
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

EFFECTIVE ASPECTS:
A TYPED MONADIC MODEL TO CONTROL AND REASON

ABOUT ASPECT INTERFERENCE

TESIS PARA OPTAR AL GRADO DE DOCTOR EN CIENCIAS, MENCION COMPUTACIÓN
EN COTUTELA CON LA ÉCOLE DES MINES DE NANTES

ISMAEL JOSÉ FIGUEROA PALET

PROFESOR GUÍA:
ÉRIC TANTER

PROFESOR CO-GUÍA:
NICOLAS TABAREAU

MIEMBROS DE LA COMISIÓN:
JOHAN FABRY

MARIO SÜDHOLT
ERIK ERNST

BRUNO C. D. S. OLIVEIRA

Este trabajo ha sido parcialmente financiado por CONICYT y los Equipos Asociados INRIA
RAPIDS y REAL

SANTIAGO DE CHILE
2014

Resumen

La Programación Orientada a Aspectos (AOP) apunta a mejorar la modularidad y reusabilidad en
sistemas de software al ofrecer un mecanismo de abstracción para manejar crosscutting concerns.
Sin embargo, en la mayoría de los lenguajes orientados a aspectos; los aspectos tienen poder casi
sin restricciones, lo que eventualmente entra en conflicto con las metas anteriores. En este trabajo
presentamos EffectiveAspects: un nuevo enfoque para incorporar el modelo AOP de pointcut/advice
en un lenguaje funcional estáticamente tipeado como Haskell.

Como primera contribución, definimos una incorporación completa del modelo de pointcut/ad-
vice al lenguaje, usando mónadas. La coherencia de tipos se garantiza explotando el sistema de
tipos subyacente, en particular phantom types y una nueva type class que implemente un algoritmo
de anti-unificación. Los aspectos son de primera clase, pueden ser desplegados dinámicamente,
y el lenguaje de pointcuts es extensible; por lo tanto combina la flexibilidad de lenguajes de as-
pectos dinámicamente tipeados con las garantías de un sistema de tipos estático. Las mónadas
nos permiten razonar directamente sobre los efectos tanto en los aspectos como en los programas
base mediante técnicas monádicas tradicionales. Con esto, extendemos la noción de Open Modules
propuesta por Aldrich con efectos y con pointcuts protegidos, que son interfaces que restringen la
aplicación externa de advice. Estas restricciones son enforzadas estáticamente usando el sistema de
tipos. También, adaptamos las técnicas de EffectiveAdvice para razonar y enforzar propiedades del
flujo de control; así como también adaptamos su enfoque basado en parametricidad para controlar
la interferencia de efectos. Luego de mostrar que este último enfoque no es suficiente en presencia
de múltiples aspectos, proponemos un nuevo enfoque basado en monad views, una nueva técnica
para manejar mónadas, desarrollada por Schrijvers y Olivera.

Nuestra segunda contribución se basa en un poderoso modelo para razonar sobre la composición
de componentes basados en mixins que incorporan efectos computacionales. Este modelo se basa
en razonamiento ecuacional, parametricidad y leyes algebráicas de las mónadas. Nuestra contribu-
ción es mostrar cómo razonar sobre interferencia en la presencia de cuantificación sin restricción,
a través de pointcuts. Mostramos que el razonamiento global puede ser composicional, lo que es
clave para la escalabilidad de nuestro enfoque en el contexto de grandes sistemas que evolucionan.
Demostramos un teorema general de equivalencia que se basa en algunas condiciones que pueden
ser establecidas, reutilizadas y adaptadas por separado a medida que el sistema evoluciona. El
teorema está definido en términos de un modelo abstracto de AOP monádico.

Este trabajo desarrolla técnicas de razonamiento de efectos, basadas en tipos, para el modelo
pointcut/advice, en un modelo que es expresivo y extensible; y que permite el desarrollo de aplica-
ciones orientadas a aspecto robustas y la experimentación con nuevas semánticas de AOP.

i

Abstract

Aspect-oriented programming (AOP) aims to enhance modularity and reusability in software sys-
tems by offering an abstraction mechanism to deal with crosscutting concerns. However, in most
general-purpose aspect languages aspects have almost unrestricted power, eventually conflicting
with these goals. In this work we present EffectiveAspects: a novel approach to embed the point-
cut/advice model of AOP in a statically-typed functional programming language like Haskell. Our
work comprises two main contributions.

First, we define a monadic embedding of the full pointcut/advice model of AOP. Type sound-
ness is guaranteed by exploiting the underlying type system, in particular phantom types and a new
anti-unification type class. In this model aspects are first-class, can be deployed dynamically, and
the pointcut language is extensible, therefore combining the flexibility of dynamically-typed aspect
languages with the guarantees of a static type system. Monads enable us to directly reason about
computational effects both in aspects and base programs using traditional monadic techniques. Us-
ing this we extend Aldrich’s notion of Open Modules with effects, and also with protected pointcut
interfaces to external advising. These restrictions are enforced statically using the type system.
Also, we adapt the techniques of EffectiveAdvice to reason about and enforce control flow proper-
ties. Moreover, we show how to control effect interference using the parametricity-based approach
of EffectiveAdvice. We show that this approach falls short in the presence of multiple aspects and
propose a different approach using monad views, a novel technique for handling the monad stack,
developed by Schrijvers and Oliveira. Then, we exploit the properties of our model to enable the
modular construction of new semantics for aspect scoping and weaving.

Our second contribution builds upon a powerful model to reason about mixin-based composition
of effectful components and their interference, based on equational reasoning, parametricity, and
algebraic laws about monadic effects. Our contribution is to show how to reason about interference
in the presence of unrestricted quantification through pointcuts. We show that global reasoning can
be compositional, which is key for the scalability of the approach in the face of large and evolving
systems. We prove a general equivalence theorem that is based on a few conditions that can be
established, reused, and adapted separately as the system evolves. The theorem is defined for an
abstract monadic AOP model; we illustrate its use with a simple version of the model just described.

This work brings type-based reasoning about effects for the first time in the pointcut/advice
model, in a framework that is both expressive and extensible. The framework is well-suited for
development of robust aspect-oriented systems as well as being a research tool for experimenting
and reasoning about new aspect semantics.

ii

A mi futura familia

To my future family

iii

Agradecimientos

En primer lugar, agradezco a Dios por su apoyo durante todos estos años así como por todos los
milagros que han conducido al término de esta tesis.

De vuelta en la Tierra, hay muchas personas a las cuales estoy agradecido. Estaré siempre
en deuda con mis guías Éric Tanter y Nicolas Tabareau. Gracias por mostrarme el mundo de la
investigación profesional, con todos sus desafíos, ventajas y desventajas. Gracias por enseñarme a
pensar como un investigador y por obligarme a superar mi inercia y pereza. Aún más importante,
gracias por dejarme fallar cuando era necesario y por apoyarme a pesar de mis muchos errores.
Sería un privilegio poder seguir trabajando con ustedes.

También quiero agradecer a Tom Schrijvers por su apoyo y colaboración durante este trabajo.
Luego de olvidar contestar uno de sus correos durante más de un año, él tuvo la amabilidad de
invitarme a la Universidad de Ghent para comenzar en lo que ahora es la última parte de este
trabajo. Gracias Tom por el privilegio, ojalá este sea el comienzo de una colaboración estable y
fructífera.

Estoy muy agradecido de mi país, el cual a través de CONICYT me dio el financiamiento nece-
sario para mis estudios. Similarmente, agradezco a INRIA por el financiamiento para muchas
pasantías y viajes a Francia. Estoy agradecido de todas las personas del Departamento de Cien-
cia de la Computación (DCC) de la Universidad de Chile. Por favor perdonénme si alguien no
está incluido en este listado no exhaustivo. Agradezco a mis compañeros y amigos: Milton Inos-
troza, Héctor Ferrada, Jorge Jara, Daniel Moreno, Teresa Bracamonte, Cristobal Navarro, entre
muchos otros. Estoy también agradecido de los profesores y personal administrativo, en particu-
lar de Angélica Aguirre y Sandra Gaez, gracias a todos por su apoyo! Mirando al pasado, estoy
muy agradecido de Rubén Carvajal-Schiaffino por inspirarme a continuar mis estudios más allá
del pregrado. En el lado francés estoy también agradecido de mucha gente en la École des Mines
de Nantes: Jacques Noyé, Mario Südholt, Rémi Douence, Ismael Mejías, Jurgen Van Ham, Diana
Allam, Guilhem Jaber, Vincent Armant, Cécile Derouet, Pierre Salmon, Benoit Querniard; y de
mis amigos chilenos en Francia, Gabriel Rodríguez, Alejandra Ramos e Ignacio Salas.

Al último, pero no por ello menos importante, agradezco a mis padres y a mi familia por apo-
yarme todos estos años—incluso cuando no entendían por qué decidí seguir estudiando. Final-
mente, quiero agradecer especialmente a Eliana y Amanda por todo su amor, apoyo, comprensión
y motivación. A ustedes dedico este trabajo.

iv

Contents

List of Figures viii

1 Introduction 1

2 Preliminaries 6
2.1 Aspect-Oriented Programming . 6
2.2 Basics of Haskell Programming . 8

2.2.1 Values and Types . 8
2.2.2 Functions and Pattern Matching . 11
2.2.3 Lexical Scoping and Local Identifiers . 12
2.2.4 Type Classes and Ad Hoc Polymorphism 12
2.2.5 Bounded Polymorphism . 13
2.2.6 newtype Declarations . 14

2.3 Monadic Programming in a Nutshell . 14
2.3.1 Plain Monadic Programming . 15
2.3.2 Polymorphism on the Monad Stack . 18

I Design and Type Safety 20

3 Introducing Aspects 21
3.1 Join Point Model . 22
3.2 Aspect Deployment . 24
3.3 Aspect Weaving . 25

4 Type Safety 28
4.1 Typing Aspects, Informally . 28

4.1.1 Typing Pointcuts . 28
4.1.2 Typing Aspects . 31

4.2 Typing Aspects, Formally . 32
4.2.1 Type Substitutions . 32
4.2.2 Statically Computing Least General Types 33
4.2.3 Pointcut Safety . 35
4.2.4 Advice Safety . 36
4.2.5 Safe Aspects . 37

5 Discussion About the Model 39

v

5.1 Quantification . 39
5.1.1 Approximating Equality on Functions . 39
5.1.2 Tagged Function Applications . 40

5.2 Aspects and Bounded Polymorphism . 41
5.3 Obliviousness . 42
5.4 Technical Requirements of our Model . 43

6 Related Work, Part I 44

II Controlling Effects 47

7 Open and Protected Modules, with Effects 48
7.1 Background: Open Modules . 48
7.2 A Simple Example . 49
7.3 Protected Pointcuts . 49
7.4 Enforcing Control Flow Properties . 50

8 Controlling Effect Interference 53
8.1 Distinguishing Aspect and Base Computation . 53
8.2 Interference Between Multiple Aspects . 56
8.3 Background: Monad Views . 58
8.4 Beyond the Aspect/Base Distinction . 60

9 Modular Language Extensions 63
9.1 Control Flow Pointcut . 63
9.2 Secure Weaving . 65
9.3 Privileged Aspects . 65
9.4 Execution Levels . 66
9.5 Reasoning about Language Extensions . 68
9.6 Other Approaches to Modular AOP Language Extensions 69

III Compositional Reasoning About Aspect Interference 71

10 The Challenge of Compositional Reasoning 72
10.1 Compositional Reasoning, Informally . 73
10.2 Background: Monadic Reasoning in a Nutshell 75

10.2.1 Equational Reasoning and Observational Equivalence 76
10.2.2 Monad Laws . 76

11 Compositional Reasoning, Formally 78
11.1 Abstracting Monadic AOP . 78

11.1.1 Join Point Model . 78
11.1.2 Necessary Properties of AT . 79
11.1.3 Running Example in Monadic Style . 80

11.2 Compositional Harmlessness Theorem . 81
11.2.1 System Decomposition . 83

vi

11.2.2 Compositional Weaving . 83
11.2.3 Compositional Projection . 84
11.2.4 Contextual Harmlessness . 86
11.2.5 Local Harmlessness . 87

12 A Simple Monadic AOP Model 88
12.1 An Embedding of Open Applications . 88
12.2 Running AT Computations . 90
12.3 Aspect Weaving . 90
12.4 Properties of AT . 90

13 Local Harmlessness 93
13.1 AOP-MRI Translation . 93
13.2 Background: the MRI Framework . 94
13.3 Connecting MRI to AOP . 95
13.4 Harmlessness of Logging . 97
13.5 Harmlessness of Memoization . 98

14 Related Work, Part III 100
14.1 Approaches to Modular Reasoning in AOP . 100

14.1.1 Protecting Modules from Aspects . 100
14.1.2 Limiting the Scope of Aspects . 104

14.2 Reasoning about Interference in AOP . 107

IV Conclusions 111

15 Contributions 112

16 Perspectives 114

Bibliography 117

Appendix A Proofs of the Properties of the Simple Monadic AOP Model 124
A.1 Monad Laws . 124

A.1.1 Left Identity . 124
A.1.2 Right Identity . 124
A.1.3 Associativity of >>=AT . 125

A.2 Monad Transformer Laws . 126
A.2.1 Identity Preservation . 126
A.2.2 Composition Preservation . 126

A.3 runAT is a Monad Morphism . 127
A.3.1 Identity preservation . 127
A.3.2 Compositionality . 127
A.3.3 runAT is left inverse of lift . 127

vii

List of Figures

4.1 The LeastGen ′ type class. An instance holds if c is the least general type of a and b. 33

7.1 Fibonacci module. 49
7.2 Memoized Fibonacci module. 50
7.3 Replacement, augmentation and narrowing advice combinators (adapted from (Oliveira

et al., 2010)). 51
7.4 Memoization as a narrowing advice (adapted from (Oliveira et al., 2010)). 52

8.1 Fibonacci with error. 55
8.2 Applying structural masks to the monad stack S1. 61

9.1 Execution levels monad transformer and level-shifting operations 66
9.2 Redefining aspect deployment for execution levels semantics. An aspect is made

level-aware by transforming its pointcut and advice. 67
9.3 A program that loops unless execution levels are used. 67

10.1 State and Writer monads transformers: constructors, evaluation and projection
functions. 76

11.1 Logging and memoization advice in monadic style 81

12.1 AT instances for the Monad and MonadTrans type classes. 89
12.2 Proof of the second monad morphism law for runAT. 91

13.1 Fibonacci function. Left: in the simple pointcut/advice model of Chapter 12. Right:
in the MRI setting (taken from (Oliveira et al., 2012)) 97

14.1 Execution levels in action: pointcut and advice are evaluated at level 1, proceed
goes back to level 0 (from (Tanter, 2010)) . 106

viii

Chapter 1

Introduction

“Formal methods will never have a significant impact until they can be used by people
that don’t understand them” Attributed to Tom Melham

“They [types] are the world’s best lightweight formal method!” Pierce (2012)

Aspect-oriented programming languages support the modular definition of crosscutting con-
cerns through a join point model (Kiczales et al., 1997). In the pointcut/advice mechanism, cross-
cutting is supported by means of pointcuts, which quantify over join points, in order to implicitly
trigger advice (Wand et al., 2004). Such a mechanism is typically integrated in an existing pro-
gramming language by modifying the language processor, may it be the compiler (either directly
or through macros), or the virtual machine. In a typed language, introducing pointcuts and ad-
vices also means extending the type system, if type soundness is to be preserved. For instance,
AspectML (Dantas et al., 2008) is based on a specific type system in order to safely apply advice.
AspectJ (Kiczales et al., 2001) does not substantially extend the type system of Java and suffers
from soundness issues. StrongAspectJ (De Fraine et al., 2008) addresses these issues with an ex-
tended type system. In both cases, proving type soundness is rather involved because a whole new
type system has to be dealt with.

In functional programming, the traditional way to tackle language extensions, mostly for em-
bedded languages, is to use monads (Moggi, 1991; Wadler, 1992). Early work on AOP suggests
a strong connection to monads. De Meuter (1997) proposed to use them to lay down the foun-
dations of AOP, and Wand et al. (2004) used monads in their denotational semantics of pointcuts
and advice. Recently, Tabareau (2012) proposed a weaving algorithm that supports monads in the
pointcut and advice model, which yields benefits in terms of extensibility of the aspect weaver,
although in this work the weaver itself was not monadic but integrated internally in the system.

In general terms, this thesis aims to give a concrete answer to the following research question:

How can we use types to control and reason about interference of computational effects,
such as mutable state or exceptions, in aspect-oriented languages?

To provide such a concrete answer, and considering the above, we chose to use monads as the
mechanism to directly manipulate and reason about computational effects. This in turn led us to us-

1

ing the Haskell programming language, given its extraordinary support for monadic programming.
In particular, the thesis presents two main contributions under the name of EffectiveAspects: the
first is a lightweight, full-fledged embedding of aspects in Haskell, that is typed and monadic. The
second is a simplified monadic framework which allows compositional reasoning about aspect
interference in the presence of unrestricted quantification through pointcuts.

With respect to the full-fledged model of AOP, by lightweight we mean that aspects are pro-
vided as a small standard Haskell library. The embedding is full-fledged because it supports dy-
namic deployment of first-class aspects with an extensible pointcut language—as is usually found
only in dynamically-typed aspect languages like AspectScheme (Dutchyn et al., 2006) and As-
pectScript (Toledo et al., 2010).

By typed, we mean that in the embedding, pointcuts, advices, and aspects are all statically typed,
and pointcut/advice bindings are proven to be safe. Type soundness is directly derived by relying on
the existing type system of Haskell (type classes (Wadler and Blott, 1989), phantom types (Leijen
and Meijer, 1999), and some recent extensions of the Glasgow Haskell Compiler). Specifically,
we define a novel type class for anti-unification (Plotkin, 1970; Reynolds, 1970), which is key to
define safe aspects.

Because the embedding is monadic, we derive two notable advantages over ad-hoc approaches to
introducing aspects in an existing language. First, we can directly reason about aspects and effects
using traditional monadic techniques. In short, we can generalize the interference combinators of
EffectiveAdvice (Oliveira et al., 2010) in the context of pointcuts and advice. And also we can use
non-interference analysis techniques such as those from EffectiveAdvice, and from other advanced
mechanisms, in particular monad views (Schrijvers and Oliveira, 2011). Second, because we embed
a monadic weaver, we can modularly extend the aspect language semantics. We illustrate this with
several extensions and show how type-based reasoning can be applied to language extensions.

The second main contribution of this thesis is a formal framework to reason about aspect inter-
ference in the presence of quantification. To do this we bridge the gap between our model and the
MRI framework developed recently by Oliveira et al. (2012). MRI, which stands for Modular Rea-
soning about Interference, is a purely functional model of incremental programming with effects.
MRI enables modular reasoning about non-interference of aspects using techniques like equational
reasoning and parametricity. The main results from MRI are two theorems about harmlessness of
mixins.

Because MRI is the successor of EffectiveAdvice, on which our full-fledged aspect model is
based, we wanted to bring the reasoning power of MRI to the setting of AOP. The main difficulty
was that MRI does not address quantification: advices are mixins which are applied explicitly. The
lack of quantification greatly simplifies modular reasoning because it is enough to study a single
function and mixin in isolation. In addition, MRI only focuses on step-wise applications of mixins,
in which the composition of a base component with a mixin can then be treated as a new base
component for a subsequent mixin application. In contrast, in the pointcut/advice model of AOP,
several aspects live in an aspect environment and are all woven at each join point.

Therefore, and to be more specific, our second main contribution is that we demonstrate, in
a simplified model of monadic AOP, that while unrestricted quantification hampers modular rea-
soning, it is amenable to compositional reasoning: global harmlessness results can be obtained

2

through the composition of smaller proofs. This compositionality makes it possible to evolve an
aspect-oriented system and reuse previously-established results. In particular, we formulate a gen-
eral behavioral equivalence theorem between a given aspect-oriented system run with respect to
two different aspect environments, modulo projection of additional side-effects. This general the-
orem is proven assuming four sufficient conditions that have to be established separately. When
an aspect-oriented system evolves, only some of these conditions may need to be re-established in
order to preserve the general theorem.

Organization of the Thesis

The remainder of the thesis is organized as follows. We start with a chapter that presents some
preliminary background, followed by three parts that address the main developments of this work:
design and type safety, controlling effects, and compositional reasoning about aspect interference.
Finally, we conclude in a fourth part by summarizing the contributions of our work and highlighting
potential lines of future work. Note that we split the discussion of related work into two parts: the
first is presented at the end of Part I, while the second is presented at the end of Part III.

Preliminaries

Chapter 2 presents preliminar background needed specially in the first part of the thesis. Further
background is introduced gradually as it is required in order to present our work. In particular this
chapter presents a brief introduction to aspect-oriented programming, a tutorial-style presentation
of Haskell programming, and an overview of monadic programming in Haskell. Readers proficient
with any of these topics may safely skip the corresponding section, or the whole chapter.

Part I: Design and Type Safety

The first part describes the design of the full-fledged model of monadic AOP in Haskell, as well as
the proof that the model is statically safe. In particular:

Chapter 3 defines the particular join point model used in our approach. That is, it defines how
join points, pointcuts, advices and aspects are implemented. It also describes the mechanisms for
aspect deployment and aspect weaving.

Chapter 4 addresses the challenge of how to reuse the type system of Haskell in order to prove
that the pointcut/advice are statically safe. That is, to guarantee that in a well-typed program aspects
will never be applied incorrectly, with respect to the types of their arguments.

Chapter 5 discusses several design issues about the model, in particular with respect to quan-
tification, obliviousness and bounded polymorphism.

3

Chapter 6 discusses work directly related to the model proposed in this part. In particular, it
shows previous connections between monads and AOP and compares our model to other functional
aspect languages.

Part II: Controlling Effects

The second part describes how to reuse the results from EffectiveAdvice and Open Modules in
order to enforce restrictions on aspects through the use of protected pointcuts. It also shows how to
implement modular language extensions through the use of monad transformers. In particular:

Chapter 7 introduces the notion of protected pointcuts and advice combinators, and how that
generalizes the control flow combinators from EffectiveAdvice.

Chapter 8 describes two approaches to control effect interference. The first uses the parametricity-
based approach of EffectiveAdvice. After highlighting the limitations of this approach, this chap-
ters describes a novel approach using monad views, a technique recently developed by Schrijvers
and Oliveira (2011).

Chapter 9 describes several modular extensions to the aspect semantics. In particular it shows
how to implement a user-defined control flow pointcut, the semantics of secure, priviledged and
protected weaving, as well as the semantics of execution levels (Tanter et al., 2014).

Part III: Compositional Reasoning About Aspect Interference

In the third part we step back from the full-fledged embedding of aspects in order to present a
general theorem of compositional aspect harmlessness. This theorem is proven with respect to an
abstract monadic model. In particular:

Chapter 10 presents the challenges of compositional reasoning by giving some examples in a
fictitious ML-like language. It also introduces some additional background on monadic reasoning.

Chapter 11 first introduces the abstract monadic model of AOP, and then presents the formal
development of the compositional harmlessness theorem. One of the preconditions of the theorem
is local harmlessness, which is specific to each particular monadic AOP model.

Chapter 12 defines a simple monadic AOP model that fulfills the formal requirements of the
compositional harmlessness theorem. The model is a simplification of the one developed in Chap-
ter 3.

Chapter 13 illustrates how to prove local harmlessness in the simple monadic AOP model
developed in the previous chapter. In particular it illustrates that local harmlessness can be proven
by reusing the results of MRI.

Chapter 14 finishes the discussion of related work, started in Chapter 6, by summarizing several
approaches to modular reasoning in AOP and for reasoning about aspect interference.

4

Part IV: Conclusions

In the final part of the thesis, Chapter 15 summarizes the contributions of this work while Chap-
ter 16 describes potential directions for future work. Finally, Appendix A shows the proofs regard-
ing some properties of the simple monadic model of Chapter 12.

Related Publications and Implementations

The results presented in Parts I and II were initially published by Tabareau et al. (2013) and later
extended by Figueroa et al. (2014). The framework for compositional reasoning, i.e. the result of
Part III, was recently published by Figueroa et al. (2014).

Earlier work on a monadic weaver implemented in Typed Racket was published by Figueroa
et al. (2012). Regarding modular language extensions (Chapter 9) Figueroa et al. (2013) pre-
sented a modular implementation of the programmable membranes semantics of AOP (Tanter et al.,
2012). Tangentially related to this thesis, the author also co-authored an extension to execution lev-
els (Figueroa and Tanter, 2011), as well as the extended version of that work (Tanter et al., 2014).

The implementation of the full-fledged model is available at http://pleiad.cl/effectiveaspects.
The model for compositional reasoning is available at http://pleiad.cl/research/cri.

5

http://pleiad.cl/effectiveaspects
http://pleiad.cl/research/cri

Chapter 2

Preliminaries

This chapter presents the preliminary concepts used throughout the thesis, in particular those used
in Part I. To not overload the reader we start with this minimal background, and then, as our pre-
sentation advances, we will progressively introduce the concepts required for specific subsections
of the thesis.

We start by briefly describing aspect-oriented programming (Section 2.1); our summary is in-
deed very short because we assume that readers will be familiar with this topic. However, based
on our experience in submitting our work to the community of aspect-oriented researchers, the
same cannot be said about Haskell programming in general, and monadic programming in partic-
ular. This is why we provide a tutorial-like introduction to Haskell programming (Section 2.2),
and specifically to the basics of monadic programming in Haskell (Section 2.3). Readers already
familiar with any of these topics may safely skip the corresponding sections (or the entire chapter).

2.1 Aspect-Oriented Programming

Separation of concerns (Parnas, 1972) is a design principle for software systems where the com-
plexity is addressed by separating the problem into individual and manageable concerns or compo-
nents. In addition to the reduced complexity, the main benefit of this approach is allowing simpler
and independent evolution of the software. The potential for separating concerns is greatly influ-
enced by the design of the programming language in use; in particular, traditional paradigms such
as procedural, object-oriented, or functional programming only allow developers to decompose a
system under a single decomposition mechanism (procedures, objects, or functions), an issue that
is informally known as the tyranny of the dominant decomposition (Tarr et al., 1999).

Aspect-oriented programming (AOP) is a programming paradigm proposed by Kiczales et al.
(1996) as an advanced mechanism to modularize crosscutting concerns. These concerns are said
to crosscut the code of a system because they cannot be properly modularized in the dominant
decomposition mechanism of the language—therefore they are either scattered (appear in multiple
modules), tangled (several concerns are implemented in the same method or function), or both.
Typical examples of crosscutting concerns are persistence, monitoring, security and error handling,

6

among others. This general definition of AOP does not specify how to implement the means for
modular crosscutting behavior; instead, the particular support for crosscutting in an aspect-oriented
language lies in its join point model (Masuhara et al., 2003). Indeed, there are several mechanisms
or models to implement AOP, including at least those described by Masuhara and Kiczales (2003):
pointcut/advice, open classes, traversal specifications, and class composition.

In our work we focus only on the pointcut/advice model, which is arguably the most emblem-
atic AOP mechanism to date, given its use in mainstream aspect languages like AspectJ (Kiczales
et al., 2001) and several languages used in research, like e.g. AspectScript (Toledo et al., 2010), As-
pectScheme (Dutchyn et al., 2006), AspectML (Dantas et al., 2008) or Aspectual Caml (Masuhara
et al., 2005). In the pointcut/advice model crosscutting is supported by means of pointcuts, which
are predicates to quantify over specific (dynamic) points in program execution, called join points,
in order to implicitly trigger the execution of advice. An aspect is essentially just a pointcut/advice
pair. Although aspects provide a source-level modularization of the code, the crosscutting behav-
ior declared in aspects must be inserted in the proper points of execution such that it is reflected
at runtime. This is done by a weaving process, which can be static (e.g. the AspectJ compiler),
dynamic (e.g. the AspectScheme interpreter) or a combination thereof (e.g. what is done in Dy-
namicAspectJ (Assaf and Noyé, 2008)).

Illustration in AspectJ To briefly illustrate these concepts, consider the following implementa-
tion of a simple logging aspect in AspectJ:

aspect Logging {

pointcut callGetConfiguration : call(Integer getConfiguration())

Object around() : callGetConfiguration {
logger.append(‘‘Calling getConfiguration’’);
return proceed();

}
}

Similar to Java classes, an aspect is declared using the aspect keyword. Pointcuts can be anony-
mous or named, as in our example. The callGetConfiguration pointcut matches all calls to the
getConfiguration method, which returns an integer and takes no arguments. Finally, we define
an around advice, which performs the action indicated in its body upon join points matched by
callGetConfiguration. An around advice executes in place of a join point matched by its corre-
sponding pointcut. The special method proceed, which is only available inside the body of around
advice, can be used to resume the computation of the matched join point. In our example, the
advice first writes to the logger object and then resumes the advised method by calling proceed.

Quantification and obliviousness Filman and Friedman (2000) proposed that quantification and
obliviousness were the essential characteristics of an aspect-oriented language:

7

“AOP can be understood as the desire to make quantified statements about the behavior of
programs, and to have these quantifications hold over programs written by oblivious program-
mers.’

Filman and Friedman (2000)

However this characterization may be too strong, as wild quantification has been shown to ham-
per (modular) reasoning of aspect-oriented systems (Aldrich, 2005; Kiczales and Mezini, 2005;
Sullivan et al., 2010). Indeed, some proposals in the AOP community have explicit, rather than
oblivious, mechanisms or interfaces to identify join points of interest (Bodden, 2011; Hoffman and
Eugster, 2007; Steimann et al., 2010; ?). As we explain in Chapter 3 and discuss later in Section 5.3,
our model of aspect-oriented programming uses explicit emission of join points.

2.2 Basics of Haskell Programming

We now present a brief tutorial introduction to the basics of Haskell programming, while the next
section overviews monadic programming in Haskell. We believe this introduction should suffice
for readers not already proficient in Haskell. Nevertheless, for a deeper introduction to the language
we recommend the Gentle Introduction to Haskell1 (on whose structure this section is based on),
complemented with the Try Haskell2 site, which allows one to run Haskell directly from a web
browser. We also recommend the excellent Learn You a Haskell book and website3. Note this is
not an introduction to functional programming per se, but rather to the specific syntax and semantics
of Haskell.

According to its website4, Haskell is a programming language that is: polymorphically statically
typed, lazy, and purely functional. Its implementation is based on the polymorphic lambda calculus,
and is typically used as a convenient source language for System Fω (e.g. (Figueroa et al., 2014;
Oliveira et al., 2012)). We now describe in more detail what this means, from a developer point of
view.

2.2.1 Values and Types

Being purely functional means that all computations are performed on syntactical expressions
which yield values. Also, being statically typed implies that every expression and value has a
type. Haskell has a few built-in types, including: Int , Char , Bool , function types, lists, tuples
and the unit type5 denoted as (). In addition, developers can define their own types. In Haskell all
values are first-class, but types are not. For instance, the following are valid Haskell values:

1 :: Int
’h’ :: Char

1http://www.haskell.org/tutorial
2http://tryhaskell.org
3http://learnyouahaskell.com/
4http://www.haskell.org/haskellwiki/Introduction
5The unit type () is inhabit only by the unit value, also denoted as (). It can be regarded as the void type in Java.

8

http://www.haskell.org/tutorial
http://tryhaskell.org
http://learnyouahaskell.com/
http://www.haskell.org/haskellwiki/Introduction

(λn → n > 0) :: Int → Bool
[1, 2, 3] :: [Int]
(’a’, 1) :: (Char , Int)

Here the :: annotation means “has type”, that is, 1 has type Int , ’h’ has type Char , the anonymous
lambda expression (λn → n > 0) has a function type Int → Bool , [1, 2, 3] is a list of integers with
type [Int], and finally, (’a’, 1) is a 2-tuple with type (Char , Int). Note that functions, lists and
tuples have a special notation, but are not essentially different from user-defined types.

User-defined types Users can define their own data types using a data declaration. For example,
a type representing a point with two integer coordinates is defined as:

data IntPoint = IntPt Int Int

This declaration defines the IntPoint type and the IntPt function—known as the data constructor—
used to construct values of such type. For types with a single data constructor, the typical conven-
tion is to use the same name for both the type and the data constructor, hence the definition would
be:

data IntPoint = IntPoint Int Int

Record syntax User-defined types can also be expressed using record syntax, this means that
each field of a data constructor is given a name, which can be used as an accessor function, for
instance we can define:

data IntPoint = IntPoint {getX :: Int , getY :: Int }

then evaluating getX (IntPoint 3 2) yields 3 and evaluating getY (IntPoint 3 2) yields 2.

Parametric Polymorphism Haskell features parametric polymorphism (also known as generics
in Java). This means that a type can be universally quantified or parametrized by other types. For
instance, although lists in Haskell must be homogeneous (e.g. all values of the same type), there is
a single parametrized type constructor (and data constructor) for lists. Lists are constructed using
the : function and the empty list value [], whose types are6:

(:) :: a → [a]→ [a]
[] :: [a]

These types are a shorthand notation of the more explicit universal quantification:

6Note that (:) means that : is an infix operator, just like +

9

(:) :: ∀a.a → [a]→ [a]
[] :: ∀a.[a]

In these type signatures [] denotes the list type constructor and a (and lower-case letters in general)
denotes a type variable. This means that given a concrete instantiation of a, e.g. Int , the list type
constructor will yield a concrete type, e.g. [Int].

Polymorphic type constructors As a consequence of parametric polymorphism, data declara-
tions can define type constructors with any number of type variables. For instance, points need not
have only integer coordinates, but rather any single arbitrary type:

data Point a = Point a a

or even more, a different type for each axis:

data Point ′ a b = Point ′ a b

These declarations define two type constructors: Point and Point ′, which take types as argu-
ments to produce new types. They also define the data constructors with types a → a → Point a
and a → b → Point ′ a b, respectively. For example, the value Point 1 3 has type Point Int Int ,
and the value Point ′ 3 ’z’ has type Point ′ Int Char .

Variants and recursive types A user-defined data type can encompass several variants, con-
structed by different data constructors, under the same, potentially recursive, type. For example,
consider the type of a polymorphic binary tree:

data BinTree a = Leaf a | Node a (BinTree a) (BinTree a)

This declaration defines the BinTree type constructor, and the Leaf and Node data constructors. A
binary tree with type BinTree a is either a Leaf with a value of type a, or a node with a value of
the same type and two subtrees of type BinTree a.

Type synonyms Observe that we did not mention strings as part of the built-in data types. The
reason is that, just like in C, a string is defined as a list of characters. Haskell provides type
synonyms to introduce a new name for a type:

type String = [Char]

Note that there is no data constructor—this declaration just instructs the compiler to perform a
simple text substitution from String to [Char] when processing a source file.

10

2.2.2 Functions and Pattern Matching

A function is defined by giving its type signature and its implementation, for instance:

add1 :: Int → Int
add1 x = x + 1

The add1 ::Int → Int expression is the type signature of function add1 ; and the add1 x = x +1 is
its actual implementation, meaning that it takes argument x and returns the value x + 1. Functions
can have polymorphic types as well, and in most simple cases explicit type signatures can be
omitted thanks to the type inference mechanism of Haskell.

Pattern matching is a core language feature used to discriminate or deconstruct values accord-
ing to their data constructors (either built-in or user-defined). For example, consider a function
binTreeDepth that computes the depth of a binary tree. The result of the function depends on
whether the value is a Leaf or a Node. To this end, Haskell provides two ways to pattern match on
values. First, the case expression explicitly matches a value against a set of possible patterns:

binTreeDepth :: BinTree a → Int
binTreeDepth t = case t of
| Leaf a → 1
| Node a left right → 1 + max (binTreeDepth left , binTreeDepth right)

The second option is specific to function definitions, and it allows to define a function by several
different equations (note the use of the pattern, which signals that the value is of no interest):

binTreeDepth :: BinTree a → Int
binTreeDepth (Leaf) = 1
binTreeDepth (Node left right) = 1 + max (binTreeDepth left , binTreeDepth right)

The special syntax of lists and tuples can be used for pattern matching. As an example of the
former, consider the length function, which computes the size of an arbitrary list (we illustrate
matching on tuples below). A list is either empty, with pattern [], or is composed of head x with
tail xs , with pattern (x : xs):

length :: [a]→ Int
length [] = 0
length (: xs) = 1 + length xs

Finally, patterns can match on literal values and can be arbitrarily nested. As a contrived exam-
ple, consider a function to check whether a list starts with the (1, [’a’,’b’,’c’],True) tuple:

startsWithTuple :: [(Int , [Char],Bool)]→ Bool
startsWithTuple ((1, [’a’,’b’,’c’],True): _) = True
startsWithTuple = False

This last example highlights an important point: patterns are tried from top to bottom, and only the
body of the first matched pattern is evaluated. A fatal runtime error is raised if no pattern matches
the arguments.

11

Function composition and chaining Two operators are specially relevant when working with
functions, and are extensively used throughout this document. Consider two functions f and g ; the
first operator is function composition:

(◦) :: (b → c)→ (a → b)→ a → c

which is used just like in mathematics, that is, (f ◦ g) x is equivalent to f (g x). The second one is
the dollar sign operator:

($) :: (a → b)→ a → b

which is typically used to avoid parentheses due to its higher precedence with respect to other
functions. Essentially, f $ e applies function f to the result of evaluation expression e, e.g. f (g x)
can be written as f $ g x .

2.2.3 Lexical Scoping and Local Identifiers

Identifiers in Haskell are always lexically scoped; they can be introduced either at the top level, or
locally using a let expression or a where clause. For instance consider a function that sums the
even numbers in a list of integers:

sumEven :: [Int]→ Int
sumEven l = let evens = filter even l in sum evens

Using let we define the local identifier evens , bound to a list with the even numbers in l . We then
simply sum these numbers. Alternatively, we can write the function using a where clause instead
of let:

sumEven l = sum evens
where evens = filter even l

In general choosing between let and where is a matter of programming style7; and we tend to
prefer where over let.

2.2.4 Type Classes and Ad Hoc Polymorphism

In addition to parametric polymorphism, Haskell supports another kind of polymorphism called
ad hoc polymorphism, also known as overloading. The idea is to use the same function name to
refer to different implementations that are identified by the types of their arguments and return
value. The classical example in Haskell is the equality function, denoted as ≡. Ideally we want to
use the same operator to compare equality of integers, booleans, characters, lists, or user-defined

7Although there are subtle differences, as discussed in http://www.haskell.org/haskellwiki/Let_vs._Where

12

http://www.haskell.org/haskellwiki/Let_vs._Where

types (note however that function equality is undecidable in general). This is achieved using type
classes (Wadler and Blott, 1989): a type class, similar to a class in object-oriented languages,
defines an abstract interface of methods and is parametrized by one or more types. Following our
example, the Eq type class defines the ≡ binary operator for equality comparisons:

class Eq a where
(≡) :: a → a → Bool

This declaration can be read as: “if a concrete type T is registered as an instance of type class
Eq , then it is statically known that there exists a function (≡T) :: T → T → Bool”. For example,
to define equality comparisons for IntPoints we register the type as an instance of Eq :

instance Eq IntPoint where
IntPoint x1 y1 ≡ IntPoint x2 y2 = x1 ≡ x2 ∧ y1 ≡ y2

This definition relies on the fact that Int is already an instance of Eq , thus allowing us to
evaluate x1 ≡ x2 and y1 ≡ y2. Most built-in types, with the notable exception of functions, are
already instance of this class. Now consider the equality of binary trees:

instance Eq a ⇒ BinTree a where
Leaf x ≡ Leaf y = x ≡ y
Node x l1 r1 ≡ Node y l2 r2 = x ≡ y ∧ l1 ≡ l2 ∧ r1 ≡ r2

Binary tree equality is defined by two equations, one for each data constructor: two Leaf s are
equal if they hold the same value; similarly, two Nodes are equal if they have the same value and
their subtrees are equal. However, this declaration is predicated on the fact that we can check the
equality of the elements in the tree. This restriction is reflected by the Eq a ⇒ expression, which is
a type class constraint (or class constraint or simply constraint). In other words, given a concrete
type T , we can only declare an Eq (BinTree T) instance if there is already an Eq T instance.

Finally, it is important to remark that the type checker statically rejects any program where a
type class method is used on arguments whose types are not registered instances of the class.

2.2.5 Bounded Polymorphism

A notorious characteristic of parametric polymorphism is that a function cannot do any meaningful
operation on the arguments on which it is polymorphic. Bounded polymorphism (Cardelli and Weg-
ner, 1985) is another form of polymorphism that restricts the universal quantification of parametric
polymorphism to a set of types that are known to implement a particular interface—therefore, the
operations specific to that interface can be safely used inside a bounded polymorphic function. In
Haskell this is implemented using type classes and constraints; for example, the elem function only
requires an equality comparison to check whether a value belongs to a list:

elem :: Eq a ⇒ a → [a]→ Bool
elem [] = False
elem a (x : xs) = a ≡ x ∨ elem a xs

13

The type of elem can be read as: “for all types a such that a is instance of Eq , the function
takes a value of type a, a list of elements of the same type, and returns a boolean”. Because it is
statically known that, regardless of its particular instantiation, the type a is instance of Eq , we can
safely use the≡ operation in the definition of the function. This would not possible if the type were
only a → [a]→ Bool .

2.2.6 newtype Declarations

In addition to data declarations and type synonyms, Haskell provides a third way to define types:
newtype declarations. A newtype declaration defines a type just like data, but is restricted to
types with exactly one data constructor with one field in it. There are two main uses of newtype,
the first is to allow data abstraction without having duplicate implementations. For instance:

newtype CharPoint = CharPoint (Point Char Char)

allows developers to export the (opaque) type CharPoint while using internally Point Char Char .8

The second use is to redefine the type classes on which a type is registered. The reason is that a
newtype does not inherit the instance declarations of the underlying type. This technique is
commonly used in monadic programming; we use it in Section 3.3 to define a custom monad trans-
former based on a standard one.

2.3 Monadic Programming in a Nutshell

1990 - [...]. Haskell gets some resistance due to the complexity of using monads to control side
effects. Wadler tries to appease critics by explaining that "a monad is a monoid in the category
of endofunctors, what’s the problem?"

Fictional quotation attributed to Philip Wadler by James Iry9

Monads (Moggi, 1991; Wadler, 1992) are a denotational approach to embed and reason about
computational effects such as mutable state, I/O, or exception-handling in purely functional lan-
guages like Haskell. Monad transformers (Liang et al., 1995) allow the modular construction of
monads that combine several effects. A monad transformer is a type constructor used to create
a monad stack where each layer represents an effect. Monadic programming in Haskell is pro-
vided by the standard Monad transformers library (known as mtl), which defines a set of monad
transformers that can be flexibly composed together.

A monad is defined by a type constructor m and functions >>= (called bind) and return. At
the type level a monad is a regular type constructor, although conceptually we distinguish a value

8The restrictions on newtype allow the GHC compiler to optimize away the extra data constructor such that at
runtime both expressions are isomorphic

9A Brief, Incomplete, and Mostly Wrong History of Programming Languages http://james-iry.blogspot.com/
2009/05/brief-incomplete-and-mostly-wrong.html

14

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html

of type a from a computation in monad m of type m a. Monads provide a uniform interface for
computational effects, as specified in the Monad type class:

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b

Here return promotes a value of type a into a computation of type m a, and >>= is a pipeline
operator that takes a computation, extracts its value, and applies an action to produce a new com-
putation. The precise meanings for return and >>= are specific to each monad. The computational
effect of a monad is “hidden” in the definition of >>=, which imposes a sequential evaluation where
the effect is performed at each step. To avoid cluttering caused by using >>= Haskell provides the
do-notation, which directly translates to chained applications of >>=. The x ← k expression binds
identifier x with the value extracted from performing computation k for the rest of a do block.10

The simplest monad is the identity monad, denoted as I, which has no computational effect:

newtype I a = I a

instance Monad I where
return a = I a
(I a)>>= f = f a

A monad transformer is defined by a type constructor t and the lift operation, as specified in the
MonadTrans type class:

class MonadTrans t where
lift :: m a → t m a

The purpose of lift is to promote a computation from an inner layer of the monad stack, of type
m a, into a computation in the monad defined by the complete stack, with type t m a. Each
transformer t must declare in an effect-specific way how to make t m an instance of the Monad
class.

2.3.1 Plain Monadic Programming

To illustrate monadic programming we first describe the use of the state monad transformer StateT ,
denoted as ST, whose computational effect is to thread a value with read-write access.

newtype ST s m a = ST (s → m (a, s))
evalST :: ST s m a → s → m a

A ST s m a computation is a function that takes an initial state of type s and returns a com-
putation in the underlying monad m with a pair containing the resulting value of type a, and a

10x ← k performs the effect in k , while let x = k does not (the in keyword is omitted when using let inside a do
expression).

15

potentially modified state of type s . The evalST function evaluates a S s m a computation using
an initial state s and yields only the returning computation m a. In addition, functions getST and
putST allow to retrieve and update the state inside a computation, respectively11.

getST :: Monad m ⇒ ST s m s
getST = ST $ λs → return (s , s)

putST :: Monad m ⇒ s → ST s m ()
putST s ′ = ST $ λ → return ((), s ′)

Note that both functions get the current state from some previous operation (>>= or evalST). The
difference is that getST returns this value and keeps the previous state unchanged, whereas putST

replaces the previous state with its argument.

Example Application Consider a mutable queue of integers with operations to enqueue and de-
queue its elements. To implement it we will define a monad stack M1, which threads a list of
integers using the ST transformer on top of the identity monad. We also define runM 1, which
initializes the queue with an empty list, and returns only the resulting value of a computation in
M1.

type M1 = ST [Int] I
runM 1 :: M1 a → a
runM 1 c = runI $ evalST c []

The implementation of the queue operations using M1 is simple, we just enqueue elements at the
end of the list and dequeue elements from the beginning.

enqueue1 :: Int → M1 ()
enqueue1 n = do queue ← getST

putST $ queue ++ [n]

dequeue1 :: M1 Int
dequeue1 = do queue ← getST

putST $ tail queue
return $ head queue

Handling Error Scenarios The above implementation of dequeue1 terminates with a runtime
error if it is performed on an empty queue, because tail fails when applied on an empty list. To
provide an error-handling mechanism we use the error monad transformer ErrorT , denoted as ET.

newtype ET e m a = ET m (Either e a)
runET :: Monad m ⇒ ET e m a → m (Either e a)

The type Either e a represents two possible values: a Left e value or a Right a value. In this case
the convention is that a Left e value is treated as an error, while a Right a value is considered a

11Note the use of $, here and throughout the rest of the paper, to avoid extra parentheses.

16

successful operation. Then, the throwET and catchET operations can be defined to raise and handle
exceptions.

throwET :: Monad m ⇒ e → ET e m a
throwET e = ET $ return (Left e)

catchET :: Monad m ⇒ ET e m a → (e → ET e m a)→ ET e m a
m ‘catchET‘ h = ET $ do a ← runET m

case a of
Left err → runET (h err)
Right val → return (Right val)

Observe that catchET is intended to be used as an infix operator, where the first argument is the
protected expression that would be inside a try block in Java, while the second argument is the
exception handler.

Combining State and Error-Handling Effects To implement a queue with support for excep-
tions we first define a new monad stack M2 that combines both effects (using Strings as error
messages):

type M2 = ST [Int] (ET String I)
runM 2 c = runI $ runET $ evalST c []

Then we define the enqueue2 operation as before, but using M2:

enqueue2 :: Int → M2 ()
enqueue2 n = do queue ← getST

putST $ queue ++ [n]

However, the straightforward definition of dequeue2 fails with a typing error:

dequeue2 :: M2 Int
dequeue2 = do queue ← getST

if null queue
then throwET "Queue is empty" -- typing error
else do putST $ tail queue

return $ head queue

The problem is that throwET returns a computation whose type is (ET String I) Int , but the return
type of dequeue2 is (ST [Int] (ET String I)) Int .

Explicit Lifting in the Monad Stack Using lift we can reuse a function intended for an inner
layer on the stack, like throwET. The number of lift calls corresponds to the distance between the
top of the stack and the inner layer of the stack. Hence for dequeue2 we need only one call to lift :

17

dequeue2 :: M2 Int
dequeue2 = do queue ← getST

if null queue
then (lift ◦ throwET) "Queue is empty"
else do putST $ tail queue

return $ head queue

Although we managed to implement a queue with support for both effects, this is not satisfactory
from a software engineering point of view. The reason is that plain monadic programming and ex-
plicit liftings produce a strong coupling between functions and particular monad stacks, hampering
reusability and maintainability of the software.

2.3.2 Polymorphism on the Monad Stack

To address the coupling of functions with particular monad stacks and to expand the notion of mon-
ads as a uniform interface for computational effects, the mtl defines a set of type classes associated
to particular effects. This way, monadic functions can impose constraints in the monad stack using
these type classes instead of relying on a specific stack. These class constraints can be seen as fam-
ilies of monads, making a function polymorphic with respect to the concrete monadic stack used to
evaluate it.

State Operations The MonadState type class, denoted as SM, defines the interface for state-
related operations, and ST is the canonical instance of this class.12

class Monad m ⇒ SM s m | m → s where
get :: m s
put :: s → m ()

Error-Handling Operations The MonadError type class, denoted as EM, defines the standard
interface for error-handling operations, with ET as its canonical instance.

class Monad m ⇒ EM e m | m → e where
throwError :: e → m a
catchError :: m a → (e → m a)→ m a

Implicit Lifting in the Monad Stack Going back to our example of the integer queue, the im-
plementation using class contraints now is as follows:

12Expression m → s denotes a functional dependency (Jones, 2000), which means that the type of m determines
the type of s , allowing a more precise control of type inference.

18

enqueue :: (Monad m,SM [Int] m)⇒ Int → m ()
enqueue n = do queue ← get

put $ queue ++ [n]

dequeue :: (Monad m,SM [Int] m,EM String m)⇒ m Int
dequeue = do queue ← get

if null queue
then throwError "Queue is empty"
else do put $ tail queue

return $ head queue

Observe that the functions are defined in terms of an abstract monad m, which is required to
be an instance of SM, for insertions; and both SM and EM for retrieving values. Also note that lift
is not required to use throwError in dequeue. The reason is that using type classes, like SM or
EM, an operation is automatically routed to the first layer of the monad stack that is instance of
the respective class. The mtl defines implicit liftings between its transformers, by defining several
class instances for each of them. Because of this, M2 is instance of both SM and EM.

The major limitation of implicit liftings is that it only chooses the first layer of a given effect.
Consequently, when more than one instance of the same effect are used, e.g. two state transformers
to hold the state of a queue and a stack, the parts of the program that access inner layers must use
explicit lifting.

Explicit and implicit lifting are the standard mechanism in Haskell to handle the monad stack.
The mechanism used to handle the monad stack directly determines the expressiveness of the type-
based reasoning techniques, and other properties like modularity and reusability of components.
This is discussed in detail in Chapter 7 and Chapter 8; in particular we show that the standard mech-
anism falls short to deal with interference of multiple aspects. Then we use monad views, a novel
mechanism for managing the monad stack recently developed by Schrijvers and Oliveira Schrijvers
and Oliveira (2011), to propose another approach to address this situation.

19

Part I

Design and Type Safety

20

Chapter 3

Introducing Aspects

The fundamental premise for aspect-oriented programming in functional languages is that function
applications need to be subject to aspect weaving. We introduce the term open application to refer
to a function application that generates a join point, and consequently, can be woven.

Open Function Applications Opening all function applications in a program or only a few se-
lected ones is both a language design question and an implementation question. At the design level,
this is the grand debate about obliviousness in aspect-oriented programming. Opening all applica-
tions is more flexible, but can lead to fragile aspects and unwanted encapsulation breaches. At the
implementation level, opening all function applications requires either a preprocessor or runtime
support.

For now, we focus on quantification—through pointcuts—and opt for a conservative design in
which open applications are realized explicitly using the # operator: f # 2 is the same as f 2,
except that the application generates a join point that is subject to aspect weaving. We will come
back to obliviousness in Section 5.3, showing how different answers can be provided within the
context of our proposal.

Monadic Setting Our approach to introduce aspects in a pure functional programming language
like Haskell can be realized without considering effects. Nevertheless, most interesting applications
of aspects rely on computational effects (e.g. tracing, memoization, exception handling, etc.). We
therefore adopt a monadic setting from the start. Also, as we describe in Part II of the thesis,
this setting allows us to exploit the approach of EffectiveAdvice (Oliveira et al., 2010) and other
monadic reasoning mechanisms in order to perform type-based reasoning about effects in presence
of aspects.

Illustration As a basic example, recall the enqueue function (Section 2.3.2) and consider the
uniqueAdv advice, which enforces that the argument is only passed to proceed if it is not already
present in the underlying list l (e.g. to avoid repeated elements when representing a set using a list);

21

uniqueAdv proceed arg = do l ← get
if elem arg l

then return ()
else proceed arg

Then, in program we deploy an aspect that reacts to applications of enqueue. This is specified
using the pointcut pcCall enqueue .

program n m = do deploy (aspect (pcCall enqueue) uniqueAdv)
enqueue # n
enqueue # m
showQueue

Evaluating program 1 2 returns a string representation "[1,2]" with both elements, whereas
program 1 1 returns "[1]" with only one element. Indeed, both results are as expected. As
shown in this example, aspects consist of a pointcut/advice pair and are created with aspect , and
deployed with deploy .

Our development of AOP simply relies on defining aspects (pointcuts, advices), the underlying
aspect environment together with the operations to deploy and undeploy aspects, and open function
application. The remainder of this chapter presents these elements. Then, Chapter 4 concentrates
on the main challenge: properly typing pointcuts and ensuring type soundness of pointcut/advice
bindings. We conclude the first part of the thesis with a general discussion about the model in
Chapter 5 and a review of related work in Chapter 6.

3.1 Join Point Model

The support for crosscutting provided by an aspect-oriented programming language lies in its join
point model (Masuhara et al., 2003). A join point model is composed by three elements: join points
that represents the (dynamic) steps in the execution of a program that aspects can affect, a means
of identifying join points—here, pointcuts—and a means of effecting at join points—here, advices.

Join Points Join points are function applications. A join point JP contains a function of type
a → m b, and an argument of type a. The monad m denotes the underlying computational effect
stack. Note that this means that only functions that are properly lifted to a monadic context can be
advised. In addition, in order for pointcuts to be able to reason about the type of advised functions,
we require the functions to be PolyTypeable.1

data JP m a b = (Monad m,PolyTypeable (a → m b))⇒ JP (a → m b) a

1Haskell provides the Typeable class to introspect monomorphic types. PolyTypeable is an extension that supports
both monomorphic and polymorphic types.

22

From now on we omit the type constraints related to PolyTypeable (the PolyTypeable constraint
on a type is required each time the type has to be inspected dynamically; exact occurrences of this
constraint can be found in the implementation).

Pointcuts A pointcut is a predicate on the current join point. It is used to identify join points of
interest. A pointcut simply returns a boolean to indicate whether it matches the given join point.

data PC m a b = Monad m ⇒ PC (∀a ′ b ′.m (JP m a ′ b ′ → m Bool))

A pointcut is represented as a value of type PC m a b. Types a and b are used to ensure
type safety, as discussed in Section 4.1.1. The predicate itself is a function with polymorphic type
∀a ′ b ′.m (JP m a ′ b ′ → m Bool), meaning it has access to the monad stack. The ∀ declaration
quantifies on type variables a ′ and b ′ (using rank-2 types) because a pointcut should be able to
match against any join point, regardless of the specific types involved (we come back to this in
Section 4.1.1).

Pointcut Language We provide two basic pointcut designators, pcCall and pcType, as well as
logical pointcut combinators, pcOr , pcAnd , and pcNot . A pointcut pcType f matches all open ap-
plications to functions that have a type compatible with f (see Section 4.1.1 for a precise definition),
and a pointcut pcCall f matches all open applications to f .

pcType f = PC (typePred (polyTypeOf f))
where typePred t = return $ λjp → return (compareType t jp)

pcCall f = PC (callPred f (polyTypeOf f))
where callPred f t = return $ λjp → return (compareFun f jp ∧ compareType t jp)

In both cases we use the polyTypeOf function (provided by PolyTypeable) to obtain the type
representation of function f , and compare it to the type of the function in the join point using
compareType. Additionally, to implement pcCall we require a notion of function equality2. This
is used in compareFun to compare the function in the join point with the given function f . Note
that in pcCall we also need to perform a type comparison, using compareType. This is because
under the choosen notion of equality a polymorphic function whose type variables are instantiated
in one way is equal to the same function but with type variables instantiated in some other way
(e.g. id :: Int → Int is equal to id :: Float → Float).

Users can define their own pointcut designators. For instance, we can define control-flow point-
cuts like AspectJ’s cflow (described in Section 9.1), data flow pointcuts (Masuhara and Kawauchi,
2003), pointcuts that rely on the trace of execution (Douence et al., 2005) (Section 8.1), etc.

Advice An advice is a function that executes in place of a join point matched by a pointcut.
This replacement is similar to open recursion in EffectiveAdvice (Oliveira et al., 2010). An advice

2For this notion of function equality, we use the StableNames API, which relies on pointer comparison. See
Section 5.1 for discussion on the issues of this approach.

23

receives a function (known as the proceed function) and returns a new function of the same type
(which may or may not apply the original proceed function internally). We introduce a type alias
for advice:

type Advice m a b = (a → m b)→ a → m b

For instance, the type Monad m ⇒ Advice m Int Int is a synonym for the type Monad m ⇒
(Int → m Int)→ Int → m Int . For a given advice of type Advice m a b, we call a → m b the
advised type of the advice.

Aspects An aspect is a first-class value binding together a pointcut and an advice. Supporting
first-class aspects is important: it makes it possible to support aspect factories, separate creation
and deployment/undeployment of aspects, exporting opaque, self-contained aspects as single units,
etc. We introduce a data definition for aspects, parametrized by a monad m (which has to be the
same in the pointcut and advice):

data Aspect m a b c d = Aspect (PC m a b) (Advice m c d)

We defer the detailed definition of Aspect with its type class constraints to Section 4.1.2, when
we address the issue of safe pointcut/advice binding.

3.2 Aspect Deployment

Aspect Environment The list of aspects that are deployed at a given point in time is known as
the aspect environment. To be able to define the type AspectEnv as an heterogenous list of aspects,
we use an existentially-quantified3, data EAspect that hides the type parameters of Aspect :4

data EAspect m = ∀a b c d .EAspect (Aspect m a b c d)
type AspectEnv m = [EAspect m]

This environment can be either fixed initially and used globally (Masuhara et al., 2003), as in
AspectJ, or it can be handled dynamically, as in AspectScheme (Dutchyn et al., 2006). Different
scoping strategies are possible when dealing with dynamic deployment (Tanter, 2008). Because
we are in a monadic setting, we can pass the aspect environment implicitly using a monad. An
open function application can then trigger the set of currently-deployed aspects by retrieving these
aspects from the underlying monad.

There are a number of design options for the aspect environment, depending on the kind of
aspect deployment that is desired. Following the Reader monad, we can provide a fixed aspect

3In Haskell an existentially-quantified data type is declared using ∀ before the data constructor
4Because we cannot anticipate a fixed set of class constraints for deployed aspects, we left the type parameters

unconstrained. Aspects with ad-hoc polymorphism have to be instantiated before deployment to statically solve each
remaining type class constraint (see Section 5.2 for more details).

24

environment, and add the ability to deploy an aspect for the dynamic extent of an expression,
similarly to the local method of the Reader monad. We can also adopt a state-like monad, in
order to support dynamic aspect deployment and undeployment with global scope. Without loss of
generality, we go for the latter.

The AT Monad Transformer Because we are interested in using arbitrary computational effects
in programs, we define the aspect environment through a monad transformer (Section 2.3), which
allows the programmer to construct a monad stack of effects. The AT monad transformer is defined
as follows:

newtype AT m a = AT (ST (AspectEnv (AT m)) m a) deriving (Monad)

To define the AT transformer we reuse the ST data constructor, because the AT transformer
is essentially a state transformer (Section 2.3.1) that threads the aspect environment. Using the
GeneralizedNewtypeDeriving extension of GHC, we can automatically derive AT as an instance
of Monad . We also define a proper instance of MonadTrans (not shown here), and implicit liftings
for the standard monad transformers of the MTL.5 Observe that the aspect environment is bound to
the same monad AT m, in order to provide aspects with access to open applications.

Dynamic Aspect Deployment We now define the functions for dynamic deployment, which
simply add and remove an aspect from the aspect environment:

deploy , undeploy :: EAspect (AT m)→ AT m ()
deploy asp = AT $ λaenv → return ((), asp : aenv)
undeploy asp = AT $ λaenv → return ((), deleteAsp asp aenv)

Finally, in order to extract the computation of the underlying monad from an AT computation
we define the runAT function, with type Monad m ⇒ AT m a → m a (similar to evalST in
the state monad transformer), that runs a computation in an empty initial aspect environment. For
instance, in the initial example of the enqueue function, we can define a client as follows:

client n m = runI (runAT (program n m))

3.3 Aspect Weaving

Aspect weaving is triggered by open applications, that is, applications performed with the # oper-
ator, for instance f # x .

5In the rest of this presentation we use the same technique to define our custom monad transformers, hence we omit
the deriving clauses and standard instance definitions, like MonadTrans .

25

Open Applications We introduce a type class OpenApp that declares the # operator. This makes
it possible to overload # in certain contexts, and it can be used to declare constraints on monads to
ensure that the operation is available in a given context.

class Monad m ⇒ OpenApp m where
(#) :: (a → m b)→ a → m b

The # operator takes a function of type a → m b and returns a (woven) function with the same
type. Any monad composed with the AT transformer has open application defined:

instance Monad m ⇒ OpenApp (AT m) where
f # a = AT $ λaenv → do

(woven_f , aenv ′)← weave f aenv aenv (newjp f a)
run (woven_f a) aenv ′

An open application results in the creation of a join point, newjp f a, that represents the appli-
cation of f to a. The join point is then used to determine which aspects in the environment match,
produce a new function that combines all the applicable advices, and apply that function to the
original argument.

Weaving The function to use at a given join point is produced by the weave function:

weave :: Monad m ⇒ (a → AT m b)→ AspectEnv (AT m)→
AspectEnv (AT m)→ JP (AT m) a b → m (a → AT m b,AspectEnv (AT m))

weave f [] fenv = return (f , fenv)
weave f (asp : asps) fenv jp = case asp of EAspect (Aspect pc adv)→
do (match, fenv ′)← apply_pc pc jp fenv

weave (if match then apply_adv adv f else f) asps fenv ′ jp

The weave function is defined recursively on the aspect environment. For each aspect, it applies
the pointcut to the join point. It then uses either the partial application of the advice to f if the
pointcut matches, or f otherwise6, to keep on weaving on the rest of the aspect list. This definition
is a direct adaptation of AspectScheme’s weaving function (Dutchyn et al., 2006), and is also a
monadic weaver (Tabareau, 2012) that supports modular language extensions (in Chapter 9 we
show how to exploit this feature).

Applying Advice As we have seen, the aspect environment has type AspectEnv m, meaning
that the type of the advice function is hidden. Therefore, advice application requires coercing the
advice to the proper type in order to apply it to the function of the join point:

6apply_pc checks whether the pointcut matches the join point and returns a boolean and a potentially modified
aspect environment. Note that apply_pc is evaluated in the full aspect environment fenv , instead of the decreasing
(asp : asps) argument.

26

apply_adv :: Advice m a b → t → t
apply_adv adv f = (unsafeCoerce adv) f

The operation unsafeCoerce of Haskell is (unsurprisingly) unsafe and can yield segmenta-
tion faults or arbitrary results. To recover safety, we could insert a runtime type check with
compareType just before the coercion. We instead make aspects type safe such that we can prove
that the particular use of unsafeCoerce in apply_adv is always safe.

To summarize, the join point model described in this chapter is relatively simple: join points
represent open function applications and their arguments, pointcuts are predicates over arbitrary
join points, advices are functions that receive the original join point computation as their proceed
argument, and aspects are pointcut/advice pairs. Upon an open application the weaving function
constructs and applies a function that combines all applicable advices at the corresponding join
point. Unfortunately the use of existential quantification, in order to provide an heterogeneous
aspect environment, forces us to perform an unsafe cast operation that—unless proven otherwise—
breaks the type soundness of the language. The following chapter describes how we deal with the
challenge of ensuring type soundness in the presence of aspects. The key concept of our solution
consists in using an anti-unification algorithm at the level of types to check that an advice is always
applied at join points of the proper type.

27

Chapter 4

Type Safety

In this chapter we describe how to ensure type soundness in the presence of aspects. We start with
an informal discussion (Section 4.1), highlighting the issues that arise from a lack of soundness and
giving an intuitive presentation of our solution. Then we formally prove the safety of our approach
(Section 4.2).

4.1 Typing Aspects, Informally

Ensuring type soundness in the presence of aspects consists in ensuring that an advice is always
applied at a join point of the proper type. Note that by “the type of the join point”, we refer to the
type of the function being applied at the considered join point.

4.1.1 Typing Pointcuts

The intermediary between a join point and an advice is the pointcut, whose proper typing is there-
fore crucial. The type of a pointcut as a predicate over join points does not convey any information
about the types of join points it matches. To keep this information, we use phantom type variables
a and b in the definition of PC :

data PC m a b = Monad m ⇒ PC (∀a ′ b ′.m (JP m a ′ b ′ → m Bool))

A phantom type variable is a type variable that is not used on the right hand-side of the data type
definition. The use of phantom type variables to type embedded languages was first introduced by
Leijen and Meijer to type an embedding of SQL in Haskell (Leijen and Meijer, 1999); it makes it
possible to “tag” extra type information on data. In our context, we use it to add the information
about the type of the join points matched by a pointcut: PC m a b means that a pointcut can match
applications of functions of type a → m b. We call this type the matched type of the pointcut.
Pointcut designators are in charge of specifying the matched type of the pointcuts they produce.

28

Least General Types Because a pointcut potentially matches many join points of different types,
the matched type must be a more general type. For instance, consider a pointcut that matches
applications of functions of type Int → m Int and Float → m Int . Its matched type is the
parametric type a → m Int . Note that this is in fact the least general type of both types.1 Another
more general candidate is a → m b, but the least general type conveys more precise information.
As a concrete example, below is the type signature of the pcCall pointcut designator:

pcCall :: Monad m ⇒ (a → m b)→ PC m a b

Comparing Types The type signature of the pcType pointcut designator is the same as that of
pcCall :

pcType :: Monad m ⇒ (a → m b)→ PC m a b

However, suppose that f is a function of type Int → m a. We want the pointcut pcType f to
match applications of functions of more specific types, such as Int → m Int and Int → m Char .
This means that compareType actually checks that the matched type of the pointcut is more general
than the type of the join point. In other words, the type of a join point is compatible with f (as stated
in Section 3.1) if it is less general than the matched type of pcType f .

Logical Combinators We use type constraints in order to properly specify the matched type of
logical combinations of pointcuts. The intersection of two pointcuts matches join points that are
most precisely described by the principal unifier of both matched types. Since Haskell supports
this unification when the same type variable is used, we can simply define pcAnd as follows:

pcAnd :: Monad m ⇒ PC m a b → PC m a b → PC m a b

For instance, a control flow pointcut matches any type of join point, so its matched type is a →
m b. Consequently, if f is of type Int → m a, the matched type of pcAnd (pcCall f) (pcCflow g)
is Int → m a. This is because, for any function g , the matched type of pcCflow g is the most
general type a → m b, which does not increase the specificity of the principal unifier.

Dually, the union of two pointcuts relies on anti-unification (Plotkin, 1970; Reynolds, 1970), that
is, the computation of the least general type of two types. Haskell does not natively support anti-
unification. We exploit the fact that multi-parameter type classes can be used to define relations
over types, and develop a novel type class LeastGen (for least general) that can be used as a
constraint to compute the least general type t of two types t1 and t2 (defined in Section 4.2):

pcOr :: (Monad m,LeastGen (a → b) (c → d) (e → f))⇒
PC m a b → PC m c d → PC m e f

In this definition the LeastGen constraint indicates that e → f is the least general type of a → b
and c → d , and therefore is the matched type of the resulting pointcut. For instance, if f is of type

1The term most specific generalization is also valid, but we stick here to Plotkin’s original terminology (Plotkin,
1970).

29

Int → m a and g is of type Int → m Float , the matched type of pcOr (pcCall f) (pcCall g)
is Int → m a. Implementing LeastGen as a type class is a crucial element of our design because
it ensures that any failure to perform anti-unification will be reported statically as a compile-time
error. Moreover, it allows us to rely on the standard Haskell type class resolution system, instead
of developing our own external analysis tool.

Finally, the negation of a pointcut can match join points of any type because no assumption can
be made on the matched join points:

pcNot :: Monad m ⇒ PC m a b → PC m a ′ b ′

Observe that the type of pcNot is quite restrictive. In fact, the advice of any aspect with a single
pcNot pointcut must be completely generic because the matched type corresponds to fresh type
variables. The matched type of pcNot can be made more specific using pcAnd to combine it with
other pointcuts with more specific types. For example, if f is of type Int → m a and g is of type
Int → m Float , the pointcut pcAnd (pcType f) (pcNot (pcCall g)) matches the application
of all functions whose type is compatible with f , except g . The matched type of this pointcut is
Int → m a, which is more specific than the matched type of a stand-alone pcNot pointcut.

Open Pointcut Language The set of pointcut designators in our language is open. User-defined
pointcut designators are however responsible for properly specifying their matched types. If the
matched type is incorrect or too specific, soundness is lost. For example, in Section 9.1, in order to
implement the pcCflow pointcut, we define an auxiliary pointcut that matches any join point:2

pcAny = PC (return (λjp → return True))

The matched type of pcAny must be a → m b to maintain soundness. Any other type, like
e.g. Int → m a, is ill-typed and will eventually lead to runtime errors.

Constraining Pointcuts to Specific Types A pointcut cannot make any type assumption about
the type of the join point it receives as argument. The reason for this is again the homogeneity of the
aspect environment: when deploying an aspect, the type of its pointcut is hidden. At runtime, then,
a pointcut is expected to be applicable to any join point. The general approach to make a pointcut
safe is therefore to perform a runtime type check, as was illustrated in the definition of pcCall and
pcType in Section 3.1. However, certain pointcuts are meant to be conjoined with others pointcuts
that will first apply a sufficient type condition.

In order to support the definition of pointcuts that require join points to be of a given type, we
provide the RequirePC type:

data RequirePC m a b = Monad m ⇒ RequirePC (∀a ′ b ′.m (JP m a ′ b ′ → m Bool))

The definition of RequirePC is similar to that of PC , with two important differences. First, the
matched type of a RequirePC is interpreted as a type requirement. Second, a RequirePC is not a

2We present a simplified version of pcAny . In Section 9.1, this pointcut pushes the current join point into a stack,
which is eventually inspected by pcCflow .

30

valid stand-alone pointcut: it has to be combined with a standard PC that enforces the proper type
upfront. To safely achieve this, we overload pcAnd 3:

pcAnd :: (Monad m,LessGen (a → b) (c → d))⇒
PC m a b → RequirePC m c d → PC m a b

In this case pcAnd yields a standard PC pointcut and checks that the matched type of the PC
pointcut is less general than the type expected by the RequirePC pointcut. This is expressed using
the constraint LessGen, which, as we will see in Section 4.2, is based on LeastGen.

To illustrate, let us define a pointcut designator pcArgGT for specifying pointcuts that match
when the argument at the join point is greater than a given n (of type a instance of the Ord type
class):

pcArgGT :: (Monad m,Ord a)⇒ a → RequirePC m a b
pcArgGT n = RequirePC $ return $ λjp → return (unsafeCoerce (getJpArg jp) > n)

The use of unsafeCoerce to coerce the join point argument to the type a forces us to declare
the Ord constraint on a when typing the returned pointcut as RequirePC m a b (with a fresh type
variable b). To get a proper pointcut, we use pcAnd , for instance to match all calls to enqueue
where the argument is greater than 10:

pcCall enqueue ‘pcAnd ‘ pcArgGT 10

The pcAnd combinator guarantees that a pcArgGT pointcut is always applied to a join point
with an argument that is indeed of a proper type: no runtime type check is necessary within
pcArgGT , because the coercion is always safe.

4.1.2 Typing Aspects

The main typing issue we have to address consists in ensuring that a pointcut/advice binding is
type safe, so that the advice application does not fail. A first idea to ensure that the pointcut/advice
binding is type safe is to require the matched type of the pointcut and the advised type of the advice
to be the same (or rather, unifiable):

-- wrong!
data Aspect m a b = Aspect (PC m a b) (Advice m a b)

This approach can however yield unexpected behavior. Consider this example:

idM x = return x

adv :: Monad m ⇒ Advice (Char → m Char)

3The constraint is different from the previous constraint on pcAnd . This is possible thanks to the recent
ConstraintKinds extension of GHC.

31

adv proceed c = proceed (toUpper c)

program = do deploy (aspect (pcCall idM) adv)
x ← idM # ’a’
y ← idM # [True,False,True]
return (x , y)

The matched type of the pointcut pcCall idM is Monad m ⇒ a → m a. With the above
definition of Aspect , program passes the type checker because it is possible to unify a and Char
to Char . However, when evaluated, the behavior of program is undefined because the advice is
unsafely applied with an argument of type [Bool], for which toUpper is undefined.

The problem is that during type checking, the matched type of the pointcut and the advised type
of the advice can be unified. Because unification is symmetric, this succeeds even if the advised
type is more specific than the matched type. In order to address this, we again use the type class
LessGen to ensure that the matched type is less general than the advice type:

data Aspect m a b c d = (Monad m,LessGen (a → m b) (c → m d))⇒
Aspect (PC m a b) (Advice m c d)

This constraint ensures that pointcut/advice bindings are type safe: the coercion performed in
apply_adv (Section 3.3) always succeeds. We formally prove this in the following section.

4.2 Typing Aspects, Formally

We now formally prove the safety of our approach. We start briefly summarizing the notion of
type substitutions and the is less general relation between types. Note that we do not consider type
class constraints in the definition. Then we describe a novel anti-unification algorithm implemented
with type classes, on which the type classes LessGen and LeastGen are based. We finally prove
pointcut and aspect safety, and state our main safety theorem.

4.2.1 Type Substitutions

In this section we summarize the definition of type substitutions and introduce formally the notion
of least general type in a Haskell-like type system (without ad-hoc polymorphism). Thus, we
have types t ::= Int ,Char , . . . , t1 → t2, T t1 . . . tm, which denote primitive types, functions,
and m-ary type constructors, in addition to user-defined types. We consider a typing environment
Γ = (xi : ti)i∈N that binds variables to types.

Definition 1 (Type Substitution, from (Pierce, 2002)) A type substitution σ is a finite mapping
from type variables to types. It is denoted [x1 7→ t1, . . . , xn 7→ tn], where dom(σ) and range(σ)
are the sets of types appearing in the left-hand and right-hand sides of the mapping, respectively. It
is possible for type variables to appear in range(σ).

32

1 class LeastGen ′ a b c σin σout | a b c σin → σout

2 -- Inductive case: The two type constructors match,
3 -- recursively compute the substitution for type arguments ai ,bi .
4 instance (LeastGen ′ a1 b1 c1 σ0 σ1, . . . ,
5 LeastGen ′ an bn cn σn−1 σn,
6 T c1 . . . cn ∼ c)
7 ⇒ LeastGen ′ (T a1 . . . an) (T b1 . . . bn) c σ0 σn

8 -- Default case: The two type constructors don’t match, c has to be a variable,
9 -- either unify c with c ′ if c ′ 7→ (a, b), or extend the substitution with c 7→ (a, b)

10 instance (Analyze c (TVar c),
11 MapsTo σin c ′ (a, b),
12 VarCase c′ (a, b) c σin σout)
13 ⇒ LeastGen ′ a b c σin σout

Figure 4.1: The LeastGen ′ type class. An instance holds if c is the least general type of a and b.

Substitutions are always applied simultaneously on a type. If σ and γ are substitutions, and t is
a type, then σ ◦γ is the composed substitution, where (σ ◦γ)t = σ(γt). Application of substitution
on a type is defined inductively on the structure of the type.

Substitution is extended pointwise for typing environments in the following way: σ(xi : ti)i∈N =
(xi : σti)i∈N. Also, applying a substitution to a term t means to apply the substitution to all type
annotations appearing in t.

Definition 2 (Less General Type) We say type t1 is less general than type t2, denoted t1 � t2, if
there exists a substitution σ such that σt2 = t1. Observe that � defines a partial order on types
(modulo α-renaming).

Definition 3 (Least General Type) Given types t1 and t2, we say type t is the least general type iff
t is the supremum of t1 and t2 with respect to �.

4.2.2 Statically Computing Least General Types

In an aspect declaration, we statically check the type of the pointcut and the type of the advice
to ensure a safe binding. To do this we encode an anti-unification algorithm at the type level,
exploiting the type class mechanism. A multi-parameter type class R t1 . . . tn can be seen as a
relation R on types t1 . . . tn, and instance declarations as ways to inductively define this relation,
in a manner very similar to logic programming.

The type classes LessGen and LeastGen used in Section 4.1 are defined as particular cases of
the more general type class LeastGen′, shown in Figure 4.1. This class is defined in line 1 and
is parametrized by types a, b, c, σin and σout. Note that σout is functionally dependent on a, b, c
and σin; and that there is no where keyword because the class declares no operations. Both σin

33

and σout denote substitutions encoded at the type level as a list of mappings from type variables to
pairs of types. We use pairs of types in substitutions because we have to simultaneously compute
substitutions from c to a and from c to b.

To be concise, lines 4-7 present a single definition parametrized by the type constructor arity but
in practice, there needs to be a different instance declaration for each type constructor arity.

Proposition 1 If LeastGen′ a b c σin σout holds, then substitution σout extends σin and σoutc =
(a, b).

PROOF. By induction on the type representation of a and b.

A type can either be a type variable, represented as TVar a, or an n-ary type constructor T
applied to n type arguments4. The rule to be applied depends on whether the type constructors of a
and b are the same or not.

(i) If the constructors are the same, then the rule defined in lines 4-7 computes (T c1 . . . cn) using
the induction hypothesis that σici = (ai, bi), for i = 1 . . . n. The component-wise application of
constraints is done from left to right, starting from substitution σ0 and extending it to the resulting
substitution σn. The type equality constraint (T c1 . . . cn) ∼ c checks that c is unifiable with
(T c1 . . . cn) and, if so, unifies them. Then, we can check that σnc = (a, b).

(ii) If the type constructors are not the same the only possible generalization is a type variable.
In the rule defined in lines 10-13 the goal is to extend σin with the mapping c 7→ (a, b) such that
σoutc = (a, b), while preserving the injectivity of the substitution (see next proposition).

Proposition 2 If σin is an injective function, and LeastGen′ a b c σin σout holds, then σout is an
injective function.

PROOF. By construction LeastGen′ introduces a binding from a fresh type variable to (a, b), in the
rule defined in lines 10-13, only if there is no type variable already mapping to (a, b)—in which
case σin is not modified.

To do this, we first check that c is actually a type variable (TVar c) by checking its representa-
tion using Analyze. Then in relation MapsTo we bind c′ to the (possibly inexistent) type variable
that maps to (a, b) in σin. In case there is no such mapping, then c′ is None.

Finally, relation VarCase binds σout to σin extended with {c 7→ (a, b)} in case c′ is None,
otherwise σout = σin. It then unifies c with c′. In all cases c is bound to the variable that maps to
(a, b) in σout, because it was either unified in rule MapsTo or in rule VarCase. The hypothesis that
σin is injective ensures that any preexisting mapping is unique.

Proposition 3 If σin is an injective function, and LeastGen′ a b c σin σout holds, then c is the least
general type of a and b.

4We use the Analyze type class from PolyTypeable to get a type representation at the type level. For simplicity we
omit the rules for analyzing type representations.

34

PROOF. By induction on the type representation of a and b.

(i) If the type constructors are different the only generalization possible is a type variable c.

(ii) If the type constructors are the same, then a = T a1 . . . an and b = T b1 . . . bn. By Proposi-
tion 1, c = T c1 . . . cn generalizes a and b with the substitution σout. By induction hypothesis ci is
the least general type of (ai, bi).

Now consider a type d that also generalizes a and b, i.e. a � d and b � d, with associated
substitution α. We prove c is less general than d by constructing a substitution τ such that τd = c.

Again, there are two cases, either d is a type variable, in which case we set τ = {d 7→ c}, or
it has the same outermost type constructor, i.e. d = T d1 . . . dn. Thus ai � di and bi � di; and
because ci is the least general type of ai and bi, there exists a substitution τi such that τidi = ci, for
i = 1 . . . n.

Now consider a type variable x ∈ dom(τi) ∩ dom(τj). By definition of α, we know that
σout(τi(x)) = α(x) and σout(τj(x)) = α(x). Because σout is injective (by Proposition 2), we
deduce that τi(x) = τj(x) so there are no conflicting mappings between τi and τj , for any i and j.
Consequently, we can define τ =

⋃
τi and check that τd = c.

Definition 4 (LeastGen type class) To compute the least general type c for a and b, we define:

LeastGen a b c , LeastGen′ a b c σempty σout

where σempty is the empty substitution and σout is the resulting substitution.

Definition 5 (LessGen type class) To establish that type a is less general than type b, we define:

LessGen a b , LeastGen a b b

4.2.3 Pointcut Safety

We now establish the safety of pointcuts with relation to join points.

Definition 6 (Pointcut match) We define the relation matches(pc, jp), which holds iff applying
pointcut pc to join point jp in the context of a monad m yields a computation m True.

Definition 7 (Safe user-defined pointcut) Given a join point term jp and type environment Γ, a
user-defined pointcut pc is safe if:

Γ ` pc : PC m a b

Γ ` jp : JP m a′ b′

Γ ` matches(pc, jp)

implies that

a′ → m b′ � a→ m b

35

Now we prove that the matched type of a given pointcut is more general than the join points
matched by that pointcut.

Proposition 4 Given a join point term jp and a pointcut term pc, and type environment Γ; and that
if pc is user-defined, then it is safe (according to Definition 7). Then,

Γ ` pc : PC m a b

Γ ` jp : JP m a′ b′

Γ ` matches(pc, jp)

implies that

a′ → m b′ � a→ m b

PROOF. By induction on the matched type of the pointcut.

• Case pcCall : By construction the matched type of a pcCall f pointcut is the type of f . Such
a pointcut matches a join point with function g if and only if: f is equal to g , and the type
of f is less general than the type of g . (On both pcCall and pcType this type comparison is
performed by compareType on the type representations of its arguments.)

• Case pcType: By construction the matched type of a pcType f pointcut is the type of f .
Such a pointcut only matches a join point with function g whose type is less general than the
matched type.

• Case pcAnd on PC PC : Consider pc1 ‘pcAnd ‘ pc2. The matched type of the combined
pointcut is the principal unifier of the matched types of the arguments—which represents the
intersection of the two sets of join points. The property holds by the induction hypothesis
applied to pc1 and pc2.

• Case pcAnd on PC RequirePC : Consider pc1 ‘pcAnd ‘ pc2. The matched type of the com-
bined pointcut is the type of pc1 and it is checked that the type required by pc2 is more general
so the application of pc2 will not yield an error. The property holds by induction hypothesis
on pc1.

• Case pcOr : Consider pc1 ‘pcOr ‘ pc2. The matched type of the combined pointcut is the least
general type of the matched types of the argument, computed by the LeastGen constraint—
which represents the union of the two sets of join points. The property holds by induction
hypothesis on pc1 and pc2.

• Case pcNot : The matched type of a pointcut constructed with pcNot is a fresh type variable,
which by definition is more general than the type of any join point.

4.2.4 Advice Safety

If an aspect is well-typed, then the advised type of the advice is more general than the matched type
of the pointcut:

36

Proposition 5 Given a pointcut term pc, an advice term adv , and a type environment Γ, if

Γ ` pc : PC m a b

Γ ` adv : Advice m c d

Γ ` (aspect pc adv) : Aspect m a b c d

then

a→ m b � c→ m d

PROOF. Using the definition of Aspect (Section 4.1.2) and because it holds that Γ ` aspect pc adv :
Aspect m a b c d, we know that the constraint LessGen is satisfied, so by Definitions 4 and 5, and
Proposition 1, we can check that a→ m b � c→ m d.

4.2.5 Safe Aspects

We now show that if an aspect is well-typed, then the advised type of the advice is more general
than the type of join points matched by the corresponding pointcut:

Theorem 1 (Safe Aspects) Given the terms jp, pc and adv representing a join point, a pointcut
and an advice respectively, given a type environment Γ; and assuming that if pc is a user-defined
pointcut, then it is safe (according to Definition 7). Then,

Γ ` pc : PC m a b

Γ ` adv : Advice m c d

Γ ` aspect pc adv : Aspect m a b c d

Γ ` jp : JP m a′ b′

Γ ` matches(pc, jp)

implies that

a′ → m b′ � c→ m d

PROOF. By Proposition 4 and 5 and the transitivity of �.

Corollary 1 (Safe Weaving) The coercion of the advice in apply_adv is safe.

PROOF. Recall apply_adv (Section 3.3):

apply_adv :: Advice m a b → t → t
apply_adv adv f = (unsafeCoerce adv) f

By construction, apply_adv is used only with a function f that comes from a join point that is
matched by a pointcut associated to adv . Using Theorem 1, we know that the join point has type

37

JP m a′ b′ and that a′ → m b′ � a → m b. We note σ the associated substitution. Then, by
compatibility of substitutions with the typing judgement (Pierce, 2002), we deduce σΓ ` σadv :
Advice m a′ b′. Therefore unsafeCoerce adv corresponds exactly to σadv, and is safe.

In this chapter we have shown that our particular use of the unsafe cast operation in the context
of applying advices is always safe. Consequently, in a well-typed program advices “do not go
wrong”, that is, they are always applied to join points of the proper type. We rely on a partial
order on types, namely in the is less general relation. After proving that the LeastGen ′ type class
statically computes or verifies this relation for two types, the rest of the proofs are straightforward.
An aspect is well-typed iff the matched type of its pointcut is less general than the type of the
advice. In turn, a pointcut is safely defined iff the type of the join points accepted by the pointcut
is less general than the matched type of the pointcut, encoded using phantom type variables.

Finally, observe that the model described in Chapters 3 and 4 reflects a specific point in the
design space of a typed monadic embedding of aspects. The next chapter concludes with the first
part of this thesis, discussing a number of issues and design decisions that guided the development
of our model.

38

Chapter 5

Discussion About the Model

We now discuss a number of issues related to our approach regarding quantification and oblivious-
ness, how to deal with overloaded functions, and the technical requirements of our model.

5.1 Quantification

Pointcuts quantify about join points, and a major element of the join point is the function being
applied. In existing AOP languages there are many ways by which pointcuts select advised entities:
for instance, by name (e.g. method names in AspectJ (Kiczales et al., 2001), function names in
AspectML (Dantas et al., 2008)), by reference equality (e.g. AspectScheme (Dutchyn et al., 2006),
AspectScript (Toledo et al., 2010)), by their type (e.g. AspectJ), using a mechanism to explicitly
attach tags or types to join points (e.g. Ptolemy (Rajan and Leavens, 2008), JPIs (?)), etc.

In our presentation we have developed the pcType and pcCall pointcuts as a means to quantify
based on the type and identity of functions. The pcType designator relies on type comparison,
implemented using the PolyTypeable type class in order to obtain representations for polymorphic
types. The pcCall is more problematic, as it relies on function equality, but Haskell does not provide
an operator like eq? in Scheme. Indeed, the general problem of determining function equality is
undecidable, thus an approximation is required. We now discuss two approaches to implement this
pointcut designator.

5.1.1 Approximating Equality on Functions

A first workaround is to implement a pointer comparison operator like eq? in Scheme, to define an
approximate notion of function equality.

StableNames The StableNames pointer-comparison API is provided by default in the GHC com-
piler; unfortunately it is fragile. StableNames equality is safe in the sense that it does not equate

39

two functions that are not the same, but two functions that are equal can be seen as different. The
problem becomes even more systematic when it comes to bounded polymorphism. Indeed, each
time a function with constraints is used, a new closure is created by passing the current method
dictionary of type class instances. Even with optimized compilation (e.g. ghc -O), this (duplicated)
closure creation is unavoidable and so StableNames will consider different any two constrained
functions, even if the passed dictionary is the same.

Tagged Functions Another approach, which is basically a manually-implemented version of
StableNames , is to define a special class of tagged functions whose equality is defined as the
equality of their tags:

type FunctionTag = . . .
data Function a b = Function (a → b) FunctionTag

instance Eq (Function a b) where
Function t1 ≡ Function t2 = t1 ≡ t2

This approach allows us to have a somewhat robust notion of function equality. However such a
solution is cumbersome and hardly scalable, because it would force us to duplicate all operations on
functions (e.g. compose, map, etc.). An additional problem of this solution is the need to properly
tag functions, using either a preprocessor or some unique supply monad.

5.1.2 Tagged Function Applications

A different approach, similar to that of Ptolemy or JPIs, is to attach tags to function applications
rather than to functions themselves (which implies modifying the join point model accordingly). In
this approach the # operator takes a tag as an additional argument and emits a tagged join point.
For example f #t x applies function f with tag t to argument x . Instead of defining a pcCall
pointcut based on function identity, we can define a pcTag pointcut as follows:

pcTag :: Monad m ⇒ FunctionTag → PC m a ′ b ′

pcTag t = PC $ return $ λjp → return (getJpTag jp ≡ t)

Observe that in contrast to pcCall , the matched type of pcTag consists of fresh type variables,
just like pcNot . This is because tagged applications can now represent a family of functions to be
advised. To be practical, the matched type must be refined using pcAnd . Crucially, this approach
maintains the safety of aspects because functions with the right tag but an incompatible type will
not be advised. Tagged applications are orthogonal to the implementation of pcType, which may
or may not take them into account.

The model of explicitly tagged applications appears to be the most applicable in practice, and
it is also amenable to formal reasoning, as we will describe later in Part III. However, the original
development of EffectiveAspects (Figueroa et al., 2014; Tabareau et al., 2013), presented in this
first part of the thesis, considered only the approaches of Section 5.1.1.

40

5.2 Aspects and Bounded Polymorphism

From a programmer’s point of view, it can be interesting to advise an overloaded function (that
is, the application of all the possible implementations) with a single aspect. However, deploying
aspects in the general case of bounded polymorphism is problematic because of the resolution of
class constraints. For example, consider the Log type class as follows:

class Show a ⇒ Log a where
log :: Monad m ⇒ a → m String

Now it may be desirable to advise all applications of log , for instance to define a custom text format:

formatLogAdv :: (Log a,Monad m)⇒ Advice m a String
formatLogAdv proceed arg = do s ← proceed arg

return $ ” [Log : ” ++ s ++ ”] ”

program n = do deploy (aspect (pcCall log) formatLogAdv)
log # n

But program fails to compile. The particular error given by GHC 7.4 is:

No instance for (Show c1) arising from a use of ‘log’
The type variable ‘c1’ is ambiguous
Possible fix: add a type signature that fixes
these type variable(s)
Note: there are several potential instances:
instance Show Double -- Defined in ‘GHC.Float’
instance Show Float -- Defined in ‘GHC.Float’
instance (Integral a, Show a) => Show (GHC.Real.Ratio a)
-- Defined in ‘GHC.Real’

...plus 45 others

Recall that in order to be able to type the aspect environment, we existentially hide the matched
and advised types of an aspect (Section 3.2). This means that all type class constraints must be
solved statically at the point an aspect is deployed. If the matched and advised types are both
bounded polymorphic types, type inference cannot gather enough information to statically solve
the constraints. So advising all possible implementations requires repeating deployment of the
same aspect with different type annotations, one for each instance of the involved type classes. In
our example it means having to deploy for each instance of Log (for some unspecified monad m):

program n = do deploy (aspect (pcCall (log :: Integer → m String) formatLogAdv)
deploy (aspect (pcCall (log :: Float → m String) formatLogAdv)
. . .
log # n

To alleviate this problem, we developed a macro using TemplateHaskell (Sheard and Jones,
2002). Thus the resulting program can be written as:

41

program n = do $ (deployOnMethod "Log" "log" [| formatLogAdv |])
log # n

which will expand into the annotated deployment for each instance, described above. The macro
requires the name of the type class and the method, as well as the advice.

The macro extracts all the constrained variables in the matched type of the pointcut (Log a in
the example), and generates an annotated deployment for every possible combination of instances
that satisfy all constraints. In order to retain safety, the advised type of an aspect must be less
constrained than its matched type. This is statically enforced by the Haskell type system after
macro expansion.

5.3 Obliviousness

The embedding of aspects we have presented thus far supports quantification through pointcuts,
but is not oblivious: open applications are explicit in the code. A first way to introduce more
obliviousness without requiring non-local macros or, equivalently, a preprocessor or ad hoc runtime
semantics, is to use partial applications of #. For instance, the enqueue function can be turned into
an implicitly woven function by defining enqueue ′ = enqueue #. It can be sufficient in similar
scenarios where quantification is under control. Otherwise, it can yield issues in the definition
of pointcuts that rely on function identity, because enqueue ′ and enqueue are different functions.
Also, this approach is not entirely satisfactory with respect to obliviousness because it has to be
applied specifically for each function.

De Meuter (1997) proposes to use the binder of a monad to redefine function application. His
approach focuses on defining one monad per aspect, but can be generalized to a list of dynamically-
deployed aspects as presented in Section 3.2. For this, we can redefine the monad transformer AT

to make all monadic applications open transparently:

instance Monad m ⇒ Monad (AT m) where
return a = AT $ λaenv → return (a, aenv)
k >>= f = do x ← k

f # x

This presentation improves obliviousness because any monadic application is now an open ap-
plication, but it suffers from a major drawback: it breaks the monadic laws. Indeed, left identity
and associativity

-- Left identity:
return x >>= f = f x
-- Associativity:
(m >>= f)>>= g = m >>= (λx → f x >>= g)

can be invalidated, depending on the current list of deployed aspects. This is not surprising as AOP
allows one to redefine the behavior of a function and even to redefine the behavior of a function

42

depending on its context of execution. Breaking monadic laws is not prohibited by Haskell, but it is
very dangerous and fragile; for instance, some compilers exploit the laws to perform optimizations,
so breaking them can yield incorrect optimizations.

5.4 Technical Requirements of our Model

The current implementation of Effective Aspect uses several extensions of the GHC Haskell com-
piler (see the details at http://plead.cl/EffectiveAspects). Nevertheless, we believe that the anti-
unification algorithm at the type level (Section 4.1.1) is the essential feature that would be required
to make our approach work on other languages. A potential line of work is to port EffectiveAspects
to Scala, which has some likeness to Haskell and also has monads, and investigate what kind of
issues arise in the process.

We have presented a typed and sound monadic embedding of aspects where pointcuts, advices,
and aspects are first-class. Among several issues, a crucial point in the design of our model is
the need for a decidable notion of function equality. Additionally, it is not clear how to combine
aspects and bounded polymorphism in a way other than deploying one aspect for every combination
of instances of the involved type classes. Nevertheless, our model is open to further improvements.

The next chapter concludes the first part of the thesis by discussing work related to functional
aspect languages as well as the relation between aspects and monads. Then, the second part of this
work builds upon the model here presented to show how, by virtue of using monads, we can reuse
and extend several techniques to control the interaction between aspects and computational effects.

43

http://plead.cl/EffectiveAspects

Chapter 6

Related Work, Part I

For convenience to the reader, each part of this thesis presents a separate discussion of related work.
In this chapter we discuss the connection between monads and AOP, as well as the relation between
EffectiveAspects and other functional aspect languages.

Connection between monads and AOP The earliest connection between aspects and monads
was established by De Meuter in 1997 (De Meuter, 1997). In that work, he proposes to describe
the weaving of a given aspect directly in the binder of a monad. As we have just described above
(Section 5.3), doing so breaks the monad laws, and is therefore undesirable.

Wand et al. (Wand et al., 2004) formalize pointcuts and advice and use monads to structure the
denotational semantics; a monad is used to pass the join point stack and the store around evalua-
tion steps. The specific flavor of AOP that is described is similar to AspectJ, but with only pure
pointcuts. The calculus is untyped.

Hofer and Osterman (Hofer and Ostermann, 2007) shed some light on the modularity benefits
of monads and aspects, clarifying that they are different mechanisms with quite different features:
monads do not support declarative quantification, and aspects do not provide any support for en-
capsulating computational effects. In this regard, our work does not attempt at unifying monads
and aspects, contrary to what De Meuter suggested. Instead, we exploit monads in Haskell to build
a flexible embedding of aspects that can be modularly extended. In addition, the fully-typed setting
provides the basis for reasoning about monadic effects.

Monadic weaving The notion of monadic weaving was described by Tabareau (2012), where he
shows that writing the aspect weaver in a monadic style paves the way for modular language exten-
sions. He illustrated the extensibility approach with execution levels (Tanter, 2010) and level-aware
exception handling (Figueroa and Tanter, 2011). In Chapter 9 we describe how this extensibility
can be exploited in the context of our model. The authors then worked on a practical monadic
aspect weaver in Typed Racket (Figueroa et al., 2012). However, the type system of Typed Racket
turned out to be insufficiently expressive, and the top type Any had to be used to describe point-
cuts and advices. This was the original motivation to study monadic weaving in Haskell. Also in

44

contrast to this work, prior work on monadic aspect weaving does not consider a base language
with monads. In our model, both the base language and the aspect weaver are monadic, combining
the benefits of type-based reasoning about effects and modular language extensions (described in
Part II and Part III)—including type-based reasoning about language extensions.

AOP in Haskell via type classes Haskell has already been the subject of AOP investigations us-
ing the type class system as a way to perform static weaving (Sulzmann and Wang, 2007). AOP
idioms are translated to type class instances, and type class resolution is used to perform static
weaving. This work only supports simple pointcuts, pure aspects and static weaving, and is fur-
thermore very opaque to modular changes as the translation of AOP idioms is done internally at
compile time.

Comparison with dynamically-typed aspect languages The specific flavor of pointcut/advice
AOP that we have developed is directly inspired by AspectScheme (Dutchyn et al., 2006) and As-
pectScript (Toledo et al., 2010): dynamic aspect deployment, first-class aspects, and extensible set
of pointcut designators. While we have not yet developed the more advanced scoping mechanisms
found in these languages (Tanter, 2008), we believe there are no specific challenges in this regard.
The key difference here is that these languages are both dynamically typed, while we have managed
to reconcile this high level of flexibility with static typing.

Comparison with statically-typed aspect languages In terms of statically-typed functional as-
pect languages, the closest proposal to ours is AspectML (Dantas et al., 2008). In AspectML,
pointcuts are first-class, but advice is not. The set of pointcut designators is fixed, as in AspectJ.
AspectML does not support: advising anonymous functions, aspects of aspects, separate aspect
deployment, and undeployment.

AspectML was the first language in which first-class pointcuts were statically typed. The typing
rules rely on anti-unification, just like we do in this paper. The major difference, though, is that
AspectML is defined as a completely new language, with a specific type system and a specific core
calculus. Proving type soundness is therefore very involved (Dantas et al., 2008). In contrast, we
do not need to define a new type system and a new core calculus. Type soundness in our approach
is derived straightforwardly from the type class that establishes the anti-unification relation. Half
of Section 4.2 is dedicated to proving that this type class is correct. Once this is done (and it is a
result that is independent from AOP), proving aspect safety is direct. Another way to see this work
is as a new illustration of the expressive power of the type system of Haskell, in particular how
phantom types and type classes can be used in concert to statically type embedded languages.

Aspectual Caml (Masuhara et al., 2005) is another polymorphic aspect language. Interestingly,
Aspectual Caml uses type information to influence matching, rather than for reporting type errors.
More precisely, the type of pointcuts is inferred from the associated advices, and pointcuts only
match join points that are valid according to these inferred types. We believe this approach can
be difficult for programmers to understand, because it combines the complexities of quantification
with those of type inference. Aspectual Caml is implemented by modifying the Objective Caml
compiler, including modifications to the type inference mechanism. There is no proof of type

45

soundness.

The advantages of our typed embedding do not only lie within the simplicity of the soundness
proof. They can also be observed at the level of the implementation. The AspectML implementa-
tion is over 15,000 lines of ML code (Dantas et al., 2008), and the Aspectual Caml implementation
is around 24,000 lines of Objective Caml code (Masuhara et al., 2005). In contrast, our imple-
mentation, including all extensions from Part II, is only around 1,600 lines of Haskell code. Also,
embedding an AOP extension entirely inside a mainstream language has a number of practical
advantages, especially when it comes to efficiency and maintainability of the extension.

46

Part II

Controlling Effects

47

Chapter 7

Open and Protected Modules, with Effects

In the previous chapters we have shown the design, implementation, and type safety of the Effec-
tiveAspects model. In this chapter we now turn our attention to illustrating how we can exploit
the monadic embedding of aspects to encode Open Modules (Aldrich, 2005) extended with effects.
Additionally we present the notion of protected pointcuts, which are pointcuts whose type places
restrictions on admissible advice. We illustrate the use of protected pointcuts to enforce control
flow properties of external advice, reusing the approach of EffectiveAdvice (Oliveira et al., 2010).

7.1 Background: Open Modules

Before we start with our development, we give a small background on Open Modules. Aldrich
(2005) proposed Open Modules as a module system that intends to be open to extension with ad-
vice, while still allowing modular reasoning with respect to the implementation details of modules.
In particular, this means that function calls that are internal to the implementation of a module
cannot be advised from outside. That is, external advice can only intercept calls to functions in the
public interface of a module as well as pointcuts explicitly exported by a module. Conversely, only
internal advice can affect internal calls between functions.

Open Modules is formalized in a functional aspect language called TinyAspect, which fea-
tures “second-class” advices and aspects. There is only one pointcut designator that matches calls
to a function name. The name must be specified either in the public or private interface of a mod-
ule. The language features a type system to enable modular reasoning between module boundaries.
The key contribution of Open Modules is the idea that a module must be able to restrict aspect
quantification by controlling the join points in which it can be advised.

From our point of view, the principal drawback of Open Modules is that computational effects
are not explicitly addressed in its core calculus, despite being used in the code of impure advice.
Therefore it is not clear to what extent the notion of Open Modules is compatible with modular
reasoning in the presence of computational effects.

48

module Fib (fib, pcFib) where
import AOP

pcFib = pcCall fibBase ‘pcAnd ‘ pcArgGT 2

fibBase n = return 1

fibAdv proceed n = do f1 ← fibBase # (n − 1)
f2 ← fibBase # (n − 2)
return (f1 + f2)

fib :: Monad m ⇒ m (Int → m Int)
fib = do deploy (aspect pcFib fibAdv)

return $ fibBase #

Figure 7.1: Fibonacci module.

7.2 A Simple Example

We first describe a simple example that serves as the starting point. Figure 7.1 describes a Fibonacci
module, following the canonical example of Open Modules. The module uses an internal aspect
to implement the recursive definition of Fibonacci: the base function, fibBase, simply implements
the base case; and the fibAdv advice implements recursion when the pointcut pcFib matches. Note
that pcFib uses the user-defined pointcut pcArgGT (defined in Section 4.1.1) to check that the call
to fibBase is done with an argument greater than 2. The fib function is defined by first deploying
the internal aspect, and then partially applying # to fibBase. This transparently ensures that an
application of fib is open. The fib function is exported, together with the pcFib pointcut, which can
be used by an external module to advise applications of the internal fibBase function. Figure 7.2
presents a Haskell module that provides a more efficient implementation of fib by using a memo-
ization advice. To benefit from memoization, a client only has to import fib from the MemoizedFib
module instead of directly from the Fib module.

Note that if we consider that the aspect language only supports the pcCall pointcut designa-
tor, this implementation actually represents an open module proper. Preserving the properties of
open modules, in particular protecting from external advising of internal functions, in presence
of arbitrary quantification (e.g. pcType, or an always-matching pointcut) is left for future work.
Importantly, just like Open Modules, the approach described here does not ensure anything about
the advice beyond type safety. In particular, it is possible to create an aspect that incorrectly calls
proceed several times, or an aspect that has undesired computational effects. Fortunately, the type
system can assist us in expressing and enforcing specific interference properties.

7.3 Protected Pointcuts

In order to extend Open Modules with effect-related enforcement, we introduce the notion of pro-
tected pointcuts, which are pointcuts enriched with restrictions on the effects that associated advice

49

module MemoizedFib (fib) where
import qualified Fib
import AOP

memo proceed n =
do table ← get

if member n table
then return (table ! n)
else do y ← proceed n

table ′ ← get
put (insert n y table ′)
return y

fib = do deploy (aspect Fib.pcFib memo)
Fib.fib

Figure 7.2: Memoized Fibonacci module.

can exhibit. Simply put, a protected pointcut embeds a combinator that is applied to the advice
in order to build an aspect. If the advice does not respect the (type) restrictions expressed by the
combinator, the aspect creation expression simply does not type check and hence the aspect cannot
be built. A combinator is any function that can produce an advice:

type Combinator t m a b = Monad m ⇒ t → Advice m a b

The protectPC function packs together a pointcut and a combinator:

protectPC :: (Monad m,LessGen (a → m b) (c → m d))⇒
PC m a b → Combinator t m c d → ProtectedPC m a b t c d

A protected pointcut, of type ProtectedPC , cannot be used with the standard aspect creation
function aspect . The following pAspect function is the only way to get an aspect from a protected
pointcut (the constructor PPC is not exposed):

pAspect :: Monad m ⇒ ProtectedPC m a b t c d → t → Aspect m a b c d
pAspect (PPC pc comb) adv = aspect pc (comb adv)

The key point here is that when building an aspect using a protected pointcut, the combinator comb
is applied to the advice adv . We now show how to exploit this extension of Open Modules to
restrict control flow properties, using the proper type combinators. The next chapter describes how
to control computational effects.

7.4 Enforcing Control Flow Properties

Rinard et al. present a classification of advice in four categories depending on how they affect the
control flow of programs (Rinard et al., 2004):

50

type Replace m a b = (a → m b)
replace :: Replace m a b → Advice m a b
replace radv proceed = radv

type Augment a b c m = (a → m c, a → b → c → m ())
augment :: Monad m ⇒ Augment a b c m → Advice m a b
augment (before, after) proceed arg =

do c ← before arg
b ← proceed arg
after arg b c
return b

type Narrow m a b c = (a → m Bool ,Augment m a b c,Replace m a b)
narrow :: Monad m ⇒ Narrow m a b c → Advice m a b
narrow (p, aug , rep) proceed x =
do b ← p x

if b then replace rep proceed x
else augment aug proceed x

Figure 7.3: Replacement, augmentation and narrowing advice combinators (adapted from (Oliveira
et al., 2010)).

• Combination: The advice can call proceed any number of times.

• Replacement: There are no calls to proceed in the advice.

• Augmentation: The advice calls proceed exactly once, and it does not modify the arguments
to or the return value of proceed .

• Narrowing: The advice calls proceed at most once, and does not modify the arguments to or
the return value of proceed .

In EffectiveAdvice (Oliveira et al., 2010), Oliveira and colleagues show a type-based enforce-
ment of these categories, through advice combinators (Figure 7.3). These combinators fit the gen-
eral Combinator type we described in Section 7.3, and can therefore be embedded in protected
pointcuts. Observe that no combinator is needed for combination advice, because no interference
properties are enforced. Replacement advice is advice that has no access to proceed . Augmentation
advice is represented by a pair of before/after advice functions, such that after has access to the
argument, the return value, and an extra value optionally exposed by the before function. A nar-
rowing advice is in fact the combination of both a replacement advice and an augmentation advice,
where the choice between both is driven by a runtime predicate.

As an illustration, observe that memoization is a typical example of a narrowing advice: the
combination of a replacement advice (“return memoized value without proceeding”) and an aug-
mentation advice (“proceed and memoize return value”), where the choice between both is driven
by a runtime predicate (“is there a memoized value for this argument?”). Therefore it is now
straightforward for the Fib module to expose a protected pointcut that restricts valid advice to
narrowing advice only:

51

memo :: (SM (Map a b) m,Ord a)⇒ Narrow a b () m
memo = (pred , (before, after), rep) where

pred n = do {table ← get ; return (member n table)}
before = return ()
after n r = do {table ← get ; put (insert n r table)}
rep x = do {table ← get ; return (table ! n)}

Figure 7.4: Memoization as a narrowing advice (adapted from (Oliveira et al., 2010)).

module Fib (fib, ppcFib) where
ppcFib = protectPC pcFib narrow
. . .

The protected pointcut ppcFib embeds the narrow type combinator. Hence, only advice that
can be statically typed as narrowing advice can be bound to that pointcut. A valid definition of the
memo advice is given in Figure 7.4. Note that the protected pointcut is only restrictive with respect
to the control flow effect of the advice, but not with respect to its computational effect: any monad
m is accepted.

Finally, note that this approach is not limited to the four categories of Rinard et al.; custom
kinds of advice can be defined in a similar way. For instance, we consider adaptation advice as a
weaker version of narrowing where the advice is allowed to modify the arguments to proceed. The
implementation is straightforward:

type Adaptation a b c m = (a → a, a → m c, a → b → c → m ())
adapt :: Adaptation a b c m → Advice m a b
adapt (adapter , before, after) proceed arg =

augment (before, after) proceed (adapter arg)

A relevant design choice is whether the adapter function is pure or is allowed to perform effects.
This choice affects which properties can be statically checked based on the type of the advice.
Allowing effects is more expressive, but it is source of potential interferences, in addition to advices
and pointcuts.

In this chapter we have shown how we can directly combine the principles of Open Modules with
the control flow combinators of EffectiveAdvice. The combination is fairly straightforward: first,
because pointcuts are first-class they can directly be exported in the public interface of a module.
Second, by using monads we get to reuse, without modification, the EffectiveAdvice combinators.
In the next chapter we further exploit the techniques of EffectiveAdvice in order to control the
interference between computational effects intended only for aspects, the base system, or both.

52

Chapter 8

Controlling Effect Interference

The monadic embedding of aspects also enables reasoning about computational effects. We are par-
ticularly interested in reasoning about effect interference between components of a system: aspects,
base programs, and combinations thereof. To do this, in Section 8.1 we first show how to adapt
the non-interference types defined in EffectiveAdvice (Oliveira et al., 2010), which distinguish be-
tween aspect and base computation. The essence of this technique is to use parametricity to forbid
components from making assumptions about some part of the monad stack. Then, because com-
ponents must work uniformly over the restricted section of the stack, they can only utilize effects
available in the non-restricted section.

However this approach falls short when considering several aspects in a system, because aspects
(and base programs) can still interfere between them. In Section 8.2 we show how a refinement
of the technique can be used to address this situation, but that unfortunately is impractical because
it requires explicit liftings and strongly couples components to particular shapes of the monad
stack—hampering modularity and reusability.

Finally, we show in Section 8.4 a different approach to enforce non-interference based on monad
views (Schrijvers and Oliveira, 2011), a recently developed mechanism for handling the monad
stack, which is summarized in Section 8.3.

8.1 Distinguishing Aspect and Base Computation

To illustrate the usefulness of distinguishing between aspect and base computation, consider a
Fibonacci module where the internal calls throw an exception when given a negative integer as
argument. In that situation, it is interesting to ensure that the external advice bound to the exposed
pointcut cannot throw or catch those exceptions.

Following EffectiveAdvice (Oliveira et al., 2010), we can enforce an advice to be parametric
with respect to a monad used by base computation, effectively splitting the monad stack into two.
To this end we define the NIAT (NI stands for non-interference) type:

53

newtype NIAT t m a = NIAT (ST (AspectEnv (NIAT t m)) (t m) a)

Observe that NIAT splits the monad stack into an upper part t , with the effects available to
aspects; and a lower part m, with the effects available to base computation. We extend other
definitions (weave, deploy , etc.) accordingly.

Note that NIAT is a proper monad, but not a monad transformer. This is because the MonadTrans
class is designed for a type constructor t that is applied to some monad m, but NIAT takes two types
as arguments. We could define the partial application NIAT t as a monad transformer, but this is
inconvenient because explicit lift operations would skip the upper layer of the stack1. However, for
allowing explicit lifting into NIAT we need an operation to transform a computation from t m into
an NIAT t m computation. To this end we provide the niLift operation as follows:

niLift :: Monad (t m)⇒ t m a → NIAT t m a
niLift ma = NIAT $ ST $ λaenv → do

a ← ma
return (a, aenv)

Effect Interference and Pointcuts The novelty compared to EffectiveAdvice is that we also have
to deal with interferences for pointcuts. But to allow effect-based reasoning on pointcuts, we need
to distinguish between the monad used by the base computation and the monad used by pointcuts.
Indeed, in the interpretation of the type PC m a b, m stands for both monads, which forbids to
reason separately about them. To address this issue, we need to interpret PC m a b differently,
by saying that the matched type is a → b instead of a → m b. In this way, the monad for the
base computation (which is implicitly bound by b) does not have to be m at the time the pointcut is
defined. To accommodate this new interpretation with the rest of the code, very little changes have
to be made2. Mainly, the types of pcCall , pcType and the definition of Aspect :

pcCall , pcType :: Monad m ⇒ (a → b)→ PC m a b

data Aspect m a b c d = (Monad m,LessGen (a → b) (c → m d))⇒
Aspect (PC m a b) (Advice m c d)

Note how the definition of Aspect forces the monad of the pointcut computation to be unified
with that of the advice, and with that of the base code. The results of Section 4.2 can straightfor-
wardly be rephrased with these new definitions.

Typing Non-Interfering Pointcuts and Advices Using rank-2 types (Peyton Jones et al., 2007)
we can restrict the type of pointcuts and advices. The following types synonyms guarantee that
non-interfering pointcuts (NIPC) and advices (NIAdvice) only use effects available in t .

type NIPC t a b = ∀m.(Monad m,MonadTrans t)⇒ PC (NIAT t m) a b

1Because we would lift from m to (NIAT t) m
2The implementation available online uses this interpretation of PC m a b.

54

module FibErr (fib, ppcFib) where
import AOP

pcFib = pcCall fibBase ‘pcAnd ‘ pcArgGT 2

ppcFib = protectPC pcFib niAdvice

fibBase n = return 1

fibAdv proceed n = do f1 ← errorFib # (n − 1)
f2 ← errorFib # (n − 2)
return (f1 + f2)

fib = do deploy (aspect pcFib fibAdv)
return errorFib

errorFib :: (MonadTrans t ,EM String m)⇒ Int → NIAT t m Int
errorFib n = if n < 0

then (niLift ◦ lift ◦ throwError)“Error : negative argument ′′

else fibBase # n

Figure 8.1: Fibonacci with error.

type NIAdvice t a b = ∀m.(Monad m,MonadTrans t)⇒ Advice (NIAT t m) a b

By universally quantifying over the type m of the effects used in the base computation, these
types enforce, through the properties of parametricity, that pointcuts or advices cannot refer to
specific effects in the base program. We can define aspect construction functions that enforce dif-
ferent (non-)interference patterns, such as non-interfering pointcut NIPC with unrestricted advice
Advice, unrestricted pointcut PC with non-interfering advice NIAdvice, etc.

Enforcing Non-Interference Coming back to Open Modules and protected pointcuts, to en-
force non-interfering advice we need to define a typed combinator that requires an advice of type
NIAdvice:

niAdvice :: (Monad (t m),Monad m)⇒ NIAdvice t a b → Advice (NIAT t m) a b
niAdvice adv = adv

Observe that the niAdvice combinator is computationally the identity function, but it does impose a
type requirement on its argument. Using this combinator, a module can expose a protected pointcut
that enforces non-interference with base effects.

Fibonacci Module with Error Handling We now define a Fibonacci module (Figure 8.1) where
base functions fibBase and fibAdv raise an exception when given a negative argument.3 The ex-
ception is raised on monad m that corresponds to base computation, and which is required to be an

3We do not use an error-checking aspect on purpose, for the sake of illustration. We use such an aspect in Section 8.2
where we consider the issues of multiple effectful aspects.

55

instance of EM. The definition of ppcFib enforces that external advice cannot manipulate excep-
tions in m, because it uses the niAdvice advice combinator. The drawback is that because we are
using an effect in an inner layer of the stack, we need to use explicit lifting to satisfy the expected
type.

Non-Interfering Base Computation Symmetrically, we can check that a part of the base code
cannot interfere with effects available to aspects by using the type synonym NIBase, which uni-
versally quantifies over the type t of effects available to the advice:

type NIBase m a b = ∀t .(Monad m,MonadTrans t)⇒ a → NIAT t m b

Reasoning About Pointcut Interference Another use of effect reasoning can be done at the level
of pointcuts. Indeed, in the monadic embedding of aspects, we allow for effectful pointcuts. For
example, we can define a sequential pointcut combinator (Douence et al., 2001) pcSeq pc1 pc2,
that matches first pc1 and then pc2:

pcSeq :: (SM Bool m)⇒ PC m a b → PC m c d → PC m c d
pcSeq (PC mpc1) (PC mpc2) =

PC $ do pc1 ← mpc1

pc2 ← mpc2

return $ λjp → do b ← get
if b then pc2 jp

else do b ′ ← pc1 jp
put b ′

return False

As expressed in the SM Bool m constraint, the pointcut requires a boolean state in which to store the
current point of its matching behavior: False (resp. True) means pc1 (resp. pc2) is to be matched.
Consequently, any base program that modifies this state will alter the behavior of the pointcut. This
situation can be avoided by using the non-interfering base computation type NIBase, just described
above.

8.2 Interference Between Multiple Aspects

NIAT only distinguishes between base and aspect computation. Although useful, this implies that
interference between aspects is still possible because all of them will share the same upper part of
the monad stack. A similar situation happens with base programs and the lower part of the monad
stack.

To illustrate this issue, consider a Fibonacci module program that uses the memo advice to
improve the performance, and also uses a checkArg advice that throws an exception when given a
negative argument (instead of a base code check as in Figure 8.1). In this setting, checkArg could
update the cache with incorrect values, either accidentally or intentionally; or conversely, memo
could throw arbitrary exceptions, even with a non-negative argument.

56

Finer-Grained Splitting of the Monad Stack Following the idea used in NIAT, to enforce non-
interference between memo and checkArg we need to split the monad stack into the monad for
base computation m, and two upper layers t1 and t2. The idea is to assign to each aspect a unique
layer in the stack, and to use parametricity to ensure non-interference. To this end we define the
NIAT2 monad, which splits the monad stack as described. We also consider niLift2, which serves
the same role as niLift .

newtype NIAT2 t1 t2 m a = NIAT2 (ST (AspectEnv (NIAT2 t1 t2 m)) (t1 (t2 m)) a)

Again, we extend other definitions properly (weave, etc.). Using rank-2 types, the following type
synonyms guarantee that non-interfering pointcuts and advices access can only access the effect
available in the first layer L1, which corresponds to t1; or in the second layer L2, which corresponds
to t2.

type NIPC L1 t1 a b = ∀t2 m.(Monad m,MonadTrans t1,MonadTrans t2)⇒
PC (NIAT2 t1 t2 m) a b

type NIPC L2 t2 a b = ∀t1 m.(Monad m,MonadTrans t1,MonadTrans t2)⇒
PC (NIAT2 t1 t2 m) a b

type NIAdviceL1 t1 a b = ∀t2 m.(Monad m,MonadTrans t1,MonadTrans t2)⇒
Advice (NIAT2 t1 t2 m) a b

type NIAdviceL2 t2 a b = ∀t1 m.(Monad m,MonadTrans t1,MonadTrans t2)⇒
Advice (NIAT2 t1 t2 m) a b

Non-Interference Combinators To enforce non-interference properties we need to define ad-
vice combinators, as we did with niAdvice. Again, we can enforce different non-interference pat-
terns, by defining as many construction functions as required. We describe the advice combinators
niAdviceL1 and niAdviceL2 that enforce that aspects work exclusively with the effect provided by
the first and second layer, respectively.

niAdviceL1 :: (Monad m,MonadTrans t1,MonadTrans t2)⇒
NIAdviceL1 t1 a b → Advice (NIAT2 t1 t2 m) a b

niAdviceL1 adv = adv

niAdviceL2 :: (Monad m,MonadTrans t1,MonadTrans t2)⇒
NIAdviceL2 t2 a b → Advice (NIAT2 t1 t2 m) a b

niAdviceL2 adv = adv

Now we define the monad stack S that provides the state and error-handling effects.

type S = NIAT2 (ET String) (ST (Map Int Int)) I

Then, we define the new fibonacci function using the checkArgL1
and memoL2 advices, which

operate on the first and second layer of the monad stack, respectively.

fibMemoErr :: Int → S Int
fibMemoErr n = do deploy (aspect pcFib (niAdviceL2 memoL2))

57

f ← fib
deploy (aspect (pcCall f) (niAdviceL1 checkArgL1

))
f # n

The implementation of checkArgL1
is as follows:

checkArgL1
proceed arg =

if arg < 0
then (niLift2 ◦ throwError)“Error : negative argument ′′

else proceed arg

And similarly, we define memoL2:

memoL2 proceed n =
do table ← niLift2 $ lift $ get
if member n table

then return (table ! n)
else do y ← proceed n

table ′ ← niLift2 $ lift $ get
(niLift2 ◦ lift ◦ put) (insert n y table ′)
return y

Note that checkArgL1
is applied on calls to the external fibonacci function f , while memoL2 is

applied to the internal calls of the Fibonacci module, exposed by pcFib.

While an improvement over the binary base/aspect approach of EffectiveAdvice, illustrated in
Section 8.1, this approach has two major drawbacks. First, it is not scalable because we need a
different NIATn monad to support a setting with n mutually exclusive effects for aspects. Second,
it is necessary to use explicit lifting in the implementation of advice. The reason is that we are
explicitly using an effect from a layer at an arbitrary position in monad stack. Because we need
to preserve parametricity to enforce non-interference, an advice cannot make any assumptions on
the monad transformers that compose the stack. In particular, it cannot assume that the transform-
ers support implicit liftings from the inner layers of the stack. In fact, in the presence of implicit
lifting the layer from which an effect comes depends on the concrete monad stack used. These
issues hamper modularity and reusability of aspects. In general, there is a tension between im-
plicit lifting—designed to make a layer provide several effects at once—and splitting the monad
stack with one aspect/effect per layer. In Section 8.4 we address these issues by using monad
views (Schrijvers and Oliveira, 2011).

8.3 Background: Monad Views

Monad views, recently developed by Schrijvers and Oliveira (2011), are a technique for handling
the monad stack, which extends and complements the standard mechanisms of explicit and implicit
liftings (Section 2.3). Monad views provide robust support for accessing the effects of the monad

58

stack without being coupled to a particular stack layout. Views are denoted using , and are an
instance of the View type class that defines the from operation. Additionally, we use bidirectional
views, denoted with the ./ type operator. In addition to from, a bidirectional view supports the to
operation. The types of these operations are:

from :: (Monad m,Monad n,View ())⇒ n m → n a → m a
to :: (Monad m,Monad n) ⇒ n ./ m → m a → n a

In short, given two monads n and m, a view n m transforms computations from n to m, and a
bidirectional view n ./ m can also transform computations from m to n.

View-specific operations. Views are first-class values, hence they can be used as arguments. For
instance, consider the functions getv and putv defined in (Schrijvers and Oliveira, 2011):

getv :: (Monad m, SM s n,View ())⇒ (n m)→ m s
getv v = from v $ get

putv :: (Monad m,SM s n,View ())⇒ (n m)→ s → m ()
putv v = from v ◦ put

Given an initial monad m and a view n m, getv returns a computation m s from an arbitrary
state layer n. Conversely, putv puts a new value into state layer n.

Creating views Schrijvers and Oliveira propose the construction of views using structural and
nominal masks, which are applied onto the layers of a monad stack (Schrijvers and Oliveira, 2011).

• A structural mask is a bit-like mask applied to the monadic stack in order to hide the layers
that conflict with implicit lifting. Such a mask is created by concatenating unary masks for
each layer using the ::: type operator:4 � indicates a visible layer and � a hidden layer.

• A nominal mask refers to layers of the stack using names instead of relative positions. This is
done with the tag monad transformer T. Given an arbitrary type Tag , the layer TTag labels a
particular position of the monad stack using type Tag . An example of a tagged monad stack
(for some types Tag1 and Tag2) is:

type M = TTag1 (ST Int (TTag2 ET String I))

where the ST layer is labeled with Tag1 and the ET layer is labeled with Tag2.
For inspecting tagged monad stacks, the type class n vTag m exposes a monad n represent-
ing the layer of the stack m tagged with type Tag . It also provides the structure operation to
obtain the view between n and m associated to Tag :

class (Monad m,Monad n)⇒ n vTag m where
structure :: View ()⇒ Tag → (n m)

4We follow the graphical notation used in (Schrijvers and Oliveira, 2011)

59

8.4 Beyond the Aspect/Base Distinction

Monad views enable a different approach to enforce non-interference. The idea is that aspects will
be generic with respect to the effects they require using type class constraints, assuming exclusive
access to a monad stack with those effects. To avoid non-interference, client code uses a concrete
monad stack and transforms each advice into a view-specific advice where the aspect only sees the
sections of the monad stack that it is allowed to access.

For instance, the memo advice described in Figure 7.2 requires access to a dictionary to store
the precomputed results. This is explicit in the (inferred) type of the advice:

memo :: (Monad m,Ord a,SM (Map a b) m)⇒ Advice m a b

In a similar way we define checkArg , which requires access to an error effect:

checkArg :: (Monad m,Num a,EM String m)⇒ Advice m a b
checkArg proceed arg =
if arg < 0

then throwError“Error : negative argument ′′

else proceed arg

Arbitrarily Splitting the Monad Stack with Views Observe now that the advice does not de-
pend on the specific position of an effect in the monad stack. The novelty with respect to using
implicit liftings is that we can assign to each aspect a virtual view of the monad stack that only
contains the effect available to them. To assign a part of the monad stack to an advice we define the
withView function:

withView :: (Monad n,Monad m)⇒ n ./ m → Advice n a b → Advice m a b
withView v adv proceed arg = from v $ adv (λa → to v (proceed a)) arg

This function transforms an advice from a restricted monad n to an advice in the “complete” stack
m, using a bidirectional view provided as argument. We require a bidirectional view because
we need to lift the proceed function, with type a → n b into an equivalent function with type
a → m b—which by construction performs effects only on n. Then, because evaluation of the
restricted advice yields a computation n b, we use the from operation to lift it into a computation
m b.

Observe that by partially applying withView with a given view we obtain a function of type
Advice n a b → Advice m a b, which fits with the notion of advice combinators (Section 7.3).
Therefore it is possible to export protected pointcuts that expose a particular section of the monad
stack to external advice. Additionally we can define functions to transform join points and point-
cuts, in a similar way to withView .

60

ErrorT
StringAOT StateT

Map Int Int IdentityS1

ErrorT
StringAOT StateT

Map Int Int Identityv1 = S1 + ::: :::

ErrorT
StringAOT StateT

Map Int Int Identityv2 = S1 + ::: :::

Figure 8.2: Applying structural masks to the monad stack S1.

Using Structural Masks Consider a concrete monad stack S1 which holds the required state and
error effects.

type S1 = AT (ET String (ST (Map Int Int) I))

Then, we define the fibonacci function as follows:

fibMemoErr ′ n = do deploy (aspect pcFib (withView v1 memo))
f ← fib
deploy (aspect (pcCall f) (withView v2 checkArg))
f # n

where v1 = � :::� :::�
v2 = � :::� :::�

We define views v1 and v2 using structural masks. Both allow access to AT, allowing AOP-specific
operations into advice (e.g. deploying aspects). Besides that, v1 exposes only the ST transformer,
whereas v2 only allows accessing to the ET transformer. Figure 8.2 depicts how views v1 and v2
define new virtual monad stacks, by applying structural masks to S1. Note that structural masks
can be applied only to monad transformers, but not to the monad at the bottom of the stack.

It is clear that now aspects do not need to perform explicit liftings and are not coupled to a
particular monad stack. However, these issues are present when constructing views using nominal
masks. Changes to the monad stack that is used to run client code need to be reflected in (potentially
many) client functions that use structural masks.

Using Nominal Masks A more flexible approach that is not coupled to any particular monad
stack is to use nominal masks to tag each effect required by aspects. Then client code can use the
tags to directly access the effects and properly transform the advices. Consider a monad stack S2,
where the state and error layers are tagged:

data StateTag
data ErrorTag

type S2 = AT (TErrorTag (ET String (TStateTag (ST (Map Int Int) I))

The stack is tagged at the type level, therefore we define two singleton types (with no data con-
structors), namely StateTag and ErrorTag , to use as arguments for the T monad transformer.

61

The fibonacci function implemented using nominal masks is:

fibMemoErr ′′ :: ∀m n1 n2.(Monad m,
n1 vStateTag (AT m), SM (Map Int Int) n1,
n2 vErrorTag (AT m),EM String n2)
⇒ Int → AT m Int

fibMemoErr ′′ n = do deploy (aspect pcFib (withView v1 memo))
f ← fib
deploy (aspect (pcCall f) (withView v2 checkArg))
f # n

where v1 = structure StateTag :: n1 ./ m
v2 = structure ErrorTag :: n2 ./ m

In contrast to the previous definition, we need to use explicit type annotations because using
nominal masks can lead to ambiguity in type inference5. Observe that we assume a monad m that
is tagged with two singleton types StateTag and ErrorTag . We use v to expose these layers as
monads n1 and n2 respectively, and we constrain these monads to expose the corresponding effects.
Therefore, by using nominal masks we can independently evolve the definition of S2, as long as we
keep the tagged layers expected by fibMemoErr ′′ (satisfying both the tag name and the required
effect).

Perspectives on Using Views The content of the do expression is the same using structural or
nominal masks. In fact it is possible to define a more generic function that takes views v1 and v2
as argument. Because views are first-class values, there is a wide design space on how to use them
to control aspect interference. For example, aspects can be defined directly using v constraints as
required. On the other hand, programmers must carefully define the views that are provided to each
advice, because the typechecker cannot distinguish between intentional and accidental sharing of
effects.

Controlling effect interference between aspects is a well-known and widely researched area
in the AOP community. The two approaches presented in this chapter show that the concrete
mechanism used to manage the monad stack determines the expressiveness of type-based reasoning
techniques. We believe that the problem of assigning exclusive access to effects in the monadic
stack originates from the fact that the monad stack is public and transparent to all components in
a system. We conjecture that a mechanism that statically controls access to effects, while being
flexible for developers ought to be devised, and indeed is a line of future work that transcends
aspect-oriented programming. As a final remark, in a setting with an unrestricted deploy operation
the restrictions on advice must be applied at each particular aspect deployment. This makes it
difficult to establish global properties about advice in a system (which may require external static
analysis). This can be solved with a custom AT-like monad transformer that provides a more
restricted deployment mechanism.

In the next chapter we focus on how to exploit the extensibility provided by our monadic weaver
in order to modularly implement new aspect semantics, thus illustrating how our framework can be
used as a research tool.

5The ∀m n1 n2 annotation is required to use the type variables in the scope of a do expression.

62

Chapter 9

Modular Language Extensions

The typed monadic embedding of aspects supports modular extensions of the aspect language.
The simplest extension is to introduce new user-defined pointcuts. More interestingly, because the
language features a monadic weaver (Tabareau, 2012), we can modularly implement new semantics
for aspect scoping and weaving. In addition, all language extensions benefit from the type-based
reasoning techniques described before—to the best of our knowledge, this is a novel contribution
of this work. In this chapter we describe the following developments:

• A user-defined control flow pointcut designator.
• Secure weaving, in which a set of join points can be hidden from advising.
• Privileged aspects that can see hidden join points from a secure computation.
• Aspect weaving with execution levels (Tanter, 2010).
• An example of type-based reasoning in the semantics of execution levels.

9.1 Control Flow Pointcut

An interesting illustration of extending the language with user-defined pointcuts is the case of
control flow checks. Essentially, implementing the pcCflow pointcut requires a way to track join
points emitted during program execution. This tracking mechanism can be implemented modularly
using a state monad transformer that holds a stack of join points, and an aspect that matches every
join point, stores it in the stack, and then proceeds to obtain the result, which is returned after
popping the stack. This corresponds to the stack-based implementation of cflow described by
Masuhara et al. (2003).

Join Point Stack To do this, we first define a join point stack as a list of existentially-quantified
join points, EJP , just like we did to define the aspect environment as a list of homogeneous
EAspect values (Section 3.1).

data EJP = ∀a b m.Monad m ⇒ EJP (JP m a b)
type JPStack = [EJP]

63

Then, to collect the join points into a JPStack we define the JPT monad transformer, reusing
the implementation of the standard ST transformer:

newtype JPT m a = JPT (ST JPStack m a)

In addition, to support a polymorphic monad stack we define the JPM type class as follows, and
declare JPT as an instance.

class Monad m ⇒ JPM m where
getJPStack :: m JPStack
pushJPStack :: EJP → m ()
popJPStack :: m ()

instance Monad m ⇒ JPM (JPT m) where . . .

Defining pcCflow Given the definitions above, the implementation of pcCflow is very similar to
that of pcCall (Section 3.1).1

pcCflow :: JPM m ⇒ (a → m b)→ PC m c (m ′ d)
pcCflow f = return $ λ → do

jpStack ← getJPStack
return $ any (λejp → compareFunEJP f ejp ∧ compareTypeEJP f ejp) jpStack

Here compareFunEJP checks the equality of the function bound to the join point and function f ;
and compareTypeEJP checks that the type of f is more general than the type of the join point.
Function any returns whether any element of jpStack satisfies a given predicate. We can define the
pcCflowbelow pointcut in a similar way.

Maintaining the Join Point Stack Now it remains to define the aspect that maintains the join
point stack. We first define the pcAny pointcut, which matches all functions applications and
pushes the corresponding join point into the stack.

pcAny :: JPM m ⇒ PC m a b
pcAny = PC $ return $ λjp → do pushJPStack (EJP jp)

return True

Note that the definition of pcAny preserves type soundness (Section 4.1.1) because its matched type
is given by two fresh type variables a and b, and hence is the most general type possible. Next, we
define collectAdv as an advice that performs proceed , pops the stack and returns the result.

collectAdv proceed arg = do result ← proceed arg
popJPStack
return result

1Note that, as discussed in Section 4.1.1, we specifically declare that the matched type of the pointcut is in a
different monad m ′.

64

Finally, we define the maintainJpStack aspect as follows.

maintainJpStack :: JPM m ⇒ Aspect m a (m b) a b
maintainJpStack = aspect pcAny collectAdv

Although simple, this approach is inefficient because we are matching and storing all join points,
instead of only those that can be queried in existing uses of pcCflow . Alternative optimizations can
be defined, for example putting in the stack only relevant join points, or a per-flow deployment that
allows using a boolean instead of a stack (Masuhara et al., 2003).

A consequence of not defining pcCflow as a primitive pointcut is that we need to ensure that
evaluation of maintainJpStack occurs before than any other advice. Otherwise, control flow point-
cuts from other aspects will have incorrect information to determine whether to execute the advice.
This can be implemented directly in a custom AT transformer that takes a list of priority aspects
and ensures they are always evaluated first during weaving.

9.2 Secure Weaving

For security reasons it can be interesting to protect certain join points from being advised. To
support such a secure weaving, we define a new monad transformer AS

T, which embeds an (existen-
tially quantified) pointcut that specifies the hidden join points, and we modify the weaving process
accordingly (not shown here).

data EPC m = ∀a b.EPC (PC m a b)

data AS
T m a = AS

T (AspectEnv (AS
T m)→ EPC (AS

T m)
→ m (a, (AspectEnv (AS

T m),EPC (AS
T m))))

This can be particularly useful when used with the pcCflow pointcut to protect the computation
that occurs in the control flow of critical function applications. For instance, we can ensure that
the whole control flow of function f is protected from advising during the execution of program p
, assuming a function runAS

T, similar to runAT (Section 3.2):

runAS
T (EPC (pcCflow f)) p

9.3 Privileged Aspects

Hiding some join points to all aspects may be too restrictive. For instance, certain “system” aspects
like access control should be treated as privileged and view all join points. Another example is
the aspect in charge of maintaining the join point stack for the sake of control flow reasoning
(used by pcCflow). In such cases, it is important to be able to define a set of privileged aspects,
which can advise all join points, even those that are normally hidden in a secure computation. The
implementation of a privileged aspects list is a straightforward extension to the secure weaving
mechanism described above.

65

1 type Level = Int
2 newtype ELT m a = ELT (ST Level m a)

3 -- primitive operations
4 inc = ELT $ λl → return ((), l + 1)
5 dec = ELT $ λl → return ((), l − 1)
6 at l = ELT $ λ → return ((), l)

7 -- user-visible operations
8 current = ELT $ λl → return (l , l)
9 up c = do {inc; result ← c; dec; return result }

10 down c = do {dec; result ← c; inc; return result }
11 lambda_at f l = λarg → do n ← current
12 at l
13 result ← f arg
14 at n
15 return result

Figure 9.1: Execution levels monad transformer and level-shifting operations

9.4 Execution Levels

Execution levels avoid unwanted computational interference between aspects, i.e. when an aspect
execution produces join points that are visible to others, including itself (Tanter, 2010). Execution
levels give structure to execution by establishing a tower in which the flow of control navigates.
Aspects are deployed at a given level and can only affect the execution of the underlying level.
The execution of an aspect (both pointcuts and advices) is therefore not visible to itself and to
other aspects deployed at the same level, only to aspects standing one level above. The original
computation triggered by the last proceed in the advice chain is always executed at the level at
which the join point was emitted. If needed, the programmer can use level-shifting operators to
move execution up and down in the tower.

The monadic semantics of execution levels, first illustrated by Tabareau (2012), are implemented
in the ELT monad transformer (Figure 9.1). The Level type synonym represents the level of exe-
cution as an integer. ELT wraps a run function that takes an initial level and returns a computation
in the underlying monad m, with a value of type a and a potentially-modified level. As in the AT

transformer, the monadic bind and return functions are the same as in the state monad transformer.
The private operations inc, dec, and at are used to define the user-visible operations current , up,
down, and lambda_at . In addition to level shifting with up and down, current reifies the current
level, and lambda_at creates a level-capturing function bound at level l . When such a function is
applied, execution jumps to level l and then goes back to the level prior to the application (Tanter,
2010).

The semantics of execution levels can be embedded in the definition of aspects themselves, by
transforming the pointcut and advice of an aspect at deployment time, as shown in Figure 9.2.2

2For simplicity, in Section 3.2 we only described the default semantics of aspect deployment; aspect (un)deployment

66

deployInEnv (Aspect (pc :: PC (AT (ELT m)) tpc) adv) aenv =
let

pcEL ldep = (PC $ return $ λjp → do
lapp ← current
if lapp ≡ ldep then up $ runPC pc jp

else return False) :: PC (AT (ELT m)) tpc

advEL ldep proceed arg = up $ adv (lambda_at proceed ldep) arg
in do l ← current

return EAspect (Aspect (pcEL l) (advEL l)) : aenv

Figure 9.2: Redefining aspect deployment for execution levels semantics. An aspect is made level-
aware by transforming its pointcut and advice.

showM a = return (show a)

logAdv proceed a = do argStr ← showM # a
tell ("Arg: " ++ argStr)
result ← proceed a
return result

program n = runM $ do
deploy (aspect (pcCall (showM ::→ Int → M String)) logAdv)
showM # n

Figure 9.3: A program that loops unless execution levels are used.

This is done by functions pcEL and advEL. pcEL first ensures that the current execution level lapp
matches ldep, the level at which the aspect is deployed. If so it then runs the pointcut one level
above. Similarly, advEL ensures that the advice is run one level above, with a proceed function that
captures the deployment level.

Example Figure 9.3 defines a generic logging advice, logAdv , which appends the argument and
result of advised functions to the log3. In program, we deploy an aspect that intercepts all calls
to showM (the monadic version of show) where the argument is of type Int (we require a type
annotation for the pointcut because showM is a bounded polymorphic function—see Section 5.2
for details).

The evaluation of the program depends on the instantiation of the monad stack M . In a setting
without execution levels, advising showM with logAdv triggers an infinite loop because logAdv
internally performs open applications of showM , which are matched by the same aspect. Using the
execution level semantics, evaluation terminates because the join point emitted by the advice is not

is actually defined using overloaded (un)deployInEnv functions.
3Using the tell function of the MonadWriter class (denoted WM), which is not described in Section 2.3, but which

essentially is a state monad with append-only access.

67

visible to the aspect itself.

Interestingly, explicit open applications limit the possibilities of unwanted advising. More obliv-
iousness, e.g. through partial application of #, makes it harder to track down these issues. Nev-
ertheless, identifying the source of the regression is not sufficient per se: in our example, if it is
necessary for logAdv to use open applications (so that other aspects can intervene), there is not
much that can be done to avoid regression.

Beyond execution levels Execution levels adds a topological dimension to the composition of as-
pects into a system. However, their tower-like structure may be too restricted for certain scenarios,
for instance for dynamic analyses aspects (Tanter et al., 2010). Recently, Tanter et al. (2012) pro-
posed programmable membranes as a generalization of execution levels. We have developed a
prototype implementation of membrane semantics in Effective Aspects (Figueroa et al., 2013), us-
ing the same approach of converting pointcuts and advices at deployment time. However, instead
of passing the current level of execution (an integer), we maintain the bindings between membranes
(a graph) using a state monad.

9.5 Reasoning about Language Extensions

The above extensions can be implemented in a dynamically typed language such as LAScheme (Tan-
ter, 2010). However, it is challenging to provide any kind of reasoning about effects due to the
dynamic nature of the language.

Enforcing Non-Interference in Language Extensions We can combine the monadic interpre-
tation of execution levels with the management of effect interference (Chapter 8) in order to rea-
son about level-shifting operations performed by base and aspect computations. For instance, it
becomes possible to prevent aspect and/or base computation to use effects provided by the ELT

monad transformer, thus ensuring that the default semantics of execution levels is preserved (and
therefore that the program is free of aspect loops (Tanter et al., 2014)). For this we must consider a
concrete monad stack that has the AT and ELT transformers on top:

type AELT m = AT ELT m

Observe that this monad stack is general with respect to other effects it may contain. Then, we
simply define an advice combinator that forbids access to the ELT layer, which provides the level-
shifting operations, for instance:

levelAgnosticAdv = withView (� :::� :::�)

This mask hides the layer with the execution-level-related effects, but allows access to AT at the
top, and to the rest of the stack. Then to ensure level agnostic advice we just redefine program to
use this combinator, in a suitable monad stack M :4

4We use the WriterT transformer (WT), which is the canonical instance of WM.

68

type M = AELT (WT String I)
runM c = runI $ runWT $ runELT (runAT c) 0

program n = runM $ do
deploy (aspect (pcCall (showM ::→ Int → M String)) (levelAgnosticAdv logAdv))
showM # n

If more advanced use of execution levels is required, this contraint can be explicitly relaxed
in the AT or ELT monad transformer, thus stressing in the type that it is the responsibility of the
programmer to avoid infinite regression.

Using Types to Enforce Weaving Semantics The type system makes it possible to specify func-
tions that can be woven, but only within a specific aspect monad. For instance, suppose that we
want to define a critical computation, which must only be run with secure weaving for access con-
trol. The computation must therefore be run within the AS

T monad transformer with a given pointcut
pc_ac (ac stands for access control).

To enforce the use of AS
T with a specific pointcut value would require the use of a dependent type,

which is not possible in Haskell. This said, we can use the newtype data constructor together with
its ability to derive automatically type class instances, to define a new type AAC

T that encapsulates
the AS

T monad transformer and forces it to be run with the pc_ac pointcut:

newtype AAC
T m a = AAC

T (AS
T m a) deriving (Monad ,OpenApp, . . .)

runSafe (AAC
T c) = runAS

T (EPC pc_ac) c

Therefore, we can export the critical computation by typing it appropriately:

critical :: Monad m ⇒ AAC
T m a

Because the AAC
T constructor is hidden in a module, the only way to run such a computation typed

as AAC
T is to use runSafe. The critical computation is then only advisable with secure weaving for

access control.

9.6 Other Approaches to Modular AOP Language Extensions

Although the extensibility of programming languages is an issue that goes beyond AOP, in this
section we briefly discuss related work that directly addresses the issue of extending the semantics
of aspect-oriented languages.

Extensible compilers The AspectBench Compiler (abc) (Avgustinov et al., 2006) is an exten-
sible compiler to ease the development of AspectJ extensions. Its frontend is implemented using
JastAdd (Ekman and Hedin, 2007), a general purpose extensible compiler for Java. Among the sev-
eral AspectJ extensions based on we distinguish the recent work on Join Point Interfaces (?), and

69

the work on StrongAspectJ (De Fraine et al., 2008). We are not aware of other extensible compilers
for other aspect languages, besides the ALIA4J framework discussed below.

ALIA4J framework The ALIA4J framework (Bockisch et al., 2011) goes beyond extensible
compilers, aiming to be a general framework for the development of languages with advanced
dispatching mechanisms. This is realized by a meta-model that serves as an intermediate represen-
tation language that can be later compiled into specific execution models. In particular, ALIA4J has
been used to abstract the dispatching mechanism of the AspectJ and CaesarJ (Aracic et al., 2006)
aspect languages.

Monadic interpreters Monadic interpreters (Liang et al., 1995) are the classic mechanism for
modular language extensions in functional programming. Wand et al. (2004) defined a monadic
interpreter to structure the denotational semantics of AspectJ. Although their work is untyped, it
could benefit from the extensibility of monad transformers in order to feature modular language
extensions. As we discussed before in Chapter 6, the extensibility features of our model come from
the fact that our weaver is monadic.

This chapter ends the second part of this thesis, focused on controlling effects. We first de-
scribed in Chapters 7 and 8 how to combine the principles of Open Modules with the techniques
of EffectiveAdvice. A standing issue regarding our use of EffectiveAdvice is the lack of formal
results regarding interference of aspects in a system. We have only shown that we can restrict
certain pointcut/advice combinations to be deployed, which may be sufficient for local guarantees
about aspect behavior. This issue is addressed in the third part of the thesis, where we establish
how to reason compositionally about aspects in a system. Here the main challenge is that quantifi-
cation forces us to reason about the context on which aspects are applied—in addition to the local
properties of aspects.

70

Part III

Compositional Reasoning About Aspect
Interference

71

Chapter 10

The Challenge of Compositional Reasoning

As we have illustrated in Part II, aspect-oriented programming promotes separation of concerns at
the textual level, but semantic interactions between components of an aspect-oriented program are
challenging to predict and control.

Consequently, the issue of interference has received a lot of attention in the AOP literature and
related areas (which we discuss later in Chapter 14). In particular, Oliveira et al. (2012) developed
MRI, which stands for Modular Reasoning about Interference, a purely functional model of in-
cremental programming with effects. Effects are made explicit through the use of monads. MRI
enables both modular reasoning and reasoning about non-interference of effects using a range of
reasoning techniques like equational reasoning and parametricity. MRI has been used to express
two theorems about harmless mixins. The central notion is that a mixin is harmless if the advised
program is equivalent to the unadvised program, provided we ignore the effects introduced by the
mixin. In MRI, harmlessness can be defined with respect to any computational effect, as long as
an associated projection function exists to ignore the introduced effects. MRI therefore subsumes
Dantas and Walker’s notion of harmless advice, which is specific to I/O effects (Dantas and Walker,
2006).

While originally formulated as “EffectiveAdvice” (Oliveira et al., 2010) with a suggested con-
nection to aspect-oriented programming, MRI does not address quantification; advices are mixins
which are applied explicitly. The lack of quantification greatly simplifies modular reasoning, be-
cause it is enough to study a single module/function and a mixin in isolation. In addition, MRI
only focuses on step-wise applications of mixins, in which the composition of a base component
with a mixin can then be treated as a new base component for a subsequent mixin application. In
contrast, in the pointcut/advice model of AOP, several aspects live in an aspect environment and
are all woven at each join point.

The third part of this thesis addresses the challenge of reasoning about aspect interference in
the presence of quantification. It has been argued that unrestricted quantification hampers modular
reasoning, thereby requiring a form of global reasoning (Kiczales and Mezini, 2005). Recovering
modular reasoning can be achieved by restricting quantification, for instance following the Open
Modules approach (Aldrich, 2005). Yet, as we demonstrate in this work, while unrestricted quantifi-
cation hampers modular reasoning, it is amenable to compositional reasoning: global harmlessness

72

results can be obtained through the composition of smaller proofs. This compositionality makes it
possible to evolve an aspect-oriented system and reuse previously-established results.

In particular, we develop a framework for establishing harmlessness results about aspect-oriented
systems in a compositional manner, using Haskell as a conveniente source language for System Fω

as it is done also in MRI. First, we establish an abstract monadic model of AOP, which is more
amenable to analysis, with a level of complexity similar to that of MRI; and then we simplify the
model presented in Chapter 3 in order to adapt it to this abstract specification. Finally, we formulate
a general behavioral equivalence theorem between a given aspect-oriented system run with respect
to two different aspect environments, modulo projection of additional side-effects. This general
theorem is proven assuming four sufficient conditions that have to be established separately. When
an aspect-oriented system evolves, only some of these conditions may need to be re-established in
order to preserve the general theorem.

This chapters informally illustrates the challenges of compositional reasoning about aspect in-
terference (Section 10.1) and complements the background on monadic programming (Section 2.3)
by introducing the concept of monadic equational reasoning in Haskell, in particular the algebraic
laws required of monads and monad transformers (Section 10.2).

10.1 Compositional Reasoning, Informally

To illustrate the challenges of reasoning about aspect interference, we introduce a simple base
program (written in an imaginary ML-like language) defined in terms of some known functions f
and g .

prog x y = let r1 = f x in
let r2 = g y in
r1 + r2

In the following, we present different changes to a system composed of this program and some
aspects, and consider questions related to semantic equivalence. We define aspects as a pointcut/ad-
vice pair, and use run to execute programs with certain aspects.

Adding aspects We first add an aspect to the existing system. For instance, to log all calls to f
we define a new system:

s1 = run [(call f , log)] prog

with a typical implementation of the logging advice:

log proceed x = print "Entering function ..."
proceed x

Is the behavior of s1 equivalent to the original program? Strictly speaking, they are not equivalent
if we consider the output generated by print . However, we observe that the return value of the

73

system is left unchanged, and that if we ignore the printed output, both systems are equivalent.
This corresponds to the notion of harmlessness established in MRI (Oliveira et al., 2012). In the
general case, establishing that applying the logging aspect is harmless requires to reason globally
about the aspect and the composed system.

Some questions arise when we see, intuitively, that the logging advice is harmless for every
function on which it may be applied. This property of logging when seen as a mixin is formalized
and proven in MRI, but can we use this knowledge when the advice is applied to a system via
quantification?

Widening quantification We now widen the quantification of the logging aspect, modifying the
pointcut to match additional join points. For instance, if we now want to log calls to g , it suffices
to define a combined pointcut:

s2 = run [(call f ∨ call g , log)] prog

Intuitively, this change is also harmless. But how to prove it formally? Do we need to reason
globally about the system from scratch? or can we reuse some facts from the proof that logging f
in the system is harmless?

Evolving the base program We now evolve the base program by replacing the use of f with that
of another function h:

prog ′ x y = let r1 = h x in
let r2 = g y in
r1 + r2

s3 = run [(call f ∨ call g , log)] prog ′

A first observation is that call f will never match. We must change references to f also in the
aspect environment:

s4 = run [(call h ∨ call g , log)] prog ′

Changing f for h will most assuredly modify the semantics of the base program, and conse-
quently of the system. This is expected when the base program is evolving. However, we may want
to know if the logging aspect is still harmless in this new system. The question is: what amount of
reasoning do we need to perform? Do we need to prove again that logging is harmless with respect
to the whole system, or can we reason compositionally and only verify that the advice is harmless
with respect to h?

Widening quantification, revisited Let us now consider a memoization aspect, with the follow-
ing advice definition:

74

memo proceed x = if (member x table)
then table [x]
else let r = proceed x in

insert (table, x , r)
r

The advice maintains a reference to a lookup table of precomputed values, indexed by argument x .
If the result bound to x is already in the table, it is immediately returned. Otherwise the value is
computed, stored in the table for future references, and returned.

It is intuitively clear that adding memoization on calls to f is harmless. In fact, if we manually
apply memo as a mixin on top of f , then we even know formally that it is harmless (Oliveira et al.,
2012).

Now, if we follow the quantification widening scenario from above—which was harmless with
the logging advice—is the harmlessness of memoization preserved?

s5 = run [(call f ∨ call g ,memo)] prog

The answer to the question actually depends on the context in which the advice is applied. In
a context where f and g actually are the same function, or one of both is never applied, then
harmlessness is preserved. But if f and g are different functions that are both applied, the behavior
of the composed system is drastically affected because the same lookup table is used to store results
from both functions!

Compositional reasoning The examples presented above illustrate that, in presence of quantifi-
cation, it is generally not enough to establish local properties for aspects, but it is also required
to reason about the context in which those aspects are applied. Therefore, the modular reasoning
techniques developed in the case of MRI are not directly applicable in a setting with quantification,
because some form of global reasoning is generally required.

But global reasoning need not be monolithic, which is why we provide a formal framework
to establish global equivalence properties in a compositional manner. Compositional reasoning
facilitates the task of formally establishing properties about aspect-oriented programs. In practice,
while it is possible to apply monolithic global reasoning to tiny systems like the ones considered in
this section, this approach hardly scales to larger systems. Furthermore, compositional reasoning
accommodates software evolution: it makes it possible to reuse previously-established results that
are stable under the considered change scenarios.

10.2 Background: Monadic Reasoning in a Nutshell

The compositional reasoning framework proposed in this work is formulated in a monadic setting.
We now complement the overview of monadic programming presented in Section 2.3, by introduc-
ing the core concepts of equational reasoning, observational equivalence, and the algebraic laws
for monads and monad transformers.

75

-- State
ST :: ST s m a
runST :: ST s m a → s → m (a, s)
πS :: s → ST s m a → m a

class Monad m ⇒ SM m | m → s where
get :: m s
put :: s → m ()

-- Writer
WT :: WT w m a
runWT :: WT w m a → m (a,w)
πW :: WT w m a → m a

class (Monoid w ,Monad m)⇒
WM w m | m → w where

tell :: w → m ()

Figure 10.1: State and Writer monads transformers: constructors, evaluation and projection func-
tions.

In addition, we summarize in Figure 10.1 the definitions of the state (ST) and writer (WT) monad
transformers, used in the next chapters. The figure shows the types of their constructors (ST, WT),
evaluation functions (runST, runWT), and projection functions (πS , πW). The projection functions
remove the corresponding effect from the monad stack (here, by discarding the threaded state or
writer).

10.2.1 Equational Reasoning and Observational Equivalence

Equational reasoning is the process of transforming a program by replacing expressions in a manner
similar to high-school algebra. Expression e1 can be replaced by e2 only if the two are equivalent.
Observational equivalence, denoted as ≡ in the paper, is an equivalence relation between expres-
sions that holds whenever two expressions have the same observable behavior. That is, e1 ≡ e2
iff for every program context C, both C[e1] and C[e2] yield the same value, or both diverge. For
example, consider the η-reduction rule from the λ-calculus, which states that λx → f x ≡ f (when
x is not free in f).

10.2.2 Monad Laws

Monad laws are crucial for equational reasoning in a monadic setting (Wadler, 1992). A proper
monad is one that obeys the following three laws:

return x >>= f ≡ f x -- left identity
p >>= return ≡ p -- right identity
(p >>= f)>>= h ≡ p >>= λx → (f x >>= h) -- associativity

The first two laws, left and right identity, state that return neither changes the value nor performs
any computational effect. The associativity law states that only the order of computations is relevant
in a >>= expression. In the same way, monad transformers need to satisfy the following laws:

76

lift ◦ return ≡ return -- identity preservation
lift (m >>= f) ≡ lift m >>= (lift ◦ f) -- comp. preservation

Note that Haskell does not enforce that declared instances of the Monad or MonadTrans classes
actually respect these laws. This has to be proven separately for each considered instance.

We have illustrated informally why compositional reasoning is desirable. Because we can reuse
certain proofs about the system or about aspects, the key benefit of compositional reasoning is that
it scales to large systems—in contrast to monolithic global reasoning. Nevertheless, we need to be
precise about what compositional reasoning is and under what scenarios we can reuse harmlessness
proofs. We will make this claims precise in the following chapter, using equational reasoning
and the monadic laws. In particular, we will establish a general theorem about compositional
harmlessness, whose preconditions specify the situations where proofs must be re-established.

77

Chapter 11

Compositional Reasoning, Formally

11.1 Abstracting Monadic AOP

Our approach to compositional reasoning relies on a monadic formulation of AOP, but is indepen-
dent from the concrete implementation of an aspectual computation monad transformer. In this
chapter, we define an aspectual computation monad transformer denoted AT in an abstract manner,
by prescribing its interface and properties. The theorem of compositional reasoning in Section 11.2
is established based on this abstract specification only.

11.1.1 Join Point Model

As before, we consider a join point model in which join points are function applications. However,
here we abstract over any concrete design choice by introducing an abstract join point type, on
which pointcuts predicate:

data Jp m a b
type Pc m a b = Jp m a b → Bool

The type variables respectively denote the underlying monad stack, and the argument and re-
turn types of the applied function. The concrete representation of Jp can hold more information
(e.g. contextual information, tags) or less, if some information is not meant to be used in pointcuts.

Because a denotational model cannot assume implicit generation of join points, we require the
presence of an open application operator # that takes a function of type a → AT m b and returns
a function of the same type whose application produces a join point (this effect is encapsulated in
the AT monad transformer):

(#) :: (a → AT m b)→ (a → AT m b)

Note that, in general, there is no reason to assume a single manner to generate join points, so
there can indeed be a family of operators #i , which are interpreted by the aspect weaver as needed.

78

Finally, one can view a partial open application f #i as an open function, whose application
produces join points.

An advice is a function that executes in place of a join point matched by a pointcut. The first
argument of the advice, typically called proceed , is a function which represents the original com-
putation at the matched join point. An aspect simply pairs a pointcut with an advice.

type Advice m a b = (a → m b)→ (a → m b)
type Aspect m a b = (Pc m a b,Advice m a b)

Aspect environment The aspects to be deployed in a given aspectual computation are specified
in a list of aspects called an aspect environment:

type AEnv m = . . . -- an ADT to be specified

As described in Chapter 4, supporting polymorphic aspects implies that the aspect environment
should be an heterogeneous list. In order to avoid accidental complexity, we do not consider this
issue in this abstract specification.

Aspectual computation Given a concrete AT transformer, we require a function that evaluates
an AT computation given an aspect environment:

runAT :: Monad m ⇒ AEnv (AT m)→ AT m a → m a

Abstracting open applications Similarly to the SM and WM type classes, we introduce a type
class to define an abstract interface for performing open applications:

class Monad m ⇒ AM m where
#i :: (Int → m Int)→ (Int → m Int)

instance Monad m ⇒ AM (AT m) where . . .

The only operation of this class is #i , and we require that any monad AT m be an instance
of this class. Note that AM allows a form of type-based reasoning about open applications: any
function of type ∀m.D m ⇒ a → m b, where D is a class constraint that does not entail AM,
cannot perform any open applications (and hence cannot emit join points).

11.1.2 Necessary Properties of AT

To be a correct model, the AT transformer needs to satisfy a number of properties. First, it has to
satisfy the monad transformer laws, and when applied to any monad m, the monad laws must be
satisfied as well. Moreover, for all aspect environments aenv , the function runAT aenv must be a
monad morphism.

79

Definition 8 A monad morphism h is a function of type

h :: ∀a.M1 a → M2 a

that transforms computations in one monad M1 into computations in another monad M2. The
function satisfies two laws:

h ◦ return ≡ return

h (m >>= f) ≡ h m >>= h ◦ f (∀m, f)

For runAT, the first monad is AT m and the second monad is just m. Moreover, the two monad
morphism laws have an intuitive meaning in this setting: the first law expresses that weaving has
no impact on pure computations, and the second law expresses that weaving is compositional.1

In the same spirit, we also require that a third law holds for runAT aenv :2

runAT aenv ◦ lift ≡ id

This law expresses that runAT aenv is a left inverse of lift . In words, weaving an effectful
computation that does not involve open applications has no impact.

These laws have to be established whenever a concrete AT transformer is implemented. We will
come back to this when presenting a simple AT transformer in Chapter 12.

11.1.3 Running Example in Monadic Style

Section 10.1 used pseudo-code to describe a base program and aspects. In Haskell, the base pro-
gram is defined in monadic style using the do notation as follows:

prog x y = do r1 ← f #i x
r2 ← g #j y
return (r1 + r2)

The program can be run as an aspectual computation in the AT transformer with a logging aspect
on open applications of f as follows:

runAT [(fPc, log)] (prog 5 12)

The pointcut fPc is left undefined at this stage, since in this abstract model we do not prescribe
a specific way to denote functions. The definitions of the log and memo advices in monadic style
are given in Figure 11.1.

1If AT supports dynamic deployment of aspects, as in the model described in Chapter 3, weaving cannot be com-
positional. We can nevertheless prove the monad morphism laws for the static fragment, and deal with dynamic
deployment on a case-by-case basis.

2This law actually subsumes the first monad morphism law, as return ≡ lift ◦ return .

80

log :: WM String m ⇒ Advice m a b
log proceed x = do tell "Entering function ..."

proceed x

memo :: (Ord a, SM (Map a b) m)⇒ Advice m a b
memo proceed x = do

table ← get
if member x table

then return (table ! x)
else do y ← proceed x

table ′ ← get
put (insert x y table ′)
return y

Figure 11.1: Logging and memoization advice in monadic style

11.2 Compositional Harmlessness Theorem

This section formalizes our approach to compositional reasoning about aspect interference. This
approach revolves around the following general theorem, which provides a framework for the rea-
soning. The theorem considers an AOP system that is run with respect to a particular aspect envi-
ronment aenv . The theorem states that, under four sufficient conditions, the system preserves its
observable behavior under an alternative aspect environment aenv ′ that may introduce additional
effects. With the four conditions it provides a step-by-step guide to proving non-interference.

A key property of the theorem is that it supports compositional reasoning. Compositionality is
achieved because the theorem splits the system into two parts, an open function f #i and a con-
text c, whose conditions are independent, can be proven separately, and can be reused in different
compositions. Moreover, the system can easily be decomposed into all the individual open func-
tions (rather than just two parts) by repeated application of the theorem. In fact, the third condition
below, which relates to the context, is an instance of the theorem and thus explicitly invites this
systematic decomposition.

Theorem 2 (Compositional Harmlessness Theorem) Given an expression:

system :: ∀m.C m ⇒ A→ AT m B

Here A and B are some types, and m is a type variable constrained by some type class con-
straints C that at least require m to be an instance of Monad .

We assume that system is given in terms of the following decomposition:

system ≡ c (f #i)

where c, f and i are arbitrary values of the following types (with Cf entailed by C ; again A′ and

81

B ′ are some types):

c :: ∀m.C m ⇒ (A′ → AT m B ′)→ A→ AT m B
f :: ∀m.Cf m ⇒ A′ → AT m B ′

Also, we are given two aspect environments aenv and aenv ′ of types:

aenv :: ∀m.D m ⇒ AEnv (AT m)
aenv ′ :: ∀m.D m ⇒ AEnv (AT (T m))

where T is some instance of MonadTrans and D is a type class constraint that at least requires m
to be an instance of Monad .

The given projection function:

π :: ∀m a.Monad m ⇒ T m a → m a

is a left-inverse of lift that removes the additional T effect from the monad stack T m.

If the four conditions on c and f given below hold, then we have that:

runAT aenv system ≡ π (runAT aenv ′ system)

The four conditions on c and f are:

1. Compositional weaving

∀env .runAT env (c (f #i)) ≡ runAT env c (lift ◦ runAT env ◦ (f #i))

2. Compositional projection

π ◦ runAT aenv ′ ◦ c (lift ◦ lift ◦ π ◦ runAT aenv ′ ◦ (f #i))

≡
π ◦ runAT aenv ′ ◦ c (lift ◦ runAT aenv ′ ◦ (f #i))

3. Contextual harmlessness

runAT aenv ◦ c ◦ (λg → lift ◦ g) ≡ π ◦ runAT aenv ′ ◦ c ◦ (λg → lift ◦ lift ◦ g)

4. Local harmlessness

runAT aenv ◦ (f #i) ≡ π ◦ runAT aenv ′ ◦ (f #i)

82

PROOF. The proof proceeds by straightforward equational reasoning:

runAT aenv system
≡ {-system decomposition -}

runAT aenv (c (f #i))
≡ {-compositional weaving -}

runAT aenv ◦ c (lift ◦ runAT aenv ◦ f #i)
≡ {-local harmlessness -}

runAT aenv ◦ c (lift ◦ π ◦ runAT aenv ′ ◦ f #i)
≡ {-contextual harmlessness -}
π (runAT aenv ′ ◦ c (lift ◦ lift ◦ π ◦ runAT aenv ′ ◦ f #i))
≡ {-compositional projection -}
π (runAT aenv ′ ◦ c (lift ◦ runAT aenv ′ ◦ f #i)
≡ {-compositional weaving -}
π (runAT aenv ′ (c (f #i)))
≡ {-system decomposition -}
π (runAT aenv ′ system)

We now explain and illustrate how the theorem can be used.

11.2.1 System Decomposition

The starting point is to view the system as the composition of a particular function f and a context
c. For instance, we can write our running example as c1 (f1 #i) where

f1 = f
c1 = λf x y → do r1 ← f x

r2 ← g #j y
return (r1 + r2)

Here the context c1 is just system abstracted over f #i . Note that the same system can be decom-
posed in many different ways, in order to focus on different open functions.

11.2.2 Compositional Weaving

The first condition states that weaving the composite system is equivalent to weaving the context c
and the function f separately and then composing them.

While the compositional weaving condition is formulated in terms of the specific c and f , it
comes almost for free from the three laws that runAT env satisfies (recall Section 11.1.2). To see
why, let us consider the essential ways in which c can use f . There are two permitted ways:

83

1. c does nothing with f , and thus whether f is woven or not is inconsequential.

2. c invokes f (once or more), which means embedding it in its larger computation (once or
more) with >>=, which is where the second law comes in. Note that the second law can be
used repeatedly to tackle a larger computation sequence m >>= f1 >>= . . . >>= fn .

However, there is also one way in which the condition can be violated:

3. The context c is itself weaving the open function with a custom aspect environment. One
such example is:

c = λf → lift ◦ runAT [] ◦ f

where c weaves the function with an empty aspect environment, irrespective of the aspect
environment used to weave c itself.

This illegal use of f can be avoided by introducing a measure of parametricity. Instead of
using the fixed monad transformer AT and its fixed function #i in c and f , we make c and f
parametric in the particular type and function definition. This parameterization is conveniently
achieved by imposing the AM constraint on the monad stack instead of applying the AT transformer.
It prevents c from invoking the weaving function runAT locally on f because runAT only works for
AT m ′ and not for all possible m that instantiate AM. We summarize our technique for establishing
compositional weaving in the following conjecture.

Conjecture 1 Provided that f and c have the following polymorphic types:

c :: ∀m.(C m,AM m)⇒ (A′ → m B ′)→ A→ m B
f :: ∀m.(Cf m,AM m)⇒ A′ → m B ′

the condition of compositional weaving holds.

We believe that this conjecture can be proven with logical relations, which is a rather technically
challenging task that is currently out of the scope of this work.

11.2.3 Compositional Projection

The second condition expresses that composing the projected context c and projected function f is
equivalent to projecting the composition.

This condition has a similar shape as that for compositional weaving. Hence, in the case that the
projection function π is a monad morphism, then the same solution as for compositional weaving
applies. For instance, the projection πW of the writer effect (used in the logging advice) is well-
known (and easily verified) to be a monad morphism. This means that, if the system abstracts over
the implementation of the writer effect with the type class constraint WM, then its projection is
indeed compositional.

However, it is a very strong requirement for the projection function to be a monad morphism.

84

For instance, the projection πS of the state effect is not a monad morphism:

πS 0 (get >>= λx → put (x + 1)>> get) ≡ return 1

πS 0 (get >>= λx → put (x + 1))>> πS 0 get ≡ return 0

This explains why we must be careful when adding the memo advice of Figure 11.1, which has
a memo table as its state, to our running example. If the pointcut of this advice matches both the
function f on the one hand and the function g in the context c on the other hand, then the two
uses of the advice may interfere through the shared state. For instance, the result for f 3 may
be stored in the table and later wrongly used as if it were the result for g 3. This problem is not
discovered when we consider the impact of memo on c and f separately. On the contrary, memo
is contextually and locally harmless, but globally harmful. We only discover this problem because
compositional projection does not hold. This illustrates why compositional projection is a crucial
condition.

In some cases, the use of memo in a larger system is nevertheless harmless. As we cannot take
the monad morphism route to establishing this, we need to resort to alternative techniques.

• If the woven function runAT aenv ′ ◦(f #i) does not use the projected effect, then projection
is indeed compositional. This is for instance the case when memo does not advise f . We can
formally capture this as:

∃h, lift ◦ h ≡ runAT aenv ′ ◦ (f #i)

Let us now reason about the relevant part of the left-hand side of the condition:

lift ◦ lift ◦ π ◦ runAT aenv ′ ◦ (f #i)
≡ {-assumption -}

lift ◦ lift ◦ π ◦ lift ◦ h
≡ {-π is left inverse of lift -}

lift ◦ lift ◦ h
≡ {-assumption -}

lift ◦ runAT aenv ′ ◦ (f #i)

If we plug this conclusion into the left-hand side of the compositional projection condition,
we obtain its right-hand side. In other words, the condition follows from the assumption.

• The dual assumption from the above is that the context c does not use the projected effect.
This is for instance the case when memo advises f but not c. Unfortunately, this case is not
as straightforward. While c does not directly interfere with the effect, it may indirectly create
interference by invoking f repeatedly and those invocations may interfere with one another
through their shared effect. This requires reasoning about the compatibility of an advised f
with itself. For instance, in the case of memo it is perfectly fine for multiple invocations of f
to share the memo table; in fact, that is exactly the point of memoization. A counterexample
is an advice that monitors whether a function is invoked at most n number of times, where n
is the first input its called with, and raises an error when that limit is exceeded. This advice
is perfectly fine for a function in isolation that takes n (recursive) calls, but when there are
multiple separate invocations, then the error may be triggered inadvertently.

85

Note that we can safely memoize both f and g in our example, if separate tables are used. This
amounts to using two instances of memo that each act on a different ST layer in the monad stack.
In this setup, the state of the components is isolated from each other. Hence, this scenario involves
the two classes of compositional projection discussed above.

11.2.4 Contextual Harmlessness

The third condition expresses that as far as the context c is concerned, the aspect environments
aenv and aenv ′ are indistinguishable. There are various ways in which aenv and aenv ′ can be
related for this to be true, for example:

• Unused aspects (pc, a), where the pointcut pc does not match any join point in c, can be
freely added or removed.

• Two aspects (pc1, a1) and (pc2, a2) can be reordered if they either do not match on the same
applications in c or their advices commute (a1 ◦ a2 ≡ a2 ◦ a1).

• The pointcut of an aspect can be replaced by one that matches the same join points in c.
• The advice of an aspect can be replaced by one that behaves in the same way with respect to

c.
• Multiple aspects can be replaced simultaneously by another set of aspects that together be-

have in the same way on c, redistributing the work among themselves, e.g. splitting a predi-
cate into two disjoint ones.

Note that the contextual harmlessness condition is a variant of the general theorem itself, but
on a smaller system that only consists of the context c. Hence, it can be proven by recursively
decomposing the context and invoking the general theorem on the two parts. This insight is essential
to scale up our approach from a two-function system to arbitrarily complex systems.

For instance, in the running example we can build a simpler system from c1, namely c1 (lift ◦h),
where h :: C m ⇒ A′ → m B ′ is universally quantified. This form is smaller than the original
system because it features fewer open applications; h’s type is constrained to not feature any. The
resulting system has the form:

system ′ = λx y → do r1 ← lift (h x)
r2 ← g #j y
return (r1 + r2)

which can be decomposed as system ′ = c2 (f2 #j):

f2 = g
c2 = λg x y → do r1 ← lift (h x)

r2 ← g y
return (r1 + r2)

Here we can consider the harmlessness of the extended environment aenv ′ separately for g and c2.
Note that since c2 does not contain any more open applications, contextual harmlessness is trivially
established for it.

86

11.2.5 Local Harmlessness

The fourth condition requires the harmlessness of the extended aspect environment aenv ′ with
respect to a single function seen in isolation. In our recursively decomposed example, this means
we can study the impact of aenv ′ on f and g individually.

We do not go into detail here, but devote Chapter 13 to adapting the techniques of MRI for prov-
ing this condition in our setting. These techniques involve both regular proofs based on equational
reasoning over the actual implementations of function and advice, as well as the more lightweight
parametricity-based techniques that only need to consider the types.

In this chapter we have developed the main contribution of the third part of the thesis. The
compositional harmlessness theorem precisely describes four sufficient conditions to establish that
swapping an aspect environment for another one preserves the semantics of a system. The theorem
is established in terms of an abstract monadic AOP system, which must fulfill certain characteris-
tics. In the next chapter we instantiate a simple monadic AOP model, which is a simplification of
the full-fledged model presented in the first two parts of the thesis, in order to illustrate the use of
the compositional harmlessness theorem. In a broader sense, a main challenge that remains is how
to translate—at least intuitively—the preconditions and the conclusion of the theorem, which are
rather technical and too specific to the monadic setting, to other aspect languages.

87

Chapter 12

A Simple Monadic AOP Model

In order to illustrate concrete applications of compositional reasoning about aspect interference,
we now describe a simple monomorphic monadic model of pointcut/advice AOP in Haskell. The
model is a simplification of the monadic embedding of aspects described in Chapter 3. The main
differences are that this model:

1. does not support polymorphic aspects; only functions of type Int → m Int , for some monad
m, are open to advice.

2. only has pure pointcuts, i.e. pointcuts that cannot use monadic effects.
3. uses an abstract syntax tree of computations that expose function applications as join points

and turn it into a monad transformer.
4. does not support dynamic aspect deployment; AT computations are evaluated under a fixed

aspect environment.
5. uses a more general model of tagged open weaving to specify quantification.

12.1 An Embedding of Open Applications

We implement AT as a monad transformer that captures open function applications in a syntactic
form.1 The interpreter function runAT interpretes the open applications by weaving them with the
aspect environment.

Join point model Join points represent open function application. In order not to deal with
function equality or type comparisons as discussed in Section 5.1.1, we rely on tagged applications:
pointcuts match join points based on tag equality (pcTag). Here, tags are just integers:

type Tag = Int
data Jp m a b = Jp Tag

1Our AT implementation is a close cousin of a free monad.

88

instance Monad m ⇒ Monad (AT m) where
return = AT ◦ return ◦ Return
m >>= f = AT (unAT m >>= λr → case r of

Return x → unAT (f x)
OpenApp t g x k →

return (OpenApp t g x (λy → k y >>= f)))

instance MonadTrans AT where
lift ma = AT (ma >>= λa → (return ◦ Return) a)

Figure 12.1: AT instances for the Monad and MonadTrans type classes.

pcTag t (Jp t ′) = t ≡ t ′

Note that in this simple instantiation of monadic AOP, join points only embed the tag of an open
application, and neither the applied function nor the argument.

Defining the monad transformer The AT transformer extends a given monad m with the ability
to expose some open function applications. A computation AT m a is denoted by an alternating
sequence of computations in the monad m and exposed open function applications starting with
the former.

data AT m a = AT {unAT :: m (ResultAT m a)}
data ResultAT m a

= Return a
| OpenApp Tag -- tag

(Int → AT m Int) -- function
Int -- argument
(Int → AT m a) -- continuation

The ResultAT value indicates what comes next after an m computation. Either the computation
is done, which is denoted by the Return constructor, or an open function application comes next,
denoted by the OpenApp constructor. In particular, OpenApp t g x k denotes the open application
of g to x with tag t , followed by the continuation k that proceeds the computation with the result
of the open application. Figure 12.1 shows the instances for the Monad and MonadTrans type
classes. Observe that for open applications, >>= extends the corresponding continuation k with
operation f .

Open Applications Function openApp creates the denotation of tagged open applications:

openApp t f x = AT (return (OpenApp t f x return))

Because return is the left and right identity of >>=, we use it as the continuation that proceeds
with the result of the open application. Hence, in isolation, open applications provide a semantics-

89

preserving connection point for composition through >>=. Using openApp, AT can be declared as
an instance of the AM type class:

instance Monad m ⇒ AM (AT m) where
f #t x = openApp t f x

12.2 Running AT Computations

We define the runAT interpreter function which evaluates an AT computation:

runAT aenv m = unAT m >>= go where
go (Return r) = return r
go (OpenApp t f x k) =
unAT (weave f aenv (Jp t)>>=
λwoven_f → woven_f x >>= k)>>= go

This function is defined in terms of the locally-defined go function. In case of Return r values, it
simply unwraps and returns value r . When it encounters an open application, it creates a join point
Jp t and uses the weaver to apply the matching aspects deployed in aenv . This yields the woven_f
function which is applied to argument x . The result of the application is given to continuation k ,
whose resulting computation is evaluated recursively using go.

12.3 Aspect Weaving

The weaver is defined recursively on the aspect environment as follows:

weave :: Monad m ⇒ (Int → m Int)→ AEnv m → Jp m Int Int → m (Int → m Int)
weave f [] = return f
weave f ((pc, adv) : asps) jp = weave (if pc jp then adv f else f) asps jp

For each aspect it applies the pointcut to the join point. Then it continues weaving on the rest of
the aspect environment using either adv f if the pointcut matches, or f otherwise.

12.4 Properties of AT

To exploit the general result of the previous section, we need to establish that AT is a proper aspec-
tual monad transformer that satisfies the necessary properties described in Section 11.1.2.

Lemma 1 (Monad laws for AT) AT fulfills the monad transformer laws. In addition, for any monad
m, AT m fulfills the monad laws.

90

runAT aenv (m >>=AT f)
≡ {-unfold >>=AT -}

runAT aenv (AT (unAT m >>=m λr → case r of
Return x → unAT (f x)
OpenApp t x g k → returnm (

OpenApp t x g (λy → k y >>=AT f))))
≡ {-unfold runAT and unAT ◦ AT ≡ id -}
(unAT m >>=m λr → case r of

Return x → unAT (f x)
OpenApp t x g k → returnm

(OpenApp t x g (λy → k y >>=AT f))) >>=m go
≡ {-assoc. of >>=m + distributing go over case -}
unAT m >>=m λr → case r of

Return x → unAT (f x) >>=m go
OpenApp t x g k → returnm

(OpenApp t x g (λy → k y >>=AT f)) >>=m go
≡ {-folding runAT + unAT ◦ AT ≡ id + left id + go -}
unAT m >>=m λr → case r of

Return x → runAT aenv (f x)
OpenApp t x g k → unAT (AT (returnm

(OpenApp t x g (λy → k y >>=AT f)))) >>=m go
≡ {-left id of m + folding runAT -}
unAT m >>=m λr → case r of

Return x → return x >>=m runAT aenv ◦ f
OpenApp t x g k → runAT aenv
(AT (returnm (OpenApp t x g (λy → k y >>=AT f))))

≡ {-folding >>=AT -}
unAT m >>=m λr → case r of

Return x → return x >>=m runAT aenv ◦ f
OpenApp t x g k → runAT aenv
((AT (returnm (OpenApp t x g k) >>=AT f)))

≡ {-co-induction hypothesis -}
unAT m >>=m λr → case r of

Return x →
return x >>=m runAT aenv ◦ f

OpenApp t x g k → runAT aenv
(AT (returnm (OpenApp t x g k)))
>>=m runAT aenv ◦ f

≡ {-factoring runAT aenv ◦ f from case -}
unAT m >>=m λr → (case r of

Return x → return x
OpenApp t x g k → runAT aenv
(AT (returnm (OpenApp t x g k))))
>>=m runAT aenv ◦ f

≡ {-assoc. of m -}
(unAT m >>=m λr → case r of

Return x → return x
OpenApp t x g k → runAT aenv
(AT (returnm (OpenApp t x g k))))
>>=m runAT aenv ◦ f

≡ {-unfold runAT + unAT ◦ AT ≡ id -}
(unAT m >>=m λr → case r of

Return x → return x
OpenApp t x g k →

returnm (OpenApp t x g k >>=m go))
>>=m runAT aenv ◦ f
≡ {-folding go -}
(unAT m >>=m go) >>=m runAT aenv ◦ f
≡ {-folding runAT -}

runAT aenv m >>=m runAT aenv ◦ f

Figure 12.2: Proof of the second monad morphism law for runAT.

Lemma 2 (runAT monad morphism) For any aspect environment aenv , runAT aenv is a monad
morphism. Furthermore, it is also a left inverse of lift .

The proofs proceed by straightforward equational reasoning and co-induction on the shape of
the monadic composition, and are available in Appendix A. Crucially, the proofs rely on the monad
and monad transformer laws for AT.

Given the importance of the compositionality of weaving (which corresponds to the second
law of monad morphisms), we show its proof in Figure 12.2. This law is fundamental for the
formalization of Chapter 11 and for the theorem of the following chapter. The proof consists of
folding and unfolding the definitions of runAT, its internally-defined function go, and the >>=
operation of AT; it also uses the monad laws on m, and the identity unAT ◦AT ≡ AT ◦ unAT ≡ id .
A crucial step is the use of the co-induction hypothesis to start folding the definitions.

This chapter developed a simplified monadic model of AOP in order to connect the formal results
of Chapter 11 and a simplified version of the framework presented in Part I and Part II. The main
simplifications are the lack of effectful pointcuts and the static deployment of aspects. In contrast,

91

a significant improvement that ought to be adopted in the full-fledged framework is to expose open
applications as an abstract syntax tree (similar to a free monad). Because this approach reifies
open applications, we can perform arbitrary program transformations on them. How to exploit this
facility is an immediate line of future work.

92

Chapter 13

Local Harmlessness

In Chapter 11, we have shown how the first three conditions of Theorem 2 can be met. This
chapter develops local harmlessness results using the monadic AOP model of Chapter 12. We now
discuss how local harmlessness of the updated aspect environment aenv ′ with respect to the initial
environment aenv can be established in this setting. Concretely, we must prove that:

runAT aenv ◦ (f #i) ≡ π ◦ runAT aenv ′ ◦ (f #i)

We observe that the problem of reasoning about aspect interference for an isolated function woven
by aspects is directly analogous to the work of MRI in the model of mixins. Therefore, we can
benefit from the established results of MRI in at least two ways:

• Translate AOP programs into the setting of MRI; establish the required program equivalence
in this setting, and interpret this result back into the AOP model. This approach allows us to
reuse directly all the theorems proven in the MRI model.

• Lift the reasoning techniques developed in MRI to the AOP setting, to establish similar harm-
lessness results. This path is potentially more general and avoids a translation to MRI, but it
does entail the need to re-establish all theorems proven in the MRI model in the AOP model.1

Here, we adopt the first approach, leaving the second one as a possible line of future work.

13.1 AOP-MRI Translation

We present a commutative correspondence diagram that gives a high-level overview of the chosen
technique. In this diagram, the local harmlessness condition of Theorem 2 is represented by path
(d). Instead of proving this directly, the goal is to obtain (d) by the composition of paths (a), (b)
and (c).

1Although in Part II we adapt the use of parametricity to enforce non-interference of pointcuts, advice and base
programs to the AOP model, rigorous formal results have not been established yet in the model of Chapter 3.

93

fMRI + mix π(fMRI + mix ′)

fAOP + aenv π(fAOP + aenv ′)

(a) w

(b)
≡

(c)w

(d)
≡

Starting from an AOP system composed by function fAOP and aspect environment aenv , step
(a) involves finding a function fMRI and a mixin mix , such that their composition is equivalent
to this initial system. In the same way, step (c) requires to find a mixin mix ′ equivalent to aspect
environment aenv ′. Given this, we can reuse the reasoning techniques and established results of
MRI to determine the equivalence of step (b) between fMRI composed with mix and the projection
of fMRI composed with mix ′.

A drawback of this approach is that it is not known how to perform steps (a) and (c) in a general
manner, because there are AOP programs that cannot be expressed using mixins, as illustrated later.
Still, we can prove that a connection exists for a wide family of functions and aspect environments
(Theorem 3 below).

We now briefly summarize the MRI model and prove a theorem connecting MRI to AOP. Then,
using the Fibonacci function as a concrete example, we show how to prove that the logging and
memoization aspects from Figure 11.1 are locally harmless.

13.2 Background: the MRI Framework

MRI models inheritance by the composition of mixins through open recursion. This inheritance
model is defined as (Oliveira et al., 2012):

type Open s = s → s

new :: Open s → s
new a = fix (λf → a f)

(⊕) :: Open s → Open s → Open s
a1 ⊕ a2 = λsuper → a1 (a2 super)

The type Open s represents an open component of type s . new is a fixpoint combinator that
closes, or instantiates, an open component that is potentially extended. Finally, the ⊕ operator de-
fines component composition. The following diagram (taken from (Oliveira et al., 2012)) illustrates
the inheritance model:

ZU064-05-FPR paper 20 August 2012 10:2

MRI: Modular Reasoning about Interference in Incremental Programming 5

type Open s= s→ s
new ::Open s→ s
new a= let this= a this in this
zero ::Open s
zero= id
(⊕) ::Open s→ Open s→ Open s

a1⊕a2 = λ super→ a1 (a2 super) super

Fig. 1. Basic inheritance model.

Inheritance Model Schematically, our denotational model of inheritance represents the
composition of components with open recursion as follows:

p = new (a1
super
!!⊕ a2

super

""⊕ ...

super
##⊕ an

super
$$

⊕ base)

this

%%

The open base component provides base behavior similar to a base class, and the other
mixin components a1,. . . ,an provide behavior extensions, similar to AOP advice or Scala’s
mixins. The inheritance operator ⊕ extends one component with another; extensions are
applied from right to left. Finally, the new operator closes an open component; using OOP
terminology, this operator instantiates an object p of the class a1⊕ a2⊕ ...⊕ an⊕ base.
The arrows in the diagram showwhat happens to the references during composition. The
⊕ operator instantiates the super reference of the extending component with the extended
component. In contrast, the new operator instantiates the self-reference (this) of the base
component to the entire composition.
The basis of the implementation is shown in Figure 1. The type Open s is a synonym

for a function of type s→ s representing an open component of type s. The parameter s of
this function is the self-reference and the return value is the resulting closed module. The
inheritance operator⊕ defines component composition. Composition is associative, and it
has the zero component as left and right unit, forming a monoid.2

f ⊕ zero ≡ f ≡ zero⊕ f
(f ⊕ g)⊕ h ≡ f ⊕ (g⊕ h)

The function new is a fixpoint combinator used for closing, or instantiating, an open and
potentially extended component.
There are several othermodels of inheritance. Cook (1989) exploresmany other variants.

We believe that similar results to those in this paper can be obtained for these other models.
We adopt the model of inheritance in Figure 1 because it is simple yet expressive enough

to tackle the reasoning issues at the heart of this paper. In this model, which is polymorphic

2 Open s is the monoid of endofunctions with identity and function composition; ≡ means
denotational equivalence throughout the article.

94

To create a component ⊕ instantiates super references for every extended component, and new
instantiates the self-reference this .

MRI formally captures the notion of harmlessness that has been used in Part III of this work.
Given a mixin mix and base component bse, then mix is harmless if:

π (new (mix ⊕ bse)) ≡ runI ◦ new bse

for some projection π. Here runI is the projection of the identity monad, which has no computa-
tional effect.

MRI provides two harmless mixin theorems (Oliveira et al., 2012). Using these theorems it is
formally proven that logging is harmless for any arbitrary function. It is also proven that memoiza-
tion is harmless when applied to the Fibonacci function. In the examples of next section we detail
the specific techniques used in these proofs.

13.3 Connecting MRI to AOP

There is a direct connection between an advice and a mixin, as witnessed by the types of these
entities: both type synonyms Advice m a b and Open (a → m b) denote the same type (a →
m b) → (a → m b). This reveals that any MRI mixin can be used as an advice. However the
converse is not generally true if an advice performs open applications. For instance an aspect could
trigger infinite regression by matching join points emitted on its own advice. However, if an advice
uses a type class constraint that does not entail AM (which means that it cannot perform any open
application), this cannot happen.

To connect a base function fAOP with an open recursive equivalent function, we need a stronger
constraint. Namely, we ask that fAOP is equivalent to the fixpoint of an open recursion fMRI (that
does not make use of open application) in the following way:

fAOP ≡ fix (λf → fMRI (f #t))

Putting these together, we can state a general theorem that relates MRI to AOP and eases consider-
ably the establishment of steps (a) and (c) of the correspondence diagram.

Definition 9 (AOP agnostic function) A function

f :: ∀m.C m ⇒ (A→ m B)→ (A→ m B)

is AOP-agnostic iff C is a type class constraint that entails Monad but not AM. This means that the
function does not emit join points.

Theorem 3 Given AOP-agnostic functions

fMRI :: ∀m.C m ⇒ (A→ m B)→ (A→ m B)
adv i :: ∀m.Di m ⇒ (A→ m B)→ (A→ m B)

95

and given an aspect environment

aenv = [(pcTag t1, adv 1), . . . , (pcTag tn , advn)]

we have that
runAT aenv ◦ fAOP #t ≡ new (adv ′k ⊕ . . .⊕ adv ′1 ⊕ fMRI)

where fAOP is such that

fAOP ≡ fix (λf → fMRI (f #t))

and [adv ′1, . . . , adv ′k] = [adv i | pcTag ti (Jp t) ≡ True] is the list of all advices in aenv whose
pcTag ti pointcut matches #t applications.

PROOF. The proof proceeds by equational reasoning and co-induction:

runAT aenv ◦ fAOP #t

≡ {-definition of fAOP -}
runAT aenv ◦ fix (λf → fMRI (f #t)) #t

≡ {-unfolding of the fixpoint -}
runAT aenv ◦ fMRI (fAOP #t) #t

≡ {-compositionality of weaving -}
runAT aenv ◦ fMRI (runAT aenv ◦ fAOP #t) #t

≡ {-co-induction hypothesis -}
runAT aenv ◦ fMRI (new (adv ′k ⊕ . . .⊕ adv ′1 ⊕ fMRI)) #t

≡ {-weaving -}
adv ′k ◦ . . . ◦ adv ′1 ◦ fMRI (new (adv ′k ⊕ . . .⊕ adv ′1 ⊕ fMRI))
≡ {-definition of ⊕ -}

adv ′k ⊕ . . .⊕ adv ′1 ⊕ fMRI (new (adv ′k ⊕ . . .⊕ adv ′1 ⊕ fMRI))
≡ {-folding the new fixpoint -}

new (adv ′k ⊕ . . .⊕ adv ′1 ⊕ fMRI)

The same proof can be made for any model of AOP as described in Section 11.1; one just has to
accommodate the proof according to the concrete way (in particular the ordering) in which aspects
are woven.

Example that cannot use Theorem 3 We now present an aspect-oriented implementation of
the Fibonacci function that cannot be translated into MRI by Theorem 3. In this example, taken
from (Aldrich, 2005), the function is split into a base case that simply returns 1, and an advice
that handles the recursive calls. The composed function plainFib combines the base program and
advice to provide the regular unoptimized version of Fibonacci.

plainFib n = runAT [(pcTag t , fibAdv)] (fibBase #t n)

fibBase = return 1

96

fibAOP :: AM m ⇒ Int → m Int
fibAOP n = case n of
0→ return 1
1→ return 1
→ do y ← fibAOP #t (n − 1)

x ← fibAOP #t (n − 2)
return (x + y)

plainFibAOP :: Monad m ⇒ Int → m Int
plainFibAOP = runAT [] ◦ fibAOP #t

logFibAOP :: Monad m ⇒
Int →WT String m Int

logFibAOP = runAT [(pcTag t , log ′)] ◦ fibAOP #t

memoFibAOP :: Monad m ⇒
Int → ST (Map Int Int) m Int

memoFibAOP = runAT [(pcTag t ,memo)] ◦ fibAOP #t

fibMRI :: Monad m ⇒ Open (Int → m Int)
fibMRI this n = case n of
0→ return 1
1→ return 1
→ do y ← this (n − 1)

x ← this (n − 2)
return (x + y)

plainFibMRI :: Monad m ⇒ Int → m Int
plainFibMRI = new fibMRI

logFibMRI :: Monad m ⇒
Int →WT String m Int

logFibMRI = new ◦ (log ⊕ fibMRI)

memoFibMRI :: Monad m ⇒
Int → ST (Map Int Int) m Int

memoFibMRI = new (memo ⊕ fibMRI)

Figure 13.1: Fibonacci function. Left: in the simple pointcut/advice model of Chapter 12. Right:
in the MRI setting (taken from (Oliveira et al., 2012))

fibAdv proceed n =
if (n 6 2) then proceed n

else do f1 ← fibBase #t (n − 1)
f2 ← fibBase #t (n − 2)
return (f1 + f2)

We cannot apply Theorem 3 because of the type of fibAdv . Since fibAdv performs open applica-
tions of fibBase, its type necessarily contains a type class constraint that entails AM; thus violating
the initial condition of Theorem 3. In fact, it does not seem possible to define fibAdv using mixins,
because the full aspect environment is woven upon each open application, whereas mixins can only
execute the next component using super .

Applying the theorem We now present an example, using the Fibonacci function as a concrete
value for f , on how to follow the steps of the correspondence diagram to prove the harmlessness of
the logging and memoization advices of Figure 11.1. We consider the starting environment aenv
to be empty; and illustrate the case of adding each aspect individually. Figure 13.1 presents the
Fibonacci function in the AOP and MRI models, along with their plain, logged and memoized
versions.

13.4 Harmlessness of Logging

The local harmlessness of log applied to fibAOP corresponds to the following lemma:

Lemma 3 plainFibAOP ≡ πW ◦ logFibAOP

97

PROOF. Following the commutative correspondence diagram, by composition of Lemma 4, Lemma 5
and Lemma 6.

Step (a) We must translate plainFibAOP into MRI. We choose plainFibMRI as its translation,
hence we must prove the following:

Lemma 4 plainFibAOP ≡ plainFibMRI

The proof is direct consequence of Theorem 3, using the equality

fibAOP ≡ fix (λf → fibMRI (f #t))

that can be proven by equational reasoning and induction on the integer argument.

Step (b) For the second step we need to prove:

Lemma 5 plainFibMRI ≡ πW ◦ logFibMRI

Here we benefit from the results of MRI. In MRI the local harmlessness of logging is proven for
any arbitrary component, like fibMRI ; hence it holds for this particular case (Oliveira et al., 2012).

In fact the general harmlessness of logging is an application of the harmless mixin theorem of
MRI (Oliveira et al., 2012). This theorem is proven using: (i) parametricity to ensure that the base
component cannot access the effects used by the mixin; (ii) a mixin combinator to guarantee that
super is called exactly once, and that the arguments and return values are not modified; and (iii)
the algebraic laws for monadic effects. Consequently, any mixin that satisfies this theorem is also
harmless for functions that are AOP-agnostic (Definition 9).

Step (c) Finally, we prove the equivalence between logFibAOP and logFibMRI :

Lemma 6 πW ◦ logFibAOP ≡ πW ◦ logFibMRI

Again, this is a direct consequence of Theorem 3.

13.5 Harmlessness of Memoization

Proving the harmlessness of memoization involves the same steps as that of logging. In this case
we greatly benefit from the established results of MRI, because proving step (b) is rather complex.
The issue is that, conversely to logging, memoization is not harmless in general; hence this property
must be proven for each particular function. The main difficulty of such a proof is to show that the
function maintains an invariant on the memoization table: namely, that the stored values actually
correspond to the results of the original function. In the work of Oliveira et al. (2012) this is

98

proven for fibMRI , developing a long equational reasoning proof—the Coq proof assistant is used
to manage the complexity of the proof.

It is in complex situations like this that the interest of following the steps of the AOP-MRI cor-
respondence diagram is justified. In addition, we can benefit from new results about harmlessness
of specific mixins.

This chapter was devoted to show how to fulfill the local harmlessness requirement of Theorem 2
for the particular case of our simple monadic model. In particular we sketched a general approach
for a subset of advices that can be expressed in the mixin-based model of MRI. Nevertheless, recall
that the actual fact that we needed to prove is that:

runAT aenv ◦ (f #i) ≡ π ◦ runAT aenv ′ ◦ (f #i)

Then, depending on the specific environments aenv and aenv ′ involved, and of course depending
on the specific function f , the difficulty of proving this requirement may vary greatly. Indeed, we
envision the need to use a proof assistant like Coq in order to ease the task. Finally, we believe that
establishing local harmlessness in our full-fledged model is a very interesting line of future work.
Indeed, a first challenge to address is how to address the potential interference of effectful pointcuts
with regard to the MRI notion of harmlessness.

99

Chapter 14

Related Work, Part III

We have extensively related our work to EffectiveAdvice (Oliveira et al., 2010) (Chapter 7 and
Chapter 8) and its successor, MRI (Oliveira et al., 2012) (Chapter 10 to Chapter 13). Indeed, the
work developed in this thesis is built upon these pieces of work: first, the monadic embedding of
aspects in Haskell developed in Chapter 3 is a practical programming system that can be seen as
extending EffectiveAdvice with quantification, but it does not describe how to do formal reasoning.
The model can also be regarded as an extension of Open Modules (Aldrich, 2005) that incorporates
computational effects modeled using monads. In addition, the work presented in Part III was mo-
tivated by the desire to bring the reasoning power of MRI to aspect-oriented programming with
quantification.

In the AOP literature the issues of modular reasoning and aspect interference are closely related
and in some cases intertwined; however we choose to present the relevant work in two separate
sections, according to our particular (and subjective) point of view. We start reviewing the ap-
proaches to modular reasoning and AOP (Section 14.1), as well as the proposals to reason about
aspect interference (Section 14.2).

14.1 Approaches to Modular Reasoning in AOP

In the AOP literature we identify two lines of work that mainly address the conflict between full-
blown aspect quantification and modular reasoning. On the one hand, approaches like Open Mod-
ules (Aldrich, 2005) try to protect software entities from advising. On the other hand, approaches
like execution levels (Tanter, 2010) try to limit the scope of aspects, that is, the set of join points
exposed to pointcuts of applicable aspects.

14.1.1 Protecting Modules from Aspects

We now describe Open Modules (Aldrich, 2005), aspect-aware interfaces (Kiczales and Mezini,
2005), crosscutting interfaces (Griswold et al., 2006) and join point interfaces (?).

100

Open Modules

Open Modules (OM) (Aldrich, 2005) is a module system that is both open to extension with ad-
vice and also amenable to modular reasoning. As we already described this proposal in Section 7.1,
we now describe in more detail the relation between OM and our work.

Our model significantly extends OM in two ways. First, we feature first-class polymorphic
pointcuts, aspects and advices; whereas only pointcuts are considered first-class in OM. And sec-
ond, we introduce explicit reasoning about effects by using monads. However, although our point-
cut language is more expressive, we can currently retain the modular reasoning of OM only when
restricting the pointcut language to one single pointcut, namely pcCall , just like in Aldrich’s pro-
posal.

The module system of OM is based on that of ML. Consequently, there are two fundamental
constructs in the OM module system: signatures and structures. A signature specifies a particular
interface while a structure can be seen as a particular implementation of a signature. In contrast, we
reuse Haskell’s module system to directly export first-class pointcuts. In OM pointcuts and advices
refer to specific labels, which correspond to top-level declarations inside a module structure. To
hide internal calls from external advice, OM features a sealing operation that works both at the
type level and at the level of the operational semantics of the language. At the type level, sealing a
module means that only the members in the ascribed signature are visible. At the operational level,
sealing a module hides the internal calls within a module by creating a set of internal labels, which
are used in the implementation of the module; and a set of external labels, which are used in the
external signature of the module. Because pointcuts and advice are predicated over labels instead
of being directly defined over functions, sealing a module ensures that external advices will always
refer to external labels and similarly that internal advices will refer to internal labels.

In our full-fledged model we hide internal applications following a similar approach, but exploit-
ing our notion of function identity rather than relying on labels. Given an internal function f , which
is not exported by its module, it is not possible for an external aspect to create a pcCall f pointcut
simply because f is not available (however it is possible to use a generic pcType pointcut, which
would match open applications of f , hence our restriction to pcCall). To distinguish between the
internal and external identity of a function we can simply define and export a new function g = f ,
that is computationally equivalent but has a different identity. If no pointcut is exported then we
have encoded the semantics of OM: internal advice can affect f , external advice can only affect ex-
ternal calls to g , and the module can export a pointcut to provide access to internal calls as desired.
Although both approaches are similar, Open Modules presents a special-purpose language and type
system, whereas we do not extend the module nor the type system of Haskell. Interestingly, we can
straightforwardly define a sealing transformation in the AOP model of Chapter 12 because open
applications are reified in the monadic structure. This would allow us to preserve the guarantees of
OM with quantification beyond only pcCal .

Finally, we observe that proving the equivalence of two modules in the formal setting of OM
relies on “global” reasoning with unrestricted quantification. Our formal framework (Chapter 11)
could be used to enhance that part of the reasoning.

101

Aspect-aware and crosscutting interfaces

Kiczales and Mezini (2005) also recognize that the crosscutting nature of aspects hampers mod-
ular reasoning. Moreover, they argue that strictly modular reasoning about programs written in
the presence of quantification is not feasible, and introduce a notion of aspect-aware interfaces that
rely on a global reasoning step to infer precise dependencies. Once this step is performed, extended
modular reasoning is available for a particular deployment of aspects in a system.

Similar to aspect-aware interfaces, Griswold et al. (2006) propose crosscutting interfaces (XPIs)
as a design pattern to improve modularity in the design of aspect-oriented programs in languages
like AspectJ. Unlike aspect-aware interfaces, XPIs are not inferred from a particular system deploy-
ment but are rather explicitly designed and, as along as the pattern is followed, should not require
global analysis.

The idea of XPIs raised from an experiment that used AOP to improve the design on a large
Java system. Among their findings, the authors argue that it is difficult to enforce invariants on
aspects due to the obliviousness property of AspectJ because “[...] apparently innocuous changes
or extensions to the code base could then change the matched join points, violating assumptions
the aspects made” (Griswold et al., 2006).

The essential idea of XPIs is to serve as an intermediate layer—and more specifically as a
contract— between the base code that is subject to aspects, and the concrete implementation of
advices. In particular, an XPI is a regular aspect that only defines pointcuts. These pointcuts have
a public interface and represent abstract sets of join points. The specific join points matched by the
pointcuts must be adjusted during the evolution of the software. Additionally, the XPI describes
a semantic specification by indicating pre- and post-conditions that advices must satisfy. Then,
in order to apply advice to a system aspects must not directly reference the base code—instead,
aspects must refer to the pointcuts defined in a concrete XPI.

Both Kiczales and Mezini (2005) as well as Griswold et al. (2006) evaluate their work by com-
paring two implementations of a simple figure editor. One implementation uses the traditional
AspectJ approach while the other is designed using aspect-aware interfaces or XPIs. In both cases
the authors considered certain evolution scenarios (different in each case) and concluded that their
approach helped to develop aspect-oriented software that is more robust an extensible.

In their work, Kiczales and Mezini advocate for compositional, or rather incremental, reasoning
as we do in our work. They argue that this is reflected in the implementation of AspectJ (at least
as of version 1.2 (Kiczales and Mezini, 2005)), where the weaver process constructs a weaving
plan with information similar to aspect-aware interfaces to avoid recompiling unmodified code. On
the other hand, the main drawback of XPIs is that it lacks any language-enforced mechanism. As
a design pattern, it relies on the discipline of developers and therefore cannot provide any strong
guarantees about modularity. Finally, neither of these proposals has been used to perform formal
(modular) reasoning.

Join point interfaces

? propose Join Point Interfaces (JPIs) as a means to separate base code and aspect code while
enabling separate development and modular reasoning. In their work, join point interfaces are an

102

additional layer of abstraction between base code and aspects, defined syntactically as a method
signature with return type, a formal-parameter list and a list of thrown exceptions. Advice now is
deployed on join point interfaces instead of pointcuts that directly relate to the base code. Classes
need to explicitly exhibit a join point interface declaring its signature and the corresponding point-
cut. Join points can be emitted implicitly, as in plain AspectJ, or explicitly using closure join
points (Bodden, 2011).

Bodden and colleagues implemented JPIs as an extension to AspectJ. The following example
adapted from (?) illustrates the concepts described above:

jpi void CheckingOut(double price, Customer cust);

class ShoppingSession { ...
exhibits void CheckingOut(double price, Customer c):

execution(* checkOut(..)) && args(*, price, *, c)

void checkOut(final Item item, double price, final int amount, final Customer cus) {
...

}
}

A join point interface is declared using the jpi keyword followed by a method-like signature,
including return type and the list of checked exceptions. The example defines the CheckingOut
interface that semantically represents that an item is about to be bought, in the context of a e-
commerce system.

The ShoppingSession class implements part of the business logic, in particular the checkOut
method. The exhibits declaration binds a regular AspectJ pointcut to the join point interface. Now
consider an aspect to give customers a 5% discount on their birthday. This is implemented as:

aspect Discount {
void around CheckingOut(double price, Customer c) {

double factor = c.hasBirthday()? 0.95 : 1;
proceed(price * factor, c);

}
}

where the advice uses exactly the same signature of the join point interface.

Finally, the implementation of JPIs features static and modular type checking, which supports
modular reasoning and guarantees the absence of weave-time errors. In addition, they support the
notion of generic advice (using Java generics) as well as providing a mechanism to control global
quantification.

Connection with this work The proposals described in this section advocate for the definition
of an extended module (or class) interface to tame the power of unrestricted quantification through

103

pointcuts. In our work we have followed the approach of Open Modules, but we consider that
our join point model could reflect the other approaches without much significant challenges. This
discussion also highlights part of the debate about obliviousness in the AOP community. Both
aspect-aware interfaces and XPIs keep obliviousness as a core concept in their implementation,
while trying to work around some of the issues caused by it. In contrast, Open Modules opts for
a restricted design where obliviousness is forbidden between module boundaries. Finally, JPIs
are designed as a pragmatic complement to AspectJ. Both kinds of aspects, plain AspectJ aspects
with full obliviousness and JPI-bound aspects, can co-exist in the same system. Our work does
not feature obliviousness. Open function applications are explicitly declared using the # opera-
tor; although we argue that some form of obliviousness can be achieved by using some form of
preprocessing (e.g. a macro system or a source-to-source translation from other language).

14.1.2 Limiting the Scope of Aspects

Regarding this line of work we describe the proposals of statically and dynamically scoped as-
pects (Dutchyn et al., 2006), scoping strategies (Tanter, 2008), and the topological approach of
execution levels (Tanter, 2010).

Statically and dynamically scoped aspects

AspectScheme (Dutchyn et al., 2006) is a higher-order functional aspect language that features
first-class aspects. In contrast to first-order aspect languages like AspectJ, aspects in AspectScheme
are dynamically deployed. This poses the challenge of determining the scope of aspects, in other
words, when will aspects be active or applicable to a particular join point.

AspectScheme addresses this question by allowing aspects to be either dynamically- or statically-
scoped. The (fluid-around pc adv body) expression deploys a dynamically-scoped as-
pect, with pointcut pc and advice adv, that applies to any join point emitted during the dynamic
extent of the evaluation of body. Conversely, the (around pc adv body) expression de-
ploys a statically-scoped aspect. This kind of aspect is bound to applications that are lexically
explicit in the body.1 As statically-scoped aspects may be unfamiliar to some readers, we will ex-
plain it by-example, using the original examples presented by Dutchyn et al. (2006). For instance,
consider:

(around (call open-file) trace-advice)
(open-file "vancouver"))

In this case, the aspect will apply because the application of open-file is lexically bound in the
body. The same will happen in this program:

(let ([static-traced-open (around (call open-file) trace-advice)
(lambda (f) (open-file f))])

(static-traced-open "vancouver"))

for the same reason. However, the aspect will not apply in the following case:

1This is similar to AspectJ’s within pointcut designator.

104

(let ([apply-to-vancouver (lambda (f) (f "vancouver"))])
(around (call open-file) trace-advice

(apply-to-vancouver open-file)))

because the application of open-file is in the dynamic extent of apply-to-vancouver,
instead of being lexically bound. It is important to observe that aspects bound lexically in a proce-
dure will apply in all future applications of that function—even after the evaluation of the around
expression has finished—in a way similar to per-object deployment in AspectJ.

Scoping strategies

Tanter (2008) proposed the scoping strategies mechanism as a generalization to control the
scope of dynamically-deployed aspects. Essentially, this consists in considering and controlling
three orthogonal dimensions that determine the scope of an aspect:

• c: call stack propagation, to control whether the aspect sees join points produced beyond the
activation of a new stack frame.

• d: delayed evaluation propagation, to control whether the aspect is captured in created pro-
cedural values, such as functions and objects, in order to see the join points of their future
evaluations.

• f : local join point filtering, to refine in a deployment-local manner the join points seen by
the aspect.

A deployment strategy δ(c, d, f) is defined in terms of these three dimensions. Tanter uses
AspectJ to illustrate the need for flexible scoping of aspects, and implements a prototype interpreter
that extends AspectScheme. In this prototype c, d and f are regular first-class functions, therefore
allowing total flexibility on the scoping conditions for each dimension.

In a nutshell, dynamic deployment using scoping strategies is performed using a single syn-
tactical construct deploy(a, δ(c, d, f), e). Evaluating this expression deploys the aspect (or set of
aspects) a into expression e, using the scoping determined by strategy δ(c, d, f). Scoping strate-
gies go beyond dynamic and lexical scoping, as proposed in AspectScheme, and can express a full
continuum between these two extremes.

Topological Scoping of Aspects

In subsequent work Tanter addresses the issue of infinite regression of aspects. Loosely speak-
ing, this problem happens when an aspect advises one of its own join points, triggering an infinite
loop. As a solution Tanter proposed execution levels, which we briefly described in Section 9.4.
Later, Tanter et al. (2012) proposed the more general membrane model for AOP. These proposals
add a topological dimension to control the scope of aspects, because the propagation of join points
now flows between nodes in a graph. In execution levels the graph follows a strictly linear ordering,
whereas in the membrane model the graph can be arbitrary. The fundamental idea behind topolog-
ical scoping is that the place of execution (i.e. the level or the membrane) in which a join point
is emitted is a dynamically-scoped property of execution, instead of being bound to a static code
entity.

105

pc()

..move(..)..

call

pcexec

..setX(..)..

call

ctx
adv(..ctx..)

advexec

..before.. (proceed p) ..after..

Figure 14.1: Execution levels in action: pointcut and advice are evaluated at level 1, proceed
goes back to level 0 (from (Tanter, 2010))

Execution levels A program computation is structured into levels. Aspects deployed at level n
only observe join points from level n− 1. In turn, the computation of an aspect (i.e. the evaluation
of its pointcuts and advice) is reified as join points visible at level n + 1. This way aspects cannot
match their own join points, thus avoiding this kind of infinite regression. By default, the execution
level changes only as a consequence of the weaving process. Finally, the semantics of execution
levels guarantee that evaluating the original computation, which corresponds to the last proceed
call in an advice chain, is performed at its original level.

Figure 14.1 describes the default behavior of execution levels in the context of a figure editor in
AspectJ. First, the base code evaluates the method move, which emits a call join point at level 1.
An aspect deployed at level 1 evaluates its pointcut against the join point. The join points emitted
by the pointcut are depicted as pcexec, and are emitted at level 2. After the pointcut accepts the
join point, the advice of the aspect is evaluated. Potentially, the pointcut exposes some context
ctx to the advice. In turn, advice evaluation also emits join points, denoted as advexec, at level
2. Finally, when the advice calls the original computation through proceed, the level is shifted-
down to that of the original computation computation, namely, to level 0. Join points generated
during the evaluation of the original computation, such as a call to setX, are emitted at level 1.

The default semantics of execution levels avoid aspect regression but are inflexible. In some
cases it may be required to expose advice execution to aspects that observe base level computation.
To provide flexibility to developers, Tanter proposed explicit level-shifting operators: up and down.
Shifting an arbitrary expression using up or down moves its computation one level above or below,
affecting the visibility of its join points. With these operators programmers can specify the level
at which computation is performed, according to specific needs. A refined proposal including a
formal proof of how execution levels avoid a certain class of infinite regression has been recently
published (Tanter et al., 2014).

Membranes for AOP As a generalization of execution levels, Tanter et al. (2012) proposed
the model of programmable membranes for AOP (briefly described in Section 9.4). The idea of
the membrane model for AOP was born from the need to generalize execution levels to different

106

topologies. Instead of a linear or tower-like structure like in execution levels, the membrane model
features a membrane topology, which is an arbitrary graph with membranes as vertices and an
advising relation as edges.

Aspects are registered in a given membrane, and their computation (pointcuts, advice) happens
inside that membrane, and is only visible to the advising membranes. We recently developed
a prototype implementation of membranes (Figueroa et al., 2013) in order to informally assess
the impact of the model with respect to aspect interference. A simple model of membranes has
also been included in the PHANtom language (an AOP language for Pharo Smalltalk) (Fabry and
Galdames, 2014). Unlike execution levels, the design and development of the membrane model
has not stabilized yet, and is a potential direction for future work.

Connection with this work Regarding the scope of aspects in our full-fledged model, we have
presented dynamic deployment at the top level only. Deployed aspects behave like dynamically-
scoped aspects, except that they extend to the whole evaluation of the program rather than to
the scope of a particular expression. Because our framework is extensible with respect to as-
pect (un)deployment, we can easily implement the scoping mechanisms described in this section.
Indeed, we have already shown in Section 9.4 how to modularly implement the semantics of ex-
ecution levels by defining a custom monad transformer. In a related publication (Figueroa et al.,
2013) we have also implemented the semantics of the membrane model. Therefore, the modular
implementation of these scoping mechanisms serve as evidence in favor of our claims regarding
the extensibility of our framework as well as its use as a tool for experimenting with novel aspect
semantics.

Regarding our model for compositional reasoning, we feature only static deployment of aspects
because otherwise weaving is not compositional (Section 11.1.2). In order to support dynamic
deployment we would need to reason statically about the static fragments between deployments.
We believe this approach will allow us to reason compositionally regardless of the deployment
mechanism in use.

14.2 Reasoning about Interference in AOP

In addition the work described above, there is a vast literature which specifically address inter-
ference analysis in the setting of AOP. Here, we only discuss the most directly related work; an
extensive and recent review of the area, which also covers reasoning techniques in functional,
object-oriented, and feature-oriented programming can be found in (Oliveira et al., 2012).

Interference of stateful aspects

A stateful aspect (Douence et al., 2002) is an aspect that is defined in terms of a sequence of
join points during program execution, instead of a single join point. The aspect itself is defined as
a finite-state machine, whose state changes upon matching the next join point of its corresponding
sequence. Because stateful aspects can evolve according to the whole story of execution, they are
specially well-suited for tasks such as a security or error detection.

107

Regarding the interaction between stateful aspects, Douence et al. (2004) present a formal ap-
proach to establish that two stateful aspects commute, and in that sense do not interfere. Their
work, specific to the state effect, is also based on equational reasoning, but no theorem is stated. In-
stead an algorithm checks the cases where aspects are independent, leaving conflicts to be resolved
by the programmer. Conflicts are resolved using specific composition or adapter operators.

Observers and Assistants

A well-known situation of non-interference has been captured by Clifton and Leavens (2002) as
observers. Similar to augmentation advice, observers do not change the behavior of a module. On
the other hand, assistants are aspects that are explicitly allowed to interfere with the specification
of a module. Assistants must be explicitly accepted by a module through an accepts declaration.
This declaration must refer to an aspect using its fully qualified name. In our work, assistants
can be related to protected pointcuts. The difference is that protected pointcuts accept any advice
that conforms to their restrictions, whereas with assistants we need to fully known in advance the
identity of the aspect that is accepted.

Later, Clifton, Leavens, and Noble (2007) proposed an extension of AspectJ with annotations
to control two forms of interference on control and heap effects. The correctness of annotations is
checked using a type-and-effect system. To achieve a similar separation of the monad stack we have
used the parametricity-based techniques of EffectiveAdvice, as well as monad views (Chapter 8).

Intraprocedural analyses

Rinard et al. (2004) present a classification for different kinds of advice, depending on their
control-flow and data-flow properties. They also present automatic program analyses for AspectJ
that report about the interactions between aspects and a system. However no proofs are given that
the analyses are actually correct.

As we described before (Section 7.4), the kinds of advice based on their control flow behavior
are: augmentation, replacement, narrowing and combination advice. Regarding computational
effects, the analyses consider whether aspects and base code share access to a field. Besides writing
and reading to a field, which corresponds to the state effect, the authors use the notion of abstract
fields to denote other actions that are externally visible. Quoting from (Rinard et al., 2004), the
kinds of effectful interactions between advice and method are:

• Orthogonal: The advice and method access disjoint fields.
• Independent: Neither the advice nor the method may write a field that the other may read or

write.
• Observation: The advice may read one or more fields that the method may write but they

are otherwise independent.
• Actuation: The advice may write one or more fields that the method may read but they are

otherwise independent.
• Interference: The advice and method may write to the same field.

In our we have already related to the classification with respect to control flow behavior, follow-
ing EffectiveAdvice (Oliveira et al., 2010). In our work, these characterizations can be determined
by the granularity of the type classes related to monadic effects. For example, the standard SM

108

class defines both the get and put method, which makes it difficult to reason about shared access.
Indeed, Oliveira et al. (2012) address this issue by redefining SM in terms of two separate classes,
one for each operation.

The main difference between our approach and that of Rinard and colleagues is that we aim to
statically enforce a certain kind of interaction, while their purpose is to identify and inform develop-
ers about the behavior of an already composed system. Finally, an informal idea of compositional
reasoning is considered in this work. By knowing the kind of interaction of a specific aspect added
to a system developers can focus their reasoning only into the potentially problematic interactions
caused by the new aspect.

Harmless advice

Dantas and Walker (2006) define an object calculus extended with harmless advice. Unlike
regular aspect-oriented advice, harmless advice can only change the termination behavior of a
program and perform I/O. Therefore, harmless advice presents a weak non-interference property:
either it changes the termination behavior, or the final result is not affected by advice. They argue
that under the restrictions of harmlessness, aspect-oriented advice can still perform many of its
characteristic applications: profiling, invariant checking and program monitoring. As a case study,
the authors ported a set of security policies originally implemented for Java and found that only
one policy, which limited the sending rate of data in the network, was not harmless.

Theoretically, Dantas and Walker developed a typed lambda calculus with explicitly labeled
control-flow points and with advice; following the calculus presented by Walker et al. (2003).
Non-interference is enforced by a type and effect system based on a lattice of protection domains.
Similar to systems for information flow, the idea is that if p < q in the protection domain lattice,
then advice in domain p cannot interfere with computation in domain q. In our we used the notion
of non-interference defined in MRI (Oliveira et al., 2012), which subsumes the notion of Dantas
and Walker.

Translucid contracts

Ptolemy (Rajan and Leavens, 2008) is an object-oriented and AO-like language that uses event
types, features explicit announcement of events, and where handlers can react upon events in a
manner similar to AOP advice. Event types abstract the occurrence of particular events in a system,
can expose context through bound variables, and can constrain the behavior of handlers through
blackbox contracts.

Bagherzadeh et al. (2011) proposed translucid contracts for Ptolemy as a mechanism to specify
the control-flow behavior of handlers—which was not possible using just blackbox specifications.
Based on structural refinements, a translucid contract is a template-like algorithm that abstractly
describes the behavior expected from concrete handlers. The authors show how the categories of
advice related to control flow defined by Rinard et al. (2004) can be specified using translucid
contracts. Additionally, they show a small example to argue that translucid contracts are strictly
more expressive that those categories.

A core feature of translucid contracts is that they support modular verification. This is done by
combining a static verification step in the type checking phase of the compiler, which checks that

109

handlers are actual refinements of the translucid contract, with certain dynamic runtime checks that
are required due to some dynamic deployment features of their language.

Our work is fairly similar to that of Ptolemy and translucid contracts. Both approaches feature
explicit announcement of join points (resp. events). Also, both translucid contracts and protected
pointcuts serve as an external specification to which external advices or handlers must conform.
Moreover, these specifications are based on types: a translucid contract is bound to an event type,
and the type of a protected pointcut directly represents the restrictions. We believe that the model
of tagged function applications (Chapter 12) can be designed to closely represent the approach of
event types as implemented in Ptolemy.

Regarding the specification of control flow behavior, both approaches can at least express the
categories of Rinard et al. (2004). Also, in their work Bagherzadeh et al. (2011) recognize the
similarity between translucid contracts and EffectiveAdvice: “Their work shares commonalities
with ours in terms of explicit interfaces having more expressive contracts to state and enforce
the behavior of interactions. However, it is difficult to adapt their ideas built upon their non-AO
core language [...] as they do not support quantification” (Bagherzadeh et al., 2011). It is not
clear however which approach is more expressive. An advantage of our approach is that protected
pointcuts can also impose restrictions on the computational effects that advices can use.

Formal verification of aspects

Starting from his pioneering work on superposition for distributed systems (Katz, 1993), Katz
(2006) has later refined his work to give a classification of aspects. He distinguishes three kinds of
classes of temporal behavior: spectative superposition (that amounts to harmlessness), regulative
superposition (that can modify which actions occur, but cannot change the computation performed
by an individual action) and invasive superposition (that can change anything). Inspired by these
categories, Djoko Djoko et al. (2006) have recently proposed to capture observer, aborter and con-
finer aspects directly in the language under consideration. Namely for each category, they define a
specific aspect language with the property that any aspect written in that language belongs to the
category.

Recently, Disenfeld and Katz (2013) defined a compositional model checking method for events
and aspects specification using temporal logic on event detection. The technique is used to detect
interference in systems where aspects may be activated during the execution of other aspects.

In a similar approach, Krishnamurthi et al. (2004) also present a technique for modular verifi-
cation of aspects. Given a set of temporal logic properties that must be satisfied along with a fixed
set of pointcuts, they generate sufficient conditions on the pointcuts themselves to enable modular
verification.

110

Part IV

Conclusions

111

Chapter 15

Contributions

This chapter briefly reviews the main contributions of this thesis. To summarize, this thesis pre-
sented two main original contributions:

1. A lightweight, full-fledged, typed, and monadic embedding of the pointcut/advice model of
aspect-oriented programming in Haskell.

2. A general theorem of compositional harmlessness, proved for an abstract monadic AOP
framework.

We now discuss in more detail the specific contributions embodied in each of these two items.

A Full-fledged Monadic Embedding of Aspects

Our first main contribution is the development of a novel approach to embed aspects in a existing
language. We exploit monads and the Haskell type system to define a typed monadic embedding
that supports both modular language extensions and (informal) reasoning about effects with point-
cut/advice aspects.

A core specific contribution is the proof that type soundness follows from our design, despite
using a potentially unsafe type coercion. Although the use of anti-unification for typing aspects is
not novel (cf. AspectML), it encompasses an important contribution of our work. First, to the best
of our knowledge, this is the first anti-unification algorithm that works statically (at compile time)
on types themselves. This is done exploiting Haskell type classes as a means to perform type-level
computation. Second, the ability to perform type-level anti-unification is crucial in avoiding the
development of a special purpose or ad-hoc type system (either from scratch or as an extension).
Because we use the plain Haskell type system, our library is potentially easier to maintain through
future iterations of the Haskell language.

Another specific contribution is that we reconcile the flexibility of dynamically-typed aspect
languages, like AspectScheme and AspectScript, in particular first-class aspects, pointcuts and ad-
vices, and user-defined pointcuts; with the guarantees of statically typed languages like AspectML.

112

Moreover, compared to other approaches to statically-typed polymorphic aspect languages, the pro-
posed embedding is more lightweight, expressive, extensible, and amenable to interference analy-
sis.

An interesting point that reflects the tradeoff between expressiveness and safety is the definition
of the pointcut language. On the one hand, allowing user-defined pointcuts brings the flexibility
of dynamic aspect languages, but entails the responsibility of proving their soundness in a case-
by-case basis. On the other hand, we can ensure pointcut safety by providing only a fixed set of
predefined safe pointcuts and logical combinators, as is done in AspectML (Dantas et al., 2008).
In our design we opted for the former because we believe that its benefits far outweighs its cost,
in particular when considering our framework as a research tool to experiment with novel aspect
semantics. In addition we consider that this approach is compatible with the design philosophy
of Haskell to provide “escape hatches”, like unsafeCoerce, in order to go beyond what the type
system can currently prove as safe.

Additionally, our model can be regarded as the marriage of Open Modules with EffectiveAdvice.
On the one hand, we can use the standard module system of Haskell to present a public interface,
while still allowing internal aspects (although for now it is limited to pcCall pointcuts, just like in
Open Modules). On the other hand we can use the advice combinators from EffectiveAdvice in
order to restrict the behavior of advice. Our proposal of protected pointcuts neatly encompasses
both approaches by allowing developers to present a protected interface for external advising.

Finally, we have illustrated how to exploit the capability to implement modular language exten-
sions. We believe that our model can serve as a vehicle for research into specific aspect semantics
without the burden of developing a full-blown language from scratch. Moreover, all reasoning tech-
niques or theorems developed in the monadic setting are immediately available to these language
extensions, without any cost to researchers.

A Framework for Compositional Interference Reasoning

In the pointcut/advice model of aspect-oriented programming, unrestricted quantification through
pointcuts forces global reasoning. We show that such global reasoning can be compositional. Com-
positionality is crucial for formal reasoning to scale up to large systems; equivalence proofs are hard
to develop, so they should be partially reused as much as possible when a system evolves. We de-
velop a framework for compositional reasoning about interference, using monads to express and
reason about effects in a pure functional setting.

We introduce a general equivalence theorem that relies on four sufficient conditions—namely
compositional weaving, compositional projection of effects, contextual and local harmlessness—
that can be proven and reused independently. We demonstrate how the framework can be used to
reason about a variety of scenarios related to the evolution of aspect-oriented programs.

113

Chapter 16

Perspectives

Based on the limitations of our work and some ideas originated through its development, we now
outline several potential directions for future research.

Regarding AOP and MRI

The first and most direct line of work is to scale the expressiveness of the model defined in Part III
to that of the full-fledged model of Parts I and II, while preserving the reasoning results established
in Chapter 11. Because MRI does not features quantification, this probably requires the adaptation
of the techniques used in MRI to address effectful pointcuts.

Another line of work involving MRI was described before in Chapter 13. Recall that to prove
local harmlessness we opted to translate AOP programs into the MRI setting, rather than lift the
MRI results directly to our AOP model. This explicitly limits the applicability of our framework,
in particular Theorem 3, to advices which can expressed as a mixin. Hence it is not possible
yet to directly reuse our results in aspect semantics that allow aspects to advice other aspects.
Second, the statement of Theorem 3 requires a suitable fMRI function that—we conjecture—might
be systematically derived from the corresponding fAOP function. In this situation it would be useful
to rephrase the theorem in terms of the aspect model in order to avoid work that might be tedious
or error prone. Finally, further investigation on how to apply the results from MRI directly into the
AOP setting may yield new and interesting research questions related to the nature of quantification
and its interaction with effects.

Mechanization of the Model

To be stricter in the formalization of our model and our proofs, we are interested in describing the
model of Part III in the Coq proof assistant. A reason to choose Coq, besides personal preference,
is to benefit from the recent formalization of monad transformers by Delaware et al. (2013).

114

Modular Reasoning

A promising line of future research is to study means to strengthen compositional reasoning to
achieve modular reasoning under certain scenarios. For instance, our definition of protected point-
cuts (Section 7.3) has yet to be formalized. Additionally, because, ultimately, unrestricted quan-
tification is incompatible with modular reasoning, it is appealing to combine the coarse-grained
modular reasoning provided by Open Modules (Aldrich, 2005) with our compositional reasoning
techniques for reasoning about equivalence of modules.

Reasoning About Language Extensions

Chapter 9 shows how to modularly define new aspect semantics, in particular execution levels. It
would be interesting to exploit our framework for compositional reasoning in order to establish
formal properties of such extensions. For example, in the case of execution levels it is proven that
certain kinds of loops are avoided by default (Tanter et al., 2014); this is proven in the setting of
a core calculus based on small-step operational semantics. It would be interesting to compare the
development of a similar proof in our setting, using equational reasoning and parametricity.

Another interesting point is related to the membrane semantics for AOP. In previous work we
informally suggested that the membrane model in combination with the control-flow combinators
(Section 7.4) were sufficient to avoid a large range of scenarios of aspect interference (Figueroa
et al., 2013). This can be now formalized in the reasoning framework developed in this work.

Handling of the Monadic Stack

In Chapter 8 we illustrated that the handling of the monadic stack was crucial to establish non-
interference properties between components in a system. We also proposed to use monad views as
a potential solution to some of these issues. However there is a gap between the specification of
monad views and the formal results established in MRI: namely, the parametricity-based theorems
that underlie the proofs of MRI have not been established for monad views. We believe this could
be a fruitful line of future work that goes beyond aspect-oriented programming.

Anti-unification with Subtyping

The main theoretical result of Part I is to show that by using a type-level anti-unification algorithm
we can ensure the type safety of pointcut/advice pairs. A particular limitation of this algorithm is
that it does not take into account type class constraints, therefore the least general type of two types
whose constructors do not match is just an unbounded type variable.

However, in a general setting, the real shortcoming is that anti-unification does not take into

115

account the subtyping relation of the types in a system (the type class hierarchy in the case of
Haskell). Ideally, by taking the type hierarchy into account, a novel anti-unification algorithm
could derive a least general type that is more interesting and useful than just a type variable. This
line of work appears to be closely related to the type system proposed in StrongAspectJ (De Fraine
et al., 2008).

Connection with Type-and-effect Systems

The connection between monads and type-and-effect systems is well known (Wadler, 1998). It may
be fruitful to establish the correspondence between our monadic model of aspects and a type-and-
effect systems. Moreover, and related also to the handling of the monadic stack, we are interested
in investigating the connection between monads and type-and-capabilities systems as proposed by
Pottier (2013).

Compositional Reasoning for AspectJ

From the practitioners’ point of view it can be argued that our compositional harmlessness the-
orem is too specific to Haskell and to the monadic setting. It remains to be seen how we can
translate the results, or at least the intuitions, behind our development to a mainstream aspect lan-
guage like AspectJ. In particular we believe that the four preconditions of the theorem may be
incorporated as heuristics for the visualization of aspects in a system, for example as developed in
AspectMaps (Fabry et al., 2014).

Empirical Evaluation of Crosscutting Concerns in Haskell

Because Haskell is used not only for research but also for development in the software industry,
we are interested in performing an empirical study of whether aspects can improve off-the-shelves
Haskell software. To this end we plan to analyze (part of) the Hackage software repository. Hack-
age is the de-facto repository for open source software written in Haskell, featuring over 5000 pack-
ages written by over 1000 people. As a first step we plan to use existing aspect-mining techniques
(e.g. those surveyed by Kellens et al. (2007)) to identify the prevalence of crosscutting concerns in
Haskell packages. Then, we would like to perform some case studies comparing the original and
AO-refactored versions of some subset of software packages.

116

Bibliography

ALDRICH, J. 2005. Open modules: Modular reasoning about advice. In Proceedings of the 19th
European Conference on Object-Oriented Programming (ECOOP 2005), A. P. Black, Ed. Num-
ber 3586 in Lecture Notes in Computer Science. Springer-Verlag, Glasgow, UK, 144–168.

AOSD 2008 2008. Proceedings of the 7th ACM International Conference on Aspect-Oriented
Software Development (AOSD 2008). ACM Press, Brussels, Belgium.

AOSD 2010 2010. Proceedings of the 9th ACM International Conference on Aspect-Oriented
Software Development (AOSD 2010). ACM Press, Rennes and Saint Malo, France.

AOSD 2011 2011. Proceedings of the 10th ACM International Conference on Aspect-Oriented
Software Development (AOSD 2011). ACM Press, Porto de Galinhas, Brazil.

ARACIC, I., GASIUNAS, V., MEZINI, M., AND OSTERMANN, K. 2006. An overview of CaesarJ.
In Transactions on Aspect-Oriented Software Development. Lecture Notes in Computer Science
Series, vol. 3880. Springer-Verlag, 135–173.

ASSAF, A. AND NOYÉ, J. 2008. Dynamic AspectJ. In Proceedings of the 4th ACM Dynamic
Languages Symposium (DLS 2008). ACM Press, Paphos, Cyprus.

AVGUSTINOV, P., CHRISTENSEN, A. S., HENDREN, L., KUZINS, S., LHOTÁK, J., LHOTÁK, O.,
DE MOOR, O., SERENI, D., SITTAMPALAM, G., AND TIBBLE, J. 2006. abc: an extensible
AspectJ compiler. In Transactions on Aspect-Oriented Software Development. Lecture Notes in
Computer Science Series, vol. 3880. Springer-Verlag, 293–334.

BAGHERZADEH, M., RAJAN, H., LEAVENS, G. T., AND MOONEY, S. 2011. Translucid contracts:
Expressive specification and modular verification for aspect-oriented interfaces. See AOSD 2011
(2011).

BOCKISCH, C., SEWE, A., MEZINI, M., AND AKŞIT, M. 2011. An overview of alia4j: An
execution model for advanced-dispatching languages. J. Bishop and A. Vallecillo, Eds. Springer-
Verlag, Berlin, Heidelberg, 131–146.

BODDEN, E. 2011. Closure joinpoints: Block joinpoints without surprises. See AOSD 2011
(2011), 117–128.

CARDELLI, L. AND WEGNER, P. 1985. On understanding types, data abstraction, and polymor-
phism. ACM Computing Surveys 17, 4, 471–523.

117

CLIFTON, C. AND LEAVENS, G. T. 2002. Observers and assistants: A proposal for modu-
lar aspect-oriented reasoning. In Proceedings of the 1st Workshop on Foundations of Aspect-
Oriented Languages (FOAL 2002), G. T. Leavens and R. Cytron, Eds. Number 02-06 in Techni-
cal Report. Department of Computer Science, Iowa State University.

CLIFTON, C., LEAVENS, G. T., AND NOBLE, J. 2007. MAO: Ownership and effects for more
effective reasoning about aspects. In Proceedings of the 21st European Conference on Object-
oriented Programming (ECOOP 2007), E. Ernst, Ed. Number 4609 in Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin, Germany, 451–475.

DANTAS, D. S. AND WALKER, D. 2006. Harmless advice. In Proceedings of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2006). ACM
Press, Charleston, South Carolina, USA, 383–396.

DANTAS, D. S., WALKER, D., WASHBURN, G., AND WEIRICH, S. 2008. AspectML: A poly-
morphic aspect-oriented functional programming language. ACM Transactions on Programming
Languages and Systems 30, 3, Article No. 14.

DE FRAINE, B., SÜDHOLT, M., AND JONCKERS, V. 2008. StrongAspectJ: flexible and safe
pointcut/advice bindings. See AOSD 2008 (2008), 60–71.

DE MEUTER, W. 1997. Monads as a theoretical foundation for aop. In In International Workshop
on Aspect-Oriented Programming at ECOOP. Springer-Verlag, 25.

DELAWARE, B., EN TOM SCHRIJVERS, S. K., AND D. S. OLIVEIRA, B. C. 2013. Modular
monadic meta-theory. In Proceedings of the 18th ACM SIGPLAN Conference on Functional
Programming (ICFP 2013). ACM Press, Boston, MA, USA.

DISENFELD, C. AND KATZ, S. 2013. Specification and verification of event detectors and re-
sponses. See Kinzle (2013).

DJOKO DJOKO, S., DOUENCE, R., FRADET, P., AND LE BOTLAN, D. 2006. CASB: Common
aspect semantics base. Tech. Rep. AOSD-Europe Deliverable D41, AOSD-Europe-INRIA-7,
INRIA, France.

DOUENCE, R., FRADET, P., AND SÜDHOLT, M. 2002. A framework for the detection and resolu-
tion of aspect interactions. In Proceedings of the 1st ACM SIGPLAN/SIGSOFT Conference on
Generative Programming and Component Engineering (GPCE 2002), D. Batory, C. Consel, and
W. Taha, Eds. Lecture Notes in Computer Science Series, vol. 2487. Springer-Verlag, Pittsburgh,
PA, USA, 173–188.

DOUENCE, R., FRADET, P., AND SÜDHOLT, M. 2004. Composition, reuse and interaction analysis
of stateful aspects. See Lieberherr (2004), 141–150.

DOUENCE, R., FRADET, P., AND SÜDHOLT, M. 2005. Trace-based aspects. In Aspect-Oriented
Software Development, R. E. Filman, T. Elrad, S. Clarke, and M. Akşit, Eds. Addison-Wesley,
Boston, 201–217.

DOUENCE, R., MOTELET, O., AND SÜDHOLT, M. 2001. A formal definition of crosscuts. In

118

Proceedings of the 3rd International Conference on Metalevel Architectures and Advanced Sep-
aration of Concerns (Reflection 2001), A. Yonezawa and S. Matsuoka, Eds. Lecture Notes in
Computer Science Series, vol. 2192. Springer-Verlag, Kyoto, Japan, 170–186.

DUTCHYN, C., TUCKER, D. B., AND KRISHNAMURTHI, S. 2006. Semantics and scoping of
aspects in higher-order languages. Science of Computer Programming 63, 3, 207–239.

EKMAN, T. AND HEDIN, G. 2007. The JastAdd extensible Java compiler. In Proceedings of the
22nd ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 2007). ACM Press, Montreal, Canada, 1–18. ACM SIGPLAN Notices,
42(10).

ERNST, E., Ed. 2014. Proceedings of the 13th International Conference on Modularity. ACM
Press, Lugano, Switzerland. To appear.

FABRY, J. AND GALDAMES, D. 2014. PHANtom: a modern aspect language for Pharo Smalltalk.
Software—Practice and Experience 44, 4, 393–412.

FABRY, J., KELLENS, A., DENIER, S., AND DUCASSE, S. 2014. AspectMaps: Extending Moose
to visualize AOP software. Science of Computer Programming 79, 1, 6–22.

FIGUEROA, I., SCHRIJVERS, T., TABAREAU, N., AND TANTER, É. 2014. Compositional reason-
ing about aspect interference. See Ernst (2014). To appear.

FIGUEROA, I., TABAREAU, N., AND TANTER, É. 2013. Taming aspects with monads and mem-
branes. In Proceedings of the 12th Workshop on Foundations of Aspect-Oriented Languages
(FOAL 2013). ACM Press, Fukuoka, Japan, 1–6.

FIGUEROA, I., TABAREAU, N., AND TANTER, É. 2014. Effective Aspects: A typed monadic
embedding of aspects. 8400, 145–192.

FIGUEROA, I. AND TANTER, É. 2011. A semantics for execution levels with exceptions. In
Proceedings of the 10th Workshop on Foundations of Aspect-Oriented Languages (FOAL 2011).
ACM Press, Porto de Galinhas, Brazil, 7–11.

FIGUEROA, I., TANTER, É., AND TABAREAU, N. 2012. A practical monadic aspect weaver. See
FOAL (2012), 21–26.

FILMAN, R. E. AND FRIEDMAN, D. P. 2000. Aspect-oriented programming is quantification and
obliviousness. Tech. rep.

FOAL 2012. Proceedings of the 11th Workshop on Foundations of Aspect-Oriented Languages
(FOAL 2012). ACM Press, Potsdam, Germany.

GRISWOLD, W. G., SULLIVAN, K., SONG, Y., SHONLE, M., TEWARI, N., CAI, Y., AND RAJAN,
H. 2006. Modular software design with crosscutting interfaces. IEEE Software 23, 1, 51–60.

HOFER, C. AND OSTERMANN, K. 2007. On the relation of aspects and monads. In Proceedings
of AOSD Workshop on Foundations of Aspect-Oriented Languages (FOAL 2007). 27–33.

119

HOFFMAN, K. AND EUGSTER, P. 2007. Bridging Java and AspectJ through explicit join points.
In Proceedings of the 9th International Symposium on Principles and Practice of Programming
in Java. ACM Press, 63–72.

JONES, M. P. 2000. Type classes with functional dependencies. In Proceedings of the 9th Euro-
pean Symposium on Programming Languages and Systems. Number 1782 in Lecture Notes in
Computer Science. Springer-Verlag, 230–244.

KATZ, S. 1993. A superimposition control construct for distributed systems. ACM Transactions
on Programming Languages and Systems 15, 2, 337–356.

KATZ, S. 2006. Aspect categories and classes of temporal properties. In Transactions on Aspect-
Oriented Software Development. Lecture Notes in Computer Science Series, vol. 3880. Springer-
Verlag, 106–134.

KELLENS, A., MENS, K., AND TONELLA, P. 2007. A survey of automated code-level aspect
mining techniques. Transactions on Aspect-Oriented Software Development, 143–162.

KICZALES, G., HILSDALE, E., HUGUNIN, J., KERSTEN, M., PALM, J., AND GRISWOLD, W.
2001. An overview of AspectJ. In Proceedings of the 15th European Conference on Object-
Oriented Programming (ECOOP 2001), J. L. Knudsen, Ed. Number 2072 in Lecture Notes in
Computer Science. Springer-Verlag, Budapest, Hungary, 327–353.

KICZALES, G., IRWIN, J., LAMPING, J., LOINGTIER, J., LOPES, C., MAEDA, C., AND MEND-
HEKAR, A. 1996. Aspect oriented programming. In Special Issues in Object-Oriented Program-
ming. Max Muehlhaeuser (general editor) et al.

KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C., LOPES, C. V., LOINGTIER, J.-
M., AND IRWIN, J. 1997. Aspect-oriented programming. In Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP 97), M. Akşit and S. Matsuoka, Eds.
Lecture Notes in Computer Science Series, vol. 1241. Springer-Verlag, Jyväskylä, Finland, 220–
242.

KICZALES, G. AND MEZINI, M. 2005. Aspect-oriented programming and modular reasoning. In
Proceedings of the 27th international conference on Software engineering (ICSE 2005). ACM
Press, St. Louis, MO, USA, 49–58.

KINZLE, J., Ed. 2013. Proceedings of the 12th International Conference on Aspect-Oriented Soft-
ware Development (AOSD 2013). ACM Press, Fukuoka, Japan.

KRISHNAMURTHI, S., FISLER, K., AND GREENBERG, M. 2004. Verifying aspect advice mod-
ularly. In Proceedings of the 12th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE-12). 137–146.

LEIJEN, D. AND MEIJER, E. 1999. Domain specific embedded compilers. In Proceedings of the
2nd USENIX Conference on Domain-Specific Languages, T. Ball, Ed. 109–122.

LIANG, S., HUDAK, P., AND JONES, M. 1995. Monad transformers and modular interpreters. In
Proceedings of the 22nd ACM Symposium on Principles of Programming Languages (POPL 95).

120

ACM Press, San Francisco, California, USA, 333–343.

LIEBERHERR, K., Ed. 2004. Proceedings of the 3rd ACM International Conference on Aspect-
Oriented Software Development (AOSD 2004). ACM Press, Lancaster, UK.

MASUHARA, H. AND KAWAUCHI, K. 2003. Dataflow pointcut in aspect-oriented program-
ming. In Proceedings of the First Asian Symposium on Programming Languages and Systems
(APLAS’03). Lecture Notes in Computer Science Series, vol. 2895. 105–121.

MASUHARA, H. AND KICZALES, G. 2003. Modeling crosscutting in aspect-oriented mechanisms.
In Proceedings of the 17th European Conference on Object-Oriented Programming (ECOOP
2003), L. Cardelli, Ed. Number 2743 in Lecture Notes in Computer Science. Springer-Verlag,
Darmstadt, Germany, 2–28.

MASUHARA, H., KICZALES, G., AND DUTCHYN, C. 2003. A compilation and optimization
model for aspect-oriented programs. In Proceedings of Compiler Construction (CC2003),
G. Hedin, Ed. Lecture Notes in Computer Science Series, vol. 2622. Springer-Verlag, 46–60.

MASUHARA, H., TATSUZAWA, H., AND YONEZAWA, A. 2005. Aspectual Caml: an aspect-
oriented functional language. In Proceedings of the 10th ACM SIGPLAN Conference on Func-
tional Programming (ICFP 2005). ACM Press, Tallin, Estonia, 320–330.

MOGGI, E. 1991. Notions of computation and monads. Information and Computation 93, 1,
55–92.

OLIVEIRA, B. C. D. S., SCHRIJVERS, T., AND COOK, W. R. 2010. EffectiveAdvice: discplined
advice with explicit effects. See AOSD 2010 (2010), 109–120.

OLIVEIRA, B. C. D. S., SCHRIJVERS, T., AND COOK, W. R. 2012. MRI: Modular reasoning
about interference in incremental programming. Journal of Functional Programming 22, 797–
852.

PARNAS, D. 1972. On the criteria for decomposing systems into modules. Communications of the
ACM 15, 12, 1053–1058.

PEYTON JONES, S., VYTINIOTIS, D., WEIRICH, S., AND SHIELDS, M. 2007. Practical type
inference for arbitrary-rank types. Journal of Functional Programming 17, 1, 1–82.

PIERCE, B. 2012. Types. http://www.seas.upenn.edu/ sweirich/plmw12/Slides/plmw12-
Pierce.pdf.

PIERCE, B. C. 2002. Types and programming languages. MIT Press, Cambridge, MA, USA.

PLOTKIN, G. D. 1970. A note on inductive generalization. Machine Intelligence 5, 153–163.

POTTIER, F. 2013. Syntactic soundness proof of a type-and-capability system with hidden state.
Journal of Functional Programming 23, 1, 38–144.

RAJAN, H. AND LEAVENS, G. T. 2008. Ptolemy: A language with quantified, typed events.

121

In Proceedings of the 22nd European Conference on Object-oriented Programming (ECOOP
2008), J. Vitek, Ed. Number 5142 in Lecture Notes in Computer Science. Springer-Verlag, Pa-
phos, Cyprus, 155–179.

REYNOLDS, J. C. 1970. Transformational systems and the algebraic structure of atomic formulas.
Machine Intelligence 5, 135–151.

RINARD, M., SALCIANU, A., AND BUGRARA, S. 2004. A classification system and analysis
for aspect-oriented programs. In Proceedings of the 12th ACM Symposium on Foundations of
Software Engineering (FSE 12). ACM Press, 147–158.

SCHRIJVERS, T. AND OLIVEIRA, B. C. 2011. Monads, zippers and views: virtualizing the monad
stack. In Proceedings of the 16th ACM SIGPLAN Conference on Functional Programming (ICFP
2011). ACM Press, Tokyo, Japan, 32–44.

SHEARD, T. AND JONES, S. P. 2002. Template meta-programming for haskell. SIGPLAN
Not. 37, 12, 60–75.

STEIMANN, F., PAWLITZKI, T., APEL, S., AND KÄSTNER, C. 2010. Types and modularity for
implicit invocation with implicit announcement. ACM Transactions on Software Engineering
and Methodology 20, 1, Article 1.

SULLIVAN, K., GRISWOLD, W. G., RAJAN, H., SONG, Y., CAI, Y., SHONLE, M., AND TEWARI,
N. 2010. Modular aspect-oriented design with XPIs. ACM Transactions on Software Engineer-
ing and Methodology 20, 2. Article 5.

SULZMANN, M. AND WANG, M. 2007. Aspect-oriented programming with type classes. In
Proceedings of the Sixth Workshop on Foundations of Aspect-Oriented Languages (FOAL 2007).
ACM Press, Vancouver, British Columbia, Canada, 65–74.

TABAREAU, N. 2012. A monadic interpretation of execution levels and exceptions for AOP. In
Proceedings of the 11th International Conference on Aspect-Oriented Software Development
(AOSD 2012), É. Tanter and K. J. Sullivan, Eds. ACM Press, Potsdam, Germany.

TABAREAU, N., FIGUEROA, I., AND TANTER, É. 2013. A typed monadic embedding of aspects.
See Kinzle (2013), 171–184.

TANTER, É. 2008. Expressive scoping of dynamically-deployed aspects. See AOSD 2008 (2008),
168–179.

TANTER, É. 2010. Execution levels for aspect-oriented programming. See AOSD 2010 (2010),
37–48.

TANTER, É., FIGUEROA, I., AND TABAREAU, N. 2014. Execution levels for aspect-oriented
programming: Design, semantics, implementations and applications. Science of Computer Pro-
gramming 80, 1, 311–342.

TANTER, É., MORET, P., BINDER, W., AND ANSALONI, D. 2010. Composition of dynamic
analysis aspects. In Proceedings of the 9th ACM SIGPLAN International Conference on Gen-

122

erative Programming and Component Engineering (GPCE 2010). ACM Press, Eindhoven, The
Netherlands, 113–122.

TANTER, É., TABAREAU, N., AND DOUENCE, R. 2012. Taming aspects with membranes. See
FOAL (2012), 3–8.

TARR, P. L., OSSHER, H. L., HARRISON, W. H., AND JR., S. M. S. 1999. N degrees of sep-
aration: Multi-dimensional separation of concerns. In International Conference on Software
Engineering. 107–119.

TOLEDO, R., LEGER, P., AND TANTER, É. 2010. AspectScript: Expressive aspects for the Web.
See AOSD 2010 (2010), 13–24.

WADLER, P. 1992. The essence of functional programming. In Proceedings of the 19th ACM
Symposium on Principles of Programming Languages (POPL 92). ACM Press, Albuquerque,
New Mexico, USA, 1–14.

WADLER, P. 1998. The marriage of effects and monads. ACM SIGPLAN Notices 34, 1, 63–74.

WADLER, P. AND BLOTT, S. 1989. How to make ad-hoc polymorphism less ad hoc. In Proceed-
ings of the 16th ACM Symposium on Principles of Programming Languages (POPL 89). ACM
Press, Austin, TX, USA, 60–76.

WALKER, D., ZDANCEWIC, S., AND LIGATTI, J. 2003. A theory of aspects. In Proceedings
of the 8th ACM SIGPLAN Conference on Functional Programming (ICFP 2003). ACM Press,
Uppsala, Sweden, 127–139.

WAND, M., KICZALES, G., AND DUTCHYN, C. 2004. A semantics for advice and dynamic join
points in aspect-oriented programming. ACM Transactions on Programming Languages and
Systems 26, 5, 890–910.

123

Appendix A

Proofs of the Properties of the Simple
Monadic AOP Model

A.1 Monad Laws

A.1.1 Left Identity

returnAT x >>=AT f
≡ {-unfolding >>=AT and returnAT -}
AT (unAT (AT (returnm (Return x))) >>=m λr → case r of

Return x → unAT (f x)
OpenApp t x g k → returnm $ OpenApp t x g (λy → k y >>=AT f))
≡ {-unAT ◦ AT ≡ id -}
AT (return (Return a) >>=m λr → case r of

Return x → unAT (f x)
OpenApp t x g k → returnm $ OpenApp t x g (λy → k y >>=AT f))
≡ {-left identity of >>=m -}
AT (case Return x of

Return x → unAT (f x)
OpenApp t x g k → returnm $ OpenApp t x g (λy → k y >>=AT f))
≡ {-applying case + AT ◦ unAT ≡ id -}

f x

A.1.2 Right Identity

p >>=AT returnAT

≡ {-unfolding >>=AT -}
AT (unAT p >>=m λr → case r of

Return x → unAT (return x)
OpenApp t x g k → returnm $ OpenApp t x g (λy → k y >>=AT returnAT))

124

≡ {-unAT ◦ AT ≡ id + unfolding returnAT -}
AT (unAT p >>=m λr → case r of

Return x → unAT (AT (returnm (Return x)))
OpenApp t x g k → returnm $ OpenApp t x g (λy → k y >>=AT returnAT))

≡ {-AT ◦ unAT ≡ id + co-induction hypothesis -}
AT (unAT p >>=m (λr → case r of

Return x → returnm (Return x)
OpenApp t x g k → returnm (OpenApp t x g k))

≡ {-folding case branches -}
AT (unAT p >>=m (λr → returnm r))
≡ {-η-reduction -}
AT (unAT p >>=m returnm)
≡ {-right identity of >>=m + unAT ◦ AT ≡ id -}

p

A.1.3 Associativity of >>=AT

(p >>=AT f) >>=AT h
≡ {-unfold >>=AT -}
[AT (unAT p >>=m λr → case r of

Return x → unAT (f x)
OpenApp t x g k → returnm $ OpenApp t x g (λy → k y >>=AT f))] >>=AT h

≡ {-unfold >>=AT + simplifications -}
AT ((unAT p >>=m (λr → case r of . . .)) >>=m (λr → case r of . . .))
≡ {-associativity of >>=m -}
AT (unAT p >>=m λx → ((λr → case r of . . .) x >>=m (λr → case r of . . .)))
≡ {-β-reduction -}
AT (unAT p >>=m λx → (case x of

Return x → unAT (f x)
OpenApp t x g k → returnm $ OpenApp t x g (λy → k y >>=AT f))
>>=m (λr → case r of . . .))

≡ {-distributing >>=m over the case branches -}
AT (unAT p >>=m λx → (case x of

Return x → unAT (f x) >>=m (λr → case r of . . .)
OpenApp t x g k → returnm $ OpenApp t x g (λy → k y >>=AT f)
>>=m (λr → case r of . . .)))

≡ {-id ≡ unAT ◦ AT + left unit of m and case -}
AT (unAT p >>=m λx → (case x of

Return x → unAT ◦ AT (unAT (f x) >>=m (λr → case r of . . .))
OpenApp t x g k → returnm $ OpenApp t x g (λy → k y >>=AT f >>=AT h)))

≡ {-folding definition of >>=AT -}
AT (unAT p >>=m λx → (case x of

Return x → unAT (f x >>=AT h)
OpenApp t x g k → returnm $ OpenApp t x g (λy → k y >>=AT f >>=AT h)))

≡ {-η-abstraction + α-renaming -}
AT (unAT p >>=m λr → (case r of

Return x → unAT ((λx → f x >>=AT h) x)
OpenApp t x g k → returnm $ OpenApp t x g (λy → k y >>=AT λx → f x >>=AT h)))

125

≡ {-folding definition of >>=AT -}
p >>=AT λx → (f x >>=AT h)

A.2 Monad Transformer Laws

A.2.1 Identity Preservation

lift (returnm x)
≡ {-unfold lift -}
AT (returnm x >>=m (λa → returnm ◦ Return a))
≡ {-left identity -}
AT (returnm ◦ Return x)
≡

returnAT x

A.2.2 Composition Preservation

lift m >>=AT (lift ◦ f)
≡ {-unfold >>=AT -}
AT (unAT (lift m) >>=m λr → case r of

Return x → unAT (lift ◦ f x)
OpenApp t x g k → returnm $ OpenApp t x g (λy → k y >>=AT f))

≡ {-unfold lift -}
AT (unAT (AT (m >>=m λa → returnm (Return a))) >>=m λr → case r of

Return x → unAT (lift ◦ f x)
OpenApp t x g k → returnm $ OpenApp t x g (λy → k y >>=AT f)))
≡ {-unAT ◦ AT ≡ id + associativity of >>=m -}
AT (m >>=m λa → (returnm (Return a) >>=m λr → case r of

Return x → unAT (lift ◦ f x)
OpenApp t x g k → returnm $ OpenApp t x g (λy → k y >>=AT f)))
≡ {-left identity + case -}
AT (m >>=m λa → unAT (lift ◦ f a))
≡ {-unfold lift -}
AT (m >>=m λa → unAT (AT (f a >>=m λa → returnm (Return a))))
≡ {-unAT ◦ AT ≡ id + η-reduction + assoc. of >>=m -}
AT ((m >>=m f) >>=m λa → returnm (Return a))
≡ {-fold lift -}

lift (m >>=m f)

126

A.3 runAT is a Monad Morphism

A.3.1 Identity preservation

runAT aenv ◦ returnAT

≡ {-unfolding returnAT -}
runAT aenv ◦ AT ◦ returnm ◦ Return
≡ {-unfolding runAT -}
unAT ◦ AT ◦ returnm ◦ Return >>=m go
≡ {-unAT ◦ AT ≡ id + left identity -}

go ◦ Return
≡ {-evaluation -}

returnm

A.3.2 Compositionality

See Figure 12.2.

A.3.3 runAT is left inverse of lift

runAT aenv (lift m)
≡ {-unfold lift -}

runAT aenv (AT (m >>=m λa → returnm ◦ Return a))
≡ {-unfold runAT -}
unAT (AT (m >>=m λa → returnm ◦ Return a)) >>=m go
≡ {-unAT ◦ AT ≡ id + associativity of >>=m -}

m >>=m λa → (returnm ◦ Return a >>=m go)
≡ {-left identity + evaluating go -}

m >>=m returnm

≡ {-right identity -}
m
≡ {-fold id -}

id m

127

	List of Figures
	Introduction
	Preliminaries
	Aspect-Oriented Programming
	Basics of Haskell Programming
	Values and Types
	Functions and Pattern Matching
	Lexical Scoping and Local Identifiers
	Type Classes and Ad Hoc Polymorphism
	Bounded Polymorphism
	newtype Declarations

	Monadic Programming in a Nutshell
	Plain Monadic Programming
	Polymorphism on the Monad Stack

	I Design and Type Safety
	Introducing Aspects
	Join Point Model
	Aspect Deployment
	Aspect Weaving

	Type Safety
	Typing Aspects, Informally
	Typing Pointcuts
	Typing Aspects

	Typing Aspects, Formally
	Type Substitutions
	Statically Computing Least General Types
	Pointcut Safety
	Advice Safety
	Safe Aspects

	Discussion About the Model
	Quantification
	Approximating Equality on Functions
	Tagged Function Applications

	Aspects and Bounded Polymorphism
	Obliviousness
	Technical Requirements of our Model

	Related Work, Part I

	II Controlling Effects
	Open and Protected Modules, with Effects
	Background: Open Modules
	A Simple Example
	Protected Pointcuts
	Enforcing Control Flow Properties

	Controlling Effect Interference
	Distinguishing Aspect and Base Computation
	Interference Between Multiple Aspects
	Background: Monad Views
	Beyond the Aspect/Base Distinction

	Modular Language Extensions
	Control Flow Pointcut
	Secure Weaving
	Privileged Aspects
	Execution Levels
	Reasoning about Language Extensions
	Other Approaches to Modular AOP Language Extensions

	III Compositional Reasoning About Aspect Interference
	The Challenge of Compositional Reasoning
	Compositional Reasoning, Informally
	Background: Monadic Reasoning in a Nutshell
	Equational Reasoning and Observational Equivalence
	Monad Laws

	Compositional Reasoning, Formally
	Abstracting Monadic AOP
	Join Point Model
	Necessary Properties of AT
	Running Example in Monadic Style

	Compositional Harmlessness Theorem
	System Decomposition
	Compositional Weaving
	Compositional Projection
	Contextual Harmlessness
	Local Harmlessness

	A Simple Monadic AOP Model
	An Embedding of Open Applications
	Running AT Computations
	Aspect Weaving
	Properties of AT

	Local Harmlessness
	AOP-MRI Translation
	Background: the MRI Framework
	Connecting MRI to AOP
	Harmlessness of Logging
	Harmlessness of Memoization

	Related Work, Part III
	Approaches to Modular Reasoning in AOP
	Protecting Modules from Aspects
	Limiting the Scope of Aspects

	Reasoning about Interference in AOP

	IV Conclusions
	Contributions
	Perspectives
	Bibliography
	Appendix Proofs of the Properties of the Simple Monadic AOP Model
	Monad Laws
	Left Identity
	Right Identity
	Associativity of >>-6.7mu=AT

	Monad Transformer Laws
	Identity Preservation
	Composition Preservation

	runAT is a Monad Morphism
	Identity preservation
	Compositionality
	runAT is left inverse of lift

