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Resumen

Esta tesis propone un método para construir redes de regulación causales realistas, que
tienen una tasa de falsos positivos más baja que las redes construidas con los métodos
tradicionales. La primera contribución de esta tesis es integrar información heterogénea
a partir de dos tipos de predicciones de red para determinar una explicación causal de las
co-expresiones de genes observada. La segunda contribución de esta tesis es modelar esta
integración como un problema de optimización combinatorial. Analizamos la compleji-
dad computacional de este enfoque y demostramos que este problema y mostramos que
este problema pertenece a la categoría complejidad NP-hard. Este análisis fue aceptado
en la 15a Conferencia Internacional de Verificación, Modelo de Control, e interpretación abstracta
VMCAI 2014.

Con el fin de tener una solución aproximada en un tiempo de ejecución práctico se pro-
pone también un enfoque heurístico. Esta es la tercera contribución de esta tesis. Nuestra
evaluación en E.coli muestra que la red resultante de la aplicación de este método tiene
una mayor precisión que la red de regulación putativa construida con herramientas tradi-
cionales. Una publicación sobre este tema se somete a PLoS Computational Biology.

La bacteria Acidithiobacillus ferrooxidans, que tiene importantes aplicaciones industriales,
presenta retos particulares para la determinación experimental de la red de regulación.
Usando las herramientas que hemos desarrollado hemos podido proponer una red de
regulación putativa y analizarla para poner en relevancia el papel de los reguladores cen-
trales. Esta es la cuarta contribución de esta tesis.

En una segunda parte de esta tesis exploramos cómo estas relaciones regulatorias se mani-
fiestan en un caso vinculado a la salud humana, desarrollando un método para completar
una red vinculada a la enfermedad de Alzheimer. Este trabajo fue publicado en BMC Ge-
nomics (2010).

Como addendum a esta tesis abordamos el problema matemático de diseñar sondas de
microarray. Concluimos que para predecir completamente la dinámica de hibridización
se necesita un modelo modificado para la energía de las estructuras secundarias de ADN
adherido a una superficie y proponemos un plan para determinar tal función.
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Summary

This thesis deals with the reconstruction of genetic regulation networks. It is based on the
integration of heterogeneous data from different biological sources. The last two decades
have seen an explosive growth in the size of the databases containing sequences of genes,
genomes, proteins and results gene expression experiments. In layperson terms this can
be described as a compendium of parts of a mechanism. If we describe metaphorically
a cell as a mechanical clock, the genetic information is the blueprint that describes each
one of the gears. This thesis aims to describe how these gears are interconnected and
how they interact for a given outcome. The long term goal is to describe accurately these
interactions in a way that allow us to predict the effect of a change in the mechanism and,
in principle, determine which modifications have to be made to obtain a desired result.

Formally this thesis deals with gene regulatory networks, an abstraction that describes
the interactions between regulator genes and regulated ones. Many methods have been
proposed to unveil the real regulatory network of a given organism. In this thesis we
propose a method to build realistic causal regulatory networks, in the sense that they
have a low false positive rate. In this sense our method predicts a regulatory network that
is closer to the real one than the networks built with traditional methods.

The first contribution of this thesis is to integrate heterogeneous information from two
kinds of network predictions to determine a causal explanation to all observed gene co-
expressions.

The current understanding of the cellular transcription mechanism considers that regula-
tor genes are those that code for transcription factors, that is proteins that can bind to DNA
and promote, enhance, inhibit or block the expression of other genes. Microbiological ex-
periments to determine explicitly which genes code for transcription factors and which
ones are regulated by them have resulted in a modest but important base of knowledge.
These experiments are complex and expensive, so it is not expected that the whole picture
can be determined using only these means. Instead, many bioinformatic approaches have
been considered. The experimental data, coming from model organisms, is then used
as a gold standard to evaluate the quality of the mathematical models and computational
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methods proposed in this thesis.

Some methods use differential expression data to empirically evaluate the influence be-
tween two genes by measuring the mutual information index, and then selecting as rel-
evant relationships the ones whose mutual information satisfies certain criteria defined
by each method. These methods are useful when a big number of gene expression ex-
periments results are available. One disadvantage of these methods is that they do not
determine a causal relationship. That is, we do not know which gene is the regulator and
which ones are the regulated. It may also be the case that two genes seem to be related
but they are instead regulated by a third one that is not visible in the data. The correlation
does not imply causality, there is no “physical” explanation of the observed behavior.

From the mathematical point of view the problem of determining the regulation relation-
ships from the expression data is usually underdetermined. In a given organism there are
usually in the order of thousands to tens of thousands of genes, the number of interactions
is expected to be one order of magnitude bigger, while the number of experiments is often
in the order of hundreds.

A different approach is to use the genomic sequence. We can determine which genes can
plausibly be regulators by comparing by homology their product to known transcription
factors. Each prediction of a regulator gene is characterized by a score and a p-value. The
transcription factors bind in sites that, in many cases, have been characterized either by a
consensus sequence, a regular expression or a position specific score matrix. Many tools
use these descriptions to determine putative binding sites. These binding site predictions
are also characterized by a p-value. With these predictions we can build a putative regu-
latory network connecting the predicted regulators with the genes located downstream of
the predicted binding sites. These are causal relationships: there is an oriented arc from
every regulator gene to each regulated one. The disadvantage of these methods is the low
specificity of the predictions. This putative network is usually ten to twenty times bigger
than the expected size. The majority of the regulation relationships are false positives.

To explain the dependence of expression of two given genes one must consider the fol-
lowing alternative transcriptional regulation scenarios:

(i) gene A directly regulates gene B,

(ii) gene A indirectly regulates gene B (via one or more intermediary genes), and

(iii) gene A and gene B are both co-regulated by a third gene X (directly or indirectly).

A similar approach was taken by Haverty et al. (2004) where the authors explore the idea
of grouping genes likely to be co-regulated and finding their common transcription factor
but focus their approach mainly on scenario (i), without considering alternative scenarios

vi



(ii) and (iii). Our method considers a wider set of indirect regulations, resulting in a harder
problem. In Novershtern et al. (2011), the authors also use a “physical model” to explain
the experimental evidence, using a bayesian network approach. Our method takes a dif-
ferent approach, namely an exhaustive enumeration of coherent cases, as detailed in the
following.

The second contribution of this thesis is to model this integration as a combinatorial op-
timization problem. We state the problem in formal terms as a minimization problem. We
consider the putative network built with classical tools as a weighted directed graph, with
arc weight defined as a function of the p-values of the transcription factors and binding
sites predictions. We look for the subgraphs of this putative network that are coherent
with the experimental evidence represented in the influence network and that minimize
a score function. We analyze the computational complexity of this approach and prove
that this problem is not easy. Specifically we show that this problem belongs to the NP-
hard complexity category. This analysis was accepted at the 15th International Conference
on Verification, Model Checking, and Abstract Interpretation VMCAI 2014.

In order to have an approximate solution in a practical execution time we propose also
an heuristic approach. This is the third contribution of this thesis. The proposed simpli-
fication reduces the size of the problem by considering combinations of minimal weight
paths instead of the full set of arcs. In realistic cases this reduction is significant and al-
lowed us to obtain concrete results in a toy problem in the well studied bacteria E.coli.
Our evaluation show that the network resulting of our method has better precision than
the putative regulation network built with traditional tools. A publication on this subject
is being submitted to PLoS Computational Biology.

Once these methods have been implemented we use them in a new biological case. The
bacteria Acidithiobacillus ferrooxidans, which is not a model organism and has important
industrial applications, presents particular challenges for the experimental determination
of its regulatory network. Using the tools we developed we were able to propose a pu-
tative regulation network and analyze it in order to put in relevance the role of its core
regulators. This is the fourth contribution of this thesis.

In a second part of this thesis we explore how these regulatory relationships manifest
themselves in a human health related case. Here we no longer focus on a genome scale
network reconstruction but instead in a specific pathway which is partially known and
has to be completed. Previous knowledge has shown that 55 genes are involved in the
response to perturbations in the Wnt/beta-catenine pathway, in a process which has been
described as related to the Alzheimer’s disease. In this thesis we propose to characterize
these target genes by the presence of some regulation binding sites in the upstream region
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of each gene in the human genome. In contrast to the classical classification problems
here we do not know explicitly the set of genes which are not target of this pathway.
We developed a classification scheme that extends the Classification and Regression Trees
(CART) using multiple classifiers and a voting scheme that allows us to group the known
targets and those genes which are not distinguishable from them. These new genes were
proposed for experimental validation, which confirmed the prediction. This work was
published in BMC Genomics (2010).

As an addendum to this thesis we address the mathematical problem of designing mi-
croarray probes, one of the tools used to produce the information needed for the models
described. Most of the differential expression data is measured using the microarray tech-
nique. These tools are composed of an array of probes designed to detect specific nucleic
acid molecules by spontaneous hybridization. Most of the current tools used for this de-
sign use heuristic rules proposed by Kane (2000). The exact design of these probes requires
a theoretical model of the hybridization thermodynamics of oligonucleotides bound to a
glass surface. We show that classical thermodynamical models for oligonucleotides in so-
lution are not applicable in this case. We use a modified nearest neighbor energy model
and evaluate its parameters from experimental data. We conclude that to fully predict
the hybridization dynamics a modified energy model for secondary DNA structure is re-
quired. We propose a research plan to determine such function. This new model will
allow us to design better measurement tools that will give us expression profiles with less
noise, which in turn will result in more precise interaction networks. Better measurement
tools enable better predictions of regulatory networks.
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Chapter 1

Introduction

In the last two decades molecular biologist have developed several tools to measure the
expression levels of all the genes of an organism simultaneously. When these experiments
are performed under different environmental conditions the expression levels of the genes
change. In some cases the change of expression of a gene is not independent from the
expression of other genes, we say that they are coexpressed. This effect can be quantified.

The question that arises naturally is why the expressions of two given genes are corre-
lated. To solve this question we have to consider the biological process of gene transcrip-
tion. The current understanding of the transcription mechanism introduces the concept of
transcriptional regulation, the fact that the expression of some genes can trigger or block
the expression of others. The observed gene expression correlation can then be the conse-
quence of one gene regulating another, or both being regulated by a third one.

The set of all these regulatory interactions is called a gene regulation network. The mod-
eling and simulation of genetic regulation networks constitutes an important area of re-
search in systems biology [16].

This thesis deals with genetic regulation networks. It is based on the availability of many
different sources of biological data. The last two decades have seen an explosive growth in
the size of the databases containing sequences of genes, genomes, proteins and results of
gene expression experiments. In layperson terms this can be described as a compendium
of parts of a mechanism. If we describe metaphorically a cell as a mechanical clock, the
genetic information is the blueprint that describes each one of the gears. This thesis aims
to describe how these gears are interconnected and how they interact for a given outcome.
The long term goal is to describe accurately these interactions in a way that allow us
to predict the effect of a change in the mechanism and, in principle, determine which
modifications have to be made to obtain a desired result.
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In this thesis we propose, implement and evaluate a strategy that suggests a plausible
and parsimonious regulatory network for a given organism, combining heterogeneous
data derived from its genomic DNA sequence and its gene expression under several en-
vironmental conditions. In contrast to other gene regulation network reconstruction ap-
proaches, this method does not require knocking-out genes or any other cell transforma-
tion, thus being useful for organisms where these molecular tools are not applicable.

Formally this thesis deals with gene regulatory networks, an abstraction that describes the
interactions between regulator genes and regulated ones.

In Chapter 2 we overview some of the methods that have been proposed to unveil the
real regulatory network of a given organism. Microbiological experiments to determine
explicitly which genes are regulators and which ones are regulated by them have resulted
in a modest but important base of knowledge. These experiments are not easy and expen-
sive, so it is not expected that the whole picture can be determined by these means only.
Instead, many bioinformatic approaches have been considered. The experimental data is
then used as a gold standard to evaluate the quality of the mathematical and computational
methods.

In Chapter 3 we propose an integrative approach to combine heterogeneous data and
formalize it as a combinatorial optimization problem. We state the problem in formal
terms as a minimization problem. We look for the subgraphs of the putative network that
are coherent with the experimental evidence represented in the influence network and
that minimize a global score function. We analyze the computational complexity of this
approach and prove that this problem is not easy. Specifically we show that this problem
belongs to the NP-hard complexity category.

The proposed model of network parsimony results in problems whose computational so-
lution is hard to obtain. Specifically we prove that these problems belong to the complex-
ity class NP-hard. To be able to solve them in practical time, we developed an heuristic
approach and used state-of-the-art tools to explore the solution space in an efficient way.

In order to have an approximate solution in a practical execution time we propose also
an heuristic approach. The proposed simplification reduces the size of the problem by
considering combinations of minimal weight paths instead of the full set of arcs. This
analysis was accepted for oral presentation and publication in the proceedings of the 15th
International Conference on Verification, Model Checking, and Abstract Interpretation
VMCAI 2014.

In Chapter 4 we evaluate the proposed method by applying it to the case of Escherichia
coli, a well studied bacteria, and comparing the predicted regulations against the ones
experimentally validated. The regulatory network resulting from this proposed method is
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an improvement over the off-the-shelf methods, has good topological properties and puts
in relevance the global or local role of the putative transcription factors. A publication on
this subject is in preparation to be submitted to PLoS ONE.

In Chapter 5 we apply this method to Acidithiobacillus ferrooxidans, a non-model microor-
ganism relevant in the biotechnological industry, being one of the main components of
the bacterial consortia that facilitates the bioleaching process in copper mining. This bac-
teria presents particular challenges for the experimental determination of its regulatory
network. Using the tools we developed we were able to propose a putative regulation
network and analyze it in order to put in relevance the role of its core regulators.

In a second part of this thesis, in Chapter 6 we explore how these regulatory relationships
manifest themselves in a human health related case. Specifically we look for target genes
to the Wnt/beta-catenine pathway, a process which has been described as related to the
Alzheimer’s disease. Previous knowledge has shown that 55 genes are involved in the
response to perturbations in the Wnt/beta-catenine pathway. In this thesis we propose
to characterize these target genes by the presence of some regulation binding sites in the
upstream region of each gene in the human genome. In contrast to the classical classifi-
cation problems here we do not know explicitly the set of genes which are not target of
this pathway. We developed a classification scheme that extends the Classification and
Regression Trees (CART) using multiple classifiers and a voting scheme that allows us to
group the known targets and those genes which are not distinguishable from them. These
new genes were propose for experimental validation, which confirmed the prediction.
This work was published in BMC Genomics (2010).

Finally, as an addendum, in Chapter 7 we address the mathematical problem of designing
oligonucleotides to be used as probes in microarray experiments. These tools are com-
monly used to produce the information needed for the previous models. Most of the
current tools used for this design use heuristic rules proposed by Kane (2000). The exact
design of these probes requires a theoretical model of the hybridization thermodynamics
of oligonucleotides bound to a glass surface. We show that classical thermodynamical
models for oligonucleotides in solution are not applicable in this case. We use a modi-
fied nearest neighbor energy model and evaluate its parameters from experimental data.
We conclude that to fully predict the hybridization dynamics a modified energy model
for secondary DNA structure is required. We propose a research plan to determine such
function.

3



1.1 What is gene expression?

We know that all the cells in our body share the same genetic material, but not all have
the same shape or role. Some cells are neurons, other are muscular tissue, while other are
red-cells in the blood. How can the same “program” result in such different outcomes?
In this section we describe in general terms the biological background for the rest of the
thesis and suggest an answer to this question.

All cellular organisms share some characteristics. Cells have a membrane or wall separat-
ing their interior from the environment. This membrane is made from proteins and lipids
(fat). Protein are macro-molecules with thousands of atoms. These atoms are not placed
randomly but follow a pattern. A protein is made by concatenation of smaller molecules,
called amino-acids, like a Lego puzzle. There are 20 different amino-acids found in na-
ture. Proteins are then chains of between thirty and a few thousands amino-acids. Each
amino-acid has different affinity to water molecules (some are hydrophobic, other are hy-
drophilic) so, when the protein is dissolved in water, it folds and assumes a characteristic
shape that determine its role.

Proteins play different roles in the cell. Some can act as catalyzers of chemical reactions,
these are called enzymes. Others have shapes that help in the transport of small molecules
or become pieces of larger structures. Some can bind to the DNA molecule, these will be
the focus of this thesis.

One or more molecules of DNA, called chromosomes, encode the information necessary
to build these proteins. The process of transformation from DNA to proteins is called
“Molecular Biology Dogma”. It states that some parts of the DNA, called genes, are tran-
scribed —copied— to RNA molecules which, at their turn, are translated to proteins.

In more detail the transcription process occurs when a set of specific proteins (the RNA
polymerase) bind to the chromosome, separates temporally the double-strand and copies
the sequence from one of the strands to a new RNA molecule called messenger. The
chromosome is a big macromolecule made with four types of blocks, called nucleotides.
The transcription copies this information in a one-to-one procedure. For each nucleotide
in the DNA molecule there is one nucleotide in the messenger RNA molecule.

The translation process is performed by another set of proteins (the ribosome) that builds
a new protein assembling a chain of amino-acids following the description coded in the
messenger RNA molecule. Each codon, that is a group of three RNA nucleotides, de-
termine one amino-acid. Since there are 20 amino-acids and 64 combinations of RNA
nucleotides, many different codons correspond to the same amino-acid. Usually the last
nucleotide of the codon has no effect on the resulting amino-acid. There are three codons
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that do not encode an amino-acid but signal the end of the protein, they are called stop-
codons.

Here we distinguish two big groups of living organism. Cells in the super-kingdom
Prokarya, which includes bacteria, have usually a single chromosome and the messen-
ger RNA can carry several genes that are translated together. Cells in the super-kingdom
Eukarya, that includes all multi-cellular organisms, have usually many different chromo-
somes inside an internal compartment called nucleus and the messenger RNA carries a
single gene. Moreover, the messenger RNA is modified when it traverses the nucleus
membrane: it is spliced and some internal parts are discarded.

Not all proteins are produced all times. Some are produced in specific moments in the
growth of the organism, others act in response to changes in the environment. For ex-
ample in presence of lactose the bacterium E.coli produces lactase, a protein that decom-
poses the lactose molecule into two smaller sugar molecules, that are useful for the cell
metabolism. When lactose concentration is low, then no lactase is produced, so cell en-
ergy and material are spared.

Which specific proteins are built in a given time depends on several conditions and inter-
actions, which are globally called regulation. The set of genes that can code for proteins
is called the genotype while the concentration of all molecules in a cell (in particular the
messenger RNA ones) is called the phenotype. So the genotype is the potential outcome of
a cell, versus the effective outcome that corresponds to the phenotype. Regulation is then
the mechanism that enables a fixed genotype to become different phenotypes.

1.2 Measuring gene expression

In many cases the only part of the phenotype relevant to a problem are the concentrations
of the messenger RNA molecules. In this section we describe the technical methods used
to evaluate these concentrations and their change.

1.2.1 Methods based on hybridization

Many methods for detecting and evaluating the concentration of nucleic acids are based
on a key physicochemical property. Nucleic acid molecules form spontaneously structures
with other nucleic acids. In particular DNA molecules are more stable in the double helix
configuration than when the helix is open and each strand is not paired.

If a single strand RNA or DNA molecule is exposed to other single strand DNA molecules,
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they will react and form a double strand molecule, called a duplex. This reaction is called
hybridization. Apart of duplex formation it is observed that single strand DNA or RNA
molecules can fold over themselves, like and adhesive tape that binds with itself, forming
what is called secondary structures.

In principle each nucleotide can be paired with any other nucleotide, but not all pair-
ings have the same stability. The most stable hybridizations, thus the ones that are usu-
ally found in nature, are those that follow the Watson-Creek pairing, where adenines are
matched with thymines, and cytosines with guanines. Using the standard representation
of the nucleotides with the symbols {A,C,T,G}, the Watson-Creek pairing has every A in a
strand paired to a T in the other strand, and each C paired to a G. We say that {A,T} and
{C,G} are complementary pairs.

Microarrays

One of the most used techniques for evaluating RNA concentration are the microarrays.
These are glass slides where a series of spots have been printed forming an ordered array.
Each spot contains several millions of copies of a specific DNA molecule, called probes.
These can be (a subsegment of) a gene or other DNA element that hybridizes to a sam-
ple (called target) which has been labeled with a fluorophore or other photo luminescent
element. After the hybridization reaction has completed the slide is exposed to a laser
beam that excites the fluorophore. Then the slide is scanned with a photomultiplier tube
to detect the presence of hybridized molecules. In some ranges it is expected that the sig-
nal intensity of each spot be proportional to the concentration of the corresponding RNA
molecule.

If the probes contain DNA molecules that are specific to each gene, then the relation be-
tween RNA concentration depends on the physicochemical affinity of the two nucleic acid
molecules, and on the affinity of them to other structures. If moreover the probes are not
specific to a single gene, then cross-hybridization can result in mixed signals.

Two approaches have been used to overcome this issue. Microarrays fabricated by Af-
fimetrix have two spots for each target. One is designed to be a perfect match, the other
has a mismatching nucleotide in order to match in equal conditions the target and even-
tual cross-hybridizing genes. By comparing the signal intensity of both probes the cross-
hybridization and affinity effects can be controlled.

Other strategy frequently used is to hybridize simultaneously two samples labeled with
fluorophores of different colors, typically red and green. All affinity issues will affect si-
multaneously to both samples. The slide is scanned twice, one time using a different laser
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color. Each one of the two resulting images will correspond to a sample. Comparing the
signal intensity of each probe in each image the change in RNA concentration is deter-
mined. This value is called differential expression and is normally considered to be less
noisy than absolute expression.

Microarrays are useful to detect differential expression simultaneously in a huge number
of genes. Nevertheless the signal intensity is affected by several factors, so the result is
mostly qualitative. A more precise evaluation of gene expression can be obtained using
qPCR, even in very low concentrations.

They have been used in health diagnostics [49], metagenomic sampling, monitoring of mi-
crobiological communities in the biotechnological industry [18], identification of protein-
DNA binding sites (known as CHiP-chip) and detection of single nucleotide polymor-
phisms. They are also used to perform comparative genomic hybridization, for example
to analyze the genetic diversity of a taxonomic branch [38] and in cancer research to de-
termine copy number variation, that is which regions in the chromosomes are deleted or
amplified in tumor cells versus healthy ones [70]. Microarrays have been used to physi-
cally isolate the DNA segments that need to be resequenced in whole genome sequencing
projects.

1.2.2 Methods based on sequencing

Recent developments in rapid and massive sequencing technologies have allowed an al-
ternative approach to nucleic acids quantification. Systems as Illumina or 454 can read
hundred of thousands or even millions of sequences in a short time and at reduced costs.
If the sequences correspond to messenger RNA then the relative abundance of each gene
can be estimated from the number of copies of each molecule.

One advantage of this technology versus hybridization based methods is that no prior
knowledge of the gene sequences is required. The result of the measurement will also
provide the sequence of the expressed genes. The expression level of each messenger
RNA is quantified by the number of sequenced fragments that correspond to the given
gene. This value is limited by the sequencing depth and is dependent on the expression
levels of the rest of the genes.

The analysis of these experiments has motivated the development of several statistical
algorithms with different approaches to normalization and differential expression detec-
tion.
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1.3 Regulation discovery methods

In this section we describe the main methods currently used to find possible regulatory
interactions by bioinformatic methods. We describe methods that use experimental results
from microarray data and methods that use sequence information. Their advantages and
weak points are discussed.

1.3.1 Gene influence networks

An important part of the activity of every cell is realized, carried on or facilitated by pro-
teins. These macromolecules are synthesized by the cell following sequences coded in the
genes. The genes are regions in the chromosome (a DNA macromolecule) that are read
and transcribed into messenger RNA (mRNA) each time a protein has to be produced.
This mRNA is then processed by a specific molecular machinery, the ribosome, that com-
bines amino-acids to build a protein following the recipe coded in the mRNA molecule.

In a first approach the activity of each protein can be measured indirectly by the concentra-
tion of the mRNA molecule that codes for it. This concentration is called gene expression
and can be estimated by several molecular biology tools. In particular microarrays are one
tool that allows the simultaneous measurement of the expression of all genes in the cell.
By scanning the luminescence signal of DNA probes which have been hybridized with
reporter cDNA molecules, one can get an indirect measurement of the mRNA concentra-
tion for each gene1. Under some hypothesis and ranges, the luminescence level is linearly
correlated to the mRNA concentration. Other new techniques like RNA-seq also allow for
a simultaneous measurement of the expression of all genes, with a promise of better preci-
sion. The set of the expression levels for all genes in a given condition is sometimes called
the phenotype, in the sense that it characterizes the activities of the genes and, indirectly,
the proteins in the cell.

The mathematical analysis of these experiments considers that each gene is characterized
by the vector of differential expressions through a series of environmental conditions,
time series or mutations. This vector is called expression profile and has components Xi,j

for the gene i under condition j. Many studies have used these profiles to form clusters
of genes with similar expression and then putatively characterize the role of genes with
unknown function. This is based on the observation that genes with similar expression

1In expression microarray experiments the cell membrane is broken and the cytoplasmatic RNA
molecules are retrotranscribed to fluorescence marked cDNA molecules, so that the concentration of the
first ones corresponds to the one of the last ones. The values are often normalized against a reference
mRNA concentration, which is hybridized at the same time but marked with a different color fluorosphore.
This is called differential expression.
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profiles tend to be functional related, a strategy called “guilty by association”.

In a sense this observation is purely empirical. Clustering just describes genes that have
similar responses to a set of conditions, but it does not explain why they do. In many
cases one can be interested in the prediction of how gene expression will change under a
new condition, like when a drug is used or the cell is exposed to a different environment.
In other cases one can look for identifying which genes to knock out to achieve a desired
outcome.

In such cases we need a model describing which genes interact among them and which
ones influence the expression of others. This is called the influence network of the cell. It
points to describe how do the genes change their expression, in contrast to the clustering,
that points to describe which genes change.

The distinction translates in two points. First, the expression of a gene can be influenced
by many genes simultaneously, and these relationships can be non-linear. Second, we
would like to determine the direct influences from the indirect ones.

Computational methods for influence prediction

The first approach to determine influence relationships between gene expression profiles
is the Pearson correlation coefficient, which evaluates a linear relationship between vari-
ables

Corr(Xa, Xb) =
Âj(Xa,j � X̄a)(Xb,j � X̄b)q

Âj(Xa,j � X̄a)
q

Âj(Xb,j � X̄b)
.

This index, although a natural one, is not the preferred one because it cannot detect
some non-linear relationships. Several other indices have been proposed, such as cor-
rentropy [27], MIC [76] and mutual information, which is described in this section.

Detecting non-linear influences

One of the indices that can describe non-linear relationships between expression profiles is
mutual information, which is the differential information entropy between the two vari-
ables. If Xa and Xb are the expression profiles of genes a and b, their mutual information
is defined as

MIa,b = H(Xa) + H(Xb)� H(Xa, Xb)

where H(X) is the information entropy, or Shannon entropy, of the random variable X.
When X assumes discrete values and its probability distribution is Pk = Pr(X = k), its
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information entropy is

H(X) = E(� log Pk) = �Â
k

Pk log Pk.

Unlike linear correlation, mutual information is non-zero if and only if the two variables
are statistically dependent. The mutual information is a measure of the additional infor-
mation known about one expression profile when another is known; the previous expres-
sion is equivalent to

MIa,b = H(Xa)� H(Xa|Xb).

Evaluation of Mutual Information from sample data. Empirical distribution

To evaluate mutual information we need to know the probability distribution of the ex-
pression profile of each gene, and the conjoint probability distribution of each pair of
genes. A natural approach is to build the empirical distribution, using either equal size
bins or equal count bins.

Let us consider that the expression level of a given gene i is a random variable X . Then
the expression profile Xi,j of the gene i for j = 1, . . . , n is a series of realizations of X . If the
range of the this random variable is partitioned into m disjoint intervals Bk, k = 1, . . . , m,
then each sample in the expression profile falls into a single bin. Let nk = |{Xi,j 2 Bk, j =
1, . . . , n}| be the number of samples falling on each bin. Clearly Âk nk = n.

The maximum likelihood estimation of Pk = Pr(Xj 2 Bk) is the empirical distribution
P̂ML

k = nk/n and the maximum likelihood estimator for entropy is

ĤML(X) = �
m

Â
k=1

P̂ML
k log P̂ML

k .

Unfortunately this is a biased estimator. To overcome this, in [60] the authors introduce a
bias correction term. Let m0 = |{Bk : Bk 6= ?}| be the number of non-empty bins. Then
the Miller and Madow unbiased entropy estimator is

ĤMM(X) = �
m

Â
k=1

P̂ML
k log P̂ML

k +
m0 � 1

2n
.

Another approach to solve the bias is to approach Pk by a mixture of an uniform dis-
tribution and the empirical one. This is called the shinkage method [82]. The estimated
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distribution depends on a l parameter:

P̂(l)
k = l

1
m

+ (1� l)
nk
n

.

The parameter l is chosen as to minimize the mean square difference between the distri-
bution and the data

MSE(P(l)) = E

 
m

Â
k=1

(P̂(l)
k � Pk)

!2

.

This kind of evaluation is only feasible when the number of samples is big enough so that
the real distribution is appropriately approximated.

Evaluation of Mutual Information from sample data. Normal distribution

If we assume that the gene expression profiles follow a multinormal distribution then
we have an explicit expression for the entropy. Let Xa be a random variable following a
normal distribution N(µ, s

2
a ). Let f(x) be its probability distribution function. Then

ln f(x) = �1
2

ln 2ps

2
a �

(x� µ)2

2s

2
a

and the information entropy is then

H(X) = E(� ln f(x)) =
1
2

ln 2ps

2
a +

Var(x)
2s

2
a

=
1
2

ln 2pes

2
a .

A similar derivation shows that for two variables Xa and Xb following a multinormal
distribution, the conjoint entropy is

H(Xa, Xb) =
1
2

ln
⇣
(2pe)2(s

2
a s

2
b � s

2
ab)
⌘

.

Therefore the mutual information can be expressed as

MI(X, Y) =
1
2

ln

 
s

2
a s

2
b

s

2
a s

2
b � s

2
ab

!
= �1

2
ln(1� Corr2(Xa, Xb)).

Separating direct from indirect influences.

The first usage of mutual information to describe gene associations was made in [13]
under the name of Relevance Networks. Two genes were deemed associated when their

11



Relevance
Network ARACNe C3NET

Figure 1.1: Example of influence networks predicted by Relevance Networks, ARACNe
and C3NET. The first method keeps all edges over a threshod. ARACNe breaks every
triangle where the indirect relationship is stringer than the direct one. Finally C3NET
only keeps, for each vertex, the edge with higher mutual information.

mutual information was greater than a threshold I0 defined by a permutation test. The
authors “hypothesize that the higher mutual information is between two genes, the more
likely it is they have a biological relationship.” Posterior works showed that this method
yields a high number of false positives, because mutual information can be significantly
high for indirect interactions like the case of a transcriptional cascade.

Several method have been proposed to prune the graph produced by Relevance Networks
and overcome this weakness. One approach is based on the data-processing inequality
which states that if genes a and c interact only through a third one b, then

MIa,c  min{MIa,b, MIb,c}.

This is the base of the strategy used by ARACNe [53]. For each triangle in the graph
produced by Relevance Networks, this method determines the edge with lower mutual
information and, if this value respect to the others is below a given tolerance, the edge is
discarded.

A stronger condition is imposed by C3NET, which keeps for each node only the edge with
the greatest mutual information. The number of edges in the resulting graph is then upper
bounded by the number of vertices. Examples of graphs produced by these three methods
can be seen in Fig. 1.1.

A different approach is proposed by the strategy Maximum Relevance Minimum Redundancy
(MRNET), an iterative algorithm that identifies, for each gene Xa, a set S of potentially
associated genes. Initially S = ?. In each iteration MRNET determines the gene Xb that
maximizes

MI(Xa, Xb)� 1
|S| Â

Xc2S
MI(Xb, Xc)
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The gene Xb that maximizes this expression with a value over a threshold is added to the
set S. This expression corresponds perfectly to the idea behind MRNET. The first term of
this expression focus on finding the associated genes that are of maximal relevance for Xa,
while the second term focus on minimizing the redundancy with respect to the associated
genes already in S.

1.3.2 Gene regulation networks

In the previous section we discussed some of the tools that can be used to describe the
interactions among genes looking only to the phenotypical characteristics, i.e. considering
only the effects of the transcription. In this section we discuss the genotype approach,
describing the physical interactions predicted by the genomic DNA sequence.

Some proteins can bind to the chromosome and enhance or inhibit the transcription of the
genes. These proteins are called transcription factors (TF). Thus, the expression of a gene
coding for a transcription factor will have an effect on the expression of other genes or
itself. The behavior of the cell, in terms of the concentrations of mRNA molecules, is then
the result of the dynamic interaction between transcription factor encoding genes.

A transcriptional regulatory network (sometimes said gene regulatory network) is the
description of the regulation relationships between the genes of a given organism. Some
genes are regulators; when they are expressed, they enhance or inhibit the expression of
other genes, the regulated ones. Some regulators can regulate themselves. Reconstructing
a transcriptional regulatory network is thus determining which genes are regulators and
which ones are regulated by them.

Molecular biologists have been able to experimentally isolate DNA bound proteins, de-
termine the genes that encode them and the sequence of their binding site (TFBS). These
experiments are limited in scale and can not be applied to all organisms [78], so the es-
timated number of transcription factors and binding sites is greater than the currently
validated ones. The challenges posed by the in vivo or in vitro experimental methods en-
courage the usage of in silico bioinformatic approaches.

It has been observed that TF tend to have some specific 3D structures (like the so called
helix-turn-helix or zinc-fingers) which are conserved between taxonomically related or-
ganisms. There are many tools that can be used to determine which genes can code for a
TF, by orthology or homology.

The current biological model of transcriptional regulation in bacteria considers that genes
are transcribed by the action of a protein complex called RNA polymerase (RNAP), which
binds to two regions located at 35 and 10 nucleotides from the transcription start site.
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Figure 1.2: Biological model of transcriptional regulation in bacteria. RNA polymerase
(RNAP) binds normally to “–35” and “–10” boxes. Transcription factor R is a repres-
sor in (A) and (B), blocking the RNAP binding or the transcription elongation, respec-
tively. Transcription factor A is an activator in (C) and (D), facilitating the RNAP binding.
Adapted from [78].

Once RNA polymerase is bound to the DNA molecule it copies the nucleotide sequence to
a mRNA molecule and moves through the chromosome until it finds a physical limitation
like a hairpin structure or another protein bound to it. The transcription process may copy
one or more genes, that form what is called an operon, that is a set of contiguous genes2

that are transcribed in a single mRNA molecule.

If a transcription factor binds near the “–35” and “–10” boxes it may inhibit or repress
the expression of the downstream genes. In other cases it may enhance the affinity of the
upstream region to RNAP and increase the expression of the downstream gene. See Fig.
1.2.

According to this biological model, a regulator gene is one that codes for a TF, and it
regulates the genes in the operon immediately downstream of the TFBS.

Computational method for regulation prediction

Since gene sequences tend to be conserved between taxonomically related organisms,
and since transcription factors are characterized by their structural properties, it is nat-
ural to determine which genes can encode for a transcription factor using homology to
other known transcription factors. There are several public databases that describe the
sequences of all bacterial transcription factors and patterns that characterize their binding
sites, as seen in Table 1.1.

The scenario is not so straightforward in the case of locating the binding site. These are
regions whose length is in most cases 16 to 20 nucleotides, although they can be as small

2Some authors define operon as a polycistronic transcript, that is, a mRNA molecule with two or more
genes. For simplicity here we consider monocistronic transcripts as an operon of length 1.
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Table 1.1: Databases of bacterial transcription factors and their binding sites.
Name URL Description

RegulonDB http://regulondb.ccg.unam.mx/ transcriptional regulation (TFs, TFBSs) in E.
coli (literature data and predictions)

DBTBS http://dbtbs.hgc.jp transcriptional regulation (TFs, TFBSs) in B.
subtilis (literature data and predictions)

CoryneReg-
Net

https://www.cebitec.uni-bielefeld.de
/groups/gi/software/coryneregnet/

TFs and TRNs in Corynebacteria

MtbRegList http://mtbreglist.dyndns.org/
MtbRegList/

analysis of gene expression and regulation
data in Mycobacterium tuberculosis

cTFbase http://cegwz.com/ compararative genomics of TFs in
Cyanobacteria

DBD http://transcriptionfactor.org TF and families prediction (all genomes)
ExtraTrain http://www.era7.com/ExtraTrain extragenic regions and TFs in prokaryotes
BacTregula-
tors

http://www.bactregulators.org/ TFs in prokaryotes (specific TF families)

Sentra http://compbio.mcs.anl.gov/sentra sensory signal transduction proteins
PRODORIC http://prodoric.tu-bs.de prokaryotic gene regulation (several specific

organisms)
RegTrans-
Base

http://regtransbase.lbl.gov TFBSs and regulatory interactions in
prokaryotes (literature data and predictions)

TRACTOR http://www.tractor.lncc.br/ TRNs and TFBSs in g-proteobacteria

as 12 or as long as 30 nucleotides. A single transcription factor can have many binding
sites in different regions of the chromosome. These binding sites can have a significant
variation in their sequence, which may be related to different affinities to the transcription
factor, in turn related to different roles in the regulation [97].

Several biochemical experimental techniques, as ChIP-chip, allow to determine the site
in the genome where a specific transcription factor binds. By comparing and aligning all
contexts in the genome where a transcription factor binds for a given condition, we can
determine the common characteristics of all binding sites for this factor. Thus, a common
model called motif can be determined for the transcription factor binding site. Algorithms
for this task use Gibbs sampling [14, 84, 88], expectation maximization (MEME) [6], etc.

One usual way to characterize the sequences of all the binding sites for the same tran-
scription factor is in the shape of a frequency matrix whose element Ni,j corresponds to
the number of times the nucleotide i 2 {A, C, T, G} was observed in position j of the
binding site sequence. From this characterization, an usual approach for detecting pu-
tative binding sites in the DNA sequence is to consider these empirical frequencies as a
probability distribution for the words that can be a binding site. Moreover, it is usually
assumed that the probabilities of each BS position are independent. Under these hypoth-
esis several tools use the principle of likelihood ratio to build a position weight matrix
(PWM) that is used to evaluate a matching score for any word in the DNA sequence.
Higher scores correspond to words that better match the binding sites characterization for
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the given transcription factor. A statistical model is used to quantify the probability of at-
taining any given score in a random sequence, thus the score of a given word is translated
to a p-value. Some of the computational tools that implement this approach are MEME/
MAST, MEME/FIMO and RSAtools. The main drawback of this approach is their low
specificity [56]. Many of the detected binding sites are not functional. Often, the number
of putative binding sites is ten times greater than the number expected by the biological
theory.

All these tools can be combined to build a putative transcriptional regulatory network.
Transcription factor can be putatively determined by homology to gene sequences in a
database using Blast [3] or by orthology to other organisms using OrthoMCL. This func-
tional assignment is also characterized by a p-value, although this value is not included in
the standard output but instead has to be derived from the E-value. The binding sites of
these transcription factor can be detected using FIMO on the sequences of the upstream
region of each operon. Only the transcription factors and binding sites predictions having
a p-value under a threshold are considered as putative regulations.

These relationships can then be represented in a bipartite oriented graph. Nodes are ei-
ther genes or transcription factors, when a gene is predicted to encode a transcription
factor then there is an arc from the gene to the transcription factor, when a binding site is
detected upstream a gene then there is an edge from the transcription factor to the puta-
tively regulated gene. Each arc has as attribute the p-value of the corresponding pattern
matching algorithm.

The main advantage of this strategy for GRN reconstruction versus influence networks is
that the putative GNR describes a physical link between the TF and the regulated genes,
where causality is explicit. In contrast influence networks do not provide any indication
of causality. On the other side the main disadvantage of GRN reconstruction is the high
number of false positives, due mainly to the low specificity of the BS location procedure.
Of course, these methods can only be applied when the genomic sequence is known.

1.3.3 Our proposal: an integrative method

Each of the two approaches previously described has strong and weak points. The in-
fluence graph is based on experimental evidence but does not provide a causal explana-
tion for the gene associations that it describes. The putative gene regulation network can
provide explanations, but there are too many of them, not necessarily supported by the
experimental evidence.

In this work we propose to combine both predictions to build a third one of a reasonable
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size and supported by the evidence. Given an influence network built with any of the
methods previously described, we will say that each pair of genes that are connected
by an edge in this graph form a pair of associated genes, that is genes whose behavior
through several conditions seem to be related.

Our proposal is then to find, among all the subgraphs of the putative transcriptional regu-
latory network that “explain” the influence network, those subgraphs that minimize some
criteria. If there are several subgraphs matching this condition, that will allow us to reason
on them, enumerating each of them, their union or their intersection.

In [29], the authors explore the idea of grouping genes likely to be co-regulated and find-
ing their common transcription factor but focus their approach mainly on direct regula-
tions, without considering indirect or shared regulation. More recently, in [65], all these
scenarios are implicitly considered. Here, the idea is to find physical interactions (gene-
protein, protein-protein, and protein-gene) to explain relations determined from expres-
sion data in a modular network.
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Chapter 2

From Correlations to causalities:
Theoretical Insights

Our goal is to combine sequence based putative regulation predictions with relationships
described by an influence network in order to build a final network of a reasonable size
and supported by the evidence. In this chapter we present a theoretical approach to
perform this combination and we study its complexity and resolution with constraint-
programming approaches. This work was accepted for oral presentation and publication
in the proceedings of the 15th International Conference on Verification, Model Checking, and
Abstract Interpretation VMCAI 2014.

2.1 Arc minimal subgraphs

To implement the proposed idea we define an initial directed graph G = (V ,A0) repre-
senting a putative regulation network built using the methods described in Section 1.3.2,
we define also the set O of gene associations that derive from an influence network result-
ing from any of the methods discussed in Section 1.3.1 and characterize the subgraphs of
G that are coherent with the evidence in O. The first approach, that we formalize in this
section, is to enumerate all minimal coherent subgraphs, that is, whose set of arcs is such
that if an arc is deleted then the subgraph is no longer able to explain the evidence in O.
It can be said that the minimal subgraphs do not have any “extra” arc.

In the following, V represents the set of all genes and A0 represents all putative regulatory
relationships. We also have a collection O ✓ P2(V) whose elements are subsets of V with
cardinality 2, that is, unordered pairs {t, t0} of distinct vertices (i.e. t 6= t0). This collection
represents the pairs of co-regulated genes.
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In order to obtain parsimonious regulatory graphs we need to compute subgraphs with a
minimal set of arcs that can explain all experimental evidence. Thus, the solutions to our
problem are completely defined by their set of arcs A ✓ A0.

Let G = (V ,A0) be a directed graph on vertex set V and arc set A0. A graph G = (V , A) is
a subgraph of G = (V ,A0), if A ✓ A0.

Now, we model the condition that for each pair of co-regulated genes our subgraph should
contain a common regulator.

Definition 1 Given an arc set A ✓ A0 we say that a vertex s 2 V precedes a vertex t 2 V
in A if there exists an oriented path from s to t using only arcs in A. In particular every
node v 2 V precedes itself.

Definition 2 We say that an arc set A is O-coherent if each pair in O satisfies the prece-
dence condition:

8{t, t0} 2 O 9s 2 V , s precedes t in A ^ s precedes t0 in A.

We also say that the subgraph G = (V , A) is O-coherent when its arc set A is O-coherent.

We assume that A0 is O-coherent. Notice that, for each {t, t0} 2 O, if A contains a directed
path from t to t0 then the precedence condition is automatically satisfied by choosing s = t.

The idea is to describe the subsets of A0 which are O-coherent. Notice that the property of
being O-coherent is monotone: if A is O-coherent then every graph containing A is also
O-coherent. Thus, we are interested in enumerating only the subgraphs that are minimal
in the following sense:

Definition 3 We say that an O-coherent arc set A is minimal O-coherent if for any a 2 A
we have that A� a is not O-coherent. We say that the subgraph G = (V , A) is minimal
O-coherent when its arc set A is minimal O-coherent.

Checking if a subgraph G is O-coherent can be done in polynomial time. For each {t, t0} 2
O we build the sets of all predecessors of t and all predecessors of t0 in linear time. If the
intersection is not empty for all pair {t, t0} 2 O then G is O-coherent. Therefore, it is easy
to find one minimal O-coherent subgraph of G. By iteratively removing arcs of G while
the condition is maintained we obtain a minimal graph in quadratic time. Consider the
following problem:

ENUMCOHE(G,O): Given an oriented graph G and a set of pairs of vertices
O ⇢ P2(V), enumerate all minimal O-coherent subgraphs of G.
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Figure 2.1: (A) Example of the path conjugation problem, which enumerates all mini-
mal subgraphs connecting pairs of vertices in M = {(s1, t1), (s2, t2), (s3, t3)}. One such
subgraph is the induced by the vertices a, b and d. (B) Reduction of the path conjugation
problem to ENUMCOHE. Additions of the s0i nodes guarantees that each si is connected to
the corresponding ti, as described in the text. The latter problem is thus as complex as the
first.

We want to analyze the computational complexity of this enumeration problem. Notice
that the number of minimal O-coherent subgraphs of G can grow exponentially (consider,
for instance, A0 a complete graph and O containing only one pair of vertices). Therefore,
just printing the result would take exponential time in terms of the input size. In these
cases, it is more appropriate to use total time to analyze the complexity of enumeration.
That is, the time is measured in terms of the size of the input and the number of solutions
[34]. Thus, we say that ENUMCOHE can be done in polynomial total time if we can enu-
merate the solutions in polynomial time in the size of G, O and the number of minimal
O-coherent subgraphs of G.

Unfortunately, the problem ENUMCOHE is hard in the following sense: enumerate all
minimal O-coherent subgraphs cannot be done in polynomial total time unless P = NP.
To prove this, we reduce ENUMCOHE to the path conjunction problem:

PATHCONJ(G,P): Given an oriented graph G = (V ,A0) and a set of pairs of
vertices M = {(si, ti), i = 1 . . . n} ✓ V ⇥ V , enumerate all minimal subsets
A ✓ A0 such that for each (si, ti) 2M, there is an oriented path from si to ti.

Here minimality is in the subset sense: if A is minimal then it connects all pairs in M and
for each a 2 A there is at least one pair in M that is not connected in A � a. In [37] is
shown that PATHCONJ cannot be enumerated in polynomial total time unless P = NP.

Theorem 1 Problem ENUMCOHE cannot be solved in polynomial total time unless P=NP.

PROOF. Problem PATHCONJ can be reduced to ENUMCOHE in linear time. Let us consider
G = (V,A0) and M = {(si, ti), i = 1 . . . n} an instance of PATHCONJ. We can create an
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instance for ENUMCOHE to solve this problem. Define the graph G0 = (V [V0,A0 [A0
0)

where V0 = {s0i, i = 1 . . . n} and A0
0 = {(s0i, si), i = 1 . . . n}. Consider the set of pairs

O = {(s0i, ti), i = 1 . . . n}. Clearly each minimal O-coherent subgraph of G0 is exactly the
set of arcs in A0 union a minimal subgraph connecting the pairs inM. Then, there is a one-
to-one correspondence between the solutions of ENUMCOHE(G0,O) and the solutions of
PATHCONJ(G,P). ⇤

In conclusion the enumeration of all minimal O-coherent subgraphs is expensive. Any
computational implementation to solve exactly this problem will have an execution time
which increases exponentially with the size of the initial graph (i.e. the putative gene
regulation network), the set of the observed gene associations (i.e. the influence graph),
and the number of solutions. In realistic cases the number of solutions is often huge so the
enumeration of all minimal O-coherent subgraphs does not appear to be feasible for the
realistic cases that are of biological interest.

Fortunately we can enrich the input data if we consider G as a weighted graph. Then we
can limit the enumeration to those subgraphs realizing the minimum total weight. In the
following section we will explore this approach in a way that has biological meaning.

2.2 Minimum weight subgraphs

The graphs that represent putative regulatory networks are built using pattern matching
techniques that determine when a given gene can be a regulator and which genes can be
regulated by it based on the DNA sequence of the genome, as described is Section 1.3.2.
This prediction is characterized by the score of each gene versus the reference pattern, and
by a p-value that states the probability of observing that score under the null hypothesis
that there is no regulation relationship. A lower p-value corresponds to a higher confi-
dence that the arc corresponds to a real regulatory relationships.

We will assume that each arc in A0 has a positive weight that increases with the p-value
of the arc. Then each subgraph has a global weight, and a parsimonious regulatory graph
is any O-coherent subgraph of minimum weight. The idea is that these minimum weight
subgraphs will have the “essential” relationships that explain the observed gene associa-
tions. If a relationship can be discarded keeping the O-coherence, then it will be pruned
and will not be included in the final subgraph. If two arcs can alternative satisfy the
O-coherent condition, then the minimization choses the most plausible one, i.e. the one
with lower p-value.

Let w : A0 ! N be the function that assigns a non-negative weight to each arc inA0. Then
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Figure 2.2: (A) Schema of Steiner Directed Weighted Tree (SDWT), which enumerates
all minimum weight subgraphs connecting s to vertices in T = {t1, t2, t3}. For example the
tree induced by nodes a and d connects s with T with minumum weight. (B) Reduction
of Steiner Directed Weighted Tree problem to MINCOHE. The latter problem is thus as
complex as the first one.

the weight (or cost) of an arc-set A is W(A) = Âa2A w(a). We are interested in finding a
O-coherent subgraph of minimum weight. It is easy to see that any minimum weight
O-coherent subgraph is also arc minimal, but not all arc minimal subsets have minimum
weight. Unfortunately, even finding one O-coherent subgraph of minimum weight is NP-
hard. We define formally this problem as MINCOHE :

MINCOHE(G,O): Given an oriented graph G and a set of pairs of vertices
O ⇢ P2(V), find a O-coherent subgraph of minimum weight.

To prove MINCOHE is NP-hard, we introduce the Steiner Weighted Directed Tree problem:

SWDT(G, s, T): Given an oriented weighted graph G = (V ,A0), a vertex s 2 V
and a set of vertices T = {ti, i = 1 . . . n} ✓ V , find a subgraph of minimum
weight that connect s to ti for all ti 2 T.

The problem SWDT is NP-hard. Indeed, the undirected case of this problem corresponds,
in their decision version, to one of Karp’s 21 NP-complete problems [36]. Since SWDT is
an extension of the undirected case, it is also NP-hard.

Theorem 2 Problem MINCOHE is NP-hard.

PROOF. We reduce SWDT problem to MINCOHE in a similar way than in the previous
result. Let us consider G = (V ,A0), s 2 V and T = {ti, i = 1 . . . n} an instance of
SWDT. Define the graph G0 = (V [ {s0},A0 [ {(s0, s)}) where s0 is a new vertex and
(s0, s) is a new arc with weight zero. Consider the set of pairs O = {(s0, ti), i = 1 . . . n}.
Clearly a solution of MINCOHE(G0,O) is exactly the singleton {(s0, s)} union a solution
of SWDT(G, s, T).

22



a

b

c

d

e

f

g

jk2
22

2

2

Figure 2.3: Example graph where MINCOHE solution is not formed by a minimum
weight v-shapes. If O = {{d, g}, {e, f }} then the MINCOHE solution has weight 7 and
uses the arcs (a, b), (b, d), (b, e), (a, c), (c, f ), (c, g). An O-short solution has weight 8. In
contrast, when O = {{d, e}, { f , g}}, both solutions coincide. Arcs have weight 1 unless
otherwise declared.

In conclusion even if this minimization takes advantage of the weights to define a smaller
set of subgraphs as the parsimonious explanation of the observed gene associations, this
is still a hard problem.

2.3 Subgraphs with minimum weight paths

We define a v-shape as the union of two directed paths starting from the same vertex with
no other vertex in common. Formally,

Definition 4 Let s, t and t0 be three vertices of G with t 6= t0. Let P be a directed path from
s to t and let P0 be a directed path from s to t0 such that P and P0 have only vertex s in
common. Then, we say that Q = P [ P0 is a v-shape. We also say that vertices t and t0 are
v-connected by Q.

Clearly if an arc set A ✓ A0 is O-coherent, then for each pair {t, t0} in O there is at least
one v-shape in G(V , A) that v-connects t and t0. Thus, if we consider local parsimony
principle, for each pair {t, t0} in O we should include in our solution A a v-shape of
minimum weight v-connecting t and t0.

Notice that this is not necessarily the case for the solutions given by MINCOHE. Indeed,
a solution G of MINCOHE has minimum global weight, but this does not imply that every
pair is v-connected by a minimum weight v-shape, as can be seen in Fig. 2.3.

In the following, we would like to consider only O-coherent subgraphs that contain a
minimum weight v-shape for each pair in O. We first define the collection of all v-shapes
of minimum weight connecting two vertices in our initial graph G(V ,A0):

Definition 5 Given a graph G(V ,A0), we call Short-v-shape(t, t0) to the collection of all
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v-shapes that v-connect t and t0 and are of minimum weight in A0.

Now, we can define the solutions that contain a minimum weight v-shape for every pair
in O.

Definition 6 Given a O-coherent arc set A ✓ A0, we say that A is O-short if the subgraph
G(V , A) contains a v-shape in Short-v-shape(t, t0) for each pair {t, t0} 2 O.

We are interested in finding the O-coherent subgraphs that are O-short. In particular
we are interested in those O-short having minimum weight. We propose the following
problem:

MINWEIGHTOSHORT(G,O) : Given an oriented graph G = (V ,A0) and a set
of pairs of vertices O ⇢ P2(V), find a O-short subgraph of minimum weight.

The following result is proved by a reduction from the NP-complete problem HITTING SET

[see 23]: given a set of elements A = {1, . . . , m} and a collection of subsets I = {I1, . . . , In}
of A, find a minimum cardinality subset of elements H ✓ A such that H

T
Ii 6= ∆, 8i =

1, . . . , n.

Theorem 3 The problem MINWEIGHTOSHORT is NP-hard.

PROOF. Let A and I = {I1, . . . , In} be an instance of hitting set problem. We consider the
the graph G(V , A), where for each element a in A there are two vertices a and a0 and an
arc from a to a0 of weight one. Additionally, for each set Ii with i 2 {1, . . . , n} there are
two vertices Ii and I0i . Moreover, if a belongs to Ii, then there are two arcs of weight zero:
one from vertex Ii to vertex a and one from vertex a0 to vertex I0i . If we define the set O by
including all the pairs of vertices {Ii, I0i}, then clearly any O-short subgraph of minimum
weight correspond to a minimum cardinality hitting set of the original problem.

Although this problem is theoretically hard, it could be much more tractable than the pre-
vious formulations for the instances that we are interested. Indeed, the combinatorial ex-
plosion of feasible solutions can be controlled if the size of the collections Short-v-shape(t, t0)
is small for every pair {t, t0} in O. That is, the number of v-shapes of minimum weight
between each pair of vertices in O is small.

Thus, we can use a complete enumeration of unions generated by choosing one v-shape
for each pair. At the end we select those unions of minimum weight.

Notice that, for a pair {t, t0} 2 O, computing the set Short-v-shape(t, t0) can be done in
polynomial total time by using some clever modification of the Dijkstra’s algorithm [17].
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2.4 Implementation and test run

One of the tools that can handle reasonably well combinatorial NP-hard problems is An-
swer Set Programming (ASP), a declarative problem solving paradigm in logic program-
ming and knowledge representation, which offers a rich yet simple modeling language
with high-performance Boolean constraint solving capacities.

In ASP, a problem encoding is a set of logic programming rules which are first trans-
formed into an equivalent propositional logic program and then processed by an answer
set solver, which searches for specific solutions to the rules, called Answer Sets. ASP al-
lows solving search problems of high complexity [7].

We encode biological constraints as disjunctive rules that can be processed by ASP, that is
as a finite set of rules of the form

a1, . . . , al :- al+1, . . . , am, not am+1, . . . , not an

where an are atoms. Intuitively, atoms can be viewed as facts and rules as deductions to
determine new facts. Rules shall be read from right to left: at least one fact in the part
before :- (called “head”) shall be true whenever all facts in the right part (called “body”)
are satisfied. Consequently, the rule with empty head :-a means that the fact a is always
false.

The answers set of a logical program is a set of atoms that satisfy all the logical rules,
together with minimality and stability properties, ensuring that every atom appears in at
least one rule.

The declarativity of ASP strictly separates a problem’s representation from the algorithms
used for solving it. Hence, it is sufficient to specify the problem in focus without any men-
tion of algorithmic details. ASP is particularly suited for modeling knowledge-intense
combinatorial problems involving incomplete, inconsistent, and changing information.
As such, it offers various reasoning modes, including different forms of model enumer-
ation, intersection or union, as well as multi-criteria and -objective optimization. To this
end, we used the Potassco solving tools [24] providing powerful cutting-edge technology.

2.4.1 Answer Set Programming representation

We use Answer set programming to code MINCOHE(G,O). The program, shown in Fig
2.4, is straight-forward. Predicates arc(X,Y,W) represent the arcs in A0 and their weights,
and predicates coexp(X,Y) represent the elements of O. The optimization is carried on in
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% Input: arc(X,Y,W) means there is an arc between X and Y with weight W
% Input: coexp(X,Y) means that {X,Y} are in O
% each arc can be used or not
{ used_arc(X,Y,W) } :- arc(X,Y,W).
% node X precedes node Y
precedes(X,Y) :- used_arc(X,Y,_).
precedes(X,Y) :- precedes(X,Z), used_arc(Z,Y,_).
% motif M is an explanation of operons A and B linked by coexpressedOp/2
v_connected(A,B) :- precedes(M,A), precedes(M,B), coexp(A,B).
% all coexpressed vertices should be v-connected
:- coexp(A,B), not v_connected(A,B).
% look for minimum global weight
#minimize [used_arc(X,Y,W)=W].

Figure 2.4: ASP code to find a solution of MINCOHE.

% Input: vshape(I,A,B) when v-shape I is in short-v-shapes(A,B)
% Input: arcInVshape(I,X,Y,W) when v-shape I has an arc (X, Y) w/weight W
% Input: coexp(X,Y) means that {X,Y} are in the set O
% only one v-shape is chosen for each {t,t’} in O
1{ chosen(I) : vshape(I,A,B) }1 :- coexp(A,B).
% consider the arcs that are part of the chosen v-shape
chosenArc(X,Y,W) :- arcInVshape(I,X,Y,W), chosen(I).
% minimize the global weight
#minimize [chosenArc(_,_,W) = W].
#hide.
#show chosenArc/3.

Figure 2.5: ASP code to find a solution of MINCOHE.

two stages. First the solver looks for the minimum possible global weight. Then, once
this value has been determined, we look for all the answer sets that realize the minimum
values. In each answer set the predicates used_arc(X,Y,W) indicate the arcs of a subgraph
satisfying MINCOHE(G,O).

We also code MINWEIGHTOSHORT(G,O) using ASP, combining with traditional pro-
gramming using the following strategy. For each pair of nodes {t, t0} 2 O we determine
the set Short-v-shape(t, t0) using the get.all.shortest.paths of the igraph library [15] in
the R environment [73], and assigned an unique id to each one. We coded these v-shapes
using the ASP predicate vshape(ID,T1,T2) and the arcs that form them with the pred-
icate arcInVshape(ID,X,Y,W). In this encoding ID corresponds to the v-shape id, T1,T2
correspond to t, t0 2 O, X,Y identify the extremes of an arc, and W is its weight.

Using these predicates, and the rules in Figure 2.5, we can use ASP solver unclasp to find
the minimum weight. A second execution can then find all answer sets (i.e. subgraphs)
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realizing that optimal weight. Notice that this encoding can describe the same graph as
combinations of different v-shapes. In the default configuration each of these combina-
tions is considered a different answer.

We use the meta-commands #hide, #show chosenArc/3 and the clasp option project to
collapse all answer sets with the same chosenArc/3 predicates (i.e. the same subgraph)
into a single answer.

We conclude that the proposed algorithm can enumerate MINWEIGHTOSHORT solutions
in practical time, providing a way to explore a relevant subset of the O-coherent sub-
graphs significantly faster than solving MINCOHE. In many cases, when the graph repre-
sents a real regulatory network, it is reasonable to expect that many co-expressed nodes
in are connected by short v-shapes. In such cases the proposed algorithm can be used as
an heuristic for MINCOHE.

When it is relevant to find an exact solution of MINCOHE, the heuristic solution is still use-
ful. First, it provides a good upper bound for the global weight, which can speed up the
search for the optimal value. Second, a solution of MINWEIGHTOSHORT is a graph that
can be used as a starting point for the combinatorial exploration required by MINCOHE.
We think this can be applied using the new heuristic ASP solver hclasp in the Potassco
suite.

2.4.2 Confirmation of the complexity in a real case

To evaluate in practice these approaches we consider an example problem on a well
known organism. Using the genomic DNA sequence of the bacteria E.coli and patterns
described in RegulonDB we applied classical tools like Blast [3] and MEME/FIMO [6] to
build a putative regulatory network which we represent by a graph playing the role of G.
We determined the set O of pairs of co-expressed genes by estimating the mutual infor-
mation among them using the Pearson method and choosing the relevant relationships
by the MRNET criteria [58]. The graph G contains 2215 vertices and 11,584 arcs, the set O
contains 9442 pairs of vertices.

The execution of the program coding MINCOHE(G,O) (Fig. 2.4) is highly time-consuming.
After a week of clock time we reached the time limit of our cluster scheduler without find-
ing the minimum weight value.

We then proceeded to solve MINWEIGHTOSHORT(G,O) using the previously described
strategy. The graph data is preprocessed in R to determine all minimum cost v-shapes
in less than 1 min. Using the rules in Fig. 2.5, we used ASP solver unclasp to find the
minimum weight. Execution time was 15 seconds. A second execution was performed to
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find all answer sets realizing that weight. This took 80 minutes and resulted in a unique
graph.

2.5 Conclusion

In this chapter we described the key ideas we will develop in the next chapters. The
combinatorial problems presented in this chapter allow us to prune an initial graph, that
is, to determine a subgraph that provides a parsimonious explanation to the observed
experimental data. In the practical applications the graph G is given by the operons of an
organism and the putative regulations between them predicted by classical in silico tools.
The set O will be given by the edges of an influence network.

We proved that the global optimization MINCOHE is a NP-hard problem involving a big
number of variables, thus not being practical for an exact computation. In the real example
we considered the search space can be as big as 211584, which can not be explored in any
reasonable time unless additional constraints are imposed.

We also proposed the simplified approach MINWEIGHTOSHORT that, although is still a
NP-hard problem, reduces the search space to sizes that can be handled. This strategy is
then feasible. In the next chapter we will explore the biological validation of this pruning
method.
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Chapter 3

Biological evaluation and benchmark on
E.coli

Now we can apply this combinatorial optimization programs to a realistic problem. To
evaluate the biological value of the subgraphs produced by the MINWEIGHTOSHORT(G,O)
strategy we will use the genomic sequence of E.coli and patterns from transcription factor
databases to build a putative regulatory network that will be represented by G. We will
also use a series of microarray results to determine the influence network whose edges are
represented in O.

E.coli is probably the most studied bacteria and many of its transcription factors and bind-
ing sites have been proved experimentally, so we can represent them in a graph that serves
as a gold standard. The evaluation will compare the gold standard versus the initial pu-
tative graph and the resulting pruned graph. The idea is to recover most of the arcs in the
gold standard and, at the same time, reduce the number of new arcs, even if some of these
“false positives” may indeed be new discoveries.

The results of this chapter are being submitted to PLoS Computational Biology journal.

3.1 Protocol to build the initial graph G

The first input element for MINWEIGHTOSHORT is the graph G = (V ,A0) and the arc
weight function w. We call this the initial graph, which will be pruned by our method.

The set of vertices V will be composed by E.coli operons, as defined below. The arc set
A0 will be defined by pattern matching transcription factors and their binding sites as
described in public databases. In order to evaluate the robustness of the method we will
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build two initial graphs using two different databases. Using them we build two bipartite
graphs connecting genes and proteins. The genes that code for transcription factors are
connected by an arc to their products. These transcription factor proteins are connected
to the genes they may regulate. Each arc gets a discrete weight and the graph is contacted
twice: first to a gene-to-gene non-bipartite oriented graph, then to an operon-to-operon
graph.

W2 W4
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W2 W4
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Figure 3.1: Schema of the initial graph G building protocol. We use Blast to compare
the annotated genes in a genome, represented by triangles in (1), to known transcrip-
tion factors. (2) Using MEME/FIMO and known PWM matrices, we determine putative
binding sites for these factors. Each prediction is characterized by a BLAST E-value or
a MEME p-value, shown here as pi and qi, respectively. (3) We transform this bipartite
gene-protein-gene into an oriented gene-gene graph with weighs, Wi, determined using
the discretization scheme described in the text. (4) This graph is contracted using operon
predictions, resulting in an operon-to-operon weighted oriented graph (5).

We used public data of E. coli to validate our method. We downloaded the genomic se-
quence and gene annotation of E. coli K12 (accession NC_000913) from NCBI RefSeq [72].

We built two independent in silico putative regulation networks for E. coli, each one be-
ing associated to their corresponding database: Prodoric [26] or RegulonDB [56]. Both
databases contain the aminoacidic sequences of transcription factors and the position
weight matrices (PWM) that characterize their respective binding sites. We call such pu-
tative constructions Prodoric network and RegulonDB network, respectively.
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We determined which E.coli genes putatively code for transcription factors by determining
homology with the sequences in each of these databases using Blast [3] with an E-value
threshold of 10�10.

Their respective binding sites were putatively determined using the position weight ma-
trices as input for MEME/FIMO [6] to find matching zones in the upstream region (up
to 300bp) of each gene in the given genome. When a motif appeared to be represented
with a p-value less than 10�5, that region was accepted as a putative binding site for the
transcription factor.

Altogether, a bipartite directed graph was obtained, connecting genes to proteins when
they putatively code for transcription factors and proteins to genes when a binding site
for the transcription factor is putatively located in the upstream region of the gene. Each
gene-to-protein arc has an E-value attribute, from the Blast search, and each protein-to-
gene arc has a p-value attribute from the FIMO search.

3.1.1 Defining the arc weights

One condition that ASP encoding imposes is that all numerical values must be integers.
This applies in particular to arc weights. As stated in Section 2.2, weight should be a
non-decreasing function of the prediction p-value. In a first approach, to have values in a
comparable scale, one can consider arcs weights as truncations of values proportional to
the logarithm of the p-value.

If p(e) is the p-value of the arc e 2 E and K is a constant greater than �2 mine2E log p(e),
then in a first approach a possible weight value for the arc is w(e) = K + 2 log p(e). This
weight is always positive and for any pair of arcs e, f 2 E we have that w(e) � w( f ) when
p(e) > p( f ). In this case the global weight of the arc set E can be written as

glob(E) = K · |E|� F(E)

where
F(E) = �2 Â

e2E
log p(e).

This can be interpreted as follows. The first component evaluates the size of the graph, i.e.
its complexity. Smaller graphs (i.e. the ones with fewer arcs) will have lower weight. The
second component further reduces the global weight when arcs with lower p-values are
considered. This allows to discriminate among all graphs of the same size. The term F(E)
is similar to the c

2 term in the Fisher’s method. Under the null hypothesis that arcs come
from matching binding sites in a random sequence, F(E) follows a c

2 distribution, so
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bigger values (and lower global weights) suggest that the null hypothesis is not plausible.

Nevertheless the Potassco implementation of ASP solver imposes another constraint. The
memory requirements of a program depends on the number of values that the target func-
tion can assume. Therefore if the weight are discretized on too many levels, the execution
of the program is difficult. We therefore choose to have only few discrete weight values.
In this work we considered three and five discrete levels.

This coarse discretization scheme has an additional advantage. If we do not discretize the
arc weights, the theoretical minimum weight graph will depend on every minor variation
of the p-values. It will not be surprising to find only a single optimal subgraph. However,
the calculated p-values are intrinsically noisy; they derive of pattern matching models that
are sometimes built with a few examples. Therefore, from the biological point of view,
one may be interested on all the subgraphs whose weight is close to the optimal. When
weights are discretized in few levels, then subgraphs weights are made more similar.

In consequence we propose to use discrete weights with few levels, which results in pro-
grams that can be executed in reasonable time and that provide a richer set of subgraphs
“close to” the optimal.

3.1.2 Discrete weights of arcs for an efficient execution

Gene-to-protein arcs are grouped according to their E-value in k bins of approximately the
same size. Discrete arc weights were chosen as follows: all arcs in the lowest E-value bin
got assigned weight 1, arcs in the next bin have weight 10, and so on up to 10k.

The same procedure is used to assign weights to protein-to-gene weights, but using p-
values instead of E-values.

Finally, the bipartite graph was reduced to a simple gene-to-gene graph with arcs connect-
ing regulator genes to regulated ones by combining gene-to-protein and protein-to gene
arcs. The weight of the resulting arc was defined as the maximum of the weights of the
combined arcs.

3.1.3 Contraction using operon information

Since, in bacteria, an operon corresponds to a set of contiguous genes that are transcribed
together, we assumed that all genes in an operon have the same expression level. We used
ProOpDB [90] as a reference database for operons. Using this list of predicted operons,
all nodes in the regulatory graph representing genes belonging to the same operon were

32



Table 3.1: Statistics of putative network reconstructions based on patterns in Prodoric
and RegulonDB. True positives are arcs present both in the putative and the gold standard
networks. In-degree is the number of transcription factors which directly regulate an
operon.

Index Prodoric RegulonDB Gold Std.
Network Network Network

Num. Vertices 2248 2224 700
Num. Arcs 25329 12312 1241
True Positives 395 577 �
Avg. In-degree 11 5.4 1.8

grouped in a unique node.

These two graphs, built using data from Prodoric and RegulonDB, are the instances of the
graph G, also called the initial operon-to-operon graph, that we use for the evaluation of our
protocol. The vertices in V correspond to the operons. There is an arc in A0 connecting
an operon to another when there was at least one gene in the source operon regulating
another one in the target operon. The weight of this operon-to-operon arc is the minimum
among all the gene-to-gene arcs connecting both operons.

In the following sections all the vertices considered will represent operons.

3.1.4 Gold standard

To evaluate our results, we used a gold standard network for E. coli built using experimen-
tally validated transcription factors and their exact binding sites described in [22] and
contracted using operons predictions as previously described. This graph contains 1241
arcs connecting 700 nodes.

In summary we have an experimental validated network, called gold standard, and two pu-
tative initial regulation networks, named Prodoric and RegulonDB according to the database
used to build them. The size of each of these networks is sown in Table 3.1, where we ob-
serve that the number of arcs in both putative networks is 10 to 20 times bigger than in the
gold standard one. The number of regulators for any given operon, that is the in-degree,
is on average 3 to 6 times bigger in the putative networks than in the gold standard. A
good network prediction should have a size and in-degree closer to the values of the ex-
perimentally validated network. Finally, both putative regulatory networks fail to recover
many of the real regulations. This can be explained by a low sensitivity of the classical net-
work reconstruction protocols when applied to the patterns in Prodoric and RegulonDB
databases.
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It should be noted that even if the putative network predicted from RegulonDB position
weight matrices comes from the same source as the gold standard network for E. coli, they
are different. Even using position weight matrices derived from experimentally proved
binding sites, there is a big number of false positives and false negatives in relation to the
gold standard network, as shown in the last two columns of Table 3.1. To avoid confu-
sion, in this work the term RegulonDB corresponds only to the patterns of transcription
factors and binding site motifs, and the putative network derived from them. Therefore,
we use the term “gold standard network for E. coli” to name the graph built from only
experimentally validated regulations.

3.2 Protocol to build O, the set of associated operons

We downloaded expression data for 4290 E. coli ORFs from NCBI’s GEO with accessions
GDS2578 to GDS2600, taken from [79] supplementary material. To match microarray data
with genes in RegulonDB, which uses a different ID code, we used an equivalence table
derived from data provided by Heladia Salgado (personal communication).

To evaluate the performance of out graph pruning method under different gene associ-
ation indices, we consider several alternative reconstructions of the influence network.
We used Pearson linear correlation and mutual information to measure the expression
dependence between genes [13]. We defined an influence network called “Linear Correla-
tion” that associated each pair of genes with Pearson’s linear correlation over 0.7 or under
–0.7.

We also defined other influence networks using mutual information and different algo-
rithms to determine which gene associations are significant: ARACNe [53], C3NET [2],
CLR [21] and MRNET [58]. Each of them defined an influence network of the same name.

We processed data using R statistical package [74] and libraries minet [59] and c3net [2]
for mutual information estimation and selection. Only the top 10.000 associations were
considered.

Finally, using the same database of predicted operons we contract the graphs representing
these influence networks as previously described. These contracted graph have the same
set of vertices V as the initial regulatory graph G, and a set of edges O called observed
associated operon pairs. Two operons are associated if each one contains a different gene
from an associated gene pair.

In conclusion we have five sets of observed associated operon pairs, named “Linear Corre-
lation”, “ARACNe”, “C3NET”, “CLR”, and “MRNET”, that can play the role of A0 in
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Table 3.2: Number of associated operon pairs which can be explained by different reg-
ulation graphs. Column “Total of Assoc. Ops.” shows the number of observed associated
operon pairs according to different evaluation methods. The next two columns show the
number of associated operon pairs which can be explained only by *direct* regulations or
by *all* (direct, indirect and shared) regulations in the gold standard network of E. coli.
The last two columns show the number of cases which can be explained by all regulations
in the putative networks built using patterns from Prodoric or RegulonDB databases. Per-
centages are related to the total number of associated operons.

Assoc. Total of Gold Standard Net. Prodoric Net. RegulonDB Net.
Detect. Method Assoc. Ops. (direct) (all) (all) (all)

Linear Correlation 5329 0 492 (9.2%) 5148 (96.6%) 5169 (97.0%)
ARACNe 4519 1 352 (7.8%) 4383 (97.0%) 4356 (96.4%)
C3NET 1294 0 119 (9.2%) 1250 (96.6%) 1255 (97.0%)
CLR 8573 4 570 (6.6%) 8299 (96.8%) 8179 (95.4%)
MRNET 8676 3 594 (6.8%) 8381 (96.6%) 8346 (96.2%)

our method. Now we will evaluate how these associations can be explained by the gold
standard network and the two instances of initial regulatory networks previously defined.

3.2.1 Associations explained by the Prodoric, RegulonDB and gold stan-
dard networks

Each of the associated operon pairs corresponds to operons that behave as if they share a
common regulator. A good regulatory network reconstruction should be able to “explain”
this association by a vertex that regulates, directly or indirectly, both associated nodes.

In the first data column of Table 3.2, we show the number of associated operon pairs deter-
mined by each association detection tool. The number of associations varies depending on
the influence network reconstruction method, from 1294 associations detected by C3NET
up to 8676 associations determined by the MRNET criteria.

By examining the values shown in the second column, we verify that the number of cases
where operon associations coincides with direct regulations in the gold standard network
is negligible. This is consistent with findings in [89] and confirms that transcriptomic data
alone is likely not enough to fully reconstruct a regulation network. If we also consider
indirect regulations (third column labeled “all” in Table 3.2) only 9.2% of the observed
operon associations can be explained, in the best case.

The last two columns of Table 3.2 show that the initial putative networks built using
Prodoric and RegulonDB databases can explain between 95.4% and 97.0% of the observed
operon associations. However, these putative networks are 10 to 20 times bigger than the

35



gold standard network, as described in Table 3.1. Automatic methods for binding site
prediction have low specificity [56], so is reasonable to assume that many predicted regu-
lations are false positives. As a consequence, prediction precision is low, and the average
number of regulators per operon is high.

3.3 Study of the pruned network

Once G and O were defined (using the different methods), we used the ASP program de-
scribed in Section 2.4.1 of the previous chapter that implements MINWEIGHTOSHORT(G,O).
The pruned graph is the union of all the graphs that are enumerated by this program.

Since we considered two alternatives for G, two discretization schemas (k=3 and k=5)
and five alternatives for O, we end with twenty different pruned graphs. This section
describes the properties of them.

3.3.1 Explained gene associations

As previously mentioned, our results show that over 95% of the observed associated
operon pairs can be explained using putative regulatory networks. The pruned graph
explains the same number of associations. Interestingly, explainable cases were justified
with common regulators at distances less than 7 arcs.

3.3.2 Meaningful size reduction

As seen in the first columns of Table 3.3, the pruned graph resulting from our method
kept most of the nodes from the initial graphs, between 58% and 96% depending on the
association detection method. The cost discretization scheme did not show any effect on
the final number of nodes. On the other hand, most of the arcs were discarded, as desired;
only 17% to 38% were kept, depending on the gene association detection method and
the cost discretization scheme. It is worth to notice that after pruning the RegulonDB
network with 3 weight levels, the resulting graph kept 71% of the arcs shared between
the putative and the gold standard networks. Similar good results were obtained with
the other putative networks and weights (see Table 3.3). This shows that the proposed
pruning method is biased towards experimentally validated regulations.

The size reduction can also be visualized comparing the initial RegulonDB graph before
pruning shown in Figure 3.2 to the pruned graph resulting of the application of our pro-
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tocol to this graph, constrained to explain operon associations defined by MRNET, shown
in Figure 3.3.

Figure 3.2: Diagram of the initial regulatory network of E.coli predicted using RegulonDB
patterns.

3.3.3 Precision and Recall

To asses the biological validity of a putative regulation graph we can compare it to the gold
standard graph and evaluate precision and recall indices. Following the criteria used in [52]
and [21] we evaluate them only over the nodes which are used in the gold standard. IfF is
the pruned graph and GS is the gold standard network then the number of true positive
predictions is TP = |E(F ) \ E(GS)|, precision is P = TP/|E(F/V(GS))|, and recall is
R = TP/|E(GS)|. The trade-off between precision improvement and recall reduction is
usually evaluated using their harmonic mean, known as F-measure, so F�1 = (P�1 +
R�1)/2.

Table 3.3 shows that precision improved after pruning in all cases. The most interesting
case is when pruning was constrained by associations defined using MRNET. When the
pruning method was applied to the Prodoric putative network, the precision improved
by a factor of three. In the case of the RegulonDB network, the precision was multiplied
by two. In the later case, the initial data is more curated, so the initial precision was
higher. Notice that the gold standard network contains only validated regulations, so that
some of the arcs in the pruned graph may be true but not yet validated regulations. That
is, shown values are a lower bound of the real precision. As we see in the last column
of Tables 3.3, the F-measure increases in all cases, so the result is an improvement over
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Table 3.3: Evaluation of pruning Prodoric and RegulonDB based graphs. We evaluated
pruning of graphs with weights discretized on either 3 or 5 levels and restricted by each of
five different gene associations sets, built with the method described on the first column.
After pruning most of the nodes were preserved while most of the arcs were discarded.
Nevertheless, our pruning method preserved most of the arcs that were also in the refer-
ence graph. Percentages on parenthesis in the first three columns are respect to the initial
not pruned putative graph. In all cases the probability of reaching the number of validated
arcs by random choosing was small, meaning that our results are significantly different to
random selection. Average in-degree also was reduced in all cases, between 2.7 and 9.2
times, while precision and F-measure increased in all cases, showing that pruning dis-
cards mainly non validated arcs. We evaluated precision only over the nodes which are
used in the gold standard.

Nodes Arcs Arcs
in
gold

Signifi-
cance

In-
degree

Precision Recall F-
measure

Prodoric (3 cost levels)
Not Pruned 2248 (�) 25329 (�) 395 (�) � 11.0 8.2% 31.8% 13.0%
Correlation 1519 (68%) 5823 (23%) 200 (51%) 4.9E-34 2.5 16.0% 16.1% 16.0%
ARACNe 1886 (84%) 7211 (28%) 239 (61%) 2.8E-41 3.1 16.3% 19.3% 17.7%
C3NET 1318 (59%) 4225 (17%) 146 (37%) 4.2E-23 1.8 15.6% 11.8% 13.4%
CLR 2104 (94%) 8570 (34%) 283 (72%) 1.5E-54 3.7 16.7% 22.8% 19.3%
MRNET 2163 (96%) 8973 (35%) 293 (74%) 4.9E-57 3.9 16.7% 23.6% 19.6%

Prodoric (5 cost levels)
Not Pruned 2248 (�) 25329 (�) 395 (�) � 11 8.2% 31.8% 13.0%
Correlation 1519 (68%) 4090 (16%) 175 (44%) 4.7E-41 1.7 20.8% 14.1% 16.8%
ARACNe 1886 (84%) 5041 (20%) 214 (54%) 6.8E-53 2.2 21.8% 17.2% 19.2%
C3NET 1318 (59%) 2858 (11%) 132 (33%) 1.0E-32 1.2 21.4% 10.6% 14.2%
CLR 2104 (94%) 6168 (24%) 255 (65%) 7.4E-66 2.7 21.5% 20.5% 21.0%
MRNET 2163 (96%) 6493 (26%) 267 (68%) 2.5E-70 2.8 21.7% 21.5% 21.6%

RegulonDB (3 cost levels)
Not Pruned 2224 (�) 12312 (�) 577 (�) � 5.4 14.1% 46.5% 21.6%
Correlation 1482 (67%) 3067 (25%) 267 (46%) 1.1E-30 1.3 24.3% 21.5% 22.8%
ARACNe 1864 (84%) 3828 (31%) 334 (58%) 8.2E-43 1.6 25.6% 26.9% 26.2%
C3NET 1295 (58%) 2228 (18%) 199 (34%) 1.5E-22 0.9 24.5% 16.0% 19.4%
CLR 2076 (93%) 4511 (37%) 385 (67%) 1.5E-51 1.9 25.5% 31.0% 28.0%
MRNET 2140 (96%) 4744 (39%) 408 (71%) 1.6E-58 2 26.0% 32.9% 29.0%

RegulonDB (5 cost levels)
Not Pruned 2224 (�) 12312 (�) 577 (�) � 5.4 14.1% 46.5% 21.6%
Correlation 1482 (67%) 2429 (20%) 246 (43%) 1.2E-38 1.0 28.2% 19.8% 23.3%
ARACNe 1864 (84%) 3030 (25%) 298 (52%) 3.6E-47 1.3 29.4% 24.0% 26.4%
C3NET 1295 (58%) 1826 (15%) 187 (32%) 2.6E-28 0.8 28.1% 15.1% 19.6%
CLR 2076 (93%) 3624 (29%) 352 (61%) 4.2E-59 1.6 29.5% 28.4% 28.9%
MRNET 2140 (96%) 3808 (31%) 364 (63%) 2.1E-60 1.6 29.2% 29.3% 29.2%
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Figure 3.3: Diagram of the final regulatory network of E.coli resulting of the application of
our protocol to prune the initial network predicted using RegulonDB patterns constrained
to explain all operon associations defined by MRNET.

the real precision. Thus, the criteria of cost minimization constrained by empirical gene
association explanation capability provides a practical way to reduce the graph size while
keeping meaningful regulations.

3.3.4 Statistical significance

Another question when evaluating a filtering method is wether the resulting prediction
can be achieved in a random selection or, on the contrary, the selection is significantly
different from random. This can be modeled as an urn with m white balls and n black
ones, from where we choose k elements at random. The probability of obtaining x white
balls among the k balls follows an hypergeometric distribution which we evaluated using
the R statistical package. In our case

Pr(x = 267|m = 577, n = 11735, k = 2946)  10�32

which strongly suggests that the proposed method has a significant bias towards the reg-
ulators which are experimentally validated.

The probability of obtaining the given number of validated arcs in a random sample of the
same size as the number of arcs in the pruned graph is shown in the column “Significance”
of Tables 3.3. These small values are new evidence that our procedure has a significant bias
towards selecting validated regulatory relationships. We believe that this bias will still be
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valid for true regulations which have not yet been validated.

3.3.5 In-degree reduction

The resulting pruned graphs have good topological properties. Tables 3.3 and S1 show
that most of the nodes are preserved while the number of arcs is drastically reduced.
For the graph built using Prodoric patterns, this pruning method reduced the average
in-degree from 11.0 to 1.2–3.9 (between 2.8 to 9.2 times), depending mainly on the gene
association detection method. When RegulonDB was used to build the initial graph, the
average in-degree reduced from 5.4 to values in the range of 0.8–2.0. Column In-Degree
of Tables 3.3 and S1 shows that the in-degree values which resulted from our method
are closer to the expected values proposed in [45] than the initial ones. The in-degree
reduction keeps most of the arcs which are also depicted in the gold standard network,
emphasizing that the pruning is a practical way to focus on the regulations with best
probability of being valid.

3.4 Ranking of global regulators

Indices of node centrality in a regulatory network can be used to rank the global relevance
of each transcription factor [41]. Radiality is a centrality index proposed in [96] which
measures the capability of each node to reach other ones in the graph. If DXY represents
the number of arcs in the shortest unweighted path from X to Y, we define

RDXY = 1� DXY + max
(U,V)2E(F )

DUV

for each arc. Then the radiality of a node X is defined as

Rad(X) = Â
Y 6=X

RDXY/(|E(F )|� 1).

A node with high radiality will reach, on average, more nodes in fewer steps than other
nodes with lower radiality. We evaluated the radiality index for each node in the result-
ing pruned graphs where gene association was determined using MRNET. We ranked all
nodes by decreasing radiality, discarding those for which radiality was zero.

The pruned graph not only has size and in-degree indices similar to those described in the
literature, it also shares some topological characteristics such as the centrality of the global
regulators. We find on average 150 regulators when we pruned the Prodoric network
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and 73 when pruning the RegulonDB network. Our result recovers 14 of the 19 global
regulators identified in literature [55], and 12 of them are found in all pruned networks.
We used radiality index to rank the relative importance of each regulator. Table 3.4 shows
this ranking for networks pruned constrained by associations determined using MRNET.
Many of the global regulators are ranked high on this index, 10 of them (on average) on
the top half of the list, as shown in the Table using boldface numbers.

Table 3.4: E. coli global regulators and their ranking using radiality centrality index
evaluated in the pruned graphs. The first two columns show gene names and their global
ranking in [55]. The last four columns show the ranking of each of these genes using
radiality index in each pruned network. Boldface numbers show genes ranked in the top
half of the radiality values. Operon association was evaluated using MRNET.

Gene Rank Pruned Prodoric Net. Pruned RegulonDB Net.
in lit. Arcs (3) Arcs (5) Arcs (3) Arcs (5)

crp 1 68 74 1 1
ihfA 2 2 8 19 27
ihfB 3 1 6 29 21
fnr 4 9 5 4 3
fis 5 58 21 9 13
arcA 6 44 30 2 4
lrp 7 53 81 34 33
hns 8 - - - -
narL 9 - - - 62
ompR 10 - - 40 31
fur 11 13 3 55 57
phoB 12 51 35 71 74
cpxR 13 64 29 12 12
soxR 14 112 70 - -
soxS 15 125 69 42 28
mtfA 16 - - - -
cspA 17 - - - -
rob 18 89 103 27 30
purR 19 121 129 72 72

3.5 Discussion

In this chapter we proposed an integrative method that combines genomic and transcrip-
tomic data for pruning a putative regulatory network. The resulting network improves
significantly many of the original structural characteristics, its precision and its prediction
capabilities. The method is modeled as a Boolean constraint problem by means of Answer
Set Programming.
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Figure 3.4: Predicted core regulation of E. coli. Only regulators with out-degree positive
are drawn. Color corresponds to radiality index.

We applied this method to prune two putative networks built independently using E. coli
genomic and transcriptomic data. We found that the proposed method reduced the total
number of arcs to one third of the initial size while it kept two thirds of the arcs validated
in the gold standard network. This bias towards keeping validated arcs was shown to be
statistically significant and resulted in an increased precision. The reduction of average
in-degree, that is, the number of regulators for a given gene, implies that experimental
validation of these regulations is less expensive and has better expected success rate than
before pruning.

In a test case using E.coli data the method produces a final network which has global topo-
logical characteristics that enable the understanding of high level relationships among
regulators. We have shown that centrality indices, such as the radiality, can shed light on
the relative role of each regulator in the global context of transcriptional regulation for a
given organism.

Our method uses in a crucial way the significance values resulting from the application
of standard tools to predict transcription factors and binding sites. Nevertheless, it can
be applied to any putative weighted oriented graph representing a transcriptional regu-
lation network. Any change on the scoring of predicted regulations (weight of arcs in our
method) which improves its correlation with the real presence of binding sites will likely
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improve the precision of our method.

The integration of genomic and transcriptomic data allowed us to propose a reasonable
representation of a bacterial transcriptional regulation network. Nevertheless in some sit-
uations, O can be replaced by a small but biologically meaningful set of associated oper-
ons determined by an ad hoc procedure. In such case the pruning method can be applied
and the resulting graph will be a representation of the regulatory context of the operons in
O. As a toy example, if we look for the regulatory context shared between operons purR
and marBAR in RegulonDB network, our method finds four common regulators at cost
6. In this case, all regulation interactions have cost 1, corresponding to the category of
lowest p-values. The union of these interactions is illustrated in Fig. 3.5, where diamonds
represent the controlled genes, rectangles represent each alternative shared regulator and
ovals represent intermediate transcription factors.
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Figure 3.5: Shared regulations for operons purR and marBAR in E. coli. In this example,
there are four regulators (marked with rectangles) which can control both target operons
(marked with diamonds) at minimal cost. In this case all arcs have cost 1 and the cost of
each optimal explanation is 6.

Altogether, the main point that emerges from our results is that the method produces a
sub-network that fits better (even significantly if one thinks that regulation discovery is a
complicated task) with what can be called a “good” or “correct” regulatory network. This
sub-network is produced at a global level when using transcriptomic evidence enough to
determine associations between all genes or operons.
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Chapter 4

Application to A.ferrooxidans case

In this chapter we use the tools described and evaluated in the previous chapters to a
novel organism, the bacteria Acidithiobacillus ferrooxidans. In contrast to E.coli, this is not
a model organism. It has been less studied and experimental results are less abundant.
Nevertheless this is an organism with important industrial applications, in particular in
copper mining, a key component of chilean economy.

There are several technical obstacles that difficult the analysis of A.ferrooxidans with tradi-
tional experimental tools. Its duplication rate is near 22 hours, while in E.coli is 20 min. It
grows in extreme acid conditions, at pH 1.6 to 1.8. Maybe the most important obstacle is
that there is no known method to transform this organism, that is, to change its genomic
composition. In particular, molecular biology tools like gene knock-out, that are useful to
determine elements of the regulatory networks, can not be used in A.ferrooxidans.

The method we propose in this thesis does not need cell transformations to get valuable
data. On the contrary, our method uses as inputs the bacterial genome and expression
data taken in diverse environmental conditions. Therefore our method can be readily
applied to A.ferrooxidans and unveil putative regulatory relationships that contribute to
the biological knowledge of this important organism.

4.1 Background

Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophilic bacterium that obtains
its energy from the oxidation of ferrous iron, elemental sulfur, or reduced sulfur minerals.
This capability makes it of great industrial importance due to its applications in biomin-
ing. During the industrial processes, A. ferrooxidans survives to stressing circumstances
in its environment, such as an extremely acidic pH and high concentration of transition
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metals.

Bioleaching is a technology enabling cheap and environment-friendly mining of metals.
In particular is well suited to copper mining which is the main export of the chilean econ-
omy. This industrial process has been empirically known since the decade of 1980 but it is
still not completely understood. For improving this technology the chilean state-owned
copper mining company Codelco and Nippon Mining and Metals created BioSigma, a
join venture focused in biotechnology applied to mining. From 2003 to 2010 a research
contract linked BioSigma reference laboratory with University of Chile’s Center for Math-
ematical Modeling, in particular with the Laboratory of Bioinformatics and Mathematics
of Genome.

In order to gain insight into the organization of A. ferrooxidans regulatory networks several
experiments were performed by the combined team. Environmental sampling showed
that one of the most relevant microorganisms for bioleaching in chilean mines is a native
strain of A. ferrooxidans called Wenelen. This bacteria lives in an extreme acid medium
with high concentration of heavy metals. Thus, it has developed strong resistance mech-
anisms which preclude the use of classical biochemical tools: it can not be transformed
and gene knock out is impossible to the date. The industrial and economic relevance
of this bacteria encourages us to find alternative ways to understand the regulatory and
metabolic mechanisms, with the objective of determine environmental conditions improv-
ing the yield.

Acidithiobacillus ferrooxidans grows naturally in ferric or sulfuric medium. A series of mi-
croarray experiments were carried on to understand how this bacteria adapts to the envi-
ronment. The first set of experiments compared gene expression in ferric medium in the
green channel versus:

1. sulfur medium,

2. shift to sulfur, that is, ferric medium with last minute addition of sulfur,

3. shift to Chalcopyrite (CuFeS2),

4. shift to Pyrite (FeS2),

5. shift to Coveline (CuS),

6. shift to raw mine ore, and

7. shift to quartz (SiO2) in the red channel.

The second set of conditions evaluates the adaptation of A. ferrooxidans to ferric ion in
the environment. In this case the cultures were performed in columns instead of flasks,
three times were included, for both acid water medium or ferric ion medium. The last
two conditions compared a flask culture versus a column culture, to evaluate adhesion
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effect on gene expression; and iron versus chalcopyrite as energy source. A clone-based
microarray was built and hybridized near 100 times, measuring differential expression
in 18 growth conditions, as seen in Tabl 4.1. Since each experimental condition requires
several days of fermentation, building the whole dataset took two years.

Table 4.1: Summary of available A.ferrooxidans microarray experiments. Most of the
biological replicas have two technical replicas. A total of 18 growth conditions were tested,
as well as a genotyping comparison of two strains.
Green Red Biol.

replicas
Num.
slides

Description

Fe Fe+S 4 8 Short term shock response (sulfur)
Fe Fe+CuFeS2 4 8 Short term shock response

(chalcopyite)
Fe Fe+CuS 4 8 Short term shock response (coveline)
Fe Fe+FeS2 4 8 Short term shock response (pyite)
Fe Fe+Min 4 8 Short term shock response (raw

mineral)
Fe Fe+SiO2 4 8 Short term shock response (quartz)
Fe S 4 8 Independent cultures
S S2O3 3 6 Elemental sufur v/s tetrathionate
Fe t=0 Fe t=7 2 4 Column under ferric medium 7 days
Fe t=0 Fe t=45 3 6 Column under ferric medium 45 days
Acid t=0 Acid t=7 3 6 Column under non-ferric medium 7

days
Acid t=0 Acid t=45 5 5 Column under non-ferric medium 45

days
Planctonic Sesil 3 6 Effect of adherence to rock
Column
CuFeS2

Flask
CuFeS2

3 6 Adhesion to chalcopyrite

Fe t=3 CuFeS2 t=3 3 6 Effect of energy source at 3 days
53 98 Total

4.2 Characteristics of available sequence data

To further understand Acidithiobacillus ferrooxidans, its genome was partially sequenced.
Genomic DNA was shotgun by sonication and segments of 2Kbp nominal size where
cloned in a replication vector later transferred to E. coli cells for amplification. 5568 of
these clones were sequenced by both ends using Sanger technology, which yields near
600bp on each side, in the best case. The number of reads1 is 11013.

The same clones where further amplified by PCR and printed in duplicate in microarray

1That is, two reads for each clone in the array, in the best case.
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slides, which were used in posterior studies. It should be noted that this design was cho-
sen in 2004 when the genes of A. ferrooxidans strain Wenelen were not known. A different
approach would have required information which was not available at that date.

Currently two other A. ferrooxidans strains have been published: the strain ATCC23270,
isolated in Pennsylvania, USA [95]; and ATCC53993, isolated in Armenia [32]. Comparing
the 11013 Wenelen reads to each reference genome shows that 9670 of them share over
94% nucleotides to each reference genome, as seen in Figure 4.1. So, it is reasonable to
think that these subset of genes are conserved among two of the strains. Restricting us
to the subset of clones where both reads are over this threshold, we see in Figure 4.2 the
distribution of clone lengths. The mean length is 1701.3 with a standard deviation of 791.8.
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Figure 4.1: Identity distribution for Wenelen reads when compared to ATCC23270.
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Figure 4.2: Clone length distribution for Wenelen clones over 94% identity to ATCC23270.

Given that the mean gene length is around 900bp, we expect that each clone contains 2 or
3 genes. Figure 4.3 shows the distribution of the number of genes contained per clone. We
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confirm that the median number of genes per clone is 2 and the mean is 2.58. Notice that
3260 clones contain two or more genes.

These conditions make difficult the expression analysis of genes in a clone-based microar-
ray. The luminescence of any spot will be the resultant of the effect of each gene that can
hybridize on the clone. If a clone containing two or more genes has a given luminescence,
we cannot know which of the genes is differentially expressed without some additional
information.
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Figure 4.3: Distribution of number of genes per clone when Wenelen clones are mapped
to ATCC23270 annotation. A gene is considered in a clone when they share over 50 con-
tiguous nucleotides.

4.3 Challenges in expression analysis

The first issue is to recover gene expression information from clone-based microarray re-
sults, so a suitable model has to be developed.

The easiest way to analyze clone-based arrays is to determine which clones are differen-
tially expressed and select the genes they contain. This strategy was used by Parró in
[69] to determine genes related to nitrogen metabolism. Nevertheless this approach is not
applicable in our case. We need to asses an explicit expression for each gene in order to
evaluate mutual information.

4.3.1 Proposed analysis method

In the microarray hybridization protocol a fluorophore is incorporated uniformly along
the cDNA molecule. Therefore, under fixed thermodynamic conditions, the contribution
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Figure 4.4: Intervals for the gene expression estimation method. Clones a and b contain
parts of genes x, y and z.

to the clone luminescence of each hybridized gene is proportional to its length.

Knowing the position of each clone in the genome and the location of the genes, we can
partition the genome sequence into intervals such that all nucleotides in the interval be-
long to the same gene and the same clone, as shown in Figure 4.4. Let us assume that
clone luminescences are mutually independent and that each cDNA can bind indepen-
dently to their corresponding clone. We also assume that each interval of a gene has the
same affinity.

If we represent by cj the luminescence of clone j, by gi the luminescence of gene i, by Ik

the luminescence of interval k and by Lk its length, then the previous paragraph can be
written as

Ik = Lk Â
i

gi when gene i intersects interval k (4.1)

cj = Â
k

Ik when interval k intersects clone j (4.2)

For example, for the configuration in Figure 4.4 we have Ik = Lkgx, for k = 1, 2; I4 =
L4gy; Ik = Lkgz, for k = 6, 7; and Ik = 0 for k = 3, 5. Then ca = Â8

k=2 Ik and cb = Â6
k=1 Ik.

Notice that in equation 4.1 usually we have only one gene for each interval, since gene
overlap is uncommon in bacteria. Equations (4.1) and (4.2) can be expressed in matrix
form as ~c = M~g, where ~c is the vector with components ck of clone luminescence, ~g has
components gj and M is the suitable matrix. The problem can thus be stated as: given M
and~c, find ~g such that

~g = arg min ||~c� M~g||2. (4.3)

This simple formulation can result in negative values for gj, which have no physical sense.
Therefore we include the condition

gj � 0 8j (4.4)
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which completes the proposed formulation.

The problem can be simplified if the matrix M can be decomposed by blocks. Each block
corresponds to a connected component of the graph of clone-gene intersection. In the
specific case of the low coverage Wenelen array, the matrix M can be decomposed into 285
blocks when ATCC23270 is used as the reference genome.

This transformation is applied to each slide and then the resulting experiment set can be
analyzed using the standard procedure implemented in Limma framework [87] for the R
statistical package [74]. Data from Perking Elmer scanner was read using routines devel-
oped in-house and shaped as a RGframe in Limma. Spot quality assessment was performed
using several indices summarized in a Qcom value following [99], which is further used
as spot weight. Expression was normalized intra-slide using Lowess regression and inter-
slides using Gquantile, since green channel was the same condition for all 7 experiments
considered [85]. Clone expression value was calculated as the weighted average of the
spots representing it. A linear model was fitted to each gene using lmFit method and
eBayes was used to estimate statistical significance of observed values [86]. False Dis-
covery Rate was controlled at 5% using the method of Benjamini and Hochberg [10] as
implemented in the Limma library.

4.4 Results

The proposed expression analysis method allowed us to evaluate correlation and mutual
information between gene profiles. Then we used four strategies to determine the same
number of gene influence networks. For the linear correlation index we used the absolute
value of the correlation, evaluated the average of them (0.676514) and considered as as-
sociated genes those over this average. For mutual information we selected the pairs of
associated genes according to ARACNe, C3NET and MRNET. In the last case we got over
2 million pairs, we only considered the 50.000 with higher mutual information.

Each of the four gene influence networks was contracted using operon predictions taken
from ProOpDB, resulting in four sets of associated operon pairs. Table 4.2 shows the
size of each of these sets. We observe a wide range of variation, depending on the gene
influence detection method.

We used patterns from Prodoric database to build an initial putative regulation network.
The resulting initial network G has 1475 vertices and 4588 arcs. We considered two as-
signments of arc weights: one with 3 levels and one with 5. In summary we applied
our pruning method to each of the combinations of two initial graph G and four operon
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Table 4.2: Number of associated operons pairs determined by different methods on
A.ferrooxidans expression data.

Association method Num. of associations

Linear Correlation 21586
ARACNe 1077
C3NET 261
MRNET 40623

association pairs set.

The results of our pruning method in these eight cases are shown in Table 4.3. We ob-
serve that the final number of arcs is bigger when weights are discretized at 3 levels, and
it depends strongly on the number of associated operon pairs. This dependence is illus-
trated in Figure 4.5. The size F of the pruned graph grows as function of the number of
associations A following approximately the relation

F = 30.74 · A0.415.

This can be understood considering that each extra operon association will require extra
regulation arcs to be explained, but as the network becomes denser, less new arcs are
added.

Table 4.3: Number of arcs in initial and final putative regulatory networks for
A.ferrooxidans. We consider four operon association detection methods: Linear Corre-
lation, ARARCNe, C3NET and MRNET. The arc weights in the initial network, predicted
using patterns in Prodoric database, were discretized in 3 and 5 levels.

Discretization 3 Levels 5 Levels

Initial 4588 4588
Linear Correlation 2165 2072
ARACNe 457 412
C3NET 353 302
MRNET 2421 2303

The biggest of the final networks is the one resulting of pruning the initial graph with
weight discretized at 3 levels, constrained to explain the associated operon pairs defined
using MRNET. We evaluated the radiality index for all nodes, finding only 64 having a
non null value. For each one of them we determined the gene that putatively codes for a
transcription factor, that is, the regulator genes.

In Table 4.4 we show the regulator genes contained in the ten operons with higher radiality
index. We observe that most of them have no official annotation, despite that 45 of the 64
regulator genes have one. This suggests that some of the key elements of A.ferrooxidans
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Figure 4.5: Relation between the number of associated operon pairs and the size of the
pruned graphs.

regulation could benefit from an improved functional annotation.

The list of the 45 regulator genes that have been annotated is on Table 4.5. There we
observe that the top ranked regulator is the chromosomal replication initiation protein,
which makes sense because cell replication triggers an important number of transcrip-
tional activity. Among the highest ranked regulators we observe many transcription fac-
tors related to nitrogen metabolism. This is an interesting biological fact that can be related
to the switch between assimilation of atmospheric nitrogen and assimilation from urea, an
interesting discovery by BioSigma [47].

In Figure 4.6 we show a graphical representation of these core regulators and their in-
teractions. The nodes colors correspond to their radiality indices. Red dots have higher
radiality, blue ones have the lowest.

4.5 Conclusions

The pruning method we propose in this thesis was applied to the non-model organism
Acidithiobacillus ferrooxidans, which is a bacteria that can not be transformed to determine
its regulation by traditional experimental approaches.

Our method uses data that does not require any internal modification of the organism,
thus is applicable in this case. The results depend strongly on the method used to deter-
mine the gene influence network. The biggest network was the one built using associated
operon pairs determined using the MRNET method.
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Table 4.4: Ten best ranked A.ferrooxidans transcription factors by radiality index.
Rank TF Rad. Description

1 afe_0119 6.55 �
2 afe_1997 6.37 �
3 afe_3137 6.16 �
4 afe_1990 5.92 �
5 afe_2696 5.87 �
6 dnaA 5.81 chromosomal replication initiation protein
7 afe_0191 5.76 �
8 kdpE 5.58 K07667 two-component system, OmpR family, KDP operon response regulator

KdpE
9 pilR 5.42 K02667 two-component system, NtrC family, response regulator PilR
10 ntrX 5.41 K13599 two-component system, NtrC family, nitrogen regulation response

regulator NtrX

Figure 4.6: Predicted core regulation of A.ferrooxidans. Only regulators with positive
out-degree are drawn. Color corresponds to radiality index.
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Table 4.5: Ranking by radiality index of annotated A.ferrooxidans transcription factors.
Rank TF Rad. Description

6 dnaA 5.81 chromosomal replication initiation protein
8 kdpE 5.58 two-component system, OmpR family, KDP operon response regulator KdpE
9 pilR 5.42 two-component system, NtrC family, response regulator PilR
10 ntrX 5.41 two-component system, NtrC family, nitrogen regulation response regulator NtrX
13 yfhA 5.40 two-component system, NtrC family, response regulator YfhA
14 nifA 5.40 Nif-specific regulatory protein
16 rbcR 5.24 LysR family transcriptional regulator
18 lysR 5.23 transcriptional regulator, LysR family
20 ihfA 5.21 integration host factor subunit alpha
21 ihfB 5.16 integration host factor subunit beta
23 metR 5.13 LysR family transcriptional regulator, regulator for metE and metH
25 iscR 5.05 Rrf2 family transcriptional regulator, iron-sulfur cluster assembly TF
26 rpoN 5.02 RNA polymerase sigma-54 factor
27 ompR 5.00 two-component system, OmpR family, phosphate regulon response regulator
28 phnL 4.99 putative phosphonate transport system ATP-binding protein
28 phnF 4.99 GntR family transcriptional regulator, phosphonate transport system regulatory
29 lysR 4.95 transcriptional regulator, LysR family
31 flp 4.91 transcriptional regulator, Crp/Fnr family
32 rpoE 4.90 RNA polymerase sigma-70 factor, ECF subfamily
33 ompR 4.90 two-component system, OmpR family, phosphate regulon response regulator
34 pyrR 4.89 pyrimidine operon attenuation protein /uracil phosphoribosyltransferase
35 anr 4.88 CRP/FNR family transcriptional regulator, anaerobic regulatory protein
36 ynfL 4.80 LysR family transcriptional regulator
38 hrm 4.78 DNA-binding protein HU-beta
39 ihfA 4.78 integration host factor subunit alpha
40 fur 4.66 Fur family transcriptional regulator, ferric uptake regulator
41 rpoS 4.60 RNA polymerase nonessential primary-like sigma factor
42 cysB 4.57 LysR family transcriptional regulator, cys regulon transcriptional activator
42 hupR 4.57 two component, sigma54 specific, fis family transcriptional regulator
44 cysB 4.51 LysR family transcriptional regulator, cys regulon transcriptional activator
45 pstB 4.51 phosphate transport system ATP-binding protein
45 phoB 4.51 two-component system, OmpR family, phosphate regulon response regulator PhoB
46 phoB 4.50 two-component system, OmpR family, phosphate regulon response regulator PhoB
47 phoB 4.50 two-component system, OmpR family, phosphate regulon response regulator PhoB
48 phoB 4.49 two-component system, OmpR family, phosphate regulon response regulator PhoB
49 dnr 4.46 transcriptional regulator, Crp/Fnr family
51 rpoH 4.39 RNA polymerase sigma-32 factor
51 ftsE 4.39 cell division transport system ATP-binding protein
52 hupB 4.38 DNA-binding protein HU-beta
53 rpoS 4.38 RNA polymerase nonessential primary-like sigma factor
54 ogt 4.38 methylated-DNA-
55 ada 4.38 AraC family transcriptional regulator, regulatory protein of adaptative response
56 ogt 4.37 methylated-DNA-
57 ompR 4.34 two-component system, OmpR family, phosphate regulon response regulator
58 umuD 4.28 DNA polymerase V
59 lexA 4.27 LexA repressor (EC:3.4.21.88)
60 qseB 4.17 two-component system, OmpR family, response regulator
62 ihfA 4.09 integration host factor subunit alpha
63 hda 3.75 DnaA-homolog protein
64 rpoD 0.25 RNA polymerase primary sigma factor
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This network provides us with enough information to rank the putative transcription fac-
tors by how central their role is in the complete regulation. These results strongly suggest
that the nitrogen regulation plays a key role in the metabolism of Acidithiobacillus ferrooxi-
dans. This constitutes a target for further biological research.

In summary our method can be readily applicable to non-model organisms and is capable
of suggesting relevant targets for for future experimentation.
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Chapter 5

A classification method to find regulons
in Eukarya

In this second part of the thesis we address the problem of completing a partially known
regulatory network. In contrast to the first part, here we do not focus on a genome-wide
ab initio network discovering but instead on a specific part of the regulation: a signaling
pathway. Another important difference is that in the first part we mostly focused on or-
ganism of the Prokarya superkingdom, that includes Bacteria and Archaea, while here we
focus on Eukarya, more specifically in human.

This kind of analysis can be useful to get insights into genetically conditioned diseases.
One of those is Alzheimer’s disease, which has been the focus of many studies. One result
of these studies is that the canonical Wnt/b-catenin signaling pathway that we address in
this chapter apparently plays a key role in Alzheimer’s disease.

In the case considered here we know a priori some of the genes that are target of this
pathway, and we want to add other ones that plausibly can also be targets. To do so we
characterized each human gene by the type and number of transcription factor binding
sites in their promoting region and we developed an ad hoc supervised classifier to sep-
arate all genes into “target” and “no target” classes. This problem is different from the
classical supervised classification problem since the training set is not completely labeled;
only a few individuals are labeled in the “target” class, the rest is not labeled, that is, there
is no example of the “no target” class.

We propose a classification method that overcomes this limitation by integrating many
independent trainings where the “no target” examples were randomly sampled from the
non labeled individuals. This mix of random sampling and vote-counting meta-analysis
allows a robust classification of the genes that share significant characteristics with the
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known “target” genes. This strategy allowed us to determine candidate Wnt pathway
target genes, that were successfully validated experimentally.

In particular, our results strongly suggest that the gene CamKIV, coding for calcium/
calmodulin-dependent protein kinase type IV, is a target gene of the Wnt/beta-catenin
signaling pathway. This prediction was verified in vitro and published in the Journal of
Cellular Physiollogy [5].

The proposed bioinformatic method was published in BMC Genomics [30].

5.1 Background

The Wnt signaling pathways are a group of signal transduction pathways, that is a group
of proteins that respond to a signal from outside of the cell through a cell surface receptor
and changes in cascade the conformation of proteins inside of the cell. These changes can
trigger different responses to the external environmental change. Three Wnt signaling
pathways have been described in literature [66]: the canonical Wnt/b-catenin pathway,
the noncanonical planar cell polarity pathway, and the noncanonical Wnt/calcium path-
way. These three Wnt signaling pathways are activated by the binding of a Wnt-protein
ligand to a Frizzled family receptor, which passes the biological signal to the protein Di-
shevelled inside the cell. The canonical Wnt pathway leads to regulation of gene tran-
scription, the noncanonical planar cell polarity pathway regulates changes in the shape of
the cell, and the noncanonical Wnt/calcium pathway regulates calcium inside the cell.
These pathways are found across many species, including Drosophila melanogaster and
Homo sapiens [67]. This high evolutionarily conservation suggests that these pathways
play important roles in the cell.

The Wnt pathway is implicated in numerous aspects of development [100], cell differen-
tiation [93, 94, 100], and several diseases [63, 71]; notably, it was recently discovered a
relation with cancer and neurodegenerative diseases like Alzheimer’s [4, 31, 77].

The detailed action of the pathway is complex and beyond the scope of this chapter. The
relevant point is that in presence of the Wnt ligand the concentration of hypophosphory-
lated b-catenin increases, allowing it to bind to components of the family of transcription
factors T-cell factor/lymphoid enhancer factor (TCF/LEF), which activates gene expres-
sion [25]. In the absence of the Wnt ligand, through several intermediate steps, the ex-
pression of Wnt signaling pathway target genes is repressed [1].

Several methods have been used to find new Wnt signaling pathway target genes based
on the interaction between b-catenin and the evolutionarily conserved TCF/LEF, the most
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well known family of DNA binding factors involved in gene regulation through Wnt sig-
naling:

1. reporter constructs based on TCF/LEF binding sites [40],

2. serial analysis of chromatin occupancy (SACO) [101] and

3. combined microarrays and chromatin immunoprecipitation (ChIP) [28].

All of these methods have disadvantages: reporter constructs shows discrepancies and
may not reveal the complexity of gene regulation [8], and whole-genome SACO and
ChIP strongly depend on high quality antibodies and represent just a particular point in
the interaction between transcription factors and regulatory regions.

Following the hypothesis that transcription factors work cooperatively to define gene ex-
pression, in this work we propose a Classification and Regression Tree (CART) approach
to identify new Wnt/b-catenin target genes within the human genome, based on the pres-
ence of transcription factors binding sites in their regulatory region.

Figure 5.1: Schema of the canonical Wnt/b-catenine signaling pathway. When Wnt binds
to the receptor in the cellular membrane, a cascade of changes occur in a series of proteins
that finally triggers the expression of the target genes. The best known transcription factor
in this pathway is TCF/LEF. Image licensed under Creative Commons license.
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5.2 Training a classifier under uncertainty for completing a
network

5.2.1 Feature selection for target gene discovery

It is known that, in Eukarya, the expression of genes is often controlled by the cooperative
action of many transcription factors (see for example [48, 61, 83]). An indicator of this
cooperation is the co-occurrence of binding sites for a set of several transcription factors
in the promoting region of different genes. If the expression of a set of genes requires the
cooperative action of many transcription factors, then the presence of their binding sites in
the upstream region of another gene strongly suggests that this new gene is also regulated
by the same set of transcription factors.

Therefore, for this analysis we characterize each gene i in the genome by a vector Xi whose
component Xi,j is the number of times the binding site motif j is detected in the upstream
region of the gene. This vector is called the fingerprint of the gene [19].

More specifically, in the case study of the human genome, we considered the fingerprint
values calculated by the group of Ron Shamir [84] using PRIMA and position weight
matrices for 432 TRANSFAC binding site motifs1 over 15,476 human promoters2 for the
region between 1,000bp before and 200bp after the transcription start site. We downloaded
this data from their website3 and built the matrix X of 15,476 rows (representing genes) by
432 columns (representing binding site motifs) where each cell has the number of times
each binding site was found in a gene’s upstream region.

Whole 
population

Population 
where 
v1<c1

Population where 
v1<c1

Assigned class
v1<c1?

Population 
where v1<c1 
and v2<c2

v1<c1?

Population where 
v1<c1 and v2<c1

Assigned class

Figure 5.2: Classic structure of a CART tree. The first node of the tree is subdivided into
two finer nodes depending on whether the variable v1 is less than the threshold c1. The
resulting nodes are further subdivided to determine the assigned class.

1a motif is a representation of all the binding site sequences for the same transcription factor.
2Ensembl release 13.30
3http://acgt.cs.tau.ac.il/prima/PRIMA.htm
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5.2.2 Classification using CART

A CART classifier is a set of rules that partitions, in our case, the set of all genes G into
disjoint subsets Am. Training the classifier means defining the rules that determine each
subset Am and assigning a label lm 2 {0, 1} to all genes in each subset. To do so CART
considers a training set I ⇢ G, the fingerprints Xi of each gene and an initial label li 2
{0, 1}. We represent the “target” genes with the initial label li = 1, the rest of the training
genes are assigned a label li = 0.

Building a CART tree, also said training the classifier, is an iterative process. For a given
Am we define the ratio of “target” genes as

rm =
|{i 2 Am : li = 1}|

|Am| =
Âi2Am li
|Am| .

Then the classification is as follows. If rm > 0.5 then lm = 1, otherwise lm = 0. The clas-
sification is better when the partition is such that the genes in each Am are homogeneous.
A way to evaluate this homogeneity is the Gini impurity index defined in this case as

Imp1(Am) = 2rm(1� rm).

If we split Am into two new subsets A2m and A2m+1 such that A2m [ A2m+1 = Am and
A2m\A2m+1 = ∆, then each new subset can be more homogeneous. The average impurity
after spliting will be

Imp2(A2m, A2m+1) =
Imp1(A2m)|A2m|+ Imp1(A2m+1)|A2m+1|

|A2m|+ |A2m+1| .

The idea is to choose the best way to split Am in order to maximize DImp = Imp1(Am)�
Imp2(A2m, A2m+1). The CART algorithm splits these subsets choosing a component k of
the fingerprint vectors and a threshold am, so A2m = {i 2 Am : Xi,k  am}. In each stage
of the algorithm it decides the component and the threshold. This partition scheme can
be seen as a binary tree, with nodes indexed by m that can be of two kinds:

• Leaves Hm = (Am, lm), which are ordered pairs of a subset of I and a predicted
label.

• Internal nodes Sm = (km, am), also called splits, representing a classification rule
defined by a component km and a threshold am.

Initially, the tree has a single node H1 = (A1, l1) where A1=I and l1=0. Given the set
L of all leaves CART evaluates for each m 2 L how to split the leave Hm = (Am, lm)
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evaluating, for each component k and gene i 2 Am the values

Dikm = Imp1(Am)� Imp2(A0m, A00m)

where A0m = {i0 2 Am : Xi0,j  Xi,j} and A00m = Am \ A0m.

If the values (i⇤, j⇤, m⇤) are such that

Di⇤,j⇤,m⇤ � Dijm 8i8j8k,

then, choosing am⇤=Xi⇤,j⇤ , the leave Hm⇤ is replaced by a split Sm⇤ = (j⇤, am⇤), which is the
parent node to two new leaves H2m⇤=(A0m⇤ , l2m⇤) and H2m⇤+1=(A00m⇤ , l2m⇤+1). The labels
l2m⇤ and l2m⇤+1 are chosen by majority rule among the labels of the elements in their
respective subsets. That is, lm=1(Âi2Am li > |Am|/2) for all m corresponding to a leave
node.

This process is repeated while Di⇤,j⇤,m⇤ is greater than a fixed threshold Dmin .

Once the threshold has been achieved, the classifier, composed by the set of nodes {Hm}
and {Sm}, is said to be trained. To classify a gene î with fingerprint Xî we traverse the tree
in the following way:

1. Initially set m = 1.

2. If node m is a leave, then the gene î gets assigned class lm. The traversing ends.

3. Otherwise, if node m is a split, then if Xî,jm  am we assign to m the value 2m,

4. If Xî,jm > am we assign to m the value 2m + 1

5. We return to 2.

The classifier at this stage can be over-fitted to the training data I. A second set V of
independent examples is used to validate the classifier and evaluate the miss-classification
rate. This is used to determine the Dmin value that minimizes the miss-classification rate,
in a process known as pruning the classification tree.

All these rules are available in the library rpart [92] for the R programming language [73],
which is the implementation we used here.

5.2.3 Building classifiers under partial knowledge for completing a net-
work

Once fingerprints have been selected as features to represent the genes, any supervised
classifier needs a training set. For this problem we considered the set G of all genes in
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the human genome. Among them we distinguish a subset T of 66 “target” genes that are
described in literature as regulated by the Wnt/b-catenin pathway4. The complement of
T is called U = G \ T and it contains genes for which it is unknown if they are “target” or
“non-target”.

The novelty of this classification problem is that there is not enough information to de-
termine when a gene is not a target of a signaling pathway. Even if many of the genes
show no change of expression in several experiments, the total number of genes and the
cooperative nature of eukaryotic transcription regulation means that it is possible that the
lack of expression change is because the proper conditions have not yet been mate.

Thus we have to train a supervised classifier with a sample where not all labels are for
sure. To be clear, we know that the 66 genes in T are targets of the Wnt/b-catenine path-
way. For the other 15410 genes in U we do not know if they are target of this pathway
or not. However, given the general knowledge of this mechanism, we can assume that
most of the genes are non targets of the Wnt/b-catenine pathway. We state this hypothesis
formally:

Hypothesis 1: Wnt/b-catenine target genes are less than 1% of the human genes.

Under this hypothesis we propose the following strategy to build an automatic classifier.
Let J be a set of indices and let j 2 J. We take a random sample Nj from U with 8000 genes
chosen without repetition. We train a CART classifier Cj using the training set I = T [ Nj

and labels li = 1(i 2 T), that is 1 for i 2 T (the “target” class) and 0 for i 2 Nj (putatively
labeled “non-target”). To avoid over-fitting we cross-validate and prune the tree Cj using
the validation set V = T [ U \ Nj to minimize the miss-classification rate. Ideally we
would like to use a validation set completely independent of the training one, but the size
of T is too small.

Of course we assume the risk that some previously unknown “target” gene i⇤ is among
the ones labeled “non-target” in the training. To minimize this risk we iterate this training
procedure over j 2 J with independent samples Nj. At the end we have |J| classification
trees Cj, each one trained with different examples Nj of “non-target” genes. The probabil-
ity that i⇤ 2 Nj for all j follows a binomial distribution. It is less than 10�5 when |J| > 861.
We choose |J|=1500.

At this stage we have a set of independent CART classifiers Cj for j 2 J.

4The WNT Homepage http://www.stanford.edu/⇠rnusse/wntwindow.html
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Figure 5.3: False positive rate for 1500 independent CART classifiers. Values are sorted
to help visualization. They vary between 0.001168 and 0.007528, so in general the error
rate is low. We observe that, despite minor variations, most of the classifiers have similar
performances.

5.2.4 Combining multiple CART classifiers

Once all the CART classifiers Cj are trained we apply them to the full data set G. Each
gene i 2 G is represented by its fingerprint Xi and classified by each Cj as “target” or
“non-target”, which we code as 1 or 0. This is summarized as

Cj(Xi) = 1(gene i is classified as "target" by classifier j).

Now the idea is to combine all these results in a single response for each gene. First we
need to evaluate if all the CART trees have the same classification power. One way to do
this is to evaluate the false positive rate pj of the classifier Cj. To do so we could build a
set of artificial “non-target” fingerprints following the same distribution as the ones for
human genes. Nevertheless, under Hypothesis 1 we can approximate this rate simply
counting the number of genes in U classified as target

pj =
Âi2U Cj(Xi)

|U| .

These values are shown in Figure 5.3, where the index j was ordered to show increasing
values of pj just for display clarity. We observe that variations are minor but not null. The
mean value is 0.004539, the deviation is ±60%.

Now, given a classifier Cj, the p-value of the outcome Cj(Xi)=1, that is the probability of
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being classified as “target” when the gene i is “non-target”, can be estimated as the false
positive rate of Cj applied to a set of known “non-target” genes. Using again Hypothesis
1 we approach this p-value by pj. In the same way, the p-value of Cj(Xi)=0 under the
null hypothesis that gene i is “non-target” can be approached by (1� pj). Under these
hypotheses we can use the well known Fisher’s method of meta-analysis to combine all
the classification results in a single outcome. We evaluate the Fisher index for gene i as

fi = �2

 

Â
j2J

Cj(Xi) log pj + Â
j2J

(1� Cj(Xi)) log(1� pj)

!
.

which, under the null hypothesis, follows a chi-square distribution with 2|J| degrees of
freedom. This test is also known as Fisher’s combined probability test. Let cd be the
cumulative probability distribution function of a chi-squared random variable with d de-
grees of freedom. Then the p-value of an outcome fi of the Fisher index is 1� cd( fi).

This new combined classifier can handle the problem of partial knowledge. Now we will
analyze the results of its application.

In Figure 5.4 we show the p-values of this combined probability test for the fi values
evaluated over all the genes i 2 G. In this case d=2|J|=3000. For a confidence level of 5%
the threshold of significance is c

�1
3000(0.95) = 3128.5; for confidence of 1% it is c

�1
3000(0.99) =

3183.1.

We observe a sharp separation between the genes with significant Fisher index and the
rest. There are 106 genes whose Fisher index is over the 5% significance threshold. More-
over, all of them have a final p-value under 0.1%. The set T of 66 “target” genes previously
identified is a subset of these significant genes, so our method recovers and extends the
previous knowledge. They are represented by red dots in Figure 5.4.

5.2.5 Alternatives for a combined index

Another way to perform a meta-analysis combining the results of all the classifiers is to
use a votation scheme and select as putative target those genes having the largest number
of votes. This has the advantage of being easy to implement, but the results may be dis-
torted because it uses the same weight for all classifiers, which is not necessarily the best
approach.

The score of a gene i is defined as the number of classifiers that classify it in class “target”:

Scorei = Â
j2J

Cj(Xi)
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Figure 5.4: Estimated p-value using Fisher’s method, as a function of the fi index. There
is a clear threshold separating the significant predictions from the rest. The four new
genes with the highest fi index are shown.

We consider a gene as a candidate Wnt/b-catenine target if its score is above a threshold.

In Figure 5.5 we observe that the relation between this score and the Fisher index is
strongly linear. A least squares regression shows that the correlation between the two
variables is 0.9999965 and the fitted curve is

Scorei = 0.09258445 fi � 1.22745.

Applying this transformation to the Fisher index corresponding to 1% significance we
have the threshold score 293.48. Therefore, for this training set, a simple rule to classify a
gene i is to compare its score to this value. If Scorei � 294 then the gene i is classified as
putative “target”.

In conclusion, we have defined a classification method that, based on the partial knowl-
edge of the gene members of a network, can find candidate genes to complete it. When
applied to the Wnt/b-catenine pathway targets network, it recovers all the previously
known genes and suggest a reasonable number of novel candidates.

5.3 Cross-validation and comparison with other methods

To study the robustness of the proposed method we used a “leave-one-out” cross-validation
methodology. The leave-one-out cross-validation was applied as follows: one of the 66
known Wnt/b-catenin pathway target genes was isolated and the remaining 65 genes
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Figure 5.5: Vote counting score versus Fisher index for all the genes in the human
genome in our method for Wnt/b-catenine pathway classification. We observe a lin-
ear correlation almost perfect, that allows us to define a significance threshold to be used
in a classifier based on vote counting.

Table 5.1: Comparative analysis of the method and robustness. Instance 1 to Instance 4
are four realizations of the method proposed here. Prior is the set of “target” genes known
from literature, New is the number of new genes found by the method. Each row corre-
sponds to the set of predicted “target” genes by different methods. We show the size of
the intersections. Alternative methods are k-nearest-neighbors (KNN) with several k val-
ues, support vector machines (SVM), standard CART and Leave-one-out (L–1-O) which
is averaged over all cases.

Method Instance 1 Instance 2 Instance 3 Instance 4 Prior new

Instance 1 106 (100%) 105 (97%) 102 (98%) 102 (98%) 66 (100%) 40
Instance 2 105 (99%) 108 (100%) 104 (100%) 104 (100%) 66 (100%) 42
Instance 3 102 (96%) 104 (96%) 104 (100%) 102 (98%) 66 (100%) 38
Instance 4 102 (96%) 104 (96%) 102 (98%) 104 (100%) 66 (100%) 38
L–1-O (avg) 102 (96%) 101 (94%) 98 (94%) 98 (94%) 66 (100%) 39
KNN 1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 30
KNN 2 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 17
KNN 3 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0
KNN 4 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0
KNN 5 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0
CART 52 (49%) 52 (48%) 52 (50%) 52 (50%) 44 (67%) 46
SVM 66 (62%) 66 (61%) 66 (63%) 66 (63%) 66 (100%) 0
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were used to train the multiple CART predictors as described before. We used these clas-
sifiers and performed the meta-analysis as described previously to determine the genes
classified as “target”.

We obtained that 100% of the known Wnt/b-catenin pathway target genes were correctly
classified when not considered in the training set, and at least 98 (94%) of the predicted
target genes were the same as when no gene was excluded from the training set, as seen
in the last row of Table 5.1.

We also evaluated the robustness in relation to changes in the training sets by performing
four independent instances of our method and comparing their predictions. Over 96%
of the proposed genes are the same between any pair of instances, as shown in Table 5.1,
suggesting that the classification is robust to sampling conditions. The most biologically
relevant genes, such as calcium/calmodulin-dependent protein kinase IV (CamK4) and Ryk (re-
ceptor related to tyrosine kinase), are recovered in all instances.

To compare the performance of our strategy with other classification methods, using the
same gene fingerprint data we trained classifiers with classical implementations of k-
nearest-neighbors method (KNN), for k taking values from 1 to 5, Support Vector Machine
(SVM) method, with radial basis kernel, and standard CART method, as implemented in
the R statistical platform in the libraries class, e1071 [57] and rpart [92]. All genes were
classified using those methods and we computed the sensitivity of classifying the known
“target” genes. The number of genes in the intersection of the results of different methods
is shown in Table 5.1.

KNN was not able to recover any of the known “target” genes. We evaluated this classifier
using the knn.cv routine (which also implements a leave-one-out test) over all data and it
did not recover the known Wnt/b-catenin pathway target genes. When k=1 this method
proposed 30 candidates, when k=2 there are 17 proposed target genes. In both cases none
of them coincides with our prediction. For k�3 all genes were classified as non-targets.

The SVM method was not able to propose new candidate genes. We trained a SVM classi-
fier using 10-fold cross-validation, and used it to classify all genes in the human genome.
It recovered all known “target” genes but all others were classified as “non-target” genes.
This is probably a result derived from over-fitting, which is expected given the huge asym-
metry between the two classes.

Using a single CART classifier we did not recover all known “target” genes. A single
CART was trained using the same strategy as each of the individual classifiers as de-
scribed in Section 5.2.3, that is, using all the known “target” genes and a sample of 8,000
genes not a priori related to Wnt/b-catenine pathway. In this case 44 of the 66 known
Wnt/b-catenin pathway target genes were recovered and 46 new targets were proposed.
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The coincidence with our method was 49%, that is, 52 genes predicted by a single CART
appeared also in all instances of our method. The single CART method discovered the
CamK4 gene but failed to discover the Ryk gene. Since a single CART was unable to re-
cover some of the known genes and some of the new discoveries of our proposed method,
we conclude that our multiple CART method has better performance to complete partially
known networks.

Table 5.1 summarizes the coincidences of these methods and indicates the number of
known genes recovered by each one.

5.4 Some proposed target genes

Applying the proposed scheme and considering a significance of 1% we identified 106
putative target genes. Among them we recover all 66 previously known genes.

There are also 40 “new target” genes. These genes were labeled “non-target” in the train-
ing of each of the 1500 classifiers. Nevertheless they ended being classified as “target”
in a significant number of cases. This strongly suggests that they share common finger-
print patterns (that is, transcription factor binding sites in the upstream region) with the
previously known “target” genes, so they may also be targets of the Wnt/b-catenine path-
way. In Figure 5.4 we also show the names of the four genes with greatest Fisher index,
which are represented by the black dots located between the red dots that represent the
previously known “target” genes.

The gene CamKIV, coding for a calcium/calmodulin-dependent protein kinase IV protein,
has the higher Fisher index and was proposed for experimental validation. These exper-
iments concluded that there exist strong evidences for up-regulation in response to both
Wnt ligands and lithium, and tropomyosin 1 (alpha) that is associated with neurofibrillary
pathology of Alzehimer’s disease. These results were published in [5].

Interestingly, we also found the gene Ryk (receptor related to tyrosine kinase) as a putative
Wnt target gene. Ryk has been described as a co-receptor with Frizzled for Wnt ligands
through the activation of a b-catenin-independent signaling pathway [11, 39, 50]. In fact,
Ryk is able to bind to Dishevelled, thereby activating the canonical Wnt pathway. Ryk
function is related to axon guidance and neurite outgrowth, making it an interesting target
for Wnt activation [51, 62].

These experimental confirmation of our predictions strongly suggest that the proposed
classification scheme is an effective tool to discover new genes associated to Wnt/b-
catenine pathway.
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5.5 Ranking of relevant transcription factors

Table 5.2: A sample of relevant transcription factors
Symbol Description I1 I2

NR3C1 nuclear receptor subfamily 3, group C,
member 1 (glucocorticoid receptor)

822.6 1500

PAX3 paired box 3 1389.7 1489
TCF–1 trascription factor 7 3.3 1485
LEF1 lymphoid enhancer-binding factor 1 68.5 1500
HNF4a hepatocyte nuclear factor 4, alpha 90.2 1497
MAZ MYC-associated zinc finger protein

(purine-binding transcription factor)
6.3 1316

MTF1 metal-regulatory transcription factor 1 27.2 1476

One of the characteristics of CART that distinguish it from other classification algorithms
is that a trained classifier describes which are the variables that characterize each class.
In this problem this means that only the variables that characterize the “target” genes are
used in the split nodes of a tree. The most relevant variables, that is, the ones that have
bigger impact on determining homogenous groups, are located closer to the root of the
tree. That is, they are part of split nodes with lower depth.

As described in Section 5.2.2, a CART tree has two kinds of nodes: leaves and splits.
The split nodes Sm are ordered pairs (km, am) where km describes the component of the
fingerprint used to separate the node in two, putting the genes such that Xi,km<am in one
child node and the rest on the other. The depth of a node in position m is

depth(m) = blog2(m)c.

To determine which are the “primary variables” of a tree Cj we consider for each variable
k the set of nodes in which it is involved

Sj(k) = {m : Sm = (km, am) is a node in tree Cj and km = k}.

Then we define a first relevance index

I1(k) = Â
j2J

Â
m2Sj(k)

2�depth(m).

We also define a second relevance index that simply counts the number of classifiers in
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which the variable k is involved

I2(k) = Â
j2J

1(Sj(k) 6= ∆).

Since the genes are characterized by their fingerprints, where each component is the num-
ber of times each transcription factor binding site appears in the upstream region, we
use these relevance indices to rank the transcription factors that characterize the Wnt/
b-catenine target genes.

The best ranked transcription factors that appear to be more relevant from the biological
point of view are shown in Table 5.2. As expected, within the most relevant transcription
factors used in the decision tree we found LEF1 and TCF–1. The complex formed between
these regulators and b-catenin is necessary to regulate gene expression of canonical Wnt
signaling pathway targets.

The PAX3 transcription factor has been detected in vitro as part of a complex formed by
LEF1 and repressor Grg4 in melanocyte stem cells [43]. The presence of HNF4a transcrip-
tional regulator as relevant for the predictor also is interesting. The study conducted by
Hatzis et al. [28] revealed that binding sites motifs for this transcription factor are present
surrounding the specifically enriched TCF4-binding region identified by ChIP. In particu-
lar, Benahmed et al. [9] reported the cooperation between HNF4a, b-catenin and TCF–4
to regulate the expression pattern of the homeobox Cdx2 in mouse gut development. Re-
cently it has been suggested that HNF4a could mediate gene expression of several drug
transporter proteins in human and rat choroid-plexus [64].

Also recently, it has been demonstrated that transcriptional regulator NR3C1 is involved
in regulation of cyclin D1 by targeting the TCF/b-catenin complex [91]; furthermore, it
has been reported NR3C1 and b-catenin as part of the same immunocomplex in regulatory
regions for cyclin D1 in human osteoblastic cells [68].

Regulatory sites for MAZ have been reported upstream of matrix metalloproteinase 14
[75]. Interestingly, this last gene is up-regulated in colon carcinomas mediated by a direct
interaction of b-catenin/TCF4 complex and their 5’ flanking region, indicating that it is a
direct target of Wnt pathway.

In summary, the ranking of transcription factors provided by this method shows, besides
the presence of LEF1/TCF1 complex, some of the most relevant transcriptional regulators
that have been previously described to be associated to the regulatory regions of genes
that also respond to Wnt canonical pathway, suggesting that the proposed method cap-
tures a relevant biological fact.
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5.6 Conclusions

In this chapter, we developed a method to identify new Wnt/b-catenin target genes based
on the analysis of the number of times that each transcription factor binding site appears in
the promoter region of the genes in the human genome. We developed a new classifier that
extends the classical CART method to detect genes in which the presence of transcription
factor binding sites has the same pattern as the training targets belonging to the Wnt/
b-catenin pathway.

The main contribution of this work is to handle a classification problem where one of the
training categories is not known completely. We assumed that most of the genes with
“unknown” class were really “non-target” genes and developed a robust classification
method to handle this incertitude. The robustness is achieved by combining multiple
independent classifiers, each one trained with a different random sample of examples,
and then doing a meta-analysis consolidation. Under suitable hypothesis we defined a
significance threshold that clearly separates “target look-alike” genes from the rest. This
test is shown to be equivalent, in the case considered, to a voting scheme.

We showed that this classification scheme is robust, in the sense that independent realiza-
tions coincide in over 96% of the predicted target genes. Also, a leave-one-out test showed
that all the known genes are always recovered by the proposed method. We compared this
classifier to other classical ones and showed that neither KNN, nor regular CART are able
to recover all the known “target” genes. On the other side, a SVM classifier can recover
all known target genes but fails to predict any new candidate gene.

The use of CART trees as the base of our method enabled us to determine which tran-
scription factors are the most relevant to characterize the implication of a gene in the
Wnt/b-catenine pathway. The ranking of transcription factors coincided with the previ-
ous knowledge and extended it.

The classifiers were built to separate known “target” genes from the rest. In the final
outcome 40 new genes were undistinguishable from the known “targets”, according to
our combined method. This result strongly suggests that these novel genes are also targets
of the Wnt/b-catenine pathway. Some of them are known by functions that may also be
related to this pathway The best ranked new gene, CamKIV, was validated experimentally
and constitutes a contribution to the understanding of Alzheimer’s disease.

The experimental confirmation of our predictions strongly suggest that the proposed clas-
sification scheme is an effective tool to discover genes to complete the network of the
Wnt/b-catenine pathway. We think that this method is also applicable to similar partially
known networks. This work resulted in two publications [5, 30].
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Chapter 6

Designing expression measurement
tools: a mathematical model for
oligonucleotide design

In previous chapters we have shown how differential expression experimental data can
be used to determine gene association or influence, that is, which are the genes whose
behavior suggests that they share the same regulation. To do this we use data from ex-
periments that simultaneously measure the expression of thousands of genes in several
environmental conditions.

The adequate selection of the nucleotidic sequence characterizing each probe is therefore
of particular interest. In this chapter we will define the conditions that should be satisfied
by the nucleotidic sequence of a DNA molecule to be used as a probe. We will describe
some of the heuristic criteria that have been used traditionally and compare different ap-
proaches for the in silico design considering thermodynamic criteria.

We will show that the classical thermodynamical models used to predict the binding en-
ergy of oligonucleotides in aqueous solution are not applicable in the microarray case,
and an alternative model will be proposed. This new model depends on a number of
parameters which have to be determined experimentally.

Following that, we will describe a series of experiments designed to evaluate these pa-
rameters, and the mathematical methods used for this estimation. We will conclude with
the analysis of the results and the perspectives of further developments.
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6.1 Background

One of the tools that is usually used to evaluate the expression of big numbers of genes
are microarrays. These are devices used to detect the presence of some nucleic acids that
are able to hybridize to the DNA molecules printed on its surface. A microarray is a glass
slide in whose surface many spots have been printed forming an ordered array. Each spot
contains several millions of copies of a DNA molecule, called probes.

The physicochemical principle in which microarrays are based is the natural tendency
of single-strand DNA molecules to form a double strand molecule or duplex. Each spot
in the array surface has a known nucleotide sequence. They are submerged in a solu-
tion where the target DNA (for example, the expressed genes of the organism) has been
marked with fluorophore and dissolved. After several hours of interaction the glass is
washed and the fluorescent molecules that remained bound to each oligoarray spot will
result in a luminescence signal related to the concentration of the target.

Microarrays are fabricated by printing the DNA probes in each spot. The first microarrays
were made printing PCR products obtained directly from the target region. Newer arrays
are made printing oligonucleotides, short DNA molecules that are synthesized following
a specific description. The base composition of each oligonucleotide is chosen with the
idea of maximizing the probability of binding to the relevant gene and, at the same time,
minimize the probability of binding to other genes without interest. When the number of
targets is small or the number of slides is big, then usually oligonucleotides are made in
solution and printed on the slide using a robot. On the other case, when the number of
slides is small and the number of spots is big, the oligonucleotides can be synthesized in
situ using a photolithographic technique.

These type of microarrays have been used in health diagnostics [49], genome-wide map-
ping of single-nucleotide polymorphisms [33, 98], metagenomic sampling, monitoring
of microbiological communities in the biotechnological industry [18] and identification of
protein-DNA binding sites (known as CHiP-chip). They are also used to perform compar-
ative genomic hybridization, for example to analyze the genetic diversity of a taxonomic
branch [38] and in cancer research to determine copy number variation, that is which re-
gions in the chromosomes are deleted or amplified in tumor cells versus healthy ones [70].
Oligonucleotide microarrays have been used to physically isolate the DNA segments that
need to be resequenced in whole genome sequencing projects. Finally, the most common
use of microarrays is the evaluation of differential gene expression, that is, the change in
transcribed mRNA when a cell develops or is exposed to different environmental condi-
tions.
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Despite the development of new tools as RNAseq, which have some advantages for re-
search applications but are too expensive for general applications, microarrays continue
to be one of the most useful tools in modern molecular biology. Thus, the knowledge of
which oligonucleotides are the best ones for a specific target is essential. Many heuristic
approaches have been used to discard candidate oligonucleotides that could potentially
have low performance. In this chapter we address this problem by means of a mathemat-
ical model of the oligonucleotide hybridization process under microarray conditions.

6.2 Oligoarray design problem

An oligonucleotide is a single strand short DNA molecule (length up to 100bp). These
molecules can be synthesized in a way that each nucleotide corresponds to a symbol de-
fined by a word in the DNA alphabet {A, C, T, G}. This word is also called oligonucleotide
or probe. Since the molecule and the word are used in separated contexts, this abuse is
not confusing.

As already mentioned, one of the main applications of oligonucleotides is their use to de-
tect the presence of DNA molecules with a specific sequence, for example a given gene,
which is called target sequence. This detection is based on the hybridization of the oligonu-
cleotide to the reverse-complementary strand in the target sequence. DNA is stable in the
double helix conformation, also called duplex, and single strand DNA will tend to hy-
bridize to other DNA strands, pairing each nucleotide in front of another nucleotide. The
most stable pairing is the Watson-Creek one, where A nucleotides match T ones, and G
nucleotides match C ones. Nevertheless other configurations are feasible, although with
reduced stability.

From a theoretical point of view, the oligoarray design problem or microarray oligonucleotide
design problem can be stated as follows: for each relevant target, determine one or more
oligonucleotides that should bind specifically with the template. Specific hybridization
is defined under thermodynamic equilibrium with two conditions: (1) there is a high
probability of having the template hybridized against its target probe, and (2) there is a
low probability of having the template hybridized against other probes, this condition
being called cross-hybridization. To summarize, given a target sequence C, the microarray
oligonucleotide design problem is the selection of words P satisfying the following conditions:

Length The length |P| should be in the range lmin  |P|  lmax .

Sensitivity The oligonucleotide P should bind to C with probability

Pr(P binds to C) ⇡ 1.
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Specificity The oligonucleotide P should not bind to non-target sequences S. That is

Pr(P binds to S) ⌧ 1 8S 6= C.

In some cases lmin = lmax and all oligonucleotides have the same length. Usually there is
a tradeoff between the last two conditions. In order to improve the sensibility of the array
some operational conditions can be modified (for example, lowering the hybridization
temperature), risking the rise of cross-hybridization. Best probes are those satisfying both
conditions simultaneously. It is therefore necessary to use a good model for the probability
of hybridization and estimate correctly these probabilities.

6.3 Heuristic approaches

Several programs have been proposed to design oligonucleotides for microarrays [46].
They share all the same general strategy. First, a set of candidate oligonucleotides is pro-
duced. Then this set is reduced discarding the oligonucleotides which can exhibit low
specificity or sensitivity according to several empirical criteria.

The first criteria used to maximize sensitivity is to design candidate probes that are the re-
verse complementary sequence of a subword of the target sequence. This subword where
the oligonucleotide will most probably bind is called template. The target C is traversed
considering each position i in the sequence. Each subword ci . . . ci+l�1 is a candidate tem-
plate, with a length l in the range lmin  l  lmax . The corresponding oligonucleotide will
be the reverse complementary sequence of the template.

In some cases the sensitivity is maximized by choosing candidate templates only from a
specific region of the target sequence. For example it is usual to discard regions in the tar-
get sequence which are highly similar to non-target sequences. In gene expression exper-
iments the template position is usually biased to the start or the end of the gene, because
the sample preparation (retrotranscription) is more efficient towards the beginning of the
gene in bacteria and towards the gene end in eukaryotic organisms.

A second criteria to maximize sensitivity is to discard candidate oligonucleotides that pos-
sibly form hairpins or stem-loops, which can reduce the probability of duplex formation
with the target.

Other usual criteria used to discard oligonucleotides is the low complexity of their se-
quence. Repeats of one or two nucleotides, which sometimes are due to sequencing errors,
are avoided. Sometimes this kind of repeats are found in eukaryotic genomes, in the form
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of microsatellites. In that case, given that these genomic structures are spread through the
chromosome, the oligonucleotide hybridization will not be specific.

A last criteria usually considered is the homogeneity of the melting temperature Tm of
the oligonucleotide-target duplex. The melting temperature is defined as the temperature
where the duplex conformation has the same probability as the open conformation. For
practical considerations, it is desirable that all oligonucleotides in the microarray have
similar melting temperatures. Two approaches are often used: discarding of candidate
probes whose Tm is outside a defined range, or choosing the length of each oligonucleotide
to achieve a Tm close to a prefixed one.

As a rule of thumb, an usual proxy of the Tm criteria is the GC content, that is, the per-
centage of nucleotides in the probe that are G or C. Higher GC content oligonucleotides
have higher Tm, and in some ranges the relationship is close to linear. Then, to maximize
sensitivity the oligonucleotides whose GC content is outside a given range are discarded.
Alternatively, the oligonucleotide length l is chosen in the lmin  l  lmax range in a way
that the resulting GC content is close to a prefixed one.

The specificity of the probes is mainly controlled by lowering the risk of cross-hybridization.
There are several heuristic criteria to determine this risk. The most used ones, as shown
in Table 6.1, use string search techniques as Blast or data structures as suffix arrays to
determine if a template sequence has significant similarity to non-target sequences and
discard the candidate probes based on this template. The significance of the similarity is
determined as a matching score.

Other heuristic methods to maximize specificity use a thermodynamical model or a set
of ad hoc rules determined by Kane [35], which we evaluate in the next sections of this
chapter.

6.3.1 Kane rules

Specificity is controlled by discarding the candidate oligonucleotides that can bind to se-
quences different from the desired target. One of the heuristics often used for this eval-
uation is defined by Kane [35], which determined that cross-hybridization can happen if
either

• non-target sequences share over 75–80% of similarity with the target sequence, or

• non-target sequences contain a region of 15 or more nucleotides identical to the tar-
get sequence.
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Table 6.1: Heuristic methods for oligonucleotide selection. Most common criteria to
determine possible cross-hybridization are Blast search (B) or Suffix array (S), thermody-
namic evaluation (T), Kane’s rules (K).

Design program Year Filters References

ArrayOligoSelector 2003 B,T Bozdech et al. Genome Biology v4 pR9
CommOligo 2005 T,K Li et al. Nucleic Acids Research v33 p6114–6123
GoArrays 2005 B,K Rimour et al. Bioinformatics v21 p1094
HPD 2005 clustal Chung et al. Bioinformatics v21 p4092–4100
MPrime 2005 B Rouchka et al. BMC Bioinformatics v6 p175
OliD 2003 B Talla et al. BMC Genomics v4 p38
OligoArray 2003 B,T Rouillard et al. Nucleic Acids Research v31 p3057
Oligodb 2002 B Mrowka et al. Bioinformatics v18 p1686
OligoFaktory 2006 B Schretter and Milinkovitch Bioinformatics v22

p115–116
OligoPicker 2003 B Wang et al. Bioinformatics v19 p796–802
OligoWiz 2005 B,T Wernersson and Nielsen Nucleic Acids Research

v33 W611-W615
Oliz 2002 B,K Chen et al. Bioinformatics v3 p27
Osprey 2004 PSSM Gordon et al. Nucleic Acids Research v32 e133
PICKY 2004 T,K,S Chou et al. Bioinformatics v20 p2893–2902
PROBEmer 2003 S Emrich et al. Nucleic Acids Research v31

p3746–3750
Probesel 2002 T,S Kaderali and Schliep Bioinformatics v18 p1340–9
ProbeSelect 2001 T,S Li et al. Bioinformatics v17 p1067–1076
ROSO 2004 B Reymond et al. Bioinformatics v20 p271–273
SEPON 2004 B Hornshoj et al. Bioinformatics v20 p428–429
YODA 2004 SeqMatch Nordberg et al. Bioinformatics v21 p1365–1370
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The first condition indicates that the oligonucleotide can bind to a sequence which is
mostly complementary, except for up to 25% of the bases. These non-matching nucleotides
can be distributed randomly in the duplex and the binding is still feasible, with lower
probability but still significant. The second condition states that, even if most of the nu-
cleotides are not complementary, a run of 15 or more perfectly matching nucleotides are
enough to stabilize the duplex and give a false signal. We evaluated experimentally both
conditions, as will be described in a following section.

6.3.2 Validating Kane rules
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Figure 6.1: Signal intensity change depending on the oligonucleotide-template identity
percentage, normalized respect the perfect match probe signal. Mismatches are spread
randomly through the oligonucleotide. We observe that probes sharing less than 90%
identity to the “perfect-match” oligonucleotide have a significant luminescence reduction
respect to it. Probes 95% equal to the perfect-match oligonucleotide have lower signal
but still significant. In other words up to 10% of the nucleotides can be random-position
mismatches and the template will still hybridize to the probe.

To verify the validity of Kane’s rules we designed an experiment where several variations
of the same probe were synthesized in a microarray using Nimblegen technology. The
template was the region 627–677 of the E.coli gene 16S. The synthesized oligonucleotides
included one matching perfectly the template. We also designed a series of 87 probes
whose nucleotides were randomly chosen to have minimal matching to the template.
We synthesized in the microarrays probes based on these 87 “random” oligonucleotides,
where the 5 leftmost bases of each one were replaced by the 5 corresponding bases match-
ing the template, other 87 probes where the 10 leftmost bases were replaced by the perfect
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Figure 6.2: Signal intensity dependency on the length of the perfect matching run, nor-
malized respect the perfect match probe signal. Red points correspond to oligonucleotides
where nucleotides in the 3’ extreme match the template, while black points are probes
where the 5’ side matches the template. Oligonucleotides having a run of 40 or less nu-
cleotides matching the template have a significant difference versus the perfect match,
while those with 15 or less matching nucleotides cannot be distinguished from back-
ground. We observe that the signal variation is stronger when the matching nucleotides
are in the 3’ side.
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match, and so on up to 45 perfect matching contiguous nucleotides and the last 5 ones
non-matching. In total there were 783 probes representing “runs of contiguous matching
nucleotides” in the 5’ side of the oligonucleotide. We did also designed other 783 probes
representing perfect matching runs in the 3’ extreme. Each of these probes was printed
eight times in the slide.

We also considered a series of 30 templates corresponding to different regions of the gene
16S of E.coli (12 templates) and the gene Threonyl tRNA-synthetase of A. ferrooxidans
(18 templates). For each template we synthesized a perfect matching oligonucleotide, 3
probes based on this but where 5% of the bases where changed at random for a mismatch-
ing nucleotide, other 3 probes with 10% changed nucleotides, the same for 15%, 20% and
up to 90% changed bases. In total 1710 probes were synthesized in eight copies.

Two slides including probes with this design were hybridized following the standard pro-
tocol. The first one was hybridized to the gene 16S of E.coli, the second one to the gene
Threonyl tRNA-synthetase of A. ferrooxidans. In both cases the genes were amplified us-
ing PCR. The resulting slides were scanned and the signal levels for each probe were
averaged.

Figure 6.1 shows that signal intensity is similar to the background level when probes
match the template in less than 85%. Over this percentage the signal increases but is
still lower than the perfect match. These results are coherent with the first Kane rule. Fig-
ure 6.2 shows that a random probe which only matches the template in a run of 15 or less
nucleotides has no significant cross-hybridization. When the matching run has 20 or more
nucleotides we observe different levels of cross-hybridization, still distinguished from the
perfect match. In summary both Kane’s rules are supported by the experimental results,
although great variation can be observed.

We also observe great variation on the signal intensity level of the perfect-match probes of
the same gene. In Figure 6.3 we show that the signal intensity level of the 18 probes for the
gene Threonyl tRNA-synthetase of A. ferrooxidans can change up to four times depending
only in the position of the matching template in the gene. At the same time we notice
that the signal variation is minimal between probes that are based on templates which are
close in the gene. All these probes where hybridized at the same time to the same gene, so
the thermodynamic conditions as temperature, DNA concentration and salt concentration
are the same for all the oligonucleotides. This variation seems to be associated with the
affinity of the probe to the target. In the next section we explore the methods that can be
used to determine this affinity.
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Figure 6.3: Signal intensity level for all the probes for gene Threonyl tRNA-synthetase
of A. ferrooxidans. Only perfect-match oligonucleotides are considered. Horizontal axis
shows the position of the template for each oligo in the target gene. There is an important
variation of signal

6.3.3 Example of application

Using these heuristic rules we have built a distributed computing platform to evaluate in
parallel the massive amount of candidate probes that are considered in metagenomic and
environmental sampling applications.

Using this platform we designed a microarray for identification of biomining microorgan-
isms that is used in Codelco copper bioleaching plants. This work has been published
in [18].

Other applications resulted in the patent request DPI–2773 (Chile, October 2012) and
patent grants US 7 915 031 B2 (USA, 29/03/2011) and US 8 207 324 B2 (USA, 26/06/2012).
These two patents have also been granted in South Africa, Argentine, Peru, Mexico, China
and Chile.

6.4 Thermodynamic model approach

The last figure in the previous section shows that the variation on the signal intensity
depends strongly on the position of the template of each oligo. Since most of the thermo-
dynamical conditions are fixed, this figure suggests that the signal variation results from
changes in the thermodynamical affinity between the oligonucleotide and the template.
Templates located closely, that share part of their sequences, have similar intensity levels.
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This fact strongly suggests that the thermodynamic affinity depends on the probe and
target sequences.

In this section we describe a mathematical model of the probability of binding and duplex
formation of a given probe versus a target sequence. This probability determines the lu-
minescence signal intensity and defines the sensitivity and specificity of the probe, which
are the main criteria for probe selection. We show that, for fixed probe and target con-
centrations, the duplex formation probability is a function of the Gibbs free energy. Using
the standard nearest neighbor model we predict changes in the signal intensity for single
nucleotide modifications in the probe. Finally we compare these predictions to results in
an ad hoc experiment.

Let us consider the duplex formation as a chemical reaction. The participants of this re-
action are the probes P, the target DNA C and the duplex formed by both P·C. The total
concentration [P] of probes is typically 0.03–0.82pM, the total concentration of targets [C]
is in the range 0.0165–15nM, so [P] ⌧ 103[C]. Each probe molecule can be in one of two
states: forming part of a duplex or free. The same happens with the target. Naturally, only
free molecules can react to form a duplex. If we use the symbol PF to denote free probes
and CF to symbolize free target DNA, then the equilibrium reaction can be stated as

PF + CF $ P·C.

If we use the symbols [PF], [CF] and [P·C] to denote the concentrations of free probes,
target DNA and duplex in the hybridization solution, respectively, then the reaction rate
is such that

d[P·C]
dt

= KFD[PF][CF]� KDF[P·C],

where KFD is the reaction rate constant for the transition of the probe from the free state to
the duplex state and KDF is the reaction rate constant from duplex to free. In equilibrium
this derivative is null, so we can express the duplex concentration as

[P·C] = KD[PF][CF] (6.1)

where we wrote KD = KFD/KDF for the equilibrium constant.

Since the total concentration of probes [P] is fixed we can write [PF] = [P]� [P·C]. We can
also write [CF] = [C]� [P·C], but since [P·C]  [P] ⌧ [C] we assume [CF] = [C]. Thus,
replacing these values in equation 6.1 we have

[P·C]
[P]

=
KD[C]

KD[C] + 1
. (6.2)
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This expression corresponds to Langmuir adsorption equation [44].

In consequence the proportion of probes in duplex state —and therefore the probe luminescence—
depends on the concentration of the target and the equilibrium constant. This last one is
related to the Gibbs free energy of the duplex formation. According to the Arrhenius
equation [20, 42], at equilibrium we have

DGo(P·C) = �RT ln KD (6.3)

where DGo(P·C) is the standard-state Gibbs free energy of the duplex P·C, R is the ideal
gas constant and T is the absolute temperature. Replacing equation 6.3 in 6.2 we can
determine the probability of having a probe bound to the target as

Pr(P binds to C) =
[P·C]
[P]

=
exp(�DGo(P·C)/RT)

1 + exp(�DGo(P·C)/RT)
. (6.4)

In summary, to predict specificity and sensitivity of a probe respect to a template we need
to evaluate the Gibbs free energy for the formation of the corresponding duplex. In the
next section we explore how to evaluate this energy in silico.

6.4.1 Standard nearest neighbor model of DNA duplex energy

The nearest neighbor model is widely recognized as the state-of-the-art model for estimating
the free energy of DNA folding in solution as a function of the nucleotide composition of
the involved molecules [12]. That is, whenever one or two DNA molecules are floating in
water, the free energy DG for any given condition can be decomposed as the sum of the
contributions of independent components [81]

DGtotal(P·C) = DGinitiation(P·C) + DGsymmetry(P·C) + DGAT(P·C) + DGstack(P·C) (6.5)

The first term is a constant that is always included. The symmetry term is included when
one of the two molecules is symmetric, which is not the case here so we do not further
include it. The AT term is a penalization when the terminal nucleotide in the shorter
molecule is A or T.

The last term, the stacking energy, is itself a sum of terms depending only on a neighbor-
hood of two nucleotides. If the probe P has nucleotides p1, . . . , pn and the template where
it binds is represented by t1, . . . , tn, then the stacking energy is

DGstack(P·C) =
n�1

Â
k=1

x(P, C, k) (6.6)
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where n is the length of the probe and x is a function depending only on the probe se-
quence at position k, its matching nucleotide in the template, and their nearest neighbors
at position k + 1. The values of x have been determined experimentally in normal condi-
tions by many researchers, including SantaLucia [80] who tabulated these values for all
cases and for non-matching configurations as described in Figure 6.4.

Notice that the stacking energy depends only on the nucleotides involved in the hy-
bridization. The target sequence is usually longer, but for this evaluation only the tem-
plate is relevant.

We used the program hybrid-min from the UNAFold package [54] to evaluate the theoret-
ical binding energy. UNAFold is a suite of computer programs that implement a dynam-
ical programming algorithm to find the conformation with lowest free energy for single-
and double-strand DNA molecules.

Figure 6.4: Description of all cases considered in the nearest neighbor model. The free
energy is the sum of values depending on perfect matches, dangling ends, internal, penul-
timate and terminal mismatches; internal, bulge and hairpin loops, and three way junc-
tions. Pseudoknots can also be considered but are usually ignored.

6.4.2 Change in luminescence as consequence of single nucleotide mis-
match

Signal intensity I is assumed to be directly proportional to the probability of the duplex
conformation, so I = Imax [P·C]. Replacing this expression in the Langmuir equation 6.2
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and solving for the equilibrium rate KD, we have

KD =
1

[C]
I

Imax � I
. (6.7)

We assume that the proportionality constant Imax is much bigger that I and the same for
all spots. Experimental values of I are concentrated in the range 26 to 212, but in some
cases there are saturated pixels, whose luminescence is greater that the upper limit of
the scanner device, which is 216. In consequence we assume that the real value of Imax is
greater than 216.

We want to evaluate the effect on the signal intensity of changing a single nucleotide in
the probe. Let P1 and P2 be two probes that have the same nucleotidic sequence except
for a single substitution. Let K1 and K2 be the equilibrium rates for the duplex formation
for these probes when hybridized to the same target C. The target concentration [C] is
therefore the same for both, in the order of 10�9M. We also assume that the probe density
[Pi] is the same in all cases, in the order of 10�12M.

Using equation 6.7 we can write the natural logarithms of the ratio between the equilib-
rium rates of both probes as

ln K1 � ln K2 = ln I1 � ln I2 + ln
Imax � I2
Imax � I1

The last term can be neglected because Imax � Ii. The term [C] is cancelled.

Replacing the equilibrium constants using equation 6.3, we have

ln I1 � ln I2 =
DGo(P2·C)� DGo(P1·C)

RT
(6.8)

so the change in log-intensity is proportional to the change in energy. Since both probes
are similar, the difference in the duplex formation energy corresponds exclusively to dif-
ferences in the stacking energies, except when the nucleotide that changes is in one of the
extremes of the oligonucleotide.

This last equation allows us to compare the theoretical energy prediction against the ex-
perimental values in an experiment designed for this. If the oligonucleotides match the
template except for minor modifications we can also consider single-base insertions and
deletions, since the stacking function will have only minor changes if the duplex structure
is conserved.
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6.4.3 Experimental design

To test the validity of the thermodynamical model we designed an array with a series
of 50bp oligonucleotides that corresponded to all cases of single nucleotide substitution,
insertion and deletion.

The experimental design considered 30 sets of oligonucleotides which we call families. In
each family there is a perfect-match oligonucleotide which is a perfect match to a region in
the target gene. The family also included several variants of the perfect-match oligonu-
cleotide. For each position in the oligonucleotide we consider substitutions for the three
other bases, insertion of each of the four bases and deletion of a single base. Therefore each
oligonucleotide family has one perfect-match oligonucleotide, 150 substitution variants,
196 insertion variants and 50 deletion variants.

Each family was printed in seven copies in a microarray. 18 families correspond to dif-
ferent positions in the Threonyl tRNA-synthetase gene of A.ferrooxidans and 12 to the 16S
gene of E.coli.

In summary, for each of the 30 perfect match oligonucleotides, we have 196 variants
formed by insertion of each 4 nucleotides in each position, 49 variants with one dele-
tion and 49 with two deletions, and 147 substitutions of one nucleotide. This gives us a
total of 13,295 oligonucleotides, each printed in 8 copies. These oligonucleotides where
synthesized in situ using Nimblegen technology.

. . . ACTG . . .Perfect Match

. . . ACTG . . .Substitution

. . . A-TG . . .Deletion

. . . ACTG . . .Insertion

A,G,T A,C,G,T

Figure 6.5: Illustration of the variants included in each family of oligonucleotides. The
“Perfect-match” oligonucleotide is a 50 bp long perfect match for the template in the target
gene. The “Substitution” oligonucleotides are built by changing each nucleotide in every
position for all the other 3 nucleotides. The “Deletion” oligonucleotides were made by
deleting one nucleotides in each position. Finally the “Insertion” nucleotides are made by
inserting every one of the 4 nucleotide in each of the 49 inter-nucleotide spaces.

6.4.4 Hybridization results

Two microarray experiments where carried on using the slides previously described, which
were hybridized to marked DNA of the corresponding targets (Threonyl tRNA-synthetase
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gene of Acidithiobacillus ferrooxidans and 16S gene of E.coli.). The experiments were per-
formed following the protocol specified by the manufacturer. The resulting images were
discretized by Nimblegen using their own software and transformed into intensity level
values for each spot.

The signal intensity of each probe in each condition was evaluated as the average of all
the replicas. Applying the equation 6.8 we can estimate the energy change between the
hybridization of the perfect-match probe versus the hybridization of each of the variants
to the same template. Using the hybrid-min routine from the UNAFold suite we calculated
the theoretical energy for these hybridizations. In Figure 6.7 we can compare the predicted
and the experimental normalized signal intensity for all the variants. Black spots corre-
spond to “substitution” variants, green ones to “deletion” variants and blue spots are for
“insertion” variants. The red line shows the identity diagonal. We observe that theoret-
ical and experimental values are not similar except in a few cases. This graph shows in
summary that the standard nearest-neighbor model, adjusted for free oligonucleotides in
solution, is not completely applicable to oligonucleotides printed in a microarray glass, as
noticed by some authors [46].

To further understand the origin of this difference we analyzed the intensity variation
as function of the position of the changing nucleotide. Figure 6.6 shows the theoretical
values in red and the experimental values in black. The horizontal axis corresponds to the
position in the variant probe of the nucleotide that changed with respect to the perfect-
match probe.

We observe that the theoretical energy change does not depend on the position of the
modified nucleotide. The predicted effect is essentially the same except for the boundary
cases. In contrast the experimental values show a marked dependence on the position of
the modification. Changes close to the extremes of the oligonucleotides have low impact
on the signal intensity, while changes in the interior nucleotides have a more significative
impact. This suggest that the stacking energy function should have a positional dependent
component.

6.5 Position dependent nearest neighbor model

In the previous section we observed that the classical energy model predicts that the effect
in the duplex free energy of single nucleotide variations does not depend on the position
of the modification in the oligonucleotide (except in the boundaries). On the other side the
experimental values show a marked dependence on the position of the variation. Under
the light of these results we conclude that the stacking energy do depend explicitly on the
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Figure 6.6: Theoretical and experimental change in signal intensity as function of the
position of the variation. Vertical axis is the log-ratio of the luminescence of each probe
respect to the corresponding perfect-match oligonucleotide. Horizontal axis corresponds
to the position in the probe of the sequence variation (insertion, substitution, deletion).
Red spots represent the theoretical prediction, black spots are experimental values. Ex-
perimental values show a dependence on the position of the variant that is not present in
the predicted values.
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Figure 6.7: Classical model prediction versus observed log-signal for all variant
oligonucleotides. Signal intensity was normalized by the signal of the perfect matching
oligonucleotide (the “perfect-match”) in each family.

position k of the nucleotide in the probe. In Zhang et al. (2007) [102] the authors state

“For DNA hybridization in aqueous solution, the roles of probes and targets
are reciprocally symmetrical so that probes and targets are interchangeable.
This symmetry is broken for hybridization on the microarrays because the
probes are covalently bounded to the surface while the targets can roam free
in solution.”

Following their paper we consider a modified nearest neighbor energy function for the
hybridization of the probe P to the template C

DGtotal(P · C) =
n�1

Â
k=1

wkx(P, C, k) + winiDGini(P · C) + wATDGAT(P · C). (6.9)

where the values x(P, C, k), DGini and DGAT are the same defined by SantaLucia and the
factors wk, wini and wAT are weight that determine the contribution of each energy term
(stacking, initialization and AT) to the total energy.

Now we can not use UNAFold. Instead we need to build the energy function including the
weight factors wk. In the following we will consider the same set of oligonucleotides {Pi :
i=1, . . . , N} described in Section 6.4.3. Since we know the conformation of the hybridized
oligonucleotide we can write an explicit equation for each one and equal it to the energy
estimated from the experimental luminescence.

According to their design, each probe Pi will bind to a template Cj. Let J(i) be the function
that describes, for each probe identified by i, which is the template j where it will bind.
That is, J(i) = j if and only if the probe Pi was designed to hybridize on template j.
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Combining equations 6.3 and 6.7, and representing by Pi·Cj the duplex formed by Pi and
Cj, we have

DGtotal(Pi·Cj) = RT ln[Cj]� RT ln(
Ii,j

Imax � Ii,j
),

where Ii,j is the raw signal intensity of probe Pi when hybridized to template Cj.

Combining this equation with equations 6.5 and 6.9, we have

n�1

Â
k=1

wkx(Pi, CJ(i), k) + winiDGini(Di,J(i)) + wATDGAT(Di,J(i)) + Bi = Yi

where Bi = �RT ln([CJ(i)]) and Yi = �RT ln(Ii,J(i)/(Imax � Ii,J(i))). We use this equation
to fit the wk values using least squares regression.

6.5.1 Evaluation

We used the values given by Santalucia, adjusted to the experimental temperature and
salt concentration, to build a regression matrix. Since we consider only one modified base
in each variant, most of the values in each column are constant for all oligonucleotides in
each family. The cases considered are:

stack: Standard Watson-Crick pairing of the four nucleotides

sint2: Mismatch of a single interior nucleotide

bulge: Insertion or deletion of a single interior nucleotide

dangle3: Interaction of the last nucleotide in the 3’ extreme of the oligonucleotide with
the two nucleotides in the template

dangle5: Like the previous one but in the 5’ extreme

tstacke: Stacking energy of the ending nucleotides.

As seen in Figure 6.4, the model also considers hairpins, internal loops and three way
junctions, but they are not applicable in our case. Since all oligonucleotides match per-
fectly the template except for a single modification, the hybridized configurations only
require the component described in the list above.

Columns 1 to n in the regression matrix A correspond to the position k in the oligonu-
cleotide as distance to the glass. Columns n + 1 and n + 2 correspond to the initialization
and AT terminal terms. Rows corresponds to each oligonucleotide Pi in the experimental
set. The values in each cell were chosen assuming that all the oligonucleotides in every
family (perfect match and variants) bind to the same template region on the target. The
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regression matrix is therefore like

A =

2

6666666666666664

dangle3 stack stack stack . . . stack dangle5 ini AT
dangle3 sint2 stack stack . . . stack dangle5 ini AT
dangle3 stack sint2 stack . . . stack dangle5 ini AT

...
...

...
... . . . ...

... ini AT
dangle3 stack stack bulge . . . stack dangle5 ini AT

...
...

...
... . . . ...

... ini AT
dangle3 stack stack stack . . . sint2 dangle5 ini AT
dangle3 stack stack stack . . . stack tstacke ini AT

3

7777777777777775

where of course the exact values depend on the probe and template sequences. Since we
assumed that the probe concentration [Pi] and the signal intensity scale factor Imax are
independent of the probe, we have two alternative models:

1. We can assume the target concentration is independent of the probe, so the intercept
B is a fixed value for all the probes,

2. We can assume a different intercept Bj for each template Cj. This case would corre-
spond to changes in the availability of the template or other kinds of affinity varia-
tion.

To determine the weights in the model (1) we look for the vector

w = (w1, . . . , wn, wini, wAT)T

and the scalar B that minimize

min
w,B

||(Aw + B1)�Y||2 given that wk � 0 8k.

In the second case we decompose the intercept into M cases. We build a matrix H with n
rows and M columns, such that Hi,j = 1 if and only if j = J(i), otherwise Hi,j = 0. The
model in this case is

min
w,B

||(Aw + HB)�Y||2 given that wk � 0 8k,

where B is a vector in RM.

These models were implemented on the R programming language using the library lim-
Solve [87] and applied to the data described in Section 6.4.4. We considered 11640 probes,
52 weight parameters plus the intercepts.

91



6.5.2 Results of weighted model fitting

Both model were fitted to the available data. We observe in Figure 6.8 that model 2 fits the
data much better than model 1. The correlation coefficient R2 for model 1 is 0.435 while
the value for model 2 is 0.894.
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Figure 6.8: Weighted model prediction versus observed log-signal . The Classic PDNN
model in the left considers a single interception factor. The model on the right considers a
template-dependent factor.

We have modeled the Gibbs free energy with a position dependent weighted nearest
neighbor model plus a template-dependent factor Bj. Our assumption is that this last fac-
tor depends on the free energy of the self-folded conformation of the oligonucleotide and
the template. This assumption is based on the hypothesis that the sequence modifica-
tions between the perfect match probe and its variants has no significative impact on the
secondary structure energy

To explore this hypothesis we compared the calculated Bj values versus the secondary
structure free energy predicted by hybrid-ss-min for the template and the probe. In
Figure 6.10 we observe that there is no clear relation between the experimental and the
calculated values. In consequence the classical model is not enough to predict the signal
intensity for glass-bound oligonucleotides.
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Figure 6.9: Resulting wk values from the regression. This result shows that the nucleotides
located near position 20 are the most relevant in the hybridization. Nucleotides in the last
10 positions, closer to the glass, have no significant effect.
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Figure 6.10: Contrast between the resulting template-dependent factors Bj and the sec-
ondary structure free energy calculated with the classical model. No clear relation is seen.
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6.5.3 Predicting family-wise factor Bj from sequence

Our plan is to determine position dependent weight factors for a modified nearest neigh-
bors free energy model for glass-bound self-folding oligonucleotides.

In a first approach we assume that all variants in each family share the same secondary
structure as the perfect-match oligonucleotide, and that this conformation is the one pre-
dicted by Unafold. Under these hypothesis we can optimize with an approach similar to
the already used.

In a second approach we assume that the change in the energy functions results in changes
on the realized conformations. In this case we need to modify the Unafold program
hybrid-ss-min to transform it to a function callable from MATLAB (or another similar
platform) and introducing position dependent weights as an additional parameter. This
function will be used to define a objective function for a non-linear minimization method,
which can be simulated annealing or a genetic algorithm. The optimization procedure
will look for minimizing the difference between the predicted and the experimental sig-
nal intensity.

With these values we will have a sequence based method to estimate the specificity of any
given glass-bound DNA oligonucleotide and thus choose the ones with high sensibility
and low cross-hybridization.

6.6 Conclusion

In this chapter we described a mathematical model for the hybridization of microarray
probes to their target sequences. This model is based on a thermodynamic formulation
that considers the Gibbs free energy of the probe-template duplex to predict the lumine-
scence signal of the probe in microarray experiments.

The Gibbs free energy of a DNA duplex is usually predicted from the sequence using
the well established nearest neighbor model. We have shown that this model, designed
for DNA molecules in solution, does not fit appropriately in the microarray case, where
one of the molecules is bound to a glass slide that introduces asymmetries. To overcome
this we adopted a position dependent nearest neighbor model where each component is
weighted depending on its distance to the glass slide.

We designed a series of probes for a microarray experiment that allowed us to determine
the weight factors using a restricted regression. The best fitting model considers a factor
that depends on the template where the oligonucleotide binds. Our hypothesis is that this
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factor corresponds to the effects of the alternative conformations, like hairpins or other
single strand secondary structures, that the template or the oligo can form.

As perspective of future work we propose a strategy to determine a second set of weights
to be used in the evaluation of the secondary structure energy for the glass bound oligonu-
cleotide. Following this plan we expect to make a contribution to the problem of designing
sensitive and meaningful oligonucleotides for microarrays.

An intermediate result of this chapter has been published in [18] and resulted in two
patents granted in United States, South Africa, Argentine, Peru, Mexico, China and Chile.
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