Tabla de Contenido

1.	Introdu	ıcción	1
2.	Revisi	ón Bibliográfica	3
3.	Diseño	e Experimental1	6
3	.1. Mc	odelo Experimental1	6
	3.1.1	Materiales1	6
	3.1.2	Instrumentos y Sensores1	7
	3.1.3	Elementos Adicionales1	8
3	.2. An	álisis Experimental1	9
	3.2.1.	Características del Modelo y Definición de Variables1	9
	3.2.2.	Determinación de los Ángulos de Fricción Interna2	0
	3.2.3.	Análisis de Estabilidad al Deslizamiento2	0
	3.2.4.	Análisis de Estabilidad al Volcamiento2	6
	3.2.5.	Selección de Variables Geométricas	0
	3.2.6.	Análisis Térmico3	0
	3.2.7.	Comentarios	3
4.	Result	ados Experimentales3	4
4	.1. De	scripción General de un Ensayo3	4
4	.2. Re	sumen de Resultados	8
4	.3. Re	sultados Típicos4	4

4.3.1. Etapa Cíclica49				
4.3.2. Etapa de Enfriamiento Final56				
4.4. Ensayos Complementarios57				
5. Discusión				
6. Conclusiones y Recomendaciones				
6.1. Conclusiones				
6.2. Recomendaciones67				
7. Bibliografía				
Anexo A Descripción de Equipos y Sensores utilizados en el Montaje Experimental70				
A.1. Equipos				
A.2. Sensores72				
Anexo B Gráficos Complementarios de los Resultados Experimentales75				
B.1. Registros Complementarios de los Ensayos75				

Índice de Tablas

Tabla 1: Propiedades termomecánicas referenciales de distintas rocas, acrílico, aluminio Vegera ASTMA2C
Tabla 2: Resumen de los registros para determinación de los ángulos de fricción interna.
Tabla 3: Dimensiones de la pieza de acrílico30
Tabla 4: Resumen de los resultados de los ensayos realizados con el marco de aluminio.
Tabla 5: Resumen del registro para determinación del ángulo de fricción interna entre el
acrílico y el acero ASTM A3659
Tabla 6: Descripción general del equipo de adquisición de datos Agilent modelo 34972A.
Tabla 7: Descripción general de la fuente de poder Agilent modelo E3630A71
Tabla 8: Descripción general de la tarjeta Multiplexer Agilent modelo E4901A72
Tabla 9 [.] Características generales del sensor I M35 73
Tabla 10: Características generales del sensor termocupla K.
Tabla 11: Características generales del sensor LVDT. 74

Índice de Figuras

Figura 1: Descripción del mecanismo de cuña inducido térmicamente2
Figura 2: Registro de temperatura (T2) y humedad relativa (RH2) superpuesto con los desplazamientos relativos de uno de los bloques en Masada (JM10 y JM11) durante un periodo de 11 meses (Hatzor et al. 2003)
Figura 3: Modelo simplificado para el análisis del mecanismo cuña-bloque (Pastén 2013). El área sombreada corresponde a la profundidad de penetración térmica S _d 5
Figura 4: Modelo experimental del mecanismo de cuña inducido térmicamente utilizado por Pastén (2013)6
Figura 5: Registro de la estación Oeste en Masada desde julio 2009 a agosto 2011 (Bakun-Mazor et al. 2013). (a) Registros originales de humedad relativa medidos cada 2 horas. (b) Temperatura y desplazamiento de las juntas (WJM) en el tiempo
Figura 6: (a) Modelo conceptual de bloque triangular. Trayectoria del punto F del bloque triangular respecto a su posición inicial bajo condiciones (a) elásticas y (b) elastoplásticas (Gunzburger et al. 2005)
Figura 7: Trayectoria puntual del modelo simplificado de Rochers de Valabres bajo condiciones elastoplásticas (Gunzburger et al. (2005)10
Figura 8: Configuraciones y modos de falla considerados en el modelo bidimensional de un talud de roca en Randa, Suiza. Las fallas consideradas son deslizamiento (b) y volcamiento (c) (Gischig et al. 2011a)12
Figura 9: Bosquejo de la estructura interna y cinemática del talud inestable de estudio ubicado en Randa (Gischig et al. 2011b)14
Figura 10: Modelo experimental del sistema bloque/cuña16
Figura 11: Estructuración general del modelo experimental18

Figura 12: Fuerzas actuantes y dimensiones del sistema. Nota: W_c = peso de la cuña, W= peso del bloque, T_m = fuerza de roce entre marco y cuña, T_c = fuerza de roce entre bloque y cuña, T= fuerza de roce entre marco y bloque, N_m = fuerza normal del marco sobre la cuña, N_c = fuerza normal del bloque sobre la cuña y N= fuerza normal del marco sobre el bloque.

Figura 13: Fuerzas actuantes y dimensiones de la cuña (a) y el bloque (b).21

Figura 17: Diagrama de fuerzas y dimensiones para análisis del volcamiento.27

Figura 18: Ángulo de inclinación α_{vol} que induce el volcamiento del sistema según L_w/L_t con H/L_t = 0.5, 1.0, 1.5 y 2.0 con L_t= 22.5 cm. Bajo cada una de las curvas el sistema es estable frente al volcamiento, sobre las curvas presenta inestabilidad......29

Figura 22: Desplazamientos plásticos durante la etapa cíclica del ensayo en la Figura 20.

Figura 25: Relación entre el periodo cíclico y la amplitud de la temperatura al interior del acrílico para los 19 ensayos......40

Figura 28: Posición vertical relativa de la cuña según la temperatura al interior del acrílico de los ensayos en la Figura 27......47

Figura 30: Ventana temporal de los ensayos en la Figura 27.50

Figura 35: Caídas elásticas de_i y plásticas dp_i en las etapas de enfriamiento final de los ensayos en la Figura 27. ΔT_{ef} corresponde al descenso de la temperatura al interior del acrílico durante la etapa de enfriamiento final. Se indica la curva de expansión térmica teórica del acrílico con térmica $\alpha_{teórico}$ = 90·10⁻⁶ 1/°C y para un largo inicial de 35 cm....56

Figura 37: Etapa cíclica completa del ensayo en la Figura 20 (η =0°, β =6° y t_{ciclo}=59 min). Se incluye curva sin considerar las caídas abruptas (LVDT s/d. plástico).60

Figura 41: Equipo de adquisición de datos Agilent modelo 34972A70
Figura 42: Fuente de poder Agilent modelo E3630A71
Figura 43: Tarjeta Multiplexer Agilent modelo 34901A72
Figura 44: Sensor de temperatura LM3572
Figura 45: Termocupla "K"73
Figura 46: Sensor de desplazamiento LVDT73
Figura 47: Desplazamientos plásticos acumulados en la etapa cíclica de todos los ensayos
Figura 48: Posición vertical relativa de la cuña según la temperatura al interior del acrílico
de todos los ensayos76