 1o(a), for all a € (0,0ap), where 1o(a) € (—1,0) is the unique

zero of C(1), defined in (3.5).
Proof. From (3.10), differentiating twice we find that

oy = [(THT S R0 (g

t1+2a

so that ¢ is strictly convex in (—1,0). We also see easily that

c(0)=0 and lim ¢(7) = occ. (3.20)

T——11
Thus, if ¢(0) < 0 then ¢(7) > 0 for 7 € (—1,0) and if ¢(0) > 0, then there exists
m1(a) € (—1,0) such that ¢(7) > 0 for 7 € (=1, 7 (a)), ¢(7) < 0 for 7 € (11(),0)
and ¢(71(a)) = 0. In order to complete our proof, we have to analyze the sign of ¢/(0),
which depends on « and to make this dependence explicit, we write ¢/(0) = T'(«).
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We compute T'(«) from (3.10)), differentiating and evaluating in 7 = 0

+o0 _ 42
T(a) = / log|1 = 7] ), (3.21)
0

t1+2a

We have to prove that T possesses a unique zero in the interval (0,1). For this
purpose we start proving that

Iim T(a) = —oc0 and lim T(a) = +oo. (3.22)

a—1- a—07t

The first limit follows from the fact that log(1 — s) < —s, for all s € [0,1/4], and so
3 log(1 — ¢2 2
lfm / 05 =) i< i [ 020t = —o
a—1— 0 t1+2a a—1— 0

and the fact that exists a constant ¢y such that

00 160 |1 — $2
/ wdt < to, for all a € (1/2,1).

1 t1+20¢
2

The second limit in (3.22)) follows from

+oo 1 1— t2 +oo
l{m gL =] 11 5 10s3 1fm 7172004 — oo
a—0t [q tit2e a—0t [o

and the fact that there exists a constant ¢; such that

21 1_2
/Mdtgtl, for all o € (0,1/2).
0

142

On the other hand we claim that

+00 1 1— t2
T,(Oé) = —2/ %10gtdt < 0, S (0, ].) (323)
0
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In fact, since log |1 — t?|logt is negative only for ¢ € (1,v/2), we have

T log |1 — % V2T og(1 — 12) V2
/0 — e logtdt > /0 e log tdt —I—/l log(t* — 1) log tdt

\/5—1 _tQ \/§
/0 o log tdt + /1 log(t — 1) log tdt
V2-1 Vv2-1
= —-J/ tl_Qalogtdt—#v/k log(1 +t) log tdt
0 0
V2-1 V2-1
> —/ 2 logtdt—l—/ tlogtdt > 0.
0 0

Then, and the existence of the desired oy € (0,1) with the required
properties follows, completing (i) and in (7).

To continue with the proof of our proposition, we study the first limit in (3.18)).
We assume that there exist a sequence a,, € (0,9) and 7 € (—1,0) such that

Vv

lim a,=ap and lim 7(a,) =7
n—-+00 n——+00
and so ¢(7) = 0. Moreover ¢(0) = 0 and ¢/(0) = T'(«p) = 0, contradicting the strict
convexity of ¢ given by ([3.19). Next we prove the second limit in ([3.18). We proceed
by contradiction, assuming that there exist a sequence {«,,} C (0,1) and 7 € (—1,0)
such that
lim a, =0 and m7(a,)>7> -1, forallneN.

n—-+o0o

Then there exist C',Cy > 0, depending on 7, such that

21 —tmlen) (1 4 ¢)7elom) — 2
/0 | e dt < ¢
and
) 400 |1 . t’n(an) 4 (1 4 t)Tl(an) -9 ) 400 1
Ry T2, di<=Cy lim | e dt = —oc.

Then ¢(7(ay,)) — —oc0 as n — +oo, which is impossible since ¢(7i(a,)) = 0.

We finally prove the last statement of the proposition. Since 79(a) € (—1,0) is
such that C(7p(«)) = 0 and we have, by the definition, that

o(r) = C(r) + /1 N (tt;—jjdt,

we find that ¢(mp(a)) > 0, together with (3.17)), implies that 0(a) € (=1, 7 (a)). O
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Next we prove the main proposition in this section, which is on the basis of the
construction of super and sub-solutions. By hypothesis on the domain 2 and the
manifold C, there exists § > 0 such that the distance functions d(-), to 0%, and
D(-), to C, are of class C? in Bs and Aj, respectively, and dist(As, Bs) > 0, where
As={2x € Q| D(z) <} and Bs = {x € Q | d(z) < §}. Now we define the basic
function V, as follows

D(x)", z € As\C,

V(o) d(z)?, x € By, 3.2
(x) = .
l(ﬂf), fEGQ\(/L;UBg),
0, x e Q°,

where 7 is a parameter in (—1,0) and the function [ is positive such that V is of
class C? in RV \ C.

Proposition 3.2.2 Let o and mi() be as in Proposition[3.2.1]
(2) If (a,7) € [aw,1) x (—=1,0) or (a,7) € (0,a0) X (=1, 71()), then there exist
91 € (0,0] and C > 1 such that

%D(x)TQa < —(—A)Vi(x) < CD(), z € A5, \C.

(23) If (o, 7) € (0, 0) X (11(x),0), then there exist 61 € (0,9] and C > 1 such that

1
5D(m)7_20‘ < (=A)*V,(z) < OD(x)" 2 x€ A; \C.

(i13) If (o, 7) € (0, 0) x {m1()}, then there exist & € (0,0] and C > 1 such that
|(—A)QVT($)‘ < CD(:L’)min{T’QT_2a+1}, = Aél \C
This proposition and its proof has many similarities with Proposition 3.2 in [33],
but it has also important differences so we give a complete proof of it.

Proof. By compactness of C, we just need to prove that the corresponding inequality
holds in a neighborhood of any point z € C and, without loss of generality, we may
assume T = 0. For a given 0 < n < ¢, we define

Q, = (-1,1) x B, CR x RN~

where B, denotes the ball centered at the origin and with radius n in RN~!. We
observe that @, C Q. Let ¢ : RV~1 — R be a C? function such that (z1,2") € CNQs
if and only if z; = p(2’). We further assume that e; is normal to C at z and then
there exists C' > 0 such that |p(2')] < C|2/|* for |2/| < §. Thus, choosing n > 0
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smaller if necessary we may assume that |¢(z")| < Z for |2/| < 7. In the proof of our
inequalities, we will consider a generic point along the normal x = (z1,0) € A, 4,
with 0 < |z1| < n/4. We observe that |x — z| = D(z) = |z1|. By definition we have

— (—A)QVT(:E) — l/ Mdy + 1 /RN\Q Mdy. (3.25)

N+2« N+2a
2 /g, lyIMt 2 ly|Nt

It is not difficult to see that the second integral is bounded by C'z], for an appropriate
constant C' > 0, so that we only need to study the first integral, that from now on
we denote by 3 E(z1).

Our first goal is to obtain positive constants ¢, ¢o so that lower bound for E(x1)
BE(z1) > cre(7)|a1 |72 — co|ay |mintr2r 2oty (3.26)

holds, for all |z1| < n/4. For this purpose we assume that 0 < n < ¢/2, then for all
y=(y1,y') € Q, we have that z £y € Qs, so that

D(x+ty) <|zi £y —e(xy)|, forall yeQ,.

From here and the fact that 7 € (—1,0), we have that

E(xl):/ Mdyz/cg I(y) dy_|_/ Md% (3.27)

|y|N+Qa |y|N+20¢ |y|N+2a

n n

where the functions I and J are defined, for y € @), as
I(y) = [z1 — " + 21+ n|" — 227 (3.28)

and
J(y) =21 +y1 — W) = 1 +wl” (3.29)

In what follows we assume z; > 0 (the case z; < 0 is similar). For the first term of
the right hand side in (3.27)), we have

I(y) [ laltlear -2
TNaady = - dz.
/Q?7 |y[V+2 2. |2 N+2

On one hand we have that, for a constant c;, we have

|1—21‘T+|1+21|T—2 / 1 ’
dz = 2c¢(t dz' = cic(1),
/IRLN |Z’N+2a ( ) RN—-1 (‘21’2_'_1)]\]22& 1 ( )
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and, on the other hand, for constants C5; and C5 we have

‘/”/ |1—z1|T+|1+zl|T—2dZ’
Py 2|V +2a
>

n
1
S /
- |

[ e a2y
|z1|>l RN-1 |Z|N+2a

< 2/+M|1_Z1|T+|1+21|T+2d1/ L <O
- RNI( 20 - 31.

n Z%+2a 1+ |Z/|2) N+2

r1

T T dz,
(-l af e 2 [ i <

Cg ZL’

and

Consequently, for an appropriate constant co

I Y T2 T
|/Q ‘ynggmdy—clc(ﬂxl 29 < cpaf. (3.30)
n

Next we estimate the second term of the right hand side in (3.27)). Since

J(— J
/ 2y - / Sy
Qy [y Q, ly|N2e

we only need to estimate

ey — W) = e+l
— dy,dy . (3.31)
/ IyIN”“ / / (v3 + [y]2) =

We notice that |z +y1 — @(v')| > |z1 + v1| if and only if

o) (1 + 1 —

From here and (3.31)), we have

J y 1‘1+ T+ Y ") N|T T+ y T
/ ‘ ’1574*)204 dy Z / / | . — +< )| N+2|a - 1‘ dyldy/
Qn 1Y B, (v +|y'|*)

T1+ Y1 — p- T— |z + "
S N WL+l g, 4
By J—a+ 2522 (y7 + [v'|?) 2

= Ei(z1) + Ex(xy),
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where ¢, (y') = méx{¢(y'),0} and ¢_(y') = min{p(y'),0}. We only estimate E(z1)
(E5(z1) is similar). Using integration by parts, we obtain

N|T T
Il / / ‘yl ( )| 2|%_12a dyldyl
Bn (1 —$1> +y?)
— )" = (=y)”
= / / ; N+2)a dy,dy’
By Jai—n ((y1 — x1)* + |y/[?)
<P+(y)

/ / &) — )’ _z%rliza dyrdy’
Bn y1—x1) +|y|)

B —py(y)H (n—x14+ o ) —(p—x)™
T+ 1 dy

N+20¢ ]

N+2a
$1+\y|) (n? +y?) >
N 4 20 o T+1 _ (_ T4+1
/ / o) (Mygi) —(y1 — z1)dyrdy’
T+l g, y1—9€1) +lyP)
oy (y) P
+ 1 [ 50+(yl) N+2a _'_ N+2a] y
T+ 1B, (( )+|Z/|) (23 +[y')?) 2
N _|_ 2@ yl)T+1 + yT+1 ,
——(y1 — 21)dyndy
T+1 yl—fﬂl) +|ZJ’)N+2 i
o eyt
= ) Niza OY
T+1/p, (252 I1)2+ ly'[?)
N + 20 min{ + Il} 90 (y ) yl)T+1 + y7'+1
1 / / * Ni2a g (y1 — x1)dyrdy’
T+ B, (1 =) +[y[?) 2
= Al(Il) + AQ(ZEl (332)
In order to estimate A(z1), we split B, in O = {y’ € B, |S"+ — x| > 2} and

B, \ O. On one hand we have

/ ’y ’2T+2 d / < 27’—2@—}—1/ |Z/’2T+2 d /
N+2a y p— :El N+2a <
o (B4 — w2+ y) % By (1/4+12'17) 2

S C(x%7_2a+1—|—$1).

On the other hand, for ¢’ € B, \ O we have that |y/| > ¢;,/z7, for some constant ¢,
and then

IA

11274+2—N -2« /
/ Y| dy
Bﬂ\BClr

< C(x) otz > +1).

’y |2T+2 d !
() gz Y
B\O (P55 —m1)2 + |[y']?)
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Thus, for some C' > 0,
A1) > —Cgin{m2r=2041) (3.33)

Next we estimate As(xq):
2(N +2a) y) (g — )
A2('1:1> Z 1 / / /12 N+20¢+1 dyldy/
T+ By yl_xl +|y|) 2
|2T+2(y1 - fl)
Z / / 2 N+2a+1 dyldy,
By yl - xl + |y | )

/ 27-+2 -1
Z 27’ 2a+1 / / | Z N)+Qa dzle/
(21 =124 ]2) "2 *

By /ay
> _Cl xrlnln{'r 27—2a+1}

Y

for some C,C; > 0. From here, (3.32) and (3.33]) we obtain, for some C' > 0
El (371) > _Cmrlm'n{f,2772a+l}.

Using the similar estimate for Ey(x;), we obtain

/ J(y) + J(_y)dy S _erlnin{T,QT—2a+1}‘ (3.34)

Ly e

Thus, from (3.27), (3.30), (3.34) and noticing that these inequalities also hold with
x1 < 0 with the obvious changes, we conclude the lower bound for F(z;) we gave
in . Our second goal is to get an upper bound for F(z;) and for this, we first
recall Lemma 3.1 in [33] to obtain

D(x+y)” < (zixy — o) L+ Cly|?), forall |z <n/dy=(y1,y) € Q.

From here we see that

|y|N—|—2a |y|N+2a o |y|N+2a

n

We denote by Es(x;) the third integral above. The first integral was studied in
(3-30), so we study the second integral and that we only need to consider the term
J(y), since the other is completely analogous. We see that |z14+y1—p(¥')| < |x1+y1]
if and only if

e(y)(z1 +y —
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As before, we will consider only the case x; > 0, since the other one is analogous.
From (3.31)) we have

—z+ 222 AY T
/ J]gilady < / / |m1+y1 -ty ! N+2’fl+y1| dy,dy/
Q, 1Yl B, J- W2+ y[2) 2

T _|_ I\ |7 T + T
/ / ) (y)\ 1TY— ( )’ N+2|a1 y1| dyldy’
By J—oy+ 22 (y1 +|y|)

= F1(1'1> + FQ(Jfl).

Next we estimate F(x1) (Fy(xq) is similar), using integration by parts

I\ |T T
o | / I
By Jz1-7 y1—$1)+‘y|)

e_ ()

B =W (o (y) — )" = (—y)" 2 (y1 — - (¥)) — (—m)" ,
- /B /x )N+2a din +[9 )N+2a dy: | dy

o (o (1 —20)? + Y2 —w) (=202 + Y2

_ 1 / (—p_(y))*! (n—a1+o_(y) —(n— wl)f“]dy,
- N+2a N+204
T+1/g, ())+|y|) (% +1y'?)
N ‘l‘ 204 _ T+1 _ (_ T+1
/ / v) (N+yzi) N (1 — x1)dyrdy’
T+1 JB, Ja—y ((y1 — 901) +y2)

(o) (o)™
+T+1/ [((LM_ )2 _|_|y/|2)N+22a * (k1 — - (¥))2+ |¥]?) =

o () 4 (=)t
(-2 + |y/|2)N452a+1 (1 — x1)dyrdy’
1 — «1

- sof(y))T+1
- T+1/Bn(((‘02(y) w2+ ly'?)

/

NiZa ]dy

N—|—2a
T—|—1

By

N+2a dy/ = B(ml)

/
2D 51)2 > 22, we have

9T —0_ N\T+1
B(Jfl) S / ( 90 (y ))N+2a dyl
T+ 1B, (2 + [y ?)
’2r+2

Since (

Y’

S C/ 2a
B, (23 4 Jy'[2) "

for some C > 0 independent of x;. Thus we have obtained that

dy/ < C:L_inin{r,QT—Qoa—&-l} :

Fy(21) < Calintrar—2etl}, (3.35)
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Similarly, we can get an analogous estimate for Fy(x;) and these two estimates imply

J(y) +J(=y) min{r,2r—20+1}
/ Wdy < ClL’l . (336)

n

Finally we obtain

I 12"+ |1+ 2] —2
/ (y) ‘y/‘2dy _ x‘{72a+2 / ‘ Zl| + | + Zl| ’Z’|2d2
Q Qn

; |y|N+2a |Z‘N+2a

1

erlnin{T,T—Qa+2}

IA

and, in a similar way,

/ J(y)|y/|2d < mel'n{'r,2772a+l}.

y|N+2a — 1

1

From the last two inequalities we obtain

By(zy) < Cpin{nar—2at1} (3.37)

Then, taking into account (3.35)), (3.30), (3.36)), (3.37) and considering also the case
r1 < 0, we obtain

B(21) < exe(r)]ma|™2 + calay [r2r-2041) (3.39)

From inequalities (3.26)), (3.38) and Proposition the result follows. 0

3.3. Existence of large solution

This section is devoted to use Proposition to prove the existence of solution
of problem (3.9)). To this purpose, our main goal is to construct appropriate sub-
solution and super-solution of problem (3.9) under the hypotheses of Theorem [3.1.1]

(¢), (4¢) and Theorem [3.1.2] ().
We begin with a simple lemma that reduces the problem to find them only in
As\ C.

Lemma 3.3.1 Let U and W be classical ordered super and sub-solution of_
i the sub-domain As \ C. Then there exists A large such that UA_: U+ ANV and
Wy =W — AV, are ordered super and sub-solution of , where V' is the solution

of

{(—A)O‘V(x) =1, x€, (3.30)

V(z) =0, x € Q°.
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Remark 3.3.1 Here U, W : RY — R are classical ordered of super and sub-solution
of in the sub-domain As \ C if U satisfies

(=AU +|UP'U>0 in As\C
and W satisfies the reverse inequality. Moreover, they satisfy

U>W inQ\C, liminf W(z)=+400, U=W =0 in Q.

zeQ\C,z—C

Proof of Lemma Notice that by the maximum principle V' is nonnegative in
), therefore Uy > U and W), < W, so they are still ordered. In addition U, satisfies

(=A)Un + |UAP" Uy > (~A)*U + |UP'U+A>0, in Q\C.

This inequality holds because of our assumption in As\C and the fact that (—A)*U+
|U[P~1U is continuous in Q\ As; and by taking )\ large enough.

By the same type of arguments we find that W) is a sub-solution. a

Proof of existence results in Theorem [3.1.1] () and Theorem (i). We
define
Ux(z) = AV, (z) and Wy(z) = A\V,(2), z € RV \ C, (3.40)

where V. is defined in (3.24) with 7 = —q%

1. Uy is Super-solution. By hypotheses of Theorem [3.1.1] (i) and Theorem [3.1.2]
(), we notice that
T € (—1,0), fora € [ap,1),

7€ (—1,7(a)), for a e (0,a)

and 7p = 7 — 2« then we use Proposition [3.2.2] part (i) to obtain that there exist
9 € (0,6] and C > 1 such that

(=A)*Uy(x) + U¥(x) > —CAD(z)" > + X’D(x)™", € A;, \ C.
Then there exist A\; > 1 such that for A > A\{, we have
(—A)QUA(QS) + Uf(!)ﬁ) > 07 T € Agl \C

2. W, is Sub-solution. We use Proposition part (i) to obtain that there
exist 01 € (0,0] and C' > 1 such that for x € As, \ C, we have

(A Wa() + AP Waa) < — D)™ + ¥D(x)”
S (AN
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Then there exists A3 € (0,1) such that for all A € (0, \3), it has
(=AW (z) + WP Wi (z) <0, 2 € As, \ C.
To conclude the proof we use Lemma and Proposition [3.2.2] O
Proof of Theorem [3.1.1] (ii). For any given ¢ > 0, we denote
Uz) =tV (), ze€RV\C,
Wa(e) = V@) — iVala), @ € RV\C
where 7 = min{r (a)p + 20, 371 ()} < 0. By , we have

7T € (n(a),0), T —2a < min{r(«),2m(a) — 2a+ 1} and 7 — 2o < 71 (a)p. (3.41)

1. U is Super-solution. We use Proposition [3.2.2] (iii) to obtain that for any
HANS A51 \C,

(=AU (x) + UP(x) > —CtD(z)mnn@2n(@)-2041) 4 g p(gym(@p

together with 7 (a)p < min{7 (a), 27 () — 20 4+ 1}, then there exists do € (0, 0]
such that
(=A)*U(z)+ UP(x) >0, z€ A5 \C.

2. W, is Sub-solution. We use Proposition [3.2.2] (i) and (iii) to obtain that for
T € A51 \C,

(_A)awﬂ(x)_i_‘wu‘pflwﬂ(x) S CtD(x)min{n(a)Qn(a)f2a+1}

—%D(x)f—m + 7D ()P,

Then there exists d € (0, ;] such that for any x> 1, we have
(—A)* Wy () + ‘Wu’p_lwu(x) <0, v €45\ C.

To conclude the proof we use Lemma and Proposition [3.2.2 O

3.4. Uniqueness and nonexistence

We prove the uniqueness statement by contradiction. Assume that v and v are

solutions of problem (3.9) satisfying (3.12). Then there exist Cy > 1 and 4 € (0, 6)
such that

Cio < o(@)D(x)", u(z)D(x)" < Cy, Vr € As\C, (3.42)
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where 7 = —pQT‘“l. We denote
A={z € Q\C | u(x)>v(x)}. (3.43)

Then A is open and A C Q. Then the uniqueness in Theorem [3.1.2] (¢) and Theorem
3.1.1| (7) is a consequence of the following result:

Proposition 3.4.1 Under the hypotheses of Theorem[3.1.4 (i) and Theorem [3.1.1]
(1), we have

A=0.

Proof. The procedure of proof is similar as Section 5 in [33], noting that we need
to replace d(z) by D(x) and 02 by C . O

From Proposition [3.4.1] we can prove uniqueness part in Theorem [3.1.1] (i) and
Theorem (1) .

The final goal in this note is to consider the nonexistence of solutions of problem
(3.9) under the hypotheses of Theorem (i77) and Theorem (i1).

Proposition 3.4.2 Under the hypotheses of Theorem[3.1.1| (iit) and Theorem[3.1.3
(1), we assume that Uy and Uy are both sub-solutions (or both super-solutions) of

satisfying that Uy = Uy = 0 in Q° and

0 < liminf Uj(z)D(x)"" < limsup U (z)D(z)" "

z€Q\C, z—C zeQ\C, z—C
< liminf Uy(z)D(xz)™" < limsup Us(x)D(x) " < +o0,
z€Q\C, z—C zeQ\C, z—C

for 7 € (=1,0). For the case Tp > 7 — 2a, we further assume that
(1) if Uy, Uy are sub-solutions, there exist C' >0 and § > 0,

(=A)*Us(z) < —CD(x)" 2, z € A3\ C; (3.44)

or
(12) if Uy, Uy are super-solutions, there exist C' > 0 and 6>0,

(=A)*Uy(z) > CD(z)" %, x€ A;\C. (3.45)

Then there doesn’t exist any solution u of such that

U U-
lim sup 1) <1< liminf 2(1’)
2e0\C, s U(T) 2eQ\C, 1—¢ u(T)

(3.46)

Proof. The proof is similar as Proposition 6.1 in [33], noting again that we need to
replace d(z) by D(z) and 092 by C . O
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With the help of Proposition for given t; > t; > 0, we construct two
sub-solutions (or both super-solutions) U; and Us of (3.9) such that

lim  Uy(x)D(z) " =t;, lim Us(x)D(x) " = ts.

zeQ\C,z—C 2eQ\C,z—C

So what we have to do is to prove that for any ¢ > 0, we can construct super-solution
(sub-solution) of problem ({3.9).

Proof of Theorem [3.1.1] (iii) and Theorem (7). We divide our proof of
the nonexistence results into several cases under the assumption p > 1.

Zone 1: We consider 7 € (71(a),0) and « € (0, o). By Proposition [3.2.2] (4), there
exists d; > 0 such that

(—A)*V,(x) > ED(x)T_za, z e As \C. (3.47)

Since V; is C% in Q\ C, then there exists C' > 0 such that
(=A)*V (z)| < C, € Q\ A (3.48)

Let U :=V,+CV in RN\C, then we have U > 01in Q\ C,

(=AU >0 in Q\C and (—A)*U(z) > =D(x)"2*, x¢c As \C.

1
C
Then, we have that tU is super-solution of (3.9) for any ¢ > 0. Using Proposition

we see that there is no solution of (3.9) satisfying (3.15]).

Zone 2: We consider 7 — 2a < 7p and

. {(—1,0), o € [ag, 1),
(—1,7’1((){)), o€ (0,040).

Let us define B
Wi =tV,—uV in RV\C,

where ¢, 1 > 0. By Proposition (i), for x € A5, \ C,
- t T—2za( T
(D)W@) + WP Wy(2) < —aDP@) "D ()™

For any fixed ¢t > 0, there exists d, € (0,0,], for all u > 0,

(=A) Wa(@) + [Wial "™ We(2) <0, As, \C. (3-49)
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To consider x € Q \ As,, in fact, there exists C; > 0 such that
H(=A)V ()] + V(@) < 1, € Q\ Ay,
and
(=) Wia () + (WP Wie(2) < Cit =, € Q\ Ay,
For given ¢ > 0, there exists p(t) > 0 such that

(—A)aWu(t)yt(l’) + |Wu7t|p_1Wu(t)7t(x) S 0, xr € Q \ A(52.

(3.50)

Therefore, together with (3.49) and (3.50), for any given ¢ > 0, there sub-solutions
W)+ of problem (3.9) and by Proposition [3.4.2, we see that there is no solution u

of (3.9)) satisfying (3.15]).

Zone 3: We consider 7 — 2a > 7p and

. {(—1,0), o € [ag, 1),
(—1,7’1(04)), o€ (07a0>‘

We denote that B
Uy =tV +uV  in RY\C,

where ¢, u > 0. Here U, > 0 in Q \ C. By Proposition [3.2.2] (i),
(=A)*Upp(z) + UL (x) = —CtD(x)"** + " D(x)™, z € As, \ C.
For any fixed t > 0, there exists dy € (0,0,], for all u > 0,
(=A)*Up(z) + Uy (x) >0, =€ As \C.
For z € Q\ As,, we see that (—A)*V, is bounded and
(=A)*Up(x) + Uy y(2) > —=Ct 4 pu.
For given ¢t > 0, there exists p(t) > 0 such that

(=A) Uy a(x) + Uy (2) >0, x€ Q\ As,.

(3.51)

(3.52)

Combining with (3.51)) and (3.52]), we have that for any ¢ > 0, there exists u(t) > 0

such that
(_A>aUu(t)7t($) + Uﬁ(t),t(x) >0, z€Q\C.

Therefore, for any given ¢ > 0, there is a super-solution U, of problem (3.9) and
BE)

by Proposition we see that there is no solution of (3.9)) satisfying (
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We see that Zones 1 and 2 cover Theorem part (iii) a) since 7 > —2a/(p—1).
From Zones 1, 2 and 3 we cover Theorem part (#i7) b) since 71 () > 2a/(p—1).
Moreover, from Zone 1 to Zone 3, we cover the parameters in part (i) ¢) of Theorem

3.1.1] since 71 () < 2a/(p — 1). Finally Theorem part ii) can be obtained from
Zone 2 and Zone 3. This complete the proof. O
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Capitulo 4

Semilinear fractional elliptic
equations involving measures

Abstract: in this chapter ['|, we study the existence of weak solutions to (E)
(=A)*u + g(u) = v in an open bounded regular domain Q in RN (N > 2) which
vanish in RN\ Q, where (—A)® denotes the fractional Laplacian with a € (0,1), vis a
Radon measure and g is a nondecreasing function satisfying some extra hypotheses.
When g satisfies a subcritical integrability condition, we prove the existence and
uniqueness of a weak solution for problem (E) for any measure. In the case where
v is Dirac measure, we characterize the asymptotic behavior of the solution. When
g(r) = |r|¥~1r with k supercritical, we show that a condition of absolute continuity
of the measure with respect to some Bessel capacity is a necessary and sufficient
condition in order (E) to be solved.

4.1. Introduction

Let © C RY be an open bounded C? domain and ¢g : R — R be a continuous
function. We are concerned with the existence of weak solutions to the semilinear
fractional elliptic problem

(=A)*u+g(u)=v in €Q,

4.1
u=0 in Q°, (1)

where o € (0,1), v is a Radon measure such that [, p°d|v| < oo for some § € [0, a]
and p(z) = dist(x,Q°). The fractional Laplacian (—A)® is defined by

(=8)%u(x) = lim (=A)Zu(z),

€
e—0t

!This chapter is based on the paper: H. Chen and L. Véron, Semilinear fractional elliptic
equations involving measures, submitted.
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where for € > 0,

(—A)u(z) = - / we) — ) a2y (42)

N |z — x|N+2a

0 0, if te]lo0,¢,
A TR T IS

and

When o = 1, the semilinear elliptic problem

—Au+gu)=v in €,

(4.3)
u=0 on 0,

has been extensively studied by numerous authors in the last 30 years. A fundamen-
tal contribution is due to Brezis [16], Bénilan and Brezis [10], where v is a bounded
measure in (2 and the function g : R — R is nondecreasing, positive on (0, +00) and
satisfies the subcritical assumption:

+OO N—1
/1 (6(5) — g(—5))5~2¥Zhds < +oo.

They proved the existence and uniqueness of the solution for problem . Baras
and Pierre [9] studied when g(u) = |u[P~ u for p > 1 and v is absolutely contin-
uous with respect to the Bessel capacity C'Q,p%l, to obtain a solution. In [L0I] Véron
extended Benilan and Brezis results in replacing the Laplacian by a general uniform-
ly elliptic second order differential operator with Lipschitz continuous coefficients;
he obtained existence and uniqueness results for solutions, when v € 9(Q, p°) with
B € 10,1] where 9(€, p?) denotes the space of Radon measures in €2 satisfying

/ pPdjy| < +oo, (4.4)
Q

M(Q, p°) = MY(Q) is the set of bounded Radon measures and ¢ is nondecreasing
and satisfies the S-subcritical assumption:

+00 _
/ (g(s) — g(—s))sﬁxig*éds < +o0.
1

The study of general semilinear elliptic equations with measure data have been
investigated, such as the equations involving measures boundary data which was
initiated by Gmira and Véron [62] who adapted the method introduced by Benilan
and Brezis to obtain the existence and uniqueness of solution. This subject has been
vastly expanded in recent years, see the papers of Marcus and Véron |76}, [77, [78] [79],
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Bidaut-Véron and Vivier [14], Bidaut-Véron, Hung and Véron [13].

Recently, great attention has been devoted to non-linear equations involving
fractional Laplacian or more general integro-differential operators and we mention
the reference [24 28, 26] 33, 35 [71, B8, ©2]. In particular, Karisen, Petitta and
Ulusoy in [65] used the duality approach to study the equations of

(=A)*v =p in RY,

where p is a Radon measure with compact support. Chen, Felmer and Quaas in [33]
the authors obtained the existence of large solutions to equation

(=A)*u+g(u)=f in Q, (4.5)

where ) is a bounded regular domain. In [39] we considered the properties of pos-
sibly singular solutions of in punctured domain . It is a well-known fact [100]
that for a = 1 the weak singular solutions of in punctured domain are classi-
fied according the type of singularities they admits: either weak singularities with
Dirac mass, or strong singularities which are the upper limit of solutions with weak
singularities. One of our interests is to extend these properties to any « € (0,1) and
furthermore to consider general Radon measures.

In this chapter we study the existence and uniqueness of solutions of (4.1)) in a
measure framework. Before stating our main theorem we make precise the notion of
weak solution used in this chapter.

Definition 4.1.1 We say that u is a weak solution of {{.1)), if u € L'(Q), g(u) €
LY(Q, p*dz) and

/Q[U(—A)"f + g(u)f]dx = /Qfdu, V¢ € Xy, (4.6)

where X, C C(RYN) is the space of functions & satisfying:
(i) supp(§) C €,
(11) (—A)*¢(x) exists for all x € Q and |(—A)*¢(z)| < C for some C > 0,

(iii) there exist ¢ € L'(Q, pdx) and ey > 0 such that |(—A)%¢| < ¢ a.e. in Q, for
all € € (0, €).

We notice that for a = 1, the test space X, is used as C’S’L(Q), which has similar
properties like (i) and (ii). The counter part for the Laplacian of assumption (7i7)
would be that the difference quotient V,, n[u](.) := h7'[0,u(. + he;) — Oy,u(.)] is
bounded by an L!-function, which is true since



We denote by G, the Green kernel of (—A)® in Q and by G,[.] the Green operator
defined by

Galf)(z) = /Q ol ) fy)dy, ¥ € LNQ, p*da). (4.7)

For N >2 0<a<1and p € [0,al], we define the critical exponent

{%, if B € [O, N?\?OCOZ],
kap =

N . N-—2
N_;;‘iﬂ, it fe (52, ql.

(4.8)

N

Our main result is the following:

Theorem 4.1.1 Assume Q C RY (N > 2) is an open bounded C? domain, o €
(0,1), B € [0,a] and kap is defined by (4.8). Let g : R — R be a continuous,

nondecreasing function, satisfying
g(r)r >0, VYreR and / (g(s) — g(—s))s ' Fards < oco. (4.9)
1

Then for any v € IMM(Q, p°) problem (u) admits a unique weak solution u. Further-
more, the mapping: v — u is increasing and

—Gulv-] Su<G,lry] ae inQ (4.10)

where vy and v_ are respectively the positive and negative part in the Jordan decom-
position of v.

We note that for « = 1 and 8 € [0, 1), we have

_N+8
N—-2+p

where k; 5 is given in and the number in right hand side of is from The-
orem 3.7 in [I01]. Inspired by [62] 101], the existence of solution could be extended
in assuming that ¢ : 2 x R — R is continuous and satisfies the (N, «, §)-weak-
singularity assumption, that is, there exists ro > 0 such that

kg > (4.11)

glz,m)r >0, VY(z,r) € QX (R\ (=rg,70)),

and
lg(z,7)| < g(|r]), VY(x,r) € xR,

where g : [0,00) — [0,00) is continuous, nondecreasing and satisfies

/ G(s)s™resds < oo.
1
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We also give a stability result which shows that problem is weakly closed in
the space of measures (2, p?). In the last section of this chapter we characterize
the behaviour of the solution u of when v = d, for some a € 2. We also study
the case where g(r) = |r[*~'r when k > k, g, which doesn’t satisfy (4.9). We show
that a necessary and sufficient condition in order a weak solution to problem

(=A)u + [ul*lu=v in

4.12
u=0 1in Q°, ( )

to exist where v is a positive bounded measure is that v vanishes on compact subsets
K of Q with zero Csy, v Bessel-capacity.

4.2. Linear estimates

4.2.1. The Marcinkiewicz spaces

We recall the definition and basic properties of the Marcinkiewicz spaces.

Definition 4.2.1 Let Q C RY be an open domain and p be a positive Borel measure
in Q. Fork>1, k" =r/(k—1) and u € L} (Q,du), we set

loc

1

||| arw(,au) = Inf{c € [0, 00] : / luldp < ¢ (/ du) H , VE C Q Borel set} (4.13)
B E

and
M¥(2,dp) = {u € Ly (2, dp) : [l < 00} (4.14)

M"(Q,du) is called the Marcinkiewicz space of exponent k or weak L* space and
|| a7 (0,4 is & quasi-norm. The following property holds.

Proposition 4.2.1 [11], [{3] Assume 1 < ¢ < k < 00 and u € L, (2, du). Then
there exists C(q, k) > 0 such that

1—q/k
[ It < g ) lulo-n ( / du) ,
E E

for any Borel set E of 2.

For a € (0,1) and 3,7 € [0, a] we set

N — (N —2a)2
N —-2a+t '’

m@:g+ ¢ (4.15)



and

> P} (4.16)

N—(N—

k2<a) o Y +a N—

k o N—(N—2a)X
1(a) % R —

Remark 4.2.2 The function t — kyi(t) is decreasing in [0, ] with the following

bounds

N N+
k1(0) = and ki(a) = N—Zz

> 1.
N — 2«

Remark 4.2.3 The function t — ngg is increasing in [0, ], since

(kz(t))’ N (N =2a)2)(N +1)
= 5 > 0.
k(1) ki(t)
As a consequence 15 equivalent to
toéﬁ;y = HléX{O, tﬁ}, (4.17)
where N (N —9
ty= N = (N =200y (4.18)

N—(N-3a+p3)2

is the solution of ng = 0.

% N2

Proposition 4.2.2 Let Q ¢ RY (N > 2) be an open bounded C? domain and
v € M(Q, pP) with B € [0,a]. Then

H@a[uuma,ﬁ,mmd@ < Cl e, (419
where v € [0, a], G4 = [ Gal, y)dv(y) where G, is Green’s kernel of (—A)®
and Nt~y NS

N—2a+3° N—2a°
N (4.20)
N—oa’ if not.

Proof. For A > 0 and y € €, we denote
M) = o € O\ {5} Gale) > A} and o) = [ p(a)de
Ax(y)
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From [37], there exists C' > 0 such that for any (x,y) € Q x Q, z # y,

Galz,y) < C’min{ ! p(z) P°(y) } (4.21)

|z —y|N72 | —y N | — y [N

and

P*(y)
Golz,y) < Cpa(x)|a: = (4.22)

Therefore, if v € [0,a] and = € A,(y), there holds

) < Cp(y)

< _ (4.23)
e |z — y| (VR

Let t € [0, ] be such tha

C R Opr(y) \® Cp'(y)
< | _— | =7
Ga(«r;y) = (|x—y|N_2a> <|ZL’—y|N_a> |x_y|N—2a+t

We observe that

where k1(t) and ko(t) are given in (4.15)), then

An(y) {we@\{y} : % > A} c Daly)

where Dy(y) = {x €Nz —y|l< (%)Nﬂlaﬁ}; together with (4.23), this im-
plies

Cp'(y _
m(y) S/ (N) sz < Cply)=IA=00.
Dy (y) )‘ ’x - y’

For any Borel set F of €2, we have

/EG (x,y)p"(x )dx</AA(y) Ga(:v,y)p”*(x)dx—l—)\/Ep'y(x)d:c
and

/ Gl @i = | sdm)

= Amay) + / " n(y)ds

< Op<y)kz(t))\1—k1(t)
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Thus,
/G z,y)p" (x)dr < Cp(y)k2O\F® —1—)\/ P’ (z)dz.
E

By choosing A = [p(y) ™" [ pY(z)dz]” R0 | we have

kqy(t)—1

| Golag@)de < Cotn)F0 ([ (@i B

Therefore,

/}EGQ[]V]](x)pV(x)dx = //G z,y)pY (x)dxd|v(y)|
ki1

Cémwmme(éﬁ@makw

ki(t)—1

CR®
s ([ 7ionte) ™
E

IA

IA

ko (t) ko(t) 8 3
ply) 20 dlv(y)| < mix p @7 [ p(y) dlu(y)|
Q Q

As a consequence,

|GalV]ll a0 prany < ClIvIama,en)-
Therefore,
ko i=max{ki(t) : t € [0,a]} = ki(tas)
where ¢, s, is defined by and kq - is given by . The proof complete. O
We choose the parameter v in order to make k, g, the largest possible, and

denote

ko s = k., 4.24
N Vgl[gwg} By (4.24)

Since 7y + kq g~ is increasing, the following statement holds.

Proposition 4.2.3 Let N > 2 and k, s be defined by , then

{N%Qav if geloX
kap =

N : N—2
oo i BE(FRaal.

el (4.25)
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4.2.2. Non-homogeneous problem
In this subsection, we study some properties of the solution of the linear non-

homogeneous, which will play a key role in the sequel. We assume that Q@ C RY,
N > 2 is an open bounded domain with a C? boundary.

Lemma 4.2.1 (i) There exists C' > 0 such that for any § € X, there holds

[€llca@) < CIH(=A)*E| () (4.26)
and
0™ llce@y < ClI(=A)*¢| L) (4.27)
where 0 < 0 < min{a, 1 — a}. In particular, for x € §)
§(@)] < Cl[(=A)*¢| oo @) p™ (). (4.28)

(17) Let u be the solution of

—A)*u = in €,
- u-g in Q° (4.29)

where f € C7(Q2) for v > 0. Then u € X,.

Proof. (i). Estimates and are consequences of [88, Proposition 1.1]
and [88, Theorem 1.2] respectively. Furthermore, if 7, is the solution of with
f=11in Q, then n; > 0 in Q and by follows [88, Theorem 1.2|, there exists C' > 0
such that

ol < Z—; <C in Q. (4.30)
In this expression the right-side follows [88, Theorem 1.2] and the left-hand side
inequality follows from the maximum principle and |37, Theorem 1.2]. Since

—[[(=A)%¢ o) < (=A)*E < [(=A)%¢][p=)  in €,
it follows by the comparison principle,

—[[(=A)*¢ [ @m (z) < (@) < [(=A)%E|poe @y (2).
which, together with (4.30)), implies (4.28]).

(1) For r > 0, we denote
Q. ={ze€Q: dist(z,00Q) > r}.
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Since f € C7(Q), then by Corollary 1.6 part (i) and Proposition 1.1 in [88], for
6 € [0,min{a, 1 — a,v}), there exists C' > 0 such that for any r > 0, we have

||UH C20+0(0Q,.) S C’q«—a—e

and
|ullge@yy < C.

Then for z € Q, letting r = p(z)/2,
[6(u, )| < CrmeCly[**, vy € B,(0) (4.31)

and
0(u, z,y)| < Cly|*, VyeRY,

where §(u, x,y) = u(z +y) + u(x — y) — 2u(x). Thus,

oyl < g [ Sy

1 o(u, z, 1 o(u, z,
< L[ B, 1o pesol,
2 B (0) Y| 2 Bg(0) Y|

C’r‘a_e/ 1 -+ C’/ 1 p
TN Y T Yy
2 B0 YN0 2 Jpe(o) lylNHe

< Cp(x) ™, xe€Q,

IN

for some C' > 0 independent of €. Moreover, p~® is in L'(Q, p*dz). Finally, we prove
(—A)%u — (—A)*u as € — 0 pointwise. For z € Q, choosing € € (0, p(z)/2), then

by (4.31),
1 o(u, x,
e _/ u N+2z)|dy
2 Je.0) Yl

S Cp(x)—a—eee
— 0, e—0".

0
B
R
=
S

|

|
B
R

£
—~
=
IN

The proof is complete. O

The following Proposition is the Kato’s type estimate for proving the uniqueness

of the solution of (4.1]).

Proposition 4.2.4 Ifv € L'(Q, p*dz), there exists a unique weak solution u of the
problem

(—A)*u=v in Q,

4.32
u=0 in €°. ( )
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For any £ € X, £ > 0, we have

/]u\ §d:c</551gn Yvdz (4.33)

and

/u+(—A)a§d1’§ /ﬁsignJr(u)l/dx, (4.34)
Q Q

We note here that for o = 1, the proof of Proposition could be seen in [101]
Theorem 2.4|. For o € (0, 1), we first prove some integration by parts formula.

Lemma 4.2.2 Assume u,& € X, then

/Q u(—A)eEdr = /Q £(—A)°uds. (4.35)

o u(z) — u(z)
(~A)3u(x) = _/Q e — <)z (4.36)
By the definition of (—=A)%, we have

o) = [ HI S e = s ) [ A0

Qe

Proof. Denote

= (—A)3u() + ulx) Xellr —=])

Qe |Z _ $|N+2a
We claim that
/ £(@)(—A)S u(x)de = / (@) (~A)s E(@)dr, for u,€ € X (4.37)
Q Q

By using the fact of

[ [ e [ [, (o,

we have
/ f(x)(—A)ggu(x)dx
- __/ / |z — :E|N+2@(x) T ) _;jgvzlgg(Z)]Xeﬂx — z|)dzdx

|z —
/ / x,Nga_ )] xe(|z — 2|)dzdz.
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Similarly, by the fact that u € X,

/Q u(@)(~A)3, / / x|N(f2)a_ SO e — 2)dzde.

Then (4.37) holds. In order to prove (4.35]), we first notice that by (4.37)),

/ £(x)(—A)eu(x)da

/ ¢l (z)de + /Q e / Xellz —z) 4,
_/Q (@)(~2) &(x)dr + [ u(x) / Xellr =2 g,
_ /Q (@) (—A)° () de. (4.38)

Since u and £ belongs to X,, (—A)%¢ — (—=A)*¢ and (—A)%u — (—A)%u and
[u(—=A)2E] 4 |E(=A)2u|] < Cp for some C' > 0 and ¢ € LY(Q, p*dx). Tt follows by
the Dominated Convergence Theorem

tin [ @)=Arutade = [ €a)(-A)u()is

and
lim [ (=A% (z)u(x)de = /(—A)af(x)u(x)dx.
e—0t QO (9}
Letting € — 07 of (4.38)) we conclude that (4.35)) holds. 0
For 1 <p<ooand 0 <s <1, W9P(Q) is the set of £ € LP(2) such that
§(z) — )l

This space is endowed with the norm

oo = ([ leopars [ [EO=E0000)7 0 g

Furthermore, if € is bounded, the following Poincaré inequality holds [95, p 134].

(/Q |§(m)\f’dx)’l’ <C (/Q ) %dm); . YEe O™ (Q).  (441)

Lemma 4.2.3 Let u € X, and v be C? in the interval u(Q) and satisfy v(0) =0 ,
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then u € W*%(Q), you € X, and for all x € Q, there erists z, € Q such that

. o o oulz) [ (uly) — u(a))
Ay (o) = (7 oue)(-A)ule) - 5 [ LW ay, ()

Proof. Since u € C(Q) vanishes in Q°, v o u shares the same properties. By (4.26),
for any x and y in 2

(u(z) — u(y))® < Cle =y (=A) )
Then v € W*2(Q). Similarly v o u € W*2(Q). Furthermore
(You)(y) — (you)(z) = (v o u)(z) (u(y) — u(x)) + /( )(U(y) —t)y"(t)dt.

By the mean value theorem, there exists some 7 € [0, 1] such that

u(v) "(1u — u(x
[ (i) =y = DD )

Since 4" is continuous and wu is continuous in 2,

u(y)

(uy) —t)y"()dt) <

o OUHLOO(Q)

D u(y) — u(a))?

u(z)

and by (L26),
u(y) d
Y
(u(y) = )" (D)t ——x5a
|4}—w>e /u(:v) |y - $|N+2a
17" o ul| o dy
< s Q(U(y) — u(z)) m
Notice also that 7u(y) + (1 — 7)u(x) € u(Q) := I, therefore

miny"(t) < 7" (ruly) + (1 = r)u(z)) < méxy"(1),

minge; ,Y//(t) / (u(y) _ u<x>>2d _ //U(y) —t // )
2 o ly—a[vee = Iy = afveee |N+2a
méxer 7" () [ (u(y) — u(x))?
< 9 /Q |y — x| N+2e

thus
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Since " is continuous, there exists tq € I such that

u(y) B , dy B 7//@0) (u<y) . u(:c))2
/Q/um(“(y) t)y (t)dt‘y_m‘NHa = /Q Y 2 dy

and since u is continuous in RY and vanishes in ¢, there exists z, €  such that
to = u(z;), which ends the proof. 0

Proof of Proposition Uniqueness. Let w be a weak solution of

(—A)*w =0 in Q

w =10 in  Q°. (4.43)
If w is a Borel subset of {2 and n,,, the solution of
(=A) o =G In Q (4.44)

Nwn = 0 in QC7
where ¢, : Q +— [0,1] is a C*(Q) function such that
(o= Xw 0 L®(Q) asn— oo

Then by Lemma part (ii), Nyn € X, and

/ w(,dxr = 0.
Q

Then passing the limit of n — oo, we have

/wda::().

Ezistence and estimate ({4.35). For 6 > 0 we define an even convex function ¢s by

{|t| — 5 if Jt] >,

This implies w = 0.

os5(t) = (4.45)

£, if |t] < 6/2.

Then for any ¢, s € R, |¢(t)| < 1, ¢s(t) — |t| and ¢§(t) — capbsign(t) when § — 0.
Moreover
@5(s) = s(t) = d5(t)(s —1). (4.46)
Let {v,} be a sequence functions in C'(2) such that
lim / \vn, — v|p®dz = 0.
Q

n—oo
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Let u, be the corresponding solution to (4.32)) with right-hand side v,, then by
Lemma[4.2.1] u, € X, and by Lemmas[4.2.2] [.2.3] for any § > 0 and £ € X,, £ > 0,

/Qqsawn)( gdx—/a )° 5(un) iz

< / £ () (—A) nda (4.47)
:/qubg(un)l/ndx.

Letting 6 — 0, we obtain

/Q|un|(—A)o‘§dx§ /Qésign(un)l/ndxg /Q§|l/n|dx. (4.48)

If we take & = 1, we derive from Lemma

/ luy|dz < C / | o (4.49)

Similarly
/ [tn, — Uy |d < C’/ |Un, — U |p™da. (4.50)
Q Q

Therefore, {u,} is a Cauchy sequence in L' and its limit u is a weak solution of

(1.32)). Letting n — oo in (4.48) we obtain (4.33). Inequality (4.34)) is proved by
replacing ¢s by ¢; which is zero on (—oco, 0] and ¢s on [0, o).

The next result is a higher order regularity result

Proposition 4.2.5 Let the assumptions of Proposition be fulfilled and 0 <
g < a. Then for p € (1 ) there exists ¢, > 0 such that for any v €

LNQ, pdw)

N
? N+B—2a

1Gal]llwee—r) < llvliiepran (4.51)
wherevzﬁ%—% if >0 and7>g if B=0.

Proof. We use Stampacchia’s duality method [93] and put u = G,[v]. If v € C=(Q),

then
< [ wlivlas
Q

gsuplp%!/ |v|pdx
Q Q

—A)%udx

(4.52)

< Wlles@ vl i ppax)-

149



By Sobolev-Morrey embedding type theorem (see e.g. [81, Theorem 8.2]), for any

p€ (1, yrgas) and p' = Sy,

[¥lles@y < Clltllwaw @

Withvzﬂ—kgifﬁ>0and7>%ifﬁzO.Therefore,

< Cllllwrr @17l @ ppd0); (4.53)

/Q D(—A)udz

which implies that the mapping ¢ — [, %(—A)%udz is continuous on W*(2) and
thus

1(=2) ullw—rr@) < Cllvl|L1@p8d0): (4.54)
Since (—A)™® is an isomorphism from W™"?(Q) into W?2*~7P(Q), it follows that

[ullwerpi) < Clvlirr e pran- (4.55)

O

Proposition 4.2.6 Under the assumptions of Proposition the mapping v

Glv] is compact from L'(S2, pPdx) into LI(Q) for any q € [1, m)

Proof. By [81, Theorem 6.5] the embedding of W?2*~7?(Q) into L(Q) is compact,
this ends the proof. O

4.3. Proof of Theorem 4.1.1]

Before proving the main we give a general existence result in L(Q, p®dx).

Proposition 4.3.1 Suppose that Q2 is an open bounded C* domain of RN (N > 2),
a € (0,1) and the function g : R — R is continuous, nondecreasing and rg(r) > 0
for all r € R. Then for any f € LY(Q, p®dx) there exists a unique weak solution u
of with v = f. Moreover the mapping f — u s increasing.

Proof. Step 1: Variational solutions. If w € L*(2), we denote by w its extension
by 0 in Q¢ and by W*2(Q) the set of function in L*(€) such that

Jullygy = [ BP(+ Jaf*)do < oc,
RN

where w is the Fourier transform of w. For € > 0 we set

J(w) = %/RN ((—A)%w)zdx + /(j(w) + ew?)dx,

Q
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with domain D(J) = {w € W*?(R") s.t. j(w) € LYQ)} and j(s) = [; g(t)dt.
Furthermore since there holds J(w) > 0||w||12/V9,2 for some o > 0, the subdifferential

0J of J is a maximal monotone in the sense of Browder-Minty (see [17] and the
references therein) which satisfies R(9J) = L?(Q2). Then for any f € L*(Q) there
exists a unique u, in the domain D(0J) such that dJ(u.) = f. Since for any ¢ €
we2(Q)

0J (ue) = (—A)%ue + g(ue) + 2eu = f,
with u, € W2*2(Q) such that g(u.) € L*(2). This is also a consequence of [17,

Corollary 2.11]. If f is assumed to be bounded, then v € C*(2) by [88, Proposition
1.1

Step 2: L' solutions. For n € N* we denote by u, . the solution of

(—A)*Up e + g(Un,e) + 2€Up = fr in
Up,e =0 in Q°

where f, = sgn(f)min{n, |f|}. By (4.48)) with £ =,

(4.56)

[ (el + @eun] + lgtun ) do < [ [fdmds < [ \flpde. (@50
Q Q Q

and for ¢ > 0 and m € N*,

/ (|tn.e = wmer| +9(tne) = g(Um,er)Im) dz
“ (4.58)

< / (fo — Fonl + 2€[ttn| + 2¢'|tm o)
Q

Since f, — f in LY(Q, p*dz), {un} and {g o u, .} are Cauchy filters in L'(Q)
and L'(Q, p“dz) respectively. Set u = l{m,, 00 c—0 Un., we derive from the following
identity valid for any £ € X,,,

/ (e (A€ + g(un ) dir = / (fo — cun) de
Q

Q

that u is a solution of (4.1). Uniqueness follows from (4.48)-(4.58)), since for any

f and [’ in LY, p%dzx), the any couple (u,u’) of weak solutions with respective
right-hand side f and f’ satisfies

/ (I — o) + lg () — g(ad) ) e < / f — Fmd. (4.59)
Q Q
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Finally, the monotonicity of the mapping f +— u follows from (4.34) thanks to which

(4.59) is transformed into
/ ((u—u')y + (g(u) — g(u')ym) do < /(f — fymdz. (4.60)
L Q

O

Proof of Theorem |4.1.1 Uniqueness follows from (4.59)). For existence we define

Cs() ={C e C() : pPCeC(Q)}
endowed with the norm
[<lles @ ||P_BC||C(Q)

We consider a sequence {v,} C C"(Q) such that v, + — vz in the duality sense with
C3(€?), which means

lim Cunidx—/(dl/i

n—o0

for all ¢ € Cs(€2). Tt follows from the Banach-Steinhaus theorem that ||v, [|anq 5 is
bounded independently of n, therefore

/ (Tl + 9l d < / valmde < C. (4.61)
Q Q

Therefore ||g(un)||lm,pe) is bounded independently of n. For € > 0, set {& = (m +
e)g - eg, which is concave in the interval n(®@). Then, by Lemma part (i),

om0 oy = 22Dy, g [ nEIR,

B—a

(771+€) o

(_A)afe

|Q QI‘Eb

and & € X,,. Since

/Q (ltnl(—=A)°€ + lg(un)l€) di < / v,

[ (1l o+ 05 +latwle ) o < [ caal.

If we let e — 0, we obtain

B B-a 5
/Q(\unl m +\g(un)|m)dx§/gnfdlvnl-
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By Lemma |4.2.3] we derive the estimate
[ (o™= +lgtw)lo) do < Clfln < € (462)
Q

Since u,, = G, v, — g(uy)], it follows by (4.19)), that
s ey < 170 — 9 oy (463)

where k, 5 is defined by (4.25)). By Corollary the sequence {u,} is relatively
compact in the LI(Q) for 1 < g < m Therefore there exist a sub-sequence

{un, } and some u € L'(Q) N L) such that u,, — v in LI(Q) and almost every
where in . Furthermore g(u,,) — ¢(u) almost every where. Put g(r) = g(|r|) —
g(—|r|) and we note that |g(r)| < g(|r|) for » € R and g is nondecreasing. For A\ > 0,
we set Sy = {x € Q: |uy, ()] > A} and w(\) = fSA pPdx. Then for any Borel set
E C Q, we have

/ (gtn,)|pda = / 9(un) PP + / 19ty |z
E ENSg

ENS)y

3N / P+ / 3t )P
E Sy

IN

<90 [ e [ g(s)duts)
But . -
[ atoats) = Jim [ ats)dats)

Since u,, € M*#(Q, pPdz), w(s) < cs~Fes and

s=T

- [ a0t = = [at610)]  + [ wtsiaate

< HNwN) — GT)(T) + / shasdg(s)

< gNwN) = G(Tw(T) + ¢ (T™2g(T) = A™F2g(N))

c r 1—k
+ s T Rbg(s)ds.

By assumption 1) there exists {7,,} — oo such that Tn_k“’ﬂg(Tn) — 0 when
n — oo. Furthermore g(A\)w(\) < cA™%5g()\), therefore

o0 B C o0 L _
_ / ale)ds) <€ =g / 51k i (5)ds,
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Notice that the above quantity on the right-hand side tends to 0 when A — co. The
conclusion follows: for any € > 0 there exists A > 0 such that

c X ks
s aBg(s)ds <
ka,ﬁ+1/A g(s)ds <

and d > 0 such that
/ Plde <6 = §()\)/ PPde <
E

This proves that {gou,, } is uniformly integrable in L'(€2, p?dx). Then gou,, — gou
in L'(Q, pPdx) by Vitali convergence theorem. Letting n; — oo in the identity

/ (ttny (D)€ + £ 0 1) dz = / v Eda
Q

Q

where ¢ € X, it infers that u is a weak solution of (4.1]).

The right-hand side of estimate (4.9) follows from the fact that v, + := G4[vy 4]
satisfies

(=A) %+ + g(vn4) = Vs + g(Un+) = v

Therefore v, . > w, by Proposition Letting n — oo yields to (4.10). The
left-hand side is proved similarly.

To prove the mapping v — w is increasing. Let vy, vy € M(, pP) and vy > vy, then
there exist two sequences {vy,} and {15,} in C*°(Q) such that vy, > 1, and

Vip = V; asn — 00, 1=1,2.

Let u;,, be the unique solution of (4.1)) with v;,, and u; be the unique solution of (4.1)
with v; where 7 = 1,2. Then u;, > us,. Moveover, by uniqueness u;,, convergence
to u; in L'(Q) for : = 1 and 7 = 2. Then we have u; > us. O

Corollary 4.3.1 Under the hypotheses of Theorem [/.1.1, we further assume that
{vn} is a sequence of measures in M(Q, p°) and v € M(Q, p°) such that for any

§ € Cs(9),
/gdun%/fdu as n — o0.
Q Q

Then the sequence {u,} of weak solutions to

(_A)aun +gou,=v, in

4.64
up, =0 in Q°, ( )

converges to the solution u of in LY(Q) for 1 < ¢ < m and {g o u,}
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converges to g ou in L*(Q, p’dr).

Proof. The method is an adaptation of [102]. Since v, — v in the duality sense of

C3(€2), there exists M > 0 such that
|Vnllon(a,p8) < M, Vn € N.

Therefore (4.62) and (4.63) hold (but with u, solution of (4.64)). The above proof

shows that {gowu,} is uniformly integrable in L*(Q, pdxr) and {u,} relatively com-
pact in LI(Q2) for 1 < ¢q < m Thus, up to a subsequence {u,,} C {u,},
Up, — u, and u is the weak solution of (4.1). Since u is unique, u,, — u as n — oo.

O
Remark 4.3.1 Under the hypotheses of Theorem we assume v > 0, then
Galv] — Golg(Ga[v])] < u < G, V). (4.65)

Indeed, since g is nondecreasing and u < G,[v], then

u = Galv] = Galg(u)]

4.4. Applications

4.4.1. The case of Dirac mass

In this subsection we characterize the asymptotic behavior of a solution near a
singularity created by a Dirac mass.

Theorem 4.4.1 Assume that ) is an open, bounded and C* domain of RN (N > 2)
with 0 € Q, a € (0,1), v = &y and the function g : [0,00) — [0,00) is continuous,
nondecreasing and holds for

N
koo = . 4.66
YT N =20 ( )
Then problem admits a unique positive weak solution u such that
lm u(x)|z|N 2> = C, (4.67)

x—0

for some C' > 0.
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Remark 4.4.1 We note here that a weak solution u of with v = dq satisfies

(—=A)*u+g(u) =0 in 0\ {0},

4.68
u=0 in RN\Q. (4.68)

The asymptotic behavior 15 one of the possible singular behaviors of solutions

of given in [39].

Lemma 4.4.1 Assume that g : [0,00) — [0,00) is continuous, nondecreasing and
holds with ko s > 1. Then

lim g(s)s Fer = 0. (4.69)

S— 00
Proof. Since
2s 2s
/ gty R dt > g(s)(25) 71 hen / dt = 271 Fasg(s)s s
and by (4.9), we have that lim,_,., [* g(t)t~""*esdt = 0. Then (4.69) holds. O

Proof of Theorem [4.4.1| Existence, uniqueness and positiveness follow from The-
orem with 8 = 0. For (4.67)), we shall use (4.10). From [38] there holds,

C C
0< W — Ga(ZL’,O) < p(o)w, x € \ {O} (470)
for some C' > 0 dependent of N and «. Since
C
Ga[ao]($) = Ga(l',O) < W—_Qa, x € \ {O},

then for z € '\ {0},

—2« 1 C —2x
0 < Galg(Galdo)))()|xV > S/ =9 )yl
o lr—yl Y|

1 C
< / g( )dz|x]N
Q |er_y|N—2a (’IHZ )N—Qa
1 C
= |~”C|N/ ——( -
ONBy a(en) €2 — YN 7207 (Jaf|2) N2
1 C
+|9E|N/ g( )
QB 5 (e0) (€0 = YN 2T ([][2[) N2
= Ai(z) + Ax(w),

)dz

dz
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where e, = x/|z|. By Lemma [4.4.1]

2N—2a0 1

N

Ai(z) < 7] Q(W—_Qa)/B ( )mdz
1/2(€z x

— 0 as |z|—0,

and by (@.9),

_ C
As(z) < Ca:N/ J(———)dz
2(7) =7 1, o STy

- [ 1N
< C’/l/(NM) g(Cs)s " N-2ads

R

El

— 0 as |z|—0,
where R > 0 such that Bg(0) D Q. That is

lim Ga[g(Galdo]))(x)|z["** = 0. (4.71)

|z|—=0

We plug (4.70) and (4.71)) into (4.65]), then (4.67) holds. O

4.4.2. The power case

If g(s) = |s|*~'s with k > 1, then (4.9) is satisfied if 1 < k < ko5 where ko p

defined by 1) is called the critical exponent with limit values k.o = +~s— and

N—2«
ko = XE2. If we consider the problem

(=A)u+ |ul*lu=v in

(4.72)

u=>0 in  Q°
then if 1 < k < k,p it is solvable for any v € (€, p°), but it may not be the case
if k> ko5. As in the case a = 1, the sharp solvability of is associated to a
concentration property of the measure v and this concentration is expressed by the
mean of Bessel capacities. If £ > 1 and k' = £

-7, we define for any compact set
K CQ,

CZQa,k:’(K) = 1nf{H¢’ %ZQ,IQ’(Q) : ¢ € CéX)(Q)’O < ¢ < 17 ¢ =1on K} (473)
Then Cj, i is an outer measure or capacity in €2 extended to Borel sets by standard
processes. Our result is the following in the case of bounded measures

Theorem 4.4.2 Assume Q) is an open bounded C? domain in RN and k > 1. Then
problem can be solved with a nonnegative bounded measure v if and only if v
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satisfies on compact subsets K C

Cow(K) =0= v(K) = 0. (4.74)

Proof. 1-The condition is necessary. Assume u is a weak solution and let K C €
be compact. Let ¢ € C°(RY) such that 0 < ¢ <1 and ¢(z) =1 for all z € K, and
set &€ = ¢ then ¢ € X, and

/Q (W(=A)*E + u¢) do = /Q Edv.

Since £ > xk it follows from (4.42)) that

/ﬂ (Ko"1u(=2)"6 + ¢*'u*) do > w(K). (4.75)

By Holder’s inequality

|

< ( /Q qs’f/u'fdx)}“ < /Q TN d:c) | (4.76)

By [81, Theorem 5.4], there exists ¢ € W2** (RV) such that ¢|q = ¢ and

¢ M u(=A) " ¢dr
Q

1@llwzew @y < Clidllwear )

Then, by standard regularity result on the Riesz potential (—A)~% in RY,
1

__(/¢kkm)i(éNu—Aww”m)k

1
P

gc(/wwm)uwmmm> (77)

1
P

(/ o kdl‘) @ llyyr20 () -

Flu(—A)pda| <

Therefore, (4.77) yields to

CllBllwza gy (/Q ¢k/ukdx) +/Q¢klukd3: > v(K). (4.78)

If CF), ,(K) = 0, there exists a sequence {¢,} C C2°(Q) such that 0 < ¢,, <1 and
¢n =1 on K and [|¢,[lyyz0r () — 0 as n — oo. Furthermore K has zero Lebesgue
measure and ¢, — 0 almost everywhere. If we replace ¢ by ¢, in and let
n — 0o we obtain v(K) = 0.
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2-The condition is sufficient. We first assume that v € W2*%(Q) N M (Q); for
n € N, we denote by u,, the solution of

(—=A)u + | Ty, (w) [F 1, (u) = v in Q

4.79
u=>0 in Q° ( )

where T,,(r) = sign(r) min{n, |r|}. Such a solution exists by Theorem [4.1.1], is non-
negative and the sequence {u,} is decreasing and converges to some nonnegative u
since {T,,(r)} is increasing on R, . Furthermore, by (4.10)),

0 <u, <G,V

This implies that the convergence holds in L!(Q). Since v € W24¥(Q), G,[v] €
L*(9Q), it infers that

| () [ T () = (To(un))* < (Galr])".

Since for any ¢ € X,, there holds

A(%(—M“&Hﬂ(%))’“f) dx:/ggdu (4.80)

we can let n — oo and conclude that u is a solution of , unique by .
Next we assume that holds. By a result of Feyel and de la Pradelle [58] (see
also [46]), there exists an increasing sequence {v,} C W2**(Q) N M’ () which
converges to v in the weak sense of measures. This implies that the sequence {u, }
of weak solutions of

(—A)%u, +ur = v, in  Q

4.81
U, =0 in QF° ( )

is increasing with limit u. Taking 7, := G,[1] as a test function in the weak formu-

lation, we have
/ (up +ulm) doe = / mdv, < / mdv.
Q Q Q

So u, — u in LY(2) N L*(Q, p*dx). Let n — oo, then u satisfies (4.72). O

Remark 4.4.2 If v is a signed bounded measure a sufficient condition for solving

Cow(K) =0 = [v|(K) = 0. (4.82)

This can be obtained by using the fact that the solutions of with right-hand
side vy and —v_ are respectively a supersolution and a subsolution of . It s
not clear whether it 1s also a necessary condition.
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Capitulo 5

Weakly and strongly singular
solutions of semilinear fractional
elliptic equations

Abstract: in this chapter , let p € (0, +25-), @ € (0,1), k> 0 and @ C R
is an open bounded C? domain containing 0 and Jy is the Dirac measure at 0, we
prove that the weak solution of (E); (—A)%u + uP = kdp in €2 which vanishes in Q°
is a weakly singular solution of (E)s (—A)*u + u? = 0 in Q \ {0} with the same
outer data. Furthermore, we study the limit of weak solutions of (E£); when k& — 0.
For p € (0,1 + 22], the limit is infinity in Q. For p € (1 + 22, 2), the limit is a
strongly singular solution of (F).

5.1. Introduction

Let Q be a bounded C? domain of RN (N > 2) containing 0, o € (0,1) and &
denote the Dirac mass at 0. In this chapter, we study the properties of the weak
solution to problem

(=A)*u+uP =kdp in £,

5.1
u=>0 in Q°, (5:1)

where k > 0, p € (0, +25-) and (—A)® is the fractional Laplacian defined by

(=4)%(x) = lim (=A)Zu(z),

€
e—0t

! This chapter is based on the paper: H. Chen and L. Véron, Weak and strong singular solutions
of semilinear fractional elliptic equations, accepted by Asymptotic Analysis (2013).
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where for € > 0,

o) = [ e <l

0, if te]0,¢
Xe(t) = {

1, if t>e

and

In 1980, Brezis in|16] (also see [10]) obtained that the problem

—Au—+u? =k in

(5.2)
u=0 on 02

admits a unique solution uy for 1 < ¢ < N/(N — 2), while no solution exists when
q > N/(N —2). Later on, Brezis and Véron in [18] proved that the problem

—Au+ui=0 in Q\{0},

(5.3)
u=0 on 0f)

admits only the zero solution when ¢ > N/(N —2). When 1 < ¢ < N/(N —2), Véron
in [I00] described all the possible singular behaviour of positive solutions of (5.3)). In
particular he proved that this behaviour is always isotropic (when (N+1)/(N—1) <
q < N/(N — 2) the assumption of positivity is unnecessary) and that two types of
singular behaviour occur:

(i) either u(z) ~ cyk|z|* ™ as z — 0 and k can take any positive value; u is said to
have a weak singularity at 0, and actually u = wuy,

(ii) or u(z) ~ cN7q]:c|_% as ¢ — 0; u is said to have a strong singularity at 0, and
U = Ugo = IMp_y00 Uk

In a recent work, Chen and Véron [39] derived that for 1 + 22 < p < 2, the

N—2a’
problem
—A)u+uP =0 in Q\ {0},
(=4) | \ {0} (5.4
u=0 in Q°
admits a solution ug satisfying

20
lim w, () |z[7~1 = ¢, (5.5)

for some ¢, > 0. Moreover u, is the unique positive solution of (5.4)) in the class set
of
0< h’minfu(a:)|a:|% < lim sup u(a:)|x|% < +400. (5.6)
z—0 z—0
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We say that u is a weakly singular solution of (5.4)) if lim sup,_,, |u(z)||z|Y 2% < 400,

or strongly singular solution if lim,_ |u(z)||z|V 2% = +oo.

We also in [40] obtained that there exists a unique weak solution to the problem

(=A)*u+g(u)=v in €Q, 5.7
u=0 in Q°, '

where ¢ is a subcritical nonlinearity, v is a Radon measure in 2. In the fractional
framework, the definition of weak solution is given as follows.

Definition 5.1.1 A function v € L'Y(Q) is a weak solution of if g(u) €
LY(Q, p*dz) and

/W;M%+¢m@mz/&m veeX,, (5.9)
Q Q

where p(x) = dist(x, Q) and X, C C(RY) is the space of functions & satisfying:

(i) supp(§) C €,
(i1) (—A)*E(x) exists for all x € Q and |(—A)*¢(x)| < C for some C > 0,

(iii) there exist o € L*(Q), p*dx) and g > 0 such that |(—A)*¢| < ¢ a.e. in Q, for
all € € (0, €.

According to Theorem in chapter 4 with g(s) = [s|P"'s and v = kdy, we
have following result for problem (5.1)).

Proposition 5.1.1 Assume that p € (0, ﬁ) Then for any k > 0, problem
admits a unique weak solution uy satisfying

Ga ko] — Gal(Galk6o))?] < ur < Galkdy] in Q. (5.9)

Moreover, (i) uy is positive in €);
(17) {ux}r is a sequence increasing functions, i.e.

up(x) < ugsq(x), VYo e Q. (5.10)

Here G,[] is the Green operator defined by

Galv(x) = /QGQ(:I;,y)dy(y), Yv € M0, p), (5.11)

where G, is the Green kernel of (—A)* in  x Q. By monotonicity of {ug }r,

Uoo(2) = lim u(z), Vo e RY\ {0} (5.12)

k—oo
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and then uy(z) € Ry U {+o00} for x € RV \ {0}.

Our purpose in this chapter is to do further study on the properties of wuy, in-
cluding the regularity and the limit of uy, which is the unique weak solution of (5.1)).

Theorem 5.1.1 Assume that 1 —I—

of (l) and us 1s given by (5.1

Then uy s a classical solution of . Furthermore,
(i) f pe (0,14 %),

~, p € (0, ﬁ), uy, 18 the weak solution

Uso(T) = 00, V€ Q; (5.13)

(it) if pe (1+ 2 N NNQa)
Uoo = Us,

where ug is the solution of satisfying .

The result of part (i) indicates that there is no strongly singular solution to
problem forp € (0,1+ QW‘}), which is different from the result for Laplacian case.
This phenomenon comes from the fact that the fractional Laplacian is a nonlocal
operator, which requires the solution to belong to L'(f2), therefore no barrier can
be constructed for p < 1 + . On the contrary, part (ii) points out that u., is the
least strongly singular solutlon of (5.4).

Next we consider the case 1 + Qﬁ <

V5 —1
4

N<a<l, N=2,3.

In this situation, it is obvious that 2 < 1 —l— . Now we state our second theorem
as following.

Theorem 5.1.2 Assume that 1 + 2 <

of (l) and us 18 given by (5.1

Then uy, s a classical solution of . Furthermore,
(i) if p € (0, 3,), then

N %=, p € (0, ﬁ), uy, 48 the weak solution

Uso(T) = 00, Vo € §;

(17) if p € (1 + QN‘”, NQO‘ ), then us is a classical solution of (n) and there exist
po >0 and cg > 0 such that

(N—2a)p

cole|” T < g < ug, Vo € B,,(0) \ {0}; (5.14)

(1ii) if p = 2a, then us 15 a classical solution of H) and there exist pg > 0 and
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c1 > 0 such that

_(N—2a)p
p—1
o1  <uw<u, V€ B,(0)\ {0} (5.15)
(1 + [log(|z[)[)»=
(i) if p € (%5 7o5a)s then
Uoo = Us,

where ug is the solution of satisfying

We note that Theorem and Theorem do not provide description of

U 1N the region

]
AP N A
w st
x \\\-n,|'
\ A
X R
2 \ SV i,
o SR
ok :
e (I0)
T Wik !
i
LA T,
4 |' 1
/ H I
1
%/ ! P 1
/ !
i i ) i ! o
) Al ) L L 3EF0 | i
> N=3 *
N=2 -

5.2. Preliminaries

The purpose of this section is to give the estimates for G,[(G,[do])?], comparison
principle and stability theorem. We denote by B,.(x) the ball centered at x with
radius r and B, := B,.(0).

Lemma 5.2.1 Assume that Q is a bounded C* domain of RN containing 0 and
r = 1min{l, dist(0,00)}. Then there ewists co > 1 such that

(i) for p € (0, 5%%;).

Gal[(Galdo])’] <2 in B\ {0};
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2c

(”) fOT'p = N_—2a’

Go[(Galdo))P] < —coIn|z| in B, \ {0}

(#i) for p € (N 2a’ NN2a)

Gol(Gald))"] < colarPe=N =29 in B, \ {0}.
Proof. We observe that there exists ¢3 > 1 such that
Ga[do](z) < esla** xa(z), = eRY\{0} (5.16)
and for all z,y € RY with z # y,
Galw,y) < eslr =y xa(z)xaly)-

Then we derive that for x € B, \ {0},

Gol(Galo)))(x) < & [, st v @Y
< C§+1|$|N—(N—2a)(10+1) fB 1‘N72a |z|(N1_2a)de (5.17)

R |2—eqx
R ]
< 64’x‘2a—(N—2a)p(f2m 8—1+2a—(N—2a)pd8 4 1>,

where ¢4 > 1, e, = ‘%' and R = méx,ecs0 |2|-

For p € (0, %), we observe that 2a — (N — 2a)p > 0 and it follows by (5.17)
that for x € B, \ {0},

Gal(GallP)(2) < cafofe V-2 L (Sypectov-2ap 1)
< cs, for some c¢5 > 1.
For p = %%, we observe that 2a — (N — 2a)p = 0 and it follows by (5.17) that

for v € B, \{0}

Gu[(Ga[60))Pl(z) <c f2 s7lds +1)
< —¢Injz|+c4In R+ ¢y.

For p € (7%, 7= ), we observe that 2a — (N — 2a)p < 0 and it derives by

) that for z € B, \ {0},
Ga[(Ga[50]>p]<x> < C4|x|2a—(N—2o¢)p(f2°° S—l+2a—(N—2a)pds + 1)

< 06|x|2a—(N—2a)p7

for some c¢g > 1. The proof is completed. O
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Theorem 5.2.1 Suppose that O is a bounded domain of RY, p > 0, the functions
uy, ug are continuous in O and satisfy

(=A)u; + [ [Py > 0in O and  (—A)%ug + |ug [P uy < 0 in O.

Assume more that uy > uy a.e. in O°.

Then uy > us in O or up = us a.e. in RY.

Proof. The proof refers to [33, Theorem 2.3| (see also [26, Theorem 5.2|). O
The following stability result is given by Theorem 2.2 in [33].

Theorem 5.2.2 Suppose that O is a bounded C? domain and h : R — R is
continuous. Assume that {u,} is a sequence of functions, uniformly bounded in
L0, ), satisfying

(—A)uy, + h(u,) > fn (vesp (=A)%u, + h(u,) < f,) in O

in the viscosity sense, where {f,} are continuous functions in O. If there holds
(1) u, — u locally uniformly in O,

(ii) wn — w in LNRY, s ),

(11i) fn — f locally uniformly in O,

then
(—A)*u+ h(u) > f (resp (=A)*u+h(u) < f) inO

in the viscosily sense.

5.3. Regularity

In this section, we prove that any weak solution of (5.1)) is a classical solution of
(5.4). To this end, we introduce an auxiliary lemma.

Lemma 5.3.1 Assume that w € C***<(By) with € > 0 satisfies
(=A)*w=h in By,
where h € CY(By). Then for 3 € (0,2a), there exists ¢; > 0 such that
lwllos s, ) < erlllwlle s + ey + 1@+ D wlp@y).  (5.18)
Proof. We denote v = wn, where 1 : RY — [0, 1] is a C* function such that
n=1 1in B% and n=0 in BY.
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Then v € C***¢(RY) and for any z € By, € € (0, 1),

o _ (@ +y) —v(z)
(_A>€U(x) - /RN\BS |y|N+2a dy
 _AVw(s (I =n(z+y))w(z +y)
- ( A)e ( )+/RN\BE \y|N+2‘" dy

Together with the fact of n(x +y) = 1 for y € B,, we derive that

et ywaty) , [ Q-nety)waty)
/RN\BS |y[V+2a dy = /RN RS dy =: hy(z),

thus,
<—A)aU = h + hl n B%

For z € By and z € R\ Bs, there holds

=2l 2 ol = Jol 2 |2l — 2 2 (1 + )
z—x| > |z x| > |z 5= 16 Z1),
which implies that
RN ‘z_x’NJrZa = Javs, |Z_$‘N+2a
1

< 16N+2a/ |U)(Z)| d
. v (L 2V

= 16V (L | ).

By [91) Proposition 2.1.9]|, for 8 € (0, 2«), there exists cg > 0 such that

H’U”Cﬁ(BlM) < CS(HUHLOO(RN) + ||k + thL“’(Bl/z))
< es(|wllpesyy + [hllze ) + [hlle(s, )
< cy(lwllpeosyy + 1Bl Loemy + 11+ )N 72w 1 ray),
where cg = 16V12%cg. Combining with w = v in B%, we obtain (|5.18]). a

Theorem 5.3.1 Let o € (0,1) and 0 < p < %M, then the weak solution of
s a classical solution of .

Proof. Let u; be the weak solution of (5.1). By [40, Theorem 1.1, we have

0 < up, = Gulkdy] — Galuh] < Gulkdy). (5.19)
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We observe that G, [kdo] = kGaldo] = kGa(-,0) is C7,.(2\ {0}). Denote by O an

open set satisfying O C Q\ B, with r > 0. Then G,[kdo] is uniformly bounded in

Q\ B, /2, s0 is uj, by (5.19).
Let {g,} be a sequence nonnegative functions in C§°(RY) such that g, — &y in
the distribution sense and let w,, be the solution of

(—A)*u+uP =kg, in £,
u=20 in Q° (5.20)

From [40)], we obtain that

up = nhjEO w, ae.in Q. (5.21)

We observe that 0 < w,, = G,lkg,] — G[w?] < kG,lg,] and G,lg,] converges to
G [00] uniformly in any compact set of 2\ {0} and in L'(£2), then there exists c19 > 0
independent of n such that

[wnllzoo@\B, 2) < cr0k and  |lwy,||L1) < ciok.

By [88, Corollary 2.4] and Lemma [5.3.1} there exist € > 0, § € (0,2«) and positive
constants ci1, ¢12, ¢13 > 0 independent of n and k, such that
lwnllezeseo) < cvtlllwallpom oy + 1kgnll=@y) + llwallos@sy,))
< 012(Hwn||§oo(g\g%) + ||wn\|L°°(Q\Bg) + HanHLOO(Q\B%) + wallzr ()
S 013<k? + k’p)
Therefore, together with (5.21)) and the Arzela-Ascoli Theorem, it follows that uy €
C?%%5(0). This implies that uy, is 23 locally in Q\ {0}. Therefore, w,, — u;, and

gn — 0 uniformly in any compact subset of 2\ {0} as n — oo. We conclude that uy

is a classical solution of (5.4) by Theorem [5.2.2] O

Corollary 5.3.1 Let uy, be the weak solution of and O be an open set satisfying
O C Q\ B, with r > 0. Then there exist ¢ > 0 and ¢4 > 0 independent of k such
that

Juallcanseio) < el + Ienlz=onmg) + el i) (5.22)

Proof. By Theorem5.3.1] uy is a solution of (5.4)). By [88] Corollary 2.4] and Lemma
there exist € > 0, 8 € (0,2a) and ¢15, ¢16 > 0 independent of & such that

lukllczaseio) < ers(llunllzmns,) + lurllos@sy,))

< colllunllzoi@ymyy + lurllim@ny) + lluklzie),
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which ends the proof. O

N’' N—2«a

Theorem 5.3.2 Suppose that p € (1 + 22, ZX) and us, is given by (M} Then
Uso 18 a classical solution of and us < ug in Q\ {0}.

Proof. For p € (1 + QW“, ﬁ), there exists the solution ug of 1} satisfying 1)
Then for any £ > 0, there exists ¢ > 0 such that

up <us in B, \ {0}, (5.23)

where uy, is the solution of (5.1)). By Theorem [5.3.1] wuy is a classical solution of ((5.4]).
It derives by Theorem that

up <us in Q\ {0} (5.24)

It infers that u., < ug in '\ {0}.

Let O be an open set satisfying O C Q\ B, for 0 < r < dist(0,95)). We observe

that us € L'(Q2) and w, is a continuous in 2\ {0}. By (5.22)) and (5.24), there exist
c17,c18 > 0 independent of k£ such that

lugllor) < cir and  |ug||Le@\B,) < Cis.
Thus, there exist € > 0 and c19 > 0 independent of k such that

[ug][c2a+e(0) < cr.

Together with (5.12)) and the Arzela-Ascoli Theorem, it implies that u., belongs to
C?%3(0). Then uy is C?**32 locally in © \ {0}. Therefore, by Theorem [5.2.2 we
conclude that uy, is a classical solution of (5.4). O

5.4. The limit of u; as k — oo

5.4.1. Basic estimates

Let d = min{1, dist(0,0Q)} and {r} C (0, 2] be a strictly decreasing sequence of
numbers satisfying limy_,, rx = 0. Denote by {z;} the sequence of functions defined

by
(2) —dV, x € By, (5.25)
ZpL\T) = .
: o[ N —dN, zeBe.
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Lemma 5.4.1 Let {pi} be a strictly decreasing sequence of numbers such that ;—’; <
1

5 and limy_ ;—’; = 0. Then

(—A)*z(z) < —cl7k|x]*N*2a, Vz € By,

where ¢1 ) = —c ln(;—z) with coq > 0 independent of k.

Proof. For any = € By , there holds

(—A)2(z) = 1 /RN zr(r +y) +z(r —y) — QZk(f)dy

2 |y|N+2a
B 1/ |x+y|‘Nngk<_$>(y)+Ifc—yl‘Nngkm(y)—2|fv|‘Nd
2 gy |y | Ve Y
Lo N2 oz, 2,m)
— = a [ DSk g
slel o [ S

where 8(z, 2.74) = |2 + €4V Xt, (en)(2) + 2 — el X, (00)(2) — 2 and €, = £
Tz| Tz|

We observe that ‘%’“' < ;—’Z < % and |z £ e,| >1— 2] > % for z € B%, then there
exists cg; > 0 such that
16(z, z,r1)| = ||z +eal ™ 412 —ea| ™ — 2| < o]z

Therefore,

Oz, 2, 1) |0(z, 2, 78]
I
By (0) 2| B4 (0) |2]

1
2
< 021/ 227Nz < e,
B%(O)

where c99 > 0 is independent of k.
For z € B%(—ez), there holds

+e$|7NXBr —e (Z) -2

5 |2 7y (—e)

/ —(LZ’rk)dZ > / l=| dz
Bi(—ea) B9 (—ez)

|Z|N+20¢ — |Z|N+2a
} }

623/ (|z|_N —2)dz
By (0\Bry 0)

Tk
x

—C4In (r—k) > —Co4ln (r—k> )
x| Pk
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where co3, co4 > 0 are independent of k.
For z € B; (ex), we have that

/ oz, 2z Tk)dz :/ §(x,z,rk)dz
31 (ex) ’Z|N+2a B%(—ez) ‘Z’N+2a

Finally, for 2 € O := RY \ (B1(0) U Bi(—€;) U Bi(es)), we obtain that

1
2

T, 2, rk |27V +1
‘/ ’Z’N+2a 2| < e /Bcl(o) 2[N+2a dz < c26,
2

where co5, co6 > 0 are independent of k.

Combining these inequalities we obtain that there exists ¢y > 0 independent of k
such that for x € By, .

(=) 2 () |2V < ezpln <T—k> = —C1k,
Pk

which ends the proof. a

Proposition 5.4.1 Assume that

2 2
© 1422 max{1

a 20
1+ — 5.26
N3 NG a}<p< + (5.26)

"N -2 N

and zy, is defined by (5.25)) with ry = f~ Nty (Ink)=2. Then there exists ko > 3
such that for any k > ko,

1

ukZCﬁzk in By, (5.27)

where ca ) = coolnlnk and the constant cy is from Lemma [5.4.1]

Proof. For p € (max{1, %%}, 1+ %), it follows by (??) and Lemma/.2.1{(447) that
there exist py € (0,d) and ca7, cag > 0 independent of k such that, for z € B, \ {0},

kGa[do](z) — K Ga[(Galdo])?](2)

|7N+2a . C28kp|x|7(N72a)p+2a

ug(r) =

> corkl|z

= cork]z| TN Y2(1 — Eﬁkp—1|x|N—(N—2a)p)'
27

We choose -
pr =k N2 (Ink) !, (5.28)
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then there exists k; > 3 such that for k£ > kq,

up(z) > corklz)NT2(1 — Cﬁk?—lpi\f—(N—Za)p)

Ca7
> %k|x|—N+2a, € B, \ {0}. (5.29)
Since p < 1 + %a, then 1 — % > 0 and there exists kg > k; such that
%kria > (g0 Inln k;)p%l, (5.30)

for k > ko. Thus,

%km?a > (coolnlnk)77, z€B, \B,.

Together with and (5.29)), we derive that
ug(x) > (co0Inln k‘)ﬁzk(x), z € B, \ B,,,
for k > ky. Furthermore, it is clear that
(co0Inln k)pfllzk <0<w, in B, UDBj.

Set ¢y = cooInlnk, then by Lemma [5.4.1]

1 _p_ _p_
(~A)° ey 2ul@) + by an(@) < el al N (=1 [N < 0

— I

for any « € By \ B,,, since N +2a — Np > 0 and d < 1. Applying Theorem [5.2.1]

we infer that )

csy zk(r) Sug(w), Vo € By,

which ends the proof. O
Proposition 5.4.2 Assume that

2 2 2
a <1+—aandp: a

1
S N_2a N N — 24

(5.31)
and z, is defined by with r, = k= NIV 2w (Ink)=3. Then there exists ko > 3
such that holds for all k > k.

Proof. By (5.9) and Lemma [5.2.1](éi), there exist py € (0,d) and c39, 31 > 0 inde-
pendent of k such that for x € B, \ {0},

C
wp(z) > csok|z] N2 4 e kP In |z| = okl N1 + C—?’lkp—1|g;|N—2a In|z|].
30
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Choosmg pr = k- Nv-za) T(Ink)~2, there exists k; > 3 such that for k > ki, 1+

c31 1.p—1 —2« 1
C30/’{ pk Inp, > 3 L and

w(z) > ?Mxrwa, Yz € B, \ {0}. (5.32)

Since 7%= <1 + , there holds 1 — N(?VLEM) > 0 and there exists kg > ky such that
%kr;ﬁa = zﬂkl_m(ln k)5 > (cyInln k:)ﬁ

for k > ko. The remaining of the proof is the same as in Proposition [5.4.1] O

Proposition 5.4.3 Assume that

1o 2 142 g 1<pe 2 (5.33)
N—2a—- "N ™ P=NTou '
o 9 9 N
(8] (0%
1+ 22 d 1 - 5.34
+N<N 5o an <p<2a, ( )

and zj, s defined by with r, = k_N—;'w(ln k)~L. Then there erists ko > 3 such
that holds for all k > k.

Proof. By (5.9) and Lemma [5.2.1{(4), there exist py € (0,d) and c33,c34 > 0 inde-
pendent of k such that for x € B,, \ {0},

up(z) > csskl|o| VTR — cagkt

= cggk]a:\_N“O‘ (1 — ?k‘p_l\xw_?a) .
33

Choosing p, = k~ Np:21a, there exists k; > 3 such that for k£ > ky, 1—22—‘3‘]{:1’_1,02\[_26“ > %
and

C—;3k|m|-N+2a, vz € B, \ {0}. (5.35)

< 1 + , then 1+ 2—"‘ < It infers by that

> ky such that

up(x) >

We observe that 1f
p <2 thus1—(p —1)

1

C;?’k: o — ngkl (P15 (Ink)™2* > (cyoInln k:)p 1= cﬂl

for k > ko. The remaining of the proof is the same as in Proposition [5.4.1] 0
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5.4.2. Uy blows up in whole 2

Proof of Theorem [5.1.1fi) and Theorem [5.1.2(i). We first prove the case
€ (0,1]. We observe that G,[do], Go[(Galdo])?] > 0 in Q. It derives by (5.9) that

i > kGa 0] — K Ga[(Galdo))?].

Then limy_,o ux = 00 in  for p € (0,1). For p = 1, we see that uy = ku;. Then
limyg_ o0 up = 00 in 2 by the fact that u; > 0 in €.

We next prove Uy =00 in Qwhenp € (1,1+32) if 1+2 > &

—and p € (1, %)

if 14 2—a < v55- The proof is divided into two steps.

Step 1: We claim that u,, = oo in By. We observe that for 1 + N %o Propo-
sitions [5.4.1} (5.4.2] |5 4.3| cover the region p € (méx{1, :%%:}, 1 + 20‘) the region
1 < N2°‘2 <1+ O‘ along with p = NQ_O‘a and the reglon 1 < NQ_O‘QQ <1+ QWQ

along with p € (1, 7 2 ) respectively. For %= = 1+ 22, Proposition covers
the reglon p € (1,2 e %=)- So it covers p € (1,1 + 20‘] in Theorem - palt (7).

When 2%~ > 1+ 22, Proposition covers p € (1, 45) in Theorem - part (7).
Therefore We have that

1
Uoo > Ch7' 2, In By
1
and since for any = € By \ {0}, limy_o 7' zx(x) = 0o, we derive that

Uy =00 In By, (5.36)

Step 2: We claim that us = oo in 2. By the fact of us = 0o in By and ugyq > ug
in €2, then for any n > 1 there exists k, > 0 such that u;, > n in B;. For any
zo € Q\ By, there exists p > 0 such that B,(z¢) C QN By, We denote by w,, the

solution of
(=A)*u+uP =0 in By(xg),

u=0 in B;(IEU) \ Bd/g, (537)
u=mn in Bgps.

Then by Theorem we have that
Ug, = Wy (5.38)
Let v, = w, —nxa,,, then v, = w, in B,(x¢) and
(=A)%n(z) +vp(z) = (=A)%wn(x) —n(=A)"XB,,, () + w)(z)

dy
= n — Vo € B,(xo),
/Bd/2 |y _ x|N+2a p
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that is, v,, is a solution of

dy
Cayusa—n [ Mo i Byla)
Bays 1Y — T[N F2 ’ (5.39)
u=0 in  B(zo).

By direct computation,

1 / dy
— < ———— < ¢35, Vre B,(x),
Cas Baya |y — z|N+2a 35 »(Z0)

for some ¢35 > 1.
Let 7, be the solution of
(=A)*u =1 in B,(zo),
u=0 in Bg(x)

and then (W)%m is sub solution of (5.39) for n large enough. Then it infers
by Theorem that

n 1
e Vo € B,(zo),

T (R —
"= 2c35 max

which implies that

n 1
n 2 (g———=—)"M, Vz €B .
Wn = 2c35 Max 771) n v p(ZL"o)
Then by (5:35),
lim wuyg, (z) > lim w,(zq) = 0.
n—o0 n—oo
Since x¢ is arbitrary in Q \ By and combine with (5.36)), it implies that u, = oo in
Q. O

5.4.3. Uy 1s a strongly singular solution

Proposition 5.4.4 Let 1o = dist(0,090). Then
(1) if max{1+ 22 221 <p< %&w there exist Ry € (0,7r9) and c3g > 0 such that

N’ N-2a
Uoo(T) > c36lz| 7T, Va € Bp, \ {0} (5.40)

(17) if Na‘ga > 1+ %a and p = N%‘éa, there exist Ry € (0,79) and c37 > 0 such that
Uso(T) > il — |x]_p(1::12a>, Vx € Bg, \ {0}; (5.41)

(1 + [log(lz[)])7
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(i17) if 2% > 1422 and p € (1+ 22, 2%-), there exist Ry € (0,70) and css > 0

N—2« N’ N—-2«a
such that .
Uoo(T) > cglz|” 771, Vx € Bg, \ {0}. (5.42)

Proof. (i) Using 1} and Lemma (z) with max{1 + 2, 23-} < p < o5,
then there exist py € (0,79) and csg, 49 > 0 such that

() > csokl|z| TV — cyokP|a| TV 20)pt20 Va € B,, \ {0}. (5.43)
Set )
Pp = (2(N2a)p2alaﬂkp1> (N2l =2e . (5.44)
€39

Since (N — 2a)(p — 1) — 2a < 0, there holds limy_, pr = 0. Let ko > 0 such that
Pry < po, then for x € B, \B%k, we have that

—(N—2a)p+2a
C4Okp‘$’*(N*2a)p+2a < cpohk? (@)

- 2
c c
_ ﬁkp’;N—&Qa S ﬂk‘x’—N-‘ﬂa
2 2
and
1 ,
C r—1 N_-2aq— 2% a
"= (2(N2°‘)p2a1ﬂ> b T C41‘1”N_2a_p2j,
C39
1
-1 PR .
where ¢4 = <2(N_2a)p_2a_lgl—g> " 9(N=20)(p=1)=2a=1 " Combining with (5.40)), we

obtain that

wp(x) = caoklr| N2 — C4Okp‘l.’—(N—2a)p+2a
> C%kLTliNJrZa > C42|l'|_172%1’ (545)

forz € B, \B%k, where c49 = c39¢41/2 is independent of k. By 1) we can choose
a sequence {k,} C [1,+00) such that

1
pkn+1 Z §pkn *

For any x € By, \ {0}, there exists k, such that z € B, \B%Tn, then by 1}
_2a
Uk, (T) = Cazlz| 77T,
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Together with ugy 1 > ug, we derive that

_ 20
Uso(2) = calz| 7T, x € B, \{0}.

(77) By 1} and Lemma m(m) with p = 22—, there exist py € (0,79) and
C43, caq > 0 such that

ug(z) > c43k|x|_N+2O‘ —cuk?|Inlz||, =z € B, \{0}. (5.46)

Let {px} be a sequence of real numbers with value in (0, 1) and such that

cuk? ! 1n (%) | = %p;N“a. (5.47)

Then limy_,o pr = 0 and there exists ky > 0 such that py, < po. Thus, for any
xEBpk\B%k and k > ko,

cask?| In |z|| < cpqkP|In (%) | = %k‘p;N“a < Céﬁk|a:|_N+2°‘.

For any x € B,, \ By, we derive from 1) that

k (044 )—’)11 ( P ) > o]
=\ T = C45 ;

2cis L+ [In py (14| In |z )7

_ N—2« _ 1
where g5 =27 771 (524)77T. As a consequence,
up(z) > casklz| VT2 — cygkP| In 2|
| |_p(N—12a)
=
> DN > 1T - (5.48)
2 (14 Iz

where c¢46 = c43¢45/2 is independent of k.

By (5.47), we can choose a sequence {k,} C [1,400) such that

1
pkn+1 Z §pkn

Then for any = € B,, \ {0}, there exists k, such that x € B, "\ Bkan. By 1)
there holds

_ p(N—2a)
o]~

(14 [lu fe))7

Uk, () > ¢4
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Together with ugy 1 > ug, we infer

_p(N—2a)
o]

_1
(14 [In || ]) 7=

Uoo(T) > ca6 , vz € B, \{0}.

(iii) By (5.9) and Lemmal5.2.1(7ii) with p € (1+3¢, 5255 ), there exist py € (0,70)

and Caz,Cag > 0 such that
ug(z) > cark|z| N2 — cygkP, Vo e B,, \ {0}. (5.49)

Set

1

“N—2a
%z(ﬂufﬁ | (5.50)

2047

then limy oo pr = 0 and there exists ky > 0 such that pg, < po. Therefore, for
r € B, \ Bey. and k > ko, there holds

c c
Cagh? = ngENHa < §k|x‘—N+2a

)

which, along with (5.50)), yields

cag \ T A=z oz
k‘( ) T > elal Y

2cy7
_ N-2a _ 1
where ci9 = 27 771 (522)7 71, Thus,
—N+2a _ P Cat —N+2a
ur(x) > cyrk|x| cagk? > 5 k|x|
> 050|$|7%(N72a), (5.51)

where c50 = c47¢49/2 is independent of k.
By (5.50), we can choose a sequence {k,} C [1,+00) such that

1
Pkyi1 2 §pkn7

Then for any x € B, \ {0}, there exists k, such that z € B, \ Bs, and then by
(5.51)),

(N—2a)
U () > esplz| 0

Together with ug 1 > ug, we have

p(N—2a)

Uoo(z) 2 csolx|” 77T, Vo€ B, \{0},
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which ends the proof. O

Proof of Theorem [5.1.1] (ii) and Theorem [5.1.2] (iv). By Theorem [5.3.2] we
obtain that u., is a classical solution of (5.4)) and u., < ugin Q\{0}. By Proposition
5.4.4((), there exist csq, Ry > 0 such that

036]93|7% < Uw() < us(z), =€ Bg, \ {0}.

Then u., = ug, since u, is unique in the class of solutions satisfying (5.6)).
(Il

Proof of Theorem [5.1.2](ii) and (iii). By Theorem U is a classical solution
of (77) and it satisfies
Uso <us in QN {0}

Then (5.15) and (5.14) follow by Proposition [5.4.4] (4) and (ii7), respectively.
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Capitulo 6

Semilinear fractional elliptic
equations with gradient nonlinearity
involving measures

Abstract: in this chapter , we study the existence of solutions to the fractional
elliptic equation (E1) (—=A)%u + €g(|]Vu|) = v in a bounded regular domain 2
of RV(N > 2), subject to the condition (E2) v = 0 in Q¢, where ¢ = 1 or —1,
(—A)® denotes the fractional Laplacian with o € (1/2,1), v is a Radon measure
and g : R, — R, is a continuous function. We prove the existence of weak solutions
for problem (E1)-(E2) when ¢ is subcritical. Furthermore, the asymptotic behavior
and uniqueness of solutions are described when e = 1, v is a Dirac mass and g(s) = s”

with p € (0, 55577)-

6.1. Introduction

Let Q € RY(N > 2) be an open bounded C? domain and g : R, — R, be a
continuous function. The purpose of this chapter is to study the existence of weak
solutions to the semilinear fractional elliptic problem with o € (1/2,1),

(=A)*u+eg(|Vu|) =v in €,

6.1
u=0 1in Q°, (6.1)

!This chapter is based on the paper: H. Chen and L. Véron, Semilinear fractional elliptic
equations with gradient nonlinearity involving measures, accepted by Journal of Functional Analysis
(2013).
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where € = 1 or —1 and v € M(, p?) with B € [0,2a — 1). Here p(x) = dist(x, )
and M (Q, p?) is the space of Radon measures in ) satisfying

/pﬁdlyl < +o0. (6.2)
Q

In particular, we denote 9°(Q) = (S, p°). The associated positive cones are re-
spectively (2, p®) and MY (). According to the value of €, we speak of an ab-
sorbing nonlinearity the case ¢ = 1 and a source nonlinearity the case ¢ = —1. The
operator (—A)® is the fractional Laplacian defined as

(—A)*u(z) = lim (~A)¢u(z),

€
e—0t

where for ¢ > 0,

-8y = [ wle) ~ o) (o~ 2)da (6.3)

N |z—x|N+2axe
and
oo [0 it teloe
A BT

In a pioneering work, Brezis [16] (also see Bénilan and Brezis [10]) studied the
existence and uniqueness of the solution to the semilinear Dirichlet elliptic problem

—Au+h(u)=v in £,

6.4
u=0 on 09, (6.4)

where v is a bounded measure in 2 and the function h is nondecreasing, positive on
(0,400) and satisfies that

/1 " (h(s) — h(—s))s2¥ds < +oo.

Later on, Véron [I01] improved this result in replacing the Laplacian by more general
uniformly elliptic second order differential operator, where v € (), p?) with 5 €
[0,1] and h is a nondecreasing function satisfying

_gN+p8-1

/1 " (hs) = h(—s))s N5 ds < oo,

The general semilinear elliptic problems involving measures such as the equations
involving boundary measures have been intensively studied; it was initiated by Gmi-
ra and Véron [62] and then this subject has being extended in various ways, see
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[13, 14, [76, [77, [78, [79] for details and [80] for a general panorama. In a recent work,
Nguyen-Phuoc and Véron [82] obtained the existence of solutions to the viscous
Hamilton-Jacobi equation

—Au+ h(|Vu]) =v in Q,

6.5
u=0 on 09, (6.5)

when v € 9MY(Q), h is a continuous nondecreasing function vanishing at 0 which
satisfies

+0o0 2N-—-1
/ h(s)s™ N-1ds < +o0.
1

More recently, Bidaut-Véron, Garcia-Huidobro and Véron in [12] studied the exis-
tence of solutions to the Dirichlet problem

—Apju+e€eVul?=v, in Q

(6.6)
u=0, on 0Jf,

with 1 <p< N,e=1or —1, ¢ >0 and v € M(Q).

During the last years there has also been a renewed and increasing interest in the
study of linear and nonlinear integro-differential operators, especially, the fractional
Laplacian, motivated by great applications in physics and by important links on the
theory of Lévy processes, refer to [26] 39 [40, B3] 54, 88, O], ©92]. Many estimates
of its Green kernel and generation formula can be found in the references |15, B7].
Recently, Chen and Véron [40] studied the semilinear fractional elliptic equation

(=A)*u+h(u) =v in £,

6.7
u=0 1in Q°, (6.7

where v € MM(Q, p?) with 3 € [0, a]. We proved the existence and uniqueness of the
solution to (6.7) when the function A is nondecreasing and satisfies

+o00
/1 (h(s) — h(—s))s_l_k“ﬁds < 400,

where

o i pel0, 5],
kaﬁ: {N2a [ N ] (68)

N+ : N-2
Nooars pe (7, al

Our interest in this chapter is to investigate the existence of weak solutions to
fractional equations involving nonlinearity in the gradient term and with Radon
measure. In order the fractional Laplacian be the dominant operator in terms of
order of differentiation, it is natural to assume that o € (1/2,1).
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Definition 6.1.1 We say that u is a weak solution of (6.1), if u € L*(), |Vu| €
Lioe(2), 9(IVul) € LY(, p*dz) and

loc

/[u(—A)af + eg(|Vul|)¢]dx = / Edv, VEeX,, (6.9)
Q Q

where X, C C(RYN) is the space of functions & satisfying:
(i) supp(§) C 2,
(11) (—A)*¢(x) exists for all x € Q and |(—A)*¢(x)| < C for some C > 0,

(iii) there exist ¢ € LY(Q, p*dx) and g9 > 0 such that |(—A)%E| < ¢ a.e. in Q, for
all € € (0, 0.

We denote by G, the Green kernel of (—A)® in Q and by G,[.] the associated
Green operator defined by

Galv|(x) = /QGOC({E, y)dv(y), Vv e M, p%). (6.10)

Using bounds of G,[v], we obtain in section 6.2 some crucial estimates which will
play an important role in our construction of weak solutions. Our main result in the
case € = 1 is the following.

Theorem 6.1.1 Assume that e = 1 and g : R, — R, is a continuous function
verifying g(0) = 0 and

+oo
/ g(s)s™ 1 Pads < 400, (6.11)
1
where N
N ——— 6.12
Pa =N 00 +1 (6.12)

Then for any v € M (Q, p°) with 3 € [0,2a—1), problem admits a nonnegative
weak solution u, which satisfies

u, < GVl (6.13)

As in the case a = 1, uniqueness remains an open question. We remark that the
critical value p?, is independent of 8. A similar fact was first observed when dealing
with problem (6.7)) where the critical value k, g defined by does not depend on

B when 3 € [0, 55*%al.

When € = —1, we have to consider the critical value p;, ; which depends truly on
[ and is expressed by

. N
Pos = N "2a+1+5

(6.14)
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We observe that pj,, = p;, and pj, ; < p;, when § > 0. In the source case, the
assumptions on g are of a different nature from in the absorption case, namely
(G) g : Ry — R, is a continuous function which satisfies

g(s) <188 + 09, Vs >0, (6.15)

for some p € (0,p}, 5), where ¢; > 0 and o > 0.

Our main result concerning the source case is the following.

Theorem 6.1.2 Assume that e = —1, v € M(, p°) with B € [0,2a — 1) is non-
negative, g satisfies (G) and

(i) p € (0,1), or

(i1) p =1 and ¢ is small enough, or

(i) p € (1,p 5), o0 and ||v|[aneq,pe) are small enough.

Then problem admits a weak nonnegative solution wu, which satisfies

Uy > Gao[v]. (6.16)

In the last section of this chapter, we assume that {2 contains 0 and give pointwise
estimates of the positive solutions

(=A)*u+ |VulP =6 in €,

6.17
u=0 in Q° ( )

when 0 < p < p¥. Combining properties of the Riesz kernel with a bootstrap argu-
ment, we prove that any weak solution of (6.17) is regular outside 0 and is actually
a classical solution of

(—A)*u+|VulP =0 in Q)\{0},

6.18
u=0 in Q°. ( )

These pointwise estimates are quite easy to establish in the case a = 1, but much
more delicate when the diffusion operator is non-local. We give sharp asymptotics
of the behaviour of v near 0 and prove that the solution of is unique in the
class of positive solutions.

Aknowledgements. The authors are grateful to Marie-Francoise Bidaut-Véron for
useful discussions in the preparation of this work.
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6.2. Preliminaries

6.2.1. Marcinkiewicz type estimates

In this subsection, we recall some definitions and properties of Marcinkiewicz
spaces.

Definition 6.2.1 Let © C RY be a domain and p be a positive Borel measure in
©. Fork > 1,k =k/(k—1) and u € L}, (0, du), we set

loc

1
||| ax (0,40 = Inf {c € [0,00] : / luldp < ¢ (/ d,u) " , VECO, F Borel}
E E
(6.19)

and
M*(©,du) = {u € L,.(0,dp) : ||ullam(o.am < oo} (6.20)

M"(O,dp) is called the Marcinkiewicz space of exponent k, or weak L"-space
and ||.|[arx(0,4p) is & quasi-norm.

Proposition 6.2.1 [11], [{3] Assume that 1 < ¢ < kK < 00 and v € L, .(©,dp).
Then there exists c3 > 0 dependent of q, k such that

1—q/k
[ 1ulodi < il ([ an)
E E
for any Borel set E of ©.
The next estimate is the key-stone in the proof of Theorem

Proposition 6.2.2 Let Q C RY (N > 2) be a bounded C* domain and v €
M(Q, p°) with 3 € [0,2a — 1]. Then there exists cy > 0 such that

||VGa[|V|]||MpE(Q,padx) < CQH’/”DJI(Q,pﬁ)» (6.21)

where VG, [|v|](x) = / V.Golz,y)dv(y)| and p, is given by (6.12).
Q

Proof. For A > 0 and y € ), we set

waly) = {2 € Q\ {y} : [V, Gale, )] p*(2) > A}, maly) = / dr.

wx(y)
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From [37], there exists ¢4 > 0 such that for any (z,y) € Q x Q with = # v,

1 p*(z) P (y) } |

[z —y|N72 o — y N | — y [N

Gaolz,y) < ¢ymin { (6.22)

P (y)
p(z)|x — y|N-2e’

Ga(m7y) S Cy

and by Corollary 3.3 in [15], we have

V.Galz,y)| < NGa(z,y) méx{lxiyl,ﬁ}. (6.23)

This implies that for any 7 € [0, 1]

)y @) )177:C4pm(y)pa“‘”(w)

Golz,y) < C4(|x_y|N—a |z — y[No |z —y|N-e

Y

and then

. ) P (y)p* 7 (x)
< ) .24
|V$Ga(m7y)| e — C5 max{pa(m)lx —y|N72a+17 |x _y|N7a (6 )

2a—1 N-—-«

N—2a+1 S (O, 1)7 we derive

Letting 7 =

(2a—1)(1—a)

1—a 2a—D(N—o) N—2a+1

P Y)pg ¢ p N (Y)pg
’x_y’N72a+l’ ‘x_y‘Nfa

2a—1(

|VxGa(x7 y)lpa<x) < ¢ max

where po = sup,cq p(z). There exists some ¢g > 0 such that
wi(y) C {x €EQ:|z—yl < cﬁp#ﬁl(y) méx{)fmj)ﬁﬁ}} .
By N —2a+ 1> N — a, we deduce that for any A\ > 1, there holds
wa(y) C{x ez —y| < cﬁp#jﬂ(y)A_m}. (6.25)

As a consequence,
ma(y) < ezpP*HPa (y) A Pa,

where ¢; > 0 independent of y and .
Let E C Q2 be a Borel set and A > 1, then

/ VoGl )™ (@)dr < / VoG, )™ (@)dz + A / dr.
E wx(y) E
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Noting that

| WG = [ sam)
wa(y)
= dmy(y / ms(y
< p(2a 1p )\1 pa

for some cg > 0, we derive

/ VaGalz,y)|p" (x)de < csp® P (y) AP0 4 / da.
E

E

Choosing A = p**~(y)( [, dx)_% yields
—1

[ 9Gale )l )i < (e + 07 ) [ a5, vy e

E

Therefore,
[ v p@l @i = [ [ [9.Gale.p)lp" @) dadlon)
< [0 (20 [ 19.Gaals e i)

ph-1
P&
< (08+1)/p'3(y)02“1B(y)d!V(y)\ </ dw)
Q E
pa—1
L 23
< (ot DA Wl ([ a0)
E
(6.26)
As a consequence,
IVGal[v [l ara @,p0a0) < 2l llancepo),
which ends the proof. O

Proposition 6.2.3 [/0] Assume that v € L*(Q, p°dz) with 0 < 8 < . Then for
pe (1, #W), there exists co > 0 such that for any v € LY(Q, p°dx)

|Galv]|lwaea—w) < collV]l L1 @,ppan (6.27)

wherep/:p%l,vzﬁ—k%ifﬁ>0and7>§z’fﬁzo_
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Proposition 6.2.4 If0 < 8 < 2a — 1, then the mapping v — |VG,[V]| is compact
from L'(2, pPdzx) into LYQ) for any q € [1,p}, 3) and there exists c1o > 0 such that

(/ ]VGQ[V](:E)\QCZ.%) ' < 010/ \v(x)|p? (z)dx, (6.28)
Q Q
where py, 5 is given by .

Proof. For v € L'(Q, p?dz) with 0 < 8 < 2a — 1 < a , we obtain from Proposition
[6.2.3] that
Galv] € W17(Q),

where p € (1,p}, 3) and 2a — v > 1. Therefore, [VG,[v]| € W?*77717(Q) and
HVGQ[V]HWQCI—’Y—L;)(Q) S CQ‘|VHL1(Q,pﬁdz)' (629)

By [49, Corollary 7.2], the embedding of W2*=7=1r(Q) into L?()) is compact for

q € [1, %) When ﬁ > O,
Np _ Np
N—Q2a—y-1)p  N-(a-B-N=L—1)p
J— N — ¥
T N-2a+1+p8 PeF
When g =0,
) Np Np
lim = —
=3+ N=Q2a—y=1)p  N-(2a-NEZ—1)p

Then the mapping v — |VG,[v]| is compact from L'(€2, pdx) into L(Q) for any
q € [1,p}, 5)- Inequality (6.28) follows by (6.29) and the continuity of the embedding
of W2e=7=1Lr(Q) into LI(Q). O

Remark 6.2.1 If v € L'(Q, pPdx) with 0 < B < 2a — 1 and u is the solution of

(=A)*u=v in €,
u=0 1in Q°,

then for any q € [1,p}, 5),

(/Q\Vu\qu)é < Clo/ﬂ’”(ﬂf)!pﬁ(x)dx.
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6.2.2. Classical solutions

In this subsection we consider the question of existence of classical solutions to

problem
(—A)*u+ h(|]Vu|) = f in Q,

6.30
u=0 1in Q°. ( )

Theorem 6.2.1 Assume h € C*(R.)NL>(R,) for some 6 € (0,1] and f € C9().
Then problem admits a unique classical solution u. Moreover,

(2) if f —h(0) >0 in 2, then u > 0;

(17) the mappings h — w and f +— w are respectively nonincreasing and nondecreas-

mg.

Proof. We divide the proof into several steps.
Step 1. Existence. We define the operator T' by

Tu=Gg[f —h(|Vul)], Yue W, ().

Using (6.24) with 7 = 0 yields
ITulwrse < IGalfllwra + 1Galh((Vul] o
< (I lzeg) + 1AV L) |l /QGa(wy)dyHWu(m
= fn (||f||L°°(Q) + Hh”L‘”(R+)) ) (6.31)

where ¢1 = || [, Ga(-,¥)dyllwir(q). Thus T' maps Wy (Q) into itself. Clearly, if
U, — uin Wy''(Q) as n — oo, then h(|Vu,|) — h(|Vu|) in L*(Q), thus T is
continuous. We claim that 7" is a compact operator. In fact, for u € WOI’I(Q), we
see that f — h(|Vu|) € L'(Q) and then, by Proposition [6.2.3] it implies that Tu €
W 7P(Q) where v € (w, 2a0—1) and 20 — 1 > W > 0 for p € (1, ﬁaﬂ)
Since the embedding W "?(Q) < W, () is compact, T is a compact operator.

Let O = {u € Wy () : ulwir) < cwolllflle@) + [1hlle(e,)) }, which is a
closed and convex set of W, "' (Q). Combining with (6.31)), there holds

T(0) CO.

It follows by Schauder’s fixed point theorem that there exists some u € W, (Q)
such that T'u = u.

Next we show that u is a classical solution of (6.30). Let open set O satisfy
O C O C Q. By Proposition 2.3 in [88], for any o € (0,2«), there exists ¢;o > 0
such that

ullco 0y < cra{ IR([Vul)| Loy + | fllzo) )}
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and by choosing o = 22 € (1,2a), then

IVulllgo-(0y < craf A Vul) @) + [ £l @},

and then applied [88, Corollary 2.4|, u is C?*T< locally in Q for some €y > 0. Then
u is a classical solution of (6.30]). Moreover, from [40], we have

/Q (=AY + h(| V)€ dz = /Q cfdr, VEEX,. (6.32)

Step 2. Proof of (7). If u is not nonnegative, then there exists xy € {2 such that

u(wo) = minu(z) <0,

then Vu(zg) = 0 and (—A)%u(xy) < 0. Since u is the classical solution of (6.30)),
(—A)*u(zg) = f(xo) — h(0) > 0, which is a contradiction.

Step 3. Proof of (ii). We just give the proof of the first argument, the proof of the
second being similar. Let h; and hs satisfy our hypotheses for A and h; < hs. Denote
uy and wus the solutions of with h replaced by h; and hs respectively. If there
exists xy € ) such that

(w1 = us)(2o) = min{ (uy —uz)(z)} <0.

Then
(—A)*(ug —ug)(z9) <0, Vui(xg) = Vug(zo).

This implies
(—A)*(up — ug) (o) + h1(|Vur(zo)]) — ho(|Vua(zo)|) < 0. (6.33)
However,
(=A)*(ur = uz)(wo) + ha([Vuar(o)]) — ha(|Vua(zo)]) = f(x0) — f(20) =0,

contradiction. Then u; > us.

Uniqueness follows from Step 3. O

6.3. Proof of Theorems [6.1.1] and [6.1.2]

6.3.1. The absorption case

In this subsection, we prove the existence of a weak solution to (6.1) when e = 1.
To this end, we give below an auxiliary lemma.
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Lemma 6.3.1 Assume that g : Ry — R, is continuous and holds with p,.
Then there is a sequence real positive numbers {T,,} such that

lim T, =oco and lim g(T,)T; 7P~ = 0.

n—o0 n—oo

Proof. Let {s,} be a sequence of real positive numbers converging to co. We observe

28n 2sp
/ g(t)t 7 Padt > min g(t)(2s,) " Pe / dt
Sn Sn

tE[Sn 25n]
* d
— 2717Pag Pa min  g(t)
t€[sn,25n]

and by (610),

28n

lfm g(t)t™ " Padt = 0.
n—oo Sn

Then we choose T}, € [sy, 2s,] such that g(7},) = mines, 25, 9(¢) and then the claim
follows. O

Proof of Theorem Let § € [0,2c — 1), we define the space

Cs() ={¢eC(Q): p7¢CeC(Q)}
endowed with the norm

1<y = llp 7BCHC

Let {v,} C C"'(€2) be a sequence of nonnegative functions such that v,, — v in sense
of duality with Cs(Q2), that is,

lim Cyndx = / Cdv, V¢ € Cs(9). (6.34)

n—oo

By the Banach-Steinhaus Theorem, ||ty |lonq ey is bounded independently of n. We
consider a sequence {g,} of C' nonnegative functions defined on R, such that
gn(0) =0 and

n < Gnt1 < g, sup go(s) =n and Iim gn — gllze ) = 0. (6.35)

l
seRy ¢

By Theorem [6.2.1} there exists a unique nonnegative solution w, of (6.1 with data
v, and g, instead of v and g, and there holds

/ (tn + 90|Vt ) do = / vamdz < Cllv |, (6.36)
Q Q
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where 7, = G4[1]. Therefore, ||g,(|Vun|)|lm,po) is bounded independently of n. For

e>0and & = (m+ 5)§ —e% € X, which is concave in the interval [0, 71 (@)], where
M (0) = méxgeqm(x). By [40, Lemma 2.3 (ii)], we see that

ﬂ(ﬁ— a)

Q-

(=A)%: = (=A)%m -

———(m +5) @

(771 + 8) /Q (771(19) - 771(1’)>2dy

‘y _ x‘N+2a

B—«

(m+e) =,

QIQ QIQ

and & € X,,. Since

/ (tn(— A6 + o[Vt |)E2) di = / E.vnd,
Q Q

we obtain

/(6%(?714—8) + gn(|Vua| )& )d:c</§51/ndx

Q
If we let € — 0, it yields

B i 8
/ ( Unty * + gn([Vun|)ni )dm < / ng vpda.
o\ Q

Using [40, Lemma 2.3, we derive the estimate
/ (unp™ + gu(IVun|)p”) d < cxsl|vallanca,ps) < crallvllm p)- (6.37)
0

Thus {g,,(|]Vu,|)} is uniformly bounded in (€, p’dz). Since u,, = G[v,,—gn(|Vun,|)],
there holds

H’VUnWMPZ(Q,padx) < HVanmm,pﬂ)JrHgn(wun’)Hm(Q,pﬂ)
< cisl|vllm,ps)-
Since v, — gn(|V,|) is uniformly bounded in L(Q, p®dz), we use Proposition [6.2.4]
to obtain that the sequences {u,}, {|Vu,|} are relatively compact in L9(Q2) for
q € [1, ﬁoﬁﬁ) and q € [1,p}, 5), respectively. Thus, there exist a sub-sequence

{uy, } and some u € L(§2) with ¢ € [1, #W) such that

(1) Up, — w a.e. in Q and in L9(Q) with g € [1, #a%)’

(7)) [Vun,| = [Vul a.e. in Q and in L9(Q2) with ¢ € [1,p}, ).

Therefore, g, (|Vun,|) — g(|Vul) a.e. in Q. For A > 0, we denote
Sy={z € Q:|Vu, ()] >} and w(\) = / p*(x)dx.
Sx
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Then for any Borel set £ C (), we have that

/Egnk(!Vunk\)lpa(x)dﬁé/Q(IVunkl)\p"‘(ﬂf)div

E

:/Emscg(|Vunk|)pa(x)dx+/ 9(IVun, [)p® (x)dx

ENS)y

<30 [E o (x)de + / 9|Vt ) ()
<30 /E o () da — / " o)),

where §(s) = méx;cp4{g(t)}. But
Tn

/)\OO g(s)dw(s) = lim g(s)dw(s).

where {T},} is given by Lemma Since |Vuy, | € MPa(€, pdr), w(s) < cigs7Pa
and
s=Tn

s=A

- / " (o) duo(s) = — lg(s)ols)] " / " (s)da(s)

< gNw() — g(T)(T,) + exo / " s ridg(s)

< gNw(A) = g(T)w(Tn) + c16 (TP g(T,) — AP g(N)

C16 In —1—pr
+ ) /)\ s Pag(s)ds.
By assumption and Lemma it follows
lim T Pag(T,) = 0. (6.38)

Along with g(\)w(\) < c16A7Pag()), we have

> Ci6 oo_l_*
— g(s)dw(s) < /s Pag(s)ds.
| sttt < 2o ()

Notice that the above quantity on the right-hand side tends to 0 when A — oco. It
implies that for any € > 0 there exists A > 0 such that

Cig o —1-p*
s ag(s)ds <
ph+1 /)\ als)ds <
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and ¢ > 0 such that
/ pt(x)dr < 6 = f]()\)/ dr < <
E E 2
This proves that {g,, (|Vu,,|)} is uniformly integrable in L*(Q, p®dx). Then g,, (|Vu,,|) —

g(|Vul) in L'(Q, p®dx) by Vitali convergence theorem. Letting ny — oo in the iden-
tity

/ (ttny (D)€ + g ([ Vit )E) i = / védz, Ve € X,
Q Q

it infers that u is a weak solution of (6.1)). Since u,, is nonnegative, so is u.

Estimate (6.13)) is a consequence of positivity and
Uny, = Ga[ynk] - Ga[gnk(’vunk‘)] < Ga[ljflk]'

Since limy,, o0 Un, = u, (6.13)) follows. O

6.3.2. The source case

In this subsection we study the existence of solutions to problem (6.1) when
e=—1.

Proof of Theorem [6.1.2 Let {v,} be a sequence of C? nonnegative functions con-
verging to v in the sense of (6.34), {g,} an increasing sequence of C', nonnegative

bounded functions defined on R, satisfying (6.35) and converging to g. We set
P+D;, 5

po = —5=2 € (p,p, 5), where pf 5 is given by (6.14) and p < p}, 5 is the maximal
growth rate of g which satisfies (6.15]), and

M(v) = (/Q|Vv|p°dx)plo.

We may assume that ||ty || 110,20 < 2||V|lonq,pe) for all n > 1.
Step 1. To prove that forn > 1,

(—A)*u, = go(|Vu,|) + v, in 9,

Uy, =0 in €°

admits a solution u,, such that

M (u,) < A,

where X\ > 0 independent of n.
To this end, we define the operators {T,,} by

Tou = Go [gn(|Vul) + 1], Vu € WEP(Q).
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On the one hand, using (6.24) with 7 = 0 yields

ITullwisey < 1Galmllwrs@) + [Galga (Tl
< (HVnHLoo(Q) + HQnHLoo(R+)) )

where ¢i; = || [, Ga(,y)dyllwr1(q). On the other hand, by (6.15) and Proposition
we have

( /Q \V(Tnu)|p°dx>plo

IN

Callgn(IVul) + vall 1@ poa0)

IN

C[llgn(IVul)llr @ poaa) + 207 lmea,p9)] (6.39)

< ey / Vul?pdz + 1700 + 26| lanapm,
Q

where c17 = ¢ fQ pPdz. Then we use Holder inequality to obtain that

% Bp 1_1 Pi
(/ |Vu|pp5dx> < (/ ppo*opdx)?*% (/ |Vu|p0dx) ’ : (6.40)
Q Q Q

Bp
where fQ ppoi—opdx is bounded, since p/f%fp > 0. Along with (6.39)) and (6.40)), we derive

M(TnU) S ClgM(U)p + Cl9HyH9ﬁ(Q,p5) + C1700, (641)

Bp 1_1
where c;g = cgcl(fgppo—op dx)» 7 > 0 and cj9 > 0 independent of n. Therefore, if

we assume that M (u) < A, inequality (6.41)) implies

M(TnU) S Clg)\p -+ CI9HI/HDJI(Q,pB) + C17090. (642)
Let A > 0 be the largest root of the equation
Clg)\p —+ ClQHVHETR(Q,pB) + C1709 = )\, (643)

This root exists if one of the following condition holds:
(i) p € (0,1), in which case ([6.43) admits only one root;
(ii) p =1 and ¢17 < 1, and again (6.43) admits only one root;

(i) p € (1, p},) and there exists gg > 0 such that max {||v|jsn(q,p#) 00} < €o. In that
case (6.43)) admits usually two positive roots.

If we suppose that one of the above conditions holds, the definition of A > 0 implies
that it is the largest A > 0 such that

618/\p + 019||V||§m(ﬂ7pﬁ) + c1709 S )\, (644)
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For M (u) < )\, we obtain that

M (Tou) < c1sX° + ciol|v|langa,pe) + c1700 = A.

By the assumptions of Theorem A exists and it is larger than M (u,, ). Therefore,

/ V(T u)[Podz < AP, (6.45)
Q

Thus T, maps W, *(Q) into itself. Clearly, if u, — u in W, **(Q) as n — oo, then
9n(|Vun]) = g,(Vu|) in L'(Q), thus T is continuous. We claim that 7' is a compact
operator. In fact, for u € W, (Q), we see that v, — g,(|Vu|) € L'(Q) and then,

by Proposition [6.2.3] it implies that T,u € W2 "*(Q) where v € (X2 94 — 1)

p
and 2o0 — 1 > w > 0 for p € (1, 7—577)- Since the embedding WFP(Q) —
Wy (Q) is compact, T, is a compact operator.

Let

G ={ueWy™ () : [ullwiie < enllvalli=@ + llgnll =)
and M (u) < A},

which is a closed and convex set of W, (Q). Combining with (6.31)), there holds

T.(G) CG.

It follows by Schauder’s fixed point theorem that there exists some u,, € Wy ()
such that T,u, = u, and M (u,) < A, where A > 0 independent of n. By the same
arguments as in Theorem u, belongs to C?*T< Jocally in €2, and

/Qun(—A)afz/an(|Vun|)§dx+/Q§Vndx, V¢ € X,. (6.46)

Step 2: Convergence. By (6.45) and (6.40), ¢,(]Vu,|) is uniformly bounded in
LY(Q, p°dz). By Proposition|6.2.3, {u,} is bounded in W;*~7%(Q) where ¢ € (1,p}5)
and 2o — v > 1. By Proposition [6.2.4} there exist a subsequence {u,,} and u such
that w,, — u a.e. in Q and in L'(Q), and [Vu,,| — |[Vu| a.e. in Q and in LY(Q)
for any ¢ € [1,p}, 3). By assumption (G), gn,(|Vun,|) = g(|Vul) in L'(Q). Letting
n, — 0o to have that

Ju-are= [ o(vupeds+ [ v, veex.,

thus u is a weak solution of (6.1)) which is nonnegative as {u,} are nonnegative.
Furthermore, (6.16]) follows from the positivity of g(|Vu,]). O
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6.4. The case of Dirac mass

In this section we assume that € is an open, bounded and C? domain containing
0 and u a nonnegative weak solution of

(=A)*u+ |[VulP =6, in Q,

u=0 1in Q

(6.47)

where p € (0, pf) and dy is the Dirac mass at 0. We recall the following result dealing
with the convolution operator * in Lorentz spaces LP4(RY) (see [83]).

Proposition 6.4.1 Let 1 < p1,q1,p2, 2 < 00 and suppose pil + piQ > 1. If f €
Lrrat(RY) and g € LP>92(RY), then fxg € L™ (RY) with § = -4+ -1 =1, L4+ > 1
and there holds

|| f gHLr,s(RN) < 37’HfHLp1,q1(RN)HgHLm«m(RN)- (6.48)

In the particular case of Marcinkiewicz spaces LP>°(RY) = MP(RY), the result takes
the form

1f  gllarr@ny < 3l fllaees @v)llgllaze @v)- (6.49)

Proposition 6.4.2 Assume that 0 < p < p’ and u is a nonnegalive weak solution

of (6:47). Then
0 <u < Gyldo], (6.50)

|Vu| € L2, (2\ {0}) and u is a classical solution of

loc
—A)*u+ |[VulP =0 in Q\ {0},
(—-A) [Vul \ {0} (6.51)
u=0 1in Q°.

Proof. Since 0 < p < pf, admits a solution. Estimate (6.50) is a particular
case of (6.13). We pick a point a € Q\ {0} and consider a finite sequence {r;}5_,
such that 0 < r, < r,_1 < .. <rgand B, (a) C Q\ {0}. We set d; = 1,1 —r;j,
j=1,..x. By with 8 = 0, it follows that

/ (u+ |Vul|P) dx < cq. (6.52)
Q

Let {n,} C C°(RY) be a sequence of radially decreasing and symmetric mollifiers
such that supp(n,) C B, (0) and ¢, < %mfn{p(a) — 710, la| —ro} and w, = u * n,.
Since

N % (—A)* = (=A)*(§ *mn)
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by Fourier analysis and

[ €+ eVl )e = [ s (=A)E+ [ VulPde

RN

because 1, is radially symmetric, it follows that u,, is a classical solution of

(—A)%uy, + |VulP * 1, =n, in €,,
u, =0 in QF,

(6.53)

where Q, = {x € RY : dist(z, Q) < &,}. We denote by G,.(x,y) the Green kernel
of (=A)* in @, and by G, the Green operator. Set f, = 1, — |Vul? * 1, then
Up = Ga,n[fn]- If we set fn,ro = anBTO((I)J fn,ro = fn - fn,roa we have

O tun () = / 00 Coonn(,9) Fo(y)dy

= [ 0:,Gan(@9) fure W)y + [ 00.Gon(@,Y) frro (y)dy
Qn Qn
= Un,rg (:L’) + Un,rg (x>>

where
Un,rq (z) = / 8xiGa,n<x7y)fn(y)dy = _/ axiGa,n(ma Y)[Vul? * 0, (y)dy
BTO(a) Bro(a)

and
B (@) = / Oy Gl (2 9) fo ().
Qn\BT0 (a)

We set p,(x) = dist(x, Q%), then by (6.23) and (6.23)), we have

1 pu(2)
8:0~Gan ) < N A ’ = .
|02, Gan(z,y)] < caN max { |z — y[N 2t g — y[N-20

Thus, if z € B, (a) and y € Q,, \ B,,(a), then p,(z) > d; and |z — y| > dy,

|Un,re ()] < 021/ Tn(y)dy < caocan, (6.54)
0 \Bag (a)

where cy; > 0 depends on d;V ™! N and «. Furthermore, if + € B, (a) and
y € Byy(a),
C4N

|.T _ y|N—2a+1 ’

|02, Gon(2,9)| < (6.55)

199



We have already use the fact that y — |y[>** V=1 € LT (RY) with ¢, € (max{1, p},p?).

loc

Since f,, is uniformly bounded in L!(), there exists ¢y > 0 such that
|V || a1 (Br,(a)) < C22. (6.56)
Combined with (6.54)), it yields

[Vul? || < Co3. (6.57)

M'? (B (a))

Next we set f,,, = fuXB,, (a) and fn,n = fn — far- Then
axiun = Un,rm + 'Z]nmla

where
Umm(m) = / ( )axiGa(l’,y)fn(y)dy = _/ ( )6xiGa(5L‘,y)|VU|p * 1 (y)dy
BT1 a BT1 a

and

Ty () = / 0, Ga(,y) fo(y)dy
Qn\Br, (a)

Clearly vy, ,, () is uniformly bounded in B,,(a) by a constant ¢y depending on the
structural constants and dy = 1 — 9. Estimate (6.55)) holds if we assume = € B,,(a)
and y € B,,(a). Therefore

[Vul” % nn(y)

|Un,r1 (z)] <N y|N-2a+T :

By (a) |CC -

We derive from Proposition [6.4.1]

P
an,rlHM”(Brg(a)) < caull[Vul” n”HMq?l(Brl(a))’

with . .
— =41 (6.59)
@2 @ G
Notice that ¢ > ¢;. Therefore
p q
[[Vul? 77n||M72(BT2(a)) < Cos. (6.59)

We iterate this construction and obtain the existence of constants c; such that

p . < & -
Vbl o S0 =120 (6.60)
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We pick g1 = 5(p}, +p) if p>1or ¢ = §(pi, + 1) if p € (0,1]

1 1
— =L (6.61)
qj+1 q; q1

If p = 1, there exists jo € N such that ¢;, > 0 and g;,4+1 < 0.

pre(Opa)\{l} let = 0= 1) then ¢ = p€+——1 thus

1

dj+1

—€+p](——€)—€ p——r (p—l) (6.62)

q1

Therefore there exists jo such that g;, > 0 and g;,41 < 0. This implies

H|Vu|p * My, LS(BT‘J 11 () < C9g, Vs < 0o (663)
and
[V ul? 5 1| oo (Brjo12(@) < co7, (6.64)
with co7 independent of n. Letting n — oo infers
1
V|| o< (Bry 2 (@) < Cor- (6.65)

Combining this estimate with (6.50) and using [88, Corollary 2.5] which states

HUHcﬁ(B%H(a)) <c <HuHL1(RN71+|%+2a)

(6.66)
lull o+ IVl 0 )

for any 8 < 2a, we obtain that u remains bounded in C'*¢(K) for any compact set
K c Q\{0} and some ¢ > 0. Using now [88, Corollary 2.4], we obtain that C?*+<'(Q\
{0}) for 0 < £’ < e. Furthermore u is continuous up to 9. As a consequence it is a
strong solution in ©\ {0}. O

In the next result we give a pointwise estimate of Vu for a positive solution u of
(6.47)).

Proposition 6.4.3 Assume that R = 1dist(0,09), p € (0,p,) and u is a nonneg-
ative weak solution of . Then there exists cog > 0 depending on R, p and «
such that

(Vu(z)| < egslz|** N1, Va € Bru(0)\ {0}. (6.67)

Proof. Up to a change of variable we can assume that R = 1. For 0 < |z| < 1, there
exists b € (0,1) such that b/2 < |z| < b. We set

w(y) = bN " u(by).
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Then
(=A)%uy + pNTPEN=DI7y, P =0 in Q= b7'Q.

Using [88, Corollary 2.5 with § < 2a«, for any a € Q, such that |a| = 3/4, there
holds

sl o < e (Il e,y + ity

dx
Ty N F2a

(6.68)
4 pN+p(2a=N-1) H yvub|pHL°°(B3(a))> )
g

Furthermore, by the same argument as in Proposition [6.4.2]
IVl lle sy @) < es0 / Vuy(y)[Pdy = cagb? V720~ / Vu(z)[dz, (6.69)
o, Q

and from (6.50) and (6.23)
Cy4 Cy

u(x) < Go(z,0) < W—_h = up(y) < W—_m

Then
dy

u <c = C31.
I bHLl(RN’H-Iyii%) = 4/]RN |y[N=20(1 4 [y[)N+2e 31

If we take 5 = 1, which is possible since « > 1/2, we derive

[Vuy(a)| < ez = |Vu(ba)| < c:,j;b?o‘_N_1

In particular, with |b| = 4|z|/3 we derive (6.67) with cos = ¢35 (5)* V. 0
We denote
CNa = h’n% 12| N2 G (2, 0). (6.70)
z—

It is well known that cy, > 0 does not depend on the domain 2 and, by the
maximum principle, G, (z,0) < ey qo|z** N in Q\ {0}.

Theorem 6.4.1 Let Q be an open bounded C? domain containing 0, o € (%, 1) and

0 <p<pi. Ifuis a positive solution of problem and Br(0) C §, it satisfies
e 2a x

(i) if No2a71 <P < DPa

CN,a C33 .
0< W——Qa —u(z) < || (N—2a+1)p—20 z € Bry(0) \ {0};

(i) if p= #O;H;

CN.«
0< mjj—m —u(z) < —egzIn(|z]), 2 € Brpa(0)\ {0};
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(i) if 0 < p < =g,

CN,a

0< mN—Qa - u(x) <33, TE BR/4(0) \ {O},

where c33 depends on N, p, o, R and s independent of u.
Furthermore, if 1 < p < p, this solution is unique.

Proof. The existence of a nonnegative weak solution is a consequence of the subrit-
icality assumption; the fact that this solution is a classical solution in 2\ {0} derives

from Proposition [6.4.2} It follows by (6.50) and (6.52)) that for any x € Q\ {0},

CN,a
N ) < [ Gl Tul)Py

< 015804/ |z — y** N yPC NV dy + a4 ]|Vl ooy
Br(0) (6.71)

< c35 / |z — Z/|2a_N‘y’p(2a_N_l)dy +1
Br(0)

T

where ¢34, c35 > 0 depend on N, p and «.. Next we assume 0 < |z| < 1—%.

Case 1: #ﬁm < p < pi. We can write

|y ay = B+ B
BR(0)

with

I / |z — y[P* N y[PE NV dy < ey,
BRo)\Br(0)

and

Ey = / |z — y|? Ny PPN gy,
BRr(0)

where ¢35 > 0 depends on N, «, p and R. Let £ = x/|z|, then

By, = ’x|2a—p(N+1—2a)/

B g
xT

€ — (PN |¢|PEeNTDag
_r (0)

8z

< / € — ([N | peeN D¢
[¢]>2

0o
< CN/ (7, o 1)2a—NT,p(2a—N—1)+N—1dT = ¢37,
2
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where the last inequality holds by the fact of 2a— N < 0, [€—([**™V < (|¢]—1)2N.

Thus (7) follows.
Case 2: #O;H = p. We see that

By — / € — (PN 2dC, = —nfz] 4+ o(1) as |z] — 0.
B r (0)

8la]

Thus (i7) follows.
Case 3: 0 <p < ﬁiﬂ We have that

By = / 1€ — P N[C T2 C = cop|x PN 72 4 6(1)  when |z] — 0.
B R‘(O)

8|z

Thus (ii7) follows.

Uniqueness in the case 1 < p < p?, is very standard, since if u; and uy are two
positive solutions of (6.47)), they satisfies

up(x)
x—0 u2({L')

= 1.

Then, for any € > 0, uy . := (14 ¢)uy is a supersolution which dominates uy near 0,
it follows by the maximum principle that w := uy — (1 4 €)u; satisfies

(—A)O‘w + |VU2|p - |VUJ178|p S 0

since w is negative near 0 and vanishes on 0f2, if it is not always negative, there would
exists o € 2\ {0} such that w(zy) reaches a maximum and |Vua(zo)| = [Vuic(20)|,
thus (—A)%w(xg) < 0, contradiction. 0

Remark 6.4.1 If 0 < p < 1, the nonlinearity is not convex and uniqueness does
hold only if two solutions uy and us satisfy

lim (uy (x) — us(x)) = 0.

xz—0
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