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Fully nonlinear elliptic equations and semilinear
fractional elliptic equations

Abstract

This thesis is divided into six parts.

The �rst part is devoted to prove Hadamard properties and Liouville type the-
orems for viscosity solutions of fully nonlinear elliptic partial di�erential equations
with gradient term

M−(|x|, D2u) + σ(|x|)|Du|+ f(x, u) ≤ 0, x ∈ Ω, (1)

where Ω = RN or an exterior domain, the functions σ : [0,∞) → R and f :
Ω× (0,∞)→ (0,∞) are continuous which satisfy some extra conditions.

In the second part, we study existence of boundary blow up solutions for semi-
linear fractional elliptic equations

(−∆)αu(x) + |u|p−1u(x) = h(x), x ∈ Ω,

u(x) = 0, x ∈ Ω̄c,

ĺımx∈Ω,x→∂Ω u(x) = +∞,
(2)

where p > 1, Ω is an open bounded C2 domain of RN(N ≥ 2), the operator (−∆)α

with α ∈ (0, 1) is the fractional Laplacian and h : Ω → R is a continuous func-
tion which satis�es some extra conditions. Moreover, we analyze the uniqueness and
asymptotic behavior of solutions to problem (2).

The main goal of the third part is to investigate positive solutions for fractional
elliptic equations

(−∆)αu(x) + |u|p−1u(x) = 0, x ∈ Ω \ C,
u(x) = 0, x ∈ Ωc,

ĺımx∈Ω\C, x→C u(x) = +∞,
(3)
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where p > 1 and Ω is an open bounded C2 domain of RN(N ≥ 2), C ⊂ Ω is the
boundary of domain G which is C2 and sati�es Ḡ ⊂ Ω. We consider the existence of
positive solutions for problem (3). In the meantime, we further analyze uniqueness,
asymptotic behaviour and nonexistence to problem (3).

In the forth part, we study the existence of weak solutions to (F) (−∆)αu+g(u) =
ν in an open bounded C2 domain Ω of RN(N ≥ 2) which vanish in Ωc, where
α ∈ (0, 1), ν is a Radon measure and g is a nondecreasing function satisfying some
extra hypotheses. When g satis�es a subcritical integrability condition, we prove the
existence and uniqueness of a weak solution for problem (F) for any measure. In the
case where ν is a Dirac mass, we characterize the asymptotic behavior of solutions
to (F). In addition, when g(r) = |r|k−1r with k supercritical, we show that a condi-
tion of absolute continuity of the measure with respect to some Bessel capacity is a
necessary and su�cient condition in order (F) to be solved.

The purpose of �fth part is to investigate weak and strong singular solutions
of semilinear fractional elliptic equations. Let p ∈ (0, N

N−2α
), α ∈ (0, 1), k > 0 and

Ω ⊂ RN(N ≥ 2) be an open bounded C2 domain containing 0 and δ0 be the Dirac
mass at 0, we study that the weak solution of (E)k (−∆)αu+ up = kδ0 in Ω which
vanishes in Ωc is a weakly singular solution of (E∗) (−∆)αu+up = 0 in Ω\{0} with
the same outer data. Moreover, we study the limit of weak solutions of (E)k when
k → ∞. For p ∈ (0, 1 + 2α

N
], the limit is in�nity in Ω. For p ∈ (1 + 2α

N
, N
N−2α

), the
limit is a strongly singular solution of (E∗).

Finally, in sixth part we study semilinear fractional elliptic equation (E1) (−∆)αu
+εg(|∇u|) = ν in an open bounded C2 domain Ω of RN(N ≥ 2), which vanish in Ωc,
where ε = ±1, α ∈ (1/2, 1), ν is a Radon measure and g : R+ 7→ R+ is a continuous
function. We prove the existence of weak solutions for problem (E1) when g is
subcritical. Furthermore, the asymptotic behavior and uniqueness of solutions are
described when ε = 1, ν is a Dirac mass and g(s) = sp with p ∈ (0, N

N−2α+1
).

Key words: Hadamard property, Liouville type theorem, Viscosity solution, Ful-
ly nonlinear elliptic PDE, Fractional Laplacian, Existence, Uniqueness, Asymptotic
behavior, Blow-up solution, Radon measure, Dirac mass, Green kernel, Bessel ca-
pacities, Isolated singularity, Weak solution, Weak singular solution, Strong singular
solution.
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Resumen

Esta tesis esta dividida en seis partes.

La primera parte está dedicada a probar propiedades de Hadamard y teoremas
del tipo de Liouville para soluciones viscosas de ecuaciones diferenciales parciales
elípticas completamente no lineales con término gradiente

M−(|x|, D2u) + σ(|x|)|Du|+ f(x, u) ≤ 0, x ∈ Ω, (4)

donde Ω = RN o un dominio exterior, las funciones σ : [0,∞)→ R y f : Ω×(0,∞)→
(0,∞) son continuas las cuales satisfacen algunas condiciones extras.

En la segunda parte se estudia la existencia de soluciones que explotan en la
frontera para ecuaciones elípticas fraccionarias semilineales

(−∆)αu(x) + |u|p−1u(x) = h(x), x ∈ Ω,

u(x) = 0, x ∈ Ω̄c,

ĺımx∈Ω,x→∂Ω u(x) = +∞,
(5)

donde p > 1, Ω es un dominio abierto acotado C2 de RN(N ≥ 2), el operador (−∆)α

con α ∈ (0, 1) es el Laplaciano fraccionario y h : Ω→ R es una función continua la
cual satisface algunas condiciones extras. Por otra parte, analizamos la unicidad y
el comportamiento asimptótico de soluciones al problema (5).

El objetivo principal de la tercera parte es investigar soluciones positivas para
ecuaciones elípticas fraccionarias

(−∆)αu(x) + |u|p−1u(x) = 0, x ∈ Ω \ C,
u(x) = 0, x ∈ Ωc,

ĺımx∈Ω\C, x→C u(x) = +∞,
(6)

donde p > 1 y Ω es un dominio abierto acotado C2 de RN(N ≥ 2), C ⊂ Ω es el
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frontera de dominio G que es C2 y satisface Ḡ ⊂ Ω. Consideramos la existencia
de soluciones positivas para el problema (6). Mas aún, analizamos la unicidad, el
comportamiento asimptótico y la no existencia al problema (6).

En la cuarta parte, estudiamos la existencia de soluciones débiles de (F) (−∆)αu+
g(u) = ν en un dominio Ω abierto acotado C2 de RN(N ≥ 2) el cual se desvanece en
Ωc, donde α ∈ (0, 1), ν es una medida de Radon y g es una función no decreciente
satisfaciendo algunas hipótesis extras. Cuando g satisface una condición de integra-
bilidad subcrítica, probamos la existencia y unicidad de una solución débil para el
problema (F) para cualquier medida. En el caso donde ν es una masa de Dirac, car-
acterizamos el comportamiento asimptótico de soluciones a (F). Asimismo, cuando
g(r) = |r|k−1r con k supercrítico, mostramos que una condición de absoluta con-
tinuidad de la medida con respecto a alguna capacidad de Bessel es una condición
necesaria y su�ciente para que (F) sea resuelta.

El propósito de la quinta parte es investigar soluciones singulares débiles y fuertes
de ecuaciones elípticas fraccionarias semilineales. Sean p ∈ (0, N

N−2α
), α ∈ (0, 1),

k > 0 y Ω ⊂ RN(N ≥ 2) un dominio abierto acotado C2 conteniendo a 0 y δ0 la
masa de Dirac en 0, estudiamos que la solución débil de (E)k (−∆)αu+up = kδ0 en
Ω la cual se desvanece en Ωc es una solución débil singular de (E∗) (−∆)αu+up = 0
en Ω \ {0} con el mismo dato externo. Por otra parte, estudiamos el límite de
soluciones débiles de (E)k cuando k →∞. Para p ∈ (0, 1 + 2α

N
], el límite es in�nito

en Ω. Para p ∈ (1+ 2α
N
, N
N−2α

), el límite es una solución fuertemente singular de (E∗).

Finalmente, en la sexta parte estudiamos la ecuación elíptica fraccionaria semilin-
eal (E1) (−∆)αu+εg(|∇u|) = ν en un dominio Ω abierto acotado C2 de RN(N ≥ 2),
el cual se desvanece en Ωc, donde ε = ±1, α ∈ (1/2, 1), ν es una medida de Radon y
g : R+ 7→ R+ es una función continua. Probamos la existencia de soluciones débiles
para el problema (E1) cuando g es subcrítico. Además, el comportamiento asimp-
tótico y la unicidad de soluciones son descritas cuando ε = 1, ν es una masa de
Dirac y g(s) = sp con p ∈ (0, N

N−2α+1
).

Palabras claves: Propiedad de Hadamard, Teorema del tipo de Liouville, solu-
ciones Viscosas, EDP elípticas completamente no lineales, Laplaciano fraccionario,
Existencia, Unicidad, Comportamiento asimptótico, Soluciones blow-up, Medida de
Radon, Masa de Dirac, Núcleo de Green, Capacidades de Bessel, Singularidad ais-
lada, Soluciones débiles, Soluciones singulares débiles, Soluciones singulares fuertes.
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Résumé

Cette thèse est divisée en six parties.

La première parties est consacrée à l'étude de propriétés de Hadamard et à
l'obtention de théorèmes de Liouville pour des solutions de viscosité d'équations
aux dérivées partielles elliptiques complètement non-linéaires avec des termes de
gradient,

M−(|x|, D2u) + σ(|x|)|Du|+ f(x, u) ≤ 0, x ∈ Ω, (7)

où Ω est ou bien RN ou bien un domaine extérieur, et les fonctions σ : [0,∞)→ R
et f : Ω× (0,∞)→ (0,∞) sont continues et véri�ent certaines conditions.

Dans la seconde partie nous étudions l'existence de grandes solutions, c'est à
dire de solutions que explosent au bord, d'équations elliptiques fractionnaires semi
linéaires

(−∆)αu(x) + |u|p−1u(x) = h(x), x ∈ Ω,

u(x) = 0, x ∈ Ω̄c,

ĺımx∈Ω,x→∂Ω u(x) = +∞,
(8)

où p > 1, Ω est un ouvert borné de classe C2 de RN(N ≥ 2), (−∆)α avec α ∈ (0, 1)
est le Laplacien fractionnaire et h : Ω→ R est continue et véri�e des conditions de
croissance qui seront précisées. En outre nous étudions les questions d'unicité et de
comportement asymptotique des solutions du problème (8).

Le but essentiel de la troisime partie est d'étudier les solutions positives de
l'équation elliptique fractionnaire

(−∆)αu(x) + |u|p−1u(x) = 0, x ∈ Ω \ C,
u(x) = 0, x ∈ Ωc,

ĺımx∈Ω\C, x→C u(x) = +∞,
(9)

où p > 1 et Ω est un domaine borné de classe C2 de RN(N ≥ 2), C ⊂ Ω est le
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bord d'un domaine G de classe C2 tel que Ḡ ⊂ Ω. Nous intéressons à l'existence
de solutions positives au problème (9). Par la même occasion, nous analysons aussi
les questions d'unicité, de comportement asymptotique et, le caséchéant, la non-
existence de solutions au problème (9).

Dand la quatrième partie nous étudions l'existence de solutions faibles à l'équation
(−∆)αu + g(u) = ν dans un domaine de classe C2 borné Ω ⊂ RN(N ≥ 2), qui
s'annulent dans Ωc, où α ∈ (0, 1), ν est une mesure de Radon et g une fonction
croissante véri�ant une condition de croissance. Quand g satisfait à une condition
intégrale de sous-criticalité, nous montrons l'existence et l'unicité de solutions au
problème (F) pour n'importe quelle mesure bornée. Dans le cas où ν est une mesure
de Dirac, nous caractérisons le comportement asymptotique des solutions de (F).
En outre, quand g(r) = |r|k−1r avec k sur-critique nous obtenons une condition
nécessaire portant sur une mesure ν positive pour que le problème (F) admette une
solution, sous forme d'une condition d'absolue continuité de la mesure par rapport
à une certaine capacité de Bessel.

L'objectif de la cinquième partie est d'étudier les propriétés des solutions sin-
gulières de solutions d'équations elliptiques fractionnaires semi-linéaires. Soit p ∈
(0, N

N−2α
), α ∈ (0, 1), k > 0, Ω ⊂ RN(N ≥ 2) est un domaine borné de classe C2

contenant 0 et δ0 la mesure de Dirac en 0. Nous montrons que la solution faible uk
de (Ek) (−∆)αu + up = kδ0 qui s'annule dans Ωc est une solution singulière faible
de (E∗) (−∆)αu + up = 0 dans Ω \ {0} véri�ant la même condition dans Ωc. En
outre, nous montrons que lorsqur k tend vers l'in�ni et 0 < p ≤ 1 + 2α

N
, la limite de

uk est in�nie dans tout Ω, alors que cette limite est une solution de (E∗) fortement
singulière quand 1 + 2α

N
< p < N

N−2α
.

Dand la sixième partie nous étudions les équations de la forme (E1) (−∆)αu +
εg(|∇u|) = ν dans un domaine borné Ω ⊂ RN(N ≥ 2) de classe C2 qui s'annulent
dans Ωc, où ε = ±1, α ∈ (1/2, 1), ν est une mesure de Radon et g : R+ 7→ R+ une
fonction continue. Nous montrons l'existence de solutions du problème (E1) quand
g véri�e une condition intégrale de sous-criticalité. En outre, nous analysons aus-
si les questions d'unicité, de comportement asymptotique au problème (E1) quand
ε = ±1, ν est mesure de Dirac, g(s) = sp avec p ∈ (0, N

N−2α+1
).

Mots clefs: Propriété d'Hadamard, Théorème de typr Liouville, Solutions de cis-
cosité, Équations elliptiques complètement non-linéaires, Laplacien fractionnaire,
Existence, Unicité, Comportement asymptotique, Grandes solutions, Mesures de
Radon, Mesure de Dirac, Noyau de Green, Capacité de Bessel, Singularités isolées,
Solutions faibles, Singularité faible, Singularité forte.
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Introduction

This thesis is to study Liouville theorems for fully nonlinear elliptic equations, to
do research for large solutions of semiliear fractional elliptic equations and to inves-
tigate weak solutions of semiliear fractional elliptic equations involving measures.

0.1. Liouville type theorems for fully nonlinear el-

liptic equations with gradient term

In the study of nonlinear elliptic equations in bounded domains, non-existence
results for entire solutions of related limiting equations appear as a crucial ingredient.
In the search for positive solutions for semi-linear elliptic equations with nonlinearity
behaving as a power at in�nity, one is interested in the non-negative solutions of the
equation

∆u+ up = 0, in RN . (10)

The question is for which value of p, typically p > 1, this equation has or has
no solution. This has been one of the motivations that has pushed forward the
study of Liouville type theorems for general equations in RN and in unbounded
domains like cones or exterior domains. On the other hand, the understanding of
structural characteristics of general linear or nonlinear operators has been another
motivation for advancing the study of Liouville type theorems that have attracted
many researchers. See the work in [1, 2, 19, 61, 86].

If we consider the Pucci's operators instead of the Laplacian, the question set
above becomes very interesting, since most of the techniques used in the case of the
Laplacian are not available. The Liouville type theorem for the equation analogous
to equation (10) has not been proved in full generality, but only in the radial case.
On the other hand, the Liouville type theorem for non-negative solutions of

M−u+ up ≤ 0, in RN , (11)

has been studied in full extent by Cutrì and Leoni [45] and generalized in various
directions by Felmer and Quaas [52, 54, 55] Capuzzo-Dolcetta and Cutrì [30] and
Armstrong and Sirakov [3]. In all these cases the solutions of the inequality are
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considered in the viscosity sense.

In a recent paper, Armstrong and Sirakov in [4] made signi�cant progress in the
understanding of the structure of positive solutions of equations generalizing (11),
shading light even for equations of the form

∆u+ f(u) ≤ 0, in RN . (12)

They propose a general approach to non-existence and existence of solutions of the
general inequality

Q(u) + f(x, u) ≤ 0, in RN , (13)

where the second order di�erential operator Q satis�es certain scaling property, it
possesses fundamental solutions behaving as power asymptotically and it satis�es
some other properties, common to elliptic operators, like a weak comparison princi-
ple, a quantitative strong comparison principle and a very weak Harnack inequality,
see hypothesis (H1)-(H5) in [4]. Regarding the nonlinearity f , the results in [4] un-
ravel a very interesting property, that is, that the behavior of the function f only
matters near u = 0 and for x large. These results are new even for the case of
(12). Moreover, the authors in [4] are able to apply their approach to equation (13)
in exterior domains without any boundary condition, providing another truly new
result.

It is the purpose of this chapter 1 to extend the results described above in order
to include elliptic operators with �rst order term. The introduction of a �rst order
term may brake the scaling property of the di�erential operator and it allows for
the appearance of non-homogeneous fundamental solutions, not even asymptotical-
ly. Thus, the approach in [4] cannot be applied to this more general situation and
we have to �nd di�erent arguments. Interestingly, to prove our results we use the
more elementary approach taken in the original work by Cutrì and Leoni, where the
Hadamard property, obtained through the comparison principle, is combined with
the appropriate choice of a function to test the equation. The underline principle
is the asymptotic comparison between the solutions of the inequality and the fun-
damental solution. This can be interpreted as the interaction between the elliptic
operator, including �rst order term, and the nonlinearity (the zero order term).

We start the precise description of our results by recalling the de�nition of the
Pucci's operators. In chapter 1, we consider

M−(r,D2u) = λ(r)
∑
ei≥0

ei + Λ(r)
∑
ei<0

ei, (14)

where e1, . . . , eN are the eigenvalues of D2u, λ,Λ : [0,∞) → R are continuous, λ0

and Λ0 are positive constants and

0 < λ0 ≤ λ(r) ≤ Λ(r) ≤ Λ0 < +∞, ∀r = |x|, x ∈ RN . (15)
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Our purpose is to study the non-negative solutions of

M−(r,D2u) + σ(r)|Du|+ f(x, u) ≤ 0, in Ω, (16)

with Ω = RN or an exterior domain and σ : [0,∞) → R and f : Ω × (0,∞) →
(0,∞) are continuous functions. By an exterior domain we mean a set Ω = RN \K
connected, where K is nonempty compact subset of RN .

We consider the fundamental solutions for the second order di�erential operator
ϕ, ψ : (0,∞)→ R in given (1.41) and (1.42), which are non-trivial radially symmetric
solutions of

M−(r,D2u) + σ(r)|Du| = 0, in RN \ {0}, (17)

satisfying

(i) ψ is increasing and either ĺımr→∞ ψ(r) =∞ or ĺımr→∞ ψ(r) = 0 and

(ii) ϕ is decreasing and either ĺımr→∞ ϕ(r) = −∞ or ĺımr→∞ ϕ(r) = 0.

Now we are in a position to make precise assumptions about the interaction
between the di�erential operator and the nonlinearity. We assume that

(f1) f : Ω× (0,∞)→ (0,∞), λ,Λ, σ : [0,∞)→ R are continuous.

(f2) We have

ĺım
r=|x|→∞

r2

1 + σ−(r)r
f(x, s) =∞

uniformly on compact subsets of (0,∞). Here and in what follows σ− =
máx{−σ, 0}.

In order to state the next assumption we need a de�nition. Given µ > 0, a > 1,
k > 0 and τ > 0 we de�ne

Ψk(τ) =
ϕ(aτ)

ϕ(τ)
ı́nf

x∈Baτ\Bτ

{
r2

σ−(r)r + 1
ı́nf

kϕ(ar)≤s≤µ

f(x, s)

s

}
. (18)

We assume:

(f3) If ĺımr→∞ ϕ(r) = 0 then we assume the existence of constants µ > 0 and a > 1
such that, de�ning

h(k) = ĺım sup
τ→∞

Ψk(τ),

one of the following holds:

(i) for all k > 0 we have h(k) =∞ or
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(ii) for all k > 0 we have

0 < ĺım inf
τ→∞

Ψk(τ) and ĺım
k→∞

h(k) =∞ (19)

and there is a constant C ∈ R such that

rσ(r) > C, for all r > 0. (20)

Now we state our �rst Liouville type theorem for inequality (16) in RN :

Theorem 0.1.1 Assume that f satis�es (f1), (f2) and (f3). Then inequality (16)
in RN does not have a non-trivial viscosity solution u ≥ 0.

We observe that hypothesis (f3) does restrict f when ĺımr→∞ ϕ(r) = −∞.

Regarding hypotheses (f2) and (f3) we would like to notice that they are natural
extensions of hypotheses (f2)−(f3) in [4], when σ 6≡ 0 and the fundamental solution
ϕ is not necessarily power-like. Thus, we are generalizing the results in [4] in the
case of a one-homogeneous di�erential operator in RN . It is also interesting to notice
that hypotheses (f2) and (f3) appear explicitly and in a natural way in our proof of
the theorem.

When the condition (i) is satis�ed we say that inequality (16) is sub-critical and
when condition (ii) holds, we say it is critical. In case of

∆u+ up ≤ 0,

we say the inequality is sub-critical when p < N/(N−2) and when p = N/(N−2) it
is critical. When p > N/(N − 2) we say the inequality is super-critical and here the
existence of positive solution holds. Accordingly, we would like to de�ne a notion
of super-criticality the cases (i) and (ii) do not hold. However, in Theorem 1.2.3 we
provide an example where there is no solution in a super-critical sub-region, showing
that further study is required to understand the critical boundary.

In the case of an exterior domain, we need to consider also the interaction between
the di�erential operator and the nonlinearity at∞. We need a de�nition in order to
state our assumptions. Given µ > 0, a > 1, k > 0 and τ > 0 we de�ne

Ψ̃k(τ) =
ψ(τ)

ψ(aτ)
ı́nf

x∈Baτ\Bτ

{
r2

σ−(r)r + 1
ı́nf

µ≤s≤kψ(ar)

f(x, s)

s

}
.

Now we assume that

(f4) If ĺımr→∞ ψ(r) = ∞ then we assume the existence of constants µ > 0 and
a > 1 such that, de�ning

h̃(k) = ĺım sup
τ→∞

Ψ̃k(τ),
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one of the following holds:

(i) for all k > 0 we have h̃(k) =∞ or

(ii) for all k > 0 we have

0 < ĺım inf
τ→∞

Ψ̃k(τ) and ĺım
k→0+

h̃(k) =∞ (21)

and there is a constant C ∈ R such that (20) holds.

For an exterior domain we have the following non-existence result.

Theorem 0.1.2 Assume that Ω is an exterior domain and f satis�es (f1), (f2),
(f3) and (f4). Then inequality (16) in Ω does not have a non-trivial viscosity solution
u ≥ 0.

We observe that hypothesis (f4) does restrict f when ĺımr→∞ ψ(r) = 0.

As for (f3), hypothesis (f4) is the natural extension of (f4) in [4] to our case.
Here we allow σ 6≡ 0 and ψ not power-like, thus generalizing [4].

In case of (f4) we may also de�ne the notion of criticality for (16) in an analogous
way as for (f3). Since here the behavior of f is relevant at zero and in�nity mixed
cases appear, as for example, an inequality critical at 0 and sub-critical at∞ or vice
verse.

In the proofs of Theorem 0.1.1 and 0.1.2 we use some basic properties of the
functions

m(r) = ı́nf
x∈Br

u(x), m0(r) = ı́nf
x∈Br\Br0

u(x) and M(r) = ı́nf
x 6∈Br

u(x) (22)

in connection with the fundamental solutions, as given by the Hadamard property
provided in Theorem 1.4.3. Then we test the equation with an adequate function and
we use the asymptotic assumptions on f and the fundamental solutions to obtain a
contradiction with the existence of non-trivial non-negative solutions. In the proofs
of our theorems we only consider a = 2.

For the existence of positive solutions of (16), it is nature to consider the super-
critical assumption, that is, the case when hypotheses (f3) and (f4) are not satis�ed,
which means

ĺım inf
τ→∞

Ψk(τ) = 0 or ĺım sup
k→∞

h(k) <∞

and
ĺım inf
τ→∞

Ψ̃k(τ) = 0 or ĺım sup
k→∞

h̃(k) <∞,

where h, h̃, Ψk and Ψ̃k were de�ned in (f3) and (f4). We observe that super-
criticality holds when h(k) = 0 or h̃(k) = 0 for any k > 0, but it is not true that
under this notion of super-criticality a positive solution of (16) always exists.

21



Finally, we consider a Liouville type theorem in the case f is a linear function,
that is, f(x, s) = h(x)s, that interestingly can be proved using the same techniques
considered in the nonlinear case. This problem has been recently studied by Rossi
[89] after some previous work by Berestycki, Hamel and Nadirashvili [20], Berestycki,
Hamel and Roques [21] and Berestycki, Hamel and Rossi [22]. Rossi [89] proved a
Liouville type theorem for generally unbounded domains, assuming that

ĺım inf
x∈Ω,|x|→∞

u(x) + 1

dist(x, ∂Ω)
= 0. (23)

It is clear that when Ω is an exterior domain then dist(x, ∂Ω) ≤ |x|, so that (23)
implies a linear growth constraint on u. Thus, it is interesting to investigate the
existence or non-existence of positive solutions of the corresponding equation when
(23) does no longer hold. Here is our result:

Theorem 0.1.3 Let u be a viscosity nonnegative solution of

M−(r,D2u) + σ(r)|Du|+ h(x)u ≤ 0, in Ω, (24)

where Ω is an exterior domain. Assume further that λ and Λ satisfy (15) and that

(h1) h : RN → R and σ : R+ → R are continuous, h is positive and σ is negative.

(h2) There exists a function κ : R+ → R+ of class C1 such that

ĺım
r→∞

κ′(r) = 0 (25)

and there is a constant µ ≥ 1 such that

1 ≤ κ(r) máx
r−κ(r)≤s≤r

|σ(s)| ≤ µ, for all r > 0. (26)

(h3) There exists a sequence rn →∞ such that

ĺım
n→∞

ı́nf
r∈(rn−κ(rn),rn)

{
h(r)− e

µ
λ0 (2Λ0 + 1)σ2(r)

}
> 0. (27)

Then u ≡ 0.
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0.2. Semilinear fractional elliptic equations

0.2.1. Large solutions to semilinear fractional elliptic equa-

tions

In 1957, a fundamental contribution due to Keller [66] and Osserman [84] is the
study of the nonlinear reaction di�usion equation

−∆u+ h(u) = 0, in Ω,

ĺımx∈Ω,x→∂Ω u(x) = +∞,
(28)

where Ω is an open bounded C2 domain of RN(N ≥ 2) and h is a nondecreasing
positive function. They proved that this equation admits a solution if and only if h
satis�es ∫ +∞

1

ds√
H(s)

< +∞, (29)

where H(s) =
∫ s

0
h(t)dt, that in the case of h(u) = up means p > 1. This integral

condition on the non-linearity is known as the Keller-Osserman criteria. The solution
of (28) found in [66] and [84] exists as a consequence of the interaction between the
reaction and the di�usion term, without the in�uence of an external source that
blows up at the boundary. Solutions exploding at the boundary are usually called
boundary blow up solutions or large solutions. From then on, the result of Keller
and Osserman has been extended by numerous mathematicians in various ways,
weakening the assumptions on the domain, generalizing the di�erential operator
and the nonlinear term for equations and systems. The case of h(u) = up+ with
p = N+2

N−2
is studied by Loewner and Nirenberg [72], where in particular uniqueness

and asymptotic behavior were obtained. After that, Bandle and Marcus [6] obtained
uniqueness and asymptotic for more general non-linearties h. Later, Le Gall in [70]
established a uniqueness result of problem (28) in the domain whose boundary is
non-smooth when h(u) = u2

+. Marcus and Véron [74, 75] extended the uniqueness of
blow-up solution for (28) in general domains whose boundary is locally represented
as a graph of a continuous function when h(u) = up+ for p > 1. For another interesting
contributions to boundary blow-up solutions see [5, 7, 44, 47, 48, 59, 73, 87].

During the last years there has been a renewed and increasing interest in the
study of linear and nonlinear integral operators, especially, the fractional Laplacian,
motivated by great applications in physics and by important links on the theory of
Lévy processes, refer to [23, 26, 27, 52, 54, 55, 57, 85, 90]. In a recent work, Felmer
and Quaas [51] considered an analog of (28) where the Laplacian is replaced by the
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fractional Laplacian

(−∆)αu(x) + |u|p−1u(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ Ω̄c,

ĺımx∈Ω,x→∂Ω u(x) = +∞,
(30)

where Ω is an open bounded C2 domain of RN(N ≥ 2), p > 1 and the fractional
Laplacian operator is de�ned as

(−∆)αu(x) = −1

2

∫
RN

δ(u, x, y)

|y|N+2α
dy, x ∈ Ω, (31)

with α ∈ (0, 1) and δ(u, x, y) = u(x+ y) +u(x− y)− 2u(x). The authors proved the
existence of a solution to (30) provided that g explodes at the boundary and satis�es
other technical conditions. In case the function g blows up with an explosion rate
as d(x)β, with β ∈ (− 2α

p−1
, 0) and d(x) = dist(x, ∂Ω), the solution satis�es

0 < ĺım inf
x∈Ω,x→∂Ω

u(x)d(x)−β ≤ ĺım sup
x∈Ω,x→∂Ω

u(x)d(x)
2α
p−1 < +∞.

In [51] the explosion is driven by the function g. The external source f has a sec-
ondary role, not intervening in the explosive character of the solution. f may be
bounded or unbounded, in later case the explosion rate has to be controlled by
d(x)−2αp/(p−1).

One interesting question not answered in [51] is the existence of a boundary blow
up solution without external source, that is assuming g = 0 in Ω̄c and f = 0 in Ω,
thus extending the original result by Keller and Osserman, where solutions exists
due to the pure interaction between the reaction and the di�usion terms. It is the
purpose of chapter 2 to answer positively this question and to better understand
how the non-local character in�uences the large solutions of (30) and what is the
structure of the large solutions of (30) with or without sources. Comparing with the
Laplacian case, where well possedness holds for (30), a much richer structure for
the solution set appears for the non-local case, depending on the parameters and
the data f and g. In particular, Theorem 0.2.1 shows that existence, uniqueness,
non-existence and in�nite existence may occur at di�erent values of p and α.

Our �rst result in chapter 2 is on the existence of blowing up solutions driven by
the sole interaction between the di�usion and reaction term, assuming the external
value g vanishes. Thus we will be considering the equation

(−∆)αu(x) + |u|p−1u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ Ω̄c,

ĺımx∈Ω,x→∂Ω u(x) = +∞,
(32)
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On the external source f we will assume the following hypotheses

(H1) The external source f : Ω→ R is a Cβ
loc(Ω), for some β > 0.

(H2) De�ning f−(x) = máx{−f(x), 0} and f+(x) = máx{f(x), 0} we have

ĺım sup
x∈Ω,x→∂Ω

f+(x)d(x)
2αp
p−1 < +∞ and ĺım

x∈Ω,x→∂Ω
f−(x)d(x)

2αp
p−1 = 0.

A related condition that we need for non-existence results

(H2∗) The function f satis�es

ĺım sup
x∈Ω,x→∂Ω

|f(x)|d(x)2α < +∞.

Now we are in a position to state our �rst theorem in this part.

Theorem 0.2.1 Assume that Ω is an open, bounded and connected domain of class
C2 and α ∈ (0, 1). Then we have:

Existence: Assume that f satis�es (H1) and (H2), then there exists τ0(α) ∈ (−1, 0)
such that for every p satisfying

1 + 2α < p < 1− 2α

τ0(α)
, (33)

the equation (32) possesses at least one solution u satisfying

0 < ĺım inf
x∈Ω,x→∂Ω

u(x)d(x)
2α
p−1 ≤ ĺım sup

x∈Ω,x→∂Ω
u(x)d(x)

2α
p−1 < +∞. (34)

Uniqueness: If f further satis�es f ≥ 0 in Ω, then u > 0 in Ω and u is the unique
solution of (32) satisfying (34).

Nonexistence: If f satis�es (H1), (H2∗) and f ≥ 0, then in the following three
cases:

i) For any τ ∈ (−1, 0) \ {− 2α
p−1

, τ0(α)} and p satisfying (33) or

ii) For any τ ∈ (−1, 0) and

p ≥ 1− 2α

τ0(α)
or (35)

iii) For any τ ∈ (−1, 0) \ {τ0(α)} and

1 < p ≤ 1 + 2α, (36)
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equation (32) does not have a solution u satisfying

0 < ĺım inf
x∈Ω,x→∂Ω

u(x)d(x)−τ ≤ ĺım sup
x∈Ω,x→∂Ω

u(x)d(x)−τ < +∞. (37)

Special existence for τ = τ0(α). Assume f(x) ≡ 0, x ∈ Ω and that

máx{1− 2α

τ0(α)
+
τ0(α) + 1

τ0(α)
, 1} < p < 1− 2α

τ0(α)
. (38)

Then, there exist constants C1 ≥ 0 and C2 > 0, such that for any t > 0 there is a
positive solution u of equation (32) satisfying

C1d(x)mı́n{τ0(α)p+2α,0} ≤ td(x)τ0(α) − u(x) ≤ C2d(x)mı́n{τ0(α)p+2α,0}. (39)

Remark 0.2.1 We remark that hypothesis (H2) and (H2∗) are satis�ed when f ≡ 0,
so this theorem answer the question on existence rised in [51]. We also observe that
a function f satisfying (H2) may also satisfy

ĺım
x∈Ω,x∈∂Ω

f(x) = −∞,

what matters is that the rate of explosion is smaller than 2αp
p−1

.

For proving the existence part of this theorem we will construct appropriate
super and sub-solutions. This construction involves the one dimensional truncated
Laplacian of power functions given by

C(τ) =

∫ +∞

0

χ(0,1)(t)|1− t|τ + (1 + t)τ − 2

t1+2α
dt, (40)

for τ ∈ (−1, 0) and where χ(0,1) is the characteristic function of the interval (0, 1).
The number τ0(α) appearing in the statement of our theorems is precisely the unique
τ ∈ (−1, 0) satisfying C(τ) = 0. See Proposition 2.3.1 for details.

Remark 0.2.2 For the uniqueness, we would like to mention that, by using iteration
technique, Kim in [67] has proved the uniqueness of solution to the problem{

−∆u+ up+ = 0, in Ω,

u = +∞, on ∂Ω,
(41)

where u+ = máx{u, 0}, under the hypotheses that p > 1 and Ω is bounded and
satisfying ∂Ω = ∂Ω̄. García-Melián in [59, 60] introduced some improved iteration
technique to obtain the uniqueness for problem (41) with replacing nonlinear term
by a(x)up. However, there is a big di�culty for us to extend the iteration technique
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to our problem (32) involving fractional Laplacian, which is caused by the nonlocal
character.

Next we are also interested in considering the existence of blowing up solutions
driven by external source f on which we assume the following hypothesis

(H3) There exists γ ∈ (−1− 2α, 0) such that

0 < ĺım inf
x∈Ω,x→∂Ω

f(x)d(x)−γ ≤ ĺım sup
x∈Ω,x→∂Ω

f(x)d(x)−γ < +∞.

Depending on the size of γ we will say that the external source is weak or strong. In
order to gain in clarity, in this case we will state separately the existence, uniqueness
and non-existence theorem in this source-driven case.

Theorem 0.2.2 (Existence) Assume that Ω is an open, bounded and connected
domain of class C2. Assume that f satis�es (H1) and let α ∈ (0, 1), then we have:

(i) (weak source) If f satis�es (H3) with

− 2α− 2α

p− 1
≤ γ < −2α, (42)

then, for every p such that (35) holds, equation (32) possesses at least one solution
u, with asymptotic behavior near the boundary given by

0 < ĺım inf
x∈Ω,x→∂Ω

u(x)d(x)−γ−2α ≤ ĺım sup
x∈Ω,x→∂Ω

u(x)d(x)−γ−2α < +∞. (43)

(ii) (strong source) If f satis�es (H3) with

− 1− 2α < γ < −2α− 2α

p− 1
(44)

then, for every p such that
p > 1 + 2α, (45)

equation (32) possesses at least one solution u, with asymptotic behavior near the
boundary given by

0 < ĺım inf
x∈Ω,x→∂Ω

u(x)d(x)−
γ
p ≤ ĺım sup

x∈Ω,x→∂Ω
u(x)d(x)−

γ
p < +∞. (46)

As we already mentioned, in Theorem 0.2.1 the existence of blowing up solutions
results from the interaction between the reaction up and the di�usion term (−∆)α,
while the role of the external source f is secondary. In contrast, in Theorem 0.2.2
the existence of blowing up solutions results on the interaction between the external
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source, and the di�usion term in case of weak source and the interaction between
the external source and the reaction term in case of strong source.

Regarding uniqueness result for solutions of (32), as in Theorem 0.2.1 we will
assume that f is non-negative, hypothesis that we need for technical reasons. We
have

Theorem 0.2.3 (Uniqueness) Assume that Ω is an open, bounded and connected
domain of class C2, α ∈ (0, 1) and f satis�es (H1) and f ≥ 0. Then we have

i) (weak source) the solution of (32) satisfying (43) is positive and unique, and

ii) (strong source) the solution of (32) satisfying (46) is positive and unique.

We complete our theorems with a non-existence result for solution with a previ-
ously de�ned asymptotic behavior, as we see in Theorem 0.2.1. We have

Theorem 0.2.4 (Non-existence) Assume that Ω is an open, bounded and con-
nected domain of class C2, α ∈ (0, 1) and f satis�es (H1), (H3) and f ≥ 0. Then
we have

i) (weak source) Suppose that p satis�es (35), γ satis�es (42) and τ ∈ (−1, 0) \
{γ + 2α}. Then equation (32) does not have a solution u satisfying (37).

ii) (strong source) Suppose that p satis�es (45), γ satis�es (44) and τ ∈ (−1, 0) \
{γ
p
}. Then, equation (32) does not have a solution u satisfying (37).

All these results stated so far deal with equation (30) in the case g ≡ 0, but they
may also be applied when g 6≡ 0 and, in particular, these result improve those given
in [51]. In what follows we describe how to obtain this. We start with some notation,
we consider L1

ω(Ω̄c) the weighted L1 space in Ω̄c with weight

ω(y) =
1

1 + |y|N+2α
, for all y ∈ RN .

Our hypothesis on the external values g is the following

(H4) The function g : Ω̄c → R is measurable and g ∈ L1
ω(Ω̄c).

Given g satisfying (H4), we de�ne

G(x) =
1

2

∫
RN

g̃(x+ y)

|y|N+2α
dy, x ∈ Ω, (47)

where

g̃(x) =

{
0, x ∈ Ω̄,

g(x), x ∈ Ω̄c.
(48)

28



We observe that
G(x) = −(−∆)αg̃(x), x ∈ Ω.

Hypothesis (H4) implies that G is continuous in Ω as seen in Lemma 2.2.1 and has
an explosion of order d(x)β−2α towards the boundary ∂Ω, if g has an explosion of
order d(x)β for some β ∈ (−1, 0), as we shall see in Proposition 2.3.3. We observe
that under the hypothesis (H4), if u is a solution of equation (30), then u− g̃ is the
solution of

(−∆)αu(x) + |u|p−1u(x) = f(x) +G(x), x ∈ Ω,

u(x) = 0, x ∈ Ω̄c,

ĺımx∈Ω,x→∂Ω u(x) = +∞,
(49)

and vice versa, if v is a solution of (49), then v + g̃ is a solution of (30).

Thus, using Theorem 0.2.1-0.2.4, we can state the corresponding results of ex-
istence, uniqueness and non-existence for (30), combining f with g to de�ne a new
external source

F (x) = G(x) + f(x), x ∈ Ω. (50)

With this we can state appropriate hypothesis for g and thus we can write theorems,
one corresponding to each of Theorem 0.2.1-0.2.4.

Moreover, in chapter 3 we study self-generated interior blow-up solutions to
fractional elliptic equations

(−∆)αu(x) + |u|p−1u(x) = 0, x ∈ Ω \ C,
u(x) = 0, x ∈ Ωc,

ĺımx∈Ω\C, x→C u(x) = +∞,
(51)

where p > 1, Ω is an open bounded C2 domain in RN , C ⊂ Ω is a compact C2

manifold with N − 1 multiples dimensions and without boundary. The explosion of
solutions to (51) near C is governed by a function c : (−1, 0]→ R, de�ned as

c(τ) =

∫ +∞

0

|1− t|τ + (1 + t)τ − 2

t1+2α
dt. (52)

This function plays the role of the function C de�ned by (40), but it has certain
di�erences. In Section 3.2 we prove the existence of a number α0 ∈ (0, 1) such that
α ∈ [α0, 1) the function c is always positive in (−1, 0), while if α ∈ (0, α0) then
there exists exists a unique τ1(α) ∈ (−1, 0) such that c(τ1(α)) = 0 and c(τ) > 0
in (−1, τ1(α)) and c(τ) < 0 in (τ1(α), 0), see Proposition 3.2.1. We notice here that
τ1(α) > τ0(α) if α ∈ (0, α0), where τ0(α) is from Theorem 0.2.1 (also see Proposition
2.3.1 for details).
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Throughout this part we denote the distance function

D : Ω \ C → R+, D(x) = dist(x, C). (53)

Now we are ready to state our main theorems in chapter 3 on the existence unique-
ness and asymptotic behavior of interior blow-up solutions to equation (51). These
theorems deal separately the case α ∈ (0, α0) and α ∈ [α0, 1).

Theorem 0.2.5 Assume that α ∈ (0, α0) and the assumptions on Ω and C as above.
Then we have:
(i) If

1 + 2α < p < 1− 2α

τ1(α)
, (54)

then problem (51) admits a unique positive solution u satisfying

0 < ĺım inf
x∈Ω\C,x→C

u(x)D(x)
2α
p−1 ≤ ĺım sup

x∈Ω\C,x→C
u(x)D(x)

2α
p−1 < +∞. (55)

(ii) If

máx{1− 2α

τ1(α)
+
τ1(α) + 1

τ1(α)
, 1} < p < 1− 2α

τ1(α)
. (56)

Then, for any t > 0, there is a positive solution u of problem (51) satisfying

ĺım
x∈Ω\C,x→C

u(x)D(x)−τ1(α) = t. (57)

(iii) If one of the following three conditions holds

a) 1 < p ≤ 1 + 2α and τ ∈ (−1, 0) \ {τ1(α)},

b) 1 + 2α < p < 1− 2α
τ1(α)

and τ ∈ (−1, 0) \ {τ1(α),− 2α
p−1
} or

c) p ≥ 1− 2α
τ1(α)

and τ ∈ (−1, 0),

then problem (51) does not admit any solution u satisfying

0 < ĺım inf
x∈Ω\C,x→C

u(x)D(x)−τ ≤ ĺım sup
x∈Ω\C,x→C

u(x)D(x)−τ < +∞. (58)

Theorem 0.2.6 Assume that α ∈ [α0, 1) and the assumptions on Ω and C as above.
Then we have:
(i) If p > 1 + 2α, then problem (51) admits a unique positive solution u satisfying
(55).
(ii) If p > 1, then problem (51) does not admit any solution u satisfying (58) for
any τ ∈ (−1, 0) \ {− 2α

p−1
}.
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0.2.2. Semilinear fractional elliptic equations involving mea-

sures

In chapter 4, we are concerned with the existence of weak solutions to the semi-
linear fractional elliptic problem

(−∆)αu+ g(u) = ν, in Ω,

u = 0, in Ωc,
(59)

where Ω ⊂ RN is an open bounded C2 domain, g : R 7→ R is a continuous function
and ν is a Radon measure such that

∫
Ω
ρβd|ν| < +∞ for some β ∈ [0, α] and

ρ(x) = dist(x,Ωc). The fractional Laplacian (−∆)α with α ∈ (0, 1) is de�ned by

(−∆)αu(x) = ĺım
ε→0+

(−∆)αε u(x),

where for ε > 0,

(−∆)αε u(x) = −
∫
RN

u(z)− u(x)

|z − x|N+2α
χε(|x− z|)dz (60)

and

χε(t) =

{
0, if t ∈ [0, ε],

1, if t > ε.

We remark that (60) is equivalent to (31).

When α = 1, the semilinear elliptic problem

−∆u+ g(u) = ν, in Ω,

u = 0, on ∂Ω,
(61)

has been extensively studied by numerous authors in the last 30 years. A fundamen-
tal contribution is due to Brezis [17], Bénilan and Brezis [10], where ν is a bounded
measure in Ω and the function g : R→ R is nondecreasing, positive on (0,+∞) and
satis�es the subcritical assumption:∫ +∞

1

(g(s)− g(−s))s−2N−1
N−2ds < +∞.

They proved the existence and uniqueness of the solution for problem (61). Baras and
Pierre [9] studied (61) when g(u) = |u|p−1u for p > 1 and ν is absolutely continuous
with respect to the Bessel capacity C2, p

p−1
, to obtain a solution. In [101] Véron

extended Benilan and Brezis results in replacing the Laplacian by a general uniformly
elliptic second order di�erential operator with Lipschitz continuous coe�cients; he
obtained existence and uniqueness results for solutions, when ν ∈ M(Ω, ρβ) with
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β ∈ [0, 1], M(Ω, ρβ) denotes the space of Radon measures in Ω satisfying∫
Ω

ρβd|ν| < +∞, (62)

in particular,M(Ω, ρ0) = Mb(Ω) is the set of bounded Radon measures, the function
g is nondecreasing and satis�es the β-subcritical assumption:∫ +∞

1

(g(s)− g(−s))s−2N+β−1
N+β−2ds < +∞.

The study of general semilinear elliptic equations with measure data have been
investigated, such as the equations involving measures boundary data which was
initiated by Gmira and Véron [62] who adapted the method introduced by Bénilan
and Brezis to obtain the existence and uniqueness of solution. This subject has been
vastly expanded in recent years, see the papers of Marcus and Véron [74, 76, 77, 78,
79], Bidaut-Véron and Vivier [14], Bidaut-Véron, Hung and Véron [13].

In this chapter, our interesting is to study the existence and uniqueness of solu-
tions of semilinear fractional elliptic problem (59) in a measure framework. Before
stating our main theorem we make precise the notion of weak solution used in this
thesis.

De�nition 0.2.1 We say that u is a weak solution of (59), if u ∈ L1(Ω), g(u) ∈
L1(Ω, ραdx) and ∫

Ω

[u(−∆)αξ + g(u)ξ]dx =

∫
Ω

ξdν, ∀ξ ∈ Xα, (63)

where Xα ⊂ C(RN) is the space of functions ξ satisfying:

(i) supp(ξ) ⊂ Ω̄,

(ii) (−∆)αξ(x) exists for all x ∈ Ω and |(−∆)αξ(x)| ≤ C for some C > 0,

(iii) there exist ϕ ∈ L1(Ω, ραdx) and ε0 > 0 such that |(−∆)αε ξ| ≤ ϕ a.e. in Ω, for
all ε ∈ (0, ε0].

We notice that for α = 1, the test space Xα is used as C1,L
0 (Ω), which has similar

properties like (i) and (ii). The counter part for the Laplacian of assumption (iii)
would be that the di�erence quotient ∇xj ,h[u](.) := h−1[∂xju(. + hej) − ∂xju(.)] is
bounded by an L1-function, which is true since

∇xj ,h[u](x) = h−1

∫ h

0

∂2
xj ,xj

u(x+ sej)ds.

We denote by Gα the Green kernel of (−∆)α in Ω and byGα[.] the Green operator
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de�ned by

Gα[f ](x) =

∫
Ω

Gα(x, y)f(y)dy, ∀f ∈ L1(Ω, ραdx). (64)

For N ≥ 2, α ∈ (0, 1) and β ∈ [0, α], we de�ne the critical exponent

kα,β =

{
N

N−2α
, if β ∈ [0, N−2α

N
α],

N+α
N−2α+β

, if β ∈ (N−2α
N

α, α].
(65)

Our main result in this part is the following.

Theorem 0.2.7 Assume that Ω ⊂ RN (N ≥ 2) is an open bounded C2 domain,
α ∈ (0, 1), β ∈ [0, α] and kα,β is de�ned by (65). Let g : R → R be a continuous,
nondecreasing function, satisfying

g(r)r ≥ 0, ∀r ∈ R and

∫ +∞

1

(g(s)− g(−s))s−1−kα,βds < +∞. (66)

Then for any ν ∈M(Ω, ρβ) problem (59) admits a unique weak solution u. Further-
more, the mapping: ν 7→ u is increasing and

−Gα[ν−] ≤ u ≤ Gα[ν+] a.e. in Ω, (67)

where ν+ and ν− are respectively the positive and negative part in the Jordan decom-
position of ν.

We note that for α = 1 and β ∈ [0, 1), we have

k1,β >
N + β

N − 2 + β
, (68)

where k1,β is given in (65) and the number in right hand side of (68) is from Theorem
3.7 in [101]. Inspired by [62, 101], the existence of solution could be extended in as-
suming that g : Ω×R→ R is continuous and satis�es the (N,α, β)-weak-singularity
assumption, that is, there exists r0 > 0 such that

g(x, r)r ≥ 0, ∀(x, r) ∈ Ω× (R \ (−r0, r0)),

and
|g(x, r)| ≤ g̃(|r|), ∀(x, r) ∈ Ω× R,

where g̃ : [0,∞)→ [0,∞) is continuous, nondecreasing and satis�es that∫ +∞

1

g̃(s)s−1−kα,βds < +∞.
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We also give a stability result which shows that problem (59) is weakly closed
in the space of measures M(Ω, ρβ). Moreover, we characterize the behaviour of the
solution u of (59) when ν = δa for some a ∈ Ω. We also study the case where
g(r) = |r|k−1r when k ≥ kα,β, which doesn't satisfy (66). We show that a necessary
and su�cient condition in order a weak solution to problem

(−∆)αu+ |u|k−1u = ν, in Ω,

u = 0, in Ωc,
(69)

to exist where ν is a positive bounded measure and vanishes on compact subsets K
of Ω with zero C2α,k′ Bessel-capacity.

0.2.3. Weakly and strongly singular solutions of semilinear

fractional elliptic equations

The aim of chapter 5 is to study the properties of the weak solution to problem

(−∆)αu+ up = kδ0, in Ω,

u = 0, in Ωc,
(70)

where Ω is an open bounded C2 domain of RN(N ≥ 2) containing 0, α ∈ (0, 1),
k > 0, p ∈ (0, N

N−2α
) and δ0 denotes the Dirac measure at 0.

In 1980, Brezis in[16] (also see [10]) obtained that the problem

−∆u+ uq = kδ0 in Ω,

u = 0 on ∂Ω
(71)

admits a unique solution uk for 1 < q < N/(N − 2), while no solution exists when
q ≥ N/(N − 2). Later on, Brezis and Véron in [18] proved that the problem

−∆u+ uq = 0 in Ω \ {0},
u = 0 on ∂Ω

(72)

admits only the zero solution when q ≥ N/(N−2). When 1 < q < N/(N−2), Véron
in [100] described all the possible singular behaviour of positive solutions of (72). In
particular he proved that this behaviour is always isotropic (when (N+1)/(N−1) ≤
q < N/(N − 2) the assumption of positivity is unnecessary) and that two types of
singular behaviour occur:

(i) either u(x) ∼ cNk|x|2−N as x→ 0 and k can take any positive value; u is said to
have a weak singularity at 0, and actually u = uk,

(ii) or u(x) ∼ cN,q|x|−
2
q−1 as x → 0; u is said to have a strong singularity at 0, and
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u = u∞ := ĺımk→∞ uk.

In a recent work, Chen and Véron [39] derived that for 1 + 2α
N
< p < N

N−2α
, the

problem
(−∆)αu+ up = 0 in Ω \ {0},

u = 0 in Ωc
(73)

admits a solution us satisfying

ĺım
x→0

us(x)|x|
2α
p−1 = cp, (74)

for some cp > 0. Moreover us is the unique positive solution of (73) in the class set
of

0 < ĺım inf
x→0

u(x)|x|
2α
p−1 ≤ ĺım sup

x→0
u(x)|x|

2α
p−1 < +∞. (75)

We say that u is a weakly singular solution of (73) if ĺım supx→0 |u(x)||x|N−2α < +∞,
or strongly singular solution if ĺımx→0 |u(x)||x|N−2α = +∞.

We also in [40] obtained that there exists a unique weak solution to the problem

(−∆)αu+ g(u) = ν in Ω,

u = 0 in Ωc,
(76)

where g is a subcritical nonlinearity, ν is a Radon measure in Ω. In the fractional
framework, the de�nition of weak solution is given as follows.

De�nition 0.2.2 A function u ∈ L1(Ω) is a weak solution of (76) if g(u) ∈ L1(Ω, ραdx)
and ∫

Ω

[u(−∆)αξ + g(u)ξ]dx =

∫
Ω

ξdν, ∀ξ ∈ Xα, (77)

where ρ(x) = dist(x,Ωc) and Xα ⊂ C(RN) is the space of functions ξ satisfying:

(i) supp(ξ) ⊂ Ω̄,

(ii) (−∆)αξ(x) exists for all x ∈ Ω and |(−∆)αξ(x)| ≤ C for some C > 0,

(iii) there exist ϕ ∈ L1(Ω, ραdx) and ε0 > 0 such that |(−∆)αε ξ| ≤ ϕ a.e. in Ω, for
all ε ∈ (0, ε0].

According to Theorem 0.2.7with g(s) = |s|p−1s and ν = kδ0, we have following
result for problem (70).

Proposition 0.2.1 Assume that p ∈ (0, N
N−2α

). Then for any k > 0, problem (70)
admits a unique weak solution uk satisfying

Gα[kδ0]−Gα[(Gα[kδ0])p] ≤ uk ≤ Gα[kδ0] in Ω. (78)
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Moreover, (i) uk is positive in Ω;
(ii) {uk}k is a sequence increasing functions, i.e.

uk(x) ≤ uk+1(x), ∀x ∈ Ω. (79)

Here Gα[·] is the Green operator de�ned by

Gα[ν](x) =

∫
Ω

Gα(x, y)dν(y), ∀ν ∈M(Ω, ρα), (80)

where Gα is the Green kernel of (−∆)α in Ω× Ω. By monotonicity of {uk}k,

u∞(x) := ĺım
k→∞

uk(x), ∀x ∈ RN \ {0} (81)

and then u∞(x) ∈ R+ ∪ {+∞} for x ∈ RN \ {0}.
Our purpose in this chapter is to do further study on the properties of uk, in-

cluding the regularity and the limit of uk, which is the unique weak solution of (70).

Theorem 0.2.8 Assume that 1+ 2α
N
≥ 2α

N−2α
, p ∈ (0, N

N−2α
), uk is the weak solution

of (70) and u∞ is given by (81).

Then uk is a classical solution of (73). Furthermore,
(i) if p ∈ (0, 1 + 2α

N
),

u∞(x) =∞, ∀x ∈ Ω; (82)

(ii) if p ∈ (1 + 2α
N
, N
N−2α

),
u∞ = us,

where us is the solution of (73) satisfying (74).

The result of part (i) indicates that there is no strongly singular solution to
problem (73) for p ∈ (0, 1+ 2α

N
), which is di�erent from the result for Laplacian case.

This phenomenon comes from the fact that the fractional Laplacian is a nonlocal
operator, which requires the solution to belong to L1(Ω), therefore no barrier can
be constructed for p < 1 + 2α

N
. On the contrary, part (ii) points out that u∞ is the

least strongly singular solution of (73).

Next we consider the case 1 + 2α
N
< 2α

N−2α
. It occurs only when

√
5− 1

4
N < α < 1, N = 2, 3.

In this situation, it is obvious that N
2α
< 1 + 2α

N
. Now we state our second theorem

as following.
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Theorem 0.2.9 Assume that 1 + 2α
N
< 2α

N−2α
, p ∈ (0, N

N−2α
), uk is the weak solution

of (70) and u∞ is given by (81).

Then uk is a classical solution of (73). Furthermore,
(i) if p ∈ (0, N

2α
), then

u∞(x) =∞, ∀x ∈ Ω;

(ii) if p ∈ (1 + 2α
N
, 2α
N−2α

), then u∞ is a classical solution of (73) and there exist
ρ0 > 0 and c0 > 0 such that

c0|x|−
(N−2α)p
p−1 ≤ u∞ ≤ us, ∀x ∈ Bρ0(0) \ {0}; (83)

(iii) if p = 2α
N−2α

, then u∞ is a classical solution of (73) and there exist ρ0 > 0 and
c1 > 0 such that

c1
|x|−

(N−2α)p
p−1

(1 + | log(|x|)|)
1
p−1

≤ u∞ ≤ us, ∀x ∈ Bρ0(0) \ {0}; (84)

(iv) if p ∈ ( 2α
N−2α

, N
N−2α

), then
u∞ = us,

where us is the solution of (73) satisfying (74)

We note that Theorem 0.2.8 and Theorem 0.2.9 do not provide description of
u∞ in the region

U :=
{

(α, p) ∈ (0, 1)× (1, N
N−2

) : 1 + 2α
N
< 2α

N−2α
, N

2α
≤ p ≤ 1 + 2α

N

}⋃{
(α, p) ∈ (0, 1)× (1, N

N−2
) : 1 + 2α

N
≥ 2α

N−2α
, p = 1 + 2α

N

}
,

which is region (IV ) and the segment p = 1+ 2α
N
, see the pictures N = 2 and N = 3.
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0.2.4. Semilinear fractional elliptic equations with gradient

nonlinearity involving measure

The purpose of chapter 6 is to study the existence of weak solutions to the
semilinear fractional elliptic problem

(−∆)αu+ εg(|∇u|) = ν, in Ω,

u = 0, in Ωc,
(85)

where Ω ⊂ RN(N ≥ 2) is an open bounded C2 domain, α ∈ (1/2, 1), g : R+ 7→
R+ be a continuous function, ε = 1 or −1 and ν ∈ M(Ω, ρβ) with β ∈ [0, 2α −
1). In particular, we denote Mb(Ω) = M(Ω, ρ0). The associated positive cones are
respectively M+(Ω, ρβ) and Mb

+(Ω). According to the value of ε, we speak of an
absorbing nonlinearity the case ε = 1 and a source nonlinearity the case ε = −1. In
a recent work, Nguyen-Phuoc and Véron [82] obtained the existence of solutions to
the viscous Hamilton-Jacobi equation

−∆u+ h(|∇u|) = ν, in Ω,

u = 0, on ∂Ω,
(86)

when ν ∈ Mb(Ω), h is a continuous nondecreasing function vanishing at 0 which
satis�es ∫ +∞

1

h(s)s−
2N−1
N−1 ds < +∞.

More recently, Bidaut-Véron, García-Huidobro and Véron in [12] studied the exis-
tence of solutions to the Dirichlet problem

−∆pu+ ε|∇u|q = ν, in Ω,

u = 0, on ∂Ω,
(87)

with 1 < p ≤ N , ε = 1 or −1, q > 0 and ν ∈Mb(Ω).

Our interest in this part is to investigate the existence of weak solutions to
fractional equations involving nonlinearity in the gradient term and with Radon
measure. In order the fractional Laplacian be the dominant operator in terms of
order of di�erentiation, it is natural to assume that α ∈ (1/2, 1).

De�nition 0.2.3 We say that u is a weak solution of (85), if u ∈ L1(Ω), |∇u| ∈
L1
loc(Ω), g(|∇u|) ∈ L1(Ω, ραdx) and∫

Ω

[u(−∆)αξ + εg(|∇u|)ξ]dx =

∫
Ω

ξdν, ∀ ξ ∈ Xα, (88)

where Xα is de�ned in De�nition 0.2.1.
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Our main result in the case ε = 1 is the following.

Theorem 0.2.10 Assume that ε = 1 and g : R+ 7→ R+ is a continuous function
verifying g(0) = 0 and ∫ +∞

1

g(s)s−1−p∗αds < +∞, (89)

where

p∗α =
N

N − 2α + 1
. (90)

Then for any ν ∈M+(Ω, ρβ) with β ∈ [0, 2α−1), problem (85) admits a nonnegative
weak solution uν which satis�es

uν ≤ Gα[ν]. (91)

When ε = −1, we have to consider the critical value p∗α,β which depends truly on
β and is expressed by

p∗α,β =
N

N − 2α + 1 + β
. (92)

We observe that p∗α,0 = p∗α and p∗α,β < p∗α when β > 0. In the source case, the
assumptions on g are of a di�erent nature from in the absorption case, namely

(G) g : R+ 7→ R+ is a continuous function which satis�es

g(s) ≤ c1s
p + σ0, ∀s ≥ 0, (93)

for some p ∈ (0, p∗α,β), where c1 > 0 and σ0 > 0.

Our main result concerning the source case is the following.

Theorem 0.2.11 Assume that ε = −1, ν ∈ M(Ω, ρβ) with β ∈ [0, 2α − 1) is
nonnegative, g satis�es (G) and

(i) p ∈ (0, 1), or

(ii) p = 1 and c1 is small enough, or

(iii) p ∈ (1, p∗α,β), σ0 and ‖ν‖M(Ω,ρβ) are small enough.

Then problem (85) admits a weak nonnegative solution uν which satis�es

uν ≥ Gα[ν]. (94)

In the last section of this part, we assume that Ω contains 0 and give pointwise
estimates of the positive solutions

(−∆)αu+ |∇u|p = δ0 in Ω,

u = 0 in Ωc
(95)
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with 0 < p < p∗α. Combining properties of the Riesz kernel with a bootstrap argu-
ment, we prove that any weak solution of (95) is regular outside 0 and is actually a
classical solution of

(−∆)αu+ |∇u|p = 0 in Ω \ {0},
u = 0 in Ωc.

(96)

These pointwise estimates are quite easy to establish in the case α = 1, but much
more delicate when the di�usion operator is non-local. We give sharp asymptotics of
the behaviour of u near 0 and prove that the solution of (95) is unique in the class
of positive solutions.
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Capítulo 1

On Liouville type theorems for fully
nonlinear elliptic equations with
gradient term

Abstract: in this chapter1, we prove a Hadamard property and Liouville type
theorems for viscosity solutions of fully nonlinear elliptic partial di�erential equa-
tions with a gradient term, both in the whole space and in an exterior domain.

1.1. Introduction

In the study of nonlinear elliptic equations in bounded domains, non-existence
results for entire solutions of related limiting equations appear as a crucial ingredient.
In the search for positive solutions for semi-linear elliptic equations with nonlinearity
behaving as a power at in�nity, one is interested in the non-negative solutions of the
equation

∆u+ up = 0, in RN . (1.1)

The question is for which value of p, typically p > 1, this equation has or has
no solution. This has been one of the motivations that has pushed forward the
study of Liouville type theorems for general equations in RN and in unbounded
domains like cones or exterior domains. On the other hand, the understanding of
structural characteristics of general linear or nonlinear operators has been another
motivation for advancing the study of Liouville type theorems that have attracted
many researchers. See the work in [1, 2, 19, 61, 86].

If we consider the Pucci's operators instead of the Laplacian, the question set
above becomes very interesting, since most of the techniques used in the case of the

1This chapter is based on the paper: H. Chen and P. Felmer, On Liouville type theorems for fully

nonlinear elliptic equations with gradient term, J. Di�erential Equations 255, 2167-2195 (2013).
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Laplacian are not available. The Liouville type theorem for the equation analogous
to equation (1.1) has not been proved in full generality, but only in the radial case.
On the other hand, the Liouville type theorem for non-negative solutions of

M−u+ up ≤ 0, in RN , (1.2)

has been studied in full extent by Cutrì and Leoni [45] and generalized in various
directions by Felmer and Quaas [52, 54, 55] Capuzzo-Dolcetta and Cutrì [30] and
Armstrong and Sirakov in [3]. In all these cases the solutions of the inequality are
considered in the viscosity sense.

In a recent paper, Armstrong and Sirakov in [4] made signi�cant progress in the
understanding of the structure of positive solutions of equations generalizing (1.2),
shading light even for equations of the form

∆u+ f(u) ≤ 0, in RN . (1.3)

They propose a general approach to non-existence and existence of solutions of the
general inequality

Q(u) + f(x, u) ≤ 0, in RN , (1.4)

where the second order di�erential operator Q satis�es certain scaling property, it
possesses fundamental solutions behaving as power asymptotically and it satis�es
some other properties, common to elliptic operators, like a weak comparison princi-
ple, a quantitative strong comparison principle and a very weak Harnack inequality,
see hypothesis (H1)-(H5) in [4]. Regarding the nonlinearity f , the results in [4] un-
ravel a very interesting property, that is, that the behavior of the function f only
matters near u = 0 and for x large. These results are new even for the case of
(1.3). Moreover, the authors in [4] are able to apply their approach to equation (1.4)
in exterior domains without any boundary condition, providing another truly new
result.

It is the purpose of this chapter to extend the results described above in order
to include elliptic operators with �rst order term. The introduction of a �rst order
term may brake the scaling property of the di�erential operator and it allows for
the appearance of non-homogeneous fundamental solutions, not even asymptotical-
ly. Thus, the approach in [4] cannot be applied to this more general situation and
we have to �nd di�erent arguments. Interestingly, to prove our results we use the
more elementary approach taken in the original work by Cutrì and Leoni, where the
Hadamard property, obtained through the comparison principle, is combined with
the appropriate choice of a function to test the equation. The underline principle
is the asymptotic comparison between the solutions of the inequality and the fun-
damental solution. This can be interpreted as the interaction between the elliptic
operator, including �rst order term, and the nonlinearity (the zero order term).

We start the precise description of our results by recalling the de�nition of the
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Pucci's operators. In this chapter, we consider

M+(r,D2u) = Λ(r)
∑
ei≥0

ei + λ(r)
∑
ei<0

ei (1.5)

and
M−(r,D2u) = λ(r)

∑
ei≥0

ei + Λ(r)
∑
ei<0

ei, (1.6)

where e1, . . . , eN are the eigenvalues of D2u, λ,Λ : [0,∞) → R are continuous, λ0

and Λ0 are positive constants and

0 < λ0 ≤ λ(r) ≤ Λ(r) ≤ Λ0 < +∞, ∀r = |x|, x ∈ RN . (1.7)

Our purpose is to study the non-negative solutions of

M−(r,D2u) + σ(r)|Du|+ f(x, u) ≤ 0 in Ω, (1.8)

with Ω = RN or an exterior domain and σ : [0,∞)→ R and f : Ω×(0,∞)→ (0,∞)
are continuous. In this chapter, by an exterior domain we mean a set Ω = RN \K
connected, where K is nonempty compact subset of RN .

We consider the fundamental solutions for the second order di�erential operator
ϕ, ψ : (0,∞)→ R in given (1.41) and (1.42), which are non-trivial radially symmetric
solutions of

M−(r,D2u) + σ(r)|Du| = 0, x ∈ RN \ {0}. (1.9)

satisfying

(i) ψ is increasing and either ĺımr→∞ ψ(r) =∞ or ĺımr→∞ ψ(r) = 0 and

(ii) ϕ is decreasing and either ĺımr→∞ ϕ(r) = −∞ or ĺımr→∞ ϕ(r) = 0.

Now we are in a position to make precise assumptions about the interaction
between the di�erential operator and the nonlinearity. We assume that

(f1) f : Ω× (0,∞)→ (0,∞), λ,Λ, σ : [0,∞)→ R are continuous.

(f2) We have

ĺım
r=|x|→∞

r2

1 + σ−(r)r
f(x, s) =∞

uniformly on compact subsets of (0,∞). Here and in what follows σ− =
máx{−σ, 0}.

In order to state the next assumption we need a de�nition. Given µ > 0, a > 1,
k > 0 and τ > 0 we de�ne

Ψk(τ) =
ϕ(aτ)

ϕ(τ)
ı́nf

x∈Baτ\Bτ

{
r2

σ−(r)r + 1
ı́nf

kϕ(ar)≤s≤µ

f(x, s)

s

}
. (1.10)

43



We assume:

(f3) If ĺımr→∞ ϕ(r) = 0 then we assume the existence of constants µ > 0 and a > 1
such that, de�ning

h(k) = ĺım sup
τ→∞

Ψk(τ),

one of the following holds:

(i) for all k > 0 we have h(k) =∞ or

(ii) for all k > 0 we have

0 < ĺım inf
τ→∞

Ψk(τ) and ĺım
k→∞

h(k) =∞ (1.11)

and there is a constant C ∈ R such that

rσ(r) > C, for all r > 0. (1.12)

Now we state our �rst Liouville type theorem for inequality (1.8) in RN .

Theorem 1.1.1 Assume that f satis�es (f1), (f2) and (f3). Then inequality (1.8)
in RN does not have a non-trivial viscosity solution u ≥ 0.

We observe that hypothesis (f3) does restrict f when ĺımr→∞ ϕ(r) = −∞.

Regarding hypotheses (f2) and (f3) we would like to notice that they are natural
extensions of hypotheses (f2)−(f3) in [4], when σ 6≡ 0 and the fundamental solution
ϕ is not necessarily power-like. Thus, we are generalizing the results in [4] in the
case of a one-homogeneous di�erential operator in RN . It is also interesting to notice
that hypotheses (f2) and (f3) appear explicitly and in a natural way in our proof of
the theorem.

When the condition (i) is satis�ed we say that inequality (1.8) is sub-critical and
when condition (ii) holds, we say it is critical. In case of

∆u+ up ≤ 0,

we say the inequality is sub-critical when p < N/(N−2) and when p = N/(N−2) it
is critical. When p > N/(N − 2) we say the inequality is super-critical and here the
existence of positive solution holds. Accordingly, we would like to de�ne a notion
of super-criticality the cases (i) and (ii) do not hold. However, in Theorem 1.2.3 we
provide an example where there is no solution in a super-critical sub-region, showing
that further study is required to understand the critical boundary.

In the case of an exterior domain, we need to consider also the interaction between
the di�erential operator and the nonlinearity at∞. We need a de�nition in order to
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state our assumptions. Given µ > 0, a > 1, k > 0 and τ > 0 we de�ne

Ψ̃k(τ) =
ψ(τ)

ψ(aτ)
ı́nf

x∈Baτ\Bτ

{
r2

σ−(r)r + 1
ı́nf

µ≤s≤kψ(ar)

f(x, s)

s

}
.

Now we assume that

(f4) If ĺımr→∞ ψ(r) = ∞ then we assume the existence of constants µ > 0 and
a > 1 such that, de�ning

h̃(k) = ĺım sup
τ→∞

Ψ̃k(τ),

one of the following holds:

(i) for all k > 0 we have h̃(k) =∞ or

(ii) for all k > 0 we have

0 < ĺım inf
τ→∞

Ψ̃k(τ) and ĺım
k→0+

h̃(k) =∞ (1.13)

and there is a constant C ∈ R such that (1.12) holds.

For an exterior domain we have the following non-existence result.

Theorem 1.1.2 Assume that Ω is an exterior domain and f satis�es (f1), (f2),
(f3) and (f4). Then inequality (1.8) in Ω does not have a non-trivial viscosity solution
u ≥ 0.

We observe that hypothesis (f4) does restrict f when ĺımr→∞ ψ(r) = 0.

As for (f3), hypothesis (f4) is the natural extension of (f4) in [4] to our case.
Here we allow σ 6≡ 0 and ψ not power-like, thus generalizing [4].

In case of (f4) we may also de�ne the notion of criticality for (1.8) in an analogous
way as for (f3). Since here the behavior of f is relevant at zero and in�nity mixed
cases appear, as for example, an inequality critical at 0 and sub-critical at∞ or vice
verse.

In the proofs of Theorem 1.1.1 and 1.1.2 we use some basic properties of the
functions

m(r) = ı́nf
x∈Br

u(x), m0(r) = ı́nf
x∈Br\Br0

u(x) and M(r) = ı́nf
x 6∈Br

u(x) (1.14)

in connection with the fundamental solutions, as given by the Hadamard property
provided in Theorem 1.4.3. Then we test the equation with an adequate function and
we use the asymptotic assumptions on f and the fundamental solutions to obtain a
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contradiction with the existence of non-trivial non-negative solutions. In the proofs
of our theorems we only consider a = 2.

The interaction between the elliptic operator and the nonlinearity, that is ex-
pressed in hypotheses (f3) and (f4), is not easy to understand in full generality.
However, beyond the cases studied in [4], there are many interesting examples that
well illustrate the relevance of our results to understand the general structure of
solutions for these equations. In particular, in Section 1.2 we discuss some examples
for the inequality

∆u+ σ(r)|Du|+ f(u) ≥ 0, in RN, (1.15)

which are not covered in the literature. In the �rst example we analyze the non-
linearity f(u) = up with a function σ associated to a fundamental solution with
oscillatory power, see (1.26). In this case, it is interesting to observe the way to
introduce σ which a�ects the critical power of the nonlinearity. In the second ex-
ample we analyze the case of f(u) = up(1 + log |u|)ν and a function σ providing
a fundamental solution matching the non-homogeneous nonlinearity, see (1.31). In
this case we analyze the range of p and ν for non-existence of solutions to (1.15).

For the existence of positive solutions of (1.8), it is nature to consider the super-
critical assumption, that is, the case when hypotheses (f3) and (f4) are not satis�ed,
which means

ĺım inf
τ→∞

Ψk(τ) = 0 or ĺım sup
k→∞

h(k) <∞

and
ĺım inf
τ→∞

Ψ̃k(τ) = 0 or ĺım sup
k→∞

h̃(k) <∞,

where h, h̃, Ψk and Ψ̃k were de�ned in (f3) and (f4). We observe that super-
criticality holds when h(k) = 0 or h̃(k) = 0 for any k > 0, but it is not true that
under this notion of super-criticality a positive solution of (1.8) always exists, as we
see in Section 1.2 through an example.

In the last part of this chapter we consider a Liouville type theorem in the case
f is a linear function, that is, f(x, s) = h(x)s, that interestingly can be proved using
the same techniques considered in the nonlinear case. This problem has been recently
studied by Rossi [89] after some previous work by Berestycki, Hamel and Nadirashvili
[20], Berestycki, Hamel and Roques [21] and Berestycki, Hamel and Rossi [22]. Rossi
[89] proved a Liouville type theorem for generally unbounded domains, assuming
that

ĺım inf
x∈Ω,|x|→∞

u(x) + 1

dist(x, ∂Ω)
= 0. (1.16)

It is clear that when Ω is an exterior domain then dist(x, ∂Ω) ≤ |x|, so that (1.16)
implies a linear growth constraint on u. Thus, it is interesting to investigate the
existence or non-existence of positive solutions of the corresponding equation when
(1.16) does no longer hold. Here is our result:
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Theorem 1.1.3 Let u be a viscosity nonnegative solution of

M−(r,D2u) + σ(r)|Du|+ h(x)u ≤ 0, in Ω, (1.17)

where Ω is an exterior domain. Assume further that λ and Λ satisfy (1.7) and that

(h1) h : RN → R and σ : R+ → R are continuous, h is positive and σ is negative.

(h2) There exists a function κ : R+ → R+ of class C1 such that

ĺım
r→∞

κ′(r) = 0 (1.18)

and there is a constant µ ≥ 1 such that

1 ≤ κ(r) máx
r−κ(r)≤s≤r

|σ(s)| ≤ µ, for all r > 0. (1.19)

(h3) There exists a sequence rn →∞ such that

ĺım
n→∞

ı́nf
r∈(rn−κ(rn),rn)

{
h(r)− e

µ
λ0 (2Λ0 + 1)σ2(r)

}
> 0. (1.20)

Then u ≡ 0.

1.2. Discussion and examples

We devote this section to present various examples that illustrate the relevance of
our results. We start discussing the relation between σ and the fundamental solution,
then we present two examples for Theorem 1.1.1 and we conclude the section with a
theorem related with the concept of super-criticality. We concentrate our discussion
on Theorem 1.1.1 regarding inequality (1.8) in RN in the case of the elliptic operator

Q(r, u) = ∆u+ σ(r)|Du|. (1.21)

We may certainly construct examples for Theorem 1.1.2 regarding the inequality in
an exterior domain and for general Pucci's operators as in our theorems.

In Section 1.3 we study with details the fundamental solutions associated to the
di�erential operator in equation (1.8). We see that in the case of Q, the decreasing
fundamental solution is given by

ϕ(r) = −
∫ r

1

s1−Ne
∫ s
1 σ(τ)dτds+ Lϕ,

where Lϕ is a constant so that when ĺımr→∞ ϕ(r) exists, it becomes equal to 0, see
Proposition 1.3.1 and its proof. With this formula we may construct many examples
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of fundamental solutions with a whole variety of asymptotic behavior. We start
showing the e�ect of the �rst order term on the behavior of the fundamental solution.
Our �rst example is for

σ(r) =
d

dr
(sin r log r), r ≥ 1,

properly extended to [0, 1). Then we have, for a constant Lϕ,

ϕ(r) = −
∫ r

1

s1−N+sin(s)ds+ Lϕ, r ≥ 1. (1.22)

We observe that this fundamental solution does not behave like a power at in�nity.
The second example is given by

σ(r) =
d

dr
(cos(log log r) log r), r ≥ e,

properly extended to [0, e). The associated fundamental solution does not behave
like a power, not even asymptotically. Its behavior is oscillatory, with slower rate
than (1.22). For a third example we consider

σ(r) = − d

dr
((α + 2−N) log r + log log r), r ≥ e, (1.23)

extended to [0, e) as a continuous function with fundamental solution

ϕ(r) = −eα+1

∫ r

e

s−1−α

log s
ds+ Lϕ, r ≥ e. (1.24)

This example is di�erent from earlier ones since it is not oscillatory, but with an
asymptotic behavior which is not power-like because of its logarithmic term.

It is interesting to see that we may prescribe explicit fundamental solutions by
providing functions q like

ϕ(r) = e−q(r), r ≥ 0, (1.25)

assuming that q is increasing and ĺımr→∞ q(r) = ∞. It is easy to check that this
fundamental solution is obtained when the function σ is given by

σ(r) =
N − 1

r
− q′(r) +

q′′(r)

q′(r)
, r ≥ 0. (1.26)

In view of our examples later, we will require q to be such that rσ(r) is bounded.
This condition is not necessary to use Theorem 1.1.1, but under this condition (f2)
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and (f3) greatly simplify. Assume that N ≥ 3 and

q(r) = (N − 2) log r +
1

2
sin(log(log r)) log r, r > e. (1.27)

After some direct calculation, we see that q′(r) > 0 and, if σ is de�ned as in (1.26),
rσ(r) is bounded. In this case, the fundamental solution is

ϕ(r) = r−(N−2+ 1
2

sin(log log r)), r ≥ e,

which is a power exhibiting an oscillatory exponent. In this situation we have

Theorem 1.2.1 Assume that N ≥ 3 and

1 < p <
N − 1

2

N − 5
2

, (1.28)

then there is no positive solution to the nonlinear inequality

∆u+ σ(|x|)|Du|+ up ≤ 0, in RN . (1.29)

This theorem shows the e�ect of the �rst order term on the critical exponent. It
is interesting to notice that the critical exponent is enlarged because the dimension
is decreased by 1/2, the amplitude of the oscillatory power.

Proof of Theorem 1.2.1. The application of Theorem 1.1.1 requires to analyze
the function Ψk in (f3), since all other hypotheses are satis�ed. Using the de�nition
of Ψk, that p > 1 and that rσ(r) is bounded, we �nd that for r large

Ψk(r) = kp−1e−q(2r)p+q(r)+2 log r. (1.30)

Computing the exponent, from (1.27) we see that

−q(2r)p+ q(r) = −(N − 2)p log 2− p

2
sin(log(log(2r))) log 2

+

[
−(N − 2)(p− 1)− p

2
sin(log(log(2r))) +

1

2
sin(log(log(r)))

]
log r.

We claim that there exists a sequence {rn} such that ĺımn→∞ rn =∞,

ĺım
n→∞

sin(log(log(2rn))) = −1 and ĺım
n→∞

sin(log(log(rn))) = −1.

Assume the claim is true now, then we get ĺımn→∞Ψk(rn) = ∞ if we have −(N −
2)(p − 1) + (p − 1)/2 + 2 > 0, which is exactly (1.28). To complete the proof we
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check the claim. We let rn be the positive solution of the equation

sin

(
log(log(2rn)) + log(log(rn))

2

)
= −1, n ∈ N,

that satis�es ĺımn→∞ rn =∞. Then we have

sin(log(log(2rn))) + sin(log(log(rn))) = −2 cos

(
log(log(2rn)/log(rn))

2

)
,

from where the claim follows, since

ĺım
n→∞

[sin(log(log(2rn))) + sin(log(log(rn)))] = −2.

2

Now we consider another example for the function

q(r) = (N − 2) log r + log(log r), r > e. (1.31)

Its associated fundamental solution is a power with a logarithmic factor

ϕ(r) =
1

rN−2 log r
, r ≥ 1,

and rσ(r) is bounded, for σ as in (1.26). Next we apply Theorem 1.1.1 to the
nonlinearity f(u) = up(| log u|+ 1)ν with di�erential term Q with σ as above.

Theorem 1.2.2 Assume that N ≥ 3 and

1 < p <
N

N − 2
and ν ∈ R, or

p =
N

N − 2
and ν ≥ − 2

N − 2
,

then there is no positive solution to the nonlinear inequality

∆u+ σ(|x|)|Du|+ up(| log u|+ 1)ν ≤ 0, in RN . (1.32)

This theorem provides an example of a non-existence result where the nonlin-
earity and the fundamental solution are not homogeneous and they match in such
a way that the hypothesis (f3) is satis�ed.

Proof of Theorem 1.2.2. In this case, the function Ψk in (f3) is given by

Ψk(r) = kp−1e−q(2r)p+q(r)+2 log r[| log k − q(2r)|+ 1]ν . (1.33)
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From here and (1.31) we have

−q(2r)p+ q(r) = (N − 2)((1− p) log r − p log 2)− p log(log(2r)) + log(log(r)).

From here, there exists a constant C > 0 so that, for r large, we have

Ψk(r) ≥ Ckp−1r(N−2)(p−1)(log r)p−1(log r − log k)ν .

If p < N
N−2

with ν ∈ R or p = N
N−2

with ν > − 2
N−2

, then ĺımr→∞Ψk(r) =∞. In the
limit case, when p = N

N−2
with ν = − 2

N−2
, we have ĺımr→∞Ψk(r) ≥ Ckp−1, from

where we complete the proof using Theorem 1.1.1. 2

In the examples discussed above the fact that f(s)/s is decreasing allowed to
get the inner most in�mum easily. Then, the monotonicity of the remaining term in
r allowed to get the second in�mum and thus Ψk was obtained explicitly. In what
follows we give simpli�ed versions of hypothesis (f3).

Remark 1.2.1 In hypothesis (f3), we may de�ne the function h in a di�erent way,
namely we may consider

h1(k) = ĺım inf
τ→∞

Ψk(τ) or

h2(k) = ĺım inf
r=|x|→∞

ϕ(ar)

ϕ(r)

r2

σ−(r)r + 1
ı́nf

kϕ(ar)≤s≤µ

f(x, s)

s
.

These two de�nitions give rise to two stronger versions of hypothesis (f3). We may
use this condition to deal with the example given by (1.26).

Remark 1.2.2 If we assume that there exists C ∈ R such that∫ 2R

R

σ(r)dr ≥ C > −∞ (1.34)

for each R > 1, for the function h2 de�ned above, we have

h2(k) = ĺım inf
r=|x|→∞

r2

σ−(r)r + 1
ı́nf

kϕ(ar)≤s≤µ

f(x, s)

s
.

In case f(x, s) = sp and assuming ĺımr→∞ ϕ(r) = 0, the function h2 becomes

h2(r) = kp−1 ĺım
r→∞

r2ϕ(r)p−1

σ−(r)r + 1
.

We conclude this section discussing an example for the notion of super-criticality
suggested by (f3). For the power nonlinearity and the Laplacian

−∆u+ up ≤ 0, x ∈ RN ,
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it is well known that a solution exists in the super-critical case, that is, when p >
N
N−2

. In our case, we de�ned super-critical inequality in the introduction, but our
example below shows that this may not be fully appropriate.

We assume that α and ν are positive numbers and p > 1. We let σ : [0,∞)→ R
as in (1.23) and f : (0,∞)→ R be as in

f(s) = sp(| log s|+ 1)ν , s ∈ (0,∞). (1.35)

Considering the corresponding fundamental solution given in (1.22), we get

ĺım
r→∞

ϕ(r) = 0 and ĺım
r→∞

ϕ(r)

r−α(log r)−1
= eα+2α−1.

Next, given k > 0, we �nd positive constants C and R̄ such that for r > R̄

Ckp−1(log r − log k)ν

rα(p−1)−2(log r)p−1
≤ Ψk(r) ≤

kp−1(log r − log k)ν

Crα(p−1)−2(log r)p−1
,

where Ψk was de�ned in (1.10). Then we obtain the following three cases:

(C1) sub− critical p <
2

α
+ 1, or p =

2

α
+ 1 and ν >

2

α
,

(C2) critical p =
2

α
+ 1 and ν =

2

α
,

(C3) super− critical p >
2

α
+ 1, or p =

2

α
+ 1 and ν <

2

α
.

And we obtain some non-existence and existence results as following:

Theorem 1.2.3 Suppose that σ and f are given as above and Ω = RN , then:

(i) If (C1) or (C2) holds, then (1.8) does not have a positive solution.
(ii) If

p =
2

α
+ 1 and 0 <

2

α
− 1 < ν <

2

α
, (1.36)

then (1.8) does not have a positive solution.
(iii) If p > 2

α
+ 1, then (1.8) has a positive solution.

We see that the sub-region for (p, α) given in (1.36) is super-critical, however
we can prove non-existence of a positive solution there. This fact shows that more
analysis in needed to understand the critical boundary in general.
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1.3. Fundamental solutions and basic properties

In this section we construct the fundamental solutions of the nonlinear second
order operator with �rst order term given in (1.9). These special radial solutions
are important tools for understanding the behavior of general viscosity solutions of
(1.9).

We start de�ning the dimension like numbers, which are relevant in our con-
struction. We let n,N : (0,∞)→ R be the functions given by

n(r) =

{
Λ(r)
λ(r)

(N − 1) + 1 if rσ(r) ≤ Λ(r)(N − 1),

N if rσ(r) > Λ(r)(N − 1),
(1.37)

and

N(r) =

{
λ(r)
Λ(r)

(N − 1) + 1 if rσ(r) > −λ(r)(N − 1),

N if rσ(r) ≤ −λ(r)(N − 1).
(1.38)

We also need to consider the following functions

mλ(r) =

{
λ(r) if rσ(r) ≤ Λ(r)(N − 1),
Λ(r) if rσ(r) > Λ(r)(N − 1)

(1.39)

and

Mλ(r) =

{
λ(r) if rσ(r) ≤ −λ(r)(N − 1),
Λ(r) if rσ(r) > −λ(r)(N − 1).

(1.40)

Given r1 > 0 and constants Lϕ and Lψ we de�ne the functions ϕ, ψ : (0,∞)→ R as
follows:

ϕ(r) = −
∫ r

r1

se
∫ s
r1

(
σ(τ)
mλ(τ)

−n(τ)
τ

)dτ
ds+ Lϕ (1.41)

and

ψ(r) =

∫ r

r1

se
−

∫ s
r1

(
σ(τ)
Mλ(τ)

+
N(τ)
τ

)dτ
ds+ Lψ. (1.42)

Proposition 1.3.1 (i) The function ϕ de�ned in (1.41), is of class C1,1 and it
satis�es equation (1.9). Moreover, ϕ is a decreasing function and, by choosing
the constant Lϕ adequately, it satis�es

ĺım
r→∞

ϕ(r) = −∞ or ĺım
r→∞

ϕ(r) = 0. (1.43)

(ii) The function ψ de�ned in (1.42) is of class C1,1 and it satis�es equation (1.9).
Moreover, ψ is an increasing function and, by choosing the constant Lψ ade-
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quately, it satis�es

ĺım
r→∞

ψ(r) =∞ or ĺım
r→∞

ψ(r) = 0. (1.44)

The functions ϕ and ψ satisfying (1.43) and (1.44), respectively, are called fun-
damental solutions of the operator (1.9).

Proof of Proposition 1.3.1.We recall that, given a C2 radially symmetric function
u(x) = v(|x|), the eigenvalues of D2u are v′′(r) with multiplicity 1 and v′(r)/r with
multiplicity N − 1.

(i) By the de�nition (1.41), we have

ϕ′(r) = −re
∫ r
r1

(
σ(τ)
mλ(τ)

−n(τ)
τ

)dτ
and ϕ′′(r) =

[
1− n(r)

r
+

σ(r)

mλ(r)

]
ϕ′(r).

Then we readily see that ϕ′(r) < 0, so that ϕ is a decreasing function, and using
(1.37) and (1.39) we �nd that

ϕ′′(r) ≥ 0 if rσ(r) ≤ Λ(r)(N − 1) and

ϕ′′(r) < 0 if rσ(r) > Λ(r)(N − 1).

Thus, whenever rσ(r) ≤ Λ(r)(N − 1), we obtain

M−(r,D2ϕ) + σ(r)|Dϕ| = λ(r)ϕ′′(r) + Λ(r)
N − 1

r
ϕ′(r)− σ(r)ϕ′(r)

= λ(r)

[
ϕ′′(r) +

n(r)− 1

r
ϕ′(r)− σ(r)

λ(r)
ϕ′(r)

]
= 0

and, whenever rσ(r) > Λ(r)(N − 1), we obtain

M−(r,D2ϕ) + σ(r)|Dϕ| = Λ(r)ϕ′′(r) + Λ(r)
N − 1

r
ϕ′(r)− σ(r)ϕ′(r)

= Λ(r)

[
ϕ′′(r) +

N − 1

r
ϕ′(r)− σ(r)

Λ(r)
ϕ′(r)

]
= 0.

We conclude then, that ϕ is a solution of equation (1.9), it is of class C1,1 and, since
ϕ is decreasing, the limit in (1.43) exists. If it is bounded, we may �nd Lϕ so that
ϕ has limit equal to zero.

(ii) can be proved in a completely analogous way. 2

Remark 1.3.1 We observe that the functions ϕ and ψ are not necessarily convex
or concave and that they may change their concavity along r.

In what follows we derive various properties of the fundamental solutions that
we need in the sequel. We start with properties for the function ϕ.
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Lemma 1.3.1 If ĺımr→∞ ϕ(r) = 0, then there exists a sequence {rn} diverging to
in�nity such that

ĺım
n→∞

rnϕ
′(rn) = 0. (1.45)

Proof. This is equivalent to ĺım supr→∞ rϕ
′(r) < 0 implies ĺımr→∞ ϕ(r) = −∞,

which is obviously true. 2

Proposition 1.3.2 Suppose ĺımr→∞ ϕ(r) = 0 and assume that (1.12) holds, then
there is a constant C0 > 0 such that

−rϕ
′(r)

ϕ(r)
≤ C0, for all r ≥ 1.

Proof. We �rst see that, from de�nition of ϕ and (1.12), we have

(rϕ′(r))′

ϕ′(r)
=
rϕ′′(r) + ϕ′(r)

ϕ′(r)
= −n(r) + 2 +

rσ(r)

mλ(r)
≥ C,

for a certain negative constant C and all r ≥ 1. Then, since ϕ is decreasing,

(rϕ′(r))′ ≤ Cϕ′(r), for all r ≥ 1.

Considering the sequence given in Lemma 1.3.1, we integrate to obtain

rnϕ
′(rn)− rϕ′(r) ≤ C(ϕ(rn)− ϕ(r)), for all n ∈ N.

Then, taking limit as n→∞ and using the hypothesis, we �nd

−rϕ′(r) ≤ −Cϕ(r),

from where we conclude, taking C0 = −C. 2

Proposition 1.3.3 Assume that ĺımr→∞ ϕ(r) = 0 and σ satis�es∫ 2r

r

σ(τ)dτ ≥ C, (1.46)

for some C ∈ R and for all r ≥ 1. Then, there exists C0 > 0 such that

ϕ(2r)

ϕ(r)
≥ C0, for all r ≥ 1.

Proof. By de�nition of ϕ and hypothesis (1.46), we have

ϕ′(2r)

ϕ′(r)
= 2e

∫ 2r
r (

σ(τ)
mλ(τ)

−n(τ)
τ

)dτ ≥ 2ec(
∫ 2r
r σ(τ)dτ)−C log 2 ≥ C0,
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for certain constants c, C and C0. Then, since ϕ is decreasing, we have

ϕ′(2r) ≤ C0ϕ
′(r), for all r ≥ 1.

Thus, integrating in [r, R], taking limit as R→∞ and using the hypothesis we get
the result. 2

Next we obtain two other propositions, but now regarding the function ψ.

Proposition 1.3.4 Assume ĺımr→∞ ψ(r) =∞ and σ satisfy (1.12), then there exist
C0 > 0 and r1 > 0 such that

rψ′(r)

ψ(r)
≤ C0, for all r ≥ r1.

Proof. From (1.12) and de�nition of ψ we have

(rψ′(r))′

ψ′(r)
=
rψ′′(r) + ψ′(r)

ψ′(r)
= −N(r) + 2− rσ(r)

Mλ(r)
≤ C,

for some C > 0. Let r1 be such that ψ(r1) > 0 and consider that

(rψ′(r))′ ≤ Cψ′(r),

then we integrate in [r1, r] and get

rψ′(r)

ψ(r)
≤ C +

r1ψ
′(r1)− Cψ(r1)

ψ(r)
≤ C +

r1ψ
′(r1)

ψ(r1)
≡ C0,

for all r ≥ r1 completing the proof. 2

Proposition 1.3.5 Assuming that ĺımr→∞ ψ(r) = ∞ and σ satis�es (1.46), then
there exists C0 > 0 and r1 > 0 such that

ψ(r)

ψ(2r)
≥ C0, for all r ≥ r1.

Proof. By de�nition of ψ and from (1.46) we have

ψ′(r)

ψ′(2r)
= 2−1e

∫ 2r
r (

σ(τ)
Mλ(τ)

+
N(τ)
τ

)dτ ≥ 4C0,

for a certain positive constant C0, and then

ψ′(r) ≥ 4C0ψ
′(2r), for all r ≥ 1.
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We let r0 so that ψ(2r0) > 0 and we integrate from r0 to r to obtain

ψ(r)

ψ(2r)
≥ 2C0 +

ψ(r0)− C0ψ(2r0)

ψ(2r)
.

From here we �nd r1 such that the desired inequality holds for all r ≥ r1. 2

1.4. The Hadamard property

The Hadamard property and the Liouville type theorems are based on the Strong
Maximum Principle and the Comparison Principle. Here we recall a version of these
principles that are best suited for our purposes. We start with the Comparison
Principle for viscosity solutions:

Theorem 1.4.1 (See Ishii [63].) Let Ω ⊂ RN be a bounded open set. Let λ,Λ and
σ satisfy hypothesis (f1) and the functions λ and Λ satisfy (1.7). If u and v are
respectively super- and sub-solutions in the viscosity sense of

M−(r,D2u) + σ(|x|)|Du| = 0, in Ω,

respectively and u ≥ v on ∂Ω, then u ≥ v in Ω.

Next we have the Strong Minimum Principle:

Theorem 1.4.2 (See Bardi and Da Lio [8].) Let u be a super-solution in the viscosity
solution of

M−(r,D2u) + σ(|x|)|Du| = 0, in Ω

If u attains its minimum at an interior point of Ω, then u is a constant.

Now we are in a position of proving the Hadamard property, a nonlinear Hadamard
theorem. This theorem allows to obtain estimates for the behavior of super-solutions
of (1.9) with regards to fundamental solutions. We have

Theorem 1.4.3 Let Ω = RN or an exterior domain and suppose that u ∈ C(Ω) is
a positive viscosity super-solution of (1.9) in Ω. We let r0 > 0 be such that Bc

r0
⊂ Ω

and r0 < r1 < r2. Then

(i) if Ω = RN , for the function m(r) de�ned in (1.14), we have

m(r) ≥ ϕ(r)− ϕ(r1)

ϕ(r2)− ϕ(r1)
m(r2) +

ϕ(r2)− ϕ(r)

ϕ(r2)− ϕ(r1)
m(r1), r1 < r < r2; (1.47)
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(ii) if Ω is an exterior domain, m0(r) is de�ned as in (1.14) and r1 is large enough
then for all r1 < r < r2 we have

m0(r) ≥ ϕ(r)− ϕ(r1)

ϕ(r2)− ϕ(r1)
m0(r2) +

ϕ(r2)− ϕ(r)

ϕ(r2)− ϕ(r1)
m0(r1); (1.48)

(iii) if Ω is an exterior domain and the function M(r) is de�ned as in (1.14), for
r0 < r < r1 we have

M(r1)

ψ(r1)− ψ(r0)
≤ M(r)

ψ(r)− ψ(r0)
. (1.49)

Proof. (i) It is clear that m(r) is positive and non-increasing. By Proposition 1.3.1,
we know that the function Φ(r) = C1(ϕ(r)− ϕ(r1)) + C2 with

C1 =
m(r2)−m(r1)

ϕ(r2)− ϕ(r1)
> 0 and C2 = m(r1)

satis�es (1.9) for 0 < r1 < r2 and Φ(r1) = m(r1) and Φ(r2) = m(r2). By the
Comparison Principle (Theorem 1.4.1), we have

u(x) ≥ Φ(x), x ∈ Br2 \Br1 . (1.50)

But, also by the Comparison Principle (Theorem 1.4.1), we have that m(r) =
mı́n{u(x) |x ∈ RN , |x| = r}, so the conclusion follows from (1.50).

(ii) In the case of m0 we observe that by the Strong Maximum Principle either
m0(r) is constant for all r ≥ r0 or m(r) = mı́n{u(x) |x ∈ RN , |x| = r}, for all r ≥ r1

and r1 large enough. Then the result is obtained in the same way as for m.

(iii) Let r1 > r0 and

Φ(r) := M(r1)
ψ(r)− ψ(r0)

ψ(r1)− ψ(r0)
, r ∈ (r0, r1),

which satis�es (1.9) and we see that Φ(r1) = M(r1) ≤ u(x), for all |x| = r1 and
0 = Φ(r0) ≤ u(x) for all |x| = r0. Then, by the Comparison Principle, we have

M(r1)
ψ(r)− ψ(r0)

ψ(r1)− ψ(r0)
≤ u(x),

for all r0 ≤ r = |x| ≤ r1. On the other hand, by the Strong Maximum Principle we
see that either M(r) is equal to a constant for all r ≥ r0 or

M(r) = mı́n{u(x) |x ∈ RN , |x| = r}, for all r ≥ r0.
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This completes the proof. 2

From Theorem 1.4.3 we have

Corollary 1.4.1 Assume that u is a nonnegative viscosity solution of (1.8) in Ω,
the whole space or an exterior domain, then we have

(i) If ĺımr→∞ ϕ(r) = 0, then

m(r) ≥ m(r1)

ϕ(r1)
ϕ(r) and m0(r) ≥ m0(r1)

ϕ(r1)
ϕ(r), for all r ≥ r1 ≥ r0.

(ii) If ĺımr→∞ ϕ(r) = −∞, then

m(r) ≥ m(r1) and m0(r) ≥ m0(r1), for all r ≥ r1 ≥ r0.

Proof. Since ϕ is decreasing, the result follows directly from Theorem 1.4.3 taking
r2 →∞ in (1.47) and (1.48). 2

The next proposition provides additional properties of m,m0 and M .

Proposition 1.4.1 Suppose that u is a positive viscosity solution of (1.8). Let

g(r) := mı́n
|x|=r

u(x).

Then there exists r̄ such that g is either strictly increasing or strictly decreasing for
r > r̄. Either m0(r) is constant and M(r) = g(r) strictly increasing or m0(r) = g(r)
is strictly decreasing and M(r) is constant for r > r̄.

Proof. Let r1 < r2 < r3 and g(r1) ≥ g(r2) and g(r3) ≥ g(r2), then u has a minimum
point x ∈ Br3 \ Br1 , which contradicts with Minimum Principle. Then g(t) may
change monotonicity just once. So g is decreasing strictly or increasing strictly or �rst
increasing and then decreasing. In the third case, let r̄ be such that g is decreasing
for r ≥ r̄. From here the result follows if we de�ne m0(r) = mı́nr̄≤|x|≤r u(x). 2

1.5. Proof of Theorems 1.1.1 and 1.1.2

In this section we prove Theorems 1.1.1 and 1.1.2. The idea of the proof is to
assume (1.8) has a solution and use an appropriate test function in order to get the
behavior of u at in�nity, which in view of our hypothesis is incompatible with the
Hadamard property proved in the previous section.
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Proof of Theorem 1.1.1. If the fundamental solution satis�es ϕ(r)→ −∞, then
by Corollary 1.4.1 we have

m(r) ≥ m(r1), for r ≥ r1.

Since m(r) is a non-increasing function, we conclude that u attains an interior min-
imum, but then by the Strong Minimum Principle u is constant. From here u ≡ 0
since f(x, s) > 0 if s > 0 from our assumption (f1).

If ϕ(r)→ 0, then we consider two cases: the critical and subcritical equations.

Subcritical Case.We assume hypothesis (f3) in case (i) holds. We may assume
that u > 0 by the Strong Maximum Principle. From Corollary 1.4.1 we have

m(r) ≥ m(r1)

ϕ(r1)
ϕ(r). (1.51)

We also see that m(r) is strictly decreasing. Considering 0 < τ < R as parameters,
we de�ne the test function

ζ(x) = m(τ)

[
1−

{
(|x| − τ)+

(R− τ)

}3
]
.

We observe that ζ(x) ≤ 0 < u(x) for |x| ≥ R, ζ(x) ≡ m(τ) < u(x) for |x| < τ and
since m is strictly decreasing, ζ(x̄) = u(x̄) at some x̄ with |x̄| = τ. Therefore, u− ζ
attains a non-positive global minimum at some point xτR such that τ ≤ |xτR| < R.
By de�nition of viscosity solution we have

f(xτR, u(xτR)) ≤ −M−(r,D2ζ(xτR))− σ(|xτR|)|Dζ(xτR)|. (1.52)

Since ζ is radial we directly compute the right hand side and get

f(xτR, u(xτR))

≤ 3Λ(|xτR|)m(τ)

(R− τ)3

{
2 +

(
N − 1

|xτR|
− σ(|xτR|)

Λ(|xτR|)

)
(|xτR| − τ)+

}
(|xτR| − τ)+.

If |xτR| = τ , then f(xτR, u(xτR)) ≤ 0, contradicting (f1). Thus, we may assume that
τ < |xτR| < R and we have

f(xτR, u(xτR)) ≤ Cm(τ)
1 + σ−(|xτR|)(R− τ)

(R− τ)2
, (1.53)

for certain constant C > 0. Now use the hypothesis (f3)(i) to �nd a sequence {rn}
diverging to in�nity so that

ĺım
n→∞

Ψk(rn) = h(k1) =∞, (1.54)
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with k1 = m(r1)/ϕ(r1). We let τ = rn, R = 2rn and xn = xrn2rn , and recall that
rn ≤ |xn| ≤ 2rn. Next we see that u(xn)→ 0 as n→∞, because (1.53) gives

|xn|2f(xn, u(xn))

4(1 + σ−(|xn|)|xn|)
≤ Cm(rn),

that contradicts (f2) if u(xn), or a subsequence, is bounded away from zero. Then we
use the monotonicity of m(r)/ϕ(r) given by (1.51) and the fact that u(xn) ≥ m(rn)
to obtain

ϕ(2rn)

ϕ(rn)

r2
n

1 + σ−(|xn|)rn
f(xn, u(xn))

u(xn)
≤ C. (1.55)

But this contradicts (1.54), since by (1.51) u(xn) ≥ m(2rn) ≥ k1ϕ(2rn), so that
(1.55) gives that Ψk(rn) is bounded, completing the proof in this case.

Critical Case. If case (f3) (ii) holds then there is no contradiction in case
h(k1) <∞. In this case, arguing as above, we obtain u(xn)→ 0 and, using hypothesis
(1.12) and Proposition 1.3.3, then

r2
nf(xn, u(xn))

u(xn)
≤ C, (1.56)

for any sequence {rn} diverging to ∞. At this point we claim that

ĺım
r→∞

m(r)

ϕ(r)
=∞. (1.57)

Assuming for a moment that (1.57) holds, we �nd Mk for every k so that u(x) ≥
kϕ(x), for all |x| ≥Mk, consequently, from (1.56) we obtain that

Ψk(rn) ≤ r2
nf(xn, u(xn))

u(xn)
≤ C,

for n large. Since the sequence {rn} is arbitrary, we conclude that h(k) ≤ C for all
k, which is a contradiction that completes the proof of the theorem.

Now we prove the claim (1.57). Let Ωτ = {x ∈ RN : |x| > τ, u(x) < µ}, which
τ > r1 and µ > 0 appears in (f3). Ωτ is open and nonempty. Next we consider the
function

Γ(x) := −ϕ(|x|) logϕ(|x|)

and choose r̄ ≥ r1 such that m(τ) ≤ µ and Γ(x) ≤ µ, for all |x| = τ ≥ r̄. Then we
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use (1.51) and the monotonicity of ϕ to �nd

|x|2

ϕ(|x|)
f(x, u(x)) ≥ k1

|x|2

1 + σ−(|x|)|x|
f(x, u(x))

u(x)

≥ k1
|x|2

1 + σ−(|x|)|x|
ı́nf

k1ϕ(|x|)≤s≤µ

f(x, s)

s

≥ k1
ϕ(2τ)

ϕ(τ)
ı́nf

y∈B2τ\Bτ

|y|2

1 + σ−(|y|)|y|
ı́nf

k1ϕ(|y|)≤s≤µ

f(y, s)

s

≥ k1Ψk1(τ).

From here, taking τ = |x| and using (1.11) we obtain

f(x, u(x)) ≥ C
ϕ(|x|)
|x|2

, (1.58)

for certain constant C, for all x ∈ Ωr̄. On the other hand, computing directly and
using Proposition 1.3.2 we �nd C0 such that

M−(r,D2Γ) + σ(r)|DΓ| ≥ −C0
ϕ(|x|)
|x|2

, |x| ≥ r̄. (1.59)

Then we let C̃ := mı́n{ c
C0
,−k1/ logϕ(r̄), 1} and from (1.8), (1.58) and (1.59) we

obtain

M−(r,D2(u+ ε)) + σ(r)|D(u+ ε)| ≤ C̃(M−(r,D2Γ) + σ(r)|DΓ|),

for all x ∈ Ωr̄ and ε > 0. By the choice of C̃ we have then

u(x) + ε ≥ m(r̄) ≥ k1ϕ(r̄) =
k1

− logϕ(r̄)
Γ(r̄) ≥ C̃Γ(r̄), for all x ∈ ∂Br̄

and, since ĺımr→∞ Γ(r) = 0, there is R such that

u(x) + ε ≥ ε ≥ Γ(R) ≥ C̃Γ(R), for all x ∈ ∂BR.

We also have and u(x) = µ ≥ C̃Γ(|x|) for x ∈ (BR \ B̄r̄) ∩ ∂Ωr̄, thus

u(x) + ε ≥ C̃Γ(|x|), x ∈ ∂(BR ∩ Ωr̄).

Then we use the Comparison Principle and then take R→∞ and ε→ 0+ to get

u(x) ≥ C̃Γ(|x|), x ∈ Ωr̄,

which implies (1.57). 2
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Remark 1.5.1 If we have a non-negative super-solution u of (1.9) and the funda-
mental solution ϕ satis�es ϕ(r) → −∞ then u has to be constant. This result is
usually known as Liouville property.

Now we prove Theorem 1.1.2 on the Liouville property in an exterior domain.

Proof of theorem 1.1.2. According to Proposition 1.4.1 for some r̄ ≥ r0:

Case 1: m0(r) is strictly decreasing and M(r) is constant for r > r̄ or

Case 2: M(r) is strictly increasing and m0(r) is constant for r > r̄.

We recall the new de�nition of m0 given in the proof of Proposition 1.4.1, for
notational convenience, we just write m instead of m0, from now on.

Proof in Case 1: If ϕ(r) → 0 as r → ∞, the proof follows step by step that of
Theorem 1.1.1. A small change is needed in the complementary case: Given r̄ <
r1 < r2 we use inequality (1.48) and that m(r2) ≥ 0, to �nd

m(r) ≥ m(r1)

(
1− ϕ(r)

ϕ(r2)

)
for r ∈ [r1, r2]. (1.60)

Then, we let r2 → ∞ obtain m(r) ≥ m(r1) for r ≥ r1, which is impossible since
m(r) is strictly decreasing.

Proof in Case 2 and sub-critical: We consider the test function

ζ(|x|) = M(R)

[
1−

{
(R− |x|)+

(R− τ)

}3
]
,

where R > τ ≥ r̄ are parameters. As in the proof of Theorem 1.1.1, we see that u−ζ
attains a non-positive global minimum at some point xτR such that r < |xτR| ≤ R
and u(xτR) ≤M(R). Then, by the de�nition of viscosity solution and computing the
di�erential operator we obtain

f(xτR, u(xτR)) ≤ CM(R)
1 + σ−(|xτR|)(R− τ)

(R− τ)2
. (1.61)

Assuming that ĺımr→∞ ψ(r) = 0 then, by Theorem 1.4.3 we have that M(R) is
bounded. Let us choose {rn} diverging to in�nity and let τ = rn, R = 2rn and write
xn = xrn2rn . We notice that rn ≤ |xn| ≤ 2rn and u(xn) ≤ M(2rn), so that u(xn) is
bounded. But then, from (1.61), we �nd that

r2
n

1 + σ(|xn|)rn
f(xn, u(xn)) ≤ CM(2rn), (1.62)

63



contradiction (f2).

Now we assume that ĺımr→∞ ψ(r) = ∞ and we take, without loss of generality,
that ψ(r0) = 0. From (1.49) and (1.61) we have

f(xτR, u(xτR))

u(xτR)
≤ f(xτR, u(xτR))

M(τ)
≤ C

ψ(R)

ψ(τ)

1 + σ−(|xτR|)(R− τ)

(R− τ)2
. (1.63)

Next we use the hypothesis (f4)(i) to �nd {rn} diverging to in�nity so that

ĺım
n→∞

Ψ̃k1(rn) = h̃(k1) =∞, (1.64)

with k1 = M(r̄)/ψ(r̄). We let τ = rn, R = 2rn and we write xn = xrn2rn . We notice
that rn ≤ |xn| ≤ 2rn and u(xn) ≤ M(2rn), so that u(xn) ≤ k1ψ(2rn), where this
last inequality comes from (1.49). Again we have (1.62), but now we conclude that
M(2rn) and consequently, M(rn) and u(xn) diverge to in�nity. Now, from (1.63) we
have the following inequality that contradicts (1.64)

ψ(rn)

ψ(2rn)

r2
n

1 + σ(|xn|)rn
f(xn, u(xn))

u(xn)
≤ C.

Proof in Case 2 and critical: Under hypothesis (f4)(ii) then there is no contradic-
tion in case h̃(k1) <∞. Arguing as above, using hypothesis (1.12) and Proposition
1.3.4 we obtain

r2
nf(xn, u(xn))

u(xn)
≤ C, (1.65)

for any sequence {rn} diverging to ∞. At this point we claim that

ĺım
r→∞

M(r)

ψ(r)
= 0. (1.66)

Assuming that the claim is true, for every k there is Mk so that

M(r) ≤ kψ(r), for all r ≥Mk,

consequently, from (1.65), we obtain that

Ψ̃k(rn) ≤ r2
nf(xn, u(xn))

u(xn)
≤ C

for all n large and then
ĺım sup
n→∞

Ψ̃k(rn) ≤ C.

Since this inequality holds for all sequence {rn} diverging to in�nity, we �nd that
h̃(k) ≤ C for all k, contradicting (f4)(ii).

64



Thus, we only need to prove (1.66) to complete the proof. We de�ne the open
set Ω̃r̄ := {x ∈ Ω, |x| > r̄, u(x) < 3k1ψ(|x|)}, which is nonempty since, given r > r̄
we can �nd x̄ with |x̄| = r and u(x̄) = M(r) ≤ k1ψ(r) < 3k1ψ(r).

Assume our claim is not true, then there exists k̃ ∈ (0, k1] such that

ĺım
r→∞

M(r)

ψ(r)
= k̃. (1.67)

Then we have
k̃ψ(|x|) ≤M(|x|) ≤ k1ψ(|x|), |x| > r̄.

and k̃ψ(|x|) ≤ u(x) for all x ∈ Ωr̄. From here and monotonicity of ψ we �nd

|x|2

ψ(|x|)
f(x, u(x)) ≥ k̃

ψ(|x|)
ψ(2|x|)

ı́nf
y∈B2|x|\B|x|

|y|2

1 + σ−(|y|)|y|
ı́nf

µ≤s≤k̃ψ(2|y|)

f(y, s)

s

≥ k̃Ψ̃k̃(|x|).

Then, from (1.13), there exists c > 0 such that

f(x, u(x)) ≥ c
ψ(|x|)
|x|2

, x ∈ Ωr̄. (1.68)

Next we de�ne the auxiliary function

Γ̃(r) =
ψ(r)

logψ(r)
, r = |x|.

Computing directly we obtain

M−(r,D2Γ̃) + σ(r)|DΓ̃| ≥ logψ(r)− 1

log2 ψ(r)
(M−(r,D2ψ) + σ(r)|Dψ|)

−Λ
logψ(r)− 2

log3 ψ(r)

(ψ′(r))2

ψ(r)
.

Since ψ is the fundamental solution, by Proposition 1.3.4 we get

M−(r,D2Γ̃) + σ(r)|DΓ̃| ≥ −C ψ(r)

r2 log2 ψ(r)
.

On the other hand we can �nd r1 < r2 < r3 such that

log(ψ(r1)) = n2, log(ψ(r2)) = 2n2 and log(ψ(r3)) = 3n2,
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with n ∈ N to be chosen later. We de�ne

w(x) :=
M(r3)

Γ̃(r3)
(Γ̃(r)− Γ̃(r1)), x ∈ Br3 \Br1 .

There exists n0 > 0 such that, for n ≥ n0 and x ∈ (Br3 \Br1) ∩ Ωr̄, we have

M−(r,D2w) + σ(r)|Dw| ≥ −C ψ(r)

r2 log2(ψ(r))

M(r3) logψ(r3)

ψ(r3)

≥ −f(x, u) ≥M−(r,D2u) + σ(r)|Du|,

where we used (1.68). Next we prove that

u(x) ≥ w(|x|), x ∈ ∂((Br3 \Br1) ∩ Ωr̄).

This is obvious for |x| = r3 or |x| = r1. For x ∈ (Br3 \ B̄r1) ∩ ∂Ωr̄ we have

w(x) =
M(r3) logψ(r3)

ψ(r3)

(
ψ(r)

logψ(r)
− ψ(r1)

logψ(r1)

)
≤ k1ψ(r)

logψ(r3)

logψ(r)
≤ k1ψ(r)

logψ(r3)

logψ(r1)
= 3k1ψ(r) = u(x).

Then we apply the Comparison Principle to obtain

u(x) ≥ w(x) =
M(r3) logψ(r3)

ψ(r3)

(
ψ(r)

logψ(r)
− ψ(r1)

logψ(r1)

)
,

for x ∈ (Br3 \ B̄r1) ∩ Ωr̄. Then we take x ∈ ∂Br2 ∩ Ωr̄, and we get

M(r2) ≥ M(r3) logψ(r3)

ψ(r3)

(
ψ(r2)

logψ(r2)
− ψ(r1)

logψ(r1)

)
and then

M(r2)

ψ(r2)
≥ M(r3)

ψ(r3)

(
3

2
− 3

en2

)
,

which is impossible if n is large enough, in view of (1.67). 2

1.6. Proof of Theorem 1.2.3

In this section we prove Theorem 1.2.3. We observe that part (i) is a consequence
of Theorem 1.1.1. In order to prove part (ii) we need a preliminary lemma. Given
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δ > 0 we de�ne
Uδ(r) = ϕ(r)(− logϕ(r))δ, (1.69)

where r > r̄ ≥ e and r̄ is such that ϕ(r̄) < 1.

Lemma 1.6.1 Assume the hypothesis of Theorem 1.2.3 and let u > 0 be a solution
of (1.8). Then, for any δ > 0, there exists Cδ ∈ (0, 1) such that

u(x) ≥ CδUδ(|x|), |x| ≥ r̄.

Proof. By direct computation we �nd a constant c > 0 such that

M−(r,D2Uδ) + σ(r)|DUδ| ≥ −c
(log |x|)−2+δ

|x|2+α
. (1.70)

On the other hand, by Hadamard theorem, there exists c > 0 such that u(x) ≥
cϕ(|x|), for r ≥ r̄ and then there exists C̃ > 0 such that

f(x, u) ≥ f(x, cϕ(|x|)) ≥ C̃
(log |x|)ν−p

|x|αp
, for all |x| ≥ r̄. (1.71)

If 0 < δ ≤ δ0 = 1 + ν − 2
α
and ε > 0, using (1.70) and (1.71) we get

M−(r,D2Uδ) + σ(r)|DUδ| ≥ M−(r,D2(u+ ε)) + σ(r)|D(u+ ε)|, |x| ≥ r̄.

By appropriately choosing C and R we �nd that

u(x) + ε ≥ CUδ(|x|), x ∈ ∂(BR \Br̄),

thus, by the Comparison Principle and letting R→∞ and ε→ 0, we obtain

u(x) ≥ CUδ(|x|), x ∈ Bc
r̄. (1.72)

For δ ∈ (δo, (2 + 2
α

)δ0], we use (1.72) with δ = δ0 to get, as in (1.71), that

f(x, u) ≥ f(x,CUδ(|x|)) ≥ C̃
(log |x|)ν−p+δ0p

|x|αp
. (1.73)

Then, by making C̃ smaller if necessary, we obtain

M−(r,D2Uδ) + σ(r)|DUδ| ≥ −f(x, u), (1.74)

for all δ ∈ (δo, (2 + 2
α

)δ0]. Then we use the Comparison Principle as before to prove
that, for certain constant C, we have u(x) ≥ CUδ(|x|), for x ∈ Bc

r̄. Repeating the
argument we can prove similar results for every δ > 0. 2
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Proof of Theorem 1.2.3(ii). We assume that there exists a positive solution u
of (1.8). By arguments as in the proof of Theorem 1.1.1, we �nd xrR such that
r < |xrR| < R and

u(xrR)p(| log u(xrR)|+ 1)ν ≤ 3m(r)
Λ(xrR)(N + 1) + σ−(|xrR|)(R− r)

(R− r)2
.

From here and the monotonicity of r → m(r)
ϕ(r)

, we obtain

u(xrR)p−1(| log u(xrR)|+ 1)ν ≤ C
ϕ(r)

ϕ(R)

1 + σ−(|xrR|)(R− r)
(R− r)2

.

At this point we choose R = 2r, we write xr = xr2r and we obtain

|xr|2u(xr)
p−1(| log u(xr)|+ 1)ν ≤ C, (1.75)

for certain positive constant C. From here we easily conclude that u(xr) → 0 as
r →∞. Now we choose δ > 0 such that

ν − 2

α
+

2δ

α
> 0

and we use Lemma 1.6.1 to obtain

|xr|2u(xr)
p−1(| log u(xr)|+ 1)ν ≥ |xr|2(CUδ(xr))

p−1(| log(CUδ(xr))|+ 1)ν .

From the choice of δ and the de�nition of Uδ we see that the right hand side diverges
to in�nity, while from (1.75) the left hand side is bounded. This is a contradiction
that completes the proof. 2

We continue by proving the existence of a positive solutions.

Proof of Theorem 1.2.3(iii). We consider the function U(x) = ϕ(|x|)θ, where
θ ∈ (0, 1) will be chosen later. By direct computation we �nd a constant C > 0 and
R > 0 so that

M−(r,D2U) + σ(r)|DU | ≤ −C (log |x|)−θ

|x|2+αθ

for |x| > R. On the other hand, we have

Up(x)(| logU(x)|+ 1)ν ≤ C|x|−αθp(log |x|)ν−θp.

Now we choose

θ =
1

2

(
1 +

2

α

1

p− 1

)
< 1
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and we use our assumption p > 2
α

+ 1 to obtain θ < 1 and (p− 1)θ > 2
α
. From here

we �nd R̄ > R such that for all x ∈ Bc
R̄

M−(r,D2U(x)) + σ(r)|DU(x)|+ Up(x)(| logU(x)|+ 1)ν ≤ 0. (1.76)

We notice that Uε(x) = εU(x) also satis�es (1.76) if ε is small, since

M−(r,D2Uε(x)) + σ(r)|DUε(x)| ≤ −Cε, x ∈ BR̄ \B 1
2

and
Up
ε (x)(| logUε(x)|+ 1)ν = o(ε), x ∈ BR̄ \B 1

2

for ε > 0 small enough and C > 0. Thus (1.76) can be extended to Bc
1
2

. Finally we

let w be the unique radial solution of the problem

λ∆w + σ(|x|)|Dw| = −1 in B1,

w = 0 on ∂B1,
(1.77)

and let wε = εw, with ε > 0. It is easy to see that there exists ε0 small so that
wε0 satis�es (1.8) in B1. Since w is positive in B1, there exists ε1 > 0 such that
wεo(x) > Uε1(x) for |x| = 1/2. On the other hand Uε1 →∞ as r → 0, so there exists
r ∈ (0, 1/2) such that w(x) = Uε1(x) for all |x| = r. Now we de�ne V (x) = Uε1(x) if
x ∈ Bc

r and V (x) = wε0(x) if x ∈ Br, which is a solution of (1.8) in RN , completing
the proof. 2

1.7. Liouville property for f (x, u) = h(x)u

In this section, we study the Liouville type theorem for equation (1.17) in exterior
domains, when the functions h and σ satisfy (h1), (h2) and (h3). Before continuing
we give two examples of functions satisfying (h2):

Example 1. σ is a negative function such that ĺım infr→∞ σ(r) = c0, for some c0 < 0.
Then there is R0 such that c0/2 ≥ σ(r) ≥ 2c0 for all r ≥ R0 and we can choose
κ(r) ≡ − 1

c0
.

We observe that if ĺımr→∞ σ(r) = 0, we may change σ by σ − ε, with ε > 0 and
small enough so that inequality (1.17) and (h3) are still satis�ed.

Example 2. If σ is of class C1 and satis�es

ĺım
r→∞

σ(r) = −∞ and ĺım
r→∞

σ′(r)/σ2(r) = 0,

then we just let κ = 1/σ. If σ is not C1, but the �rst limit still holds and 1/σ is
convex, or if it does not di�er too much from a convex function, then taking κ as
an appropriate approximation of 1/σ will work.
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Lemma 1.7.1 Assume that σ and κ satisfy hypotheses (h1) and (h2). Then ϕ(r)→
0 and ψ(r)→∞ as r →∞, and for ε > 0, there exists R̄ > R0 such that

ϕ(r − κ(r))

ϕ(r)
≤ (1 + ε)e

µ
λ0 and

ψ(r)

ψ(r − κ(r))
≤ (1 + ε)e

µ
λ0 , ∀r ∈ R̄.

Proof. As we have observed above, we may always assume that |σ(r)| ≥ σ0 > 0 for
all r. We also see from (1.18) that for r ≥ R̄ we have κ(r) ≤ r/2. Next we see that∫ r

r−κ(r)

n(τ)

τ
dτ ≤ C

∫ r

r−κ(r)

1

τ
dτ ≤ C

κ(r)

r − κ(r)
≤ 2C

κ(r)

r
. (1.78)

By de�nition of ϕ and for ε > 0, we �nd R̄ > 0 large such that

(ϕ(r − κ(r)))′

(ϕ(r))′
=

ϕ′(r − κ(r))(1− κ′(r))
ϕ′(r)

= (1− κ′(r)) exp

(∫ r−κ(r)

r

(
σ(τ)

mλ(τ)
− n(τ)

τ

)
dτ

)

≤ (1− κ′(r)) exp

(
κ(r)

λ0

(
máx

r−κ(r)≤s≤r
|σ(s)|+ 2Cλ0

R

))
≤ (1 + ε)e

µ
λ0 ,

where we have used (1.78) and (1.19). Then we have

(ϕ(r − κ(r)))′ ≥ (1 + ε)e
µ
λ0 (ϕ(r))′, r > R̄.

Integrating in [r, R], letting R go to in�nity and using the fact that ϕ(r) → 0 we
get the result. Proceeding as above, for ε > 0 there exists R̄ so that

(ψ(r))′ ≤ (1 +
ε

2
)e

µ
λ0 (ψ(r − κ(r)))′, r > R̄.

Then we integrate in [R̄, r] and we divide by ψ(r − κ(r)) to get

ψ(r)

ψ(r − κ(r))
− ψ(R̄)

ψ(r − κ(r))
≤ (1 +

ε

2
)e

µ
λ0

(
1− ψ(r − κ(r))

ψ(R̄− κ(R̄))

)
.

Using that ψ(r)→∞ as r →∞, we get the result. 2

Proof of Theorem 1.1.3. If u ≥ 0 is a non-trivial solution of (1.17), then

M−(r,D2u) + σ(r)|Du| ≤ 0, x ∈ Ω
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and u > 0 in Ω. Then we use Proposition 1.4.1 to consider two cases in the proof,
depending on the behavior of m0(r) and M(r), as de�ned in (1.14).

Case 1. m0(r) is strictly decreasing and M(r) is constant for r > r̄. We consider
the test function

ζ(x) = m0(r)

[
1−

{
(|x| − r)+

R− r

}3
]
,

where r, R are parameters such that R > r > máx{r̄, r0}. Proceeding as in the proof
of Theorem 1.1.1, we obtain xrR such that r < |xrR| < R and

h(|xrR|)u(xrR) ≤ 3Λ(xrR)m0(r)

(R− r)3

{
2 +

(
N − 1

|xrR|
− σ(|xrR|)

Λ(xrR)

)
(|xrR| − r)

}
(|xrR| − r).

From here we obtain

h(|xrR|)u(xrR) ≤ 3m0(r)

{
2Λ0 + σ(|xrR|)(R− r) + (N − 1)(R− r)r−1

(R− r)2

}
and then, by the monotonicity of r → m0(r)

ϕ(r)
,

h(|xrR|) ≤ 3
ϕ(r)

ϕ(R)

{
2Λ0 + σ(|xrR|)(R− r) + (N − 1)(R− r)r−1

(R− r)2

}
. (1.79)

Next we choose r = R− κ(R) with R ≥ R̄, and we use Lemma 1.7.1 to �nd

h(|xrR|) ≤ (1 + ε)e
µ
λ0

{
2Λ0 + σ(|xrR|)κ(R) + (N−1)κ(R)

R−κ(R)

(κ(R))2

}
. (1.80)

From here, taking R = rn as in the hypothesis, we obtain

ĺım
n→∞

ı́nf
r∈(rn−κ(rn),rn)

[h(r)− (1 + ε)e
µ
λ0 (2Λ0 + 1)σ2(r)] ≤ 0.

If ε > 0 is chosen properly, we obtain a contradiction with (1.20).

Case 2. M(r) is strictly increasing and m0(r) is constant for r > r̄. In this case we
replace m0 by M(r) in the de�nition of the test function and we repeat step by step
the proof, using Theorem 1.4.3 and the properties of ψ given in Lemma 1.7.1. 2
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Capítulo 2

Large solutions to elliptic equations
involving fractional Laplacian

Abstract: in this chapter1, we study existence of boundary blow up solutions
for some fractional elliptic equations

(−∆)αu(x) + |u|p−1u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ Ω̄c,

ĺımx∈Ω, x→∂Ω u(x) = +∞,
(2.1)

where Ω is an open bounded domain of class C2, the operator (−∆)α with α ∈
(0, 1) is the fractional Laplacian and f : Ω → R is a continuous function which
satis�es some extra conditions. Moreover, we analyze the uniqueness and asymptotic
behavior of solutions to problem (2.1).

2.1. Introduction

In their pioneering work, Keller [66] and Osserman [84] studied the existence of
solutions to the nonlinear reaction di�usion equation{

−∆u+ h(u) = 0, in Ω,

u = +∞, on ∂Ω,
(2.2)

where Ω is an open bounded domain of RN(N ≥ 2) and h is a nondecreasing positive
function. They independently proved that this equation admits a solution if and only

1This chapter is based on the paper: H. Chen, P. Felmer and A. Quaas, Large solution to elliptic

equations involving fractional Laplacian, submitted.
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if h satis�es ∫ +∞

1

ds√
H(s)

< +∞, (2.3)

where H(s) =
∫ s

0
h(t)dt, that in the case of h(u) = up means p > 1. This integral

condition on the non-linearity is known as the Keller-Osserman criteria. The solution
of (2.2) found in [66] and [84] exists as a consequence of the interaction between the
reaction and the di�usion term, without the in�uence of an external source that
blows up at the boundary. Solutions exploding at the boundary are usually called
boundary blow up solutions or large solutions. From then on, more general boundary
blow-up problem {

−∆u(x) + h(x, u) = f(x), x ∈ Ω,

ĺımx∈Ω, x→∂Ω u(x) = +∞
(2.4)

has been extensively studied, see [5, 6, 7, 44, 47, 48, 50, 59, 72, 73, 74, 87]. It
has being extended in various ways, weakened the assumptions on the domain and
the nonlinear terms, extended to more general class of equations and obtained more
information on the uniqueness and the asymptotic behavior of solution at the bound-
ary.

During the last years there has been a renewed and increasing interest in the
study of linear and nonlinear integral operators, especially, the fractional Laplacian,
motivated by great applications and by important advances on the theory of non-
linear partial di�erential equations, see [23, 26, 27, 32, 51, 52, 54, 55, 85, 90] for
details.

In a recent work, Felmer and Quaas [51] considered an analog of (2.2) where the
Laplacian is replaced by the fractional Laplacian

(−∆)αu(x) + |u|p−1u(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ Ω̄c,

ĺımx∈Ω, x→∂Ω u(x) = +∞,
(2.5)

where Ω is a bounded domain in RN , N ≥ 2, with boundary ∂Ω of class C2, p > 1
and the fractional Laplacian operator is de�ned as

(−∆)αu(x) = −1

2

∫
RN

δ(u, x, y)

|y|N+2α
dy, x ∈ Ω,

with α ∈ (0, 1) and δ(u, x, y) = u(x + y) + u(x − y) − 2u(x). The authors proved
the existence of a solution to (2.5) provided that g explodes at the boundary and
satis�es other technical conditions. In case the function g blows up with an explosion
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rate as d(x)β, with β ∈ (− 2α
p−1

, 0) and d(x) = dist(x, ∂Ω), the solution satis�es

0 < ĺım inf
x∈Ω,x→∂Ω

u(x)d(x)−β ≤ ĺım sup
x∈Ω,x→∂Ω

u(x)d(x)
2α
p−1 < +∞.

In [51] the explosion is driven by the function g. The external source f has a sec-
ondary role, not intervening in the explosive character of the solution. f may be
bounded or unbounded, in latter case the explosion rate has to be controlled by
d(x)−2αp/(p−1).

One interesting question not answered in [51] is the existence of a boundary blow
up solution without external source, that is assuming g = 0 in Ω̄c and f = 0 in Ω,
thus extending the original result by Keller and Osserman, where solutions exists
due to the pure interaction between the reaction and the di�usion terms. It is the
purpose of this chapter to answer positively this question and to better understand
how the non-local character in�uences the large solutions of (2.5) and what is the
structure of the large solutions of (2.5) with or without sources. Comparing with
the Laplacian case, where well possedness holds for (2.5), a much richer structure
for the solution set appears for the non-local case, depending on the parameters and
the data f and g. In particular, Theorem 2.1.1 shows that existence, uniqueness,
non-existence and in�nite existence may occur at di�erent values of p and α.

Our �rst result in this chapter is on the existence of blowing up solutions driv-
en by the sole interaction between the di�usion and reaction term, assuming the
external value g vanishes. Thus we will be considering the equation

(−∆)αu(x) + |u|p−1u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ Ω̄c,

ĺımx∈Ω, x→∂Ω u(x) = +∞.
(2.6)

On the external source f we will assume the following hypotheses

(H1) The external source f : Ω→ R is a Cβ
loc(Ω), for some β > 0.

(H2) De�ning f−(x) = máx{−f(x), 0} and f+(x) = máx{f(x), 0} we have

ĺım sup
x∈Ω,x→∂Ω

f+(x)d(x)
2αp
p−1 < +∞ and ĺım

x∈Ω,x→∂Ω
f−(x)d(x)

2αp
p−1 = 0.

A related condition that we need for non-existence results

(H2∗) The function f satis�es

ĺım sup
x∈Ω,x→∂Ω

|f(x)|d(x)2α < +∞.
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Now we are in a position to state our �rst theorem in this chapter.

Theorem 2.1.1 Assume that Ω is an open, bounded and connected domain of class
C2 and α ∈ (0, 1). Then we have:

Existence: Assume that f satis�es (H1) and (H2), then there exists τ0(α) ∈ (−1, 0)
such that for every p satisfying

1 + 2α < p < 1− 2α

τ0(α)
, (2.7)

the equation (2.6) possesses at least one solution u satisfying

0 < ĺım inf
x∈Ω,x→∂Ω

u(x)d(x)
2α
p−1 ≤ ĺım sup

x∈Ω,x→∂Ω
u(x)d(x)

2α
p−1 < +∞. (2.8)

Uniqueness: If f further satis�es f ≥ 0 in Ω, then u > 0 in Ω and u is the unique
solution of (2.6) satisfying (2.8).

Nonexistence: If f satis�es (H1), (H2∗) and f ≥ 0, then in the following three
cases:

i) For any τ ∈ (−1, 0) \ {− 2α
p−1

, τ0(α)} and p satisfying (2.7) or

ii) For any τ ∈ (−1, 0) and

p ≥ 1− 2α

τ0(α)
or (2.9)

iii) For any τ ∈ (−1, 0) \ {τ0(α)} and

1 < p ≤ 1 + 2α, (2.10)

equation (2.6) does not have a solution u satisfying

0 < ĺım inf
x∈Ω,x→∂Ω

u(x)d(x)−τ ≤ ĺım sup
x∈Ω,x→∂Ω

u(x)d(x)−τ < +∞. (2.11)

Special existence for τ = τ0(α). Assume f(x) ≡ 0, x ∈ Ω and that

máx{1− 2α

τ0(α)
+
τ0(α) + 1

τ0(α)
, 1} < p < 1− 2α

τ0(α)
. (2.12)

Then, there exist constants C1 ≥ 0 and C2 > 0, such that for any t > 0 there is a
positive solution u of equation (2.6) satisfying

C1d(x)mı́n{τ0(α)p+2α,0} ≤ td(x)τ0(α) − u(x) ≤ C2d(x)mı́n{τ0(α)p+2α,0}. (2.13)

Remark 2.1.1 We remark that hypothesis (H2) and (H2∗) are satis�ed when f ≡ 0,
so this theorem answer the question on existence rised in [51]. We also observe that
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a function f satisfying (H2) may also satisfy

ĺım
x∈Ω,x∈∂Ω

f(x) = −∞,

what matters is that the rate of explosion is smaller than 2αp
p−1

.

For proving the existence part of this theorem we will construct appropriate
super and sub-solutions. This construction involves the one dimensional truncated
laplacian of power functions given by

C(τ) =

∫ +∞

0

χ(0,1)(t)|1− t|τ + (1 + t)τ − 2

t1+2α
dt, (2.14)

for τ ∈ (−1, 0) and where χ(0,1) is the characteristic function of the interval (0, 1).
The number τ0(α) appearing in the statement of our theorems is precisely the unique
τ ∈ (−1, 0) satisfying C(τ) = 0. See Proposition 2.3.1 for details.

Remark 2.1.2 For the uniqueness, we would like to mention that, by using iteration
technique, Kim in [67] has proved the uniqueness of solution to the problem{

−∆u+ up+ = 0, in Ω,

u = +∞, on ∂Ω,
(2.15)

where u+ = máx{u, 0}, under the hypotheses that p > 1 and Ω is bounded and
satisfying ∂Ω = ∂Ω̄. García-Melián in [59, 60] introduced some improved iteration
technique to obtain the uniqueness for problem (2.15) with replacing nonlinear term
by a(x)up. However, there is a big di�culty for us to extend the iteration technique
to our problem (2.6) involving fractional Laplacian, which is caused by the nonlocal
character.

In the second part of this chapter, we are also interested in considering the
existence of blowing up solutions driven by external source f on which we assume
the following hypothesis

(H3) There exists γ ∈ (−1− 2α, 0) such that

0 < ĺım inf
x∈Ω,x→∂Ω

f(x)d(x)−γ ≤ ĺım sup
x∈Ω,x→∂Ω

f(x)d(x)−γ < +∞.

Depending on the size of γ we will say that the external source is weak or strong. In
order to gain in clarity, in this case we will state separately the existence, uniqueness
and non-existence theorem in this source-driven case.

77



Theorem 2.1.2 (Existence) Assume that Ω is an open, bounded and connected
domain of class C2. Assume that f satis�es (H1) and let α ∈ (0, 1), then we have:

(i) (weak source) If f satis�es (H3) with

− 2α− 2α

p− 1
≤ γ < −2α, (2.16)

then, for every p such that (2.9) holds, equation (2.6) possesses at least one solution
u, with asymptotic behavior near the boundary given by

0 < ĺım inf
x∈Ω,x→∂Ω

u(x)d(x)−γ−2α ≤ ĺım sup
x∈Ω,x→∂Ω

u(x)d(x)−γ−2α < +∞. (2.17)

(ii) (strong source) If f satis�es (H3) with

− 1− 2α < γ < −2α− 2α

p− 1
(2.18)

then, for every p such that
p > 1 + 2α, (2.19)

equation (2.6) possesses at least one solution u, with asymptotic behavior near the
boundary given by

0 < ĺım inf
x∈Ω,x→∂Ω

u(x)d(x)−
γ
p ≤ ĺım sup

x∈Ω,x→∂Ω
u(x)d(x)−

γ
p < +∞. (2.20)

As we already mentioned, in Theorem 2.1.1 the existence of blowing up solutions
results from the interaction between the reaction up and the di�usion term (−∆)α,
while the role of the external source f is secondary. In contrast, in Theorem 2.1.2
the existence of blowing up solutions results on the interaction between the external
source, and the di�usion term in case of weak source and the interaction between
the external source and the reaction term in case of strong source.

Regarding uniqueness result for solutions of (2.6), as in Theorem 2.1.1 we will
assume that f is non-negative, hypothesis that we need for technical reasons. We
have

Theorem 2.1.3 (Uniqueness) Assume that Ω is an open, bounded and connected
domain of class C2, α ∈ (0, 1) and f satis�es (H1) and f ≥ 0. Then we have

i) (weak source) the solution of (2.6) satisfying (2.17) is positive and unique, and

ii) (strong source) the solution of (2.6) satisfying (2.20) is positive and unique.

We complete our theorems with a non-existence result for solution with a previ-
ously de�ned asymptotic behavior, as we saw in Theorem 2.1.1. We have
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Theorem 2.1.4 (Non-existence) Assume that Ω is an open, bounded and con-
nected domain of class C2, α ∈ (0, 1) and f satis�es (H1), (H3) and f ≥ 0. Then
we have

i) (weak source) Suppose that p satis�es (2.9), γ satis�es (2.16) and τ ∈ (−1, 0)\
{γ + 2α}. Then equation (2.6) does not have a solution u satisfying (2.11).

ii) (strong source) Suppose that p satis�es (2.19), γ satis�es (2.18) and τ ∈
(−1, 0)\{γ

p
}. Then equation (2.6) does not have a solution u satisfying (2.11).

All theorems stated so far deal with equation (2.5) in the case g ≡ 0, but they
may also be applied when g 6≡ 0 and, in particular, these result improve those given
in [51]. In what follows we describe how to obtain this. We start with some notation,
we consider L1

ω(Ω̄c) the weighted L1 space in Ω̄c with weight

ω(y) =
1

1 + |y|N+2α
, for all y ∈ RN .

Our hypothesis on the external values g is the following

(H4) The function g : Ω̄c → R is measurable and g ∈ L1
ω(Ω̄c).

Given g satisfying (H4), we de�ne

G(x) =
1

2

∫
RN

g̃(x+ y)

|y|N+2α
dy, x ∈ Ω, (2.21)

where

g̃(x) =

{
0, x ∈ Ω̄,

g(x), x ∈ Ω̄c.
(2.22)

We observe that
G(x) = −(−∆)αg̃(x), x ∈ Ω.

Hypothesis (H4) implies that G is continuous in Ω as seen in Lemma 2.2.1 and has
an explosion of order d(x)β−2α towards the boundary ∂Ω, if g has an explosion of
order d(x)β for some β ∈ (−1, 0), as we shall see in Proposition 2.3.3. We observe
that under the hypothesis (H4), if u is a solution of equation (2.5), then u− g̃ is the
solution of 

(−∆)αu(x) + |u|p−1u(x) = f(x) +G(x), x ∈ Ω,

u(x) = 0, x ∈ Ω̄c,

ĺımx∈Ω, x→∂Ω u(x) = +∞
(2.23)

and vice versa, if v is a solution of (2.23), then v + g̃ is a solution of (2.5).
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Thus, using Theorem 2.1.1-2.1.4, we can state the corresponding results of exis-
tence, uniqueness and non-existence for (2.5), combining f with g to de�ne a new
external source

F (x) = G(x) + f(x), x ∈ Ω. (2.24)

With this we can state appropriate hypothesis for g and thus we can write theorems,
one corresponding to each of Theorem 2.1.1, 2.1.2, 2.1.3 and 2.1.4. Even though, at
�rst sight we need that G(x) is Cβ

loc(Ω), actually continuity of g is su�cient, as we
discuss Remark 2.4.1. Moreover, in Remark 2.4.2 we explain how our results in this
paper allows to give a di�erent proof of those obtained by Felmer and Quaas in [51],
generalizing them.

2.2. Preliminaries and existence theorem

The purpose of this section is to introduce some preliminaries and prove an
existence theorem for blow-up solutions assuming the existence of ordered super-
solution and sub-solution which blow up at the boundary. In order to prove this
theorem we adapt the theory of viscosity to allow for boundary blow up.

We start this section by de�ning the notion of viscosity solution for non-local
equation, allowing blow up at the boundary, see for example [27]. We consider the
equation of the form:

(−∆)αu = h(x, u) in Ω, u = g in Ωc. (2.25)

De�nition 2.2.1 We say that a function u : (∂Ω)c → R, continuous in Ω and in
L1
ω(RN) is a viscosity super-solution (sub-solution) of (2.25) if

u ≥ g (resp. u ≤ g) in Ω̄c

and for every point x0 ∈ Ω and some neighborhood V of x0 with V̄ ⊂ Ω and for any
φ ∈ C2(V̄ ) such that u(x0) = φ(x0) and

u(x) ≥ φ(x) (resp. u(x) ≤ φ(x)) for all x ∈ V,

de�ning

ũ =

{
φ in V,

u in V c,
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we have

(−∆)αũ(x0) ≥ h(x0, u(x0)) (resp.(−∆)αũ(x0) ≤ h(x0, u(x0)).

We say that u is a viscosity solution of (2.25) if it is a viscosity super-solution and
also a viscosity sub-solution of (2.25).

It will be convenient for us to have also a notion of classical solution.

De�nition 2.2.2 We say that a function u : (∂Ω)c → R, continuous in Ω and in
L1
ω(RN) is a classical solution of (2.25) if (−∆)αu(x) is well de�ned for all x ∈ Ω,

(−∆)αu(x) = h(x, u(x)), for all x ∈ Ω

and u(x) = g(x) a.e. in Ω
c
. Classical super and sub-solutions are de�ned similarly.

Next we have our �rst regularity theorem.

Theorem 2.2.1 Let g ∈ L1
ω(RN) and f ∈ Cβ

loc(Ω), with β ∈ (0, 1), and u be a
viscosity solution of

(−∆)αu = f in Ω, u = g in Ωc,

then there exists γ > 0 such that u ∈ C2α+γ
loc (Ω)

Proof. Suppose without loss of generality that B1 ⊂ Ω and f ∈ Cβ(B1). Let η be
a non-negative, smooth function with support in B1, such that η = 1 in B1/2. Now
we look at the equation

−∆w = ηf in RN .

By Hölder regularity theory for the Laplacian we �nd w ∈ C2,β, so that (−∆)1−αw ∈
C2α+β, see [94] or Theorem 3.1 in [53]. Then, since

(−∆)α(u− (−∆)1−αw) = 0 in B1/2,

we can use Theorem 1.1 and Remark 9.4 of [29] (see also Theorem 4.1 there), to
obtain that there exist β̃ such that u − (−∆)1−αw ∈ C2α+β̃(B1/2), from where we
conclude. 2

The Maximum and the Comparison Principles are key tools in the analysis, we
present them here for completitude.

Theorem 2.2.2 (Maximum principle) Let O be an open and bounded domain of
RN and u be a classical solution of

(−∆)αu ≤ 0 in O, (2.26)
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continuous in Ō and bounded from above in RN . Then u(x) ≤ M, for all x ∈ O,
where M = supx∈Oc u(x) < +∞.

Proof. If the conclusion is false, then there exists x′ ∈ O such that u(x′) > M . By
continuity of u, there exists x0 ∈ O such that

u(x0) = máx
x∈O

u(x) = máx
x∈RN

u(x)

and then (−∆)αu(x0) > 0, which contradicts (2.26). 2

Theorem 2.2.3 (Comparison Principle) Let u and v be classical super-solution and
sub-solution of

(−∆)αu+ h(u) = f in O,

respectively, where O is an open, bounded domain, the functions f : O → R is
continuous and h : R→ R is increasing. Suppose further that u and v are continuous
in Ō and v(x) ≤ u(x) for all x ∈ Oc. Then

u(x) ≥ v(x), x ∈ O.

Proof. Suppose by contradiction that w = u−v has a negative minimum in x0 ∈ O,
then (−∆)αw(x0) < 0 and so, by assumptions on u and v, h(u(x0)) > h(v(x0)),
which contradicts the monotonicity of h. 2

We devote the rest of the section to the proof of the existence theorem through
super and sub-solutions. We prove the theorem by an approximation procedure for
which we need some preliminary steps. We need to deal with a Dirichlet problem
involving fractional Laplacian operator and with exterior data which blows up away
from the boundary. Precisely, on the exterior data g, we assume the following hy-
pothesis, given an open, bounded set O in RN with C2 boundary:

(G) g : Oc → R is in L1
ω(Oc) and it is of class C2 in {z ∈ Oc, dist(z, ∂O) ≤ δ},

where δ > 0.

In studying the nonlocal problem (2.5) with explosive exterior source, we have
to adapt the stability theorem and the existence theorem for the linear Dirichlet
problem. The following lemma is important in this direction.

Lemma 2.2.1 Assume that O is an open, bounded domain in RN with C2 boundary.
Let w : RN → R:
(i) If w ∈ L1

ω(RN) and w is of class C2 in {z ∈ RN , d(z,O) ≤ δ} for some δ > 0,
then (−∆)αw is continuous in Ō.
(ii) If w ∈ L1

ω(RN) and w is of class C2 in O, then (−∆)αw is continuous in O.
(iii) If w ∈ L1

ω(RN) and w ≡ 0 in O, then (−∆)αw is continuous in O.
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Proof. We �rst prove (ii). Let x ∈ Ω and η > 0 such that B(x, 2η) ⊂ Ω. Then we
consider

(−∆)αu(x) = L1(x) + L2(x),

where

L1(x) =

∫
B(0,η)

δ(u, x, y)

|y|N+2α
dy and L2(x) =

∫
B(0,η)c

δ(u, x, y)

|y|N+2α
dy.

Since w is of class C2 in O, we may write L1 as

L1(x) =

∫ η

0

{∫
SN−1

∫ 1

−1

∫ 1

1

tωtD2w(x+ strω)ωdtdsdω

}
r1−αdr,

where the term inside the brackets is uniformly continuous in (x, r), so the resulting
function L1 is continuous. On the other hand we may write L2 as

L2(x) = −2w(x)

∫
B(0,η)c

dy

|y|N+2α
− 2

∫
B(x,η)c

w(z)dz

|z − x|N+2α
,

from where L2 is also continuous. The proof of (i) and (iii) are similar. 2

The next theorem gives the stability property for viscosity solutions in our set-
ting.

Theorem 2.2.4 Suppose that O is an open, bounded and C2 domain and h : R→ R
is continuous. Assume that (un), n ∈ N is a sequence of functions, bounded in L1

ω(Oc)
and fn and f are continuous in O such that:

(−∆)αun + h(un) ≥ fn (resp. (−∆)αun + h(un) ≤ fn) in O in viscosity sense,

un → u locally uniformly in O,
un → u in L1

ω(RN), and

fn → f locally uniformly in O.
Then, (−∆)αu+ h(u) ≥ f (resp. (−∆)αu+ h(u) ≤ f) in O in viscosity sense.

Proof. If |un| ≤ C in O then we use Lemma 4.3 of [27]. If un is unbounded in O,
then un is bounded in Ok = {x ∈ O, dist(x, ∂O) ≥ 1

k
}, since un is continuous in O,

and then by Lemma 4.3 of [27], u is a viscosity solution of (−∆)αu+h(u) ≥ f in Ok
for any k. Thus u is a viscosity solution of (−∆)αu + h(u) ≥ f in O and the proof
is completed. 2

An existence result for the Dirichlet problem is given as follows:

Theorem 2.2.5 Suppose that O is an open, bounded and C2 domain, g : Oc → R
satis�es (G), f : Ō → R is continuous, f ∈ Cβ

loc(O), with β ∈ (0, 1), and p > 0.
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Then there exists a classical solution u of{
(−∆)αu(x) + |u|p−1u(x) = f(x), x ∈ O,
u(x) = g(x), x ∈ Oc,

(2.27)

which is continuous in Ō.

In proving Theorem 2.2.5, we will use the following lemma:

Lemma 2.2.2 Suppose that O is an open, bounded and C2 domain, f : Ō → R is
continuous and C > 0. Then there exist a classical solution of{

(−∆)αu(x) + Cu(x) = f(x), x ∈ O,
u(x) = 0, x ∈ Oc,

(2.28)

which is continuous in Ō.

Proof. For the existence of a viscosity solution u of (2.28), that is continuous in
Ō, we refers to Theorem 3.1 in [51]. Now we apply Theorem 2.6 of [27] to conclude
that u is Cθ

loc(O), with θ > 0, and then we use Theorem 2.2.1 to conclude that the
solution is classical (see also Proposition 1.1 and 1.4 in [88]). 2

Using Lemma 2.2.2, we �nd V̄ , a classical solution of{
(−∆)αV̄ (x) = −1, x ∈ O,
V̄ (x) = 0, x ∈ Oc,

(2.29)

which is continuous in Ō and negative in O. it is classical since we apply Theorem
2.6 of [27] to conclude that u is Cθ

loc(O), with θ > 0, and then we use Theorem 2.2.1
to conclude that the solution is classical (see also Proposition 1.1 and 1.4 in [88]).

Now we prove Theorem 2.2.5.

Proof of Theorem 2.2.5. Under assumption (G) and in view of the hypothesis
on O, we may extend g to ḡ in RN as a C2 function in {z ∈ RN , d(z,O) ≤ δ}. We
certainly have ḡ ∈ L1

ω(RN) and, by Lemma 2.2.1 (−∆)αḡ is continuous in Ō. Next
we use Lemma 2.2.2 to �nd a solution v of equation (2.28) with f(x) replaced by
f(x)− (−∆)αḡ(x)−Cḡ(x), where C > 0. Then we de�ne u = v+ ḡ and we see that
u is continuous in Ō and it satis�es in the viscosity sense{

(−∆)αu(x) + Cu(x) = f(x), x ∈ O,
u(x) = g(x), x ∈ Oc.

Now we use Theorem 2.6 in [27] and then Theorem 2.2.1 to conclude that u is a
classical solution. Continuing the proof, we �nd super and sub-solutions for (2.27).
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We de�ne
uλ(x) = λV̄ (x) + ḡ(x), x ∈ RN ,

where λ ∈ R and V̄ is given in (2.29). We see that uλ(x) = g(x) in Oc for any λ and
for λ large (negative), uλ satis�es

(−∆)αuλ(x) + |uλ(x)|p−1uλ(x)− f(x) ≥ (−∆)αḡ(x)− λ− f(x)− |ḡ(x)|p,

for x ∈ O. Since (−∆)αḡ, ḡ and f are bounded in Ō, choosing λ1 < 0 large enough
we �nd that uλ1 ≥ 0 is a super-solution of (2.27) with uλ1 = g in Oc.

On the other hand, for λ > 0 we have

(−∆)αuλ(x) + |uλ|p−1uλ(x)− f(x) ≤ (−∆)αḡ(x)− λ+ |ḡ|p−1ḡ(x)− f(x).

As before, there is λ2 > 0 large enough, so that uλ2 is a sub-solution of (2.27) with
uλ2 = g in Oc. Moreover, we have that uλ2 < uλ1 in O and uλ2 = uλ1 = g in Oc.

Let u0 = uλ2 and de�ne iteratively, using the above argument, the sequence of
functions un (n ≥ 1) as the classical solutions of

(−∆)αun(x) + Cun(x) = f(x) + Cun−1(x)− |un−1|p−1un−1(x), x ∈ O,
un(x) = g(x), x ∈ Oc,

where C > 0 is so that the function r(t) = Ct− |t|p−1t is increasing in the interval
[mı́nx∈Ō uλ2(x),máxx∈Ō uλ1(x)]. Next, using Theorem 2.2.3 we get

uλ2 ≤ un ≤ un+1 ≤ uλ1 in O, for all n ∈ N.

Then we de�ne u(x) = ĺımn→+∞ un(x), for x ∈ O and u(x) = g(x), for x ∈ Oc and
we have

uλ2 ≤ u ≤ uλ1 in O. (2.30)

Moreover, uλ1 , uλ2 ∈ L1
ω(RN) so that un → u in L1

ω(RN), as n→∞.

By interior estimates as given in [26], for any compact set K of O, we have that
un has uniformly bounded Cθ(K) norm. So, by Ascoli-Arzela Theorem we have that
u is continuous in K and un → u uniformly in K. Taking a sequence of compact
sets Kn = {z ∈ O, d(z, ∂O) ≥ 1

n
}, and O = ∪+∞

n=1Kn, we �nd that u is continuous in
O and, by Theorem 2.2.4, u is a viscosity solution of (2.27). Now we apply Theorem
2.6 of [27] to �nd that u is Cθ

loc(O), and then we use Theorem 2.2.1 con conclude
that u is a classical solution. In addition, u is continuous up to the boundary by
(2.30).

2

Now we are in a position to prove the main theorem of this section. We prove
the existence of a blow-up solution of (2.6) assuming the existence of suitable super
and sub-solutions.
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Theorem 2.2.6 Assume that Ω is an open, bounded domain of class C2, p > 1 and
f satisfy (H1). Suppose there exists a super-solution Ū and a sub-solution U of (2.6)
such that Ū and U are of class C2 in Ω, U , Ū ∈ L1

ω(RN),

Ū ≥ U in Ω, ĺım inf
x∈Ω,x→∂Ω

U(x) = +∞ and Ū = U = 0 in Ω̄c.

Then there exists at least one solution u of (2.6) in the viscosity sense and

U ≤ u ≤ Ū in Ω.

Additionally, if f ≥ 0 in Ω, then u > 0 in Ω.

Proof. Let us consider Ωn = {x ∈ Ω : d(x) > 1/n} and use Theorem 2.2.5 to �nd a
solution un of {

(−∆)αu(x) + |u|p−1u(x) = f(x), x ∈ Ωn,

u(x) = U(x), x ∈ Ωc
n,

(2.31)

We just replace O by Ωn and de�ne δ = 1
4n
, so that U(x) satis�es assumption (G).

We notice that Ωn is of class C2 for n ≥ N0, for certain N0 large. Next we show that
un is a sub-solution of (2.31) in Ωn+1. In fact, since un is the solution of (2.31) in
Ωn and U is a sub-solution of (2.31) in Ωn, by Theorem 2.2.3,

un ≥ U in Ωn.

Additionally, un = U in Ωc
n. Then, for x ∈ Ωn+1 \ Ωn, we have

(−∆)αun(x) = −1

2

∫
RN

δ(un, x, y)

|y|N+2α
dy ≤ (−∆)αU(x),

so that un is a sub-solution of (2.31) in Ωn+1. From here and since un+1 is the solution
of (2.31) in Ωn+1 and Ū is a super-solution of (2.31) in Ωn+1, by Theorem 2.2.3, we
have un ≤ un+1 ≤ Ū in Ωn+1. Therefore, for any n ≥ N0,

U ≤ un ≤ un+1 ≤ Ū in Ω.

Then we can de�ne the function u as

u(x) = ĺım
n→+∞

un(x), x ∈ Ω and u(x) = 0, x ∈ Ω̄c

and we have
U(x) ≤ u(x) ≤ Ū(x), x ∈ Ω.

Since U and Ū belong to L1
ω(RN), we see that un → u in L1

ω(RN), as n→∞. Now
we repeat the arguments of the proof of Theorem 2.2.5 to �nd that u is a classical
solution of (2.6). Finally, if f is positive we easily �nd that u is positive, again by a
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contradiction argument. 2

2.3. Some estimates

In order to prove our existence threorems we will use Theorem 2.2.6, so that it is
crucial to have available super and sub-solutions to (2.5). In this section we provide
the basic estimates that will allow to obtain in the next section the necessary super
and sub-solutions.

To this end, we use appropriate powers of the distance function d and the main
result in this section are the estimates given in Proposition 2.3.2, that provides the
asymptotic behavior of the fractional operator applied to d.

But before going to this estimates, we describe the behavior of the function C
de�ned in (2.14), which is a C2 de�ned in (−1, 2α). We have:

Proposition 2.3.1 For every α ∈ (0, 1) there exists a unique τ0(α) ∈ (−1, 0) such
that C(τ0(α)) = 0 and

C(τ)(τ − τ0(α)) < 0, for all τ ∈ (−1, 0) \ {τ0(α)}. (2.32)

Moreover, the function τ0 satis�es

ĺım
α→1−

τ0(α) = 0 and ĺım
α→0+

τ0(α) = −1. (2.33)

Proof. We �rst observe that C(0) < 0 since the integrand in (2.14) is zero in (0, 1)
and negative in (1,+∞). Next easily see that

ĺım
τ→−1+

C(τ) = +∞, (2.34)

since, as τ approaches −1, the integrand loses integrability at 0. Next we see that
C(·) is strictly convex in (−1, 0), since

C ′(τ) =

∫ +∞

0

|1− t|τχ(0,1)(t) log |1− t|+ (1 + t)τ log(1 + t)

t1+2α
dt

and

C ′′(τ) =

∫ +∞

0

|1− t|τ [χ(0,1)(t) log |1− t|]2 + (1 + t)τ [log(1 + t)]2

t1+2α
dt > 0.

The convexity C(·), C(0) < 0 and (2.34) allow to conclude the existence and unique-
ness of τ0(α) ∈ (−1, 0) such that (2.32) holds. To prove the �rst limit in (2.33), we
proceed by contradiction, assuming that for {αn} converging to 1 and τ0 ∈ (−1, 0)
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such that
τ0(αn) ≤ τ0 < 0.

Then, for a constant c1 > 0 we have

ĺım
αn→1−

∫ 1
2

0

(1− t)τ0(αn) + (1 + t)τ0(αn) − 2

t1+2αn
dt ≥ c1 ĺım

αn→1−

∫ 1
2

0

t1−2αndt = +∞

and, for a constant c2 independent of n, we have∫ +∞

1
2

|
χ(0,1)(t)(1− t)τ0(αn) + (1 + t)τ0(αn) − 2

t1+2αn
|dt ≤ c2,

contradicting the fact that C(τ0(αn)) = 0. For the second limit in (2.33), we proceed
similarly, assuming that for {αn} converging to 0 and τ̄0 ∈ (−1, 0) such that

τ0(αn) ≥ τ̄0 > −1.

There are positive constants c1 and c2 we have such that∫ 2

0

|χ0,1(t)(1− t)τ0(αn) + (1 + t)τ0(αn) − 2

t1+2αn
|dt ≤ c1

and

ĺım
n→∞

∫ +∞

2

(1 + t)τ0(αn) − 2

t1+2αn
dt ≤ −c2 ĺım

n→∞

∫ +∞

2

1

t1+2αn
dt = −∞,

contradicting again that C(τ0(αn)) = 0. 2

Next we prove our main result in this section. We assume that δ > 0 is such that
the distance function d(·) is of class C2 in Aδ = {x ∈ Ω, d(x) < δ} and we de�ne

Vτ (x) =


l(x), x ∈ Ω \ Aδ,
d(x)τ , x ∈ Aδ,
0, x ∈ Ωc,

(2.35)

where τ is a parameter in (−1, 0) and the function l is positive such that Vτ is C2

in Ω. We have the following

Proposition 2.3.2 Assume that Ω is a bounded, open subset of RN with a C2

boundary and let α ∈ (0, 1). Then there exists δ1 ∈ (0, δ) and a constant C > 1
such that:

88



(i) If τ ∈ (−1, τ0(α)), then

1

C
d(x)τ−2α ≤ −(−∆)αVτ (x) ≤ Cd(x)τ−2α, for all x ∈ Aδ1 .

(ii) If τ ∈ (τ0(α), 0), then

1

C
d(x)τ−2α ≤ (−∆)αVτ (x) ≤ Cd(x)τ−2α, for all x ∈ Aδ1 .

(iii) If τ = τ0(α), then

|(−∆)αVτ (x)| ≤ Cd(x)mı́n{τ0(α),2τ0(α)−2α+1}, for all x ∈ Aδ1 .

Proof. By compactness we prove that the corresponding inequality holds in a neigh-
borhood of any point x̄ ∈ ∂Ω and without loss of generality we may assume that
x̄ = 0. For a given 0 < η ≤ δ, we de�ne

Qη = {z = (z1, z
′) ∈ R× RN−1, |z1| < η, |z′| < η}

and Q+
η = {z ∈ Qη, z1 > 0}. Let ϕ : RN−1 → R be a C2 function such that

(z1, z
′) ∈ Ω ∩Qη if and only if z1 ∈ (ϕ(z′), η) and moreover, (ϕ(z′), z′) ∈ ∂Ω for all

|z′| < η. We further assume that (−1, 0, · · ·, 0) is the outer normal vector of Ω at x̄.

In the proof of our inequalities, we let x = (x1, 0), with x1 ∈ (0, η/4), be then a
generic point in Aη/4. We observe that |x− x̄| = d(x) = x1. By de�nition we have

−(−∆)αVτ (x) =
1

2

∫
Qη

δ(Vτ , x, y)

|y|N+2α
dy +

1

2

∫
RN\Qη

δ(Vτ , x, y)

|y|N+2α
dy (2.36)

and we see that

|
∫
RN\Qη

δ(Vτ , x, y)

|y|N+2α
dy| ≤ c|x|τ , (2.37)

where the constant c is independent of x. Thus we only need to study the asymptotic
behavior of the �rst integral, that from now on we denote by 1

2
E(x1).

Our �rst goal is to get a lower bound for E(x1). For that purpose we �rst notice
that, since τ ∈ (−1, 0), we have that

d(z)τ ≥ |z1 − ϕ(z′)|τ , for all z ∈ Qδ ∩ Ω. (2.38)

Now we assume that 0 < η ≤ δ/2, then for all y ∈ Qη we have x± y ∈ Qδ. Thus
x± y ∈ Ω∩Qδ if and only if ϕ(±y′) < x1± y1 < δ and |y′| < δ. Then, by (2.38), we
have that

Vτ (x+ y) = d(x+ y)τ ≥ [x1 + y1 − ϕ(y′)]τ , x+ y ∈ Qδ ∩ Ω (2.39)
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and

Vτ (x− y) = d(x− y)τ ≥ [x1 − y1 − ϕ(−y′)]τ , x− y ∈ Qδ ∩ Ω. (2.40)

On the other side, for y ∈ Qη we have that if x± y ∈ Qδ ∩Ωc then, by de�nition of
Vτ , we have Vτ (x± y) = 0. Now, for y ∈ Qη we de�ne the intervals

I+ = (ϕ(y′)− x1, η − x1) and I− = (x1 − η, x1 − ϕ(−y′)) (2.41)

and the functions

I(y) = χI+(y1)|x1 + y1 − ϕ(y′)|τ + χI−(y1)|x1 − y1 − ϕ(−y′)|τ − 2xτ1,

J(y1) = χ(x1−η,x1)(y1)|x1 − y1|τ + χ(−x1,η−x1)(y1)|x1 + y1|τ − 2xτ1,

I1(y) = {χI+(y1)− χ(−x1,η−x1)(y1)}|x1 + y1|τ ,
I2(y) = χI+(y1)(|x1 + y1 − ϕ(y′)|τ − |x1 + y1|τ ),

where χA denotes the characteristic function of the set A. Then, using these de�ni-
tions and inequalities (2.39) and (2.40), we have that

E(x1) ≥
∫
Qη

I(y)

|y|N+2α
dy =

∫
Qη

J(y1)

|y|N+2α
dy + E1(x1) + E2(x1), (2.42)

where

Ei(x1) =

∫
Qη

Ii(y) + I−i(y)

|y|N+2α
dy, i = 1, 2. (2.43)

Here we have considered that

I−1(y) = {χI−(y1)− χ(x1−η,x1)(y1)}|x1 − y1|τ

and
I−2(y) = χI−(y1)(|x1 − y1 − ϕ(−y′)|τ − |x1 − y1|τ ),

for y = (y1, y
′) ∈ RN . We start studying the �rst integral in the right hand side in

(2.42). Changing variables we see that∫
Qη

J(y1)

|y|N+2α
dy = xτ−2α

1

∫
Q η
x1

J(x1z1)x−τ1

|z|N+2α
dz = 2xτ−2α

1 (R1 −R2),

where

R1 =

∫
Q+

η
x1

χ(0,1)(z1)|1− z1|τ + (1 + z1)τ − 2

|z|N+2α
dz
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and

R2 =

∫
Q+

η
x1

χ( η
x1
−1, η

x1
)(z1)(1 + z1)τ

|z|N+2α
dz.

Next we estimate these last two integrals. For R1 we see that, for appropriate positive
constants c1 and c2∫

RN+

χ(0,1)(z1)|1− z1|τ + (1 + z1)τ − 2

|z|N+2α
dz

=

∫ +∞

0

χ(0,1)(z1)|1− z1|τ + (1 + z1)τ − 2

z1+2α
1

dz1

∫
RN−1

1

(|z′|2 + 1)
N+2α

2

dz′

= c1C(τ)

and ∫
(Q+

η
x1

)c

χ(0,1)(z1)|1− z1|τ + (1 + z1)τ − 2

|z|N+2α
dz = −c2 x

2α
1 (1 + o(1)).

Consequently we have, for some constant c that

R1 = c1(C(τ) + cx2α
1 + o(x2α

1 )). (2.44)

For R2 we have that

R2 =

∫ η
x1

η
x1
−1

(1 + z1)τ

z1+2α
1

∫
B η
x1

1

(1 + |z′|2)
N+2α

2

dz′dz1 ≤ c3x
2α−τ+1
1 , (2.45)

where c3 > 0. Here and in what follows we denote by Bσ the ball of radius σ in
RN−1. From (2.44) and (2.45) we then conclude that∫

Qη

J(y1)

|y|N+2α
dy = c1x

τ−2α
1 (C(τ) + cx2α

1 + o(x2α
1 )). (2.46)

Continuing with our analysis we estimate E1(x1). We only consider the term
I1(y), since the estimate for I−1(y) is similar. We have∫

Qη

I1(y)

|y|N+2α
dy = −

∫
Bη

∫ ϕ(y′)−x1

−x1

|x1 + y1|τ

|y|N+2α
dy1dy

′ = −xτ−2α
1 F1(x1),
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where

F1(x1) =

∫
B η
x1

∫ ϕ(x1z
′)

x1

0

|z1|τ

((z1 − 1)2 + |z′|2)(N+2α)/2
dz1dz

′. (2.47)

In what follows we write ϕ−(y′) = mı́n{ϕ(y′), 0} and ϕ+(y′) = ϕ(y′)− ϕ−(y′). Next
we see that assuming that 0 ≤ ϕ+(y′) ≤ C|y′|2 for |y′| ≤ η, for given (z1, z

′) satisfying
0 ≤ z1 ≤ ϕ+(x1z′)

x1
and |z′| ≤ η

x1
then

(1− z1)2 + |z′|2 ≥ 1

4
(1 + |z′|2), (2.48)

if we assume η small enough. Thus

F1(x1) ≤ C

∫
B η
x1

∫ ϕ+(x1z
′)

x1

0

|z1|τ

(1 + |z′|2)(N+2α)/2
dz1dz

′

≤ Cxτ+1
1

∫
B η
x1

|z′|2(τ+1)

(1 + |z′|2)(N+2α)/2
dz′

≤ Cxτ+1
1 (x−2τ+2α−1

1 + 1) ≤ Cx
mı́n{τ+1,2α−τ}
1 .

Thus we have obtained

E1(x1) ≥ −Cxτ−2α
1 x

mı́n{τ+1,2α−τ}
1 . (2.49)

We continue with the estimate of E2(x1). As before we only consider the term I2(y),∫
Qη

I2(y)

|y|N+2α
dy =

∫
Bη

∫ η−x1

ϕ(y′)−x1

|x1 + y1 − ϕ(y′)|τ − |x1 + y1|τ

(y2
1 + |y′|2)

N+2α
2

dy1dy
′

≥
∫
Bη

∫ η−x1

ϕ−(y′)−x1

|x1 + y1 − ϕ−(y′)|τ − |x1 + y1|τ

(y2
1 + |y′|2)

N+2α
2

dy1dy
′

=

∫
Bη

∫ η

ϕ−(y′)

|z1 − ϕ−(y′)|τ − |z1|τ

((z1 − x1)2 + |y′|2)
N+2α

2

dz1dy
′

≥
∫
Bη

∫ η

0

|z1 − ϕ−(y′)|τ − |z1|τ

((z1 − x1)2 + |y′|2)
N+2α

2

dz1dy
′

+

∫
Bη

∫ 0

ϕ−(y′)

−|z1|τ

((z1 − x1)2 + |y′|2)
N+2α

2

dz1dy
′

= E21(x1) + E22(x1). (2.50)

We observe that E22(x1) is similar to F1(x1). In order to estimate E21(x1) we use
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integration by parts

E21(x1) =
1

τ + 1

∫
Bη

{
(η − ϕ−(y′))τ+1 − ητ+1

((η − x1)2 + |y′|2)
N+2α

2

− (−ϕ−(y′))τ+1

(x2
1 + |y′|2)

N+2α
2

}
dy′

+
N + 2α

τ + 1

∫
Bη

∫ η

0

(z1 − ϕ−(y′))τ+1 − zτ+1
1

((z1 − x1)2 + |y′|2)
N+2α

2
+1

(z1 − x1)dz1dy
′

= A1 + A2.

For the �rst integral we have

A1 ≥
1

τ + 1

∫
Bη

{
−ητ+1

((η − x1)2 + |y′|2)
N+2α

2

− (−ϕ−(y′))τ+1

(x2
1 + |y′|2)

N+2α
2

}
dy′

≥ −C(η)− C
∫
Bη

|y′|2τ+2

(x2
1 + |y′|2)

N+2α
2

dy′ ≥ −Cxτ−2α+τ+1
1 − C.

For the second integral, since τ ∈ (−1, 0) and (z1−ϕ−(y′))τ+1−|z1|τ+1 > 0, we have
that

A2 ≥
N + 2α

τ + 1

∫
Bη

∫ x1

0

(z1 − ϕ−(y′))τ+1 − |z1|τ+1

((z1 − x1)2 + |y′|2)
N+2α

2
+1

(z1 − x1)dz1dy
′

≥ N + 2α

(τ + 1)2

∫
Bη

∫ x1

0

−ϕ−(y′)zτ1

((z1 − x1)2 + |y′|2)
N+2α

2
+1

(z1 − x1)dz1dy
′

≥ C3x
2τ−2α+1
1

∫
Bη/x1

∫ 1

0

|z′|2zτ1
((z1 − 1)2 + |z′|2)

N+2α
2

+1
(z1 − 1)dz1dz

′

≥ −C4x
2τ−2α+1
1 , (2.51)

where C3, C4 > 0 independent of x1 and the second inequality used a = z1 and
b = −ϕ−(y′) in the fact that (a+ b)τ+1 − aτ+1 ≤ aτ b

τ+1
for a > 0, b ≥ 0.

Thus, we have obtained

E2(x1) ≥ −Cxτ−2α
1 x

mı́n{τ+1,2α−τ}
1 . (2.52)

The next step is to obtain the other inequality for E(x1). By choosing δ smaller
if necessary, we can prove that

Lemma 2.3.1 Under the regularity conditions on the boundary and with the ar-
rangements given at the beginning of the proof, there is η > 0 and C > 0 such
that

d(z) ≥ (z1 − ϕ(z′))(1− C|z′|2) for all (z1, z
′) ∈ Ω ∩Qη.
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Proof. Since ϕ is C2 and ∇ϕ(0) = 0, there exist η1 ∈ (0, 1/8) small and C1 > 0
such that C1η1 < 1/4 and

|ϕ(y′)| < C1|y′|2, |∇ϕ(y′)| ≤ C1|y′|, ∀ y′ ∈ Bη1 . (2.53)

Choosing η2 ∈ (0, η1) such that for any z = (z1, z
′) ∈ Qη2 ∩ Ω, there exists y′

satisfying (ϕ(y′), y′) ∈ ∂Ω ∩Qη1 and d(z) = |z − (ϕ(y′), y′)|.
We observe that y′ mentioned above, is the minimizer of

H(z′) = (z1 − ϕ(z′))2 + |z′ − y′|2, |z′| < η1,

then
−(z1 − ϕ(y′))∇ϕ(y′) + (z′ − y′) = 0,

which, together with (2.53) implies that

|y′| − |z′| ≤ |z′ − y′| = |(z1 − ϕ(y′))∇ϕ(y′)| ≤ (|z1|+ C1|y′|2)|∇ϕ(y′)|

≤ C1(η2 + C1η
2
1)|y′| ≤ 2C1η1|y′| <

1

2
|y′|.

Then
|y′| ≤ 2|z′|. (2.54)

Denote the points z, (ϕ(y′), y′), (ϕ(z′), z′) by A,B,C, respectively, and let θ be
the angle between the segment BC and the hyper plane with normal vector e1 =
(1, 0, ..., 0) and containing C. Then the angle ∠C = π

2
− θ. Denotes the arc from

B to C in the plane ABC by arc(BC). By the geometry, there exists some point
x = (ϕ(x′), x′) ∈ arc(BC) such that line BC parallels the tangent line of arc(BC) at
point x. Then, from (2.54) we have |x′| ≤ máx{|z′|, |y′|} ≤ 2|z′| and so, from (2.53)
we obtain

tan(θ) = | y
′ − z′

|y′ − z′|
· ∇ϕ(x′)| ≤ |∇ϕ(x′)| ≤ C1|x′| ≤ 2C1|z′|,

which implies that for some C > 0,

cos(θ) ≥ 1− C|z′|2. (2.55)

Then we complete the proof using Sine Theorem and (2.55)

d(z) =
sin(∠C)

sin(∠B)
(z1 − ϕ(z′)) ≥ (z1 − ϕ(z′)) sin(

π

2
− θ)

= (z1 − ϕ(z′)) cos(θ) ≥ (z1 − ϕ(z′))(1− C|z′|2). 2
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From this lemma, by making C and η smaller if necessary we obtain that

dτ (z) ≤ (z1 − ϕ(z′))τ (1 + C|z′|2) for all z ∈ Ω ∩Qη. (2.56)

With x = (x1, 0) satisfying x1 ∈ (0, η/4) as at the beginning of the proof, we have
that d(x) = x1 and for any y ∈ Qη we see that x ± y ∈ Qδ. We also see that
x ± y ∈ Ω ∩ Qδ if and only if ϕ(±y′) < x1 ± y1 < δ and |y′| < δ. Then, for
x± y ∈ Ω ∩Qδ, by (2.56) we have,

Vτ (x± y) = d(x± y)τ ≤ (x1 ± y1 − ϕ(±y′))τ (1 + C|y′|2). (2.57)

For y ∈ Qη, we de�ne

I3(y) = C|y′|2χI+(y1)|x1 + y1 − ϕ(y′)|τ

and
I3(−y) = C|y′|2χI−(y1)|x1 − y1 − ϕ(−y′)|τ ,

where I+ and I− were de�ned in (2.41). Using (2.57) as in (2.42) we �nd

E(x1) =

∫
Qη

δ(Vτ , x, y)

|y|N+2α
dy ≤

∫
Qη

I(y)

|y|N+2α
dy + E3(x1)

=

∫
Qη

J(y)

|y|N+2α
dy + E1(x1) + E2(x1) + E3(x1), (2.58)

where E1 and E2 were de�ned in (2.43) and

E3(x1) =

∫
Qη

I3(y) + I3(−y)

|y|N+2α
dy. (2.59)

We estimate E3(x1) and for that we observe that it is enough to estimate the integral
with one of the terms in (2.59) (the other is similar), say∫

Qη

I3(y)

|y|N+2α
dy =

∫
Bη

∫ η−x1

ϕ(y′)−x1

C|y′|2|x1 + y1 − ϕ(y′)|τ

|y|N+2α
dy1dy

′

= Cxτ−2α+2
1

∫
B η
x1

∫ η
x1

ϕ(x1z
′)

x1

|z′|2|z1 − ϕ(x1z′)
x1
|τ

((z1 − 1)2 + |z′|2)(N+2α)/2
dz1dz

′

= Cxτ−2α+2
1 (A1 + A2), (2.60)

where A1 and A2 are integrals over properly chosen subdomains, estimated sepa-
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rately.

A1 =

∫
B η
x1

∫ ϕ(x1z
′)

x1
+ 1

2

ϕ(x1z
′)

x1

|z′|2|z1 − ϕ(x1z′)
x1
|τ

((z1 − 1)2 + |z′|2)(N+2α)/2
dz1dz

′

≤ c

(τ + 1)2τ+1

∫
B η
x1

|z′|2

(1 + |z′|2)(N+2α)/2
dz′ (2.61)

≤ c′
(
η

x1

)−2α+1

. (2.62)

The inequality in (2.61) is obtained noticing that the ball B((1, 0), 1/2) in RN does
not touch the band

{(z1, z
′) / |z′| ≤ η,

ϕ(x1z
′)

x1

≤ z1 ≤
ϕ(x1z

′)

x1

+ 1/2}

if x1 is small enough, and so (z1 − 1)2 + |z′|2 ≥ 1
8

+ 1
2
|z′|2. Then simple integration

gives the next term. Next we estimate A2

A2 =

∫
B η
x1

∫ η
x1

ϕ(x1z
′)

x1
+ 1

2

|z′|2|z1 − ϕ(x1z′)
x1
|τ

((z1 − 1)2 + |z′|2)(N+2α)/2
dz1dz

′

≤ 1

2τ

∫
B η
x1

∫ η
x1

ϕ(x1z
′)

x1
+ 1

2

|z′|2

((z1 − 1)2 + |z′|2)(N+2α)/2
dz1dz

′

≤ c′
(
η

x1

)−2α+2

. (2.63)

Putting together (2.60), (2.62), (2.63) and (2.59) we obtain

E3(x1) =

∫
Qη

(I3(y) + I3(−y))

|y|N+2α
dy ≤ cxτ1. (2.64)

From (2.47), but using the other inequality for F1, that is,

F1(x1) ≥ C

∫
B η
x1

∫ ϕ−(x1z
′)

x1

0

|z1|τ

(1 + |z′|2)(N+2α)/2
dz1dz

′

and arguing similarly we obtain as in (2.49)

E1(x1) ≤ Cxτ−2α
1 x

mı́n{τ+1,2α}
1 . (2.65)
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Then we look at E2(x1) and, as in (2.50), we only consider the term I2(y):∫
Qη

I2(y)

|y|N+2α
dy ≤

∫
Bη

∫ η

ϕ+(y′)

|z1 − ϕ+(y′)|τ − |z1|τ

((z1 − x1)2 + |y′|2)
N+2α

2

dz1dy
′ = Ẽ21(x1).

In order to estimate Ẽ21(x1) we use integration by parts

Ẽ21(x1) =

1

τ + 1

∫
Bη

{
(η − ϕ+(y′))τ+1 − ητ+1

((η − x1)2 + |y′|2)
N+2α

2

− (ϕ+(y′))τ+1

((ϕ+(y′)− x1)2 + |y′|2)
N+2α

2

}
dy′

+
N + 2α

τ + 1

∫
Bη

∫ η

ϕ+(y′)

(z1 − ϕ+(y′))τ+1 − zτ+1
1

((z1 − x1)2 + |y′|2)
N+2α

2
+1

(z1 − x1)dz1dy
′

≤ N + 2α

τ + 1

∫
Bη

∫ x1

mı́n{ϕ+(y′),x1}

(z1 − ϕ+(y′))τ+1 − zτ+1
1

((z1 − x1)2 + |y′|2)
N+2α

2
+1

(z1 − x1)dz1dy
′.

This integral can be estimated in a similar way as E21, see (2.51) and the estimates
given before. We then obtain

E2(x1) ≤ Cx2τ−2α+1
1 . (2.66)

Then we conclude from (2.36), (2.42), (2.46), (2.49), (2.52), (2.58), (2.64), (2.65)
and (2.66) that

−(−∆)αVτ (x) = Cxτ−2α
1 (C(τ) +O(x

mı́n{τ+1,2α}
1 )), (2.67)

where there exists a constant c > 0 so that

|O(x
mı́n{τ+1,2α}
1 )| ≤ cx

mı́n{τ+1,2α}
1 , for all small x1 > 0.

From here, depending on the value of τ ∈ (−1, 0), conditions (i), (ii) and (iii) follows
and the proof of the proposition is complete. 2

We end this section with an estimate we need when dealing with equation (2.5)
when the external value g is not zero. We have the following proposition

Proposition 2.3.3 Assume that Ω is a bounded, open and C2 domain in RN . As-
sume that g ∈ L1

ω(Ωc). Assume further that there are numbers β ∈ (−1, 0), η > 0
and c > 1 such that

1

c
≤ g(x)d(x)−β ≤ c, x ∈ Ω̄c and d(x) ≤ η.
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Then there exist η1 > 0 and C > 1 such that G, de�ned in (2.21), satis�es

1

C
d(x)β−2α ≤ G(x) ≤ Cd(x)β−2α, x ∈ Aη1 . (2.68)

Proof. The proof of this proposition requires estimates similar to those in the proof
of Proposition 2.3.2 so we omit it. However, the function C used there and de�ned
in (2.14), needs to be replaced here by C̃ : (−1, 0)→ R given by

C̃(β) =

∫ ∞
1

|t− 1|β

t1+2α
dt.

We observe that this function is always positive. 2

2.4. Proof of existence results

In this section, we will give the proof of existence of large solution to (2.6). By
Theorem 2.2.6 we only need to �nd ordered super and sub-solution, denoted by U
and W , for (2.6) under our various assumptions. We begin with a simple lemma
that reduce the problem to �nd them only in Aδ.

Lemma 2.4.1 Let U and W be classical ordered super and sub-solution of (2.6) in
the sub-domain Aδ. Then there exists λ large such that Uλ = U − λV̄ and Wλ =
W + λV̄ , where V̄ is the solution of (2.29), with O = Ω, are ordered super and
sub-solution of (2.6).

Proof. Notice that by negativity V̄ in Ω, we have that Uλ ≥ U and Wλ ≤ W , so
they are still ordered in Aδ. In addition Uλ satis�es

(−∆)αUλ + |Uλ|p−1Uλ − f(x) ≥ (−∆)αU + |U |p−1U − f(x) + λ > 0, in Ω.

This inequality holds because of our assumption in Aδ, the fact that (−∆)αU +
|U |p−1U − f(x) is continuous in Ω \ Aδ and by taking λ large enough.

By the same type of arguments we �nd the Wλ is a sub-solution of the �rst
equation in (2.6) and we complete the proof. 2

Now we are in position to prove our existence results that we already reduced to
�nd ordered super and sub-solution of (2.6) with the �rst equation in Aδ with the
desired asymptotic behavior.

Proof of Theorem 2.1.1 (Existence). De�ne

Uµ(x) = µVτ (x) and Wµ(x) = µVτ (x), (2.69)
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with τ = − 2α
p−1

. We observe that τ = − 2α
p−1
∈ (−1, τ0(α)) and τp = τ − 2α, Then by

Proposition 2.3.2 and (H2) we �nd that for x ∈ Aδ and δ > 0 small

(−∆)αUµ(x) + Up
µ(x)− f(x) ≥ −Cµd(x)τ−2α + µpd(x)τp − Cd(x)τp,

for some C > 0. Then there exists a large µ > 0 such that Uµ is a super-solution
of (2.6) with the �rst equation in Aδ with the desired asymptotic behavior. Now by
Proposition 2.3.2 we have that for x ∈ Aδ and δ > 0 small

(−∆)αWµ(x) +W p
µ(x)− f(x) ≤ − µ

C
d(x)τ−2α + µpd(x)τp − f(x) ≤ 0,

in the last inequality we have used (H2) and µ > 0 small. Then, by Theorem 2.2.6
there exists a solution, with the desired asymptotic behavior. 2

Proof of Theorem 2.1.1 (Special case τ = τ0(α)). We de�ne for t > 0,

Uµ(x) = tVτ0(α)(x)− µVτ1(x) and Wµ(x) = tVτ0(α)(x)− µVτ1(x), (2.70)

where τ1 = mı́n{τ0(α)p+ 2α, 0}. If τ1 = 0, we write V0 = χΩ and we have

(−∆)αV0(x) =

∫
RN\Ω

1

|z − x|N+2α
dz, x ∈ Ω.

By direct computation, there exists C > 1 such that

1

C
d(x)−2α ≤ (−∆)αV0(x) ≤ Cd(x)−2α, x ∈ Ω. (2.71)

We see that τ1 ∈ (τ0(α), 0] and, if τ1 < 0, we have τ1 − 2α = τ0(α)p and

τ1 − 2α < mı́n{τ0(α), τ0(α)− 2α + τ0(α) + 1}.

Then, by Proposition 2.3.2 and (2.71), for x ∈ Aδ, it follows that

(−∆)αUµ(x) + |Uµ(x)|p−1Uµ(x) ≥ −Ctd(x)mı́n{τ0(α),τ0(α)−2α+τ0(α)+1}

−Cµd(x)τ1−2α + tpd(x)τ0(α)p.

Thus, letting µ = tp/(2C) if τ1 < 0 and µ = 0 if τ1 = 0, for a possible smaller δ > 0,
we obtain

(−∆)αUµ(x) + |Uµ(x)|p−1Uµ(x) ≥ 0, x ∈ Aδ.

For the sub-solution, by Proposition 2.3.2 and (2.71), for x ∈ Aδ, we have

(−∆)αWµ(x) + |Wµ|p−1Wµ(x) ≤ Ctd(x)mı́n{τ0(α),τ0(α)−2α+τ0(α)+1}

− µ
C
d(x)τ1−2α + tpd(x)τ0(α)p,
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where C > 1. Then, for µ ≥ 2Ctp and a possibly smaller δ > 0

(−∆)αWµ(x) + |Wµ|p−1Wµ(x) ≤ 0, x ∈ Aδ,

completing the proof. 2

Proof of Theorem 2.1.2. We de�ne Uµ and Wµ as in (2.69). In the case of a
weak source, we take τ = γ + 2α and we observe that γ + 2α ≥ − 2α

p−1
≥ τ0(α) and

p(γ+ 2α) ≥ γ. Using Proposition 2.3.2 and (H3) we �nd that Uµ is a super-solution
for µ > 0 large (resp. Wµ is a sub-solution for µ > 0 small) of (2.6) with the �rst
equation in Aδ for δ > 0 small. In the case of a strong source, we take τ = γ

p
and

observe that γ < γ
p
− 2α. Using Proposition 2.3.2 we �nd

|(−∆)αUµ|, |(−∆)αWµ| ≤ Cd(x)
γ
p
−2α.

By (H3) we �nd that Uµ is a super-solution for µ large (resp. Wµ is a sub-solution
for µ small) of (2.6) with the �rst equation in Aδ for δ small. 2

Remark 2.4.1 In order to obtain the above existence results for classical solution
to (2.5), that is when g is not necessarily zero, we only need use them with F as
a right hand side as given in (2.24). Here we only need to assume that g satis�es
(H4). In fact, as above we �nd super and sub-solutions for (2.6), with f replaced by
F . Then, as in the proof of Theorem 2.2.6, we �nd a viscosity solution of (2.6) and
then v = u+ g̃ is a viscosity solution of (2.5). Next we use Theorem 2.6 in [27] and
then we use Theorem 2.2.1 to obtain that v is a classical solution of (2.5).

Remark 2.4.2 Now we compare Theorem 2.1.1 with the result in [51]. Let us as-
sume that f and g satis�es hypothesis (F0)-(F2) and (G0)-(G3), respectively, given
in [51]. We �rst observe that the function F , as de�ned above, satis�es (H1) thanks
to (G0), (G3) and (F0). Next we see that F satis�es (H2), since (G2), (F1) and
(F2) holds. Here we have to use Proposition 2.3.3. In the range of p given by (2.7),
we then may apply Theorem 2.1.1 to obtain existence of a blow-up solution as given
in Theorem 1.1 in [51]. We see that the existence is proved here, without assuming
hypothesis (G1), thus we generalized this earlier result. Moreover, here we obtain a
uniqueness and non existence of blow-up solution, if we further assume hypotheses
on f and g, guaranteeing hypothesis (H2∗) in Theorem 2.1.1. The complementary
range of p is obtained using Theorem 1.2 for the existence of solutions as given in
Theorem 1.1 in [51] and uniqueness and non-existence as in Theorem 1.3 and 1.4
are truly new results. The hypotheses needed on g to obtain (H3) for the function F
are a bit stronger, since we are requiring in (H3) that the explosion rate is the same
from above and from below, while in (G2) and (G4) they may be di�erent.
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2.5. Proof of uniqueness results

In this section we prove our uniqueness results, which are given in Theorem 2.1.1
and Theorem 2.1.3. These results are for positive solutions, so we assume that the
external source f is non-negative. We assume that there are two positive solutions
u and v of (2.6) and then de�ne the set

A = {x ∈ Ω, u(x) > v(x)}. (2.72)

This set is open, A ⊂ Ω and we only need to prove that A = ∅, to obtain that u = v,
by interchanging the roles of u and v.

We will distinguish three cases, depending on the conditions satisfying u and v:
Case a) u and v satisfy (2.7) and (2.8) (uniqueness part of Theorem 2.1.1), Case b)
u and v (2.16) and (2.17) (weak source in Theorem 2.1.3) and Case c) u and v with
(2.18) -(2.20) (strong source in Theorem 2.1.3).

We start our proof considering an auxiliary function

V (x) =

{
c(1− |x|2)3, x ∈ B1(0),

0, x ∈ Bc
1(0),

(2.73)

where the constant c may be chosen so that V satis�es

(−∆)αV (x) ≤ 1 and 0 < V (0) = máx
x∈RN

V (x). (2.74)

In order to prove the uniqueness result in the three cases, we need �rst some
preliminary lemmas.

Lemma 2.5.1 If Ak = {x ∈ Ω, u(x)− kv(x) > 0} 6= ∅, for k > 1. Then,

∂Ak ∩ ∂Ω 6= ∅. (2.75)

Proof. If (2.75) is not true, there exists x̄ ∈ Ω such that

u(x̄)− kv(x̄) = máx
x∈RN

(u− kv)(x) > 0,

Then, we have
(−∆)α(u− kv)(x̄) ≥ 0,

which contradicts

(−∆)α(u− kv)(x̄) = −up(x̄) + kvp(x̄)− (k − 1)f(x̄)

≤ −(kp − k)vp(x̄) < 0. 2
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Lemma 2.5.2 If Ak 6= ∅, for k > 1, then

sup
x∈Ω

(u− kv)(x) = +∞. (2.76)

Proof. Assume that M̄ = supx∈Ω(u− kv)(x) < +∞. We see that M̄ > 0 and there
is no point x̄ ∈ Ω achieving the supreme of u − kv, by the same argument given
above. Let us consider x0 ∈ Ak, r = d(x0)/2 and de�ne

wk = u− kv in RN . (2.77)

Under the conditions of Case a) and b) (resp. Case c)), for all x ∈ Br(x0) ∩ Ak we
have

(−∆)αwk(x) = −up(x) + kvp(x) + (1− k)f(x) ≤ −K1r
τ−2α, (2.78)

(resp. ≤ −K1r
γ). Here we have used that τ = −2α/(p− 1) and, in Case a) (2.8) for

v, in Case b) (H3) and (2.16) and in Case c) (H3). Moreover, in Case a) we have
considered K1 = C(kp− k) and in Cases b) and c) K1 = C(k− 1) for some constant
C. Now we de�ne

w(x) =
2M̄

V (0)
V

(
x− x0

r

)
for x ∈ RN , where V is given in (2.73), and we see that

w(x0) = 2M̄ (2.79)

and

(−∆)αw ≤ 2M̄

V (0)
r−2α, in Br(x0). (2.80)

Since τ < 0 (γ < −2α in the Case c)), by Lemma 2.5.1 we can take x0 ∈ Ak close
to ∂Ω, so that

2M̄

V (0)
≤ K1r

τ (
2M̄

V (0)
≤ K1r

γ+2α, in Case c)).

From here, combining (2.78) with (2.80), we have that

(−∆)α(wk + w)(x) ≤ 0, x ∈ Br(x0) ∩ Ak.

Then, by the Maximum Principle, we obtain

wk(x0) + w(x0) ≤ máx{M̄, sup
x∈Br(x0)∩Ack

(wk + w)}. (2.81)
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In case we have
M̄ < sup

x∈Br(x0)∩Ack
(wk + w), (2.82)

then

w(x0) < (wk + w)(x0) ≤ sup
x∈Br(x0)∩Ack

(wk + w)(x)

≤ sup
x∈Br(x0)∩Ack

w(x) ≤ lw(x0), (2.83)

which is impossible. So that (2.82) is false and then, from (2.81) we get

w(x0) < wk(x0) + w(x0) ≤ M̄,

which is impossible in view of (2.79), completing the proof. 2

Lemma 2.5.3 There exists a sequence {Cn}, with Cn > 0, satisfying

ĺım
n→+∞

Cn = 0 (2.84)

and such that for all x0 ∈ Ak and k > 1 we have

0 <

∫
Qn

wk(z)−Mn

|z − x|N+2α
dz ≤ Cnr

τ−2α, ∀x ∈ Br(x0),

where we consider r = d(x0)/2, Qn = {z ∈ Ar/n /wk(z) > Mn} and Mn =
máxx∈Ω\Ar/n wk(x).

Proof. In Case a): we see that Qn ⊂ Ar/n and ĺımn→+∞ |Qn| = 0, so that using
(2.11) we directly obtain∫

Qn

wk(z)−Mn

|z − x|N+2α
dz ≤ C0r

−N−2α

∫
Ar/n

d(z)τdz

≤ Cr−N−2α

∫ r/n

0

tτ tN−1dt ≤ C

nN+τ
rτ−2α,

where C depends on C0 and ∂Ω. We complete the proof de�ning Cn = C
nN+τ .

In Case b) we argue similarly using (2.17) and de�ne Cn as before, while in Case
c) we argue similarly using (2.20), but de�ning Cn = C

nN+γ/p . 2

Now we are in a position to prove our non-existence results.

Proof of uniqueness results in Cases a), b) and c). We assume that A 6= ∅,
then there exists k > 1 such that Ak 6= ∅. By Lemma 2.5.2 there exists x0 ∈ Ak
such that

wk(x0) = máx{wk(x) / x ∈ Ω \ Ad(x0)}.
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Proceeding as in Lemma 2.5.2 with the function

w(x) =
K1

2
rτV (

x− x0

r
)

and w(x) =
K1

2
rγ+2αV (

x− x0

r
), in Case c),

we see that

(−∆)α(wk + w)(x) ≤ −K1

2
rτ−2α, x ∈ Br(x0) ∩ Ak. (2.85)

and (−∆)α(wk + w)(x) ≤ −K1

2
rγ, in Case c). (2.86)

With Mn, as given in Lemma 2.5.3, we de�ne

w̄n(x) =

{
(wk + w)(x), if wk(x) ≤Mn,

Mn, if wk(x) > Mn,
(2.87)

for n > 1. By Lemma 2.5.3 we �nd n0 such that

(−∆)αw̄n0(x) = (−∆)α(wk + w)(x) + 2

∫
Qn0

wk(z)−Mn0

|z − x|N+2α
dz

≤ 0, in Br(x0) ∩ Ak.

In Case b) we have use (2.16) and in Case c) we have use (2.18), to get similar
conclusion. Then, by the Maximum Principle, we get

w̄n0(x0) ≤ máx{Mn0 , sup
x∈Br(x0)∩Ack

(wk0 + w)}.

Using the same argument as in (2.83), we conclude that

sup
x∈Br(x0)∩Ack

(wk0 + w) > Mn0

does not hold and therefore

w̄n0(x0) = wk(x0) + w(x0) ≤Mn0 . (2.88)

Next, by the de�nition of Mn, we choose x1 ∈ Ω \ Ar/n0 such that wk(x1) = Mn0 .
But then we have

wk(x0) + w(x0) ≥ w(x0) =
K1

2
V (0)rτ in Case a) and b)
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and wk(x0) + w(x0) ≥ w(x0) =
K1

2
V (0)rγ+2α in Case c).

Thus, by the asymptotic behavior of v, (2.7) in Case a), (2.16) in Case b) and (2.18)
in Case c), we have

rτ ≥ nτ0Cv(x1) and rγ+2α ≥ rγ/p ≥ n
γ/p
0 Cv(x1) in Case c).

We recall that in Case a) K1 = C(kp − k), so from (2.88)

u(x1) > (1 + c0)kv(x1), (2.89)

where c0 > 0 is a constant, not depending on x0 and increasing in k. Now we repeat
this process above initiating by x1 and k1 = k(1 + c0). Proceeding inductively, we
can �nd a sequence {xm} ⊂ A such that

u(xm) > (1 + c0)mkv(xm),

which contradicts the common asymptotic behavior of u and v.

In the Case b) and c) recall that K1 = C(k − 1) and, as before, we can proceed
inductively to �nd a sequence {xm} ⊂ A such that

u(xm) > (k +mc0)v(xm),

which again contradicts the common asymptotic behavior of u and v. 2

2.6. Proof of our non-existence results

In this section we prove our non-existence results. Our arguments are based on
the construction of some special super and sub-solutions and some ideas used in
Section 2.5. The main portion of our proof is based on the following proposition
that we state and prove next.

Proposition 2.6.1 Assume that Ω is an open, bounded and connected domain of
class C2, α ∈ (0, 1), p > 1 and f is nonnegative. Suppose that U is a sub or super-
solution of (2.6) satisfying U = 0 in Ωc and (2.11) for some τ ∈ (−1, 0). Moreover,
if τ > − 2α

p−1
, assume there are numbers ε > 0 and δ > 0 such that, in case U is a

sub-solution of (2.6),

(−∆)αU(x) ≤ −εd(x)τ−2α or f(x) ≥ εd(x)τ−2α, for x ∈ Aδ, (2.90)
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and in case U is a super-solution of (2.6),

(−∆)αU(x) ≥ εd(x)τ−2α and f(x) ≤ ε

2
d(x)τ−2α, for x ∈ Aδ. (2.91)

Then there is no solution u of (2.6) such that, in case U is a sub-solution,

0 < ĺım inf
x∈Ω, x→∂Ω

u(x)d(x)−τ ≤ ĺım sup
x∈Ω, x→∂Ω

u(x)d(x)−τ

< ĺım inf
x∈Ω, x→∂Ω

U(x)d(x)−τ (2.92)

or in case U is a super-solution,

0 < ĺım sup
x∈Ω, x→∂Ω

U(x)d(x)−τ < ĺım inf
x∈Ω, x→∂Ω

u(x)d(x)−τ

≤ ĺım sup
x∈Ω, x→∂Ω

u(x)d(x)−τ <∞. (2.93)

We prove this proposition by a contradiction argument, so we assume that u
is a solution of (2.6) satisfying (2.92) or (2.93), depending on the fact that U is a
sub-solution or a super-solution. Since f is non-negative we have that u > 0 in Ω
and by our assumptions on U , there is a constant C0 ≥ 1 so that, in case U is a
sub-solution

C−1
0 ≤ u(x)d(x)−τ < U(x)d(x)−τ ≤ C0, x ∈ Aδ (2.94)

and, in case U is a super-solution

C−1
0 ≤ U(x)d(x)−τ < u(x)d(x)−τ ≤ C0, x ∈ Aδ. (2.95)

Here δ is decreased if necessary so that (2.90), (2.91), (2.94) and (2.95) hold. We
de�ne

πk(x) =

{
U(x)− ku(x), in case U is a sub-solution,

u(x)− kU(x), in case U is a super-solution,
(2.96)

where k ≥ 0. In order to prove Proposition 2.6.1, we need the following two prelim-
inary lemmas.

Lemma 2.6.1 Under the hypotheses of Proposition 2.6.1. If Ak = {x ∈ Ω / πk(x) >
0} 6= ∅, for k > 1. Then,

∂Ak ∩ ∂Ω 6= ∅. (2.97)

The proof of this lemma follows the same arguments as the proof of Lemma 2.5.1
so we omit it.

Lemma 2.6.2 Under the hypotheses of Proposition 2.6.1. If Ak 6= ∅, for k > 1,
then

sup
x∈Ω

πk(x) = +∞. (2.98)
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Proof. If (2.98) fails, then we have M = supx∈Ω πk(x) < +∞. We see that M > 0
and, as in Lemma 2.5.2, there is no point x̄ ∈ Ω achieving M . By Lemma 2.6.1 we
may choose x0 ∈ Ak and r = d(x0)/4 such that Br(x0) ⊂ Aδ, where r could be
chosen as small as we want. Here δ is as in (2.90) and (2.91).

In what follows we consider x ∈ Br(x0)∩Ak and we notice that 3r < d(x) < 5r.
We �rst analyze the case U is a sub-solution and τ ≤ − 2α

p−1
. We have

(−∆)απk(x) ≤ −Up(x) + kup(x)− (k − 1)f(x)

≤ −(kp−1 − 1)kup(x)

≤ −C−p0 (kp−1 − 1)kd(x)τp ≤ −K1r
τ−2α,

where we have used f ≥ 0, k > 1, (2.94), K1 = 5τ−2αC−p0 (kp−1 − 1)k > 0 and C0 is
taken from (2.94). Next we consider the case U is a sub-solution and τ > − 2α

p−1
. By

the �rst inequality in (2.90), we have

(−∆)απk(x) ≤ −εd(x)τ−2α + kup(x)− kf(x)

≤ −(ε− kCp
0r

2α−τ+τp)d(x)τ−2α ≤ −K1r
τ−2α,

where the last inequality is achieved by choosing r small enough so that (ε −
kCp

0r
2α−τ+τp) ≥ ε

2
and K1 = 5τ−2α ε

2
. On the other hand, if the second inequali-

ty in (2.90) holds, we have

(−∆)απk(x) ≤ kup(x)− (k − 1)εd(x)τ−2α

≤ −((k − 1)ε− kCp
0r

2α−τ+τp)d(x)τ−2α ≤ −K1r
τ−2α,

where r satis�es (k − 1)ε− kCp
0r

2α−τ+τp ≥ k−1
2
ε and K1 = 5τ−2α k−1

2
ε.

In case U is a super-solution and τ ≤ − 2α
p−1

, we argue similarly to obtain

(−∆)απk(x) ≤ −up(x) + kUp(x)− (k − 1)f(x) ≤ −K1r
τ−2α,

where K1 = 5τ−2αC−p0 (kp−1 − 1)k > 0. Finally, in case U is a super-solution and
τ > − 2α

p−1
, using (2.91) we �nd

(−∆)απk(x) ≤ −up(x)− kεd(x)τ−2α + f(x) ≤ −K1r
τ−2α,

with K1 = 5τ−2α k
2
ε > 0. Thus, in all cases we have obtained

(−∆)απk(x) ≤ −K1r
τ−2α, x ∈ Br(x0) ∩ Ak, (2.99)

for some K1 = K1(k) > 0 non-decreasing with k. From here we can argue as in
Lemma 2.5.2 to get a contradiction. 2

Now proof of Proposition 2.6.1 is easy.
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Proof of Proposition 2.6.1. From (2.99), recalling that K1 non-decreasing with
k, we can argue as in the proof of uniqueness result in Case b) to get a sequence
(xm) in Aδ such that, for some k0 > 1 and k̄ > 0, in case U is a sub-solution we have

U(xm) > (k0 +mk̄)u(xm)

and, in case U is a super-solution we have

u(xm) > (k0 +mk̄)U(xm).

From here we obtain a contradiction with (2.94) or (2.95), for m large. 2

Proof of non-existence part of Theorem 2.1.1. For any t > 0 we construct a
sub-solution or super-solution U of (2.6) such that

ĺım
x∈Ω,x→∂Ω

U(x)d(x)−τ = t, (2.100)

and U satis�es the assumption of Proposition 2.6.1, for di�erent combinations of the
parameters p and τ . For t > 0 and µ ∈ R we de�ne

Uµ,t = tVτ + µV0 in RN , (2.101)

where V0 = χΩ is the characteristic function of Ω and Vτ is de�ned in (2.35). It is
obvious that (2.100) holds for Uµ,t for any µ ∈ R. To complete proof we show that
for any t > 0, there is µ(t) such that Uµ(t),t is a sub-solution or super-solution of
(2.6), depending on the zone to which (p, τ) belongs.

Zone 1: We consider p > 1 and τ ∈ (τ0(α), 0). By Proposition 2.3.2 (ii), there
exist δ1 > 0 and C1 > 0 such that

(−∆)αVτ (x) > C1d(x)τ−2α, x ∈ Aδ1 . (2.102)

Combining with (H2∗), for any µ > 0, there exists δ1 > 0 depending on t such that

(−∆)αUµ,t(x) + Up
µ,t(x)− f(x) > C1td(x)τ−2α − Cd(x)−2α ≥ 0, x ∈ Aδ1 .

On the other hand, since Vτ is of class C2, f is continuous in Ω and Ω \ Aδ1 is
compact, there exists C2 > 0 such that

|f |, |(−∆)αVτ (x)| ≤ C2, x ∈ Ω \ Aδ1 . (2.103)

Then, using (2.71), there exists µ > 0 such that

(−∆)αUµ,t(x) + Up
µ,t(x)− f(x) > −2C2 + C0µ ≥ 0, x ∈ Ω \ Aδ1 . (2.104)
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We conclude that for any t > 0, there exists µ(t) > 0 such that Uµ(t),t is a super-
solution of (2.6) and, by (H2∗) and (2.102), it satis�es (2.91).

Zone 2: We consider p > 1 + 2α and τ ∈ (−1,− 2α
p−1

). By Proposition 2.3.2 (i)

and (ii), there exists δ1 > 0 depending on t such that

(−∆)αUµ,t(x) +Up
µ,t(x)− f(x) ≥ −C1td(x)τ−2α + tpd(x)τp−Cd(x)−2α ≥ 0, (2.105)

for x ∈ Aδ1 and for any µ > 0, where we used that 0 > τ − 2α > τp. On the other
hand, for x ∈ Ω \ Aδ1 , (2.104) holds for some µ > 0 and so we have constructed a
super-solution of (2.6).

Zone 3:We consider 1+2α < p ≤ 1− 2α
τ0(α)

and τ ∈ (− 2α
p−1

, τ0(α)), which implies
that τp > τ − 2α. By Proposition 2.3.2 (i) and f ≥ 0 in Ω, there exists δ1 > 0 so
that for all µ ≤ 0

(−∆)αUµ,t(x) + Up
µ,t(x)− f(x) ≤ −C1td(x)τ−2α + tpd(x)τp ≤ 0, (2.106)

for x ∈ Aδ1 . Then, using (2.71) and (2.103), there exists µ = µ(t) < 0 such that

(−∆)αUµ,t(x) + Up
µ,t(x)− f(x) < 2C2 + C0µ ≤ 0, x ∈ Ω \ Aδ1 . (2.107)

We conclude that for any t > 0, there exists µ(t) < 0 such that Uµ(t),t is a sub-
solution of (2.6) and it satis�es (2.90).

We see that Zone 1, 2 and 3 cover the range of parameters in part (i) of Theorem
2.1.1, completing the proof in the case.

Zone 4: To cover part (ii) of Theorem 2.1.1 we only need to consider p = 1− 2α
τ0(α)

with τ = τ0(α) = − 2α
p−1

, which implies that τp = τ − 2α < mı́n{τ − 2α + τ + 1, τ}.
By Proposition 2.3.2 (iii), there exists δ1 > 0 depending on t such that

(−∆)αUµ,t(x) + Up
µ,t(x)− f(x) ≥ −C1td(x)mı́n{τ−2α+τ+1,τ} + tpd(x)τp

−Cd(x)−2α ≥ 0, x ∈ Aδ1

for any µ > 0. For x ∈ Ω\Aδ1 , (2.104) holds for some µ > 0, so we have constructed
a super-solution of (2.6).

We see that Zones 1, 2 and 4 cover the parameters in part (ii) of Theorem 2.1.1,
so the proof is complete in this case too.

Zone 5: We consider 1 < p ≤ 1 + 2α and τ ∈ (−1, τ0(α)), which implies that
τp > τ − 2α. By Proposition 2.3.2 (i) and f ≥ 0 in Ω, there exists δ1 > 0 such that
for all µ ≤ 0 and x ∈ Aδ1 , inequality (2.106) holds. Then, using (2.71) and (2.103),
there exists µ = µ(t) < 0 such that (2.107) holds and we conclude that for any t > 0,
there exists µ(t) < 0 such that Uµ(t),t satis�es the �rst inequality of (2.90) and it is
a sub-solution of (2.6).
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We see that Zones 1 and 5 cover the parameters in part (iii) of Theorem 2.1.1.
This completes the proof. 2

Proof of Theorem 2.1.4. Here again we construct sub or super-solutions satisfying
Proposition 2.6.1 to prove the theorem. In the case of a weak source, that is, part (i)
of Theorem 2.1.4, we have p ≥ 1− 2α

τ0(α)
and −2α − 2α

p−1
≤ γ < −2α, which implies

that −1 < τ0(α) ≤ − 2α
p−1
≤ γ + 2α < 0. We consider two zones depending on τ .

Zone 1: we consider τ ∈ (γ + 2α, 0), so we have γ < τp and γ < τ − 2α. By
Proposition 2.3.2 (ii) and (H3), we have that, for any t > 0 there exist δ1 > 0,
C1 > 0 and C2 > 0 such that

(−∆)αUµ,t(x) + Up
µ,t(x)− f(x) ≤ C1td(x)τ−2α + tpd(x)τp − C2d(x)γ ≤ 0, (2.108)

for x ∈ Aδ1 and any µ ≤ 0. On the other hand, using (2.71) and (2.103) we �nd
µ = µ(t) < 0 such that (2.107) holds for x ∈ Ω \ Aδ1 . We conclude that for any
t > 0, there exists µ(t) < 0 such that Uµ(t),t is is a sub-solution of (2.6) and by (H3),
it satis�es (2.90).

Zone 2: we consider τ ∈ (−1, γ + 2α). For τ ∈ (τ0(α), γ + 2α) in case τ0(α) <
γ + 2α, by Proposition 2.3.2 (i) there exists δ1 > 0, depending on t, such that

(−∆)αUµ,t(x) + Up
µ,t(x)− f(x) ≥ C1td(x)τ−2α − C2d(x)γ ≥ 0, (2.109)

for x ∈ Aδ1 and any µ ≥ 0. For τ ∈ (−1, τ0(α)] ∩ (−1, γ + 2α), we have τp < γ and
τp < τ − 2α, so by Proposition 2.3.2 (i) and (iii), there exists δ1 > 0 dependent of t
such that (2.105) holds for any µ ≥ 0, while for x ∈ Ω \ Aδ1 , (2.104) holds for some
µ > 0. We conclude that for any t > 0, there exists µ(t) > 0 such that Uµ(t),t is a
super-solution of (2.6) and by (H3) it satis�es (2.91), completing the proof in the
weak source case.

Next we consider the case of strong source, that is part (ii) of Theorem 2.1.4.
Here we have that

−1 <
γ

p
< − 2α

p− 1
< 0.

Here again we have two zones, depending on the parameter τ .

Zone 1: we consider τ ∈ (γ
p
, 0), in which case we have τ − 2α > γ and τp > γ.

Then there exist δ1 > 0, C1 > 0 and C2 > 0 such that (2.108) holds for any µ ≤ 0
and using (2.71) and (2.103), there exists µ = µ(t) < 0 such that (2.107) holds
for x ∈ Ω \ Aδ1 . Thus, for any t > 0 there exists µ(t) < 0 such that Uµ(t),t is a
sub-solution of (2.6) and (H3) implies the �rst inequality of (2.90).

Zone 2: we consider τ ∈ (−1, γ
p
), in which case we have τp < τ−2α and τp < γ.

Then there exist δ1 > 0, C1 > 0 and C2 > 0 such that (2.109) holds for x ∈ Aδ1 and
µ ≥ 0. We see also that for x ∈ Ω \Aδ1 , inequality (2.104) holds for some µ > 0and
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so for any t > 0, there exists µ(t) > 0 such that Uµ(t),t is a super-solution of (2.6).

This completes the proof of the theorem. 2
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Capítulo 3

Self-generated interior blow-up
solutions in fractional elliptic
equation with absorption

Abstract: in this chapter1, we study positive solutions to problem involving
the fractional Laplacian

(−∆)αu(x) + |u|p−1u(x) = 0, x ∈ Ω \ C,
u(x) = 0, x ∈ Ωc,

ĺımx∈Ω\C, x→C u(x) = +∞,
(3.1)

where p > 1 and Ω is an open bounded C2 domain in RN , C ⊂ Ω is a compact C2

manifold withN−1 multiples dimensions and without boundary, the operator (−∆)α

with α ∈ (0, 1) is the fractional Laplacian. We consider the existence of positive
solutions for problem (3.1). Moreover, we further analyze uniqueness, asymptotic
behaviour and nonexistence to (3.1).

3.1. Introduction

In 1957, a fundamental contribution due to Keller in [66] and Osserman in [84]
is the study of boundary blow-up solutions for the non-linear elliptic equation{

−∆u+ h(u) = 0 in Ω,

ĺımx∈Ω,x→∂Ω u(x) = +∞.
(3.2)

1This chapter is based on the paper: H. Chen, P. Felmer and A. Quaas, Self-generated interior

blow-up solutions in fractional elliptic equation with absorption, submitted.
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They proved the existence of solutions to (3.2) when h : R → [0,+∞) is a local-
ly Lipschitz continuous function which is nondecreasing and satis�es the so called
Keller-Osserman condition. From then on, the result of Keller and Osserman has
been extended by numerous mathematicians in various ways, weakening the as-
sumptions on the domain, generalizing the di�erential operator and the nonlinear
term for equations and systems. The case of h(u) = up+ with p = N+2

N−2
is studied

by Loewner and Nirenberg [72], where in particular uniqueness and asymptotic be-
havior were obtained. After that, Bandle and Marcus [6] obtained uniqueness and
asymptotic for more general non-linearties h. Later, Le Gall in [70] established a
uniqueness result of problem (3.2) in the domain whose boundary is non-smooth
when h(u) = u2

+. Marcus and Véron [75, 74] extended the uniqueness of blow-up so-
lution for (3.2) in general domains whose boundary is locally represented as a graph
of a continuous function when h(u) = up+ for p > 1. Under this special assumption
on h, Kim [67] studied the existence and uniqueness of boundary blow-up solution
to (3.2) in bounded domains Ω satisfying ∂Ω = ∂Ω̄. For another interesting contri-
butions to boundary blow-up solutions see for example Kondratev, Nikishkin [68],
Lazer, McKenna [69], Arrieta and Rodríguez-Bernal [5], Chuaqui, Cortázar, Elgueta
and J. García-Melián [44], del Pino and Letelier [47], Díaz and Letelier [48], Du and
Huang [50], García-Melián [59], Véron [99], and the reference therein.

In a recent work, Felmer and Quaas [51] considered a version of Keller and Osser-
man problem for a class of non-local operator. Being more precise, they considered
as a particular case the fractional elliptic problem

(−∆)αu(x) + |u|p−1u(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ Ω̄c,

ĺımx∈Ω, x→∂Ω u(x) = +∞,
(3.3)

where p > 1, f and g are appropriate functions and Ω is a bounded domain with C2

boundary. The operator (−∆)α is the fractional Laplacian which is de�ned as

(−∆)αu(x) = −1

2

∫
RN

δ(u, x, y)

|y|N+2α
dy, x ∈ Ω, (3.4)

with α ∈ (0, 1) and δ(u, x, y) = u(x+ y) + u(x− y)− 2u(x).

In [51] the authors proved the existence of a solution to (3.3) provided that
g explodes at the boundary and satis�es other technical conditions. In case the
function g blows up with an explosion rate as d(x)β, with β ∈ [− 2α

p−1
, 0) and d(x) =

dist(x, ∂Ω), it is shown that the solution satis�es

0 < ĺım inf
x∈Ω,x→∂Ω

u(x)d(x)−β ≤ ĺım sup
x∈Ω,x→∂Ω

u(x)d(x)
2α
p−1 < +∞.

Here the explosion is driven by the external value g and the external source f has a
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secondary role, not intervening in the explosive character of the solution.

More recently, Chen, Felmer and Quaas [33] extended the results in [51] studying
existence, uniqueness and non-existence of boundary blow-up solutions when the
function g vanishes and the explosion on the boundary is driven by the external
source f , with weak or strong explosion rate. Moreover, the results are extended
even to the case where the boundary blow-up solutions in driven internally, when
the external source and value, f and g, vanish. Existence, uniqueness, asymptotic
behavior and non-existence results for blow-up solutions of (3.3) are considered in
[33]. In the analysis developed in [33], a key role is played by the function C :
(−1, 0] → R, that governs the behavior of the solution near the boundary. The
function C is de�ned as

C(τ) =

∫ +∞

0

χ(0,1)(t)|1− t|τ + (1 + t)τ − 2

t1+2α
dt (3.5)

and it possess exactly one zero in (−1, 0) and we call it τ0(α). In what follows we
explain with more details the results in the case of vanishing external source and
values, that is f = 0 in Ω and g = 0 in Ω̄c, which is the case we will consider in this
paper. In Theorem 1.1 in [33], we proved that whenever

1 + 2α < p < 1− 2α

τ0(α)
,

then problem (3.3) admits a unique positive solution u such that

0 < ĺım inf
x∈Ω,x→∂Ω

u(x)d(x)
2α
p−1 ≤ ĺım sup

x∈Ω,x→∂Ω
u(x)d(x)

2α
p−1 < +∞.

On the other hand, we proved that when p ≥ 1, then problem (3.3) does not admit
any solution u such that

0 < ĺım inf
x∈Ω,x→∂Ω

u(x)d(x)−τ ≤ ĺım sup
x∈Ω,x→∂Ω

u(x)d(x)−τ < +∞, (3.6)

for any τ ∈ (−1, 0) \ {τ0(α),− 2α
p−1
}. We observe that the non-existence result does

not include the case when u has an asymptotic behavior of the form d(x)τ0(α), where
τ0(α) is precisely where C vanishes. We have a a special existence result in this case,
precisely if

máx{1− 2α

τ0(α)
+
τ0(α) + 1

τ0(α)
, 1} < p < 1− 2α

τ0(α)
,

then, for any t > 0, problem (3.3) admits a positive solution u such that

ĺım
x∈Ω,x→∂Ω

u(x)d(x)−τ0(α) = t.
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Motivated by these results and in view of the non-local character of the fractional
Laplacian we are interested in another class of blow-up solutions. We want to study
solutions that vanish at the boundary of the domain Ω but that explodes at the
interior of the domain, near a prescribed embedded manifold. From now on, we
assume that Ω is an open bounded domain in RN with C2 boundary, and that there
is a C2, (N − 1)-dimensional manifold C without boundary, embedded in Ω, such
that, it separates Ω \ C in exactly two connected components. We denote by Ω1

the inner component and by Ω2 the external component, that is Ω̄1 ∩ ∂Ω = ∅ and
Ω̄2 ∩ ∂Ω = ∂Ω. Throughout the paper we will consider the distance function

D : Ω \ C → R+, D(x) = dist(x, C). (3.7)

Let us consider the equations, for i = 1, 2,
(−∆)αu(x) + |u|p−1u(x) = 0, x ∈ Ωi,

u(x) = 0, x ∈ Ω̄c
i ,

ĺımx∈Ωi, x→∂Ωi u(x) = +∞,
(3.8)

which have solutions u1 and u2, for i = 1, 2 respectively, in the appropriate range of
the parameters. In the local case, that is, α = 1, these two solutions certainly do not
interact among each other, but when α ∈ (0, 1), due to the non-local character of
the fractional Laplacian and the non-linear character of the equation the solutions
on each side of Ω interact and it is precisely the purpose of this paper to study their
existence, uniqueness and non-existence.

In precise terms we consider the equation
(−∆)αu(x) + |u|p−1u(x) = 0, x ∈ Ω \ C,
u(x) = 0, x ∈ Ωc,

ĺımx∈Ω\C, x→C u(x) = +∞,
(3.9)

where p > 1, Ω and C ⊂ Ω are as described above. The explosion of the solution
near C is governed by a function c : (−1, 0]→ R, de�ned as

c(τ) =

∫ +∞

0

|1− t|τ + (1 + t)τ − 2

t1+2α
dt. (3.10)

This function plays the role of the function C used in [33], but it has certain dif-
ferences. In Section 3.2 we prove the existence of a number α0 ∈ (0, 1) such that
α ∈ [α0, 1) the function c is always positive in (−1, 0), while if α ∈ (0, α0) then
there exists exists a unique τ1(α) ∈ (−1, 0) such that c(τ1(α)) = 0 and c(τ) > 0
in (−1, τ1(α)) and c(τ) < 0 in (τ1(α), 0), see Proposition 3.2.1. We notice here that
τ1(α) > τ0(α) if α ∈ (0, α0).
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Now we are ready to state our main theorems on the existence uniqueness and
asymptotic behavior of interior blow-up solutions to equation (3.9). These theorems
deal separately the case α ∈ (0, α0) and α ∈ [α0, 1).

Theorem 3.1.1 Assume that α ∈ (0, α0) and the assumptions on Ω and C. Then
we have:
(i) If

1 + 2α < p < 1− 2α

τ1(α)
, (3.11)

then problem (3.9) admits a unique positive solution u satisfying

0 < ĺım inf
x∈Ω\C,x→C

u(x)D(x)
2α
p−1 ≤ ĺım sup

x∈Ω\C,x→C
u(x)D(x)

2α
p−1 < +∞. (3.12)

(ii) If

máx{1− 2α

τ1(α)
+
τ1(α) + 1

τ1(α)
, 1} < p < 1− 2α

τ1(α)
. (3.13)

Then, for any t > 0, there is a positive solution u of problem (3.9) satisfying

ĺım
x∈Ω\C,x→C

u(x)D(x)−τ1(α) = t. (3.14)

(iii) If one of the following three conditions holds

a) 1 < p ≤ 1 + 2α and τ ∈ (−1, 0) \ {τ1(α)},

b) 1 + 2α < p < 1− 2α
τ1(α)

and τ ∈ (−1, 0) \ {τ1(α),− 2α
p−1
} or

c) p ≥ 1− 2α
τ1(α)

and τ ∈ (−1, 0),

then problem (3.9) does not admit any solution u satisfying

0 < ĺım inf
x∈Ω\C,x→C

u(x)D(x)−τ ≤ ĺım sup
x∈Ω\C,x→C

u(x)D(x)−τ < +∞. (3.15)

We observe that this theorem is similar to Theorem 1.1 in [33], where the role of
τ0(α) is played here by τ1(α). A quite di�erent situation occurs when α ∈ [α0, 1)
and the function c never vanishes in (−1, 0). Precisely, we have

Theorem 3.1.2 Assume that α ∈ [α0, 1) and the assumptions on Ω and C. Then
we have:
(i) If p > 1 + 2α, then problem (3.9) admits a unique positive solution u satisfying
(3.12).
(ii) If p > 1, then problem (3.9) does not admit any solution u satisfying (3.15) for
any τ ∈ (−1, 0) \ {− 2α

p−1
}.
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Comparing Theorem 3.1.1 with Theorem 3.1.2 we see that the range of existence
for the absorption term is quite larger for the second one, no constraint from above.
The main di�erence with Theorem 2.1.1, with vanishing f and g occurs when α
is large and the function c does not vanish, allowing thus for existence for all p
large. This di�erence comes from the fact that the fractional Laplacian is a non-
local operator so that in the interior blow-up, in each of the domains Ω1 and Ω2

there is a non-zero external value, the solutions itself acting on the other side of C.
The proof of our theorems is obtained through the use of super and sub-solutions

as in [33]. The main di�culty here is to �nd the appropriate super and sub-solutions
to apply the iteration technique to fractional elliptic problem (3.9). Here we make
use of some precise estimates based on the function c and the distance function D
near C.
Acknowledgements. The authors thanks Peter Bates for proposing the problem.

3.2. Preliminaries

In this section, we recall some basic results from [33] and obtain some useful
estimate, which will be used in constructing super and sub-solutions of problem
(3.9). The �rst result states as:

Theorem 3.2.1 Assume that p > 1 and there are super-solution Ū and sub-solution
U of problem (3.9) such that

Ū ≥ U in Ω \ C, ĺım inf
x∈Ω\C,x→C

U(x) = +∞, Ū = U = 0 in Ωc.

Then problem (3.9) admits at least one positive solution u such that

U ≤ u ≤ Ū in Ω \ C.

Proof. The procedure is similar to the proof of Theorem 2.6 in [33], here we give
the main di�erences.

Let us de�ne Ωn := {x ∈ Ω |D(x) > 1/n} then we solve(−∆)αun(x) + |un|p−1un(x) = 0, x ∈ Ωn,

un(x) = U, x ∈ Ωc
n.

(3.16)

To �nd these solutions of (3.16) we observe that for �x n the method of section 3
of [51] applies even if the domain is not connected since the estimate of Lemma 3.2
holds with δ < 1/2n (see also Proposition 3.2 part ii) in [33]), form here sub and
super-solution can be construct for the Dirichlet problem and then existence holds
for (3.16) by an iteration technique (see also section 2 of [33] for that procedure).

118



Then as in Theorem 2.6 in [33] we have

U ≤ un ≤ un+1 ≤ Ū in Ω.

By monotonicity of un, we can de�ne

u(x) := ĺım
n→+∞

un(x), x ∈ Ω and u(x) := 0, x ∈ Ωc.

Which, by a stability property, is a solution of problem (3.9) with the desired prop-
erties. 2

In order to prove our existence result, it is crucial to have available super and
sub-solutions to problem (3.9). To this end, we start describing the properties of
c(τ) de�ned in (3.10), which is a C2 function in (−1, 0).

Proposition 3.2.1 There exists a unique α0 ∈ (0, 1) such that
(i) For α ∈ [α0, 1), we have c(τ) > 0, for all τ ∈ (−1, 0);

(ii) For any α ∈ (0, α0), there exists unique τ1(α) ∈ (−1, 0) satisfying

c(τ)


> 0, if τ ∈ (−1, τ1(α)),

= 0, if τ = τ1(α),

< 0, if τ ∈ (τ1(α), 0)

(3.17)

and
ĺım
α→α−0

τ1(α) = 0 and ĺım
α→0+

τ1(α) = −1. (3.18)

Moreover, τ1(α) > τ0(α), for all α ∈ (0, α0), where τ0(α) ∈ (−1, 0) is the unique
zero of C(τ), de�ned in (3.5).

Proof. From (3.10), di�erentiating twice we �nd that

c′′(τ) =

∫ +∞

0

|1− t|τ (log |1− t|)2 + (1 + t)τ (log(1 + t))2

t1+2α
dt > 0, (3.19)

so that c is strictly convex in (−1, 0). We also see easily that

c(0) = 0 and ĺım
τ→−1+

c(τ) =∞. (3.20)

Thus, if c′(0) ≤ 0 then c(τ) > 0 for τ ∈ (−1, 0) and if c′(0) > 0, then there exists
τ1(α) ∈ (−1, 0) such that c(τ) > 0 for τ ∈ (−1, τ1(α)), c(τ) < 0 for τ ∈ (τ1(α), 0)
and c(τ1(α)) = 0. In order to complete our proof, we have to analyze the sign of c′(0),
which depends on α and to make this dependence explicit, we write c′(0) = T (α).
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We compute T (α) from (3.10), di�erentiating and evaluating in τ = 0

T (α) =

∫ +∞

0

log |1− t2|
t1+2α

dt. (3.21)

We have to prove that T possesses a unique zero in the interval (0, 1). For this
purpose we start proving that

ĺım
α→1−

T (α) = −∞ and ĺım
α→0+

T (α) = +∞. (3.22)

The �rst limit follows from the fact that log(1− s) ≤ −s, for all s ∈ [0, 1/4], and so

ĺım
α→1−

∫ 1
2

0

log(1− t2)

t1+2α
dt ≤ − ĺım

α→1−

∫ 1
2

0

t1−2αdt = −∞

and the fact that exists a constant t0 such that∫ +∞

1
2

log |1− t2|
t1+2α

dt ≤ t0, for all α ∈ (1/2, 1).

The second limit in (3.22) follows from

ĺım
α→0+

∫ +∞

2

log |1− t2|
t1+2α

dt ≥ log 3 ĺım
α→0+

∫ +∞

2

t−1−2αdt = +∞

and the fact that there exists a constant t1 such that∫ 2

0

log |1− t2|
t1+2α

dt ≤ t1, for all α ∈ (0, 1/2).

On the other hand we claim that

T ′(α) = −2

∫ +∞

0

log |1− t2|
t1+2α

log tdt < 0, α ∈ (0, 1). (3.23)
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In fact, since log |1− t2| log t is negative only for t ∈ (1,
√

2), we have∫ +∞

0

log |1− t2|
t1+2α

log tdt >

∫ √2−1

0

log(1− t2)

t1+2α
log tdt+

∫ √2

1

log(t2 − 1) log tdt

≥
∫ √2−1

0

−t2

t1+2α
log tdt+

∫ √2

1

log(t− 1) log tdt

= −
∫ √2−1

0

t1−2α log tdt+

∫ √2−1

0

log(1 + t) log tdt

≥ −
∫ √2−1

0

t1−2α log tdt+

∫ √2−1

0

t log tdt > 0.

Then, (3.22) and (3.23) the existence of the desired α0 ∈ (0, 1) with the required
properties follows, completing (i) and (3.17) in (ii).

To continue with the proof of our proposition, we study the �rst limit in (3.18).
We assume that there exist a sequence αn ∈ (0, α0) and τ̃ ∈ (−1, 0) such that

ĺım
n→+∞

αn = α0 and ĺım
n→+∞

τ1(αn) = τ̃

and so c(τ̃) = 0. Moreover c(0) = 0 and c′(0) = T (α0) = 0, contradicting the strict
convexity of c given by (3.19). Next we prove the second limit in (3.18). We proceed
by contradiction, assuming that there exist a sequence {αn} ⊂ (0, 1) and τ̄ ∈ (−1, 0)
such that

ĺım
n→+∞

αn = 0 and τ1(αn) ≥ τ̄ > −1, for all n ∈ N.

Then there exist C1, C2 > 0, depending on τ̄ , such that∫ 2

0

| |1− t|
τ1(αn) + (1 + t)τ1(αn) − 2

t1+2αn
|dt ≤ C1

and

ĺım
n→∞

∫ +∞

2

|1− t|τ1(αn) + (1 + t)τ1(αn) − 2

t1+2αn
dt ≤ −C2 ĺım

n→∞

∫ +∞

2

1

t1+2αn
dt = −∞.

Then c(τ1(αn))→ −∞ as n→ +∞, which is impossible since c(τ1(αn)) = 0.

We �nally prove the last statement of the proposition. Since τ0(α) ∈ (−1, 0) is
such that C(τ0(α)) = 0 and we have, by the de�nition, that

c(τ) = C(τ) +

∫ +∞

1

(t− 1)τ

t1+2α
dt,

we �nd that c(τ0(α)) > 0, together with (3.17), implies that τ0(α) ∈ (−1, τ1(α)). 2
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Next we prove the main proposition in this section, which is on the basis of the
construction of super and sub-solutions. By hypothesis on the domain Ω and the
manifold C, there exists δ > 0 such that the distance functions d(·), to ∂Ω, and
D(·), to C, are of class C2 in Bδ and Aδ, respectively, and dist(Aδ, Bδ) > 0, where
Aδ = {x ∈ Ω | D(x) < δ} and Bδ = {x ∈ Ω | d(x) < δ}. Now we de�ne the basic
function Vτ as follows

Vτ (x) :=


D(x)τ , x ∈ Aδ \ C,
d(x)2, x ∈ Bδ,

l(x), x ∈ Ω \ (Aδ ∪Bδ),

0, x ∈ Ωc,

(3.24)

where τ is a parameter in (−1, 0) and the function l is positive such that Vτ is of
class C2 in RN \ C.

Proposition 3.2.2 Let α0 and τ1(α) be as in Proposition 3.2.1.
(i) If (α, τ) ∈ [α0, 1) × (−1, 0) or (α, τ) ∈ (0, α0) × (−1, τ1(α)), then there exist
δ1 ∈ (0, δ] and C > 1 such that

1

C
D(x)τ−2α ≤ −(−∆)αVτ (x) ≤ CD(x)τ−2α, x ∈ Aδ1 \ C.

(ii) If (α, τ) ∈ (0, α0)× (τ1(α), 0), then there exist δ1 ∈ (0, δ] and C > 1 such that

1

C
D(x)τ−2α ≤ (−∆)αVτ (x) ≤ CD(x)τ−2α, x ∈ Aδ1 \ C.

(iii) If (α, τ) ∈ (0, α0)× {τ1(α)}, then there exist δ1 ∈ (0, δ] and C > 1 such that

|(−∆)αVτ (x)| ≤ CD(x)mı́n{τ,2τ−2α+1}, x ∈ Aδ1 \ C.

This proposition and its proof has many similarities with Proposition 3.2 in [33],
but it has also important di�erences so we give a complete proof of it.

Proof. By compactness of C, we just need to prove that the corresponding inequality
holds in a neighborhood of any point x̄ ∈ C and, without loss of generality, we may
assume x̄ = 0. For a given 0 < η ≤ δ, we de�ne

Qη = (−η, η)×Bη ⊂ R× RN−1,

where Bη denotes the ball centered at the origin and with radius η in RN−1. We
observe that Qη ⊂ Ω. Let ϕ : RN−1 → R be a C2 function such that (z1, z

′) ∈ C ∩Qδ

if and only if z1 = ϕ(z′). We further assume that e1 is normal to C at x̄ and then
there exists C > 0 such that |ϕ(z′)| ≤ C|z′|2 for |z′| ≤ δ. Thus, choosing η > 0
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smaller if necessary we may assume that |ϕ(z′)| < η
2
for |z′| ≤ η. In the proof of our

inequalities, we will consider a generic point along the normal x = (x1, 0) ∈ Aη/4,
with 0 < |x1| < η/4. We observe that |x− x̄| = D(x) = |x1|. By de�nition we have

− (−∆)αVτ (x) =
1

2

∫
Qη

δ(Vτ , x, y)

|y|N+2α
dy +

1

2

∫
RN\Qη

δ(Vτ , x, y)

|y|N+2α
dy. (3.25)

It is not di�cult to see that the second integral is bounded by Cxτ1, for an appropriate
constant C > 0, so that we only need to study the �rst integral, that from now on
we denote by 1

2
E(x1).

Our �rst goal is to obtain positive constants c1, c2 so that lower bound for E(x1)

E(x1) ≥ c1c(τ)|x1|τ−2α − c2|x1|mı́n{τ,2τ−2α+1} (3.26)

holds, for all |x1| ≤ η/4. For this purpose we assume that 0 < η ≤ δ/2, then for all
y = (y1, y

′) ∈ Qη we have that x± y ∈ Qδ, so that

D(x± y) ≤ |x1 ± y1 − ϕ(±y′)|, for all y ∈ Qη.

From here and the fact that τ ∈ (−1, 0), we have that

E(x1) =

∫
Qη

δ(Vτ , x, y)

|y|N+2α
dy ≥

∫
Qη

I(y)

|y|N+2α
dy +

∫
Qη

J(y) + J(−y)

|y|N+2α
dy, (3.27)

where the functions I and J are de�ned, for y ∈ Qη, as

I(y) = |x1 − y1|τ + |x1 + y1|τ − 2xτ1 (3.28)

and
J(y) = |x1 + y1 − ϕ(y′)|τ − |x1 + y1|τ . (3.29)

In what follows we assume x1 > 0 (the case x1 < 0 is similar). For the �rst term of
the right hand side in (3.27), we have∫

Qη

I(y)

|y|N+2α
dy = xτ−2α

1

∫
Q η
x1

|1− z1|τ + |1 + z1|τ − 2

|z|N+2α
dz.

On one hand we have that, for a constant c1, we have∫
RN

|1− z1|τ + |1 + z1|τ − 2

|z|N+2α
dz = 2c(τ)

∫
RN−1

1

(|z′|2 + 1)
N+2α

2

dz′ = c1c(τ),
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and, on the other hand, for constants C2 and C3 we have

|
∫ η

x1

− η
x1

∫
|z′|≥ η

x1

|1− z1|τ + |1 + z1|τ − 2

|z|N+2α
dz|

≤
∫ η

x1

− η
x1

(|1− z1|τ + |1 + z1|τ + 2)dz1

∫
|z′|≥ η

x1

dz′

|z′|N+2α
≤ C2x

2α
1

and

|
∫
|z1|≥ η

x1

∫
RN−1

|1− z1|τ + |1 + z1|τ − 2

|z|N+2α
dz|

≤ 2

∫ +∞

η
x1

|1− z1|τ + |1 + z1|τ + 2

z1+2α
1

dz1

∫
RN−1

1

(1 + |z′|2)
N+2α

2

dz′ ≤ C3x
2α
1 .

Consequently, for an appropriate constant c2

|
∫
Qη

I(y)

|y|N+2α
dy − c1c(τ)xτ−2α

1 | ≤ c2x
τ
1. (3.30)

Next we estimate the second term of the right hand side in (3.27). Since∫
Qη

J(−y)

|y|N+2α
dy =

∫
Qη

J(y)

|y|N+2α
dy,

we only need to estimate∫
Qη

J(y)

|y|N+2α
dy =

∫
Bη

∫ η

−η

|x1 + y1 − ϕ(y′)|τ − |x1 + y1|τ

(y2
1 + |y′|2)

N+2α
2

dy1dy
′. (3.31)

We notice that |x1 + y1 − ϕ(y′)| ≥ |x1 + y1| if and only if

ϕ(y′)(x1 + y1 −
ϕ(y′)

2
) ≤ 0.

From here and (3.31), we have

∫
Qη

J(y)

|y|N+2α
dy ≥

∫
Bη

∫ −x1+
ϕ+(y′)

2

−η

|x1 + y1 − ϕ+(y′)|τ − |x1 + y1|τ

(y2
1 + |y′|2)

N+2α
2

dy1dy
′

+

∫
Bη

∫ η

−x1+
ϕ−(y′)

2

|x1 + y1 − ϕ−(y′)|τ − |x1 + y1|τ

(y2
1 + |y′|2)

N+2α
2

dy1dy
′

= E1(x1) + E2(x1),
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where ϕ+(y′) = máx{ϕ(y′), 0} and ϕ−(y′) = mı́n{ϕ(y′), 0}. We only estimate E1(x1)
(E2(x1) is similar). Using integration by parts, we obtain

E1(x1) =

∫
Bη

∫ ϕ+(y′)
2

x1−η

|y1 − ϕ+(y′)|τ − |y1|τ

((y1 − x1)2 + |y′|2)
N+2α

2

dy1dy
′

=

∫
Bη

∫ 0

x1−η

(ϕ+(y′)− y1)τ − (−y1)τ

((y1 − x1)2 + |y′|2)
N+2α

2

dy1dy
′

+

∫
Bη

∫ ϕ+(y′)
2

0

(ϕ+(y′)− y1)τ − yτ1
((y1 − x1)2 + |y′|2)

N+2α
2

dy1dy
′

=
1

τ + 1

∫
Bη

[
−ϕ+(y′)τ+1

(x2
1 + |y′|2)

N+2α
2

+
(η − x1 + ϕ+(y′))τ+1 − (η − x1)τ+1

(η2 + |y′|2)
N+2α

2

]dy′

−N + 2α

τ + 1

∫
Bη

∫ 0

x1−η

(ϕ+(y′)− y1)τ+1 − (−y1)τ+1

((y1 − x1)2 + |y′|2)
N+2α

2
+1

(y1 − x1)dy1dy
′

+
1

τ + 1

∫
Bη

[
−2−τϕ+(y′)τ+1

((ϕ+(y′)
2
− x1)2 + |y′|2)

N+2α
2

+
ϕ+(y′)τ+1

(x2
1 + |y′|2)

N+2α
2

]dy′

+
N + 2α

τ + 1

∫
Bη

∫ ϕ+(y′)
2

0

(ϕ+(y′)− y1)τ+1 + yτ+1
1

((y1 − x1)2 + |y′|2)
N+2α

2
+1

(y1 − x1)dy1dy
′

≥ −2−τ

τ + 1

∫
Bη

ϕ+(y′)τ+1

((ϕ+(y′)
2
− x1)2 + |y′|2)

N+2α
2

dy′

+
N + 2α

τ + 1

∫
Bη

∫ mı́n{ϕ+(y′)
2

,x1}

0

(ϕ+(y′)− y1)τ+1 + yτ+1
1

((y1 − x1)2 + |y′|2)
N+2α

2
+1

(y1 − x1)dy1dy
′

= A1(x1) + A2(x1). (3.32)

In order to estimate A(x1), we split Bη in O = {y′ ∈ Bη : |ϕ+(y′)
2
− x1| ≥ x1

2
} and

Bη \O. On one hand we have∫
O

|y′|2τ+2

((ϕ+(y′)
2
− x1)2 + |y′|2)

N+2α
2

dy′ ≤ x2τ−2α+1
1

∫
Bη/x1

|z′|2τ+2

(1/4 + |z′|2)
N+2α

2

dz′

≤ C(x2τ−2α+1
1 + xτ1).

On the other hand, for y′ ∈ Bη \O we have that |y′| ≥ c1
√
x1, for some constant c1,

and then∫
Bη\O

|y′|2τ+2

((ϕ+(y′)
2
− x1)2 + |y′|2)

N+2α
2

dy′ ≤
∫
Bη\Bc1√x1

|y′|2τ+2−N−2αdy′

≤ C(x
τ−α+ 1

2
1 + 1).
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Thus, for some C > 0,

A1(x1) ≥ −Cxmı́n{τ,2τ−2α+1}
1 . (3.33)

Next we estimate A2(x1):

A2(x1) ≥ 2(N + 2α)

τ + 1

∫
Bη

∫ x1

0

ϕ+(y′)τ+1(y1 − x1)

((y1 − x1)2 + |y′|2)
N+2α

2
+1
dy1dy

′

≥ C

∫
Bη

∫ x1

0

|y′|2τ+2(y1 − x1)

((y1 − x1)2 + |y′|2)
N+2α

2
+1
dy1dy

′

≥ Cx2τ−2α+1
1

∫
Bη/x1

∫ 1

0

|z′|2τ+2(z1 − 1)

((z1 − 1)2 + |z′|2)
N+2α

2
+1
dz1dz

′

≥ −C1x
mı́n{τ,2τ−2α+1}
1 ,

for some C,C1 > 0. From here, (3.32) and (3.33) we obtain, for some C > 0

E1(x1) ≥ −Cxmı́n{τ,2τ−2α+1}
1 .

Using the similar estimate for E2(x1), we obtain∫
Qη

J(y) + J(−y)

|y|N+2α
dy ≥ −Cxmı́n{τ,2τ−2α+1}

1 . (3.34)

Thus, from (3.27), (3.30), (3.34) and noticing that these inequalities also hold with
x1 < 0 with the obvious changes, we conclude the lower bound for E(x1) we gave
in (3.26). Our second goal is to get an upper bound for E(x1) and for this, we �rst
recall Lemma 3.1 in [33] to obtain

D(x± y)τ ≤ (x1 ± y1 − ϕ(y′))τ (1 + C|y′|2), for all |x1| ≤ η/4, y = (y1, y
′) ∈ Qη.

From here we see that

E(x1) ≤
∫
Qη

I(y)

|y|N+2α
dy +

∫
Qη

J(y) + J(−y)

|y|N+2α
dy + C

∫
Qη

I(y) + J(y) + J(−y)

|y|N+2α
|y′|2dy.

We denote by E3(x1) the third integral above. The �rst integral was studied in
(3.30), so we study the second integral and that we only need to consider the term
J(y), since the other is completely analogous. We see that |x1 +y1−ϕ(y′)| ≤ |x1 +y1|
if and only if

ϕ(y′)(x1 + y1 −
ϕ(y′)

2
) ≥ 0.
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As before, we will consider only the case x1 > 0, since the other one is analogous.
From (3.31) we have

∫
Qη

J(y)

|y|N+2α
dy ≤

∫
Bη

∫ −x1+
ϕ−(y′)

2

−η

|x1 + y1 − ϕ−(y′)|τ − |x1 + y1|τ

(y2
1 + |y′|2)

N+2α
2

dy1dy
′

+

∫
Bη

∫ η

−x1+
ϕ+(y′)

2

|x1 + y1 − ϕ+(y′)|τ − |x1 + y1|τ

(y2
1 + |y′|2)

N+2α
2

dy1dy
′

= F1(x1) + F2(x1).

Next we estimate F1(x1) (F2(x1) is similar), using integration by parts

F1(x1) =

∫
Bη

∫ ϕ−(y′)
2

x1−η

|y1 − ϕ−(y′)|τ − |y1|τ

((y1 − x1)2 + |y′|2)
N+2α

2

dy1dy
′

=

∫
Bη

∫ ϕ−(y′)

x1−η

(ϕ−(y′)− y1)τ − (−y1)τ

((y1 − x1)2 + |y′|2)
N+2α

2

dy1 +

∫ ϕ−(y′)
2

ϕ−(y′)

(y1 − ϕ−(y′))τ − (−y1)τ

((y1 − x1)2 + |y′|2)
N+2α

2

dy1

 dy′
=

1

τ + 1

∫
Bη

[
(−ϕ−(y′))τ+1

((x1 − ϕ−(y′))2 + |y′|2)
N+2α

2

+
(η − x1 + ϕ−(y′))τ+1 − (η − x1)τ+1

(η2 + |y′|2)
N+2α

2

]dy′

−N + 2α

τ + 1

∫
Bη

∫ ϕ−(y′)

x1−η

(ϕ−(y′)− y1)τ+1 − (−y1)τ+1

((y1 − x1)2 + |y′|2)
N+2α

2
+1

(y1 − x1)dy1dy
′

+
1

τ + 1

∫
Bη

[
2−τ (−ϕ−(y′))τ+1

((ϕ−(y′)
2
− x1)2 + |y′|2)

N+2α
2

+
−(−ϕ−(y′))τ+1

((x1 − ϕ−(y′))2 + |y′|2)
N+2α

2

]dy′

+
N + 2α

τ + 1

∫
Bη

∫ ϕ−(y′)
2

ϕ−(y′)

(y1 − ϕ−(y′))τ+1 + (−y1)τ+1

((y1 − x1)2 + |y′|2)
N+2α

2
+1

(y1 − x1)dy1dy
′

≤ 1

τ + 1

∫
Bη

2−τ (−ϕ−(y′))τ+1

((ϕ−(y′)
2
− x1)2 + |y′|2)

N+2α
2

dy′ = B(x1).

Since (ϕ−(y′)
2
− x1)2 ≥ x2

1, we have

B(x1) ≤ 2−τ

τ + 1

∫
Bη

(−ϕ−(y′))τ+1

(x2
1 + |y′|2)

N+2α
2

dy′

≤ C

∫
Bη

|y′|2τ+2

(x2
1 + |y′|2)

N+2α
2

dy′ ≤ Cx
mı́n{τ,2τ−2α+1}
1 ,

for some C > 0 independent of x1. Thus we have obtained that

F1(x1) ≤ Cx
mı́n{τ,2τ−2α+1}
1 . (3.35)
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Similarly, we can get an analogous estimate for F2(x1) and these two estimates imply∫
Qη

J(y) + J(−y)

|y|N+2α
dy ≤ Cx

mı́n{τ,2τ−2α+1}
1 . (3.36)

Finally we obtain∫
Qη

I(y)

|y|N+2α
|y′|2dy = xτ−2α+2

1

∫
Q η
x1

|1− z1|τ + |1 + z1|τ − 2

|z|N+2α
|z′|2dz

≤ Cx
mı́n{τ,τ−2α+2}
1

and, in a similar way, ∫
Qη

J(y)|y′|2

|y|N+2α
dy ≤ Cx

mı́n{τ,2τ−2α+1}
1 .

From the last two inequalities we obtain

E3(x1) ≤ Cx
mı́n{τ,2τ−2α+1}
1 . (3.37)

Then, taking into account (3.35), (3.30), (3.36), (3.37) and considering also the case
x1 < 0, we obtain

E(x1) ≤ c1c(τ)|x1|τ−2α + c2|x1|mı́n{τ,2τ−2α+1}. (3.38)

From inequalities (3.26), (3.38) and Proposition 3.2.1 the result follows. 2

3.3. Existence of large solution

This section is devoted to use Proposition 3.2.2 to prove the existence of solution
of problem (3.9). To this purpose, our main goal is to construct appropriate sub-
solution and super-solution of problem (3.9) under the hypotheses of Theorem 3.1.1
(i), (ii) and Theorem 3.1.2 (i).

We begin with a simple lemma that reduces the problem to �nd them only in
Aδ \ C.

Lemma 3.3.1 Let U and W be classical ordered super and sub-solution of (3.9)
in the sub-domain Aδ \ C. Then there exists λ large such that Uλ = U + λV̄ and
Wλ = W − λV̄ , are ordered super and sub-solution of (3.9), where V̄ is the solution
of {

(−∆)αV̄ (x) = 1, x ∈ Ω,

V̄ (x) = 0, x ∈ Ωc.
(3.39)
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Remark 3.3.1 Here U,W : RN → R are classical ordered of super and sub-solution
of (3.9) in the sub-domain Aδ \ C if U satis�es

(−∆)αU + |U |p−1U ≥ 0 in Aδ \ C

and W satis�es the reverse inequality. Moreover, they satisfy

U ≥ W in Ω \ C, ĺım inf
x∈Ω\C,x→C

W (x) = +∞, U = W = 0 in Ωc.

Proof of Lemma 3.3.1. Notice that by the maximum principle V̄ is nonnegative in
Ω, therefore Uλ ≥ U and Wλ ≤ W , so they are still ordered. In addition Uλ satis�es

(−∆)αUλ + |Uλ|p−1Uλ ≥ (−∆)αU + |U |p−1U + λ > 0, in Ω \ C.

This inequality holds because of our assumption in Aδ\C and the fact that (−∆)αU+
|U |p−1U is continuous in Ω \ Aδ and by taking λ large enough.

By the same type of arguments we �nd that Wλ is a sub-solution. 2

Proof of existence results in Theorem 3.1.1 (i) and Theorem 3.1.2 (i). We
de�ne

Uλ(x) = λVτ (x) and Wλ(x) = λVτ (x), x ∈ RN \ C, (3.40)

where Vτ is de�ned in (3.24) with τ = − 2α
q−1

1. Uλ is Super-solution. By hypotheses of Theorem 3.1.1 (i) and Theorem 3.1.2
(i), we notice that

τ ∈ (−1, 0), for α ∈ [α0, 1),

τ ∈ (−1, τ1(α)), for α ∈ (0, α0)

and τp = τ − 2α, then we use Proposition 3.2.2 part (i) to obtain that there exist
δ1 ∈ (0, δ] and C > 1 such that

(−∆)αUλ(x) + Up
λ(x) ≥ −CλD(x)τ−2α + λpD(x)τp, x ∈ Aδ1 \ C.

Then there exist λ1 > 1 such that for λ ≥ λ1, we have

(−∆)αUλ(x) + Up
λ(x) ≥ 0, x ∈ Aδ1 \ C.

2. Wλ is Sub-solution. We use Proposition 3.2.2 part (i) to obtain that there
exist δ1 ∈ (0, δ] and C > 1 such that for x ∈ Aδ1 \ C, we have

(−∆)αWλ(x) + |Wλ|p−1Wλ(x) ≤ − λ
C
D(x)τ−2α + λpD(x)τp

≤ (− λ
C

+ λp)D(x)τ−2α.
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Then there exists λ3 ∈ (0, 1) such that for all λ ∈ (0, λ3), it has

(−∆)αWλ(x) + |Wλ|p−1Wλ(x) ≤ 0, x ∈ Aδ1 \ C.

To conclude the proof we use Lemma 3.3.1 and Proposition 3.2.2. 2

Proof of Theorem 3.1.1 (ii). For any given t > 0, we denote

U(x) = tVτ1(α)(x), x ∈ RN \ C,

Wµ(x) = tVτ1(α)(x)− µVτ̄ (x), x ∈ RN \ C

where τ̄ = mı́n{τ1(α)p+ 2α, 1
2
τ1(α)} < 0. By (3.13), we have

τ̄ ∈ (τ1(α), 0), τ̄ − 2α < mı́n{τ1(α), 2τ1(α)− 2α+ 1} and τ̄ − 2α < τ1(α)p. (3.41)

1. U is Super-solution. We use Proposition 3.2.2 (iii) to obtain that for any
x ∈ Aδ1 \ C,

(−∆)αU(x) + Up(x) ≥ −CtD(x)mı́n{τ1(α),2τ1(α)−2α+1} + tpD(x)τ1(α)p,

together with τ1(α)p < mı́n{τ1(α), 2τ1(α) − 2α + 1}, then there exists δ2 ∈ (0, δ1]
such that

(−∆)αU(x) + Up(x) ≥ 0, x ∈ Aδ2 \ C.

2. Wµ is Sub-solution. We use Proposition 3.2.2 (ii) and (iii) to obtain that for
x ∈ Aδ1 \ C,

(−∆)αWµ(x) + |Wµ|p−1Wµ(x) ≤ CtD(x)mı́n{τ1(α),2τ1(α)−2α+1}

− µ
C
D(x)τ̄−2α + tpD(x)τ1(α)p.

Then there exists δ2 ∈ (0, δ1] such that for any µ ≥ 1, we have

(−∆)αWµ(x) + |Wµ|p−1Wµ(x) ≤ 0, x ∈ Aδ2 \ C.

To conclude the proof we use Lemma 3.3.1 and Proposition 3.2.2. 2

3.4. Uniqueness and nonexistence

We prove the uniqueness statement by contradiction. Assume that u and v are
solutions of problem (3.9) satisfying (3.12). Then there exist C0 ≥ 1 and δ̄ ∈ (0, δ)
such that

1

C0

≤ v(x)D(x)−τ , u(x)D(x)−τ ≤ C0, ∀x ∈ Aδ̄ \ C, (3.42)
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where τ = − 2α
p−1

. We denote

A = {x ∈ Ω \ C | u(x) > v(x)}. (3.43)

Then A is open and A ⊂ Ω. Then the uniqueness in Theorem 3.1.2 (i) and Theorem
3.1.1 (i) is a consequence of the following result:

Proposition 3.4.1 Under the hypotheses of Theorem 3.1.2 (i) and Theorem 3.1.1
(i), we have

A = ∅.

Proof. The procedure of proof is similar as Section 5 in [33], noting that we need
to replace d(x) by D(x) and ∂Ω by C . 2

From Proposition 3.4.1, we can prove uniqueness part in Theorem 3.1.1 (i) and
Theorem 3.1.2 (i) .

The �nal goal in this note is to consider the nonexistence of solutions of problem
(3.9) under the hypotheses of Theorem 3.1.1 (iii) and Theorem 3.1.2 (ii).

Proposition 3.4.2 Under the hypotheses of Theorem 3.1.1 (iii) and Theorem 3.1.2
(ii), we assume that U1 and U2 are both sub-solutions (or both super-solutions) of
(3.9) satisfying that U1 = U2 = 0 in Ωc and

0 < ĺım inf
x∈Ω\C, x→C

U1(x)D(x)−τ ≤ ĺım sup
x∈Ω\C, x→C

U1(x)D(x)−τ

< ĺım inf
x∈Ω\C, x→C

U2(x)D(x)−τ ≤ ĺım sup
x∈Ω\C, x→C

U2(x)D(x)−τ < +∞,

for τ ∈ (−1, 0). For the case τp > τ − 2α, we further assume that
(i) if U1, U2 are sub-solutions, there exist C > 0 and δ̃ > 0,

(−∆)αU2(x) ≤ −CD(x)τ−2α, x ∈ Aδ̃ \ C; (3.44)

or
(ii) if U1, U2 are super-solutions, there exist C > 0 and δ̃ > 0,

(−∆)αU1(x) ≥ CD(x)τ−2α, x ∈ Aδ̃ \ C. (3.45)

Then there doesn't exist any solution u of (3.9) such that

ĺım sup
x∈Ω\C, x→C

U1(x)

u(x)
< 1 < ĺım inf

x∈Ω\C, x→C

U2(x)

u(x)
. (3.46)

Proof. The proof is similar as Proposition 6.1 in [33], noting again that we need to
replace d(x) by D(x) and ∂Ω by C . 2
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With the help of Proposition 3.2.2, for given t1 > t2 > 0, we construct two
sub-solutions (or both super-solutions) U1 and U2 of (3.9) such that

ĺım
x∈Ω\C,x→C

U1(x)D(x)−τ = t1, ĺım
x∈Ω\C,x→C

U2(x)D(x)−τ = t2.

So what we have to do is to prove that for any t > 0, we can construct super-solution
(sub-solution) of problem (3.9).

Proof of Theorem 3.1.1 (iii) and Theorem 3.1.2 (ii). We divide our proof of
the nonexistence results into several cases under the assumption p > 1.

Zone 1: We consider τ ∈ (τ1(α), 0) and α ∈ (0, α0). By Proposition 3.2.2 (ii), there
exists δ1 > 0 such that

(−∆)αVτ (x) ≥ 1

C
D(x)τ−2α, x ∈ Aδ1 \ C. (3.47)

Since Vτ is C2 in Ω \ C, then there exists C > 0 such that

|(−∆)αVτ (x)| ≤ C, x ∈ Ω \ Aδ1 . (3.48)

Let Ū := Vτ + CV̄ in RN \ C, then we have Ū > 0 in Ω \ C,

(−∆)αŪ ≥ 0 in Ω \ C and (−∆)αŪ(x) ≥ 1

C
D(x)τ−2α, x ∈ Aδ1 \ C.

Then, we have that tŪ is super-solution of (3.9) for any t > 0. Using Proposition
3.4.2, we see that there is no solution of (3.9) satisfying (3.15).

Zone 2: We consider τ − 2α < τp and

τ ∈

{
(−1, 0), α ∈ [α0, 1),

(−1, τ1(α)), α ∈ (0, α0).

Let us de�ne
Wµ,t = tVτ − µV̄ in RN \ C,

where t, µ > 0. By Proposition 3.2.2 (i), for x ∈ Aδ1 \ C,

(−∆)αWµ,t(x) + |Wµ,t|p−1Wµ,t(x) ≤ − t

C
D(x)τ−2α + tpD(x)τp.

For any �xed t > 0, there exists δ2 ∈ (0, δ1], for all µ ≥ 0,

(−∆)αWµ,t(x) + |Wµ,t|p−1Wµ,t(x) ≤ 0, Aδ2 \ C. (3.49)
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To consider x ∈ Ω \ Aδ2 , in fact, there exists C1 > 0 such that

t|(−∆)αVτ (x)|+ tpV p
τ (x) ≤ C1, x ∈ Ω \ Aδ2

and

(−∆)αWµ,t(x) + |Wµ,t|p−1Wµ,t(x) ≤ C1t− µ, x ∈ Ω \ Aδ2

For given t > 0, there exists µ(t) > 0 such that

(−∆)αWµ(t),t(x) + |Wµ,t|p−1Wµ(t),t(x) ≤ 0, x ∈ Ω \ Aδ2 . (3.50)

Therefore, together with (3.49) and (3.50), for any given t > 0, there sub-solutions
Wµ(t),t of problem (3.9) and by Proposition 3.4.2, we see that there is no solution u
of (3.9) satisfying (3.15).

Zone 3: We consider τ − 2α > τp and

τ ∈

{
(−1, 0), α ∈ [α0, 1),

(−1, τ1(α)), α ∈ (0, α0).

We denote that
Uµ,t = tVτ + µV̄ in RN \ C,

where t, µ > 0. Here Uµ,t > 0 in Ω \ C. By Proposition 3.2.2 (i),

(−∆)αUµ,t(x) + Up
µ,t(x) ≥ −CtD(x)τ−2α + tpD(x)τp, x ∈ Aδ1 \ C.

For any �xed t > 0, there exists δ2 ∈ (0, δ1], for all µ ≥ 0,

(−∆)αUµ,t(x) + Up
µ,t(x) ≥ 0, x ∈ Aδ2 \ C. (3.51)

For x ∈ Ω \ Aδ2 , we see that (−∆)αVτ is bounded and

(−∆)αUµ,t(x) + Up
µ,t(x) ≥ −Ct+ µ.

For given t > 0, there exists µ(t) > 0 such that

(−∆)αUµ(t),t(x) + Up
µ(t),t(x) ≥ 0, x ∈ Ω \ Aδ2 . (3.52)

Combining with (3.51) and (3.52), we have that for any t > 0, there exists µ(t) > 0
such that

(−∆)αUµ(t),t(x) + Up
µ(t),t(x) ≥ 0, x ∈ Ω \ C.

Therefore, for any given t > 0, there is a super-solution Uµ(t),t of problem (3.9) and
by Proposition 3.4.2, we see that there is no solution of (3.9) satisfying (3.15).
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We see that Zones 1 and 2 cover Theorem 3.1.1 part (iii) a) since τ > −2α/(p−1).
From Zones 1, 2 and 3 we cover Theorem 3.1.1 part (iii) b) since τ1(α) > 2α/(p−1).
Moreover, from Zone 1 to Zone 3, we cover the parameters in part (iii) c) of Theorem
3.1.1, since τ1(α) < 2α/(p− 1). Finally Theorem 3.1.2 part ii) can be obtained from
Zone 2 and Zone 3. This complete the proof. 2
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Capítulo 4

Semilinear fractional elliptic
equations involving measures

Abstract: in this chapter 1, we study the existence of weak solutions to (E)
(−∆)αu + g(u) = ν in an open bounded regular domain Ω in RN(N ≥ 2) which
vanish in RN \Ω, where (−∆)α denotes the fractional Laplacian with α ∈ (0, 1), ν is a
Radon measure and g is a nondecreasing function satisfying some extra hypotheses.
When g satis�es a subcritical integrability condition, we prove the existence and
uniqueness of a weak solution for problem (E) for any measure. In the case where
ν is Dirac measure, we characterize the asymptotic behavior of the solution. When
g(r) = |r|k−1r with k supercritical, we show that a condition of absolute continuity
of the measure with respect to some Bessel capacity is a necessary and su�cient
condition in order (E) to be solved.

4.1. Introduction

Let Ω ⊂ RN be an open bounded C2 domain and g : R 7→ R be a continuous
function. We are concerned with the existence of weak solutions to the semilinear
fractional elliptic problem

(−∆)αu+ g(u) = ν in Ω,

u = 0 in Ωc,
(4.1)

where α ∈ (0, 1), ν is a Radon measure such that
∫

Ω
ρβd|ν| <∞ for some β ∈ [0, α]

and ρ(x) = dist(x,Ωc). The fractional Laplacian (−∆)α is de�ned by

(−∆)αu(x) = ĺım
ε→0+

(−∆)αε u(x),

1This chapter is based on the paper: H. Chen and L. Véron, Semilinear fractional elliptic

equations involving measures, submitted.
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where for ε > 0,

(−∆)αε u(x) = −
∫
RN

u(z)− u(x)

|z − x|N+2α
χε(|x− z|)dz (4.2)

and

χε(t) =

{
0, if t ∈ [0, ε],

1, if t > ε.

When α = 1, the semilinear elliptic problem

−∆u+ g(u) = ν in Ω,

u = 0 on ∂Ω,
(4.3)

has been extensively studied by numerous authors in the last 30 years. A fundamen-
tal contribution is due to Brezis [16], Bénilan and Brezis [10], where ν is a bounded
measure in Ω and the function g : R→ R is nondecreasing, positive on (0,+∞) and
satis�es the subcritical assumption:∫ +∞

1

(g(s)− g(−s))s−2N−1
N−2ds < +∞.

They proved the existence and uniqueness of the solution for problem (4.3). Baras
and Pierre [9] studied (4.3) when g(u) = |u|p−1u for p > 1 and ν is absolutely contin-
uous with respect to the Bessel capacity C2, p

p−1
, to obtain a solution. In [101] Véron

extended Benilan and Brezis results in replacing the Laplacian by a general uniform-
ly elliptic second order di�erential operator with Lipschitz continuous coe�cients;
he obtained existence and uniqueness results for solutions, when ν ∈M(Ω, ρβ) with
β ∈ [0, 1] where M(Ω, ρβ) denotes the space of Radon measures in Ω satisfying∫

Ω

ρβd|ν| < +∞, (4.4)

M(Ω, ρ0) = Mb(Ω) is the set of bounded Radon measures and g is nondecreasing
and satis�es the β-subcritical assumption:∫ +∞

1

(g(s)− g(−s))s−2N+β−1
N+β−2ds < +∞.

The study of general semilinear elliptic equations with measure data have been
investigated, such as the equations involving measures boundary data which was
initiated by Gmira and Véron [62] who adapted the method introduced by Benilan
and Brezis to obtain the existence and uniqueness of solution. This subject has been
vastly expanded in recent years, see the papers of Marcus and Véron [76, 77, 78, 79],
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Bidaut-Véron and Vivier [14], Bidaut-Véron, Hung and Véron [13].

Recently, great attention has been devoted to non-linear equations involving
fractional Laplacian or more general integro-di�erential operators and we mention
the reference [24, 28, 26, 33, 35, 71, 88, 92]. In particular, Karisen, Petitta and
Ulusoy in [65] used the duality approach to study the equations of

(−∆)αv = µ in RN ,

where µ is a Radon measure with compact support. Chen, Felmer and Quaas in [33]
the authors obtained the existence of large solutions to equation

(−∆)αu+ g(u) = f in Ω, (4.5)

where Ω is a bounded regular domain. In [39] we considered the properties of pos-
sibly singular solutions of (4.5) in punctured domain . It is a well-known fact [100]
that for α = 1 the weak singular solutions of (4.5) in punctured domain are classi-
�ed according the type of singularities they admits: either weak singularities with
Dirac mass, or strong singularities which are the upper limit of solutions with weak
singularities. One of our interests is to extend these properties to any α ∈ (0, 1) and
furthermore to consider general Radon measures.

In this chapter we study the existence and uniqueness of solutions of (4.1) in a
measure framework. Before stating our main theorem we make precise the notion of
weak solution used in this chapter.

De�nition 4.1.1 We say that u is a weak solution of (4.1), if u ∈ L1(Ω), g(u) ∈
L1(Ω, ραdx) and ∫

Ω

[u(−∆)αξ + g(u)ξ]dx =

∫
Ω

ξdν, ∀ξ ∈ Xα, (4.6)

where Xα ⊂ C(RN) is the space of functions ξ satisfying:

(i) supp(ξ) ⊂ Ω̄,

(ii) (−∆)αξ(x) exists for all x ∈ Ω and |(−∆)αξ(x)| ≤ C for some C > 0,

(iii) there exist ϕ ∈ L1(Ω, ραdx) and ε0 > 0 such that |(−∆)αε ξ| ≤ ϕ a.e. in Ω, for
all ε ∈ (0, ε0].

We notice that for α = 1, the test space Xα is used as C1,L
0 (Ω), which has similar

properties like (i) and (ii). The counter part for the Laplacian of assumption (iii)
would be that the di�erence quotient ∇xj ,h[u](.) := h−1[∂xju(. + hej) − ∂xju(.)] is
bounded by an L1-function, which is true since

∇xj ,h[u](x) = h−1

∫ h

0

∂2
xj ,xj

u(x+ sej)ds.
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We denote by Gα the Green kernel of (−∆)α in Ω and byGα[.] the Green operator
de�ned by

Gα[f ](x) =

∫
Ω

Gα(x, y)f(y)dy, ∀f ∈ L1(Ω, ραdx). (4.7)

For N ≥ 2, 0 < α < 1 and β ∈ [0, α], we de�ne the critical exponent

kα,β =

{
N

N−2α
, if β ∈ [0, N−2α

N
α],

N+α
N−2α+β

, if β ∈ (N−2α
N

α, α].
(4.8)

Our main result is the following:

Theorem 4.1.1 Assume Ω ⊂ RN (N ≥ 2) is an open bounded C2 domain, α ∈
(0, 1), β ∈ [0, α] and kα,β is de�ned by (4.8). Let g : R → R be a continuous,
nondecreasing function, satisfying

g(r)r ≥ 0, ∀r ∈ R and

∫ ∞
1

(g(s)− g(−s))s−1−kα,βds <∞. (4.9)

Then for any ν ∈M(Ω, ρβ) problem (4.1) admits a unique weak solution u. Further-
more, the mapping: ν 7→ u is increasing and

−Gα[ν−] ≤ u ≤ Gα[ν+] a.e. in Ω (4.10)

where ν+ and ν− are respectively the positive and negative part in the Jordan decom-
position of ν.

We note that for α = 1 and β ∈ [0, 1), we have

k1,β >
N + β

N − 2 + β
, (4.11)

where k1,β is given in (4.8) and the number in right hand side of (4.11) is from The-
orem 3.7 in [101]. Inspired by [62, 101], the existence of solution could be extended
in assuming that g : Ω × R → R is continuous and satis�es the (N,α, β)-weak-
singularity assumption, that is, there exists r0 > 0 such that

g(x, r)r ≥ 0, ∀(x, r) ∈ Ω× (R \ (−r0, r0)),

and
|g(x, r)| ≤ g̃(|r|), ∀(x, r) ∈ Ω× R,

where g̃ : [0,∞)→ [0,∞) is continuous, nondecreasing and satis�es∫ ∞
1

g̃(s)s−1−kα,βds <∞.
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We also give a stability result which shows that problem (4.1) is weakly closed in
the space of measures M(Ω, ρβ). In the last section of this chapter we characterize
the behaviour of the solution u of (4.1) when ν = δa for some a ∈ Ω. We also study
the case where g(r) = |r|k−1r when k ≥ kα,β, which doesn't satisfy (4.9). We show
that a necessary and su�cient condition in order a weak solution to problem

(−∆)αu+ |u|k−1u = ν in Ω,

u = 0 in Ωc,
(4.12)

to exist where ν is a positive bounded measure is that ν vanishes on compact subsets
K of Ω with zero C2α,k′ Bessel-capacity.

4.2. Linear estimates

4.2.1. The Marcinkiewicz spaces

We recall the de�nition and basic properties of the Marcinkiewicz spaces.

De�nition 4.2.1 Let Ω ⊂ RN be an open domain and µ be a positive Borel measure
in Ω. For κ > 1, κ′ = κ/(κ− 1) and u ∈ L1

loc(Ω, dµ), we set

‖u‖Mκ(Ω,dµ) = ı́nf{c ∈ [0,∞] :

∫
E

|u|dµ ≤ c

(∫
E

dµ

) 1
κ′

, ∀E ⊂ Ω Borel set} (4.13)

and
Mκ(Ω, dµ) = {u ∈ L1

loc(Ω, dµ) : ‖u‖Mκ(Ω,dµ) <∞}. (4.14)

Mκ(Ω, dµ) is called the Marcinkiewicz space of exponent κ or weak Lκ space and
‖.‖Mκ(Ω,dµ) is a quasi-norm. The following property holds.

Proposition 4.2.1 [11, 43] Assume 1 ≤ q < κ < ∞ and u ∈ L1
loc(Ω, dµ). Then

there exists C(q, κ) > 0 such that∫
E

|u|qdµ ≤ C(q, κ)‖u‖Mκ(Ω,dµ)

(∫
E

dµ

)1−q/κ

,

for any Borel set E of Ω.

For α ∈ (0, 1) and β, γ ∈ [0, α] we set

k1(t) =
γ

α
+
N − (N − 2α) γ

α

N − 2α + t
, k2(t) = γ +

N − (N − 2α) γ
α

N − 2α + t
t (4.15)
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and

tα,β,γ = mı́n{t ∈ [0, α] :
k2(t)

k1(t)
≥ β}. (4.16)

Remark 4.2.1 The quantity tα,β,γ is well de�ned, since

k2(α)

k1(α)
=
γ + α

N−(N−2α) γ
α

N−α
γ
α

+
N−(N−2α) γ

α

N−α

= α ≥ β.

Remark 4.2.2 The function t 7→ k1(t) is decreasing in [0, α] with the following
bounds

k1(0) =
N

N − 2α
and k1(α) =

N + γ

N − α
> 1.

Remark 4.2.3 The function t 7→ k2(t)
k1(t)

is increasing in [0, α], since(
k2(t)

k1(t)

)′
=

[N − (N − 2α) γ
α

](N + γ)

k2
1(t)

> 0.

As a consequence (4.16) is equivalent to

tα,β,γ = máx{0, tβ}, (4.17)

where

tβ =
βN − (N − 2α)γ

N − (N − 3α + β) γ
α

. (4.18)

is the solution of k2(t)
k1(t)

= β.

Proposition 4.2.2 Let Ω ⊂ RN (N ≥ 2) be an open bounded C2 domain and
ν ∈M(Ω, ρβ) with β ∈ [0, α]. Then

‖Gα[ν]‖
M
kα,β,γ (Ω,ργdx)

≤ C‖ν‖M(Ω,ρβ), (4.19)

where γ ∈ [0, α], Gα[ν](x) =
∫

Ω
Gα(x, y)dν(y) where Gα is Green's kernel of (−∆)α

and

kα,β,γ =

{
N+γ

N−2α+β
, if γ ≤ Nβ

N−2α
,

N
N−2α

, if not.
(4.20)

Proof. For λ > 0 and y ∈ Ω, we denote

Aλ(y) = {x ∈ Ω \ {y} : Gα(x, y) > λ} and mλ(y) =

∫
Aλ(y)

ργ(x)dx.
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From [37], there exists C > 0 such that for any (x, y) ∈ Ω× Ω, x 6= y,

Gα(x, y) ≤ C mı́n

{
1

|x− y|N−2α
,

ρα(x)

|x− y|N−α
,

ρα(y)

|x− y|N−α

}
(4.21)

and

Gα(x, y) ≤ C
ρα(y)

ρα(x)|x− y|N−2α
. (4.22)

Therefore, if γ ∈ [0, α] and x ∈ Aλ(y), there holds

ργ(x) ≤ Cργ(y)

λ
γ
α |x− y|(N−2α) γ

α

. (4.23)

Let t ∈ [0, α] be such that k2(t)
k1(t)
≥ β, where k1(t) and k2(t) are given in (4.15), then

Gα(x, y) ≤
(

C

|x− y|N−2α

)1− t
α
(

Cρα(y)

|x− y|N−α

) t
α

=
Cρt(y)

|x− y|N−2α+t
.

We observe that

Aλ(y) ⊂
{
x ∈ Ω \ {y} :

Cρ(y)t

|x− y|N−2α+t
> λ

}
⊂ Dλ(y)

where Dλ(y) :=
{
x ∈ Ω : |x− y| < (Cρ

t(y)
λ

)
1

N−2α+t

}
; together with (4.23), this im-

plies

mλ(y) ≤
∫
Dλ(y)

Cργ(y)

λ
γ
α |x− y|(N−2α) γ

α

dx ≤ Cρ(y)k2(t)λ−k1(t).

For any Borel set E of Ω, we have∫
E

Gα(x, y)ργ(x)dx ≤
∫
Aλ(y)

Gα(x, y)ργ(x)dx+ λ

∫
E

ργ(x)dx

and ∫
Aλ(y)

Gα(x, y)ργ(x)dx = −
∫ ∞
λ

sdms(y)

= λmλ(y) +

∫ ∞
λ

ms(y)ds

≤ Cρ(y)k2(t)λ1−k1(t).
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Thus, ∫
E

Gα(x, y)ργ(x)dx ≤ Cρ(y)k2(t)λ1−k1(t) + λ

∫
E

ργ(x)dx.

By choosing λ = [ρ(y)−k2(t)
∫
E
ργ(x)dx]

− 1
k1(t) , we have∫

E

Gα(x, y)ργ(x)dx ≤ Cρ(y)
k2(t)
k1(t) (

∫
E

ργ(x)dx)
k1(t)−1
k1(t) .

Therefore,∫
E

Gα[|ν|](x)ργ(x)dx =

∫
Ω

∫
E

Gα(x, y)ργ(x)dxd|ν(y)|

≤ C

∫
Ω

ρ(y)
k2(t)
k1(t)d|ν(y)|

(∫
E

ργ(x)dx

) k1(t)−1
k1(t)

≤ C‖ν‖M(Ω,ρβ)

(∫
E

ργ(x)dx

) k1(t)−1
k1(t)

,

since by our choice of t, k2(t)
k1(t)
≥ β, which guarantees that∫

Ω

ρ(y)
k2(t)
k1(t)d|ν(y)| ≤ máx

Ω
ρ
k2(t)
k1(t)

−β
∫

Ω

ρ(y)βd|ν(y)|.

As a consequence,

‖Gα[ν]‖Mk1(t)(Ω,ργdx) ≤ C‖ν‖M(Ω,ρβ).

Therefore,
kα,β,γ := máx{k1(t) : t ∈ [0, α]} = k1(tα,β,γ),

where tα,β,γ is de�ned by (4.16) and kα,β,γ is given by (4.20). The proof complete. 2

We choose the parameter γ in order to make kα,β,γ the largest possible, and
denote

kα,β = máx
γ∈[0,α]

kα,β,γ. (4.24)

Since γ 7→ kα,β,γ is increasing, the following statement holds.

Proposition 4.2.3 Let N ≥ 2 and kα,β be de�ned by (4.24), then

kα,β =

{
N

N−2α
, if β ∈ [0, N−2α

N
α],

N+α
N−2α+β

, if β ∈ (N−2α
N

α, α].
(4.25)
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4.2.2. Non-homogeneous problem

In this subsection, we study some properties of the solution of the linear non-
homogeneous, which will play a key role in the sequel. We assume that Ω ⊂ RN ,
N ≥ 2 is an open bounded domain with a C2 boundary.

Lemma 4.2.1 (i) There exists C > 0 such that for any ξ ∈ Xα there holds

‖ξ‖Cα(Ω̄) ≤ C‖(−∆)αξ‖L∞(Ω) (4.26)

and
‖ρ−αξ‖Cθ(Ω̄) ≤ C‖(−∆)αξ‖L∞(Ω). (4.27)

where 0 < θ < mı́n{α, 1− α}. In particular, for x ∈ Ω

|ξ(x)| ≤ C‖(−∆)αξ‖L∞(Ω)ρ
α(x). (4.28)

(ii) Let u be the solution of

(−∆)αu = f in Ω,

u = 0 in Ωc,
(4.29)

where f ∈ Cγ(Ω̄) for γ > 0. Then u ∈ Xα.

Proof. (i). Estimates (4.26) and (4.29) are consequences of [88, Proposition 1.1]
and [88, Theorem 1.2] respectively. Furthermore, if η1 is the solution of (4.29) with
f ≡ 1 in Ω, then η1 > 0 in Ω and by follows [88, Theorem 1.2], there exists C > 0
such that

C−1 ≤ η1

ρα
≤ C in Ω. (4.30)

In this expression the right-side follows [88, Theorem 1.2] and the left-hand side
inequality follows from the maximum principle and [37, Theorem 1.2]. Since

−‖(−∆)αξ‖L∞(Ω) ≤ (−∆)αξ ≤ ‖(−∆)αξ‖L∞(Ω) in Ω,

it follows by the comparison principle,

−‖(−∆)αξ‖L∞(Ω)η1(x) ≤ ξ(x) ≤ ‖(−∆)αξ‖L∞(Ω)η1(x).

which, together with (4.30), implies (4.28).

(ii) For r > 0, we denote

Ωr = {z ∈ Ω : dist(z, ∂Ω) > r}.
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Since f ∈ Cγ(Ω̄), then by Corollary 1.6 part (i) and Proposition 1.1 in [88], for
θ ∈ [0,mı́n{α, 1− α, γ}), there exists C > 0 such that for any r > 0, we have

‖u‖C2α+θ(Ωr) ≤ Cr−α−θ

and
‖u‖Cα(RN ) ≤ C.

Then for x ∈ Ω, letting r = ρ(x)/2,

|δ(u, x, y)| ≤ Cr−α−θ|y|2α+θ, ∀y ∈ Br(0) (4.31)

and
|δ(u, x, y)| ≤ C|y|α, ∀y ∈ RN ,

where δ(u, x, y) = u(x+ y) + u(x− y)− 2u(x). Thus,

|(−∆)αε u(x)| ≤ 1

2

∫
RN

|δ(u, x, y)|
|y|N+2α

χε(|y|)dy

≤ 1

2

∫
Br(0)

|δ(u, x, y)|
|y|N+2α

dy +
1

2

∫
Bcr(0)

|δ(u, x, y)|
|y|N+2α

dy

≤ Cr−α−θ

2

∫
Br(0)

1

|y|N−θ
dy +

C

2

∫
Bcr(0)

1

|y|N+α
dy

≤ Cρ(x)−α, x ∈ Ω,

for some C > 0 independent of ε. Moreover, ρ−α is in L1(Ω, ραdx). Finally, we prove
(−∆)αε u→ (−∆)αu as ε→ 0+ pointwise. For x ∈ Ω, choosing ε ∈ (0, ρ(x)/2), then
by (4.31),

|(−∆)αu(x)− (−∆)αε u(x)| ≤ 1

2

∫
Bε(0)

|δ(u, x, y)|
|y|N+2α

dy

≤ Cρ(x)−α−θεθ

→ 0, ε→ 0+.

The proof is complete. 2

The following Proposition is the Kato's type estimate for proving the uniqueness
of the solution of (4.1).

Proposition 4.2.4 If ν ∈ L1(Ω, ραdx), there exists a unique weak solution u of the
problem

(−∆)α u = ν in Ω,

u = 0 in Ωc.
(4.32)
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For any ξ ∈ Xα, ξ ≥ 0, we have∫
Ω

|u|(−∆)αξdx ≤
∫

Ω

ξsign(u)νdx (4.33)

and ∫
Ω

u+(−∆)αξdx ≤
∫

Ω

ξsign+(u)νdx, (4.34)

We note here that for α = 1, the proof of Proposition 4.2.4 could be seen in [101,
Theorem 2.4]. For α ∈ (0, 1), we �rst prove some integration by parts formula.

Lemma 4.2.2 Assume u, ξ ∈ Xα, then∫
Ω

u(−∆)αξdx =

∫
Ω

ξ(−∆)αudx. (4.35)

Proof. Denote

(−∆)αΩ,εu(x) = −
∫

Ω

u(z)− u(x)

|z − x|N+2α
χε(|x− z|)dz. (4.36)

By the de�nition of (−∆)αε , we have

(−∆)αε u(x) = −
∫

Ω

u(z)− u(x)

|z − x|N+2α
χε(|x− z|)dz + u(x)

∫
Ωc

χε(|x− z|)
|z − x|N+2α

dz

= (−∆)αΩ,εu(x) + u(x)

∫
Ωc

χε(|x− z|)
|z − x|N+2α

dz.

We claim that∫
Ω

ξ(x)(−∆)αΩ,εu(x)dx =

∫
Ω

u(x)(−∆)αΩ,εξ(x)dx, for u, ξ ∈ Xα. (4.37)

By using the fact of∫
Ω

∫
Ω

[u(z)− u(x)]ξ(x)

|z − x|N+2α
χε(|x− z|)dzdx =

∫
Ω

∫
Ω

[u(x)− u(z)]ξ(z)

|z − x|N+2α
χε(|x− z|)dzdx,

we have ∫
Ω

ξ(x)(−∆)αΩ,εu(x)dx

= −1

2

∫
Ω

∫
Ω

[
(u(z)− u(x))ξ(x)

|z − x|N+2α
+

(u(x)− u(z))ξ(z)

|z − x|N+2α
]χε(|x− z|)dzdx

=
1

2

∫
Ω

∫
Ω

[u(z)− u(x)][ξ(z)− ξ(x)]

|z − x|N+2α
χε(|x− z|)dzdx.
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Similarly, by the fact that u ∈ Xα,∫
Ω

u(x)(−∆)αΩ,εξ(x)dx =
1

2

∫
Ω

∫
Ω

[u(z)− u(x)][ξ(z)− ξ(x)]

|z − x|N+2α
χε(|x− z|)dzdx.

Then (4.37) holds. In order to prove (4.35), we �rst notice that by (4.37),∫
Ω

ξ(x)(−∆)αε u(x)dx

=

∫
Ω

ξ(x)(−∆)αΩ,εu(x)dx+

∫
Ω

u(x)ξ(x)

∫
Ωc

χε(|x− z|)
|z − x|N+2α

dzdx

=

∫
Ω

u(x)(−∆)αΩ,εξ(x)dx+

∫
Ω

u(x)ξ(x)

∫
Ωc

χε(|x− z|)
|z − x|N+2α

dzdx

=

∫
Ω

u(x)(−∆)αε ξ(x)dx. (4.38)

Since u and ξ belongs to Xα, (−∆)αε ξ → (−∆)αξ and (−∆)αε u → (−∆)αu and
|u(−∆)αε ξ| + |ξ(−∆)αε u| ≤ Cϕ for some C > 0 and ϕ ∈ L1(Ω, ραdx). It follows by
the Dominated Convergence Theorem

ĺım
ε→0+

∫
Ω

ξ(x)(−∆)αε u(x)dx =

∫
Ω

ξ(x)(−∆)αu(x)dx

and

ĺım
ε→0+

∫
Ω

(−∆)αε ξ(x)u(x)dx =

∫
Ω

(−∆)αξ(x)u(x)dx.

Letting ε→ 0+ of (4.38) we conclude that (4.35) holds. 2

For 1 ≤ p <∞ and 0 < s < 1, W s,p(Ω) is the set of ξ ∈ Lp(Ω) such that∫
Ω

∫
Ω

|ξ(x)− ξ(y)|p

|x− y|N+sp
dydx <∞. (4.39)

This space is endowed with the norm

‖ξ‖W s,p(Ω) =

(∫
Ω

|ξ(x)|pdx+

∫
Ω

∫
Ω

|ξ(x)− ξ(y)|p

|x− y|N+sp
dydx

) 1
p

. (4.40)

Furthermore, if Ω is bounded, the following Poincaré inequality holds [95, p 134].(∫
Ω

|ξ(x)|pdx
) 1

p

≤ C

(∫
Ω

∫
Ω

|ξ(x)− ξ(y)|p

|x− y|N+sp
dydx

) 1
p

, ∀ξ ∈ C∞c (Ω). (4.41)

Lemma 4.2.3 Let u ∈ Xα and γ be C2 in the interval u(Ω̄) and satisfy γ(0) = 0 ,
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then u ∈ Wα,2(Ω), γ ◦ u ∈ Xα and for all x ∈ Ω, there exists zx ∈ Ω̄ such that

(−∆)α(γ ◦ u)(x) = (γ′ ◦ u)(x)(−∆)αu(x)− γ′′ ◦ u(zx)

2

∫
Ω

(u(y)− u(x))2

|y − x|N+2α
dy. (4.42)

Proof. Since u ∈ C(Ω̄) vanishes in Ωc, γ ◦ u shares the same properties. By (4.26),
for any x and y in Ω

(u(x)− u(y))2 ≤ C|x− y|2α‖(−∆)αu‖2
L∞(Ω).

Then u ∈ Wα,2(Ω). Similarly γ ◦ u ∈ Wα,2(Ω). Furthermore

(γ ◦ u)(y)− (γ ◦ u)(x) = (γ′ ◦ u)(x) (u(y)− u(x)) +

∫ u(y)

u(x)

(u(y)− t)γ′′(t)dt.

By the mean value theorem, there exists some τ ∈ [0, 1] such that∫ u(y)

u(x)

(u(y)− t)γ′′(t)dt =
γ′′(τu(y) + (1− τ)u(x))

2
(u(y)− u(x))2.

Since γ′′ is continuous and u is continuous in Ω̄,∣∣∣∣∣
∫ u(y)

u(x)

(u(y)− t)γ′′(t)dt

∣∣∣∣∣ ≤ ‖γ′′ ◦ u‖L∞(Ω̄)

2
(u(y)− u(x))2

and by (4.26),∣∣∣∣∣
∫
|y−x|>ε

∫ u(y)

u(x)

(u(y)− t)γ′′(t)dt dy

|y − x|N+2α

∣∣∣∣∣
≤ ‖γ

′′ ◦ u‖L∞
2

∫
Ω

(u(y)− u(x))2 dy

|y − x|N+2α
.

Notice also that τu(y) + (1− τ)u(x) ∈ u(Ω̄) := I, therefore

mı́n
t∈I

γ′′(t) ≤ γ′′(τu(y) + (1− τ)u(x)) ≤ máx
t∈I

γ′′(t),

thus

mı́nt∈I γ
′′(t)

2

∫
Ω

(u(y)− u(x))2

|y − x|N+2α
dy ≤

∫
Ω

∫ u(y)

u(x)

(u(y)− t)γ′′(t)dt dy

|y − x|N+2α

≤ máxt∈I γ
′′(t)

2

∫
Ω

(u(y)− u(x))2

|y − x|N+2α
dy.
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Since γ′′ is continuous, there exists t0 ∈ I such that∫
Ω

∫ u(y)

u(x)

(u(y)− t)γ′′(t)dt dy

|y − x|N+2α
=
γ′′(t0)

2

∫
Ω

(u(y)− u(x))2

|y − x|N+2α
dy

and since u is continuous in RN and vanishes in Ωc, there exists zx ∈ Ω̄ such that
t0 = u(zx), which ends the proof. 2

Proof of Proposition 4.2.4. Uniqueness. Let w be a weak solution of

(−∆)αw = 0 in Ω
w = 0 in Ωc.

(4.43)

If ω is a Borel subset of Ω and ηω,n the solution of

(−∆)αηω,n = ζn in Ω
ηω,n = 0 in Ωc,

(4.44)

where ζn : Ω̄ 7→ [0, 1] is a C1(Ω̄) function such that

ζn → χω in L∞(Ω̄) as n→∞.

Then by Lemma 4.2.1 part (ii), ηω,n ∈ Xα and∫
Ω

wζndx = 0.

Then passing the limit of n→∞, we have∫
ω

wdx = 0.

This implies w = 0.

Existence and estimate (4.33). For δ > 0 we de�ne an even convex function φδ by

φδ(t) =

{
|t| − δ

2
, if |t| ≥ δ,

t2

2δ
, if |t| < δ/2.

(4.45)

Then for any t, s ∈ R, |φ′δ(t)| ≤ 1, φδ(t)→ |t| and φ′δ(t)→ cap5sign(t) when δ → 0+.
Moreover

φδ(s)− φδ(t) ≥ φ′δ(t)(s− t). (4.46)

Let {νn} be a sequence functions in C1(Ω̄) such that

ĺım
n→∞

∫
Ω

|νn − ν|ραdx = 0.
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Let un be the corresponding solution to (4.32) with right-hand side νn, then by
Lemma 4.2.1, un ∈ Xα and by Lemmas 4.2.2, 4.2.3, for any δ > 0 and ξ ∈ Xα, ξ ≥ 0,∫

Ω

φδ(un)(−∆)αξdx=

∫
Ω

ξ(−∆)αφδ(un)dx

≤
∫

Ω

ξφ′δ(un)(−∆)αundx

=

∫
Ω

ξφ′δ(un)νndx.

(4.47)

Letting δ → 0, we obtain∫
Ω

|un|(−∆)αξdx ≤
∫

Ω

ξsign(un)νndx ≤
∫

Ω

ξ|νn|dx. (4.48)

If we take ξ = η1, we derive from Lemma 4.2.1,∫
Ω

|un|dx ≤ C

∫
Ω

|νn|ραdx. (4.49)

Similarly ∫
Ω

|un − um|dx ≤ C

∫
Ω

|νn − νm|ραdx. (4.50)

Therefore, {un} is a Cauchy sequence in L1 and its limit u is a weak solution of
(4.32). Letting n → ∞ in (4.48) we obtain (4.33). Inequality (4.34) is proved by
replacing φδ by φ̃δ which is zero on (−∞, 0] and φδ on [0,∞). 2

The next result is a higher order regularity result

Proposition 4.2.5 Let the assumptions of Proposition 4.2.2 be ful�lled and 0 ≤
β ≤ α. Then for p ∈ (1, N

N+β−2α
) there exists cp > 0 such that for any ν ∈

L1(Ω, ρβdx)
‖Gα[ν]‖W 2α−γ,p(Ω) ≤ cp‖ν‖L1(Ω,ρβdx) (4.51)

where γ = β + N
p′

if β > 0 and γ > N
p′

if β = 0.

Proof.We use Stampacchia's duality method [93] and put u = Gα[ν]. If ψ ∈ C∞c (Ω̄),
then ∣∣∣∣∫

Ω

ψ(−∆)αudx

∣∣∣∣ ≤ ∫
Ω

|ν||ψ|dx

≤ sup
Ω
|ρ−βψ|

∫
Ω

|ν|ρβdx

≤ ‖ψ‖Cβ(Ω̄)‖ν‖L1(Ω,ρβdx).

(4.52)
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By Sobolev-Morrey embedding type theorem (see e.g. [81, Theorem 8.2]), for any
p ∈ (1, N

N+β−2α
) and p′ = p

p−1
,

‖ψ‖Cβ(Ω̄) ≤ C‖ψ‖W γ,p′ (Ω)

with γ = β + N
p′
if β > 0 and γ > N

p′
if β = 0. Therefore,∣∣∣∣∫

Ω

ψ(−∆)αudx

∣∣∣∣ ≤ C‖ψ‖W γ,p′ (Ω)‖ν‖L1(Ω,ρβdx), (4.53)

which implies that the mapping ψ 7→
∫

Ω
ψ(−∆)αudx is continuous on W γ,p′(Ω) and

thus
‖(−∆)αu‖W−γ,p(Ω) ≤ C‖ν‖L1(Ω,ρβdx). (4.54)

Since (−∆)−α is an isomorphism from W−γ,p(Ω) into W 2α−γ,p(Ω), it follows that

‖u‖W 2α−γ,p(Ω) ≤ C‖ν‖L1(Ω,ρβdx). (4.55)

2

Proposition 4.2.6 Under the assumptions of Proposition 4.2.5 the mapping ν 7→
G[ν] is compact from L1(Ω, ρβdx) into Lq(Ω) for any q ∈ [1, N

N+β−2α
).

Proof. By [81, Theorem 6.5] the embedding of W 2α−γ,p(Ω) into Lq(Ω) is compact,
this ends the proof. 2

4.3. Proof of Theorem 4.1.1

Before proving the main we give a general existence result in L1(Ω, ραdx).

Proposition 4.3.1 Suppose that Ω is an open bounded C2 domain of RN (N ≥ 2),
α ∈ (0, 1) and the function g : R → R is continuous, nondecreasing and rg(r) ≥ 0
for all r ∈ R. Then for any f ∈ L1(Ω, ραdx) there exists a unique weak solution u
of (4.1) with ν = f . Moreover the mapping f 7→ u is increasing.

Proof. Step 1: Variational solutions. If w ∈ L2(Ω), we denote by w its extension
by 0 in Ωc and by Wα,2

c (Ω) the set of function in L2(Ω) such that

‖w‖2
Wα,2
c (Ω)

:=

∫
RN
|ŵ|2(1 + |x|α)dx <∞,

where ŵ is the Fourier transform of w. For ε > 0 we set

J(w) =
1

2

∫
RN

(
(−∆)

α
2w
)2
dx+

∫
Ω

(j(w) + εw2)dx,
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with domain D(J) = {w ∈ Wα,2
c (RN) s.t. j(w) ∈ L1(Ω)} and j(s) =

∫ s
0
g(t)dt.

Furthermore since there holds J(w) ≥ σ‖w‖2
Wα,2
c

for some σ > 0, the subdi�erential
∂J of J is a maximal monotone in the sense of Browder-Minty (see [17] and the
references therein) which satis�es R(∂J) = L2(Ω). Then for any f ∈ L2(Ω) there
exists a unique uε in the domain D(∂J) such that ∂J(uε) = f . Since for any ψ ∈
Wα,2
c (Ω)∫

RN
(−∆)

α
2w (−∆)

α
2ψdx = (4π)α

∫
RN
ŵ ψ̂|x|2αdx =

∫
Ω

ψ(−∆)αwdx,

∂J(uε) = (−∆)αuε + g(uε) + 2εu = f,

with uε ∈ W 2α,2
c (Ω) such that g(uε) ∈ L2(Ω). This is also a consequence of [17,

Corollary 2.11]. If f is assumed to be bounded, then u ∈ Cα(Ω) by [88, Proposition
1.1].

Step 2: L1 solutions. For n ∈ N∗ we denote by un,ε the solution of

(−∆)αun,ε + g(un,ε) + 2εun,ε = fn in Ω
un,ε = 0 in Ωc (4.56)

where fn = sgn(f) mı́n{n, |f |}. By (4.48) with ξ = η1,∫
Ω

(|un,ε|+ (2ε|un,ε|+ |g(un,ε)|)η1) dx ≤
∫

Ω

|fn|η1dx ≤
∫

Ω

|f |η1dx, (4.57)

and for ε′ > 0 and m ∈ N∗,∫
Ω

(|un,ε − um,ε′ |+ |g(un,ε)− g(um,ε′)|η1) dx

≤
∫

Ω

(|fn − fm|+ 2ε|un,ε|+ 2ε′|um,ε′|) η1dx.

(4.58)

Since fn → f in L1(Ω, ραdx), {un,ε} and {g ◦ un,ε} are Cauchy �lters in L1(Ω)
and L1(Ω, ραdx) respectively. Set u = ĺımn→∞,ε→0 un,ε, we derive from the following
identity valid for any ξ ∈ Xα,∫

Ω

(un,ε(−∆)αξ + g(un,ε)ξ) dx =

∫
Ω

(fn − εun,ε) ξdx

that u is a solution of (4.1). Uniqueness follows from (4.48)-(4.58), since for any
f and f ′ in L1(Ω, ραdx), the any couple (u, u′) of weak solutions with respective
right-hand side f and f ′ satis�es∫

Ω

(|u− u′|+ |g(u)− g(u′)|η1) dx ≤
∫

Ω

|f − f ′|η1dx. (4.59)
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Finally, the monotonicity of the mapping f 7→ u follows from (4.34) thanks to which
(4.59) is transformed into∫

Ω

((u− u′)+ + (g(u)− g(u′))+η1) dx ≤
∫

Ω

(f − f ′)+η1dx. (4.60)

2

Proof of Theorem 4.1.1. Uniqueness follows from (4.59). For existence we de�ne

Cβ(Ω̄) = {ζ ∈ C(Ω̄) : ρ−βζ ∈ C(Ω̄)}

endowed with the norm
‖ζ‖Cβ(Ω̄) = ‖ρ−βζ‖C(Ω̄).

We consider a sequence {νn} ⊂ C1(Ω̄) such that νn,± → ν± in the duality sense with
Cβ(Ω̄), which means

ĺım
n→∞

∫
Ω̄

ζνn,±dx =

∫
Ω̄

ζdν±

for all ζ ∈ Cβ(Ω̄). It follows from the Banach-Steinhaus theorem that ‖νn‖M(Ω,ρβ) is
bounded independently of n, therefore∫

Ω

(|un|+ |g(un)|η1) dx ≤
∫

Ω

|νn|η1dx ≤ C. (4.61)

Therefore ‖g(un)‖M(Ω,ρα) is bounded independently of n. For ε > 0, set ξε = (η1 +

ε)
β
α − ε βα , which is concave in the interval η(ω̄). Then, by Lemma 4.2.3 part (ii),

(−∆)αξε =
β

α
(η1 + ε)

β−α
α (−∆)αη1 −

β(β − α)

α2
(η1 + ε)

β−2α
α

∫
Ω

(η1(y)− η1(x))2

|y − x|N+2α
dy

≥ β

α
(η1 + ε)

β−α
α ,

and ξε ∈ Xα. Since ∫
Ω

(|un|(−∆)αξε + |g(un)|ξε) dx ≤
∫

Ω

ξεd|νn|,

we obtain ∫
Ω

(
|un|

β

α
(η1 + ε)

β−α
α + |g(un)|ξε

)
dx ≤

∫
Ω

ξεd|νn|.

If we let ε→ 0, we obtain∫
Ω

(
|un|

β

α
η
β−α
α

1 + |g(un)|η
β
α
1

)
dx ≤

∫
Ω

η
β
α
1 d|νn|.
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By Lemma 4.2.3, we derive the estimate∫
Ω

(
|un|ρβ−α + |g(un)|ρβ

)
dx ≤ C‖νn‖M(Ω,ρβ) ≤ C ′. (4.62)

Since un = Gα[νn − g(un)], it follows by (4.19), that

‖un‖Mkα,β (Ω,ρβdx)
≤ ‖νn − g(un)‖M(Ω,ρβ), (4.63)

where kα,β is de�ned by (4.25). By Corollary 4.2.6 the sequence {un} is relatively
compact in the Lq(Ω) for 1 ≤ q < N

N+β−2α
. Therefore there exist a sub-sequence

{unk} and some u ∈ L1(Ω) ∩ Lq(Ω) such that unk → u in Lq(Ω) and almost every
where in Ω. Furthermore g(unk) → g(u) almost every where. Put g̃(r) = g(|r|) −
g(−|r|) and we note that |g(r)| ≤ g̃(|r|) for r ∈ R and g̃ is nondecreasing. For λ > 0,
we set Sλ = {x ∈ Ω : |unk(x)| > λ} and ω(λ) =

∫
Sλ
ρβdx. Then for any Borel set

E ⊂ Ω, we have∫
E

|g(unk)|ρβdx =

∫
E∩Scλ

|g(unk)|ρβdx+

∫
E∩Sλ

|g(unk)|ρβdx

≤ g̃(λ)

∫
E

ρβdx+

∫
Sλ

g̃(|unk |)ρβdx

≤ g̃(λ)

∫
E

ρβdx−
∫ ∞
λ

g̃(s)dω(s).

But ∫ ∞
λ

g̃(s)dω(s) = ĺım
T→∞

∫ T

λ

g̃(s)dω(s).

Since unk ∈Mkα,β(Ω, ρβdx), ω(s) ≤ cs−kα,β and

−
∫ T

λ

g̃(s)dω(s) = −
[
g̃(s)ω(s)

]s=T
s=λ

+

∫ T

λ

ω(s)dg̃(s)

≤ g̃(λ)ω(λ)− g̃(T )ω(T ) + c

∫ T

λ

s−kα,βdg̃(s)

≤ g̃(λ)ω(λ)− g̃(T )ω(T ) + c
(
T−kα,β g̃(T )− λ−kα,β g̃(λ)

)
+

c

kα,β + 1

∫ T

λ

s−1−kα,β g̃(s)ds.

By assumption (4.9) there exists {Tn} → ∞ such that T
−kα,β
n g̃(Tn) → 0 when

n→∞. Furthermore g̃(λ)ω(λ) ≤ cλ−kα,β g̃(λ), therefore

−
∫ ∞
λ

g̃(s)dω(s) ≤ c

kα,β + 1

∫ ∞
λ

s−1−kα,β g̃(s)ds.
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Notice that the above quantity on the right-hand side tends to 0 when λ→∞. The
conclusion follows: for any ε > 0 there exists λ > 0 such that

c

kα,β + 1

∫ ∞
λ

s−1−kα,β g̃(s)ds ≤ ε

2

and δ > 0 such that ∫
E

ρβdx ≤ δ =⇒ g̃(λ)

∫
E

ρβdx ≤ ε

2
.

This proves that {g◦unk} is uniformly integrable in L1(Ω, ρβdx). Then g◦unk → g◦u
in L1(Ω, ρβdx) by Vitali convergence theorem. Letting nk →∞ in the identity∫

Ω

(unk(−∆)αξ + ξg ◦ unk) dx =

∫
Ω

νnkξdx

where ξ ∈ Xα, it infers that u is a weak solution of (4.1).

The right-hand side of estimate (4.9) follows from the fact that vn,+ := Gα[νn,+]
satis�es

(−∆)αvn,+ + g(vn,+) = νn,+ + g(vn,+) ≥ νn

Therefore vn,+ ≥ un by Proposition 4.3.1. Letting n → ∞ yields to (4.10). The
left-hand side is proved similarly.

To prove the mapping ν 7→ u is increasing. Let ν1, ν2 ∈M(Ω, ρβ) and ν1 ≥ ν2, then
there exist two sequences {ν1,n} and {ν2,n} in C∞(Ω̄) such that ν1,n ≥ ν2,n and

νi,n → νi as n→∞, i = 1, 2.

Let ui,n be the unique solution of (4.1) with νi,n and ui be the unique solution of (4.1)
with νi where i = 1, 2. Then u1,n ≥ u2,n. Moveover, by uniqueness ui,n convergence
to ui in L1(Ω) for i = 1 and i = 2. Then we have u1 ≥ u2. 2

Corollary 4.3.1 Under the hypotheses of Theorem 4.1.1, we further assume that
{νn} is a sequence of measures in M(Ω, ρβ) and ν ∈ M(Ω, ρβ) such that for any
ξ ∈ Cβ(Ω̄), ∫

Ω

ξdνn →
∫

Ω

ξdν as n→∞.

Then the sequence {un} of weak solutions to

(−∆)αun + g ◦ un = νn in Ω,

un = 0 in Ωc,
(4.64)

converges to the solution u of (4.1) in Lq(Ω) for 1 ≤ q < N
N+β−2α

and {g ◦ un}
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converges to g ◦ u in L1(Ω, ρβdx).

Proof. The method is an adaptation of [102]. Since νn → ν in the duality sense of
Cβ(Ω), there exists M > 0 such that

‖νn‖M(Ω,ρβ) ≤M, ∀n ∈ N.

Therefore (4.62) and (4.63) hold (but with un solution of (4.64). The above proof
shows that {g ◦ un} is uniformly integrable in L1(Ω, ρβdx) and {un} relatively com-
pact in Lq(Ω) for 1 ≤ q < N

N+β−2α
. Thus, up to a subsequence {unk} ⊂ {un},

unk → u, and u is the weak solution of (4.1). Since u is unique, un → u as n→∞.

2

Remark 4.3.1 Under the hypotheses of Theorem 4.1.1, we assume ν ≥ 0, then

Gα[ν]−Gα[g(Gα[ν])] ≤ u ≤ Gα[ν]. (4.65)

Indeed, since g is nondecreasing and u ≤ Gα[ν], then

u = Gα[ν]−Gα[g(u)]

≥ Gα[ν]−Gα[g(Gα[ν])].

4.4. Applications

4.4.1. The case of Dirac mass

In this subsection we characterize the asymptotic behavior of a solution near a
singularity created by a Dirac mass.

Theorem 4.4.1 Assume that Ω is an open, bounded and C2 domain of RN (N ≥ 2)
with 0 ∈ Ω, α ∈ (0, 1), ν = δ0 and the function g : [0,∞) → [0,∞) is continuous,
nondecreasing and (4.9) holds for

kα,0 =
N

N − 2α
. (4.66)

Then problem (4.1) admits a unique positive weak solution u such that

ĺım
x→0

u(x)|x|N−2α = C, (4.67)

for some C > 0.
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Remark 4.4.1 We note here that a weak solution u of (4.1) with ν = δ0 satis�es

(−∆)αu+ g(u) = 0 in Ω \ {0},
u = 0 in RN \ Ω.

(4.68)

The asymptotic behavior (4.67) is one of the possible singular behaviors of solutions
of (4.68) given in [39].

Lemma 4.4.1 Assume that g : [0,∞) → [0,∞) is continuous, nondecreasing and
(4.9) holds with kα,β > 1. Then

ĺım
s→∞

g(s)s−kα,β = 0. (4.69)

Proof. Since∫ 2s

s

g(t)t−1−kα,βdt ≥ g(s)(2s)−1−kα,β
∫ 2s

s

dt = 2−1−kα,βg(s)s−kα,β

and by (4.9), we have that ĺıms→∞
∫ 2s

s
g(t)t−1−kα,βdt = 0. Then (4.69) holds. 2

Proof of Theorem 4.4.1. Existence, uniqueness and positiveness follow from The-
orem 4.1.1 with β = 0. For (4.67), we shall use (4.10). From [38] there holds,

0 <
C

|x|N−2α
−Gα(x, 0) <

C

ρ(0)N−2α
, x ∈ Ω \ {0}. (4.70)

for some C > 0 dependent of N and α. Since

Gα[δ0](x) = Gα(x, 0) <
C

|x|N−2α
, x ∈ Ω \ {0},

then for x ∈ Ω \ {0},

0 ≤ Gα[g(Gα[δ0])](x)|x|N−2α ≤
∫

Ω

1

|x− y|N−2α
g(

C

|y|N−2α
)dy|x|N−2α

≤
∫

Ω

1

|ex − y|N−2α
g(

C

(|x||z|)N−2α
)dz|x|N

= |x|N
∫

Ω∩B1/2(ex)

1

|ex − y|N−2α
g(

C

(|x||z|)N−2α
)dz

+|x|N
∫

Ω∩Bc
1/2

(ex)

1

|ex − y|N−2α
g(

C

(|x||z|)N−2α
)dz

=: A1(x) + A2(x),
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where ex = x/|x|. By Lemma 4.4.1,

A1(x) ≤ |x|Ng(
2N−2αC

|x|N−2α
)

∫
B1/2(ex)

1

|ex − y|N−2α
dz

→ 0 as |x| → 0,

and by (4.9),

A2(x) ≤ C̄|x|N
∫
BR(0)

g(
C

(|x||z|)N−2α
)dz

≤ C̄

∫ ∞
R1/(N−2α)

|x|

g(Cs)s−1− N
N−2αds

→ 0 as |x| → 0,

where R > 0 such that BR(0) ⊃ Ω. That is

ĺım
|x|→0

Gα[g(Gα[δ0])](x)|x|N−2α = 0. (4.71)

We plug (4.70) and (4.71) into (4.65), then (4.67) holds. 2

4.4.2. The power case

If g(s) = |s|k−1s with k ≥ 1, then (4.9) is satis�ed if 1 ≤ k < kα,β where kα,β
de�ned by (4.25) is called the critical exponent with limit values kα,0 = N

N−2α
and

kα,α = N+α
N−α . If we consider the problem

(−∆)αu+ |u|k−1u = ν in Ω,

u = 0 in Ωc,
(4.72)

then if 1 < k < kα,β it is solvable for any ν ∈M(Ω, ρβ), but it may not be the case
if k ≥ kα,β. As in the case α = 1, the sharp solvability of (4.72) is associated to a
concentration property of the measure ν and this concentration is expressed by the
mean of Bessel capacities. If k > 1 and k′ = k

k−1
, we de�ne for any compact set

K ⊂ Ω,

CΩ
2α,k′(K) = ı́nf{‖φ‖k′

W 2α,k′ (Ω)
: φ ∈ C∞c (Ω), 0 ≤ φ ≤ 1, φ ≡ 1 on K}. (4.73)

Then C2α,k′ is an outer measure or capacity in Ω extended to Borel sets by standard
processes. Our result is the following in the case of bounded measures

Theorem 4.4.2 Assume Ω is an open bounded C2 domain in RN and k > 1. Then
problem (4.72) can be solved with a nonnegative bounded measure ν if and only if ν
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satis�es on compact subsets K ⊂ Ω

CΩ
2α,k′(K) = 0 =⇒ ν(K) = 0. (4.74)

Proof. 1-The condition is necessary. Assume u is a weak solution and let K ⊂ Ω
be compact. Let φ ∈ C∞c (RN) such that 0 ≤ φ ≤ 1 and φ(x) = 1 for all x ∈ K, and
set ξ = φk

′
, then ξ ∈ Xα and∫

Ω

(
u(−∆)αξ + ukξ

)
dx =

∫
Ω

ξdν.

Since ξ ≥ χK it follows from (4.42) that∫
Ω

(
k′φk

′−1u(−∆)αφ+ φk
′
uk
)
dx ≥ ν(K). (4.75)

By Hölder's inequality∣∣∣∣∫
Ω

φk
′−1u(−∆)αφdx

∣∣∣∣ ≤ (∫
Ω

φk
′
ukdx

) 1
k
(∫

Ω

|(−∆)αφ|k
′
dx

) 1
k′

(4.76)

By [81, Theorem 5.4], there exists φ̃ ∈ W 2α,k′(RN) such that φ̃|Ω = φ and

‖φ̃‖W 2α,k′ (RN ) ≤ C‖φ‖W 2α,k′ (Ω)

Then, by standard regularity result on the Riesz potential (−∆)−α in RN ,∣∣∣∣∫
Ω

φk
′−1u(−∆)αφdx

∣∣∣∣ ≤ (∫
Ω

φk
′
ukdx

) 1
k
(∫

RN
|(−∆)αφ|k

′
dx

) 1
k′

≤ C ′
(∫

Ω

φk
′
ukdx

) 1
k′

‖φ̃‖W 2α,k′ (RN )

≤ C ′
(∫

Ω

φk
′
ukdx

) 1
k′

‖φ‖W 2α,k′ (Ω).

(4.77)

Therefore, (4.77) yields to

C‖φ‖W 2α,k′ (Ω)

(∫
Ω

φk
′
ukdx

) 1
k

+

∫
Ω

φk
′
ukdx ≥ ν(K). (4.78)

If CΩ
2α,k′(K) = 0, there exists a sequence {φn} ⊂ C∞c (Ω) such that 0 ≤ φn ≤ 1 and

φn = 1 on K and ‖φn‖W 2α,k′ (Ω) → 0 as n → ∞. Furthermore K has zero Lebesgue
measure and φn → 0 almost everywhere. If we replace φ by φn in (4.78) and let
n→∞ we obtain ν(K) = 0.
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2-The condition is su�cient. We �rst assume that ν ∈ W−2α,k(Ω) ∩Mb
+(Ω); for

n ∈ N, we denote by un the solution of

(−∆)αu+ |Tn(u)|k−1Tn(u) = ν in Ω

u = 0 in Ωc
(4.79)

where Tn(r) = sign(r) mı́n{n, |r|}. Such a solution exists by Theorem 4.1.1, is non-
negative and the sequence {un} is decreasing and converges to some nonnegative u
since {Tn(r)} is increasing on R+. Furthermore, by (4.10),

0 ≤ un ≤ Gα[ν].

This implies that the convergence holds in L1(Ω). Since ν ∈ W−2α,k(Ω), Gα[ν] ∈
Lk(Ω), it infers that

|Tn(un)|k−1Tn(un) = (Tn(un))k ≤ (Gα[ν])k.

Since for any ξ ∈ Xα there holds∫
Ω

(
un(−∆)αξ + (Tn(un))kξ

)
dx =

∫
Ω

ξdν (4.80)

we can let n → ∞ and conclude that u is a solution of (4.72), unique by (4.59).
Next we assume that (4.74) holds. By a result of Feyel and de la Pradelle [58] (see
also [46]), there exists an increasing sequence {νn} ⊂ W−2α,k(Ω) ∩Mb

+(Ω) which
converges to ν in the weak sense of measures. This implies that the sequence {un}
of weak solutions of

(−∆)αun + ukn = νn in Ω,

un = 0 in Ωc
(4.81)

is increasing with limit u. Taking η1 := Gα[1] as a test function in the weak formu-
lation, we have ∫

Ω

(
un + uknη1

)
dx =

∫
Ω

η1dνn ≤
∫

Ω

η1dν.

So un → u in L1(Ω) ∩ Lk(Ω, ραdx). Let n→∞, then u satis�es (4.72). 2

Remark 4.4.2 If ν is a signed bounded measure a su�cient condition for solving
(4.72) is

CΩ
2α,k′(K) = 0 =⇒ |ν|(K) = 0. (4.82)

This can be obtained by using the fact that the solutions of (4.72) with right-hand
side ν+ and −ν− are respectively a supersolution and a subsolution of (4.72). It is
not clear whether it is also a necessary condition.
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Capítulo 5

Weakly and strongly singular
solutions of semilinear fractional
elliptic equations

Abstract: in this chapter 1, let p ∈ (0, N
N−2α

), α ∈ (0, 1), k > 0 and Ω ⊂ RN

is an open bounded C2 domain containing 0 and δ0 is the Dirac measure at 0, we
prove that the weak solution of (E)k (−∆)αu+ up = kδ0 in Ω which vanishes in Ωc

is a weakly singular solution of (E)∞ (−∆)αu + up = 0 in Ω \ {0} with the same
outer data. Furthermore, we study the limit of weak solutions of (E)k when k →∞.
For p ∈ (0, 1 + 2α

N
], the limit is in�nity in Ω. For p ∈ (1 + 2α

N
, N
N−2α

), the limit is a
strongly singular solution of (E)∞.

5.1. Introduction

Let Ω be a bounded C2 domain of RN(N ≥ 2) containing 0, α ∈ (0, 1) and δ0

denote the Dirac mass at 0. In this chapter, we study the properties of the weak
solution to problem

(−∆)αu+ up = kδ0 in Ω,

u = 0 in Ωc,
(5.1)

where k > 0, p ∈ (0, N
N−2α

) and (−∆)α is the fractional Laplacian de�ned by

(−∆)αu(x) = ĺım
ε→0+

(−∆)αε u(x),

1This chapter is based on the paper: H. Chen and L. Véron, Weak and strong singular solutions

of semilinear fractional elliptic equations, accepted by Asymptotic Analysis (2013).
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where for ε > 0,

(−∆)αε u(x) = −
∫
RN

u(z)− u(x)

|z − x|N+2α
χε(|x− z|)dz

and

χε(t) =

{
0, if t ∈ [0, ε]

1, if t > ε.

In 1980, Brezis in[16] (also see [10]) obtained that the problem

−∆u+ uq = kδ0 in Ω,

u = 0 on ∂Ω
(5.2)

admits a unique solution uk for 1 < q < N/(N − 2), while no solution exists when
q ≥ N/(N − 2). Later on, Brezis and Véron in [18] proved that the problem

−∆u+ uq = 0 in Ω \ {0},
u = 0 on ∂Ω

(5.3)

admits only the zero solution when q ≥ N/(N−2). When 1 < q < N/(N−2), Véron
in [100] described all the possible singular behaviour of positive solutions of (5.3). In
particular he proved that this behaviour is always isotropic (when (N+1)/(N−1) ≤
q < N/(N − 2) the assumption of positivity is unnecessary) and that two types of
singular behaviour occur:

(i) either u(x) ∼ cNk|x|2−N as x→ 0 and k can take any positive value; u is said to
have a weak singularity at 0, and actually u = uk,

(ii) or u(x) ∼ cN,q|x|−
2
q−1 as x → 0; u is said to have a strong singularity at 0, and

u = u∞ := ĺımk→∞ uk.

In a recent work, Chen and Véron [39] derived that for 1 + 2α
N
< p < N

N−2α
, the

problem
(−∆)αu+ up = 0 in Ω \ {0},

u = 0 in Ωc
(5.4)

admits a solution us satisfying

ĺım
x→0

us(x)|x|
2α
p−1 = cp, (5.5)

for some cp > 0. Moreover us is the unique positive solution of (5.4) in the class set
of

0 < ĺım inf
x→0

u(x)|x|
2α
p−1 ≤ ĺım sup

x→0
u(x)|x|

2α
p−1 < +∞. (5.6)
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We say that u is a weakly singular solution of (5.4) if ĺım supx→0 |u(x)||x|N−2α < +∞,
or strongly singular solution if ĺımx→0 |u(x)||x|N−2α = +∞.

We also in [40] obtained that there exists a unique weak solution to the problem

(−∆)αu+ g(u) = ν in Ω,

u = 0 in Ωc,
(5.7)

where g is a subcritical nonlinearity, ν is a Radon measure in Ω. In the fractional
framework, the de�nition of weak solution is given as follows.

De�nition 5.1.1 A function u ∈ L1(Ω) is a weak solution of (5.7) if g(u) ∈
L1(Ω, ραdx) and ∫

Ω

[u(−∆)αξ + g(u)ξ]dx =

∫
Ω

ξdν, ∀ξ ∈ Xα, (5.8)

where ρ(x) = dist(x,Ωc) and Xα ⊂ C(RN) is the space of functions ξ satisfying:

(i) supp(ξ) ⊂ Ω̄,

(ii) (−∆)αξ(x) exists for all x ∈ Ω and |(−∆)αξ(x)| ≤ C for some C > 0,

(iii) there exist ϕ ∈ L1(Ω, ραdx) and ε0 > 0 such that |(−∆)αε ξ| ≤ ϕ a.e. in Ω, for
all ε ∈ (0, ε0].

According to Theorem 4.1.1 in chapter 4 with g(s) = |s|p−1s and ν = kδ0, we
have following result for problem (5.1).

Proposition 5.1.1 Assume that p ∈ (0, N
N−2α

). Then for any k > 0, problem (5.1)
admits a unique weak solution uk satisfying

Gα[kδ0]−Gα[(Gα[kδ0])p] ≤ uk ≤ Gα[kδ0] in Ω. (5.9)

Moreover, (i) uk is positive in Ω;
(ii) {uk}k is a sequence increasing functions, i.e.

uk(x) ≤ uk+1(x), ∀x ∈ Ω. (5.10)

Here Gα[·] is the Green operator de�ned by

Gα[ν](x) =

∫
Ω

Gα(x, y)dν(y), ∀ν ∈M(Ω, ρα), (5.11)

where Gα is the Green kernel of (−∆)α in Ω× Ω. By monotonicity of {uk}k,

u∞(x) := ĺım
k→∞

uk(x), ∀x ∈ RN \ {0} (5.12)
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and then u∞(x) ∈ R+ ∪ {+∞} for x ∈ RN \ {0}.
Our purpose in this chapter is to do further study on the properties of uk, in-

cluding the regularity and the limit of uk, which is the unique weak solution of (5.1).

Theorem 5.1.1 Assume that 1+ 2α
N
≥ 2α

N−2α
, p ∈ (0, N

N−2α
), uk is the weak solution

of (5.1) and u∞ is given by (5.12).

Then uk is a classical solution of (5.4). Furthermore,
(i) if p ∈ (0, 1 + 2α

N
),

u∞(x) =∞, ∀x ∈ Ω; (5.13)

(ii) if p ∈ (1 + 2α
N
, N
N−2α

),
u∞ = us,

where us is the solution of (5.4) satisfying (5.5).

The result of part (i) indicates that there is no strongly singular solution to
problem (5.4) for p ∈ (0, 1+ 2α

N
), which is di�erent from the result for Laplacian case.

This phenomenon comes from the fact that the fractional Laplacian is a nonlocal
operator, which requires the solution to belong to L1(Ω), therefore no barrier can
be constructed for p < 1 + 2α

N
. On the contrary, part (ii) points out that u∞ is the

least strongly singular solution of (5.4).

Next we consider the case 1 + 2α
N
< 2α

N−2α
. It occurs only when

√
5− 1

4
N < α < 1, N = 2, 3.

In this situation, it is obvious that N
2α
< 1 + 2α

N
. Now we state our second theorem

as following.

Theorem 5.1.2 Assume that 1 + 2α
N
< 2α

N−2α
, p ∈ (0, N

N−2α
), uk is the weak solution

of (5.1) and u∞ is given by (5.12).

Then uk is a classical solution of (5.4). Furthermore,
(i) if p ∈ (0, N

2α
), then

u∞(x) =∞, ∀x ∈ Ω;

(ii) if p ∈ (1 + 2α
N
, 2α
N−2α

), then u∞ is a classical solution of (5.4) and there exist
ρ0 > 0 and c0 > 0 such that

c0|x|−
(N−2α)p
p−1 ≤ u∞ ≤ us, ∀x ∈ Bρ0(0) \ {0}; (5.14)

(iii) if p = 2α
N−2α

, then u∞ is a classical solution of (5.4) and there exist ρ0 > 0 and
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c1 > 0 such that

c1
|x|−

(N−2α)p
p−1

(1 + | log(|x|)|)
1
p−1

≤ u∞ ≤ us, ∀x ∈ Bρ0(0) \ {0}; (5.15)

(iv) if p ∈ ( 2α
N−2α

, N
N−2α

), then
u∞ = us,

where us is the solution of (5.4) satisfying (5.5)

We note that Theorem 5.1.1 and Theorem 5.1.2 do not provide description of
u∞ in the region

U :=
{

(α, p) ∈ (0, 1)× (1, N
N−2

) : 1 + 2α
N
< 2α

N−2α
, N

2α
≤ p ≤ 1 + 2α

N

}⋃{
(α, p) ∈ (0, 1)× (1, N

N−2
) : 1 + 2α

N
≥ 2α

N−2α
, p = 1 + 2α

N

}
,

which is region (IV ) and the segment p = 1+ 2α
N
, see the pictures N = 2 and N = 3.

5.2. Preliminaries

The purpose of this section is to give the estimates for Gα[(Gα[δ0])p], comparison
principle and stability theorem. We denote by Br(x) the ball centered at x with
radius r and Br := Br(0).

Lemma 5.2.1 Assume that Ω is a bounded C2 domain of RN containing 0 and
r = 1

4
mı́n{1, dist(0, ∂Ω)}. Then there exists c2 > 1 such that

(i) for p ∈ (0, 2α
N−2α

),

Gα[(Gα[δ0])p] ≤ c2 in Br \ {0};
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(ii) for p = 2α
N−2α

,

Gα[(Gα[δ0])p] ≤ −c2 ln |x| in Br \ {0};

(iii) for p ∈ ( 2α
N−2α

, N
N−2α

),

Gα[(Gα[δ0])p] ≤ c2|x|2α−(N−2α)p in Br \ {0}.

Proof. We observe that there exists c3 > 1 such that

Gα[δ0](x) ≤ c3|x|2α−NχΩ(x), x ∈ RN \ {0} (5.16)

and for all x, y ∈ RN with x 6= y,

Gα(x, y) ≤ c3|x− y|2α−NχΩ(x)χΩ(y).

Then we derive that for x ∈ Br \ {0},

Gα[(Gα[δ0])p](x) ≤ cp+1
3

∫
BR

1
|y−x|N−2α

1
|y|(N−2α)pdy

≤ cp+1
3 |x|N−(N−2α)(p+1)

∫
B R
|x|

1
|z−ex|N−2α

1
|z|(N−2α)pdz

≤ c4|x|2α−(N−2α)p(
∫ R
|x|

2 s−1+2α−(N−2α)pds+ 1),

(5.17)

where c4 > 1, ex = x
|x| and R = máxz∈∂Ω |z|.

For p ∈ (0, 2α
N−2α

), we observe that 2α − (N − 2α)p > 0 and it follows by (5.17)
that for x ∈ Br \ {0},

Gα[(Gα[δ0])p](x) ≤ c4|x|2α−(N−2α)p[ 1
2α−(N−2α)p

( R|x|)
2α−(N−2α)p + 1]

≤ c5, for some c5 > 1.

For p = 2α
N−2α

, we observe that 2α− (N − 2α)p = 0 and it follows by (5.17) that
for x ∈ Br \ {0},

Gα[(Gα[δ0])p](x) ≤ c4(
∫ R
|x|

2 s−1ds+ 1)

≤ −c4 ln |x|+ c4 lnR + c4.

For p ∈ ( 2α
N−2α

, N
N−2α

), we observe that 2α − (N − 2α)p < 0 and it derives by
(5.17) that for x ∈ Br \ {0},

Gα[(Gα[δ0])p](x) ≤ c4|x|2α−(N−2α)p(
∫∞

2
s−1+2α−(N−2α)pds+ 1)

≤ c6|x|2α−(N−2α)p,

for some c6 > 1. The proof is completed. 2
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Theorem 5.2.1 Suppose that O is a bounded domain of RN , p > 0, the functions
u1, u2 are continuous in Ō and satisfy

(−∆)αu1 + |u1|p−1u1 ≥ 0 in O and (−∆)αu2 + |u2|p−1u2 ≤ 0 in O.

Assume more that u1 ≥ u2 a.e. in Oc.

Then u1 > u2 in O or u1 ≡ u2 a.e. in RN .

Proof. The proof refers to [33, Theorem 2.3] (see also [26, Theorem 5.2]). 2

The following stability result is given by Theorem 2.2 in [33].

Theorem 5.2.2 Suppose that O is a bounded C2 domain and h : R → R is
continuous. Assume that {un} is a sequence of functions, uniformly bounded in
L1(Oc, dy

1+|y|N+2α ), satisfying

(−∆)αun + h(un) ≥ fn (resp (−∆)αun + h(un) ≤ fn ) in O

in the viscosity sense, where {fn} are continuous functions in O. If there holds

(i) un → u locally uniformly in O,
(ii) un → u in L1(RN , dy

1+|y|N+2α ),

(iii) fn → f locally uniformly in O,
then

(−∆)αu+ h(u) ≥ f (resp (−∆)αu+ h(u) ≤ f ) in O

in the viscosity sense.

5.3. Regularity

In this section, we prove that any weak solution of (5.1) is a classical solution of
(5.4). To this end, we introduce an auxiliary lemma.

Lemma 5.3.1 Assume that w ∈ C2α+ε(B̄1) with ε > 0 satis�es

(−∆)αw = h in B1,

where h ∈ C1(B̄1). Then for β ∈ (0, 2α), there exists c7 > 0 such that

‖w‖Cβ(B̄1/4) ≤ c7(‖w‖L∞(B1) + ‖h‖L∞(B1) + ‖(1 + | · |)−N−2αw‖L1(RN )). (5.18)

Proof. We denote v = wη, where η : RN → [0, 1] is a C∞ function such that

η = 1 in B 3
4

and η = 0 in Bc
1.
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Then v ∈ C2α+ε(RN) and for any x ∈ B 1
2
, ε ∈ (0, 1

4
),

(−∆)αε v(x) = −
∫
RN\Bε

v(x+ y)− v(x)

|y|N+2α
dy

= (−∆)αε w(x) +

∫
RN\Bε

(1− η(x+ y))w(x+ y)

|y|N+2α
dy.

Together with the fact of η(x+ y) = 1 for y ∈ Bε, we derive that∫
RN\Bε

(1− η(x+ y))w(x+ y)

|y|N+2α
dy =

∫
RN

(1− η(x+ y))w(x+ y)

|y|N+2α
dy =: h1(x),

thus,
(−∆)αv = h+ h1 in B 1

2
.

For x ∈ B 1
2
and z ∈ RN \B 3

4
, there holds

|z − x| ≥ |z| − |x| ≥ |z| − 1

2
≥ 1

16
(1 + |z|),

which implies that

|h1(x)| =|
∫
RN

(1− η(z))w(z)

|z − x|N+2α
dz | ≤

∫
RN\B 3

4

|w(z)|
|z − x|N+2α

dz

≤ 16N+2α

∫
RN

|w(z)|
(1 + |z|)N+2α

dz

= 16N+2α‖(1 + | · |)−N−2αw‖L1(RN ).

By [91, Proposition 2.1.9], for β ∈ (0, 2α), there exists c8 > 0 such that

‖v‖Cβ(B̄1/4) ≤ c8(‖v‖L∞(RN ) + ‖h+ h1‖L∞(B1/2))

≤ c8(‖w‖L∞(B1) + ‖h‖L∞(B1) + ‖h1‖L∞(B1/2))

≤ c9(‖w‖L∞(B1) + ‖h‖L∞(B1) + ‖(1 + | · |)−N−2αw‖L1(RN )),

where c9 = 16N+2αc8. Combining with w = v in B 3
4
, we obtain (5.18). 2

Theorem 5.3.1 Let α ∈ (0, 1) and 0 < p < N
N−2α

, then the weak solution of (5.1)
is a classical solution of (5.4).

Proof. Let uk be the weak solution of (5.1). By [40, Theorem 1.1], we have

0 ≤ uk = Gα[kδ0]−Gα[upk] ≤ Gα[kδ0]. (5.19)
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We observe that Gα[kδ0] = kGα[δ0] = kGα(·, 0) is C2
loc(Ω \ {0}). Denote by O an

open set satisfying Ō ⊂ Ω \ Br with r > 0. Then Gα[kδ0] is uniformly bounded in
Ω \Br/2, so is upk by (5.19).

Let {gn} be a sequence nonnegative functions in C∞0 (RN) such that gn → δ0 in
the distribution sense and let wn be the solution of

(−∆)αu+ up = kgn in Ω,

u = 0 in Ωc.
(5.20)

From [40], we obtain that

uk = ĺım
n→∞

wn a.e. in Ω. (5.21)

We observe that 0 ≤ wn = Gα[kgn] − Gα[wpn] ≤ kGα[gn] and Gα[gn] converges to
Gα[δ0] uniformly in any compact set of Ω\{0} and in L1(Ω), then there exists c10 > 0
independent of n such that

‖wn‖L∞(Ω\Br/2) ≤ c10k and ‖wn‖L1(Ω) ≤ c10k.

By [88, Corollary 2.4] and Lemma 5.3.1, there exist ε > 0, β ∈ (0, 2α) and positive
constants c11, c12, c13 > 0 independent of n and k, such that

‖wn‖C2α+ε(O) ≤ c11(‖wn‖pL∞(Ω\B r
2

) + ‖kgn‖L∞(Ω\B r
2

) + ‖wn‖Cβ(Ω\B 3r
4

))

≤ c12(‖wn‖pL∞(Ω\B r
2

) + ‖wn‖L∞(Ω\B r
2

) + ‖kgn‖L∞(Ω\B r
2

) + ‖wn‖L1(Ω))

≤ c13(k + kp).

Therefore, together with (5.21) and the Arzela-Ascoli Theorem, it follows that uk ∈
C2α+ ε

2 (O). This implies that uk is C2α+ ε
2 locally in Ω \ {0}. Therefore, wn → uk and

gn → 0 uniformly in any compact subset of Ω \ {0} as n→∞. We conclude that uk
is a classical solution of (5.4) by Theorem 5.2.2. 2

Corollary 5.3.1 Let uk be the weak solution of (5.1) and O be an open set satisfying
Ō ⊂ Ω \ Br with r > 0. Then there exist ε > 0 and c14 > 0 independent of k such
that

‖uk‖C2α+ε(O) ≤ c14(‖uk‖pL∞(Ω\B r
2

) + ‖uk‖L∞(Ω\B r
2

) + ‖uk‖L1(Ω)). (5.22)

Proof. By Theorem 5.3.1, uk is a solution of (5.4). By [88, Corollary 2.4] and Lemma
5.3.1, there exist ε > 0, β ∈ (0, 2α) and c15, c16 > 0 independent of k such that

‖uk‖C2α+ε(O) ≤ c15(‖uk‖pL∞(Ω\B r
2

) + ‖uk‖Cβ(Ω\B 3r
4

))

≤ c16(‖uk‖pL∞(Ω\B r
2

) + ‖uk‖L∞(Ω\B r
2

) + ‖uk‖L1(Ω)),
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which ends the proof. 2

Theorem 5.3.2 Suppose that p ∈ (1 + 2α
N
, N
N−2α

) and u∞ is given by (5.12). Then
u∞ is a classical solution of (5.4) and u∞ ≤ us in Ω \ {0}.

Proof. For p ∈ (1 + 2α
N
, N
N−2α

), there exists the solution us of (5.4) satisfying (5.5).
Then for any k > 0, there exists σ > 0 such that

uk < us in Bσ \ {0}, (5.23)

where uk is the solution of (5.1). By Theorem 5.3.1, uk is a classical solution of (5.4).
It derives by Theorem 5.2.1 that

uk < us in Ω \ {0}. (5.24)

It infers that u∞ ≤ us in Ω \ {0}.
Let O be an open set satisfying Ō ⊂ Ω \Br for 0 < r < dist(0, ∂Ω). We observe

that us ∈ L1(Ω) and us is a continuous in Ω \ {0}. By (5.22) and (5.24), there exist
c17, c18 > 0 independent of k such that

‖uk‖L1(Ω) ≤ c17 and ‖uk‖L∞(Ω\Br) ≤ c18.

Thus, there exist ε > 0 and c19 > 0 independent of k such that

‖uk‖C2α+ε(O) ≤ c19.

Together with (5.12) and the Arzela-Ascoli Theorem, it implies that u∞ belongs to
C2α+ ε

2 (O). Then u∞ is C2α+ ε
2 locally in Ω \ {0}. Therefore, by Theorem 5.2.2, we

conclude that u∞ is a classical solution of (5.4). 2

5.4. The limit of uk as k →∞

5.4.1. Basic estimates

Let d = mı́n{1, dist(0, ∂Ω)} and {rk} ⊂ (0, d
2
] be a strictly decreasing sequence of

numbers satisfying ĺımk→∞ rk = 0. Denote by {zk} the sequence of functions de�ned
by

zk(x) =

{
−d−N , x ∈ Brk ,

|x|−N − d−N , x ∈ Bc
rk
.

(5.25)
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Lemma 5.4.1 Let {ρk} be a strictly decreasing sequence of numbers such that rk
ρk
<

1
2
and ĺımk→∞

rk
ρk

= 0. Then

(−∆)αzk(x) ≤ −c1,k|x|−N−2α, ∀x ∈ Bc
ρk
,

where c1,k = −c20 ln( rk
ρk

) with c20 > 0 independent of k.

Proof. For any x ∈ Bc
ρk
, there holds

(−∆)αzk(x) = −1

2

∫
RN

zk(x+ y) + zk(x− y)− 2zk(x)

|y|N+2α
dy

= −1

2

∫
RN

|x+ y|−NχBcrk (−x)(y) + |x− y|−NχBcrk (x)(y)− 2|x|−N

|y|N+2α
dy

= −1

2
|x|−N−2α

∫
RN

δ(x, z, rk)

|z|N+2α
dz,

where δ(x, z, rk) = |z + ex|−NχBcrk
|x|

(−ex)(z) + |z − ex|−NχBcrk
|x|

(ex)(z)− 2 and ex = x
|x| .

We observe that rk
|x| ≤

rk
ρk
< 1

2
and |z ± ex| ≥ 1− |z| ≥ 1

2
for z ∈ B 1

2
, then there

exists c21 > 0 such that

|δ(x, z, rk)| = ||z + ex|−N + |z − ex|−N − 2| ≤ c21|z|2.

Therefore,

|
∫
B 1

2
(0)

δ(x, z, rk)

|z|N+2α
dz| ≤

∫
B 1

2
(0)

|δ(x, z, rk)|
|z|N+2α

dz

≤ c21

∫
B 1

2
(0)

|z|2−N−2αdz ≤ c22,

where c22 > 0 is independent of k.

For z ∈ B 1
2
(−ex), there holds

∫
B 1

2
(−ex)

δ(x, z, rk)

|z|N+2α
dz ≥

∫
Bc1

2

(−ex)

|z + ex|−NχB rk
|x|

(−ex)(z)− 2

|z|N+2α
dz

≥ c23

∫
B 1

2
(0)\B rk

|x|
(0)

(|z|−N − 2)dz

≥ −c24 ln

(
rk
|x|

)
≥ −c24 ln

(
rk
ρk

)
,
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where c23, c24 > 0 are independent of k.

For z ∈ B 1
2
(ex), we have that∫

B 1
2

(ex)

δ(x, z, rk)

|z|N+2α
dz =

∫
B 1

2
(−ex)

δ(x, z, rk)

|z|N+2α
dz.

Finally, for z ∈ O := RN \ (B 1
2
(0) ∪B 1

2
(−ex) ∪B 1

2
(ex)), we obtain that

|
∫
O

δ(x, z, rk)

|z|N+2α
dz| ≤ c25

∫
Bc1

2

(0)

|z|−N + 1

|z|N+2α
dz ≤ c26,

where c25, c26 > 0 are independent of k.

Combining these inequalities we obtain that there exists c20 > 0 independent of k
such that for x ∈ Bc

ρk
.

(−∆)αzk(x)|x|N+2α ≤ c20 ln

(
rk
ρk

)
:= −c1,k,

which ends the proof. 2

Proposition 5.4.1 Assume that

2α

N − 2α
< 1 +

2α

N
, máx{1, 2α

N − 2α
} < p < 1 +

2α

N
(5.26)

and zk is de�ned by (5.25) with rk = k−
p−1

N−(N−2α)p (ln k)−2. Then there exists k0 > 3
such that for any k ≥ k0,

uk ≥ c
1
p−1

2,k zk in Bd, (5.27)

where c2,k = c20 ln ln k and the constant c20 is from Lemma 5.4.1.

Proof. For p ∈ (máx{1, 2α
N−2α

}, 1+ 2α
N

), it follows by (??) and Lemma 5.2.1(iii) that
there exist ρ0 ∈ (0, d) and c27, c28 > 0 independent of k such that, for x ∈ B̄ρ0 \ {0},

uk(x) ≥ kGα[δ0](x)− kpGα[(Gα[δ0])p](x)

≥ c27k|x|−N+2α − c28k
p|x|−(N−2α)p+2α

= c27k|x|−N+2α(1− c28

c27

kp−1|x|N−(N−2α)p).

We choose
ρk = k−

p−1
N−(N−2α)p (ln k)−1, (5.28)
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then there exists k1 > 3 such that for k ≥ k1,

uk(x) ≥ c27k|x|−N+2α(1− c28

c27

kp−1ρ
N−(N−2α)p
k )

≥ c27

2
k|x|−N+2α, x ∈ B̄ρk \ {0}. (5.29)

Since p < 1 + 2α
N
, then 1− 2α(p−1)

N−(N−2α)p
> 0 and there exists k0 ≥ k1 such that

c27

2
kr2α

k ≥ (c20 ln ln k)
1
p−1 , (5.30)

for k ≥ k0. Thus,

c27

2
k|x|2α ≥ (c20 ln ln k)

1
p−1 , x ∈ B̄ρk \Brk .

Together with (5.25) and (5.29), we derive that

uk(x) ≥ (c20 ln ln k)
1
p−1 zk(x), x ∈ B̄ρk \Brk ,

for k ≥ k0. Furthermore, it is clear that

(c20 ln ln k)
1
p−1 zk ≤ 0 ≤ uk in Brk ∪Bc

d.

Set c2,k = c20 ln ln k, then by Lemma 5.4.1,

(−∆)αc
1
p−1

2,k zk(x) + c
p
p−1

2,k zk(x)p ≤ c
p
p−1

2,k |x|
−N−2α(−1 + |x|N+2α−Np) ≤ 0,

for any x ∈ Bd \ Bρk , since N + 2α −Np > 0 and d ≤ 1. Applying Theorem 5.2.1,
we infer that

c
1
p−1

2,k zk(x) ≤ uk(x), ∀x ∈ Bd,

which ends the proof. 2

Proposition 5.4.2 Assume that

1 <
2α

N − 2α
< 1 +

2α

N
and p =

2α

N − 2α
(5.31)

and zk is de�ned by (5.25) with rk = k−
2α

N(N−2α) (ln k)−3. Then there exists k0 > 3
such that (5.27) holds for all k ≥ k0.

Proof. By (5.9) and Lemma 5.2.1(ii), there exist ρ0 ∈ (0, d) and c30, c31 > 0 inde-
pendent of k such that for x ∈ B̄ρ0 \ {0},

uk(x) ≥ c30k|x|−N+2α + c31k
p ln |x| = c30k|x|−N+2α[1 +

c31

c30

kp−1|x|N−2α ln |x|].
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Choosing ρk = k−
2α

N(N−2α) (ln k)−2, there exists k1 > 3 such that for k ≥ k1, 1 +
c31
c30
kp−1ρN−2α

k ln ρk ≥ 1
2
and

uk(x) ≥ c30

2
k|x|−N+2α, ∀x ∈ B̄ρk \ {0}. (5.32)

Since 2α
N−2α

< 1 + 2α
N
, there holds 1− 4α2

N(N−2α)
> 0 and there exists k0 ≥ k1 such that

c30

2
kr2α

k =
c30

2
k1− 4α2

N(N−2α) (ln k)−6α ≥ (c20 ln ln k)
1
p−1

for k ≥ k0. The remaining of the proof is the same as in Proposition 5.4.1. 2

Proposition 5.4.3 Assume that

1 <
2α

N − 2α
≤ 1 +

2α

N
and 1 < p <

2α

N − 2α
, (5.33)

or

1 +
2α

N
<

2α

N − 2α
and 1 < p <

N

2α
, (5.34)

and zk is de�ned by (5.25) with rk = k−
p−1
N−2α (ln k)−1. Then there exists k0 > 3 such

that (5.27) holds for all k ≥ k0.

Proof. By (5.9) and Lemma 5.2.1(i), there exist ρ0 ∈ (0, d) and c33, c34 > 0 inde-
pendent of k such that for x ∈ B̄ρ0 \ {0},

uk(x) ≥ c33k|x|−N+2α − c34k
p

= c33k|x|−N+2α

(
1− c34

c33

kp−1|x|N−2α

)
.

Choosing ρk = k−
p−1
N−2α , there exists k1 > 3 such that for k ≥ k1, 1− c34

c33
kp−1ρN−2α

k ≥ 1
2

and
uk(x) ≥ c33

2
k|x|−N+2α, ∀x ∈ B̄ρk \ {0}. (5.35)

We observe that if 2α
N−2α

≤ 1 + 2α
N
, then 1 + 2α

N
≤ N

2α
. It infers by (5.33), (5.34) that

p < N
2α
, thus 1− (p− 1) 2α

N−2α
> 0. Therefore there exists k0 ≥ k1 such that

c33

2
kr2α

k =
c33

2
k1−(p−1) 2α

N−2α (ln k)−2α ≥ (c20 ln ln k)
1
p−1 = c

1
p−1

2,k

for k ≥ k0. The remaining of the proof is the same as in Proposition 5.4.1. 2

174



5.4.2. u∞ blows up in whole Ω

Proof of Theorem 5.1.1(i) and Theorem 5.1.2(i). We �rst prove the case
p ∈ (0, 1]. We observe that Gα[δ0],Gα[(Gα[δ0])p] > 0 in Ω. It derives by (5.9) that

uk ≥ kGα[δ0]− kpGα[(Gα[δ0])p].

Then ĺımk→∞ uk = ∞ in Ω for p ∈ (0, 1). For p = 1, we see that uk = ku1. Then
ĺımk→∞ uk =∞ in Ω by the fact that u1 > 0 in Ω.

We next prove u∞ =∞ in Ω when p ∈ (1, 1+ 2α
N

) if 1+ 2α
N
≥ 2α

N−2α
and p ∈ (1, N

2α
)

if 1 + 2α
N
< 2α

N−2α
. The proof is divided into two steps.

Step 1: We claim that u∞ = ∞ in Bd. We observe that for 1 + 2α
N
> 2α

N−2α
, Propo-

sitions 5.4.1, 5.4.2, 5.4.3 cover the region p ∈ (máx{1, 2α
N−2α

}, 1 + 2α
N

), the region
1 < 2α

N−2α
< 1 + 2α

N
along with p = 2α

N−2α
and the region 1 < 2α

N−2α
< 1 + 2α

N

along with p ∈ (1, 2α
N−2α

) respectively. For 2α
N−2α

= 1 + 2α
N
, Proposition 5.4.3 covers

the region p ∈ (1, 2α
N−2α

). So it covers p ∈ (1, 1 + 2α
N

] in Theorem 5.1.1 part (i).
When 2α

N−2α
> 1 + 2α

N
, Proposition 5.4.3 covers p ∈ (1, N

2α
) in Theorem 5.1.2 part (i).

Therefore, we have that

u∞ ≥ c
1
p−1

2,k zk in Bd

and since for any x ∈ Bd \ {0}, ĺımk→∞ c
1
p−1

2,k zk(x) =∞, we derive that

u∞ =∞ in Bd. (5.36)

Step 2: We claim that u∞ = ∞ in Ω. By the fact of u∞ = ∞ in Bd and uk+1 ≥ uk
in Ω, then for any n > 1 there exists kn > 0 such that ukn ≥ n in Bd. For any
x0 ∈ Ω \ Bd, there exists ρ > 0 such that B̄ρ(x0) ⊂ Ω ∩ Bc

d/2. We denote by wn the
solution of

(−∆)αu+ up = 0 in Bρ(x0),

u = 0 in Bc
ρ(x0) \Bd/2,

u = n in Bd/2.

(5.37)

Then by Theorem 5.2.1, we have that

ukn ≥ wn. (5.38)

Let vn = wn − nχBd/2 , then vn = wn in Bρ(x0) and

(−∆)αvn(x) + vpn(x) = (−∆)αwn(x)− n(−∆)αχBd/2(x) + wpn(x)

= n

∫
Bd/2

dy

|y − x|N+2α
, ∀x ∈ Bρ(x0),
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that is, vn is a solution of

(−∆)αu+ up = n

∫
Bd/2

dy

|y − x|N+2α
in Bρ(x0),

u = 0 in Bc
ρ(x0).

(5.39)

By direct computation,

1

c35

≤
∫
Bd/2

dy

|y − x|N+2α
≤ c35, ∀x ∈ Bρ(x0),

for some c35 > 1.

Let η1 be the solution of

(−∆)αu = 1 in Bρ(x0),

u = 0 in Bc
ρ(x0)

and then ( n
2c35 máx η1

)
1
pη1 is sub solution of (5.39) for n large enough. Then it infers

by Theorem 5.2.1 that

vn ≥ (
n

2c35 máx η1

)
1
pη1, ∀x ∈ Bρ(x0),

which implies that

wn ≥ (
n

2c35 máx η1

)
1
pη1, ∀x ∈ Bρ(x0).

Then by (5.38),
ĺım
n→∞

ukn(x0) ≥ ĺım
n→∞

wn(x0) =∞.

Since x0 is arbitrary in Ω \ Bd and combine with (5.36), it implies that u∞ =∞ in
Ω. 2

5.4.3. u∞ is a strongly singular solution

Proposition 5.4.4 Let r0 = dist(0, ∂Ω). Then
(i) if máx{1 + 2α

N
, 2α
N−2α

} < p < N
N−2α

, there exist R0 ∈ (0, r0) and c36 > 0 such that

u∞(x) ≥ c36|x|−
2α
p−1 , ∀x ∈ BR0 \ {0}; (5.40)

(ii) if 2α
N−2α

> 1 + 2α
N

and p = 2α
N−2α

, there exist R0 ∈ (0, r0) and c37 > 0 such that

u∞(x) ≥ c37

(1 + | log(|x|)|)
1
p−1

|x|−
p(N−2α)
p−1 , ∀x ∈ BR0 \ {0}; (5.41)
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(iii) if 2α
N−2α

> 1 + 2α
N

and p ∈ (1 + 2α
N
, 2α
N−2α

), there exist R0 ∈ (0, r0) and c38 > 0
such that

u∞(x) ≥ c38|x|−
p(N−2α)
p−1 , ∀x ∈ BR0 \ {0}. (5.42)

Proof. (i) Using (5.9) and Lemma 5.2.1(i) with máx{1 + 2α
N
, 2α
N−2α

} < p < N
N−2α

,
then there exist ρ0 ∈ (0, r0) and c39, c40 > 0 such that

uk(x) ≥ c39k|x|−N+2α − c40k
p|x|−(N−2α)p+2α, ∀x ∈ Bρ0 \ {0}. (5.43)

Set

ρk =

(
2(N−2α)p−2α−1 c40

c39

kp−1

) 1
(N−2α)(p−1)−2α

. (5.44)

Since (N − 2α)(p − 1) − 2α < 0, there holds ĺımk→∞ ρk = 0. Let k0 > 0 such that
ρk0 ≤ ρ0, then for x ∈ Bρk \B ρk

2
, we have that

c40k
p|x|−(N−2α)p+2α ≤ c40k

p
(ρk

2

)−(N−2α)p+2α

=
c39

2
kρ−N+2α

k ≤ c39

2
k|x|−N+2α

and

k =

(
2(N−2α)p−2α−1 c40

c39

)− 1
p−1

ρ
N−2α− 2α

p−1

k ≥ c41|x|N−2α− 2α
p−1 ,

where c41 =
(

2(N−2α)p−2α−1 c40
c39

)− 1
p−1

2(N−2α)(p−1)−2α−1. Combining with (5.40), we

obtain that

uk(x) = c39k|x|−N+2α − c40k
p|x|−(N−2α)p+2α

≥ c39

2
k|x|−N+2α ≥ c42|x|−

2α
p−1 , (5.45)

for x ∈ Bρk \B ρk
2
, where c42 = c39c41/2 is independent of k. By (5.44), we can choose

a sequence {kn} ⊂ [1,+∞) such that

ρkn+1 ≥
1

2
ρkn .

For any x ∈ Bρk0
\ {0}, there exists kn such that x ∈ Bρkn

\B ρkn
2
, then by (5.45),

ukn(x) ≥ c42|x|−
2α
p−1 .
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Together with uk+1 > uk, we derive that

u∞(x) ≥ c42|x|−
2α
p−1 , x ∈ Bρk0

\ {0}.

(ii) By (5.9) and Lemma 5.2.1(ii) with p = 2α
N−2α

, there exist ρ0 ∈ (0, r0) and
c43, c44 > 0 such that

uk(x) ≥ c43k|x|−N+2α − c44k
p| ln |x||, x ∈ Bρ0 \ {0}. (5.46)

Let {ρk} be a sequence of real numbers with value in (0, 1) and such that

c44k
p−1| ln

(ρk
2

)
| = c43

2
ρ−N+2α
k . (5.47)

Then ĺımk→∞ ρk = 0 and there exists k0 > 0 such that ρk0 ≤ ρ0. Thus, for any
x ∈ Bρk \B ρk

2
and k ≥ k0,

c43k
p| ln |x|| ≤ c44k

p| ln
(ρk

2

)
| = c43

2
kρ−N+2α

k ≤ c43

2
k|x|−N+2α.

For any x ∈ Bρk \B ρk
2
, we derive from (5.47) that

k =

(
c44

2c43

)− 1
p−1
(

ρ−N+2α
k

1 + | ln ρk|

) 1
p−1

≥ c45
|x|−

N−2α
p−1

(1 + | ln |x||)
1
p−1

,

where c45 = 2−
N−2α
p−1 ( c44

2c43
)−

1
p−1 . As a consequence,

uk(x) ≥ c43k|x|−N+2α − c44k
p| ln |x||

≥ c43

2
k|x|−N+2α ≥ c46

|x|−
p(N−2α)
p−1

(1 + | ln |x||)
1
p−1

, (5.48)

where c46 = c43c45/2 is independent of k.

By (5.47), we can choose a sequence {kn} ⊂ [1,+∞) such that

ρkn+1 ≥
1

2
ρkn .

Then for any x ∈ Bρk0
\ {0}, there exists kn such that x ∈ Bρkn

\ B ρkn
2
. By (5.48),

there holds

ukn(x) ≥ c46
|x|−

p(N−2α)
p−1

(1 + | ln |x||)
1
p−1

.
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Together with uk+1 > uk, we infer

u∞(x) ≥ c46
|x|−

p(N−2α)
p−1

(1 + | ln |x||)
1
p−1

, ∀x ∈ Bρk0
\ {0}.

(iii) By (5.9) and Lemma 5.2.1(iii) with p ∈ (1+ 2α
N
, 2α
N−2α

), there exist ρ0 ∈ (0, r0)
and c47, c48 > 0 such that

uk(x) ≥ c47k|x|−N+2α − c48k
p, ∀x ∈ Bρ0 \ {0}. (5.49)

Set

ρk =

(
c48

2c47

kp−1

)− 1
N−2α

, (5.50)

then ĺımk→∞ ρk = 0 and there exists k0 > 0 such that ρk0 ≤ ρ0. Therefore, for
x ∈ Bρk \B ρk

2
and k ≥ k0, there holds

c48k
p =

c47

2
kρ−N+2α

k ≤ c47

2
k|x|−N+2α,

which, along with (5.50), yields

k =

(
c48

2c47

)− 1
p−1

ρ
−N−2α

p−1

k ≥ c49|x|−
N−2α
p−1 ,

where c49 = 2−
N−2α
p−1 ( c48

2c47
)−

1
p−1 . Thus,

uk(x) ≥ c47k|x|−N+2α − c48k
p ≥ c47

2
k|x|−N+2α

≥ c50|x|−
p
p−1

(N−2α), (5.51)

where c50 = c47c49/2 is independent of k.

By (5.50), we can choose a sequence {kn} ⊂ [1,+∞) such that

ρkn+1 ≥
1

2
ρkn ,

Then for any x ∈ Bρk0
\ {0}, there exists kn such that x ∈ Bρkn

\B ρkn
2

and then by

(5.51),

ukn(x) ≥ c50|x|−
p(N−2α)
p−1 .

Together with uk+1 > uk, we have

u∞(x) ≥ c50|x|−
p(N−2α)
p−1 , ∀x ∈ Bρk0

\ {0},

179



which ends the proof. 2

Proof of Theorem 5.1.1 (ii) and Theorem 5.1.2 (iv). By Theorem 5.3.2, we
obtain that u∞ is a classical solution of (5.4) and u∞ ≤ us in Ω\{0}. By Proposition
5.4.4(i), there exist c36, R0 > 0 such that

c36|x|−
2α
p−1 ≤ u∞(x) ≤ us(x), x ∈ BR0 \ {0}.

Then u∞ = us, since us is unique in the class of solutions satisfying (5.6).

2

Proof of Theorem 5.1.2 (ii) and (iii). By Theorem 5.3.2, u∞ is a classical solution
of (??) and it satis�es

u∞ ≤ us in Ω \ {0}.

Then (5.15) and (5.14) follow by Proposition 5.4.4 (ii) and (iii), respectively.

2
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Capítulo 6

Semilinear fractional elliptic
equations with gradient nonlinearity
involving measures

Abstract: in this chapter 1, we study the existence of solutions to the fractional
elliptic equation (E1) (−∆)αu + εg(|∇u|) = ν in a bounded regular domain Ω
of RN(N ≥ 2), subject to the condition (E2) u = 0 in Ωc, where ε = 1 or −1,
(−∆)α denotes the fractional Laplacian with α ∈ (1/2, 1), ν is a Radon measure
and g : R+ 7→ R+ is a continuous function. We prove the existence of weak solutions
for problem (E1)-(E2) when g is subcritical. Furthermore, the asymptotic behavior
and uniqueness of solutions are described when ε = 1, ν is a Dirac mass and g(s) = sp

with p ∈ (0, N
N−2α+1

).

6.1. Introduction

Let Ω ⊂ RN(N ≥ 2) be an open bounded C2 domain and g : R+ 7→ R+ be a
continuous function. The purpose of this chapter is to study the existence of weak
solutions to the semilinear fractional elliptic problem with α ∈ (1/2, 1),

(−∆)αu+ εg(|∇u|) = ν in Ω,

u = 0 in Ωc,
(6.1)

1This chapter is based on the paper: H. Chen and L. Véron, Semilinear fractional elliptic

equations with gradient nonlinearity involving measures, accepted by Journal of Functional Analysis
(2013).
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where ε = 1 or −1 and ν ∈M(Ω, ρβ) with β ∈ [0, 2α − 1). Here ρ(x) = dist(x,Ωc)
and M(Ω, ρβ) is the space of Radon measures in Ω satisfying∫

Ω

ρβd|ν| < +∞. (6.2)

In particular, we denote Mb(Ω) = M(Ω, ρ0). The associated positive cones are re-
spectively M+(Ω, ρβ) and Mb

+(Ω). According to the value of ε, we speak of an ab-
sorbing nonlinearity the case ε = 1 and a source nonlinearity the case ε = −1. The
operator (−∆)α is the fractional Laplacian de�ned as

(−∆)αu(x) = ĺım
ε→0+

(−∆)αε u(x),

where for ε > 0,

(−∆)αε u(x) = −
∫
RN

u(z)− u(x)

|z − x|N+2α
χε(|x− z|)dz (6.3)

and

χε(t) =

{
0, if t ∈ [0, ε],

1, if t > ε.

In a pioneering work, Brezis [16] (also see Bénilan and Brezis [10]) studied the
existence and uniqueness of the solution to the semilinear Dirichlet elliptic problem

−∆u+ h(u) = ν in Ω,

u = 0 on ∂Ω,
(6.4)

where ν is a bounded measure in Ω and the function h is nondecreasing, positive on
(0,+∞) and satis�es that∫ +∞

1

(h(s)− h(−s))s−2N−1
N−2ds < +∞.

Later on, Véron [101] improved this result in replacing the Laplacian by more general
uniformly elliptic second order di�erential operator, where ν ∈ M(Ω, ρβ) with β ∈
[0, 1] and h is a nondecreasing function satisfying∫ +∞

1

(h(s)− h(−s))s−2N+β−1
N+β−2ds < +∞.

The general semilinear elliptic problems involving measures such as the equations
involving boundary measures have been intensively studied; it was initiated by Gmi-
ra and Véron [62] and then this subject has being extended in various ways, see
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[13, 14, 76, 77, 78, 79] for details and [80] for a general panorama. In a recent work,
Nguyen-Phuoc and Véron [82] obtained the existence of solutions to the viscous
Hamilton-Jacobi equation

−∆u+ h(|∇u|) = ν in Ω,

u = 0 on ∂Ω,
(6.5)

when ν ∈ Mb(Ω), h is a continuous nondecreasing function vanishing at 0 which
satis�es ∫ +∞

1

h(s)s−
2N−1
N−1 ds < +∞.

More recently, Bidaut-Véron, García-Huidobro and Véron in [12] studied the exis-
tence of solutions to the Dirichlet problem

−∆pu+ ε|∇u|q = ν, in Ω,

u = 0, on ∂Ω,
(6.6)

with 1 < p ≤ N , ε = 1 or −1, q > 0 and ν ∈Mb(Ω).

During the last years there has also been a renewed and increasing interest in the
study of linear and nonlinear integro-di�erential operators, especially, the fractional
Laplacian, motivated by great applications in physics and by important links on the
theory of Lévy processes, refer to [26, 39, 40, 33, 54, 88, 91, 92]. Many estimates
of its Green kernel and generation formula can be found in the references [15, 37].
Recently, Chen and Véron [40] studied the semilinear fractional elliptic equation

(−∆)αu+ h(u) = ν in Ω,

u = 0 in Ωc,
(6.7)

where ν ∈M(Ω, ρβ) with β ∈ [0, α]. We proved the existence and uniqueness of the
solution to (6.7) when the function h is nondecreasing and satis�es∫ +∞

1

(h(s)− h(−s))s−1−kα,βds < +∞,

where

kα,β =

{
N

N−2α
, if β ∈ [0, N−2α

N
α],

N+α
N−2α+β

, if β ∈ (N−2α
N

α, α].
(6.8)

Our interest in this chapter is to investigate the existence of weak solutions to
fractional equations involving nonlinearity in the gradient term and with Radon
measure. In order the fractional Laplacian be the dominant operator in terms of
order of di�erentiation, it is natural to assume that α ∈ (1/2, 1).
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De�nition 6.1.1 We say that u is a weak solution of (6.1), if u ∈ L1(Ω), |∇u| ∈
L1
loc(Ω), g(|∇u|) ∈ L1(Ω, ραdx) and∫

Ω

[u(−∆)αξ + εg(|∇u|)ξ]dx =

∫
Ω

ξdν, ∀ ξ ∈ Xα, (6.9)

where Xα ⊂ C(RN) is the space of functions ξ satisfying:

(i) supp(ξ) ⊂ Ω̄,

(ii) (−∆)αξ(x) exists for all x ∈ Ω and |(−∆)αξ(x)| ≤ C for some C > 0,

(iii) there exist ϕ ∈ L1(Ω, ραdx) and ε0 > 0 such that |(−∆)αε ξ| ≤ ϕ a.e. in Ω, for
all ε ∈ (0, ε0].

We denote by Gα the Green kernel of (−∆)α in Ω and by Gα[.] the associated
Green operator de�ned by

Gα[ν](x) =

∫
Ω

Gα(x, y)dν(y), ∀ ν ∈M(Ω, ρα). (6.10)

Using bounds of Gα[ν], we obtain in section 6.2 some crucial estimates which will
play an important role in our construction of weak solutions. Our main result in the
case ε = 1 is the following.

Theorem 6.1.1 Assume that ε = 1 and g : R+ 7→ R+ is a continuous function
verifying g(0) = 0 and ∫ +∞

1

g(s)s−1−p∗αds < +∞, (6.11)

where

p∗α =
N

N − 2α + 1
. (6.12)

Then for any ν ∈M+(Ω, ρβ) with β ∈ [0, 2α−1), problem (6.1) admits a nonnegative
weak solution uν which satis�es

uν ≤ Gα[ν]. (6.13)

As in the case α = 1, uniqueness remains an open question. We remark that the
critical value p∗α is independent of β. A similar fact was �rst observed when dealing
with problem (6.7) where the critical value kα,β de�ned by (6.8) does not depend on
β when β ∈ [0, N−2α

N
α].

When ε = −1, we have to consider the critical value p∗α,β which depends truly on
β and is expressed by

p∗α,β =
N

N − 2α + 1 + β
. (6.14)
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We observe that p∗α,0 = p∗α and p∗α,β < p∗α when β > 0. In the source case, the
assumptions on g are of a di�erent nature from in the absorption case, namely
(G) g : R+ 7→ R+ is a continuous function which satis�es

g(s) ≤ c1s
p + σ0, ∀s ≥ 0, (6.15)

for some p ∈ (0, p∗α,β), where c1 > 0 and σ0 > 0.

Our main result concerning the source case is the following.

Theorem 6.1.2 Assume that ε = −1, ν ∈ M(Ω, ρβ) with β ∈ [0, 2α − 1) is non-
negative, g satis�es (G) and

(i) p ∈ (0, 1), or

(ii) p = 1 and c1 is small enough, or

(iii) p ∈ (1, p∗α,β), σ0 and ‖ν‖M(Ω,ρβ) are small enough.

Then problem (6.1) admits a weak nonnegative solution uν which satis�es

uν ≥ Gα[ν]. (6.16)

In the last section of this chapter, we assume that Ω contains 0 and give pointwise
estimates of the positive solutions

(−∆)αu+ |∇u|p = δ0 in Ω,

u = 0 in Ωc,
(6.17)

when 0 < p < p∗α. Combining properties of the Riesz kernel with a bootstrap argu-
ment, we prove that any weak solution of (6.17) is regular outside 0 and is actually
a classical solution of

(−∆)αu+ |∇u|p = 0 in Ω \ {0},
u = 0 in Ωc.

(6.18)

These pointwise estimates are quite easy to establish in the case α = 1, but much
more delicate when the di�usion operator is non-local. We give sharp asymptotics
of the behaviour of u near 0 and prove that the solution of (6.17) is unique in the
class of positive solutions.

Aknowledgements. The authors are grateful to Marie-Françoise Bidaut-Véron for
useful discussions in the preparation of this work.
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6.2. Preliminaries

6.2.1. Marcinkiewicz type estimates

In this subsection, we recall some de�nitions and properties of Marcinkiewicz
spaces.

De�nition 6.2.1 Let Θ ⊂ RN be a domain and µ be a positive Borel measure in
Θ. For κ > 1, κ′ = κ/(κ− 1) and u ∈ L1

loc(Θ, dµ), we set

‖u‖Mκ(Θ,dµ) = ı́nf

{
c ∈ [0,∞] :

∫
E

|u|dµ ≤ c

(∫
E

dµ

) 1
κ′

, ∀E ⊂ Θ, E Borel

}
(6.19)

and
Mκ(Θ, dµ) = {u ∈ L1

loc(Θ, dµ) : ‖u‖Mκ(Θ,dµ) <∞}. (6.20)

Mκ(Θ, dµ) is called the Marcinkiewicz space of exponent κ, or weak Lκ-space
and ‖.‖Mκ(Θ,dµ) is a quasi-norm.

Proposition 6.2.1 [11, 43] Assume that 1 ≤ q < κ < ∞ and u ∈ L1
loc(Θ, dµ).

Then there exists c3 > 0 dependent of q, κ such that∫
E

|u|qdµ ≤ c3‖u‖Mκ(Θ,dµ)

(∫
E

dµ

)1−q/κ

,

for any Borel set E of Θ.

The next estimate is the key-stone in the proof of Theorem 6.1.1.

Proposition 6.2.2 Let Ω ⊂ RN (N ≥ 2) be a bounded C2 domain and ν ∈
M(Ω, ρβ) with β ∈ [0, 2α− 1]. Then there exists c2 > 0 such that

‖∇Gα[|ν|]‖Mp∗α (Ω,ραdx) ≤ c2‖ν‖M(Ω,ρβ), (6.21)

where ∇Gα[|ν|](x) =

∫
Ω

∇xGα(x, y)d|ν(y)| and p∗α is given by (6.12).

Proof. For λ > 0 and y ∈ Ω, we set

ωλ(y) = {x ∈ Ω \ {y} : |∇xGα(x, y)|ρα(x) > λ} , mλ(y) =

∫
ωλ(y)

dx.
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From [37], there exists c4 > 0 such that for any (x, y) ∈ Ω× Ω with x 6= y,

Gα(x, y) ≤ c4 mı́n

{
1

|x− y|N−2α
,

ρα(x)

|x− y|N−α
,

ρα(y)

|x− y|N−α

}
, (6.22)

Gα(x, y) ≤ c4
ρα(y)

ρα(x)|x− y|N−2α
,

and by Corollary 3.3 in [15], we have

|∇xGα(x, y)| ≤ NGα(x, y) máx

{
1

|x− y|
,

1

ρ(x)

}
. (6.23)

This implies that for any τ ∈ [0, 1]

Gα(x, y) ≤ c4(
ρα(y)

|x− y|N−α
)τ (

ρα(x)

|x− y|N−α
)1−τ = c4

ρατ (y)ρα(1−τ)(x)

|x− y|N−α
,

and then

|∇xGα(x, y)| ≤ c5 máx

{
ρα(y)

ρα(x)|x− y|N−2α+1
,
ρατ (y)ρα(1−τ)−1(x)

|x− y|N−α

}
. (6.24)

Letting τ = 2α−1
α

N−α
N−2α+1

∈ (0, 1), we derive

|∇xGα(x, y)|ρα(x) ≤ c5 máx

 ρ2α−1(y)ρ1−α
Ω

|x− y|N−2α+1
,
ρ

(2α−1)(N−α)
N−2α+1 (y)ρ

(2α−1)(1−α)
N−2α+1

Ω

|x− y|N−α

 .

where ρΩ = supz∈Ω ρ(z). There exists some c6 > 0 such that

ωλ(y) ⊂
{
x ∈ Ω : |x− y| ≤ c6ρ

2α−1
N−2α+1 (y) máx{λ−

1
N−2α+1 , λ−

1
N−α}

}
.

By N − 2α + 1 > N − α, we deduce that for any λ > 1, there holds

ωλ(y) ⊂ {x ∈ Ω : |x− y| ≤ c6ρ
2α−1

N−2α+1 (y)λ−
1

N−2α+1}. (6.25)

As a consequence,
mλ(y) ≤ c7ρ

(2α−1)p∗α(y)λ−p
∗
α ,

where c7 > 0 independent of y and λ.

Let E ⊂ Ω be a Borel set and λ > 1, then∫
E

|∇xGα(x, y)|ρα(x)dx ≤
∫
ωλ(y)

|∇xGα(x, y)|ρα(x)dx+ λ

∫
E

dx.
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Noting that ∫
ωλ(y)

|∇xGα(x, y)|ρα(x)dx = −
∫ ∞
λ

sdms(y)

= λmλ(y) +

∫ ∞
λ

ms(y)ds

≤ c8ρ
(2α−1)p∗α(y)λ1−p∗α ,

for some c8 > 0, we derive∫
E

|∇xGα(x, y)|ρα(x)dx ≤ c8ρ
(2α−1)p∗α(y)λ1−p∗α + λ

∫
E

dx.

Choosing λ = ρ2α−1(y)(
∫
E
dx)

− 1
p∗α yields∫

E

|∇xGα(x, y)|ρα(x)dx ≤ (c8 + 1)ρ2α−1(y)(

∫
E

dx)
p∗α−1

p∗α , ∀y ∈ Ω.

Therefore,∫
E

|∇Gα[|ν|](x)|ρα(x)dx =

∫
Ω

∫
E

|∇xGα(x, y)|ρα(x)dxd|ν(y)|

≤
∫

Ω

ρ2α−1(y)

(
ρ1−2α(y)

∫
E

|∇xGα(x, y)|ρα(x)dx

)
d|ν(y)|

≤ (c8 + 1)

∫
Ω

ρβ(y)ρ2α−1−β(y)d|ν(y)|
(∫

E

dx

) p∗α−1

p∗α

≤ (c8 + 1)ρ2α−1−β
Ω ‖ν‖M(Ω,ρβ)

(∫
E

dx

) p∗α−1

p∗α
.

(6.26)
As a consequence,

‖∇Gα[|ν|]‖Mp∗α (Ω,ραdx) ≤ c2‖ν‖M(Ω,ρβ),

which ends the proof. 2

Proposition 6.2.3 [40] Assume that ν ∈ L1(Ω, ρβdx) with 0 ≤ β ≤ α. Then for
p ∈ (1, N

N−2α+β
), there exists c9 > 0 such that for any ν ∈ L1(Ω, ρβdx)

‖Gα[ν]‖W 2α−γ,p(Ω) ≤ c9‖ν‖L1(Ω,ρβdx), (6.27)

where p′ = p
p−1

, γ = β + N
p′

if β > 0 and γ > N
p′

if β = 0.
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Proposition 6.2.4 If 0 ≤ β < 2α− 1, then the mapping ν 7→ |∇Gα[ν]| is compact
from L1(Ω, ρβdx) into Lq(Ω) for any q ∈ [1, p∗α,β) and there exists c10 > 0 such that(∫

Ω

|∇Gα[ν](x)|qdx
) 1

q

≤ c10

∫
Ω

|ν(x)|ρβ(x)dx, (6.28)

where p∗α,β is given by (6.14).

Proof. For ν ∈ L1(Ω, ρβdx) with 0 ≤ β < 2α− 1 < α , we obtain from Proposition
6.2.3 that

Gα[ν] ∈ W 2α−γ,p(Ω),

where p ∈ (1, p∗α,β) and 2α− γ > 1. Therefore, |∇Gα[ν]| ∈ W 2α−γ−1,p(Ω) and

‖∇Gα[ν]‖W 2α−γ−1,p(Ω) ≤ c9‖ν‖L1(Ω,ρβdx). (6.29)

By [49, Corollary 7.2], the embedding of W 2α−γ−1,p(Ω) into Lq(Ω) is compact for
q ∈ [1, Np

N−(2α−γ−1)p
). When β > 0,

Np

N − (2α− γ − 1)p
=

Np

N − (2α− β −N p−1
p
− 1)p

=
N

N − 2α + 1 + β
= p∗α,β.

When β = 0,

ĺım
γ→(N

p′ )
+

Np

N − (2α− γ − 1)p
=

Np

N − (2α−N p−1
p
− 1)p

=
N

N − 2α + 1
= p∗α,0.

Then the mapping ν 7→ |∇Gα[ν]| is compact from L1(Ω, ρβdx) into Lq(Ω) for any
q ∈ [1, p∗α,β). Inequality (6.28) follows by (6.29) and the continuity of the embedding
of W 2α−γ−1,p(Ω) into Lq(Ω). 2

Remark 6.2.1 If ν ∈ L1(Ω, ρβdx) with 0 ≤ β < 2α− 1 and u is the solution of

(−∆)αu = ν in Ω,

u = 0 in Ωc,

then for any q ∈ [1, p∗α,β),(∫
Ω

|∇u|qdx
) 1

q

≤ c10

∫
Ω

|ν(x)|ρβ(x)dx.
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6.2.2. Classical solutions

In this subsection we consider the question of existence of classical solutions to
problem

(−∆)αu+ h(|∇u|) = f in Ω,

u = 0 in Ωc.
(6.30)

Theorem 6.2.1 Assume h ∈ Cθ(R+)∩L∞(R+) for some θ ∈ (0, 1] and f ∈ Cθ(Ω̄).
Then problem (6.30) admits a unique classical solution u. Moreover,

(i) if f − h(0) ≥ 0 in Ω, then u ≥ 0;

(ii) the mappings h 7→ u and f 7→ u are respectively nonincreasing and nondecreas-
ing.

Proof. We divide the proof into several steps.
Step 1. Existence. We de�ne the operator T by

Tu = Gα [f − h(|∇u|)] , ∀u ∈ W 1,1
0 (Ω).

Using (6.24) with τ = 0 yields

‖Tu‖W 1,1(Ω) ≤ ‖Gα[f ]‖W 1,1(Ω) + ‖Gα[h(|∇u|)]‖W 1,1(Ω)

≤
(
‖f‖L∞(Ω) + ‖h(|∇u|)‖L∞(Ω)

)
‖
∫

Ω

Gα(·, y)dy‖W 1,1(Ω)

= c11

(
‖f‖L∞(Ω) + ‖h‖L∞(R+)

)
, (6.31)

where c11 = ‖
∫

Ω
Gα(·, y)dy‖W 1,1(Ω). Thus T maps W 1,1

0 (Ω) into itself. Clearly, if
un → u in W 1,1

0 (Ω) as n → ∞, then h(|∇un|) → h(|∇u|) in L1(Ω), thus T is
continuous. We claim that T is a compact operator. In fact, for u ∈ W 1,1

0 (Ω), we
see that f − h(|∇u|) ∈ L1(Ω) and then, by Proposition 6.2.3, it implies that Tu ∈
W 2α−γ,p

0 (Ω) where γ ∈ (N(p−1)
p

, 2α− 1) and 2α− 1 > N(p−1)
p

> 0 for p ∈ (1, N
N−2α+1

).

Since the embedding W 2α−γ,p
0 (Ω) ↪→ W 1,1

0 (Ω) is compact, T is a compact operator.

Let O = {u ∈ W 1,1
0 (Ω) : ‖u‖W 1,1(Ω) ≤ c10(‖f‖L∞(Ω) + ‖h‖L∞(R+)) }, which is a

closed and convex set of W 1,1
0 (Ω). Combining with (6.31), there holds

T (O) ⊂ O.

It follows by Schauder's �xed point theorem that there exists some u ∈ W 1,1
0 (Ω)

such that Tu = u.

Next we show that u is a classical solution of (6.30). Let open set O satisfy
O ⊂ Ō ⊂ Ω. By Proposition 2.3 in [88], for any σ ∈ (0, 2α), there exists c12 > 0
such that

‖u‖Cσ(O) ≤ c12{‖h(|∇u|)‖L∞(Ω) + ‖f‖L∞(Ω)},
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and by choosing σ = 2α+1
2
∈ (1, 2α), then

‖|∇u|‖Cσ−1(O) ≤ c12{‖h(|∇u|)‖L∞(Ω) + ‖f‖L∞(Ω)},

and then applied [88, Corollary 2.4], u is C2α+ε0 locally in Ω for some ε0 > 0. Then
u is a classical solution of (6.30). Moreover, from [40], we have∫

Ω

[u(−∆)αξ + h(|∇u|)ξ]dx =

∫
Ω

ξfdx, ∀ξ ∈ Xα. (6.32)

Step 2. Proof of (i). If u is not nonnegative, then there exists x0 ∈ Ω such that

u(x0) = mı́n
x∈Ω

u(x) < 0,

then ∇u(x0) = 0 and (−∆)αu(x0) < 0. Since u is the classical solution of (6.30),
(−∆)αu(x0) = f(x0)− h(0) ≥ 0, which is a contradiction.

Step 3. Proof of (ii). We just give the proof of the �rst argument, the proof of the
second being similar. Let h1 and h2 satisfy our hypotheses for h and h1 ≤ h2. Denote
u1 and u2 the solutions of (6.30) with h replaced by h1 and h2 respectively. If there
exists x0 ∈ Ω such that

(u1 − u2)(x0) = mı́n
x∈Ω
{(u1 − u2)(x)} < 0.

Then
(−∆)α(u1 − u2)(x0) < 0, ∇u1(x0) = ∇u2(x0).

This implies

(−∆)α(u1 − u2)(x0) + h1(|∇u1(x0)|)− h2(|∇u2(x0)|) < 0. (6.33)

However,

(−∆)α(u1 − u2)(x0) + h1(|∇u1(x0)|)− h2(|∇u2(x0)|) = f(x0)− f(x0) = 0,

contradiction. Then u1 ≥ u2.

Uniqueness follows from Step 3. 2

6.3. Proof of Theorems 6.1.1 and 6.1.2

6.3.1. The absorption case

In this subsection, we prove the existence of a weak solution to (6.1) when ε = 1.
To this end, we give below an auxiliary lemma.

191



Lemma 6.3.1 Assume that g : R+ 7→ R+ is continuous and (6.11) holds with p∗α.
Then there is a sequence real positive numbers {Tn} such that

ĺım
n→∞

Tn =∞ and ĺım
n→∞

g(Tn)T−p
∗
α

n = 0.

Proof. Let {sn} be a sequence of real positive numbers converging to∞. We observe∫ 2sn

sn

g(t)t−1−p∗αdt ≥ mı́n
t∈[sn,2sn]

g(t)(2sn)−1−p∗α
∫ 2sn

sn

dt

= 2−1−p∗αs−p
∗
α

n mı́n
t∈[sn,2sn]

g(t)

and by (6.11),

ĺım
n→∞

∫ 2sn

sn

g(t)t−1−p∗αdt = 0.

Then we choose Tn ∈ [sn, 2sn] such that g(Tn) = mı́nt∈[sn,2sn] g(t) and then the claim
follows. 2

Proof of Theorem 6.1.1. Let β ∈ [0, 2α− 1), we de�ne the space

Cβ(Ω̄) = {ζ ∈ C(Ω̄) : ρ−βζ ∈ C(Ω̄)}

endowed with the norm
‖ζ‖Cβ(Ω̄) = ‖ρ−βζ‖C(Ω̄).

Let {νn} ⊂ C1(Ω̄) be a sequence of nonnegative functions such that νn → ν in sense
of duality with Cβ(Ω̄), that is,

ĺım
n→∞

∫
Ω̄

ζνndx =

∫
Ω̄

ζdν, ∀ζ ∈ Cβ(Ω̄). (6.34)

By the Banach-Steinhaus Theorem, ‖νn‖M(Ω,ρβ) is bounded independently of n. We
consider a sequence {gn} of C1 nonnegative functions de�ned on R+ such that
gn(0) = 0 and

gn ≤ gn+1 ≤ g, sup
s∈R+

gn(s) = n and ĺım
n→∞

‖gn − g‖L∞loc(R+) = 0. (6.35)

By Theorem 6.2.1, there exists a unique nonnegative solution un of (6.1) with data
νn and gn instead of ν and g, and there holds∫

Ω

(un + gn(|∇un|)η1) dx =

∫
Ω

νnη1dx ≤ C‖ν‖M(Ω,ρβ), (6.36)
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where η1 = Gα[1]. Therefore, ‖gn(|∇un|)‖M(Ω,ρα) is bounded independently of n. For

ε > 0 and ξε = (η1 + ε)
β
α − ε βα ∈ Xα which is concave in the interval [0, η1(ω̄)], where

η1(ω̄) = máxx∈Ω η1(x). By [40, Lemma 2.3 (ii)], we see that

(−∆)αξε =
β

α
(η1 + ε)

1
α (−∆)αη1 −

β(β − α)

α2
(η1 + ε)

β−2α
α

∫
Ω

(η1(y)− η1(x))2

|y − x|N+2α
dy

≥ β

α
(η1 + ε)

β−α
α ,

and ξε ∈ Xα. Since∫
Ω

(un(−∆)αξε + gn(|∇un|)ξε) dx =

∫
Ω

ξενndx,

we obtain ∫
Ω

(
β

α
un(η1 + ε)

β−α
α + gn(|∇un|)ξε

)
dx ≤

∫
Ω

ξενndx.

If we let ε→ 0, it yields∫
Ω

(
β

α
unη

β−α
α

1 + gn(|∇un|)η
β
α
1

)
dx ≤

∫
Ω

η
β
α
1 νndx.

Using [40, Lemma 2.3], we derive the estimate∫
Ω

(
unρ

β−α + gn(|∇un|)ρβ
)
dx ≤ c13‖νn‖M(Ω,ρβ) ≤ c14‖ν‖M(Ω,ρβ). (6.37)

Thus {gn(|∇un|)} is uniformly bounded in L1(Ω, ρβdx). Since un = G[νn−gn(|∇un|)],
there holds

‖|∇un|‖Mp∗α (Ω,ραdx) ≤ ‖νn‖M(Ω,ρβ) + ‖gn(|∇un|)‖M(Ω,ρβ)

≤ c15‖ν‖M(Ω,ρβ).

Since νn− gn(|∇un|) is uniformly bounded in L1(Ω, ρβdx), we use Proposition 6.2.4
to obtain that the sequences {un}, {|∇un|} are relatively compact in Lq(Ω) for
q ∈ [1, N

N−2α+β
) and q ∈ [1, p∗α,β), respectively. Thus, there exist a sub-sequence

{unk} and some u ∈ Lq(Ω) with q ∈ [1, N
N−2α+β

) such that

(i) unk → u a.e. in Ω and in Lq(Ω) with q ∈ [1, N
N−2α+β

);

(ii) |∇unk | → |∇u| a.e. in Ω and in Lq(Ω) with q ∈ [1, p∗α,β).

Therefore, gnk(|∇unk |)→ g(|∇u|) a.e. in Ω. For λ > 0, we denote

Sλ = {x ∈ Ω : |∇unk(x)| > λ} and ω(λ) =

∫
Sλ

ρα(x)dx.
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Then for any Borel set E ⊂ Ω, we have that∫
E

gnk(|∇unk |)|ρα(x)dx ≤
∫
E

g(|∇unk |)|ρα(x)dx

=

∫
E∩Scλ

g(|∇unk |)ρα(x)dx+

∫
E∩Sλ

g(|∇unk |)ρα(x)dx

≤ g̃(λ)

∫
E

ρα(x)dx+

∫
Sλ

g(|∇unk |)ρα(x)dx

≤ g̃(λ)

∫
E

ρα(x)dx−
∫ ∞
λ

g(s)dω(s),

where g̃(s) = máxt∈[0,s]{g(t)}. But∫ ∞
λ

g(s)dω(s) = ĺım
n→∞

∫ Tn

λ

g(s)dω(s).

where {Tn} is given by Lemma 6.3.1. Since |∇unk | ∈ Mp∗α(Ω, ραdx), ω(s) ≤ c16s
−p∗α

and

−
∫ Tn

λ

g(s)dω(s) = −
[
g(s)ω(s)

]s=Tn
s=λ

+

∫ Tn

λ

ω(s)dg(s)

≤ g(λ)ω(λ)− g(Tn)ω(Tn) + c16

∫ Tn

λ

s−p
∗
αdg(s)

≤ g(λ)ω(λ)− g(Tn)ω(Tn) + c16

(
Tn
−p∗αg(Tn)− λ−p∗αg(λ)

)
+

c16

p∗α + 1

∫ Tn

λ

s−1−p∗αg(s)ds.

By assumption (6.11) and Lemma 6.3.1, it follows

ĺım
n→∞

T−p
∗
α

n g(Tn) = 0. (6.38)

Along with g(λ)ω(λ) ≤ c16λ
−p∗αg(λ), we have

−
∫ ∞
λ

g(s)dω(s) ≤ c16

p∗α + 1

∫ ∞
λ

s−1−p∗αg(s)ds.

Notice that the above quantity on the right-hand side tends to 0 when λ → ∞. It
implies that for any ε > 0 there exists λ > 0 such that

c16

p∗α + 1

∫ ∞
λ

s−1−p∗αg(s)ds ≤ ε

2
,
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and δ > 0 such that ∫
E

ρα(x)dx ≤ δ =⇒ g̃(λ)

∫
E

dx ≤ ε

2
.

This proves that {gnk(|∇unk |)} is uniformly integrable in L1(Ω, ραdx). Then gnk(|∇unk |)→
g(|∇u|) in L1(Ω, ραdx) by Vitali convergence theorem. Letting nk →∞ in the iden-
tity ∫

Ω

(unk(−∆)αξ + gnk(|∇unk |)ξ) dx =

∫
Ω

νnkξdx, ∀ξ ∈ Xα,

it infers that u is a weak solution of (6.1). Since unk is nonnegative, so is u.

Estimate (6.13) is a consequence of positivity and

unk = Gα[νnk ]−Gα[gnk(|∇unk |)] ≤ Gα[νnk ].

Since ĺımnk→∞ unk = u, (6.13) follows. 2

6.3.2. The source case

In this subsection we study the existence of solutions to problem (6.1) when
ε = −1.

Proof of Theorem 6.1.2. Let {νn} be a sequence of C2 nonnegative functions con-
verging to ν in the sense of (6.34), {gn} an increasing sequence of C1, nonnegative
bounded functions de�ned on R+ satisfying (6.35) and converging to g. We set

p0 =
p+p∗α,β

2
∈ (p, p∗α,β), where p∗α,β is given by (6.14) and p < p∗α,β is the maximal

growth rate of g which satis�es (6.15), and

M(v) =

(∫
Ω

|∇v|p0dx
) 1

p0

.

We may assume that ‖νn‖L1(Ω,ρβdx) ≤ 2‖ν‖M(Ω,ρβ) for all n ≥ 1.
Step 1. To prove that for n ≥ 1,

(−∆)αun = gn(|∇un|) + νn in Ω,

un = 0 in Ωc

admits a solution un such that
M(un) ≤ λ̄,

where λ̄ > 0 independent of n.

To this end, we de�ne the operators {Tn} by

Tnu = Gα [gn(|∇u|) + νn] , ∀u ∈ W 1,p0
0 (Ω).
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On the one hand, using (6.24) with τ = 0 yields

‖Tnu‖W 1,1(Ω) ≤ ‖Gα[νn]‖W 1,1(Ω) + ‖Gα[gn(|∇u|)]‖W 1,1(Ω)

≤ c11

(
‖νn‖L∞(Ω) + ‖gn‖L∞(R+)

)
,

where c11 = ‖
∫

Ω
Gα(·, y)dy‖W 1,1(Ω). On the other hand, by (6.15) and Proposition

6.2.4, we have(∫
Ω

|∇(Tnu)|p0dx
) 1

p0

≤ c2‖gn(|∇u|) + νn‖L1(Ω,ρβdx)

≤ c2[‖gn(|∇u|)‖L1(Ω,ρβdx) + 2‖ν‖M(Ω,ρβ)] (6.39)

≤ c2c1

∫
Ω

|∇u|pρβdx+ c17σ0 + 2c2‖ν‖M(Ω,ρβ),

where c17 = c2

∫
Ω
ρβdx. Then we use Hölder inequality to obtain that(∫

Ω

|∇u|pρβdx
) 1

p

≤ (

∫
Ω

ρ
βp0
p0−pdx)

1
p
− 1
p0

(∫
Ω

|∇u|p0dx
) 1

p0

, (6.40)

where
∫

Ω
ρ
βp0
p0−pdx is bounded, since βp0

p0−p ≥ 0. Along with (6.39) and (6.40), we derive

M(Tnu) ≤ c18M(u)p + c19‖ν‖M(Ω,ρβ) + c17σ0, (6.41)

where c18 = c2c1(
∫

Ω
ρ
βp0
p0−pdx)

1
p
− 1
p0 > 0 and c19 > 0 independent of n. Therefore, if

we assume that M(u) ≤ λ, inequality (6.41) implies

M(Tnu) ≤ c18λ
p + c19‖ν‖M(Ω,ρβ) + c17σ0. (6.42)

Let λ̄ > 0 be the largest root of the equation

c18λ
p + c19‖ν‖M(Ω,ρβ) + c17σ0 = λ, (6.43)

This root exists if one of the following condition holds:

(i) p ∈ (0, 1), in which case (6.43) admits only one root;

(ii) p = 1 and c17 < 1, and again (6.43) admits only one root;

(iii) p ∈ (1, p∗α) and there exists ε0 > 0 such that máx
{
‖ν‖M(Ω,ρβ), σ0

}
≤ ε0. In that

case (6.43) admits usually two positive roots.

If we suppose that one of the above conditions holds, the de�nition of λ̄ > 0 implies
that it is the largest λ > 0 such that

c18λ
p + c19‖ν‖M(Ω,ρβ) + c17σ0 ≤ λ, (6.44)
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For M(u) ≤ λ̄, we obtain that

M(Tnu) ≤ c18λ̄
p + c19‖ν‖M(Ω,ρβ) + c17σ0 = λ̄.

By the assumptions of Theorem 6.1.2, λ̄ exists and it is larger thanM(un). Therefore,∫
Ω

|∇(Tnu)|p0dx ≤ λ̄p0 . (6.45)

Thus Tn mapsW 1,p0
0 (Ω) into itself. Clearly, if un → u inW 1,p0

0 (Ω) as n→∞, then
gn(|∇un|)→ gn(|∇u|) in L1(Ω), thus T is continuous. We claim that T is a compact
operator. In fact, for u ∈ W 1,p0

0 (Ω), we see that νn − gn(|∇u|) ∈ L1(Ω) and then,
by Proposition 6.2.3, it implies that Tnu ∈ W 2α−γ,p

0 (Ω) where γ ∈ (N(p−1)
p

, 2α − 1)

and 2α − 1 > N(p−1)
p

> 0 for p ∈ (1, N
N−2α+1

). Since the embedding W 2α−γ,p
0 (Ω) ↪→

W 1,p0
0 (Ω) is compact, Tn is a compact operator.

Let

G = {u ∈ W 1,p0
0 (Ω) : ‖u‖W 1,1(Ω) ≤ c11(‖νn‖L∞(Ω) + ‖gn‖L∞(R+))

and M(u) ≤ λ̄},

which is a closed and convex set of W 1,p0
0 (Ω). Combining with (6.31), there holds

Tn(G) ⊂ G.

It follows by Schauder's �xed point theorem that there exists some un ∈ W 1,p0
0 (Ω)

such that Tnun = un and M(un) ≤ λ̄, where λ̄ > 0 independent of n. By the same
arguments as in Theorem 6.2.1, un belongs to C2α+ε0 locally in Ω, and∫

Ω

un(−∆)αξ =

∫
Ω

gn(|∇un|)ξdx+

∫
Ω

ξνndx, ∀ξ ∈ Xα. (6.46)

Step 2: Convergence. By (6.45) and (6.40), gn(|∇un|) is uniformly bounded in
L1(Ω, ρβdx). By Proposition 6.2.3, {un} is bounded inW 2α−γ,q

0 (Ω) where q ∈ (1, p∗α,β)
and 2α − γ > 1. By Proposition 6.2.4, there exist a subsequence {unk} and u such
that unk → u a.e. in Ω and in L1(Ω), and |∇unk | → |∇u| a.e. in Ω and in Lq(Ω)
for any q ∈ [1, p∗α,β). By assumption (G), gnk(|∇unk |) → g(|∇u|) in L1(Ω). Letting
nk →∞ to have that∫

Ω

u(−∆)αξ =

∫
Ω

g(|∇u|)ξdx+

∫
Ω

ξdν, ∀ξ ∈ Xα,

thus u is a weak solution of (6.1) which is nonnegative as {un} are nonnegative.
Furthermore, (6.16) follows from the positivity of g(|∇un]). 2
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6.4. The case of Dirac mass

In this section we assume that Ω is an open, bounded and C2 domain containing
0 and u a nonnegative weak solution of

(−∆)αu+ |∇u|p = δ0 in Ω,

u = 0 in Ωc,
(6.47)

where p ∈ (0, p∗α) and δ0 is the Dirac mass at 0. We recall the following result dealing
with the convolution operator ∗ in Lorentz spaces Lp,q(RN) (see [83]).

Proposition 6.4.1 Let 1 ≤ p1, q1, p2, q2 ≤ ∞ and suppose 1
p1

+ 1
p2

> 1. If f ∈
Lp1,q1(RN) and g ∈ Lp2,q2(RN), then f ∗g ∈ Lr,s(RN) with 1

r
= 1

p1
+ 1

p2
−1, 1

q1
+ 1

q2
≥ 1

s

and there holds

‖f ∗ g‖Lr,s(RN ) ≤ 3r‖f‖Lp1,q1 (RN )‖g‖Lp2,q2 (RN ). (6.48)

In the particular case of Marcinkiewicz spaces Lp,∞(RN) = Mp(RN), the result takes
the form

‖f ∗ g‖Mr(RN ) ≤ 3r‖f‖Mp1 (RN )‖g‖Mp2 (RN ). (6.49)

Proposition 6.4.2 Assume that 0 < p < p∗α and u is a nonnegative weak solution
of (6.47). Then

0 ≤ u ≤ Gα[δ0], (6.50)

|∇u| ∈ L∞loc(Ω \ {0}) and u is a classical solution of

(−∆)αu+ |∇u|p = 0 in Ω \ {0},
u = 0 in Ωc.

(6.51)

Proof. Since 0 < p < p∗α, (6.47) admits a solution. Estimate (6.50) is a particular
case of (6.13). We pick a point a ∈ Ω \ {0} and consider a �nite sequence {rj}κj=0

such that 0 < rκ < rκ−1 < ... < r0 and B̄r0(a) ⊂ Ω \ {0}. We set dj = rj−1 − rj,
j = 1, ...κ. By (6.37) with β = 0, it follows that∫

Ω

(u+ |∇u|p) dx ≤ c20. (6.52)

Let {ηn} ⊂ C∞0 (RN) be a sequence of radially decreasing and symmetric molli�ers
such that supp(ηn) ⊂ Bεn(0) and εn ≤ 1

2
mı́n{ρ(a) − r0, |a| − r0} and un = u ∗ ηn.

Since
ηn ∗ (−∆)αξ = (−∆)α(ξ ∗ ηn)
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by Fourier analysis and∫
RN

(u(−∆)α(ξ ∗ ηn)+ ξ ∗ ηn|∇u|p)dx =

∫
RN

(u ∗ ηn(−∆)αξ + ηn ∗ |∇u|pξ)dx

because ηn is radially symmetric, it follows that un is a classical solution of

(−∆)αun + |∇u|p ∗ ηn = ηn in Ωn,
un = 0 in Ωc

n,
(6.53)

where Ωn = {x ∈ RN : dist(x,Ω) < εn}. We denote by Gα,n(x, y) the Green kernel
of (−∆)α in Ωn and by Gα,n the Green operator. Set fn = ηn − |∇u|p ∗ ηn, then
un = Gα,n[fn]. If we set fn,r0 = fnχBr0 (a), f̃n,r0 = fn − fn,r0 , we have

∂xiun(x) =

∫
Ωn

∂xiGα,n(x, y)fn(y)dy

=

∫
Ωn

∂xiGα,n(x, y)fn,r0(y)dy +

∫
Ωn

∂xiGα,n(x, y)f̃n,r0(y)dy

= vn,r0(x) + ṽn,r0(x),

where

vn,r0(x) =

∫
Br0 (a)

∂xiGα,n(x, y)fn(y)dy = −
∫
Br0 (a)

∂xiGα,n(x, y)|∇u|p ∗ ηn(y)dy

and

ṽn,r0(x) =

∫
Ωn\Br0 (a)

∂xiGα,n(x, y)fn(y)dy.

We set ρn(x) = dist(x,Ωc
n), then by (6.23) and (6.23), we have

|∂xiGα,n(x, y)| ≤ c4N máx

{
1

|x− y|N−2α+1
,

ρ−1
n (x)

|x− y|N−2α

}
.

Thus, if x ∈ Br1(a) and y ∈ Ωn \Br0(a), then ρn(x) > d1 and |x− y| > d1,

|ṽn,r0(x)| ≤ c21

∫
Ωn\Br0 (a)

fn(y)dy ≤ c20c21, (6.54)

where c21 > 0 depends on d−N+2α−1
1 , N and α. Furthermore, if x ∈ Br1(a) and

y ∈ Br0(a),

|∂xiGα,n(x, y)| ≤ c4N

|x− y|N−2α+1
. (6.55)
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We have already use the fact that y 7→ |y|2α−N−1 ∈ Lq1loc(RN) with q1 ∈ (máx{1, p}, p∗α).
Since fn is uniformly bounded in L1(Ω), there exists c22 > 0 such that

‖vn,r0‖Mq1 (Br1 (a)) ≤ c22. (6.56)

Combined with (6.54), it yields

‖|∇u|p ∗ ηn‖
M

q1
p (Br1 (a))

≤ c23. (6.57)

Next we set fn,r1 = fnχBr1 (a) and f̃n,r1 = fn − fn,r1 . Then

∂xiun = vn,r1 + ṽn,r1 ,

where

vn,r1(x) =

∫
Br1 (a)

∂xiGα(x, y)fn(y)dy = −
∫
Br1 (a)

∂xiGα(x, y)|∇u|p ∗ ηn(y)dy

and

ṽn,r1(x) =

∫
Ωn\Br1 (a)

∂xiGα(x, y)fn(y)dy

Clearly ṽn,r1(x) is uniformly bounded in Br2(a) by a constant c24 depending on the
structural constants and d2 = r1−r2. Estimate (6.55) holds if we assume x ∈ Br2(a)
and y ∈ Br1(a). Therefore

|vn,r1(x)| ≤ c4N

∫
Br1 (a)

|∇u|p ∗ ηn(y)

|x− y|N−2α+1
dy.

We derive from Proposition 6.4.1

‖vn,r1‖Mq2 (Br2 (a)) ≤ c24‖|∇u|p ∗ ηn‖
M

q1
p (Br1 (a))

,

with
1

q2

=
p

q1

+
1

q1

− 1. (6.58)

Notice that q2 > q1. Therefore

‖|∇u|p ∗ ηn‖
M

q2
p (Br2 (a))

≤ c25. (6.59)

We iterate this construction and obtain the existence of constants cj such that

‖|∇u|p ∗ ηn‖
M

qj
p (Brj (a))

≤ c̄j, ∀j = 1, 2, .... (6.60)
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We pick q1 = 1
2
(p∗α + p) if p > 1 or q1 = 1

2
(p∗α + 1) if p ∈ (0, 1]

1

qj+1

=
p

qj
+

1

q1

− 1. (6.61)

If p = 1, there exists j0 ∈ N such that qj0 > 0 and qj0+1 ≤ 0.
If p ∈ (0, p∗α) \ {1}, let ` = q1−1

q1(p−1)
, then ` = p`+ 1

q1
− 1, thus

1

qj+1

= `+ pj
(

1

q1

− `
)

= `− pj q1 − p
q1(p− 1)

. (6.62)

Therefore there exists j0 such that qj0 > 0 and qj0+1 ≤ 0. This implies

‖|∇u|p ∗ ηn‖Ls(Brj0+1 (a)) ≤ c26, ∀s <∞ (6.63)

and
‖|∇u|p ∗ ηn‖L∞(Brj0+2 (a)) ≤ c27, (6.64)

with c27 independent of n. Letting n→∞ infers

‖∇u‖L∞(Brj0+2 (a)) ≤ c
1
p

27. (6.65)

Combining this estimate with (6.50) and using [88, Corollary 2.5] which states

‖u‖Cβ(Brj0+3 (a)) ≤ c

(
‖u‖L1(RN , dx

1+|x|N+2α )

+‖u‖L∞(Brj0+2 (a)) + ‖∇u‖L∞(Brj0+2 (a))

)
,

(6.66)

for any β < 2α, we obtain that u remains bounded in C1+ε(K) for any compact set
K ⊂ Ω\{0} and some ε > 0. Using now [88, Corollary 2.4], we obtain that C2α+ε′(Ω\
{0}) for 0 < ε′ < ε. Furthermore u is continuous up to ∂Ω. As a consequence it is a
strong solution in Ω \ {0}. 2

In the next result we give a pointwise estimate of ∇u for a positive solution u of
(6.47).

Proposition 6.4.3 Assume that R = 1
2
dist(0, ∂Ω), p ∈ (0, p∗α) and u is a nonneg-

ative weak solution of (6.47). Then there exists c28 > 0 depending on R, p and α
such that

|∇u(x)| ≤ c28|x|2α−N−1, ∀x ∈ B̄R/4(0) \ {0}. (6.67)

Proof. Up to a change of variable we can assume that R = 1. For 0 < |x| ≤ 1, there
exists b ∈ (0, 1) such that b/2 ≤ |x| ≤ b. We set

ub(y) = bN−2αu(by).
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Then
(−∆)αub + bN+p(2α−N−1)|∇ub|p = 0 in Ωb := b−1Ω.

Using [88, Corollary 2.5] with β < 2α, for any a ∈ Ωb such that |a| = 3/4, there
holds

‖ub‖Cβ(B 3
16

(a)) ≤ c29

(
‖ub‖L1(RN , dx

1+|y|N+2α ) + ‖ub‖L∞(B 3
8

(a))

+bN+p(2α−N−1)‖|∇ub|p‖L∞(B 3
8

(a))

)
.

(6.68)

Furthermore, by the same argument as in Proposition 6.4.2,

‖|∇ub|p‖L∞(B 3
8

(a)) ≤ c30

∫
Ωb

|∇ub(y)|pdy = c30b
p(N+1−2α)−N

∫
Ω

|∇u(x)|pdx, (6.69)

and from (6.50) and (6.23)

u(x) ≤ Gα(x, 0) ≤ c4

|x|N−2α
=⇒ ub(y) ≤ c4

|y|N−2α
.

Then

‖ub‖L1(RN , dy

1+|y|N+2α ) ≤ c4

∫
RN

dy

|y|N−2α(1 + |y|)N+2α
= c31.

If we take β = 1, which is possible since α > 1/2, we derive

|∇ub(a)| ≤ c32 =⇒ |∇u(ba)| ≤ c−1
32 b

2α−N−1

In particular, with |b| = 4|x|/3 we derive (6.67) with c28 = c−1
32 (4

3
)2α−N−1. 2

We denote
cN,α = ĺım

x→0
|x|N−2αGα(x, 0). (6.70)

It is well known that cN,α > 0 does not depend on the domain Ω and, by the
maximum principle, Gα(x, 0) ≤ cN,α|x|2α−N in Ω \ {0}.

Theorem 6.4.1 Let Ω be an open bounded C2 domain containing 0, α ∈ (1
2
, 1) and

0 < p < p∗α. If u is a positive solution of problem (6.47) and B̄R(0) ⊂ Ω, it satis�es

(i) if 2α
N−2α+1

< p < p∗α,

0 <
cN,α
|x|N−2α

− u(x) ≤ c33

|x|(N−2α+1)p−2α
, x ∈ BR/4(0) \ {0};

(ii) if p = 2α
N−2α+1

,

0 <
cN,α
|x|N−2α

− u(x) ≤ −c33 ln(|x|), x ∈ BR/4(0) \ {0};
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(iii) if 0 < p < 2α
N−2α+1

,

0 <
cN,α
|x|N−2α

− u(x) ≤ c33, x ∈ BR/4(0) \ {0},

where c33 depends on N , p, α, R and is independent of u.
Furthermore, if 1 ≤ p < p∗α, this solution is unique.

Proof. The existence of a nonnegative weak solution is a consequence of the subrit-
icality assumption; the fact that this solution is a classical solution in Ω\{0} derives
from Proposition 6.4.2. It follows by (6.50) and (6.52) that for any x ∈ Ω \ {0},

cN,α
|x|N−2α

− u(x) ≤
∫

Ω

Gα(x, y)|∇u(y)|pdy

≤ cp28c4

∫
BR

4
(0)

|x− y|2α−N |y|p(2α−N−1)dy + c34‖∇u‖Lp(Ω)

≤ c35

∫
BR

4
(0)

|x− y|2α−N |y|p(2α−N−1)dy + 1


(6.71)

where c34, c35 > 0 depend on N , p and α. Next we assume 0 < |x| ≤ R
16
.

Case 1: 2α
N−2α+1

< p < p∗α. We can write∫
BR

4
(0)

|x− y|2α−N |y|p(2α−N−1)dy = E1 + E2

with

E1 =

∫
BR

4 (0)
\BR

8
(0)

|x− y|2α−N |y|p(2α−N−1)dy ≤ c36,

and

E2 =

∫
BR

8
(0)

|x− y|2α−N |y|p(2α−N−1)dy,

where c36 > 0 depends on N , α, p and R. Let ξ = x/|x|, then

E2 = |x|2α−p(N+1−2α)

∫
B R

8|x|
(0)

|ξ − ζ|2α−N |ζ|p(2α−N−1)dζ

≤
∫
|ζ|>2

|ξ − ζ|2α−N |ζ|p(2α−N−1)dζ

≤ cN

∫ ∞
2

(r − 1)2α−Nrp(2α−N−1)+N−1dr = c37,
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where the last inequality holds by the fact of 2α−N < 0, |ξ−ζ|2α−N ≤ (|ζ|−1)2α−N .
Thus (i) follows.

Case 2: 2α
N−2α+1

= p. We see that

E2 =

∫
B R

8|x|
(0)

|ξ − ζ|2α−N |ζ|−2αdζ,= − ln |x|+ o(1) as |x| → 0.

Thus (ii) follows.

Case 3: 0 < p < 2α
N−2α+1

. We have that

E2 =

∫
B R

8|x|
(0)

|ξ − ζ|2α−N |ζ|−2αdζ = c29|x|p(N+1−2α)−2α + o(1) when |x| → 0.

Thus (iii) follows.

Uniqueness in the case 1 ≤ p < p∗α, is very standard, since if u1 and u2 are two
positive solutions of (6.47), they satis�es

ĺım
x→0

u1(x)

u2(x)
= 1.

Then, for any ε > 0, u1,ε := (1 + ε)u1 is a supersolution which dominates u2 near 0,
it follows by the maximum principle that w := u2 − (1 + ε)u1 satis�es

(−∆)αw + |∇u2|p − |∇u1,ε|p ≤ 0

since w is negative near 0 and vanishes on ∂Ω, if it is not always negative, there would
exists x0 ∈ Ω\{0} such that w(x0) reaches a maximum and |∇u2(x0)| = |∇u1,ε(x0)|,
thus (−∆)αw(x0) ≤ 0, contradiction. 2

Remark 6.4.1 If 0 < p < 1, the nonlinearity is not convex and uniqueness does
hold only if two solutions u1 and u2 satisfy

ĺım
x→0

(u1(x)− u2(x)) = 0.
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