
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

TO INDEX OR NOT TO INDEX: TIME-SPACE TRADE-OFFS IN SEARCH
ENGINES WITH POSITIONAL RANKING FUNCTIONS

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS, MENCIÓN
COMPUTACIÓN

SENEN ANDRÉS GONZÁLEZ CORNEJO

PROFESOR GUÍAS:
GONZALO NAVARRO BADINO
DIEGO ARROYUELO BILLIARDI

MIEMBROS DE LA COMISIÓN:
BENJAMÍN BUSTOS CÁRDENAS

DIEGO SECO NAVEIRAS

Este trabajo ha sido parcialmente financiado por Fondecyt Grant 1-110066, and
Conicyt Project 78100003.

SANTIAGO DE CHILE
ABRIL 2014

Abstract

Web search has become an important part of day-to-day life. Web search engines are
important tools that give access to the information stored in the web. The success
of a web search engine mostly depends on its efficiency and the quality of its ranking
function. But also, web search engines give extra aids to their users, which make them
more usable. An instance of this is the ability of generating result snippets and being
able to retrieve the in-cache version of a web page, among others. Inverted indexes are a
fundamental data structure used by web search engines to efficiently answer user queries.
In a basic setup, inverted indexes only allow for simple (though fairly effective) ranking
functions (e.g., BM25). It is well known that the high quality of nowadays search-
engine results is due to sophisticated ranking functions. A particular example that has
been widely studied in the literature is that of positional ranking functions, where the
positions of the query terms within the resulting documents are used in order to rank
them. To support this kind of ranking, the classical solution are positional inverted
indexes. However, these usually demand large amounts of extra space, typically about
three times the space of an inverted index. Moreover, if the web search engine needs to
produce text snippets or display a cached copy of a web page, the textual data must
be also stored.

In this thesis we study time/space trade-offs for web search engines with positional
ranking functions and text snippet generation. We aim to answer the question of
whether positional inverted indexes are the most efficient way to store and retrieve po-
sitional data. In particular, we propose to get rid of positional data in inverted indexes,
and instead obtain that information from the text collection itself. The challenge is
to compress the text collection such that one can support the extraction of arbitrary
documents, in order to find the positions of the query terms within them. We study
and compare several alternatives for compressing the textual data. The first one uses a
succinct data structure (in particular, a Wavelet Tree). We show how the space of the
data structure can be reduced significantly, but also slowed down, by using high-order
compressors within the nodes of the data structure. We then show how several text
compression alternatives behave when used to obtain arbitrary documents (note that
decompression speed is key in this application). Our starting point are compressors
that either: (1) use little space for the text, yet with a slow decompression speed; and
(2) have a very efficient decompression time (achieving a total performance comparable
to that of positional inverted indexes), yet with a poor compression ratio. We then
show how to obtain the best from both worlds: an efficient compression ratio, with a
high decompression speed.

We conclude that there exist a wide range of practical time/space trade-offs, other
than just positional inverted indexes. The main result is that using only about 50%
of the space of current solutions (i.e., positional inverted indexes plus the compressed
text), one can support positional ranking and snippet generation almost with no time
penalties. This seems to indicate that “not to index” positional data is the best solution
in many practical scenarios. This can change the way in which positional data is stored
and retrieved in web search engines.

i

ii

Dedicado a mi Esposa Carmen y a mi hija Jazmín,
pues son la felicidad de mi vida.

iii

Thanks

Quisiera partir agradeciendo a mi esposa y mi hija por darme todo su apoyo, y a mis
padres por llevarme adelante. Al profesor Gonzalo Navarro, por aceptarme como

alumno. A Diego Arroyuelo quien me guió en el proceso del trabajo. Al laboratorio
Yahoo! Reseach chile, por facilitarme las herramientas para poder realizar este

trabajo. A mi segunda familia CROSS, por estar siempre conmigo.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Positional Indexes . 2
1.3 Hypothesis . 2
1.4 Thesis contribution . 2
1.5 Results . 3

2 Background and Related Work 4
2.1 Basic Definitions . 4
2.2 Text Representation . 4
2.3 Inverted Indexes . 5
2.4 Inverted Index Compression . 5

2.4.1 VByte . 7
2.4.2 Simple 9 . 11
2.4.3 PforDelta . 12

2.5 Snippet Generation . 14
2.5.1 Dictionary Compressors with Rank and Select Operations . . . 16
2.5.2 LZ77 Compression . 17
2.5.3 Lzma . 18
2.5.4 Snappy . 19
2.5.5 Lz4 . 20

2.6 Compressed Text Self-Indexes . 21
2.7 Wavelet trees . 21

2.7.1 Supporting Operations . 22
2.7.2 Analysis of Space Usage . 22
2.7.3 Self-Indexes for IR Applications 23

3 Indexing for Positional Ranking: Classical Solutions 24
3.1 Basic Query Processing Steps for Positional Ranking and Snippet Ex-

traction . 24
3.2 Experimental Setup and Dataset Description 25
3.3 The Baseline: Positional Inverted Lists and Compressed Textual Data . 26

3.3.1 Supporting the Query-Processing Step 26
3.3.2 Supporting the Positional-Ranking Step 28
3.3.3 Supporting the Snippet Generation Step 30

3.4 Proposed Solution: Computing Term Positions from Textual Data . . . 31

v

4 A Wavelet Tree for Computing Positions 34
4.1 Byte-Oriented Huffman WT . 34
4.2 Obtaining Term Positions from a WT . 35
4.3 Experimental Results . 35
4.4 Achieving Higher-Order Compression with the WT 36

5 Computing Term Positions from the Compressed Text 38
5.1 Using Standard Compressors . 38
5.2 Using Zero-Order Compressors with Fast Text Extraction 39
5.3 Using Natural-Language Compression Boosters 40
5.4 Further Comparison Between the Most Competitive Alternatives 43

5.4.1 Space/Time Trade-Offs . 44
5.4.2 Average Position-Extraction Time as Function of the Query Lengths 44
5.4.3 Average Position-Extraction Time as Function of k1 49

5.5 Conclusions . 49

6 Discussion and Further Experimental Results 51
6.1 Scenario 1: Query Processing with Snippet Generation 51

6.1.1 DAAT AND Queries . 53
6.1.2 BMW OR Queries . 57

6.2 Scenario 2: Query Processing without Snippet Generation 57
6.2.1 DAAT AND Queries . 57
6.2.2 BMW OR Queries . 61

7 Conclusion and Future Work 63

Bibliography 65

A Aditional Experimental Results 69
A.1 DAAT AND Queries . 69
A.2 BMW OR Queries . 76

vi

List of Tables

2.1 Number of bytes used to represent an integer number with VByte. . . . 9
2.2 Number of nibbles used to represent an integer number with VNibble. . 10
2.3 Meaning of the cases in the header of the S9 word. 11

3.1 Experimental results for the initial query processing step (Step 1) for
AND and OR queries. In both cases, BM25 ranking is used. 28

3.2 Experimental results for extracting term-position data (Step 2).The com-
pression ratio is computed according to the size of the uncompressed text,
which is 91,634 MB. 30

3.3 Experimental results for the snippet extraction phase (Step 3). 31

4.1 Experimental results for extracting term-position data using a WT . The
compression ratio is computed according to the size of the uncompressed
text, which is 91,634 MB. 36

5.1 Experimental results for extracting in-document position data (Step 2)
from the document collection. The compression ratio is computed ac-
cording to the size of the uncompressed text, which is 91,634 MB. . . . 42

6.1 Glossary of the indexing schemes tested. All schemes include the inverted
index, which for the GOV2 collection represents 9,739 MB. 53

6.2 Glossary of the indexing schemes for the figures. All schemes include the
inverted index, which for the GOV2 collection represents 9,739 MB. . . 60

vii

List of Figures

2.1 Example of an inverted index for a document collection, storing just
docIDs. 6

2.2 Example of an inverted list for the term t3. 6
2.3 Byte layout of VByte. 7
2.4 The 32-bit representation of 167. 8
2.5 The encoding of the integer 167 in VBYTE. 8
2.6 Decoding process for VByte. 9
2.7 Decoding process for integer 167. 9
2.8 Example of VNibble bytes. 10
2.9 Layout of an S9 word. 11
2.10 S9 word encoding the group of integers 98, 112, 117 and 121. 12
2.11 Decodification process for an S9 word, which encodes the group of inte-

gers 98, 112, 117 and 121. 12
2.12 Decoding process for an S9 word. 13
2.13 Layout of PforDelta block. 13
2.14 PforDelta block, encoding a group of integers, with exeptions 78, 110, 160

and 91. 14
2.15 Decoding a PforDeltablock. 15
2.16 Decoding process for PforDelta block. 15
2.17 An example of user-query and the result snippets. 16
2.18 Example of how the buffer of LZ77 is updated. 17
2.19 Example of a WT. 22

3.1 Illustration of the query process with positional ranking and snippet
generation. 25

3.2 Diagram of the layer implementation. 26
3.3 A single block in the layered implementation of inverted lists, storing

docIDs, frequencies and positions. 28
3.4 Illustration of the query process from Section 3.1, using the textual data

to obtain positions and for the snippet generation. 32

4.1 Illustration of the position-extraction process in a WT , using operation
select. 35

5.1 The compression boosting scheme, with a block size of 200 KB. 41
5.2 Example of the decompression process for a documentD1 in the compression-

boosting scheme. 43

viii

5.3 Space usage for compression boosters, for different block sizes, and PILs. 45
5.4 Position-extraction time for scheme VByte + lz4, for block sizes 5 KB,

10 KB, 50 KB, 200 KB, 500 KB, and 1,000 KB (from right to left in the
curve). For comparison, we also show the performance of PILs. 46

5.5 Average position-extraction times (for k1 ∈ {50, 300}) per number of
query terms, for block sizes of 5 KB, 10 KB, 50 KB, 200 KB, 500 KB,
1,000 KB. 47

5.6 Average position-extraction time for compression boosters and PIL, for
k1 = 50. 48

5.7 Average position-extraction time for compression boosters and PIL, fork1 =
150. 48

5.8 Average position-extraction time for compression boosters and PIL, for
k1 = 300. 49

5.9 Comparison between compression boosters and PILs, for different values
of k1. 50

6.1 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 50 and k2 ∈ {10, 50}, including Step 1(AND queries),
Step 2 and Step 3. 55

6.2 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 300 and k2 ∈ {10, 50}, including Step 1(AND queries),
Step 2 and Step 3. It is important to note that scheme lzma has query
time greater than 400 ms/q. 56

6.3 Time-space trade-offs for the overall query process for the GOV2 col-
lection. With k1 = 50 and k2 ∈ {10, 50}, including Step 1(BMW OR
queries), Step 2 and Step 3. 58

6.4 Time-space trade-offs for the overall query process for the GOV2 col-
lection. With k1 = 300 and k2 ∈ {10, 50}, including Step 1(BMW OR
queries), Step 2 and Step 3. It is important to note that scheme lzma
has query time greater than 400 ms/q. 59

6.5 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 50, including Step 1(AND queries), Step 2. 60

6.6 Time-space trade-offs for the overall query process for the GOV2 col-
lection. With k1 = 300, including Step 1(AND queries), Step 2. It is
important to note that scheme lzma has query time greater than 400
ms/q. 61

6.7 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 50, including Step 1(BMW OR queries), Step 2. 62

6.8 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 300, including Step 1(BMW OR queries), Step 2. It
is important to note that scheme lzma has query time greater than 400
ms/q. 62

A.4 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 50 and k2 = 30 , including Step 1, Step 2 and Step
3. 69

ix

A.1 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 100 and k2 ∈ {10, 50}, including Step 1(AND queries),
Step 2 and Step 3. 70

A.2 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 150 and k2 ∈ {10, 50}, including Step 1(AND queries),
Step 2 and Step 3. 71

A.3 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 200 and k2 ∈ {10, 50}, including Step 1(AND queries),
Step 2 and Step 3. It is important to note that scheme lzma has query
time greater than 400 ms/q. 72

A.5 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 100 and k2 = 30 , including Step 1, Step 2 and Step
3. 73

A.6 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 150 and k2 = 30 , including Step 1, Step 2 and Step
3. 73

A.7 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 200 and k2 = 30 , including Step 1, Step 2 and Step 3.
It is important to note that Scheme 1 has query time greater than 400
ms/q. 74

A.8 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 300 and k2 = 30 , including Step 1, Step 2 and Step 3.
It is important to note that Scheme 1 has query time greater than 400
ms/q. 74

A.9 Time-space trade-offs for the overall query process for the GOV2 col-
lection. With k1 = 100, including Step 1(AND queries), Step 2. It is
important to note that scheme lzma has query time greater than 250
ms/q. 75

A.10 Time-space trade-offs for the overall query process for the GOV2 col-
lection. With k1 = 150, including Step 1(AND queries), Step 2. It is
important to note that scheme lzma has query time greater than 250
ms/q. 75

A.11 Time-space trade-offs for the overall query process for the GOV2 col-
lection. With k1 = 200, including Step 1(AND queries), Step 2. It is
important to note that scheme lzma has query time greater than 400
ms/q. 76

A.15 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 50 and k2 = 30 , including Step 1, Step 2 and Step
3. 76

A.12 Time-space trade-offs for the overall query process for the GOV2 col-
lection. With k1 = 100 and k2 ∈ {10, 50}, including Step 1(BMW OR
queries), Step 2 and Step 3. 77

A.13 Time-space trade-offs for the overall query process for the GOV2 col-
lection. With k1 = 150 and k2 ∈ {10, 50}, including Step 1(BMW OR
queries), Step 2 and Step 3. It is important to note that scheme lzma
has query time greater than 400 ms/q. 78

x

A.14 Time-space trade-offs for the overall query process for the GOV2 col-
lection. With k1 = 200 and k2 ∈ {10, 50}, including Step 1(BMW OR
queries), Step 2 and Step 3. It is important to note that scheme lzma
has query time greater than 400 ms/q. 79

A.16 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 100 and k2 = 30 , including Step 1, Step 2 and Step
3. 80

A.17 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 150 and k2 = 30 , including Step 1, Step 2 and Step 3.
It is important to note that Scheme 1 has query time greater than 400
ms/q. 80

A.18 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 200 and k2 = 30 , including Step 1, Step 2 and Step 3.
It is important to note that Scheme 1 has query time greater than 400
ms/q. 81

A.19 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 300 and k2 = 30 , including Step 1, Step 2 and Step 3.
It is important to note that Scheme 1 has query time greater than 400
ms/q. 81

A.20 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 100, including Step 1(BMW OR queries), Step 2. It
is important to note that scheme lzma has query time greater than 300
ms/q. 82

A.21 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 150, including Step 1(BMW OR queries), Step 2. It
is important to note that scheme lzma has query time greater than 400
ms/q. 82

A.22 Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 200, including Step 1(BMW OR queries), Step 2. It
is important to note that scheme lzma has query time greater than 400
ms/q. 83

xi

Chapter 1

Introduction

1.1 Motivation

Web search has become an important part of day-to-day life, affecting even the way in
which people think and remember things [43]. Indeed, web search engines are one of the
most important tools that give access to the huge amount of information stored in the
web. The success of a web search engine mostly depends on its efficiency and the quality
of its ranking function. To achieve efficient processing of queries, search engines use
highly optimized data structures, including inverted indexes [8, 13, 29]. State-of-the-art
ranking functions, on the other hand, combine simple term-based ranking schemes such
as BM25 [13], link-based methods such as Pagerank [9] or Hits [28], and up to several
hundred other features derived from documents and search query logs.

Recent work has focused on positional ranking functions [38, 32, 44, 33, 40, 49, 13]
that improve result quality by considering the positions of the query terms in the
documents. Thus, documents where the query terms occur close to each other might
be ranked higher, as this could indicate that the document is highly relevant for the
query. To support such positional ranking, the search engine must have access to the
position data. This is commonly done by building an index for all term positions within
documents, called a positional index. The goal is to obtain an index that is efficient in
terms of both index size and access time.

As shown in [38], positional ranking can be carried out in two phases. First, a
simple term-based ranking scheme (such as BM25) defined over a Boolean filter is used
to determine a set of high-scoring documents, say, the top 200 documents. In the
second phase, the term positions are used to rerank these documents by refining their
score values. (Additional third or fourth phases may be used to do further reranking
according to hundreds of additional features [46], but this is orthogonal to our work.)
Once the final set of top-scoring documents has been determined (say, the top 10), it
is necessary to generate appropriate text snippets, typically text surrounding the term
occurrences, to return as part of the result page. This requires access to the actual text
in the indexed web pages. It is well known [49, 25] that storing position data requires

1

a considerable amount of space, typically about 3 to 5 times the space of an inverted
index storing only document identifiers and term frequencies. Furthermore, storing the
documents for snippet generation requires significant additional space.

1.2 Positional Indexes

Compressing positional data is a problem where it has been difficult to make much
progress. For instance, previous work [49] concludes that term positions in the docu-
ments do not follow simple distributions that could be used to improve compression (as
is the case of, for instance, docIDs and frequencies). As a result, a positional index is
about 3 to 5 times larger than a docID/frequency index, and becomes a bottleneck in
index compression. Another important conclusion from [49] is that we may only have
to access a limited amount of position data per query, and thus it might be preferable
to use a method that compresses well even if its speed is slightly lower. Positions in in-
verted indexes are used mainly in two applications, phrase searching [29] and positional
ranking schemes. In this work we focus in the use of positions to improve the ranking,
where the positions of the query terms within the documents are used to enhance the
performance of a standard ranking such as BM25. The rationale is that documents
where the query terms appear close together could be more relevant for the query, so
they should get a better score. Although in this work we focus only on the use of posi-
tions to improve ranking, the compression schemes used allow for phrase searching as
well. This scenario is left for future work. A recent work on positional indexing is that
of Shan et al. [42]. They propose to use the flat position indexes [15, 18] as an alter-
native of positional inverted indexes. The result is that docIDs, term frequencies and
position data can be stored in space close to that of positional inverted lists, yielding a
reduction of space usage. However, this index does not store the text, which makes it
less suitable in scenarios where text snippets must be generated.

1.3 Hypothesis

In this thesis we prove the following hypothesis:

Position data in web indexes can be obtained more efficiently (in terms
of processing time and space usage) using compressed text representations
rather than the classical solution of positional inverted indexes.

1.4 Thesis contribution

In this thesis we study what are the best ways to organize and store the in-document
positions and textual data, in order to efficiently support positional ranking and snippet

2

generation in text search engines. One of our main conclusions is that some compressed
representations of the textual data — which are needed to support snippet generation
— can also be used to efficiently obtain the term positions needed by positional ranking
methods. Therefore, no positional index is needed in many cases, thus saving consider-
able space at little cost in terms of running time.

Our main contributions can be summarized as follows:

1. A study of several trade-offs for compressing position data. Rather than storing
a positional index, we propose to compute the term positions from a compressed
representation of the text. This is shown in Chapters 4 and 5, following the
description explained in Section 3.4. We explore and propose several compression
alternatives. Our results significantly enhance current trade-offs between running
time and memory space usage, enabling in this way more design choices for web
search engines. One of our most interesting results is that both position and
textual data can be stored in about 66% the space of current positional inverted
indexes.

2. A study of several alternatives for compressing textual data, extending the al-
ternatives studied in previous work [25]. In particular, we show that using the
scheme in [45] (to compress text and support efficient snippet generation) before
using a standard compressor yields good time-space trade-offs, extending the al-
ternatives introduced in [22]. This study is explained in details in Chapter 5. It is
important to note that variants of the scheme in [45] have been adopted by some
commercial search engines, which makes our results of practical interest.

3. We propose several improvements over wavelet trees [27], in order to make them
competitive for representing document collections. The details of the improvement
are explained in Chapter 4. We show how to improve the compression ratio by
compressing the sequence associated to every node of the tree with standard
compressors. The result is a practical web-scale compressed self-index that is
competitive with the best state-of-the-art compressors.

1.5 Results

The results of this work have been partially published in:

Diego Arroyuelo, Senén González, Mauricio Marín, Mauricio Oyarzún and Torsten
Suel. To Index or not to Index: Time-Space Trade-offs in Search Engines with Positional
Ranking Functions. In Proc. of the 35th International ACM SIGIR Conference on
Research and Development in Information Retrieval. Pages 255–264. Portland, OR,
USA, August 12-16, 2012.

3

Chapter 2

Background and Related Work

2.1 Basic Definitions

Let D = {D1, . . . , DN} be a document collection of size N , where each document is
represented as a sequenceDi[1..ni] of ni terms from a vocabulary Σ = {1, . . . , V }. Notice
that every term is represented by an integer, hence the documents are just arrays of
integers.

Definition 2.1 Given a document Di, we identify it with the unique document iden-
tifier (docID) i.

Definition 2.2 Given a term t ∈ Σ and a document Di ∈ D, the in-document positions
of t in Di is the set {j|Di[j] = t}.

2.2 Text Representation

Throughout this work, we assume that all term separators (like spaces, ‘,’, ‘;’, ‘.’, etc.)
have been removed from the text. Also, we assume that all terms in the vocabulary
have been represented in a case-insensitive way. This is in order to facilitate the search
operations that we need to carry out over the documents in order to compute (on the
fly) the positions of a given query term.

To be able to retrieve the original text (with separators and the original case) one
can use the presentation layer introduced by Fariña et al. [21, Section 4]. This also
supports removing stopwords and the use of stemming, among other vocabulary tech-
niques. This extra layer requires extra space on top of that of the compressed text,
as well as extra time to obtain the original text. However, this scheme must be used
on all the alternatives that we consider in this work, and thus we disregard the over-
head introduced by the presentation layer and focus only on the low-level details of

4

compression (but keeping in mind that the original text can still be retrieved).

2.3 Inverted Indexes

The efficiency of query processing in search engines relies on inverted indexes. These
data structures store a set of inverted lists I1, . . . , IV , which are accessed through a
vocabulary table.

Example 2.1 An example of such data structure can be seen in Figure 2.1, for a
document collection of 4 documents {D1, D2, D3, D4}.

The list It maintains a posting for each document containing the term t ∈ Σ. Usually,
a posting in an inverted list consists of a docID a term frequency, and the in-document
positions of the term.

Example 2.2 An example can be seen in Figure 2.2, where the inverted list of a term
t3 is shown. Each posting on the list stores a docID the frequency, and the in-document
positions.

In real systems, the docIDs, term frequencies and in-document positions are often
stored separately. Indexes whose postings store in-document positions are called posi-
tional inverted indexes. The inverted lists of the query terms are used to produce the
result for the query. Since the query results are usually large, the result set must be
ranked by relevance.

2.4 Inverted Index Compression

For large document collections, the data stored in inverted indexes requires considerable
amounts of space. Due to the large volume of data on the web and its rapid growth,
data compression has become important [48, 39]. In the case of inverted indexes for web
search engines, this effect is reflected in the high space usage of the resulting inverted
lists. Hence, the indexes must be compressed. To support efficient query processing
(such as DAAT [13], WAND [12] or BMW OR [19]) and effective compression in the
inverted lists, we sort them by increasing docID.

Also, to avoid decompressing whole lists at query time, we assume that an inverted
list It is divided into chunks of 128 documents each. The particular choice of 128
documents per chunk is an implementation issue. Given a chunk of list It, the term-
position data for all the documents in that chunk are stored in a separate chunk of
variable size.

Let dt[1..|It|] denote the sorted list of docIDs for the inverted list It. Then, we
replace dt[1] with dt[1]− 1, and dt[i] with dt[i]− dt[i− 1]− 1 for i = 2, . . . , |It|. In the

5

Figure 2.1: Example of an inverted index for a document collection, storing just docIDs.

Figure 2.2: Example of an inverted list for the term t3.

6

case of frequencies, every fi is replaced with fi − 1, since fi > 0 always holds. For the
positions, each pi,j is replaced with pi,j − pi,j−1− 1. Then these values are encoded with
integer compression schemes that take advantage of the resulting smaller integers.

There has been a lot of progress on compressing docID and frequencies, with many
compression methods available [50, 13]. Some of them achieve, in general, a very good
compression ratio, but at the expense of a lower decompression speed [13], for example
Elias γ and δ encodings [20], or Golomb/Rice parametric encodings [26], interpolative
encoding [35]. Other methods achieve a (slightly) lower compression ratio, though with
much higher decompression speed, for example VByte [47], S9 [4], and PforDelta [54],
among others [13]. The best compression method depends on the scenario at hand.

To achieve compression, some of the following special features of posting lists are
used:

• docID represent documents that are related to the term, so these are positive
integers.
• There are no repeated elements in the lists.
• The lists are sorted by increasing docID, and hence the lists are represented

differentially.

We review next the integer compression schemes that will be used along this thesis.

2.4.1 VByte

This method [41] represents an integer using a variable number of bytes, compressing
each number separately. To do this, VByte use the most significant bit in a byte as a
flag. This flag indicates whether the next byte corresponds to the next integer in the
segment, or not. So for every byte, just 7 bits are used to represent the number. This
is shown in Figure 2.3.

Figure 2.3: Byte layout of VByte.

This flag is called continuator. If the continuator is “0” it means that the current byte
is not enough to encode the current integer and hence the encoding must use the next
byte. If the continuator is “1” then the current byte is the last used by the encoding.
The entire process of coding and decoding is shown below.

7

Example 2.3 Figure 2.4 shows the 32-bit representation of the integer 167.

Figure 2.4: The 32-bit representation of 167.

Notice that the most-significant bytes 4, 3 and 2 are not used, so that 167 could be
represented with less than 4 bytes.

To encode a number in VByte, we try to accommodate its binary encoding in 7 bits.
If so, we store the encoding in 7 bits and mark the continuator with a “1”. Otherwise
the least significant 7 bits are stored in a byte with continuator “0” and proceed with
the remaining bits, until no extra bytes are needed to store the encoding.

Example 2.4 Figure 2.5 shows the encoding of 167 using VByte.

Figure 2.5: The encoding of the integer 167 in VBYTE.

The decoding process can be carried out very efficiently using bit-wise and arithmetic
operations, as it can be seen in Figure 2.6.

Example 2.5 The decoding process for 167 is illustrated in Figure 2.7.

Table 2.1 shows the numbers of bytes used in VByte for different ranges of integers.

In the best case, for every number we use 1 byte, using a 1/4 of the original space
(for 32-bit integers).

8

int decodeVByte (char * compressed) {
int v = 0;
int i = 0;
while (compressed[i] & ’128’ == ’0’) {

v = v || compressed[i];
v = v<<7;
i++;

}
v = v || compressed[i];
return v;

}

Figure 2.6: Decoding process for VByte.

Figure 2.7: Decoding process for integer 167.

Table 2.1: Number of bytes used to represent an integer number with VByte.
Integer range Number of bytes used

from 0 to 127 1
from 128 to 16383 2
from 16384 to 2097151 3
from 2097152 to 268435455 4
from 268435456 to 42949672952 5

9

The main features of this method are:

• It is simple to encode and decode integers.
• Uses at most 1 byte more than the minimum amount of bytes to represent a

number.
• Uses at least 1 byte per integer encoded.

When the integers to encode are small, using 1 byte is wasteful. An improvement to
this is called variable Nibble (VNibble), which is similar to VByte but it works at the
nibble level (4 bits). The most significant bit of each nibble is used as the continuator.
This can be seen in the Figure 2.8.

Figure 2.8: Example of VNibble bytes.

The encoding and decoding processes are the same (or similar) than that of VByte.
Table 2.2 shows the number of bytes used for VNibble for different range of integers.
When the integers to encode are smaller or equal than 7, this method uses just 4 bits
to represent it, which is better.

Table 2.2: Number of nibbles used to represent an integer number with VNibble.
Integer range Number of nibbles used

from 0 to 7 1
from 8 to63 2
from 64 to 511 3
from 512 to 4095 4
from 4096 to 32767 5
from 32768 to 262143 6
from 262144 to 2097151 7
from 2097152 to 16777215 8
from 16777216 to 134217727 9
from 134217728 to 1073741823 10
from 1073741824 to 42949672952 11

10

2.4.2 Simple 9

The VByte and VNibble schemes encode each integer individually. This means that in
the best scenario VByte is able to encode 4 integers within a 32-bit machine word, and
at best 8 integers for VNibble. However, if the integers to encode are small (e.g. able
to be encoded with 1 bit) we waste space.

The basic idea of S9 [4] is to take several consecutive integers in the sequence and
try to fit them in a 32-bit machine word, encoding each integer with a fixed equal-size
chunk. The size of the chunk is defined as the number of bits needed to encode the
largest number in the group. To do so, S9 uses an S9 word of 32-bit. In each S9
word, four bits are used as a header to define how many bits will be used to encode the
integers, and how many integers will be stored in the S9 word. The remaining 28 bits
are used to store the information of the integers encoded. The S9 word layout is shown
in Figure 2.9.

Figure 2.9: Layout of an S9 word.

There are nine possible ways of dividing 28 bits into chunks of equal size (the number
of cases is the reason behind the name of the method). The meaning of the cases is
shown in Table 2.3.

Table 2.3: Meaning of the cases in the header of the S9 word.
Case Number of integers stored Chunk size

0 28 1
1 14 2
2 8 3
3 7 4
4 5 5
5 4 7
6 3 8
7 2 14
8 1 28

To encode integers in an S9 word, we try to fit the maximum amount of integers in
the 28 available bits . First, we try to fit 28 integers. If that is not possible, then we
try with 14, and so on, until we eventually get to the case were only one 28-bit integer
can be stored. In the header of the S9 word we store the particular case used for it.

11

Example 2.6 If we encode the integers 98, 112, 117 and 121, each of these integers
can encoded in binary using 7 bits, which according to Table 2.3 correspond to case 5.
The resulting S9 word is shown in Figure 2.10.

Figure 2.10: S9 word encoding the group of integers 98, 112, 117 and 121.

To decode an S9 word, first we obtain the header by means of a bit mask. Then ,
the case is used on a switch statement where all 9 cases have been hard-coded (as it
can be seen in Figure 2.12).

Example 2.7 Figure 2.11 illustrate the decoding process for an S9 word that encodes
the integers 98, 112, 117 and 121.

Figure 2.11: Decodification process for an S9 word, which encodes the group of integers
98, 112, 117 and 121.

The main feature of this method that makes it highly efficient at decoding time is
that all the integers in an S9 word are coded in the same amount of bits. Hence, the
decoding process can be optimized by hard-coding all cases, as we already said.

An improvement of this technique is to use all the 16 possible cases that we can have
with headers of 4 bits. This improvement is called S16 [51].

2.4.3 PforDelta

The PforDelta encoding [54] divides an inverted list into blocks of, usually, 128 integers
each. To encode the integers within a given block, it gets rid of a given percentage—
usually 10%—of the largest integers within the block, and stores them in a separate

12

void decodeS9 (int s9word, int * result) {
char case = getHeader(s9word);
switch(case) {
case 0 :
result[0] = (s9word & 0x08000000) >> 27;
result[1] = (s9word & 0x04000000) >> 26;
. . .
result[26] = (s9word & 0x00000002) >> 1;
result[27] = (s9word & 0x00000001) ;
break;
case 1 :
result[0] = (s9word & 0x0c000000) >> 26;
result[1] = (s9word & 0x03000000) >> 24;
. . .
result[12] = (s9word & 0x0000000c) >> 1;
result[13] = (s9word & 0x00000003) ;
break;
. . .
case 8 :
result[0] = (s9word & 0xfffffff);
break;

}
}

Figure 2.12: Decoding process for an S9 word.

memory space. These are the exceptions of the block. Next, the method finds the largest
remaining integer in the block, let us say x, and represents each integer in the block in
binary using b = dlog xe bits. Though the exceptions are stored in a separate space, we
still maintain the slots for them in their corresponding positions. This facilitates the
decoding process. For each block we maintain a header that stores information about
the compression used in the block, e.g., the value of b.

An illustration of a PforDelta block is shown in Figure 2.13. To retrieve the posi-

Figure 2.13: Layout of PforDelta block.

tions of the exceptions, we also store the position of the first exception in the header.
In the slot of each exception, we store the offset to the next exception in the block. In
the last exception, we store a ’0’. This forms a linked list with the exception slots. In

13

case that b is too small and we cannot accommodate the offset to the next exception
(because the offset to the next one cannot be accommodated within b bits), the algo-
rithm forces to add extra exceptions between two original exceptions. This increases
the space usage when the lists contain many small numbers.

Example 2.8 A PforDelta block that is encodes 128 integers is shown in Figure 2.14.
The exceptions are 78, 110, 160 and 91.

Figure 2.14: PforDelta block, encoding a group of integers, with exeptions 78, 110, 160
and 91.

To decompress a block, we first take b from the header, and invoke a specialized
function that obtains the b-bit integers. Each b has its own extracting function, so they
can be hard-coded for high efficiency. Once we decode the integers, we traverse the list
of exceptions of the block, storing the original integers in their corresponding positions.
This step can be slower, yet it is carried out just for 10% of the block. The decoding
process implementation is shown on Figure 2.16.

In typical implementations of PforDelta, the header is implemented in 32 bits, since
we only need to store the values of b (in 6 bits, since 1 ≤ b ≤ 32) and the position of the
first exception (in 7 bits, since the block has 128 positions). PforDelta has shown to
be among the most efficient compression schemes [50], achieving a high decompression
speed.

Example 2.9 Figure 2.15 shows the size and the decoding process for the PforDelta
block previously mentioned.

2.5 Snippet Generation

Besides providing a ranking of the most relevant documents for a query, search engines
must show query snippets and support accessing the “in-cache” version of the docu-
ments. To achieve this, web search engines must store a copy of document collection.

Example 2.10 Figure 2.17 shows an example of user-query result, and the result
snippets.

Each snippet shows a relevant portion of the result document, in order to help the
user judge its likely relevance before accessing it. Turpin et al. [45] introduce a method
to compress the text collection and support fast text extraction to generate snippets.

14

Figure 2.15: Decoding a PforDeltablock.

/*Decode 128 integers of b bits from data and write them in results.*/
void getNumbers(void * data, char b, int * results);

/* Decode the pfordelta block*/
void decodePFD (void * block, int * results){

int header = ((int *)block)[0];
char b = (header & 0xfc000000) >> 26 ;

int exceptionPos = (header & 0x7f) ;
void * data = (void *)(((int *)(block)) +1);
int exceptionStart = ((b * 128) + 32) / 32;
int * exceptions = (int *)(((int *)(block))+(exceptionStart));
getNumbers(data, b, results);
int i = 0;
while(results[exceptionPos] != ’0’){

int offset = results[exceptionPos];
results[exceptionPos] = exceptions[i];
exceptionPos += offset;
i++;

}
}

Figure 2.16: Decoding process for PforDelta block.

15

Figure 2.17: An example of user-query and the result snippets.

However, to achieve fast extraction, they must use a compression scheme that uses more
space than usual compressors. In a more recent work, Ferragina and Manzini [25] study
how to store very large text collections in compressed form, such that the documents
can be accessed when needed, and show how different compressors behave in such a
scenario. One of their main concerns was how compressors can capture redundancies
that arise very far apart in very long texts. Their results show that such large texts can
often be compressed to just 5% of their original size, which was surprising since usual
compression ratio is of about 20%.

2.5.1 Dictionary Compressors with Rank and Select Operations

Dictionary compression consists in storing a dictionary of relevant substrings, and then
replacing these strings in a text by the corresponding entry in the dictionary. The
most common approaches for dictionary compression update the dictionary entries as
compression is carried out, in order to adapt compression to the text at hand. The
Lempel-Ziv [52, 53] family of compressors is one of the most important instances of
dictionary compressors: many compression tools are based on some kind Lempel-Ziv
compression (either algorithm LZ77 [52] or LZ78 [53]). In particular, we review next
the compression tools lzma, snappy and lz4, which will be used along this thesis and
are based on LZ77 compression.

16

2.5.2 LZ77 Compression

LZ77 (or sliding window), was the first method devised for Lempel and Ziv [52], which
basically tries to detect redundant sequences of symbols in the data. To do this, the
method keeps a buffer of fixed size, divided in two sections which are updated as the
data is read.

The right part of the buffer is used to read the new symbols, and is known as
lookahead buffer. The left part of the buffer is called search buffer and correspond to
the dictionary, it keeps the symbols that have been read previously.

The encoding process is computed as follows: we search for the longest prefix of the
lookahead buffer that is a substring of the search buffer. Then we store a Lempel-Ziv
phrase(offset, length, symbol) which has 3 components:

• Offset: is the distance between the symbol and its copy in the search buffer.
• Prefix Length: length of the copy.
• New symbol : next symbol in the lookahead buffer, which makes the corresponding

prefix not to be a substring of the search buffer.

Then, the look ahead buffer is moved next to the new symbols. If the first symbol of
the lookahead buffer cannot be found in the search buffer, which means that the length
of the longest prefix is 0, the Lempel-Ziv phrase is (0, 0, symbol), and its called literal.

Example 2.11 The Figure 2.18 shows how the buffer and its two sections are updated
while the data is read.

Figure 2.18: Example of how the buffer of LZ77 is updated.

The decoding process is very simple and efficient: we read sequentially the Lempel-
Ziv phrases (offset, length, symbol). If the phrase is a literal, then we simply write
the symbol in the output. Otherwise, from the end of the output, we look back offset
positions and from then copy consecutive length symbols at the end of the output. We
finally append the symbol. In general the size of the search buffer is 216 bytes (64 KB),
while the lookahead buffer is 28 bytes (256 bytes). This makes phrases be able to be

17

implemented on 32 bits each, and can be therefore efficiently handed.

The following methods, lzma, snappy and lz4, basically share the coding process,
which is to find the longest prefix of the lookahead buffer in the dictionary (or search
buffer). The main differences are the dictionary size and the internal structure of the
phrases.

The base of the decoding process is very similar for all the alternatives mentioned,
which is: read the phrases, detect if is a copy or a literal, then write it. The minor
differences are that some methods encode the phrases not aligned to bytes.

2.5.3 Lzma

The method lzma, which is the principal algorithm of 7-zip1, is a variant of LZ77
designed to provide a high compression ratio and a relatively fast decompression speed.

The coding and decoding process are very similar to the LZ77 process. The main
differences are the structure of the phrases it generate, and the size of the dictionary.
For the phrases, lzma defines 2 types, instead of 1 as in LZ77. If the first bit in the
phrase is a ‘0’ then the phrase is a literal, otherwise a copy. The latter case stores just
the offset and the length. The following is a layout of phrase the encoding:

• Literal phrase: stores the symbol, coded in range encoding [31].
– Layout : 0 + code of the symbol.

• Copy phrase: stores the pair (offset, length), using some of the 6 types of repre-
sentations.
Type 1: Simple copy, stores (offset, length), layout : 1 + 0 + length + offset.
Type 2: Short copy, where offset is the last used and length is 1, layout: 1 +1

+0 +0.
Type 3: : Long copy (1), uses the last offset used, and can store a length ∈

[2, 273], layout: 1+1+0+1+len.
Type 4: : Long copy (2), uses the second last offset used, and can store a length

∈ [2, 273], layout: 1+1+1+0 +len.
Type 5: : Long copy (3), uses the third last offset used, and can store a length

∈ [2, 273], layout: 1+1+1+1+0+len.
Type 6: : Long copy (4), uses the fourth last offset used, and can store a length

∈ [2, 273], layout: 1+1+1+1+1+len.

The encoding of len depends of its value, as can be seen below:

• len ∈ [2, 9] : 0 + 3 bits.
• len ∈ [10, 17] : 1+ 0 + 3 bits.
• len ∈ [18, 273] : 1+ 1 + 8 bits.

1http://www.7-zip.org/

18

A drawback, is that the phrases in the output are not aligned to bytes, hence reading
them implies several complex bit operations, which increases decompression time.

The dictionary size is large, ranging from 223 (8 MB) to 230 (1,024 MB). This allows
the detection of very distant copies, yet the task of searching them in the dictionary
increases the time complexity. To achieve a good compression time, lzma uses hash
tables to quickly find repetitions within the dictionary. Yet due to the large window
size, the tables cannot store all the repetitions, producing that some repetitions will not
be detected (in other words, not every substring in the window is able to be detected,
which can harm compression quality). In spite of this, the large dictionary allows larger
chains of symbols to be detected and encoded, achieving higher compression ratios.

2.5.4 Snappy

Snappy [1] is another LZ77 variant, developed by google2. It focuses in compression
speed and a reasonable compression ratio. The coding and decoding process is the
same as described above. The first difference is that instead of using sliding window,
snappy stores the uncompressed size of the data (max value of 232 − 1), coded in
VByte, at the beginning of the output. Then it stores the compressed data as a stream
of phrases. This means that snappy compresses a large block of information instead of
sliding in the data.

The compressed stream uses basically the same scheme that lzma. So it stores 2
types of elements: literals and copies. Both elements use theirs first 2 bits to define its
type (00 : literal, 01-10-11 : copies). Another difference is that in snappy the literals
can contain several symbols (from 1 to 232 − 1) instead of just 1, so after the first 2
bits, a literal stores the amount of symbols that contains (from 1 to 232− 1) aligned to
bytes, then stores the symbols. There are 2 types of literals:

• Short literals: Store up to 60 symbols, using 6 bits to represent the number of
literals (the values 60 -64, are reserved), layout : 0+0+[6 bits] + literals.
• Long literals: Store up to 232 symbols, the values from 60 to 64 of the 6 bits after

the initial 00, defines how many bytes are used to represent the amount of literals,
layout : 0+0+[6 bits]+ [from 1 to 4 bytes] + literals.

In the case of copies, the phrases just store the values offset and length of the copy,
as lzma. Depending of the values for offset and length, there are 3 types of phrases :

• Type 1: Use 2 consecutive bytes, using
– First 2 bits: 01.
– Next 3 bits: for the length of the copy (from 4 to 11).
– Next 11 bits : for the offset of the copy (from 0 to 211 − 1).

• Type 2: Uses 3 consecutive bytes, using
– First 2 bits: 10.

2http://www.google.com

19

– Next 6 bits: for the length of the copy (from 1 to 64).
– Next 16 bits : for the offset of the copy (from 0 to 216 − 1).

• Type 3: Uses 5 consecutive bytes, using
– First 2 bits: 11.
– Next 6 bits: for the length of the copy (from 1 to 64).
– Next 32 bits : for the offset of the copy (from 0 to 232 − 1).

Most of the elements in the data stream are aligned to bytes, which allows for fast
reads and writes in the data stream.

The encoding process is slightly different from that of lzma, since that the literals
can contain several symbols. Also when a copy contains less than 4 symbols, then it is
reported as a literal.

2.5.5 Lz4

Lz4 [2], is a method designed to achieve fast decompression speed and a higher com-
pression ratio compared to snappy, the difference with the two previous methods is that
lz4 uses just 1 type of phrase, as the original LZ77. So the coding and the decoding
process remain simple.

The layout of a lz4 phrase is as follows:

• Token: uses 1 byte, divided in 2 groups of 4 bits, t1 and t2.
– t1: Indicates the amount of literals in the phrase. If t1 = 0, it means that the

phrase has no literals, then it reads t2. If the value is t1 = 15, it means that
another bytes are needed to encode the length of the literals. That byte are
stored after the token byte, and its information is added to t1. When the
next byte is 255, then another byte is added to the encoding. The process
continues as were bytes are needed (it has no limits in the amount of literals
that can be stored).

– t2: Indicates the value of the length of the copy. If t1 = 0, it means that
the phrase is not a copy (just a literal). If the value is t1 = 15, it means
that another bytes are needed to encode the length of the copy. That byte is
stored after the offset, and its information is added to t2. When the next byte
is 255, then another byte is added to the encoding. The process continues
as were bytes are needed. Notice that lz4 just stores offset≥ 4, then it adds
4 to the result length.

• Length of the literals: it can use from 0 to any amount of bytes needed to store
the amount of literals (its used when t1 ≥ 15).
• Literals: it can use from 0 to any amount of bytes depending of the amount of

literals that are coded in the phrase.
• Offset: it can use 2 bytes (if t2 = 0, then this value does not exist), and represent

values in [0, 65, 535]. It represents the offset. Note that 0 is an invalid value,

20

never used. A 1 means “current position −1 byte”. 65,536 cannot be coded, so
the maximum offset value is actually 65,535.
• Length of copy: it can use from 0 to any amount of bytes needed to store the

length of the copy (its used when t2 ≥ 15).

This scheme provides high adaptability to the context. Also it is aligned to bytes,
which means fast access to the data. Additionally, the phrase structure allows a very
fast decompression when the amount of literals and the copy length are < 15.

2.6 Compressed Text Self-Indexes

Succinct or compressed data structures use as little space as possible to support op-
erations as efficiently as possible [37]. Thus, large data sets (like graphs, trees, and
text collections) can be manipulated in main memory, avoiding the secondary storage.
In particular, we are interested in compressed data structures for text sequences. A
compressed self-index is a data structure that represents a text in compressed space,
supports indexed search capabilities on the text, and is able to obtain any text substring
efficiently [37]. They can be seen as compression tools with indexed search capabilities.
The following operations have been the building block of many solutions in succinct
data structures.

Definition 2.3 Given a sequence T [1..n] over an alphabet Σ = {1, . . . , V }, we define
operation rankc(T, i), for c ∈ Σ, as the number of occurrences of c in T [1..i]. Operation
selectc(T, j) is defined as the position of the j-th occurrence of c in T .

2.7 Wavelet trees

A wavelet tree [27] (WT for short) is a succinct data structure that supports rank and
select operations, among many virtues [23, 37, 36]

A WT representing a text T is a balanced binary search tree where each node v
represents a contiguous interval Σv = [i..j] of the sorted set Σ. The tree root represents
the whole vocabulary. Σv is divided at node v into two subsets, such that the left child
vl of v represents Σvl = [i.. i+j

2
], and the right child vr represents Σvr = [i+j

2
+1..j]. Each

tree leaf represents a single vocabulary term.

Hence, there are V leaves and the tree has height O(log V). For simplicity, in the
following we assume that V is a power of two.

Let T v be the subsequence of T formed by the symbols in Σv. Hence, T root = T .
Node v stores a bit sequence Bv such that Bv[l] = 1 if T v[l] ∈ Σvr , and Bv[l] = 0

otherwise. Given a WT node v of depth i, Bv[j] = 1 if the i-th most-significant bit in the
encoding of T v[j] is 1. In this way, given a term c ∈ Σ, the corresponding leaf in the

21

tree can be found by using the binary encoding of c. Every node v stores Bv augmented
with a data structure for rank/select over bit sequences [37]. The number of bits of the
vectors Bv stored at each tree level sum up to n, and including the data structure every
level requires n+ o(n) bits. Thus, the overall space is n log V + o(n log V) bits [27, 37].

Example 2.12 In Figure 2.19 we show an example WT for the text “CDEBFEGABBFCH-
HCDEABG”.

CDEBFEGABBFCHHCDEABG

0 0 1 01 1 1 0 0 01 0 1 1 0 0 1 0 0 1

CDBABBCCDAB

1 1 0 0 0 0 1 1 1 0 0

EFEGFHHEG

0 00 1 0 1 1 0 1

BABBAB

1 0 1 1 0 1

EFEFE

01 0 10

GHHG

0 1 1 00 1 0 0 1

CDCCD

CA B ED F G H

{E,F,G,H}

{A,B} {C,D}

{A} {B} {C} {D} {E} {F} {G} {H}

{E,F} {G,H}

{A,B,C,D,E,F,G,H}

{A,B,C,D}

Figure 2.19: Example of a WT.

2.7.1 Supporting Operations

Since a WT replaces the text it represents, we must be able to retrieve T [i], for 1 ≤ i ≤ n.
The idea is to navigate the tree from the root to the leaf corresponding to the unknown
T [i]. To do so, we start from the root, and check if Broot[i] = 0. If so, the leaf of T [i]
is contained in the left subtree vl of the root. Hence, we move to vl looking for the
symbol at position rank0(B

root, i). Otherwise, we move to vr looking for the symbol at
position rank1(B

root, i). This process is repeated recursively, until we reach the leaf of
T [i], and runs in O(log V) time as we can implement the rank operation on bit vectors
in constant time.

To compute rankc(T, i), for any c ∈ Σ, we proceed mostly as before, using the bi-
nary encoding of c to find the corresponding tree leaf. On the other hand, to support
selectc(T, j), for any c ∈ Σ, we must navigate the upward path from the leaf corre-
sponding to term c. Both operations can be implemented in O(log V) time; see [37] for
details.

2.7.2 Analysis of Space Usage

The space required by a WT is, in practice, about 1.1–1.2 times the space of the text [16].
In our application to IR, this would produce an index larger than the text itself, which
is excessive. To achieve compression, we can generate the Huffman codes for the terms

22

in Σ (this is a word-oriented Huffman coding [34]) and use these codes to determine
the corresponding tree leaf for each term. Hence, the tree is not balanced anymore, but
has a Huffman tree shape [16] such that frequent terms will be closer to the tree root
than less frequent ones. This achieves a total space of n(H0(T) + 1) + o(n(H0(T) + 1))
bits, where H0(T) ≤ log V is the zero-order empirical entropy of T [30]. In practice,
the space is about 0.6 to 0.7 times the text size [16]. However, notice that we have no
good worst-case bounds for the operations, as the length of the longest Huffman code
assigned to a symbol could be O(V).

2.7.3 Self-Indexes for IR Applications

There have been some recent attempts to apply alternative indexing techniques, such as
self-indexes, in large-scale IR systems. In particular, we mention the work by Brisaboa
et al. [11] and Arroyuelo et al. [6, 5]. The former [11] concludes that WT are competitive
when compared with an inverted index for finding all the occurrences of a given query
term within a single text. The latter [6, 5] extends [11] by supporting more IR-like
operations on a WT. Also the work by Brisaboa et al. [10] shows how to use WT on
Bytecodes [11] for solving ranked document retrieval.

The result is that a WT can represent a document collection using n(H0(T) + 1) +
o(n(H0(T) + 1)) bits while supporting all the functionality of an inverted index. The
experimental results in [6] compare with an inverted index storing just docIDs, which
of course yields a smaller index. However, WTs also store extra information, such as the
term frequencies and, most important for us here, the compressed text and thus the
term-position data.

Recent work [25] also tried to use (among other alternatives) a compressed self-index
to compress web-scale texts, in order to allow decompression of arbitrary documents.
Their conclusion is that compressed self-indexes still need a lot of progress in order
to be competitive with standard compression tools, both in compression ratio and
decompression speed. A contribution of this thesis is a compressed self-index that is able
to store web-scale texts and is competitive with the best state-of-the-art compressors.
We think that this is a step forward in closing the gap between theory and practice in
this area [24].

23

Chapter 3

Indexing for Positional Ranking:
Classical Solutions

The ranking process in web search engines is a fundamental step of the search process.
This is because it allows the user to find the documents that are more appropriate for
their information needs. Although traditionally the tf-idf ranking model is the most
used, nowadays search engines use more sophisticated ranking functions. One such
example is that of positional ranking functions [13, 48], where the position of the query
terms within the resulting documents are used to rank the documents: the closer they
are the higher the ranking. The rationale behind positional ranking is that documents,
where the query terms occur close to each other might be ranked higher, as this could
indicate that the document is highly relevant to the query.

Another important aid used by nowadays web search engines is that of result snip-
pets: a relevant portion of the document, which is used to help the user to decide about
the relevance of a result.

In this chapter we review the state of the art for position indexing and snippet gener-
ation, and show experimental results that will be used to determine the improvements
introduced by our contributions.

3.1 Basic Query Processing Steps for Positional Rank-
ing and Snippet Extraction

From now on we assume a search engine where positional ranking is used to score
documents, and where snippets must be generated for the top-scoring documents. Thus,
solving a query involves the following steps:

1. Query Processing Step: Given a user query, use an inverted index to obtain the
top-k1 documents according to some standard query processing approach (e.g.,

24

DAAT) and ranking function (e.g., BM25).
2. Positional Ranking Step: Given the top-k1 documents obtained on the previ-

ous step, obtain the positions of the query terms within these documents. Then
re-rank the results using a positional ranking function [13, 49].

3. Snippet Generation Step: After the re-ranking of previous step, obtain snip-
pets of length s for the top-k2 documents, for a given k2 ≤ k1.

An illustration of this process is shown in Figure 3.1, where term positions are
obtained from a positional index (to be described next in this chapter) and text snippets
are obtained from the compressed text database.

Figure 3.1: Illustration of the query process with positional ranking and snippet gen-
eration.

For instance, k1 = 200 (as in [49]) and k2 = 10 (as in most commercial search
engines) are typical values for the query parameters. We assume s = 10 in this thesis.
The different values for these parameters should be chosen according to the trade-off
between query time and search effectiveness that we want to achieve. Step 2 is usually
supported by a positional inverted index [29, 13, 49]. Step 3 is supported by compressing
the document collection and supporting the extraction of arbitrary documents. We will
describe these processes in detail in this chapter. The focus of this thesis is on alternative
ways to implement the last two steps. Next, we evaluate experimentally the current
solutions on the state of the art of positional indexing.

3.2 Experimental Setup and Dataset Description

Along this thesis, we use the following experimental setup. The machine where we ran
our experiments is an HP ProLiant DL380 G7 (589152-001) server, with a Quadcore
Intel(R) Xeon(R) CPU E5620 @ 2.40GHz processor, with 128KB of L1 cache, 1MB of L2

25

cache, 2MB of L3 cache, and 96GB of RAM, running version 2.6.34.8-68.fc13.i686.PAE
of Linux kernel.

We use the TREC GOV2 document collection, with about 25.2 million documents
and about 32.86 million terms in the vocabulary. We work just with the text content
of the collection (that is, we ignore the html code from the documents). This requires
about 130, 048MB in ASCII format. When we represent the terms as integers, the
resulting text uses 91,634 MB. We use a subset of 10,000 random queries from the
TREC 2006 query log. All methods were implemented using C++, and compiled with
g++ 4.4.5, with the full optimization flag -O5.

To compare the different schemes proposed in this thesis, we use two criteria. The
first one is the compression ratio, which is the size of the compressed structure divided
by the size of the uncompressed structure multiplied by 100. The second one is the
time per query, which is the average time to answer a query with the defined scheme.

3.3 The Baseline: Positional Inverted Lists and Com-
pressed Textual Data

This section describes and evaluates the baseline approaches to support term-position
indexing and snippet extraction. These will be the starting points for the proposals of
this thesis.

3.3.1 Supporting the Query-Processing Step

As we have said, query processing is supported by inverted indexes. To achieve com-
petitive space and time with an inverted index, inverted lists are usually divided into
chunks (of usually 128 docIDs each) and implemented using layers. The first layer stores
the docIDs and the second one stores frequencies. See Figure 3.2 for an illustration.

Figure 3.2: Diagram of the layer implementation.

26

An advantage of this layered scheme is that every layer can be compressed differently,
using the best alternative for each layer. In our experimental setting, these alterna-
tives are PforDelta (Section 2.4.3) for the docID layer and S16 (Section 2.4.2) for the
frequency layer, just as in [49]. Another advantage is that data is decompressed just
when necessary at search time. A chunk in the second layer is decompressed only when
a given docID in the first layer is a candidate to be in the top-k1. This process results
in a fairly competitive query time to obtain the top-k1 documents.

In our experiments the index for docIDs and frequencies for the GOV2 collection
requires 47, 854 MB of space in uncompressed form. Using PforDelta compression for
docIDs and S16 for frequencies, the space usage is reduced to 9, 739 MB, achieving a
compression ratio of about 20%. Notice also that the index uses 0.11 times the space
of the input text.

For query processing, we assume the well-known Document-at-a-Time (DAAT) ap-
proach, with the BM25 ranking [13] to obtain the top-k1 most relevant documents in
Step 1. BM25 is one of the most used and effective term-frequency scoring function.
Given a query Q with terms q1, ..., qn and a document D, the score is computed as
follows:

scoreBM25(D, Q) =
n∑

i=1

IDF (qi) ·
f(qi,D) · (a+ 1)

f(qi,D) + a · (1− b+ b · |D|
avgdl

)
,

where f(qi, D) is the frequency of term qi in document D, |D| is the number of words
of document D, and avgdl is the average document length in the text collection. Pa-
rameters a and b are for advanced optimization, typically a ∈ [1.2, 2.0] and b = 0.75.
Finally, IDF(qi) is the IDF (inverse document frequency) weight of the query term qi.
It is usually computed as:

IDF(qi) = log
N − n(qi) + 0.5

n(qi) + 0.5
,

where N is the number of documents in the collection, and n(qi) is the number of
documents that contain term qi.

In Table 3.1 we show the average query time (in milliseconds per query) for the
initial query processing Step 1, obtained from our experiments. We show results for
two types of queries: traditional AND queries (using DAAT query processing) and the
BMW OR approach from [19], which is one of the most efficient current solutions for
disjunctive (OR) queries.

Notice that the query time for AND is almost constant (within two decimal digits)
with respect to k1. The process to obtain the top-k1 documents uses a heap (of size k1).
However, operating the heap takes negligible time, compared to the decompression of
docIDs and the DAAT process. BMW OR, on the other hand, is an early-termination
technique, and thus k1 impacts the query time.

27

Table 3.1: Experimental results for the initial query processing step (Step 1) for AND
and OR queries. In both cases, BM25 ranking is used.

top-k1 DAAT AND (ms/q) BMW OR [19] (ms/q)

50 14.75 35.70
100 14.77 43.39
150 14.80 47.90
200 14.81 51.74
300 14.81 58.19

3.3.2 Supporting the Positional-Ranking Step

Positional inverted lists (PILs, for short) are the standard approach for indexing in-
document position data in search engines [29, 13, 8].

PILs add another layer to the layered structure described in Section 3.3.1. See Figure
3.3 for a reference. As for docIDs and frequencies, we divide the positions in chunks,
which now have variable size: if a docID chunk stores n docIDs, the corresponding
positional chunk stores as many positions as the sum of all the frequencies stored in
the frequency chunk. Hence, because of the variable size of the positional chunks, each
chunk of the frequency layer stores a pointer to the corresponding positional chunk.

Figure 3.3: A single block in the layered implementation of inverted lists, storing docIDs,
frequencies and positions.

To obtain positional data at query time, after we obtain the top-k1 docIDs for a given
query, we identify the positional chunks containing the desired positional index entries.
Then, these positional chunks are fully decompressed, and the corresponding positions
are obtained. A drawback here is that we need to decompress the entire positional
chunk, even if we only need a single entry in it. Thus, we might end up decompressing,
in the worst case, k1 positional chunks in each of the inverted lists involved in the query.

After obtaining the positions of all query terms within the top-k1, we proceed to
re-rank them using a positional ranking score. Particular positional ranking functions
are out of the scope of this thesis: any function than uses term positions could be used.
In our experiments, we use the scoring model proposed by S. Büttcher and C. Clarke
[14, 40], which is defined as follows. For each document we fetch the positions of all

28

the query terms within the top-k1 documents. Each term is associated an accumulator
that contains the term proximity score, which is computed as follows: for every pair of
consecutive terms Ti, Tj (Ti 6= Tj) in the query Q, we obtain all the positions of those
terms (PT i,PTj) in the document D and modify the accumulators for Ti and Tj as:

acc(Ti)← acc(Ti) + wTj · (dist(PT i + PTj))
−2

acc(Tj)← acc(Tj) + wT i · (dist(PT i + PTj))
−2

where wTx is the IDF score of Tx (the same as in BM25). After computing all the
accumulators, the score of the document D is:

scoreBM25+Pos(D) = scoreBM25 +
∑
T∈Q

min(1, wt) ·
acc(T) · (a+ 1)

acc(T) + b
,

where a and b are the same as in the BM25 formula.

It is important to remark that the space needed for in-document positions is usually
high, since we must store the positions of all the occurrences of a term. For instance, in
our experimental setting the total number of positions to be stored is 23,991,731,648.
This is about twice the number of docIDs and frequencies that need to be stored in
the inverted lists (about 12,512,013,184 integers). In uncompressed state, this means
about 91,521 MB for positions, which is about twice the space used by the uncompressed
docIDs and frequencies. Moreover, position data usually cannot be compressed as easily
as in the case of docID and frequencies, which makes the situation even worse.

As we already said, the access pattern for position data is much sparser than that for
docIDs and frequencies, since positions must be obtained only for the top-k1 documents.
Thus, just a few positions are decompressed from the PIL in each query. Given this
sparse access pattern and the high space requirement of positions (as discussed above),
it is better to use compression methods with a good compression ratio, like Golomb/Rice
compression. These are slower to decompress, yet the fact that only a few positions are
decompressed should not impact considerably in the overall query time. According to
[49] and further personal communications with the main author of that work, the most
effective compression techniques are Rice and S16. In Table 3.2 we show experimental
results for obtaining positions with the baseline PILs, using the two compression schemes
selected, Rice and S16. We also show query times for different values of k1, namely 50,
200 and 300 (the experiments in [49] only use k1 = 200).

As we can see, Rice requires only about 90% the space of S16, but takes twice as
much time. Comparing the query times of Step 2 for Rice and S16 with the query times
of Step 1 in Table 3.1, we can see that position extraction is a small fraction of the
overall time. Hence, we can use Rice to compress PILs and obtain a better space usage
with only a minor increase in query time. For Rice, PILs use 2.91 times the space of
the inverted index that stores docIDs and frequencies. For S16, this number is 3.22.

29

Table 3.2: Experimental results for extracting term-position data (Step 2).The com-
pression ratio is computed according to the size of the uncompressed text, which is
91,634 MB.
Approach Compression Space Compression Position extraction time

Scheme (MB) Ratio (msec/query)

k1 = 50 k1 = 200 k1 = 300

PILs (no text) S16 31,338 34.19 0.74 1.75 2.51
RICE 28,373 30.96 1.28 3.27 5.57

3.3.3 Supporting the Snippet Generation Step

In order to support snippet generation, web search engines must store a copy of the
entire web in their servers. This requires, of course, considerable space. To compress
the text collection and support decompressing arbitrary documents, a simple alterna-
tive that is used by several state-of-the-art search engines — for instance Lucene [17]
— is to divide the whole collection into smaller text blocks, which are then compressed
separately. The block size offers a time-space trade-off: larger blocks yield better com-
pression, although decompression time is increased. Given the popularity [17, 25] and
simplicity of this approach, we use it as the baseline for the compressed text.

Table 3.3 shows experimental results for the baseline for compressed textual data.
Just as in [25], we divide the text into blocks of 0.2MB, 0.5MB or 1.0MB, and compress
each block using different standard text compression tools. In particular, we show
results for lzma (which gives very good results in [25], so it serves as a comparison
with the results in that work) and Google’s snappy compressor [1], which is an LZ77
compressor that is optimized for speed rather than compression ratio. We also show
results for lz4 [2], which is another variant of LZ77 compression improved for speed.
These three compressors offer the most interesting trade-offs among the alternatives we
tried.

As it can be seen, lzma achieves much better compression ratios than snappy and
lz4. Also, in all cases the compression ratio improves as we increase the block size.
This is because more text regularities can be detected. If we now consider the text as a
whole (i.e., without the block structure, which is not useful for snippet generation, but
for archival purposes) the compressed space achieved for the whole text is 8,133 MB for
lzma, 27,388 MB for snappy and 29,808 MB for lz4. Notice that the compression ratio
for lzma is similar to that reported in [25]. Even when snappy uses less space than lz4
compressing the whole text, separating the web in blocks shows that lz4 has better
performance in space and time. The differences in extraction time are also considerable,
with lz4 being faster than the other two alternatives, especially against lzma. Note
that [25] reports a decompression speed of about 35MB/sec for lzma. However, to
obtain a given document we must first decompress the entire block that contains it.
Hence, most of the 35MB per second do not correspond to any useful data. In other
words, this does not measure effective decompression speed for our scenario, and thus

30

Table 3.3: Experimental results for the snippet extraction phase (Step 3).

Compressor Block Space Compression Average snippet extraction time (ms/q)
size usage Ratio for different values of k2
(MB) (MB) k2 = 10 k2 = 30 k2 = 50

lzma 0.2 14,987 16.35 29 84 136
0.5 13,489 14.72 63 181 292
1.0 12,682 13.84 117 335 540

snappy 0.2 34,576 37.73 2 6 9
0.5 34,426 37.57 5 14 23
1.0 34,390 37.53 10 28 46

lz4 0.2 30,405 33,18 1 4 7
0.5 30,070 32,81 3 10 16
1.0 29,953 32,68 7 19 31

we report per-query times rather than MB/s for both methods.

Finally, notice that when we use lzma for the text, the space usage for the whole
collection is much smaller than the space of positions. This is because compressors can
take advantage of the text regularities, wherever they are. Positions, on the other hand,
are stored separately for each term, so inter-term text regularities cannot be detected
and compressed. A relevant question here is: How can one represent terms positions,
in such a way that these text regularities are conserved? We answer this question as
one of the most important contributions of this thesis.

3.4 Proposed Solution: Computing Term Positions
from Textual Data

The main conclusion from the previous section is that position and text data have high
space requirements. The size of the two structures combined is 7 times the space used
by the docID and frequency inverted index, which becomes a bottleneck [49].

This thesis focuses on alternative approaches to perform the aforementioned two-step
document ranking process and the query snippet-generation phase, which are Step 2
and Step 3 in Section 3.1. The aim is to optimize both space and query processing time.
One important feature of position data is that it only needs to be accessed for a limited
number of promising documents, say a few dozens or hundreds of documents. This
access pattern differs from that for document identifiers and term frequencies, which
are accessed more frequently, making access speed much more important. For position
data, on the other hand, we could consider somewhat slower but smarter alternative
representations without losing too much efficiency at query time [49].

31

In this thesis, we push this idea further and consider not storing the position data
(i.e, the positional index) at all. Instead, we propose to compute positions on the fly
from a compressed representation of the text collection. We will study two alternative
approaches to compressing the text collection:

1. Wavelet trees [27], which are succinct data structures from the combinatorial
pattern matching community.

2. Compressed document representations, that support fast extraction of arbitrary
documents.

It has been shown that, compared to positional indexes, web-scale texts can often be
compressed in much less space [25]. More importantly, in our proposal the compressed
text can be used for both positional re-ranking and snippet generation, saving additional
space.

An example of the procedure that we propose is shown in Figure 3.4.

Figure 3.4: Illustration of the query process from Section 3.1, using the textual data to
obtain positions and for the snippet generation.

Thus, solving a query with our proposal, includes the following steps:

1. Query Processing Step: Given a user query, use an inverted index to obtain the
top-k1 documents according to some standard query processing approach (e.g.,
DAAT) and ranking function (e.g., BM25).

2. Positional Ranking Step: Given the top-k1 documents obtained on the previ-
ous step, obtain the in-document positions for the query terms from the documents
themselves. Then re-rank the results using a positional ranking function [13, 49].

3. Snippet Generation Step: After the re-ranking of previous step, obtain snip-
pets of length s for the top-k2 documents, for a given k2 ≤ k1.

32

One concern is how these alternatives impact query processing speed, as we must
decompress documents and then search for the query terms within them. We will study
the resulting trade-offs between running time and space requirement.

Thus, to index or not to index position data, that is the research question that we
hope to answer in this thesis. To our knowledge, such alternative approaches for storing
positional data have not been rigorously compared before. Our main result is that we
can store all the information needed for query processing (i.e., document identifiers,
term frequencies, position data, and text) using space close to that of state-of-the-art
positional indexes (which only store position data and thus cannot be used for snippet
creation), with only a minor increase in query processing time. Thus, we provide new
alternatives for practical compression of position and text data, outperforming the
recent approaches from [42].

33

Chapter 4

A Wavelet Tree for Computing
Positions

In this chapter we explore the alternative of representing the text collection using a
Wavelet Tree (WT) data structure. We then use the WT functionality to obtain both,
term-positions and snippets. This data structure replaces the positional inverted lists
and the text collection, aiming at a better space usage.

Let T = $D1$D2$ · · · DN be the text obtained from the concatenation (in arbitrary
order) of the documents in the collection, where the documents are separated by a
special symbol ‘$’. We represent a text T with a WT to obtain term positions and text
snippets. Given a position i in T , one can easily obtain both the docID of the document
that contains T [i] as rank$(T, i), and the starting position of a given document j by
means of select$(T, j) [6].

4.1 Byte-Oriented Huffman WT

Instead of a bit-oriented WT (as the one explained in Section 2.6), we use the byte-
oriented representation from [11], using a Huffman encoding of the words, which is the
most efficient alternative reported in there. The idea is to first assign a Huffman code
to each vocabulary term [34]. Then, we store the most significant byte of the encoding
of each term in array Broot. That is, each WT node v stores an array of bytes Bv, instead
of bit arrays as in Section 2.6. Next, each term in the text is assigned to one of the
children of the root, depending on the first byte in the encodings. Notice that in this
way the WT is 256-ary. See [11] for details.

To support rank and select, we use the simple approach from [11]. Given a WT node
v, we divide the corresponding byte sequence Bv into super-blocks of sb bytes each. For
each super-block we store 256 super-block counters, one for each possible byte. These
counters tell us how many occurrences of a given byte there are in the text up to the
last position of the previous super-block. Also, each super-block is divided into blocks

34

of b bytes each. Every such block also stores 256 block counters, similarly as before.
The difference is that the values of these counters are local to the super-block, hence
less bits are used for them. To compute rankc(T, i), we first compute the super-block j
that contains i, and use the super-block counter for c to count how many c there are
in T up to super-block j − 1. Then we compute the block i′ that contains i and add
(to the previous value) the block counter for c. Finally, we must count the number of c
within block i′. This is done with a sequential scan over block i′. This block/super-block
structure allows for time-space trade-offs. In our experiments we use sb = 216. Hence,
super-block counters can be stored in 16 bits each. We consider b = 1 KB, b = 3 KB and
b = 7 KB. Operation select is implemented by binary searching the super-block/block
counters; thus no extra information is stored for this [11].

4.2 Obtaining Term Positions from a WT

To obtain position data assume that, given docID i for a top-k1 document and a query
term t, we want to obtain the positions of t within Di. A simple solution could be
to extract document Di from the WT, and then search for t within it. However, a
more efficient way is to use operation select to find every occurrence of t within Di,
hence working in time proportional to the number of occurrences of the term (and not
the document length). Let d be the starting position for document Di in T . Hence,
there are r ← rankt(T, d) occurrences of t before document Di, and the first occurrence
of t within Di is at position j ← selectt(T, r + 1), the second occurrence at position
j′ ← selectt(T, r + 2), and so on. Overall, if o is the number of occurrences of t within
Di, then we need 1 rank and o + 1 selects to find them. An illustration of this process
can be seen in Figure 4.1.

select (T, r+1)t

select (T, r+3)t

select (T, r+2)t select (T, r+4)tr = rank (T, d)t

d

t t t....T

Figure 4.1: Illustration of the position-extraction process in a WT , using operation
select.

4.3 Experimental Results

We fully implemented the byte-oriented WT and the position extraction process. The
aim was an implementation able to deal with large texts. Indeed, the text indexed in
our experiments is the largest text indexed with a succinct/compressed data structure
we are aware of in the literature.

35

In Table 4.1 we show the experimental trade-offs obtained for WT, for the different
block sizes tested (see the rows “WT(7 KB)” and “WT(1 KB)”). For the sake of compar-
ison, we also show the results for PILs from the previous chapter.

Note that WT (1 KB) obtains better times than PILs, yet requiring considerably more
space. An advantage of the WT structure is that it can search for positions and get the
snippets of the documents within the same space. WT (7 KB), on the other hand, is
slower than PIL (Rice) and uses more space. Even though the WT, includes the textual
data, its high space usage could leave it out of consideration on schemes where the text
is not necessary. Next, we introduce extra improvements to make them competitive.

Table 4.1: Experimental results for extracting term-position data using a WT . The
compression ratio is computed according to the size of the uncompressed text, which is
91,634 MB.

Approach Compression Space Compression Position extraction time
Scheme (MB) Ratio (msec/query)

k1 = 50 k1 = 200 k1 = 300

PILs (no text) S16 31,338 34.19 0.74 1.75 2.51
RICE 28,373 30.96 1.28 3.27 5.57

Compressed WT(7 KB) 40,534 44.23 1.94 6.85 9.80
self-indexes WT(1 KB) 56,917 62.11 0.33 1.15 1.75

WT(7 KB) + lzma 19,628 21.42 19.25 68.36 97.71
WT(1 KB) + lzma 42,359 46.23 7.22 24.97 35.57

WT(7 KB) + snappy 25,122 27.42 14.35 51.02 74.56
WT(1 KB) + snappy 46,778 51.05 2.07 7.32 10.47

WT(7 KB) + lz4 24,911 27.18 14.55 51.05 74.60
WT(1 KB) + lz4 46,600 50.85 2.08 7.31 10.48

4.4 Achieving Higher-Order Compression with the WT

Basically, WTs are zero-order compressors, which explains their high space usage. To
achieve higher-order compression, notice that Broot contains the most significant byte
of the Huffman encodings of the original terms in the text. Thus, the original text
structure is at least partially preserved in the structure of Broot, which might thus be
as compressible as the original text. A similar behavior can be observed in internal
nodes for the remaining bytes that form the encodings of the terms. Thus, we propose
to compress the blocks of Bv in each WT node v by using standard compressors, based
on LZ77 compressors (because decompression time is crucial for time efficiency in our
case). Table 4.1 shows results for lzma, snappy and lz4, the best compressors we tried.

Notice that WT (7 KB) + lzma achieves 19,628 MB, almost half the space used by
WT (7 KB). The time to obtain positions becomes, on the other hand, an order of
magnitude slower. WT (7 KB) + snappy achieves slightly better times, using space that
is smaller to that of PILs.

36

Overall, although the times are slower than that of PILs, this significant reduction
in space could make WTs competitive in scenarios where storing the text is relevant.

37

Chapter 5

Computing Term Positions from the
Compressed Text

In this chapter we explore the alternative of obtaining the positional information directly
from the compressed text. We test several compression schemes, aiming at a better
space usage.

5.1 Using Standard Compressors

Using standard text compressors, our next approach is to obtain positions using the
baseline for generating snippets from Section 3.3.3. At search time, the top-k1 docu-
ments are obtained from their corresponding blocks. Hence, in the worst case we must
decompress k1 text blocks, compared with the (worst-case) k1 positional chunks for each
query term from the PILs. Then, the query terms are sought within these documents,
obtaining their positions. Since we are looking for single terms, no sophisticated text
search algorithm is used (like KMP, for instance). We just carry out a single scan on
the document, and for each text position we check whether it is on the query terms or
not. For the snippet extraction step, no further decompression is needed, because the
documents for the top-k2 are already decompressed.

In Table 5.1 (on page 42) we show experimental results for this approach, using
lzma, snappy and lz4 compressors, and blocks of size 200 KB. We also compare with
the times and space obtained using PILs (from Chapter 3) and the best alternatives
for WTs (from Chapter 4). We can see that using lzma, we can store positions and text
in about half the space of PIL (the latter just storing positions). Although this is
promising, this approach is two orders of magnitude slower than the positional index,
which limits its use in real systems. Actually, the time is about 10 times slower than
that of Step 1 (recall Table 3.1 on page 28). If we use snappy instead, we obtain an
index that is 21.86% larger than PIL (Rice), or even using the results of lz4 which is
7.16% larger than PIL (Rice). The times to obtain positions are about 6 times slower

38

than using PILs, (which might be still acceptable in some cases since it corresponds to
about 0.5 times the time of Step 1 in the query process).

Even though the space usage achieved with lzma is competitive, the time needed
to obtain the positions is too high. Hence the solution in not practical for web search
engines. In what follows, we shall try several approaches to achieve (as much as possible)
the space usage of lzma, yet with a practical time for obtaining positions.

5.2 Using Zero-Order Compressors with Fast Text Ex-
traction

An alternative to compressing the text that could support faster position lookups is the
approach from Turpin et al. [45]. The idea is to first sort the vocabulary according to
the term frequencies, and then assign term identifiers according to this order. In this
way, the term identifier 0 corresponds to the most-frequent term in the collection, 1
to the second-most-frequent term, and so on. The document collection is then repre-
sented as a single sequence of identifiers, where each term identifier is encoded using
VByte [3]. Note that the 128 most frequent terms in the collection are thus encoded
in a single byte. Actually, the work in [45] uses a move-to-front strategy to store the
encodings: the first time a term appears in a document, it is encoded with the original
code assigned as before; the remaining appearances are represented as an offset to the
previous occurrence of the term. We also use this approach in our experiments.

By using either an integer compression scheme, such as VByte or VNibble (a variant
of VByte that represents any integer with a variable number of nibbles, i.e., half bytes,
recall Section 2.4.1) for the text, or a word-based compression scheme like byte-oriented
word Huffman [34], we are able to decompress any text portion very efficiently. No text
blocks are needed this time, but just a small table indicating the starting position of
each document. Table 5.1 shows the resulting trade-offs for the alternatives described
until now, compared with the results obtained using PILs (from the previous chapter).
We also show results for VNibble and byte-oriented Huffman.

Notice that we improve the position extraction time significantly, making it compet-
itive with PILs. This shows that being able to extract just the desired k1 documents
is an important fact (since we save time that is otherwise wasted when decompressing
a whole block with standard compressors). The higher space usage, however, is a con-
cern. Yet, note that we also represent the text within this space, not just the position
data as in PILs. We also tried other compression schemes, such as PforDelta and S9,
obtaining poorer compression ratios and similar decompression speed.

In our experimental results (see Table 5.1, rows "VByte", "VNibble" and "Byte-
oriented Huffman"), we obtain space savings of about 10% for VNibble, and about
2% for byte-oriented Huffman, in both cases compared to VByte’s performance. Also,
notice that we are now able to use space close to that of snappy (with blocks of 200
KB), yet with a better query time.

39

The faster position extraction time obtained is due to two facts. First, byte-oriented
Huffman has a fairly fast decompression speed [34], and methods like VByte and VNib-
ble are able to decompress hundred of million integers (which in our case correspond to
terms) per second [50]. Second, these methods are able to decompress just the desired
documents (as we already said), without negative impact on compressed size (to obtain
better times, standard compressors must use small blocks, hence achieving poor com-
pression). However, this is basically zero-order compression (i.e., terms are encoded
according to their frequency), and hence we are still far from the space usage of, for
instance, lzma. The goal of the next approach is to maintain the position extraction
times of VByte/VNibble, yet achieving higher-order compression.

5.3 Using Natural-Language Compression Boosters

To obtain higher-order compression, we propose to use a so-called natural-language
compression booster [22]. The idea is to use first a (hopefully byte-oriented) zero-order
compressor on the text (like byte-oriented word Huffman, or even VByte/VNibble on
Turpin et al.’s approach). Then this compressed text is further compressed using some
standard compression scheme, based on the LZ77 approach (e.g., lzma, snappy and
lz4).

Since we will use a standard compressor again, we must organize the text collection
in blocks of fixed size, as in Section 5.1. We compress, using a zero-order compres-
sor, consecutive documents, until the accumulated size of the compressed documents
surpasses the size defined for blocks. After reaching this condition, the block is re-
compressed with a high order compressor. To make the decompression process more
efficient, we store a table which for each document, stores the block that contains it, as
well as its position within the zero-order representation of the block. An illustration of
this process can be seen in Figure 5.1.

It has been shown that this can yield better compression ratios than just using a
standard compression scheme [22] (especially for smaller block sizes). This is because
the zero-order compressor virtually enlarges the LZ77 window (typically of 64 KB),
hence more regularities can be detected and compressed. Also, block sizes are defined
for the text compressed with the zero-order compressor. In other words, the block that
is given as input to the higher-order compressor correspond to a bigger segment of the
real text, In our case, we propose using Turpin et al.’s approach [45] as the booster
(using VByte and VNibble as we explained above) on the sequence of term identifiers,
rather than Word Huffman or End-Tagged as in [22]. Our experiments indicate that
the former are faster and use only slightly more space than the latter.

To obtain the positions of a query term within a document Di, as described in
Section 5.1, we must first obtain the document and then search for the query terms.
To do this, first we have to decompress the block containing Di with the higher-order
decompressor. Second, we have to decompress (using the zero-order decompressor) just
the part of the block than contains the document needed. Then, the document is ready

40

Figure 5.1: The compression boosting scheme, with a block size of 200 KB.

to be searched for the query terms. Figure 5.2 shows this process.

In Table 5.1 (on Page 42) we show results for the compression boosting approaches
(see the rows for “VByte + lzma”, “VByte + snappy” and “VByte + lz4”, for different
block sizes). We do not show in the table results for VNibble and byte-oriented Huffman
as boosters. This is because our experiments show that using VByte as a booster
produces the minimal space usage, compared to that achieved with VNibble and byte-
oriented Huffman. That is, even though VNibble and byte-oriented Huffman on their
own achieve better space usage than VByte, the combination of VByte plus a higher-
order compressor uses from 9% to 16% less space than VNibble as a booster, and
from 2% to 6% less space than byte-oriented Huffman as a booster, depending on the
higher-order compressor used.

The better performance of VByte as booster compared to VNibble can be explained
because VByte is byte aligned, hence higher-order compressors (which are also byte
aligned) are able to detect and compress the regularities of the text in a better way.
VNibble, on the other hand, is not byte aligned, then many regularities are not detected,
and hence the compression ratio achieved is poorer. Finally, byte-oriented Huffman
needs to store a data structure for the decoding process (typically, the Huffman tree).
This makes Huffman use slightly more space than VByte. Regarding the coding process,
VByte can be decoded very efficiently, using fairly simple code, whereas byte-oriented
Huffman needs to traverse the Huffman tree to decode.

Comparing now the performance of VByte as booster when used with the different
higher-order compressors tested, we can see that, overall, the reduction in space usage
(compared to the original VByte approach) is considerable. Comparing VByte + lzma

41

Table 5.1: Experimental results for extracting in-document position data (Step 2) from
the document collection. The compression ratio is computed according to the size of
the uncompressed text, which is 91,634 MB.
Approach Compression Space Compression Position extraction time

Scheme (MB) Ratio (msec/query)

k1 = 50 k1 = 200 k1 = 300

PILs (no text) S16 31,338 34.19 0.74 1.75 2.51
RICE 28,373 30.96 1.28 3.27 5.57

Compressed WT(7 KB) 40,534 44.23 1.94 6.85 9.80
self-indexes WT(1 KB) 56,917 62.11 0.33 1.15 1.75

WT(7 KB) + lzma 19,628 21.42 19.25 68.36 97.71
WT(1 KB) + lzma 42,359 46.23 7.22 24.97 35.57

WT(7 KB) + snappy 25,122 27.42 14.35 51.02 74.56
WT(1 KB) + snappy 46,778 51.05 2.07 7.32 10.47

WT(7 KB) + lz4 24,911 27.18 14.55 51.05 74.60
WT(1 KB) + lz4 46,600 50.85 2.08 7.31 10.48

Text lzma (200 KB) 14,987 16.35 137.60 482.09 684.94
compressors snappy (200 KB) 34,576 37.73 9.47 33.49 47.74

lz4 (200 KB) 30,405 33.18 6.60 23.22 33.09

Zero-order VByte 38,339 41.84 0.41 1.40 2.02
compressors VNibble 34,570 37.73 1.86 6.75 8.10

Byte-Oriented Huffman 38,070 41.55 1.09 3.82 5.45

Compression VByte + lzma (200 KB) 12,486 13.63 256.16 906.54 1,284.87
boosters VByte + lzma (50 KB) 13,981 15.26 70.32 246.94 351.71

VByte + lzma (10 KB) 16,762 18.29 19.26 68.00 97.04
VByte + lzma (1 KB) 22,340 24.38 6.11 21.72 31.10

VByte + snappy (200 KB) 20,158 21.99 9.71 34.01 48.69
VByte + snappy (50 KB) 20,366 22.22 2.36 8.36 11.95
VByte + snappy (10 KB) 22,086 24.10 0.82 2.91 4.17
VByte + snappy (1 KB) 27,919 30.47 0.45 1.60 2.30

VByte + lz4 (200 KB) 18,361 20.04 6.14 21.64 30.81
VByte + lz4 (50 KB) 18,845 20.56 1.82 6.44 9.20
VByte + lz4 (10 KB) 21,665 23.64 0.68 2.42 3.46
VByte + lz4 (1 KB) 27,680 30.21 0.41 1.43 2.05

42

Figure 5.2: Example of the decompression process for a document D1 in the
compression-boosting scheme.

(200 KB) with lzma (200 KB), the result is a reduction in space usage of 16.68% (12,486
MB vs 14,987 MB), but at the cost of twice the running time of the original lzma. For
VByte + snappy (200 KB), on the other hand, we obtain a reduction of 41.69% in space
for blocks of size 200 KB against snappy (200 KB), with a minor increase in average
position-extraction time.

When we use VByte as booster of lz4, the size of the structure is reduced compared
with lz4 (for all block sizes), without affecting much the average position-extraction
time. Notice also that for all compressors, when using smaller blocks, the time to obtain
positions rapidly improves, while the size does not increase considerably in some cases.
For example, using a block size of 50 KB with VByte + snappy, the average position-
extraction time decreases to 2.36 milliseconds per query, which is competitive with the
time to obtain positions from PIL (Rice). We can conclude that the best alternative
is the use of VByte as booster of lz4, obtaining (depending on the block size) better
average position-extraction time and smaller size than PILs, making both techniques
competitive in both space and time. However, VByte + lz4 also contains the text
within this space, allowing its use during snippet generation.

5.4 Further Comparison Between the Most Competi-
tive Alternatives

The most important result from previous sections is that we have found an alternative
that is competitive with PILs. Our alternative does not use any index data structure
for positions, but just the compressed text. Our results indicate that having an index

43

for positions is not always the best strategy. In this section we will do a more detailed
analysis about the behavior of our alternatives. The idea is to find in which cases
the alternative of not indexing positions is effective. In particular, we will study the
performance of the proposed schemes from different perspectives:

• Space/time trade-offs provided.
• Average position-extraction time as a function of the query length.
• Average position-extraction time as a function of k1.

Our analysis will be based on alternative VByte + lz4, since it was the best performer
in previous section. We will use block sizes of 5 KB, 10 KB, 50 KB, 200 KB, 500 KB
and 1,000 KB.

5.4.1 Space/Time Trade-Offs

One drawback of PILs is that they have very few parameters that can be tunned to
provide space/time trade-offs. Basically, the parameters are the type of compression
used (in our case we use Rice) and the chunk size for the docID layer. The latter
is usually 128, which has shown to be the most effective value. In our setting the
minimum space achieved by PILs is 28,373 MB. Hence, if the space allowed for the
positional structure is less than that, PILs cannot be used. In the case of compression
boosters, the use of larger blocks allows us to achieve a smaller space usage. Indeed,
the minimum space achieved is (obviously) when no block structure is used, but the
text is compressed as a whole. For VByte + lzma, this is 8,394 MB, whereas for VByte
+ lz4 it is 17,413 MB. Also, our experiments indicate that using blocks of size bigger
than 200 KB only yields little improvements in space usage, of up to 8% for VByte +
lzma and up to 2% for VByte + lz4. This can be seen in Figure 5.3, where we show
the experimental space usage as a function of the block size. Moreover, using a block
size bigger than 200 KB increases dramatically the average position-extraction time.
This is illustrated in Figure 5.4, where it can be seen how (for VByte + lz4) the time
increases with almost no further improvement in space for blocks of size 500 KB and
1,000 KB

5.4.2 Average Position-Extraction Time as Function of the Query
Lengths

In this section we study how the schemes behave for queries of different length (in
number of terms). The time needed to extract positions using compression boosters,
can be computed as follows. For each document Di in the top-k1 for a query Q, let
T (BDi

) be the time needed to obtain the positions of the document Di (which is stored
in block BDi

). To obtain the positions for the query terms from Q in document Di, we
follow the steps described in Section 5.3 (and Figure 5.2). In practice, even when the
number of comparisons needed to extract the positions for a decompressed document

44

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 200 400 600 800 1000

S
ch

e
m

e
 S

iz
e

 (
M

B
)

Block Size (KB)

Scheme Size vs Block Size

PIL
VByte + lz4

VByte + lzma

Figure 5.3: Space usage for compression boosters, for different block sizes, and PILs.

Di are |Q| · |Di|, where |Q| is the number of query terms of Q and |Di| is the number of
words in document Di, the time T (BDi

) is basically dominated by the time needed to
decompress the block BDi

, which can be seen as a constant with respect to |Q| (since
it just depends on the size of the original block for compression boosters). This can be
observed in Figure 5.5, where the average position-extraction remains almost constant
as we increase the number of query terms. The worst case of position-extraction time
is when every document of the top-k1 are in a different block. We can conclude that
the average position-extraction time depends only on the block size and on k1.

Due to the high average position-extraction times, for the compression boosters
schemes with blocks larger than 50 KB, the following comparison with PILs is done
using blocks of size 5 KB, 10 KB and 50 KB.

The time needed to extract positions from PILs can be computed as follows: given a
query Q and its top-k1 results, for each document Di in the top-k1, we must obtain the
positions of the |Q| query terms within Di. This means that in the worst case k1 · |Q|
positional chunks must be decompressed. Hence and unlike the case of compression
boosters, the average position-extraction time for PILs depends on |Q|. This effect can
be observed in Figures 5.6, 5.7 and 5.8, for different values of k1. As in can be seen,
the average position-extraction time for PILs grows lineally with |Q|.

To conclude, the increase of query length affects PILs considerably, whereas, com-
pression boosters are not affected at all by this fact.

45

 0

 5

 10

 15

 20

 25

 30

 10 15 20 25 30

P
o

si
ti

o
n

 e
x
tr

a
ct

io
n

 t
im

e
 (

m
s/

q
)

Structure Size (MB)

 k1 = 50

VByte + lz4
PIL

 0

 5

 10

 15

 20

 25

 30

 10 15 20 25 30

P
o

si
ti

o
n

 e
x
tr

a
ct

io
n

 t
im

e
 (

m
s/

q
)

Structure Size (MB)

k1 = 300

VByte + lz4
PIL

Figure 5.4: Position-extraction time for scheme VByte + lz4, for block sizes 5 KB,
10 KB, 50 KB, 200 KB, 500 KB, and 1,000 KB (from right to left in the curve). For
comparison, we also show the performance of PILs.

46

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8

P
o

si
ti

o
n

 E
x
tr

a
ct

io
n

 T
im

e
 (

m
s/

q
)

Number of query terms

k1 = 50

VByte + lz4 (Block 1000KB)
VByte + lz4 (Block 500KB)
VByte + lz4 (Block 200KB)

VByte + lz4 (Block 50k)
VByte + lz4 (Block 10k)

VByte + lz4 (Block 5k)

 0

 50

 100

 150

 200

 1 2 3 4 5 6 7 8

P
o

si
ti

o
n

 E
x
tr

a
ct

io
n

 T
im

e
 (

m
s/

q
)

Number of query terms

k1 = 300

VByte + lz4 (Block 1000KB)
VByte + lz4 (Block 500KB)
VByte + lz4 (Block 200KB)

VByte + lz4 (Block 50KB)
VByte + lz4 (Block 10KB)

VByte + lz4 (Block 5KB)

Figure 5.5: Average position-extraction times (for k1 ∈ {50, 300}) per number of query
terms, for block sizes of 5 KB, 10 KB, 50 KB, 200 KB, 500 KB, 1,000 KB.

47

 0

 0.5

 1

 1.5

 2

 2.5

 2 3 4 5 6 7 8

P
o

si
ti

o
n

 E
x
tr

a
ct

io
n

 T
im

e
 (

m
s/

q
)

Number of query terms

VByte + lz4 (Block 50KB)
VByte + lz4 (Block 10KB)

VByte + lz4 (Block 5KB)
PIL

Figure 5.6: Average position-extraction time for compression boosters and PIL, for
k1 = 50.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 2 3 4 5 6 7 8

P
o

si
ti

o
n

 E
x
tr

a
ct

io
n

 T
im

e
 (

m
s/

q
)

Number of query terms

VByte + lz4 (Block 50KB)
VByte + lz4 (Block 10KB)

VByte + lz4 (Block 5KB)
PIL

Figure 5.7: Average position-extraction time for compression boosters and PIL, fork1 =
150.

48

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 3 4 5 6 7 8

P
o

si
ti

o
n

 E
x
tr

a
ct

io
n

 T
im

e
 (

m
s/

q
)

Number of query terms

VByte + lz4 (Block 50KB)
VByte + lz4 (Block 10KB)

VByte + lz4 (Block 5KB)
PIL

Figure 5.8: Average position-extraction time for compression boosters and PIL, for
k1 = 300.

5.4.3 Average Position-Extraction Time as Function of k1

In this section we show the behavior of the schemes as the value of k1 varies. Figure 5.9
shows that the average position-extraction time of both schemes is lineal in k1. Notice
that the growth for PILs as k1 increases, is the slowest. This is because as k1 grows,
many documents in the top-k1 are within the same chunk in the inverted index, hence
the cost of decompressing these chunks grows slowly. Text blocks, on the other hand,
store much less documents (tens of them), so the probability of decompressing k1 text
blocks is high (which we also observed on our experiments). Moreover, as we increase
the block size, more unuseful documents are decompressed, which explains why the cost
for blocks of 50 KB grows faster.

5.5 Conclusions

From our experiments we can conclude that our alternative VByte + lz4 is a very good
choice to support positional ranking and snippet generation. If we consider the query
lengths, our experiments indicate that PILs are more adequate for short queries. For
long queries, on the other hand, the number of inverted lists involved makes PILs less
competitive. In such a case, VByte + lz4 should be preferred. Long queries appear
in many relevant applications, such as search engines for targeted advertising (where
queries contain many terms involving the characterization of a user, for instance). Fi-
nally, we conclude that approach VByte + lz4 is more sensitive to the value of k1 than
PILs, in the sense that the position-extraction time for the former degrades faster than
that of PILs when the value of k1 is increased.

49

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 50 100 150 200 250 300

P
o

si
ti

o
n

a
l
e

x
tr

a
ct

io
n

 t
im

e
 (

m
s/

q
)

Values for k1

Average positional extraction time per values for k1

VByte + lz4 (Block 50K)
VByte + lz4 (Block 10K)

VByte + lz4 (Block 5K)
PIL

Figure 5.9: Comparison between compression boosters and PILs, for different values of
k1.

50

Chapter 6

Discussion and Further Experimental
Results

In this chapter we consider the best indexing alternatives from previous chapters to
build schemes that allow us to carry out the search process as described in Section
3.1 (on page 24). The idea is to show the available trade-offs for the complete search
process.

6.1 Scenario 1: Query Processing with Snippet Gen-
eration

The first scenario we test implements the three steps from Section 2.1 (i.e., query
processing, positional ranking step, and snippet generation). In this scenario we must
store the document collection, and must be able to compute position data. Latter in
this chapter we will study an alternative scenario where snippets are not needed, hence
the text is not needed. Table 6.1 defines the schemes used in our experiments. All
schemes include the inverted index to carry Step 1 in the query process. The inverted
index includes docIDs (compressed with PforDelta) and frequencies (compressed with
S16). The total space usage for the inverted index for GOV2 collection is 9,739 MB.
For the query process, we set k1 ∈ {50, 100, 150, 200, 300} and k2 ∈ {10, 30, 50}. As
in the experiments of previous chapters, we use the TREC 2006 query log. In order
to compare and understand how the different position extraction schemes impact on
the overall query time, we show in each case the time needed for Step 1 of the query
processing (in our case, for “AND” and “BMW OR” query processing).

51

The space/time trade-offs for the schemes tested are determined as follows:

lzma: We used text blocks of size 200 KB, 500 KB and 1000 KB.

lz4: We used text blocks of size 200 KB, 500 KB and 1000 KB.

WT: We used text blocks of size 1 KB, 2 KB and 7 KB.

WT + lzma: We used text blocks of size 1 KB, 2 KB and 7 KB.

WT + lz4: We used text blocks of size 1 KB, 2 KB and 7 KB.

VByte/VNibble: The two points in the trade-off for this case are obtained by using
either VNibble compression for the text (the least space) and VByte compression
for the text.

VByte + lzma: We used text blocks of size 5 KB, 10 KB, 50 KB and 200 KB.

VByte + lz4: We used text blocks of size 5 KB, 10 KB, 50 KB and 200 KB.

PIL + lzma: We used text blocks of 200 KB (for lzma). The two points in the trade-
off are obtained using Rice compression for the PILs (the least space) and S16.

PIL + lz4: We used text blocks of 200 KB (for lz4). The two points in the trade-off
are obtained using Rice compression for the PIL s (the least space) and S16.

PIL + VNibble: The two points in the trade-off are obtained using Rice compression
for the PILs (the least space) and S16.

PIL + VByte + lzma: The two points in the trade-off are obtained using Rice com-
pression for the PILs (the least space) and S16. For the compressor booster we
used text blocks of size 50 KB.

PIL + VByte + lz4: The two points in the trade-off are obtained using Rice com-
pression for the PILs (the least space) and S16. For the compressor booster we
used text blocks of size 50 KB.

52

Table 6.1: Glossary of the indexing schemes tested. All schemes include the inverted
index, which for the GOV2 collection represents 9,739 MB.
Indexing Scheme Description

lzma Text compressed with lzma for positions and text.
lz4 Text compressed with lz4 for positions and text.

WT WT for positions and text.
WT+ lzma WT compressed with lzma for positions and text.
WT+ lz4 WT compressed with lz4 for positions and text.

VByte/VNibble Text compressed with VByte/VNibble for positions and text.

VByte + lzma VByte compression booster on lzma for positions and text.
VByte + lz4 VByte compression booster on lz4 for positions and text.

PIL+ lzma PILs for positions, text compressed with lzma.
PIL+ lz4 PILs for positions, text compressed with lz4.
PIL+ VNibble PILs for positions, text compressed with VNibble.
PIL+ VByte + lzma PILs for positions, text compressed with VByte + lzma.
PIL+ VByte + lz4 PILs for positions, text compressed with VByte + lz4.

6.1.1 DAAT AND Queries

We test first DAAT AND queries for Step 1. This kind of queries are usually supported
very efficiently, and correspond just to a small fraction of the overall query process.
This means that the time needed to obtain position data should be also efficient, and
small differences among alternatives could influence the total processing time.

For k1 = 50 and k2 = 10 (Figure 6.1, upper plot), it can be seen that schemes that
use PILs to index position data have a high space usage, as they need to store the text
to obtain snippets. Some of these schemes offer a competitive query time, yet their
space usage makes them unaffordable. PIL + VByte + lz4 is the most space-efficient
alternative using PILs, yet it cannot compete at query time. This shows in practice what
we have mentioned along this thesis: state-of-the-art solutions for positional data have a
high space usage. This is because they need to store both positions and text separately,
and in particular positions are not as compressible as other index components (recall
that even the text is more compressible than position).

Scheme WT offers also a highly competitive query time, yet using less space than
schemes using PILs. Yet the space usage is still high. Alternatives WT + lzma and WT +
lz4 yield a significant reduction of about 42% in space usage. However, the resulting
query time degrades quickly, and becomes less competitive.

Scheme VByte/VNibble (which implements Turpin et al.’s idea [45] to compress the
text) yields a good trade-off, with small space usage than WT and a highly-competitive
query time. Up to this point we have achieved a reduction of about 21% in space usage

53

compared to the most time-efficient alternative that uses PILs (i.e., the state of the art
up to now), with almost the same query time. However, the space usage is still high
compared to the alternatives we study next.

Scheme lz4 reduces the space usage even more, providing a competitive query time.
Scheme lzma, on the other hand, reduces the space usage significantly, yet at the price
of a much slower (unpractical) query time.

When we add the compressor boosters to lzma and lz4 (i.e., schemes VByte + lzma
and VByte + lz4), we obtain the most important trade-offs among all alternatives. For
instance, if we compare with PIL + lz4 (which is the fastest alternative in the state of
the art, and is among the most space-efficient alternatives that use PIL), VByte + lz4
(with text block of size 50 KB, which is the third point in the curve from the right)
yields a significant reduction in space usage of about 49.81% (56,958 MB versus 28,584
MB), with a query time that is just 1.03 times slower (from 16.95 msecs/query to 17.49
msecs/query). This shows the effectiveness of our proposal. Moreover, recall that the
positional index PIL (using Rice compression) requires 28,373 MB, whereas VByte +
lz4 requires, as we already said, 28,584 MB. That is, in 1.007 times the space of just
PILs we can store the inverted index (docIDs and frequencies), the positional data,
and the text collection. In other words, using only slightly more space than PIL(Rice),
scheme VByte + lz4 includes everything needed for query processing. This is one of
the most important results and conclusions in this thesis: “not to index” positional data
can be a highly-competitive alternative in practical scenarios.

If we compare now PIL+ lz4 with VByte + lzma (for blocks of size 10 KB, which
corresponds to the second point in the curve, from the right), we obtain a reduction in
space usage of about 53.47% (56,958 MB versus 26,501 MB), while the query time is
1.99 times slower (from 17.47 msecs/query to 34.93 msecs/query). In other words, we
are able to accommodate the complete index in 0.94 times the space of PILs, and still
are able to offer a competitive query time.

Finally, the smallest space alternatives we tested (which are not fully shown in
the figures) are the ones that use the inverted index for query processing and lzma
compression for positions and snippets. This achieves about 22,225 MB of space. This
scheme includes everything needed for query processing, and uses only 78% the space
of PIL. However, query processing time increases significantly, to more than 400 ms per
query. This scheme could be useful in some cases where the available memory space is
very restricted, such that a larger index would mean going to disk.

A recent alternative [42] proposes to use flat positional indexes [15, 18] to support
phrase querying; this index could also be used for positional ranking. This is basically
a positional index from which docID and frequency information can also be obtained.
The results reported for the GOV2 collection in [42] give an index of size 30,310 MB
that includes docIDs and frequencies, but not the text needed for snippet generation,
making this approach uncompetitive for our scenario.

If we increase k2 to 50, the result is almost the same (see Figure 6.1, below). The only
schemes that are affected (i.e., the query time is increased) are those using PILs (because

54

more documents than before must be decompressed per query, in order to obtain their
snippets) and those using WTs (as we need to show snippets for more documents, this
means that we need to obtain more words from the text, which means traversing the
WT more intensively). Schemes that use the compressed text for snippets and positions
must decompress k1 documents to obtain position data, to then extract snippets for
the already decompressed top-k2 documents (using negligible extra space).

Figures 6.1 and 6.2 show experimental results for values of k1 ∈ {50, 300} and k2 ∈
{10, 50}. Experiments for k2 = 30 and k1 ∈ {100, 150, 200} are shown in Appendix A.
As it can be seen, the same conclusions can be drawn.

 0

 50

 100

 150

 200

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 50, k2 = 10

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte + lzma
PIL + VByte + lz4

 0

 50

 100

 150

 200

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 50, k2 = 50

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte +lzma

VByte +lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte +lzma
PIL + VByte +lz4

Figure 6.1: Time-space trade-offs for the overall query process for the GOV2 collection.
With k1 = 50 and k2 ∈ {10, 50}, including Step 1(AND queries), Step 2 and Step 3.

55

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 300, k2 = 10

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte +lzma

VByte +lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte +lzma
PIL + VByte +lz4

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 300, k2 = 50

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte +lzma

VByte +lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte +lzma
PIL + VByte +lz4

Figure 6.2: Time-space trade-offs for the overall query process for the GOV2 collection.
With k1 = 300 and k2 ∈ {10, 50}, including Step 1(AND queries), Step 2 and Step 3.
It is important to note that scheme lzma has query time greater than 400 ms/q.

56

6.1.2 BMW OR Queries

Figures 6.3 and 6.4 show experimental results for BMW OR queries. The results now
are slightly different, since now Step 1 of query processing is more expensive than for
AND queries. Hence, the differences in query time are smaller. For instance, for k1 = 50
and k2 = 10 (Figure 6.3, upper plot) we can conclude that scheme VByte + lzma with
text blocks of size 10 KB uses 0.94 times (as we already said) the PIL size (which just
stores positional data). The query time is 1.43 times slower than that of scheme PILs +
lz4. For scheme VByte + lz4, the results are even more impressive. Using just 1.007
times the space of just PILs we can achieve a query time that is 1.005 times slower
than scheme PIL+ lz4. As in previous section, we conclude that VByte + lz4 and
VByte + lzma (using text blocks of size 50 KB) offer very relevant trade-offs, being
able to replace PILs in many cases. Experiments for k2 = 30 and k1 ∈ {100, 150, 200}
are shown in Appendix A.

6.2 Scenario 2: Query Processing without Snippet
Generation

We now study the practical performance of all proposed schemes in a scenario where
text snippets are not needed. That is, Step 3 of Section 3.1 is not carried out. Notice
that the text is not needed in the state-of-the-art schemes based on PILs. Hence, we
now have just one scheme using PILs (in previous section the various schemes with
PILs only differed in how they compressed the text). See Table 6.2 for a summary of
the alternatives we tested. In our experiments we set k1 ∈ {50, 100, 150, 200, 300}. All
schemes include the inverted index, as in previous section. In order to compare and
understand how the different position extraction schemes impact on the overall query
time, we show in each case the time needed for Step 1 of the query processing (in our
case, for “AND” and “BMW OR” query processing).

6.2.1 DAAT AND Queries

Figures 6.5 and 6.6 show results for AND queries, for values of k1 ∈ {50, 300}, the
rest are shown in Appendix A. The most important result to highlight is that the
state-of-the-art scheme based on PILs (which this time does not store the text, saving
considerable space) cannot compete with schemes VByte + lz4 and VByte + lzma,
neither in space usage nor query time. That is, "not to index" positional data is also
effective in scenarios where snippets are not needed.

57

 0

 50

 100

 150

 200

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 50, k2 = 10

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte + lzma
PIL + VByte + lz4

 0

 50

 100

 150

 200

 250

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 50, k2 = 50

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte + lzma
PIL + VByte + lz4

Figure 6.3: Time-space trade-offs for the overall query process for the GOV2 collection.
With k1 = 50 and k2 ∈ {10, 50}, including Step 1(BMW OR queries), Step 2 and Step
3.

58

 0

 50

 100

 150

 200

 250

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 300, k2 = 10

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte + lzma
PIL + VByte + lz4

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 300, k2 = 50

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte + lzma
PIL + VByte + lz4

Figure 6.4: Time-space trade-offs for the overall query process for the GOV2 collection.
With k1 = 300 and k2 ∈ {10, 50}, including Step 1(BMW OR queries), Step 2 and Step
3. It is important to note that scheme lzma has query time greater than 400 ms/q.

59

Table 6.2: Glossary of the indexing schemes for the figures. All schemes include the
inverted index, which for the GOV2 collection represents 9,739 MB.

Indexing Scheme Description

lzma Text compressed with lzma for positions.
lz4 Text compressed with lz4 for positions.

WT WT for positions.
WT+ lzma WT compressed with lzma for positions.
WT+ lz4 WT compressed with lz4 for positions.

VByte/VNibble Text compressed with VByte/VNibble for positions.

VByte + lzma VByte compression booster on lzma for positions.
VByte + lz4 VByte compression booster on lz4 for positions.

PIL PILs for positions.

 0

 50

 100

 150

 200

 20 25 30 35 40 45 50 55 60 65 70

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 50

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL

 14
 16
 18
 20
 22
 24
 26
 28
 30

 36 38 40 42 44 46 48 50 52

Zoomed area

Figure 6.5: Time-space trade-offs for the overall query process for the GOV2 collection.
With k1 = 50, including Step 1(AND queries), Step 2.

60

 0

 50

 100

 150

 200

 250

 20 25 30 35 40 45 50 55 60 65 70

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 300

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL

Figure 6.6: Time-space trade-offs for the overall query process for the GOV2 collection.
With k1 = 300, including Step 1(AND queries), Step 2. It is important to note that
scheme lzma has query time greater than 400 ms/q.

6.2.2 BMW OR Queries

Figures 6.7 and 6.8 show results for BMW OR queries, for values of k1 ∈ {50, 300},
the rest are shown in Appendix A. Notice that the differences are even smaller than in
Section 6.1.2, because in this scenario the text is not needed, then PILs are not affected
by the snippet extraction time. Using the same scenario as in Section 6.1.2, where the
scheme VByte +lz4 is 1.007 times the space of just PILs we can achieve a query time
just 1.01 times slower than the PIL+ lz4 alternative. Concluding that “not to index”
positional data is effective in all the scenarios studied.

61

 0

 50

 100

 150

 200

 20 25 30 35 40 45 50 55 60 65 70

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 50

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL

Figure 6.7: Time-space trade-offs for the overall query process for the GOV2 collection.
With k1 = 50, including Step 1(BMW OR queries), Step 2.

 0

 50

 100

 150

 200

 250

 20 25 30 35 40 45 50 55 60 65 70

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 300

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL

Figure 6.8: Time-space trade-offs for the overall query process for the GOV2 collection.
With k1 = 300, including Step 1(BMW OR queries), Step 2. It is important to note
that scheme lzma has query time greater than 400 ms/q.

62

Chapter 7

Conclusion and Future Work

In this thesis we have studied alternative approaches for indexing in-document posi-
tions. This is relevant for search engines that use the query-term positions within the
documents to ranking their results and for phrase searching (though the studies in this
thesis focused particularly on positional ranking). It has been shown in the literature
that indexing positions is usually a difficult task [49, 25], mainly because of the high
space usage they impose. This is because of two things: we must store all positions of
a term within each document and, moreover, the way in which positions are usually
stored and indexed does not allow one to catch some regularities that could be used to
compress this kind of data.

Our main proposal was to get rid of positional indexes, and use the textual data
instead to obtaining in-document positions. We tried several approaches to obtain
good space/time trade-offs. We also extended the work of [25], in the sense that many
other compression alternatives were tried, not just standard compressors.

From our study we can conclude that there exists a wide range of practical time/space
trade-offs, other than just the classical positional inverted indexes. We studied several
alternatives, trying to answer the question whether it is necessary to index position data
or not. As one of the most relevant points in the trade-off, we propose a compressed
document representation based on the approach in [45] combined with lz4 compression
[2]. This allows us to compute position and snippet data using less space than a standard
positional inverted index that only stores position data. Even if we include the space
used for document identifiers and term frequencies, this approach uses just 1.007 times
the space of a positional inverted index (that stores only in-document positions), with
basically the same query time.

We also found out that interesting results, such as that obtaining positions from the
textual data is more effective for long queries.

This means that in many practical cases, “not to index” position data may be the
most efficient approach. This provides new practical alternatives for positional index
compression, a problem that has been considered difficult to address in previous work

63

[49, 25]. Finally, we also showed that compressed self-indexes such as wavelet trees [27]
can be competitive with the best solutions in some scenarios.

We think that our results will change the way in which positional data in web search
engines is indexed. However, there are still aspects that need further study in order
to obtain improvements. For instance, an interesting line of research could be that of
reducing the number of text blocks that are decompressed at query time. This means
finding a way to group the documents such that, given a query, most of the top-k1
documents for the query are within the same (or a few) block. It is interesting also to
study what happens in document collections that can be renumbered [50, 7]. In such a
case, it is well known that fewer inverted-list blocks are accessed, hence the performance
of positional inverted indexes could be improved. It would be interesting to study how
does this affect the document collection and the way positional data is obtained from it.
Finally, it would be also interesting to study the efficiency of our approach for phrase
searching. This seems to be a promising line of research.

64

Bibliography

[1] http://code.google.com/p/snappy/.

[2] https://code.google.com/p/lz4/.

[3] Vo Ngoc Anh and Alistair Moffat. Compressed inverted files with reduced decoding
overheads. In SIGIR, pages 290–297, 1998.

[4] Vo Ngoc Anh and Alistair Moffat. Inverted index compression using word-aligned
binary codes. Inf. Retr., 8(1):151–166, 2005.

[5] Diego Arroyuelo, Veronica Gil Costa, Senén González, Mauricio Marín, and Mauri-
cio Oyarzún. Distributed search based on self-indexed compressed text. Inf. Pro-
cess. Manage., 48(5):819–827, 2012.

[6] Diego Arroyuelo, Senén González, and Mauricio Oyarzún. Compressed self-indices
supporting conjunctive queries on document collections. In SPIRE, pages 43–54,
2010.

[7] Diego Arroyuelo, Senén González, Mauricio Oyarzún, and Victor Sepulveda. Doc-
ument identifier reassignment and run-length-compressed inverted indexes for im-
proved search performance. In SIGIR, pages 173–182, 2013.

[8] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information Re-
trieval - the concepts and technology behind search, Second edition. Pearson Edu-
cation Ltd., Harlow, England, 2011.

[9] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. Computer Networks, 30(1-7):107–117, 1998.

[10] Nieves R. Brisaboa, Ana Cerdeira-Pena, Gonzalo Navarro, and Oscar Pedreira.
Ranked document retrieval in (almost) no space. In SPIRE, pages 155–160, 2012.

[11] Nieves R. Brisaboa, Antonio Fariña, Susana Ladra, and Gonzalo Navarro. Implicit
indexing of natural language text by reorganizing bytecodes. Inf. Retr., 15(6):527–
557, 2012.

[12] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Y.
Zien. Efficient query evaluation using a two-level retrieval process. In CIKM,

65

pages 426–434, 2003.

[13] Stefan Büttcher, Charles L. A. Clarke, and Gordon V. Cormack. Information
Retrieval - Implementing and Evaluating Search Engines. MIT Press, 2010.

[14] Stefan Büttcher, Charles L. A. Clarke, and Brad Lushman. Term proximity scoring
for ad-hoc retrieval on very large text collections. In SIGIR, pages 621–622, 2006.

[15] Charles L. A. Clarke, Gordon V. Cormack, and Forbes J. Burkowski. An algebra
for structured text search and a framework for its implementation. Comput. J.,
38(1):43–56, 1995.

[16] Francisco Claude and Gonzalo Navarro. Practical rank/select queries over arbitrary
sequences. In SPIRE, pages 176–187, 2008.

[17] D. Cutting. Apache Lucene. http://lucene.apache.org/.

[18] Jeffrey Dean. Challenges in building large-scale information retrieval systems:
invited talk. In WSDM, page 1, 2009.

[19] Shuai Ding and Torsten Suel. Faster top-k document retrieval using block-max
indexes. In SIGIR, pages 993–1002, 2011.

[20] Peter Elias. Universal codeword sets and representations of the integers. IEEE
Transactions on Information Theory, 21(2):194–203, 1975.

[21] Antonio Fariña, Nieves R. Brisaboa, Gonzalo Navarro, Francisco Claude, Ánge-
les S. Places, and Eduardo Rodríguez. Word-based self-indexes for natural lan-
guage text. ACM Trans. Inf. Syst., 30(1):1, 2012.

[22] Antonio Fariña, Gonzalo Navarro, and José R. Paramá. Boosting text compression
with word-based statistical encoding. Comput. J., 55(1):111–131, 2012.

[23] Paolo Ferragina, Raffaele Giancarlo, and Giovanni Manzini. The myriad virtues
of wavelet trees. Inf. Comput., 207(8):849–866, 2009.

[24] Paolo Ferragina, Rodrigo González, Gonzalo Navarro, and Rossano Venturini.
Compressed text indexes: From theory to practice. ACM Journal of Experimental
Algorithmics, 13, 2008.

[25] Paolo Ferragina and Giovanni Manzini. On compressing the textual web. In
WSDM, pages 391–400, 2010.

[26] Solomon W. Golomb. Run-length encodings (corresp.). IEEE Transactions on
Information Theory, 12(3):399–401, 1966.

[27] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-
compressed text indexes. In SODA, pages 841–850, 2003.

[28] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM,

66

46(5):604–632, 1999.

[29] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to information retrieval. Cambridge University Press, 2008.

[30] Giovanni Manzini. An analysis of the burrows-wheeler transform. J. ACM,
48(3):407–430, 2001.

[31] G Nigel N Martin. Range encoding: an algorithm for removing redundancy from
a digitised message. In Proc. Institution of Electronic and Radio Engineers Inter-
national Conference on Video and Data Recording, 1979.

[32] Donald Metzler and W. Bruce Croft. A markov random field model for term
dependencies. In SIGIR, pages 472–479, 2005.

[33] Gilad Mishne and Maarten de Rijke. Boosting web retrieval through query oper-
ations. In ECIR, pages 502–516, 2005.

[34] Alistair Moffat. Word-based text compression. Softw., Pract. Exper., 19(2):185–
198, 1989.

[35] Alistair Moffat and Lang Stuiver. Binary interpolative coding for effective index
compression. Inf. Retr., 3(1):25–47, 2000.

[36] Gonzalo Navarro. Wavelet trees for all. J. Discrete Algorithms, 25:2–20, 2014.

[37] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Comput.
Surv., 39(1), 2007.

[38] Yves Rasolofo and Jacques Savoy. Term proximity scoring for keyword-based re-
trieval systems. In ECIR, pages 207–218, 2003.

[39] David Salomon. Data compression - The Complete Reference, 4th Edition.
Springer, 2007.

[40] Ralf Schenkel, Andreas Broschart, Seung won Hwang, Martin Theobald, and Ger-
hard Weikum. Efficient text proximity search. In SPIRE, pages 287–299, 2007.

[41] Falk Scholer, Hugh E. Williams, John Yiannis, and Justin Zobel. Compression of
inverted indexes for fast query evaluation. In SIGIR, pages 222–229, 2002.

[42] Dongdong Shan, Wayne Xin Zhao, Jing He, Rui Yan, Hongfei Yan, and Xiaoming
Li. Efficient phrase querying with flat position index. In CIKM, pages 2001–2004,
2011.

[43] B. Sparrow, J. Liu, and M. Wegner. Google effects on memory: Cognitive con-
sequences of having information at our fingerprints. Science, 333(6043):776–778,
2011.

[44] Tao Tao and ChengXiang Zhai. An exploration of proximity measures in informa-

67

tion retrieval. In SIGIR, pages 295–302, 2007.

[45] Andrew Turpin, Yohannes Tsegay, David Hawking, and Hugh E. Williams. Fast
generation of result snippets in web search. In SIGIR, pages 127–134, 2007.

[46] Lidan Wang, Jimmy J. Lin, and Donald Metzler. A cascade ranking model for
efficient ranked retrieval. In SIGIR, pages 105–114, 2011.

[47] Hugh E. Williams and Justin Zobel. Compressing integers for fast file access.
Comput. J., 42(3):193–201, 1999.

[48] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Com-
pressing and Indexing Documents and Images, Second Edition. Morgan Kaufmann,
1999.

[49] Hao Yan, Shuai Ding, and Torsten Suel. Compressing term positions in web in-
dexes. In SIGIR, pages 147–154, 2009.

[50] Hao Yan, Shuai Ding, and Torsten Suel. Inverted index compression and query
processing with optimized document ordering. In WWW, pages 401–410, 2009.

[51] Jiangong Zhang, Xiaohui Long, and Torsten Suel. Performance of compressed
inverted list caching in search engines. In WWW, pages 387–396, 2008.

[52] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory, 23(3):337–343, 1977.

[53] Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-
rate coding. IEEE Transactions on Information Theory, 24(5):530–536, 1978.

[54] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter A. Boncz. Super-scalar
ram-cpu cache compression. In ICDE, page 59, 2006.

68

Appendix A

Aditional Experimental Results

In this section we show the trade-offs for the alternatives described in Table 6.1 with
k1 ∈ {100, 150, 200} and k2 = 30, also the alternatives described in Table 6.2 with
k1 ∈ {100, 150, 200}.

A.1 DAAT AND Queries

 0

 50

 100

 150

 200

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 50, k2 = 30

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte +lzma

VByte +lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte +lzma
PIL + VByte +lz4

Figure A.4: Time-space trade-offs for the overall query process for the GOV2 collection.
With k1 = 50 and k2 = 30 , including Step 1, Step 2 and Step 3.

69

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 100, k2 = 10

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte +lzma

VByte +lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte +lzma
PIL + VByte +lz4

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 100, k2 = 50

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte +lzma

VByte +lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte +lzma
PIL + VByte +lz4

Figure A.1: Time-space trade-offs for the overall query process for the GOV2 collection.
With k1 = 100 and k2 ∈ {10, 50}, including Step 1(AND queries), Step 2 and Step 3.

70

 0

 50

 100

 150

 200

 250

 300

 350

 400

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 150, k2 = 10

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte +lzma

VByte +lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte +lzma
PIL + VByte +lz4

 0

 50

 100

 150

 200

 250

 300

 350

 400

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 150, k2 = 50

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte +lzma

VByte +lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte +lzma
PIL + VByte +lz4

Figure A.2: Time-space trade-offs for the overall query process for the GOV2 collection.
With k1 = 150 and k2 ∈ {10, 50}, including Step 1(AND queries), Step 2 and Step 3.

71

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 200, k2 = 10

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte +lzma

VByte +lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte +lzma
PIL + VByte +lz4

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 200, k2 = 50

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte +lzma

VByte +lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte +lzma
PIL + VByte +lz4

Figure A.3: Time-space trade-offs for the overall query process for the GOV2 collection.
With k1 = 200 and k2 ∈ {10, 50}, including Step 1(AND queries), Step 2 and Step 3.
It is important to note that scheme lzma has query time greater than 400 ms/q.

72

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 100, k2 = 30

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte +lzma

VByte +lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte +lzma
PIL + VByte +lz4

Figure A.5: Time-space trade-offs for the overall query process for the GOV2 collection.
With k1 = 100 and k2 = 30 , including Step 1, Step 2 and Step 3.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 150, k2 = 30

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte +lzma

VByte +lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte +lzma
PIL + VByte +lz4

Figure A.6: Time-space trade-offs for the overall query process for the GOV2 collection.
With k1 = 150 and k2 = 30 , including Step 1, Step 2 and Step 3.

73

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 200, k2 = 30

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte +lzma

VByte +lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte +lzma
PIL + VByte +lz4

Figure A.7: Time-space trade-offs for the overall query process for the GOV2 collection.
With k1 = 200 and k2 = 30 , including Step 1, Step 2 and Step 3. It is important to
note that Scheme 1 has query time greater than 400 ms/q.

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 300, k2 = 30

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte +lzma

VByte +lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte +lzma
PIL + VByte +lz4

Figure A.8: Time-space trade-offs for the overall query process for the GOV2 collection.
With k1 = 300 and k2 = 30 , including Step 1, Step 2 and Step 3. It is important to
note that Scheme 1 has query time greater than 400 ms/q.

74

 0

 50

 100

 150

 200

 20 25 30 35 40 45 50 55 60 65 70

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 100

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL

Figure A.9: Time-space trade-offs for the overall query process for the GOV2 collection.
With k1 = 100, including Step 1(AND queries), Step 2. It is important to note that
scheme lzma has query time greater than 250 ms/q.

 0

 50

 100

 150

 200

 20 25 30 35 40 45 50 55 60 65 70

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 150

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL

Figure A.10: Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 150, including Step 1(AND queries), Step 2. It is important to note
that scheme lzma has query time greater than 250 ms/q.

75

 0

 50

 100

 150

 200

 250

 20 25 30 35 40 45 50 55 60 65 70

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, AND queries
 k1 = 200

Step 1 (AND)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL

Figure A.11: Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 200, including Step 1(AND queries), Step 2. It is important to note
that scheme lzma has query time greater than 400 ms/q.

A.2 BMW OR Queries

 0

 50

 100

 150

 200

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 50, k2 = 30

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte + lzma
PIL + VByte + lz4

Figure A.15: Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 50 and k2 = 30 , including Step 1, Step 2 and Step 3.

76

 0

 50

 100

 150

 200

 250

 300

 350

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 100, k2 = 10

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte + lzma
PIL + VByte + lz4

 0

 50

 100

 150

 200

 250

 300

 350

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 100, k2 = 50

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte + lzma
PIL + VByte + lz4

Figure A.12: Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 100 and k2 ∈ {10, 50}, including Step 1(BMW OR queries), Step 2
and Step 3.

77

 0

 50

 100

 150

 200

 250

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 150, k2 = 10

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte + lzma
PIL + VByte + lz4

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 150, k2 = 50

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte + lzma
PIL + VByte + lz4

Figure A.13: Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 150 and k2 ∈ {10, 50}, including Step 1(BMW OR queries), Step 2
and Step 3. It is important to note that scheme lzma has query time greater than 400
ms/q.

78

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 200, k2 = 10

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte + lzma
PIL + VByte + lz4

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 200, k2 = 50

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte + lzma
PIL + VByte + lz4

Figure A.14: Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 200 and k2 ∈ {10, 50}, including Step 1(BMW OR queries), Step 2
and Step 3. It is important to note that scheme lzma has query time greater than 400
ms/q.

79

 0

 50

 100

 150

 200

 250

 300

 350

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 100, k2 = 30

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte + lzma
PIL + VByte + lz4

Figure A.16: Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 100 and k2 = 30 , including Step 1, Step 2 and Step 3.

 0

 50

 100

 150

 200

 250

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 150, k2 = 30

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte + lzma
PIL + VByte + lz4

Figure A.17: Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 150 and k2 = 30 , including Step 1, Step 2 and Step 3. It is important
to note that Scheme 1 has query time greater than 400 ms/q.

80

 0

 50

 100

 150

 200

 250

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 200, k2 = 30

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte + lzma
PIL + VByte + lz4

Figure A.18: Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 200 and k2 = 30 , including Step 1, Step 2 and Step 3. It is important
to note that Scheme 1 has query time greater than 400 ms/q.

 0

 50

 100

 150

 200

 250

 20 30 40 50 60 70 80

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 300, k2 = 30

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL + lzma

PIL + lz4
PIL + VNibble

PIL + VByte + lzma
PIL + VByte + lz4

Figure A.19: Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 300 and k2 = 30 , including Step 1, Step 2 and Step 3. It is important
to note that Scheme 1 has query time greater than 400 ms/q.

81

 0

 50

 100

 150

 200

 20 25 30 35 40 45 50 55 60 65 70

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 100

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL

Figure A.20: Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 100, including Step 1(BMW OR queries), Step 2. It is important to
note that scheme lzma has query time greater than 300 ms/q.

 0

 50

 100

 150

 200

 20 25 30 35 40 45 50 55 60 65 70

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 150

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL

Figure A.21: Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 150, including Step 1(BMW OR queries), Step 2. It is important to
note that scheme lzma has query time greater than 400 ms/q.

82

 0

 50

 100

 150

 200

 20 25 30 35 40 45 50 55 60 65 70

O
v
e

ra
ll
 q

u
e

ry
 t

im
e

 (
m

s
p

e
r

q
u

e
ry

)

Index size (GB)

Time-space trade-offs, BMW OR queries
 k1 = 200

Step 1 (BMW OR)
lzma

lz4
WT

WT + lzma
WT + lz4

VByte/VNibble
VByte + lzma

VByte + lz4
PIL

Figure A.22: Time-space trade-offs for the overall query process for the GOV2 collec-
tion. With k1 = 200, including Step 1(BMW OR queries), Step 2. It is important to
note that scheme lzma has query time greater than 400 ms/q.

83

	Introduction
	Motivation
	Positional Indexes
	Hypothesis
	Thesis contribution
	Results

	Background and Related Work
	Basic Definitions
	Text Representation
	Inverted Indexes
	Inverted Index Compression
	VByte
	Simple 9
	PforDelta

	Snippet Generation
	Dictionary Compressors with Rank and Select Operations
	LZ77 Compression
	Lzma
	Snappy
	Lz4

	Compressed Text Self-Indexes
	Wavelet trees
	Supporting Operations
	Analysis of Space Usage
	Self-Indexes for IR Applications

	Indexing for Positional Ranking: Classical Solutions
	Basic Query Processing Steps for Positional Ranking and Snippet Extraction
	Experimental Setup and Dataset Description
	The Baseline: Positional Inverted Lists and Compressed Textual Data
	Supporting the Query-Processing Step
	Supporting the Positional-Ranking Step
	Supporting the Snippet Generation Step

	Proposed Solution: Computing Term Positions from Textual Data

	 A Wavelet Tree for Computing Positions
	Byte-Oriented Huffman WT
	Obtaining Term Positions from a WT
	Experimental Results
	Achieving Higher-Order Compression with the WT

	 Computing Term Positions from the Compressed Text
	Using Standard Compressors
	Using Zero-Order Compressors with Fast Text Extraction
	Using Natural-Language Compression Boosters
	Further Comparison Between the Most Competitive Alternatives
	Space/Time Trade-Offs
	Average Position-Extraction Time as Function of the Query Lengths
	Average Position-Extraction Time as Function of k1

	Conclusions

	Discussion and Further Experimental Results
	Scenario 1: Query Processing with Snippet Generation
	DAAT AND Queries
	BMW OR Queries

	Scenario 2: Query Processing without Snippet Generation
	DAAT AND Queries
	BMW OR Queries

	Conclusion and Future Work
	Bibliography
	Aditional Experimental Results
	DAAT AND Queries
	BMW OR Queries

