
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

GRADUAL TYPING FOR GENERIC TYPE-AND-EFFECT SYSTEMS

TESIS PARA OPTAR AL GRADO DE
MAGÍSTER EN CIENCIAS, MENCIÓN COMPUTACIÓN

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL EN COMPUTACIÓN

FELIPE ANDRÉS BAÑADOS SCHWERTER

PROFESOR GUÍA:
ÉRIC TANTER

PROFESOR CO-GUÍA:
RONALD GARCIA

MIEMBROS DE LA COMISIÓN:
PABLO BARCELÓ BAEZA

ALEXANDRE BERGEL
ISMAEL FIGUEROA PALET

Este trabajo ha sido parcialmente financiado por CONICYT-PCHA Maǵıster Nacional
2013-22130167, Proyecto FONDECYT 1110051 y por Ayudas para Estad́ıas Cortas de

Investigación destinadas a Estudiantes Tesistas de Doctorado y Maǵıster de la Universidad
de Chile, VAA-DPP

SANTIAGO DE CHILE
2014

Resumen

Los sistemas de tipos-y-efectos (type-and-effect systems) permiten a los programadores hacer
valer invariantes y restricciones sobre los efectos secundarios que se generan durante la eval-
uación de un programa. Los sistemas de tipos-y-efectos consideran efectos secundarios tales
como estado, excepciones y E/S, entre otros. Desafortunadamente, los sistemas de tipos-y-
efectos también obligan al programador a introducir anotaciones de efectos, lo que implica
un esfuerzo adicional. En la práctica, los sistemas de tipos-y-efectos no son comúnmente
usados. Conjeturamos que una de las razones importantes para la limitada adopción de los
sistemas de efectos son las dificultades para realizar la transición desde un sistema donde los
efectos secundarios son impĺıcitos hacia una disciplina de efectos totalmente estática.

Los tipos graduales (Gradual typing) permiten a los programadores combinar la flexi-
bilidad de los lenguajes dinámicamente tipados con las garant́ıas provistas por los sistemas
de tipos estáticos. En lenguajes con tipos graduales, las anotaciones de tipos son parte
del lenguaje, pero no son obligatorias. Un sistema de tipos gradual utiliza la información
disponible para proveer garant́ıas estáticas, rechazando los programas claramente incoher-
entes, e introduce verificaciones en tiempo de ejecución cuando la información estática no es
suficiente para aceptar o rechazar definitivamente un programa.

Esta tesis demuestra que las ideas de diseño detrás de los tipos graduales pueden aplicarse
a los sistemas de tipos-y-efectos, tanto para aumentar la expresividad de estos sistemas aśı
como para proveer flexibilidad para migrar programas con efectos secundarios impĺıcitos e
irrestrictos hacia programas con una disciplina de efectos completamente estática.

Se adaptaron ideas de tipos graduales para introducir verificación gradual de efectos para
sistemas de tipos-y-efectos. La verificación gradual de efectos habilita al programador para
decidir dónde y cuándo introducir anotaciones de efectos, agregando verificaciones en tiempo
de ejecución cuando las anotaciones estáticas so ninsuficientes. Para evitar redefinir la veri-
ficación gradual de efectos para cada disciplina de tipos-y-efectos, introducimos verificación
gradual de efectos para una plataforma genérica de tipos-y-efectos, en la que se puede instan-
ciar cualquier disciplina de efectos monotónica, produciendo un sistema coherente. Presen-
tamos la verificación gradual de efectos basándonos en conceptos de interpretación abstracta
para construir la verificación gradual de efectos genérica.

Utilizando verificación gradual de efectos genérica, introducimos tipos graduales para sis-
temas de tipos-y-efectos: un sistema donde las anotaciones de efectos y de tipos no son
obligatorias, y donde se introducen verificaciones en tiempo de ejecución y “casts” cuando
la información estática no es suficiente para asegurar la coherencia de un programa. De la
manera definida, los tipos graduales para sistemas de tipos-y-efectos permiten migrar desde
sistemas carentes de anotaciones de efectos o de tipos hacia una disciplina estática de tipos-
y-efectos de manera segura.

i

Abstract

Type-and-effect systems allow programmers to enforce invariants and restrictions about the
side effects generated by the evaluation of a program. Type-and-effect systems consider side
effects like state, exceptions, and I/O, among others. Unfortunately, type-and-effect systems
also charge programmers with the overhead of introducing effect annotations. In practice,
type-and-effects systems are not commonly used. We conjecture that an important reason
for the limited adoption of effect systems is the difficulty to transition from a system where
side effects are implicit towards a fully static effect discipline.

Gradual typing enables programmers to combine the flexibility of dynamically typed lan-
guages with the safety of static type systems. In gradual typing, type annotations are allowed
but are not mandatory. Gradual typing uses the available information to provide static guar-
antees, discarding clearly unsound programs, and introduces runtime checks whenever static
information is not sufficient to definitely accept or reject a program.

This thesis demonstrates that design ideas from gradual typing can be applied to type-and-
effect systems, both to increase the expressivity of type-and-effect systems, and to provide
flexibility for migrating programs with unrestricted and implicit side effects towards programs
with a fully static effect discipline.

We adapt ideas from gradual typing to introduce gradual effect checking for type-and-
effect systems. Gradual effect checking enables the programmer to decide when and where
to introduce effect annotations, introducing runtime checks whenever static annotations are
insufficient. To avoid redefining gradual effect checking for each type-and-effect discipline,
we introduce gradual effect checking for a generic type-and-effect framework, in which any
monotonic effect discipline can be instantiated to produce a sound system. We present
gradual effect checking in terms of abstract interpretation concepts to build generic gradual
effect checking.

Using generic gradual effect checking, we introduce gradual typing for type-and-effect
systems: a system where effect and type annotations are not mandatory, and where runtime
checks and casts are introduced when static information is not sufficient to ensure safety. As
defined, gradual typing for type-and-effect systems permits migration from systems without
effect or type annotations towards a static type-and-effect discipline safely.

ii

Agradecimientos

A mi familia, en especial a mis padres Julio y Maŕıa Luisa, por todo el cariño y apoyo que
me han dado a lo largo de la vida. También a mis hermanas, Javiera y Cecilia, que me
aguantaron mañas y flojeras, y a mis abuelos Samuel, Gualda, Ulda y Teo.

A mis amigos. A Alfredo, Jorge y Naty, por todas las comidas, conversas y en fin, por
estar siempre cerca. A todos los que me acompañaron en el recorrido por la Universidad: a
Marcel, Muguette, Valverde, Fernanda, Gustavo y tantos otros que hicieron de Beauchef un
lugar memorable.

A la Compañ́ıa de Jesús, por su formación, por su confianza, por los Ejercicios y por
permitirme ser parte de la familia ignaciana. Gracias en especial a todos los jesuitas que me
han acompañado a lo largo de la vida. A Eugenio Valenzuela, Pablo Peña, Gerardo Schmidt,
Carlos Vidal, José Tomás Vicuña, Nicolás Oelckers, René Cort́ınez, Pablo Walker, Pedro
Labŕın, y a John O’Brien, entre otros. Gracias también a los jesuitas que ya no están, muy
especialmente al padre Raúl Combes.

A los profesores que me interesaron en la investigación cient́ıfica y en distintos campos
del saber. Gracias a Éric Tanter por abrir las puertas al área de lenguajes, por su confianza
y por la libertad que me dio para trabajar en esta tesis. Gracias a Ronald Garcia por su
paciencia, por aceptarme como futuro estudiante de doctorado y por re-enseñarme a escribir.
A Alexandre Bergel por enseñarme Smalltalk, por investigar juntos y por los papers que
escribimos. A Eden Medina por su confianza y por transformar mi visión de la computación
como disciplina. A Claudio Gutiérrez por tantas conversaciones, y en especial por aumentar
mi interés en la historia de la computación en Chile. Finalmente, gracias a Ciro Schmidt por
su paciencia y consejos.

To the University of British Columbia and St. John’s College for being such great hosts,
and to all the people and friends I have met there, especially Guillaume, Abhijit, Pat, Sheila,
Farhad, and Ian.

And especially and most importantly, this whole work is dedicated to Sarah, without
whom this thesis would not have been finished yet1.

1Or might have actually been finished months earlier!

iii

Contents

List of Figures vii

1 Introduction 1

2 Background and Related Work 5
2.1 Type systems and language semantics . 5

2.1.1 The lambda calculus . 5
2.1.2 The simply typed lambda calculus (STLC) 8
2.1.3 Type safety . 10
2.1.4 The Unit type . 11
2.1.5 Extending the simply typed lambda calculus with references 12

2.2 Gradual typing . 14
2.2.1 The type consistency relation . 15
2.2.2 Casts as runtime checks . 16
2.2.3 Operational semantics for casts . 16
2.2.4 Subtyping and gradual typing . 20

2.3 Type-and-Effect systems . 22
2.4 An example: the fluent language . 23

2.4.1 Classifying programs over their use of state 24
2.4.2 Generated side-effects or privileges required 24
2.4.3 Restricting side effects with ascription 26
2.4.4 Typing function application . 27

2.5 Generic type-and-effect systems . 27
2.5.1 A generic type-and-effect system . 27

2.6 Summary . 30

3 Design of Gradual Effect Checking 32
3.1 What is gradual effect checking? . 32
3.2 Design goals for gradual effect checking . 33
3.3 Representing effect uncertainty . 34

3.3.1 First approach: unknown information as a privilege set 36
3.3.2 Limitations of the first approach . 37
3.3.3 Second approach: unknown information as a privilege 38

3.4 The intermediate language: checking inconsistencies at runtime 38
3.4.1 A type system for the intermediate language 39
3.4.2 Runtime semantics for the intermediate language 40

iv

3.4.3 Translating programs to the intermediate language 42
3.5 Theorems for gradual effect checking . 42

3.5.1 Type safety of the language . 43
3.6 Summary . 46

4 Generic Gradual Effect Checking 47
4.1 Gradual effects as an abstract interpretation 48

4.1.1 The challenge of gradual effects . 48
4.1.2 Fundamental concepts . 49
4.1.3 Lifting predicates to consistent privilege sets 50
4.1.4 Lifting functions to consistent privilege sets 51

4.2 A generic framework for gradual effects . 52
4.2.1 The source language . 53
4.2.2 The internal language . 55
4.2.3 Translating source programs to the internal language 61

4.3 Summary . 64

5 A Conservative Semantics with Reduced Runtime Information 65
5.1 Making tag information redundant at runtime 66

5.1.1 The conservative semantics . 67
5.1.2 Example of a rejected program . 68

5.2 New semantics is a conservative approximation 72
5.3 Type safety of the conservative semantics . 74
5.4 Redundancy of tags in the conservative semantics 75
5.5 Summary . 76

6 Gradual Type-and-Effect Systems 77
6.1 Gradual typing for type-and-effect systems without tags 77

6.1.1 Simplifying the framework . 78
6.1.2 A type system based on consistency 79
6.1.3 Extending type consistency for effects 79
6.1.4 Consistent subtyping . 80
6.1.5 Intermediate language . 81
6.1.6 Type safety . 83

6.2 System with tags with conservative assumptions 87
6.2.1 Tags and gradual typing . 87
6.2.2 Tags interact with the translation algorithm 92
6.2.3 Rules for the translation algorithm 92
6.2.4 Type safety . 95

6.3 Summary . 96

7 Conclusions 97
7.1 Contributions . 97
7.2 Future work . 99

Bibliography 101

A The Fluent Language as an Instantiation of Marino and Millstein’s Generic

v

Type-and-Effect System 103

B Soundness Proof for Gradual Effect Fluent 107
B.0.1 Type safety of the intermediate language 109

C Detailed Proofs for Generic Gradual Effect Checking 113
C.1 Progress and preservation proofs for the gradual effect framework presented

in the paper . 116

D Proof of the Conservative Approximation Theorem 127

E Proofs Related to Gradual Type-and-Effect Systems 131
E.1 Properties of consistent subtyping . 131
E.2 Gradual typing for type-and-effect systems without tags 132

vi

List of Figures

2.1 The Simply Typed Lambda Calculus with References and Unit 13
2.2 A Gradual Simply-Typed Lambda Calculus. 19
2.3 A type system for the fluent language that follows the top-down approach. . 26
2.4 Subtyping relation for fluent languages . 26
2.5 Generic Type-and-Effect system introduced by Marino and Millstein 30

3.1 A type system for the fluent language with gradual effect checking. 35
3.2 Type system for the intermediate language 40
3.3 The translation algorithm for Gradual Effect Fluent 44
3.4 Operational semantics for the Intermediate Language 45

4.1 Syntax of the source language . 52
4.2 Type system for the source language . 54
4.3 Syntax of the internal language . 55
4.4 Typing rules for the internal language . 56
4.5 Small-step semantics of the internal language 57
4.6 Translation of source programs to the internal language 62

5.1 Conservative Language Syntax . 66
5.2 New frame translation function A′, mapping annotated evaluation frames to

adjust contexts. 68
5.3 Type-directed tag addition. It introduces the tag approximation of the generic

language explicitly, to be used on adjust contexts for evaluation. 69
5.4 Full Conservative Semantics, with special frame translation function A′, that

maps annotated evaluation frames to adjust contexts. 71
5.5 Type system for the language with extra tagset information 74

6.1 Syntax of the source language . 78
6.2 Typing rules for the source language . 79
6.3 Syntax of the internal language . 81
6.4 Typing rules for the internal language . 84
6.5 Small-step semantics of the internal language 85
6.6 Translation of source programs to the internal language 86
6.7 Syntax of the source language . 87
6.8 Typing rules for the source language . 89
6.9 Syntax of the internal language . 90
6.10 Typing rules for the internal language . 90

vii

6.11 Small-step semantics of the internal language 91
6.12 Translation of source programs to the internal language, part I 93
6.13 Translation of source programs to the internal language, part II 94

A.1 Simplifying the rules of the Marino and Millstein framework to produce an
ad-hoc type system for the Fluent Language 106

viii

Chapter 1

Introduction

A type-and-effect system is an advanced kind of type system for a programming language.
Like any type system, a type-and-effect system analyses programs without evaluating them,
rejecting those programs that do not follow a set of typing rules that enforce semantic in-
variants for programs. Examples of programs usually rejected by type systems are programs
that try to use a number as a function, programs that provide an incorrect argument to a
function, and programs that try to use a string instead of a boolean condition for an if

statement. A type-and-effect system is different from a standard type system in that it also
verifies invariants about the side-effects generated when evaluating the program, and rejects
programs that neglect the imposed restrictions for side-effects. Common side-effects consid-
ered by type-and-effect systems are exceptions, I/O and state. Examples of languages with
type-and-effect systems are Scala [18] and Koka [14].

Type-and-effect systems impose strong restrictions for the development process that may
end up discouraging developers from using them. To analyze the side effects a program may
produce, a type-and-effect system relies on effect annotations. Effect annotations establish a
limit on which side effects may be generated when a program is evaluated. These annotations
impose an overhead for the programmer. With a type-and-effect system, a programmer must
consider the side effect restrictions for her programs early on the programming process,
restrictions that may be unknown or may change throughout the development process. In
general, programmers are unlikely to write fully-effect annotated programs, though notable
exceptions include the Haskell1 and Clean2 programming languages.

We conjecture that an important reason for the limited adoption of effect systems is the
difficulty of transitioning from a system where side effects are implicit and unrestricted to
a system with a fully static effect discipline. Another explanation is that effect systems are
necessarily conservative and therefore occasionally reject valid programs.

A similar dilemma had previously arised between statically typed languages (like Haskell,
ML, and Java) and dynamically typed languages (like Smalltalk, Scheme, and Javascript).
While statically typed languages provide tighter static guarantees and reject semantically

1http://www.haskell.org
2http://wiki.clean.cs.ru.nl/Clean

1

http://www.haskell.org
http://wiki.clean.cs.ru.nl/Clean

incorrect programs, they also reject some correct programs and force programmers to de-
cide type signatures early on the development process, incurring overhead for prototyping.
Dynamically typed languages, on the other hand, ease prototyping by not requiring explicit
type signatures, but at the same time do not provide any static guarantees about program
safety.

To bridge the gap between both kinds of languages, Siek and Taha [24] proposed Gradual
Typing as a flexible kind of type system where type annotations are allowed but are not
mandatory. Gradual typing empowers the programmer to decide when and where to introduce
type annotations, thus providing the flexibility required for prototyping while still providing
static guarantees, using any existing type annotations to check for program inconsistencies.
If programs are fully annotated with types at some point of the development process, gradual
typing provides the same guarantees as static type systems.

Gradual type systems have been introduced for functional and object oriented languages
among others, but no previous work has explored the interactions between gradual typing
and type-and-effect systems. In this work we support the thesis that gradual typing
design ideas can be applied to type-and-effect systems, both to increase the
expressivity of type-and-effect systems, and to provide flexibility for migrating
programs with unrestricted and implicit side effects towards programs with a
fully static effect discipline. The research presented in this work is part of the area of
programming languages, particularly on the design and definition of programming language
semantics and type systems.

The system we propose provides the programmer with the choice of introducing effect
annotations in a gradual way. Gradual effect annotations increase the expressivity of the
language, accepting as valid some programs whose effect restrictions could not be accepted
by a static type-and-effect system, which must necessarily make conservative estimations.
Our system also lifts the requirement of mandatory full effect annotations in type-and-effect
systems and verifies that annotated and unannotated sections of a program are coherent,
providing the programmer with the flexibility to decide when and where to introduce effect
annotations in programs. We develop gradual effect checking to generate a type-and-effect
system which provides gradual effect annotations, using ideas from gradual typing. Using
gradual effect checking, we introduce gradual typing for type-and-effect-systems, a framework
that fully combines gradual typing and type-and-effect systems, providing the programmer
with the flexibility of both gradual types and gradual effects. The contributions of our work
are:

• Introduce gradual effect checking.We explore the ideas required to define grad-
ual effect checking through a simple language with a type-and-effect system extracted
from the literature. In the spirit of gradual typing, we introduce a type system with
consistency for the language, an algorithm that translates programs into an interme-
diate language and inserts explicit runtime checks for the assumptions made by the
type system, and a runtime semantics for the intermediate language. The intermediate
language strictly checks effect restrictions, so the translation algorithm must insert all
the required checks to ensure that every program fullfills the effect discipline.

• Redefine gradual effect checking for a generic type-and-effect framework.

2

We avoid the need to reintroduce gradual effect checking for every particular effect dis-
cipline by providing a generic framework for type-and-effect systems. To do so, we reuse
the work of Marino and Millstein [15], in which they introduce a generic framework for
type-and-effect systems (M&M). We apply concepts from the theory of abstract inter-
pretation [8] to generalize and justify our design choices. With abstract interpretation,
we are able to provide gradual effect checking for the generic framework without having
to introduce restrictions beyond those already imposed by the original framework: Any
effect discipline defined in terms of the generic framework can automatically receive the
benefits of gradual effect checking. We provide a type safety [28] proof for the language
proposed.

• Provide alternative evaluation semantics for the gradual effect checking
generic system. The evaluation semantics of the original generic framework pre-
serves some information at runtime only because it is required to prove type safety,
information that could therefore be removed in an implementation. In the generic
gradual effect checking framework, some of that runtime information is used to en-
force the effect discipline. We introduce two different runtime semantics for the generic
framework with gradual effect checking. These two semantics give the language imple-
mentor a choice between complete fidelity to the effect discipline of the original generic
framework and reduced space overhead at runtime. We call the semantics with reduced
space footprint a conservative semantics, because if a program evaluates to a value in
the conservative semantics, it also does in the original semantics modulo a set of value
annotations (tags). Both semantics are safe, so the language implementor can decide
which semantics to choose.

• Introduce gradual typing for a generic type-and-effect system. Our final result
is a system that combines gradual effect checking with gradual typing. We provide two
separate systems, one for a simplified version of the generic framework (without tags)
and one for the full generic framework. We introduce the simplified generic framework
to show that, without tag information, combining gradual typing and gradual effect
checking is trivial because all the elements required are encapsulated in gradual effect
checking. In the full generic framework, gradual typing has to manage uncertainty
from the annotations used in values and types, so introducing gradual typing becomes
more complicated. We propose a simple system that makes pessimistic assumptions for
the annotations while ensuring safety, based on the restrictions imposed by the M&M
framework.

The rest of this document is organized as follows: Chapter 2 introduces the ideas that
will be assumed familiar to the reader throughout the rest of our work. It explores type
systems and language semantics, type safety, type-and-effect systems, and the generic type-
and-effect framework. It also introduces a language with a simple type-and-effect system
for state related side effects, called the fluent language. Chapter 3 introduces gradual effect
checking in the context of the fluent language, exploring the path that led to our final design
for gradual effect checking. Chapter 4 presents gradual effect checking for the generic M&M
framework. Our development revisits the concepts required for gradual effect checking in
terms of abstract interpretation, introducing the required concepts as needed.

Chapter 5 introduces the conservative semantics for the generic gradual effect checking
framework, and establishes how this new semantics relates to the original semantics intro-

3

duced in chapter 4. This relation is formalized through what we call a conservative approx-
imation theorem. The chapter also shows an example program that has different behaviors
among both semantics.

Chapter 6 introduces gradual typing for type-and-effect systems. This chapter explores
gradual typing for both a simplified generic type-and-effect system and for the full system
introduced in chapter 4. In the simplified language, we show that gradual effect checking
encapsulates the effect-related requirements to introduce gradual typing for type-and-effect
systems. The full system presents new challenges with respect to handling tags in gradual
typing, making pessimistic assumptions for the privileges available.

The appendices in this document present detailed proofs for theorems stated throughout
our work. Appendix A revisits the fluent language introduced in chapter 2 and presents
in detail how it can be considered as an instantiation of the M&M type-and-effect system,
providing a formal example of how to use the M&M framework. Appendix B provides type
safety proofs for gradual effect checking as presented in chapter 3, and appendix C provides
type safety proofs for generic gradual effect checking as presented in chapter 4.

Part of the research results presented in this work have already been published in:

• Felipe Bañados, Ronald Garcia, and Éric Tanter. A theory of gradual effect systems.
In Proceedings of the 19th ACM SIGPLAN International Conference on Functional
Programming (ICFP), 2014.

4

Chapter 2

Background and Related Work

This chapter introduces several ideas and concepts required to understand our work. We
assume familiarity with these ideas throughout the rest of this thesis. We provide a summary
of the ideas of the chapter in section 2.6, so that readers with previous knowledge of them
may completely skip the rest of this chapter.

2.1 Type systems and language semantics

This section introduces the concepts of type systems and operational semantics. A type
system, introduced in section 2.1.2, is a tool used in programming languages to prevent the
occurrence of a collection of errors during execution, called type errors. A structural opera-
tional semantics, introduced in section 2.1.1, specifies the runtime behavior of a language with
a transition relation that represents one step of evaluation. We also present in this section
examples of a type system and an operational semantics for two programming languages, the
lambda calculus introduced in section 2.1.1 and the simply typed lambda calculus (STLC)
introduced in section 2.1.2.

After introducing these concepts, we restrict the valid interaction between the type system
and the language semantics by defining type safety, concept introduced in section 2.1.3.
We finish this section constructing the base language we will use to define type-and-effect
systems, by defining a base type Unit for the STLC in section 2.1.4, and introducing a model
of mutable references in section 2.1.5.

2.1.1 The lambda calculus

The lambda calculus is a formal system introduced by Church [7] that works as a program-
ming language and is used throughout the literature to develop programming languages
theory. In the lambda calculus, every valid expression is either a λ abstraction, a variable,
or an application of expressions. Abstractions, denoted (λx . e), consist of a parameter x

5

and body e. The parameter x is an identifier that can be used as a variable in the body of
the function, and will only be replaced by a value when evaluating a function application.
Applications are denoted e1 e2, where e2 is the argument set to replace every occurrence of
the parameter of e1 in its body. The set of all valid programs1 in the lambda calculus can
be defined in Backus-Naur Form (BNF) as follows:

v ::= (λx . e) Values
e ::= v | x | e e Expressions

Different kinds of values (booleans, natural numbers, etc.) can be represented in the
lambda calculus by encoding them with abstractions [3], but for simplicity they are usu-
ally introduced explicitly. We extend our lambda calculus with natural numbers, n. The
procedure to introduce booleans and other basic values in the language is analogous.

n ::= 0 | 1 | 2 | . . . Numbers

We can also introduce basic operations over the values in the language. Since we have
introduced natural numbers, it would also be interesting to include operations like addition or
multiplication. These operations are called primitives. Though addition and multiplication
are both binary operations, there is no restriction on the amount of arguments that a primitive
operation uses: the boolean “not” operator receives one argument, and an operation to
build empty lists receives none. In our natural numbers example, we only introduce binary
operations.

v ::= (λx . e) | n Values
p ::= + | × Primitive Binary Operations
e ::= v | x | e e | e p e Expressions

Operational semantics for the lambda calculus

A structural operational semantics specifies how a language performs steps of evaluation,
defining an abstract machine for the language that transforms language expressions. We
introduce an operational semantics by presenting a set of evaluation rules. These rules
specify the kinds of expressions that can make a step of evaluation, and the new expressions
to which they evaluate.

Evaluation rules in an operational semantics define a transition relation. The transition
relation → associates an expression in the language with a new expression, also in the lan-

1We will use indistinguishably the names program, term and expression for syntactically valid elements
of a language

6

guage (→ ⊆ e × e). We use the transitive-reflexive closure of this relation (→∗) to define
evaluation.

The core transition step in the lambda calculus is application, defined for expressions of
the form (e1 e2). If e1 is an abstraction, an expression of the form λx . e′, every occurrence
of x in the body e′ of the function can be replaced by e2. We use notation [e2/x] e1 to express
that every occurrence of x in e1 is substituted by e2.

We follow a call-by-value strategy to evaluate function applications. Call-by-value means
that in order to evaluate an application (e1 e2), both e1 and e2 need to be evaluated to a
value first. We evaluate expressions from left to right, so we first evaluate e1 with repeated
application of the rule [E-App-1], hoping to reach a value. If we cannot reach a value,
evaluation gets stuck. If we reach a value, rule [E-App-2] continues evaluation on e2. Again,
if we do not reach a value in the argument position by repeated use of rule [E-App-2],
evaluation gets also stuck, though in a different state than the case for [E-App-1].

If we do reach a value by using [E-App-2], we can try to use rule [E-App]. If the value in
the e1 position of an application is not a function, evaluation gets stuck because rule [E-App]
expects an abstraction in that location. Otherwise, evaluation proceeds by substitution.

E-App
(λx . e) v → [v/x] e

E-App-1
e1 → e′1

e1 e2 → e′1 e2

E-App-2
e2 → e′2

v e2 → v e′2

Rules [E-App-1] and [E-App-2] have a similar structure. Both declare how to make a
step of evaluation by recursively evaluating part of the expression. If we follow this style,
every time we introduce a new language construct we also need to introduce new rules for
recursively evaluating parts of it. Even with a few features, like in the languages we introduce
throughout this work, this requires introducing several very similar evaluation rules, adding
a lot of overhead when reading the semantics and the formal proofs. We refactor these
similar rules, abstracting the recursive evaluation patterns in one rule that uses evaluation
frames [17].

An evaluation frame represents which part of an expression has to be evaluated first,
marking the position with a hole (�). The hole in a frame f may be replaced by any
expression e, and the replacement is denoted f [e]. For example, an expression (e1 e2) may
be represented as a (� e2) frame, in which the hole is replaced by e1, (� e2)[e1]. To avoid
ambiguity, we require frames to have only one hole. Whenever we introduce a feature that
requires to first evaluate a sub expression, we use rule [E-Frame]

E-Frame
e→ e′

f [e]→ f [e′]

We then introduce different frames f to encapsulate the evaluation order for sub parts of
an expression. In the language introduced so far, there are two kinds of evaluation frames
for function application and two for primitive operations: (� e), (v �), (� p e) and (v p �).

7

These evaluation frames encapsulate rules [E-App-1] and rule [E-App-2], respectively.

f ::= � e | v � | � p e | v p � Evaluation Frames

2.1.2 The simply typed lambda calculus (STLC)

In this section, we introduce a programming language widely used as a formal foundation,
called the simply typed lambda calculus (STLC) [6]. We use this language as a research basis
throughout this thesis.

What is a type system

A type system [5] is a syntactical method to analyze programs. Type systems are used to
prevent the occurrence of a collection of errors during execution, called type errors. The
definition of type errors differs from system to system, but in general it includes the use of
a function on arguments for which it is not defined, and trying to use a non-function as a
function in an application [28].

Type systems are formally defined by a set of inference rules. An inference rule associates
a group of language expressions with a type, a range of values to which the expressions may
evaluate. Simple examples of types are Boolean for booleans and Nat for natural numbers.

Inference rules are formed by a set of premises and one conclusion. We create an instance
of an inference rule for a particular program by showing that every premise holds. If the
set of premises is empty, then the rule has no prerequisites and can always be instantiated
for its domain of programs. As an example, we introduce an inference rule to infer a type
for natural numbers. We define a type Nat for the natural numbers. The inference rule is
written as follows:

n ∈ N
n : Nat

← Premise(s)
← Conclusion

This inference rule is read “If n ∈ N, then n has type Nat.”. An instance of this rule for
the natural number 42 is written

42 ∈ N
42: Nat

In more complex programs, instances of inference rules can be stacked transitively to fulfill
premises of a rule, producing a type derivation. A type derivation is an existence proof that
an expression e is related with a type T . If there exists a type derivation for a program, the
program is called “well-typed”.

A type system introduces restrictions over what programs are valid in a particular lan-
guage. It is usual to use the type system as an execution filter, allowing only well-typed

8

programs to run. When the language allows the introduction of type annotations in pro-
grams, inference rules can use type annotations to enforce restrictions over which programs
to accept.

A type system approximates the result of a program without evaluating it. Type infor-
mation may also be used as a form of documentation, used to verify consistency of software,
or even used by a compiler to apply certain optimizations.

Introducing types into the lambda calculus

The lambda calculus introduced in section 2.1.1 does not distinguish between abstractions,
natural numbers, nor any kind of value. It is a dynamically typed language, meaning that
values are not classified statically among different types. In a dynamically typed language, the
only way to restrict the valid arguments for an abstraction is to insert an explicit verification
in the runtime semantics, verification that will need to be performed for every application.
To statically discard invalid arguments for abstractions, a type system can be used.

STLC is a type restricted version of the lambda calculus. In STLC, the parameters of λ
abstractions are annotated with a type. This type annotation limits the valid arguments for
the abstraction. Values for the language are then defined as

v ::= λx : T . e | n Values

We can classify values in this language in two types: natural numbers (Nat) and ab-
stractions (T1−→T2), which receive an argument of type T1 and produce a result of type
T2.

T ::= Nat | T−→T Types

By restricting the type of the parameters of abstractions, function applications that use
the abstraction also have to be restricted. So far we have only presented syntactic restrictions,
which do not exclude programs like (λf : Nat−→Nat . f 1) 2, nor limits application only to
functions (4 2 is a syntactically valid program). We express these restrictions in the definition
of a type system.

If type restrictions map to restrictions over values, we can reason about valid expressions
looking only at their types. For example, if values with a function type are always abstractions
and never numbers, we can discard programs like (4 2) by simply limiting valid (e1 e2)
applications to the cases where e1 has a function type. A canonical forms lemma encodes
how restrictions over types map to restrictions over values. We present this lemma for STLC
after introducing all the type inference rules available in the type system.

The type system requires inference rules for every language construct available. Typing
abstractions requires to type their body under the assumption that the argument has the type
declared for the parameter. To make this information available, we use type environments,

9

denoted Γ. A type environment is a partial function from identifiers to types. The type
environment is given as context for the typing relation. The typing relation is now denoted
Γ ` e : T , which reads as “e has type T under Γ”.

To type an identifier x, we need to obtain the type from the type environment. We
do this in rule [T-Var] by accessing Γ(x). Rule [T-Nat] provides types for numbers. Rule
[T-Abs] types abstractions, extending the type environment with the restriction declared in
the function parameter to infer the type of the function body. Rule [T-App] only accepts
applications where the first element is of function type, and discards applications where the
argument is not of the type expected for the function parameter.

T-Var
Γ(x) = T

Γ ` x : T
T-Abs

Γ, x : T1 ` e : T2

Γ ` λx : T1 . e : T1−→T2
T-App

Γ ` e1 : T1−→T2

Γ ` e2 : T1

Γ ` e1 e2 : T2

T-Nat
n ∈ N

Γ ` n : Nat
T-Prim

Γ ` e1 : Nat
Γ ` e2 : Nat

Γ ` e1 p e2 : Nat

This type system identifies structurally invalid programs before evaluation. We can now
present the definition of a canonical forms lemma [19] for STLC:
Lemma 1 (Canonical Forms). This lemma is composed of the following two sub lemmas:

1. If Γ ` v : Nat, then v is a natural number (v ∈ N).

2. If Γ ` v : T1−→T2, then v = (λx : T1 . e), for some expression e.

Proof. There is only one typing rule for values of each type (Nat and function types). We
can then infer the conclusions by inverting the inference rules. Though rule [T-Prim] also
assigns type Nat, neither e1 + e2 nor e1 × e2 are values.

This canonical forms lemma is useful when proving properties of the type system, like
type safety as introduced in section 2.1.3. We now move forward to define evaluation for
STLC in terms of an operational semantics.

2.1.3 Type safety

As we introduced the operational semantics, we mentioned several cases in which evaluation
should not proceed, like the application (4 2). We want to identify statically if a program
will evaluate to a value or will get stuck in an intermediate state. Though this is the goal
of the type system, we need to verify that the operational semantics and the type system
are consistent with each other. To be consistent, the static guarantees provided by the type
system must be honored by evaluation, and the type system must produce an estimation of
the result of evaluating a program in the semantics. This consistency restriction between the
type system and the semantics is called type safety.

10

Type safety or type soundness is a formalization of the notion that programs accepted by
the type system (or that are well-typed) do not “go wrong”[16]. As Pierce mentions in [19],
Harper characterized soundness as the sum of two properties, progress and preservation:

• Progress: If an expression is well-typed, then is either a value, or it can perform a step
of evaluation in the semantics. This property links the type system to the semantics,
making a well-typed expression a valid starting point for evaluation. It also means that
non-final expressions can always perform a new evaluation step.

• Preservation: If a well-typed expression performs a step of evaluation, then the re-
sulting expression is also well-typed, and has the same type. This property, also called
subject-reduction [28], links back the semantics with the type system. With preserva-
tion we state that the semantics does not break the typing relation, so the progress
property will also hold with the expression resulting from performing an evaluation
step.

With these properties, the transitive and reflexive closure of the transition relation→ can be
used to evaluate any well-typed expression, and evaluation will always reach a value. Both
progress and preservation properties hold for STLC2, meaning that the STLC is type safe.

2.1.4 The Unit type

We now have a language with natural numbers, abstractions and function application. How-
ever, we do not use natural numbers for anything interesting. We may either extend the
language with features that make use of natural numbers, like addition, multiplication and
others, or for simplicity we remove numbers. We follow the second approach.

If we remove numbers, we can also delete the Nat type. Unfortunately, without Nat our
inductive definition of types becomes not well-founded, since we removed the base case. To
create concrete types, at least one base type is needed. For a base type to be of interest,
there must be at least one value that holds that type. We replace numbers with a type that
fulfills these two minimal requirements. In the literature, this simple base type is called Unit,
and only represents the value unit. Numbers, booleans, and any other interesting type can
afterwards be added to the language if so desired, but we keep the language as simple as
possible for our analysis.

v ::= λx : T . e | unit Values
T ::= Unit | T−→T Types

Since unit is a value, it does not have any associated evaluation rules, and thus we can
keep the operational semantics unaltered. At the type system level, we remove the rule [T-

2Formal statements of the progress and preservation properties for an STLC with booleans instead of
numbers, and a proof for progress are presented in chapter 9 of Pierce [19], a proof for the preservation
property is presented in appendix A.

11

Nat] that we used for natural numbers, and we introduce a type inference rule for the unit

value, [T-Unit].

T-Unit
Γ ` unit : Unit

2.1.5 Extending the simply typed lambda calculus with references

Throughout this work, we extend different languages with new features. In this section we
show a first extension for STLC standard in the literature [12, 28]: heap memory allocation
or state, a feature present in most programming languages. We introduce this language as
the starting point for the type-and-effect system introduced in section 2.4. We follow the
syntax presented by Pierce [19]. Both the type system and the operational semantics are
presented in full detail in fig. 2.1.

To handle state-related actions we introduce three new language constructs: (ref e) for
allocation, (!e) to read the contents of a memory location, and (e1 := e2) to assign a new
value in a memory location. To model the memory space, we use a partial function from
memory locations to values called a store and denoted µ. The value µ(l) represents the
contents stored at location l.

v ::= . . . | l Values
e ::= . . . | ref e |!e | e := e Expressions

The reduction relation needs to consider the memory state, and therefore has to carry a
particular store throughout evaluation. Rules that do not operate over state like [E-App]
just preserve the store without changes. Rule [E-Frame] transfers the recursive changes to
the store, where the notation e | µ represents a pair of an expression and a store:

E-Frame
e | µ→ e′ | µ′

f [e] | µ→ f [e′] | µ′

And the new expressions require extending our definition of evaluation frames:

f ::= . . . | ref � |!� | � := e | v := � Evaluation Frames

New language constructs that are not values require also new evaluation rules. Allocation
rule [E-Ref] adds a value into the store and returns the location value with the new store.
Rule [E-Deref] recurs to the µ function to read a value from the store. Rule [E-Asgn] per-
forms assignment, changing the partial function to return the new value. Notation µ[l 7→ v]

12

T ::= Unit | T−→T | Ref T Types
v ::= unit | λx : T . e | l Values
e ::= v | x | e e| ref e |!e | e := e Expressions
f ::= � e | v �| ref � |!� | � := e | v := � Evaluation Frame

Operational Semantics

E-Frame
e | µ→ e′ | µ′

f [e] | µ→ f [e′] | µ′
E-App

(λx : T . e) v | µ→ [v/x] e | µ

E-Ref
l 6∈ dom (µ)

ref v | µ→ l | µ[l 7→ v]
E-Deref

µ(l) = v

!l | µ→ v | µ

E-Asgn
l ∈ dom (µ)

l := v | µ→ unit | µ[l 7→ v]

Type system

T-Unit
Γ; Σ ` unit : Unit

T-Var
Γ(x) = T

Γ; Σ ` x : T
T-Abs

Γ, x : T1; Σ ` e : T2

Γ; Σ ` λx : T1 . e : T1−→T2

T-App

Γ; Σ ` e1 : T1−→T2

Γ; Σ ` e2 : T1

Γ; Σ ` e1 e2 : T2
T-Loc

Σ(l) = T

Γ; Σ ` l : T T-Ref
Γ; Σ ` e : T

Γ; Σ ` ref e : Ref T

T-Deref
Γ; Σ ` e : Ref T

Γ; Σ `!e : T
T-Asgn

Γ; Σ ` e1 : Ref T
Γ; Σ ` e2 : T

Γ; Σ ` e1 := e2 : Unit

Figure 2.1: The Simply Typed Lambda Calculus with References and Unit

represents a modified function that returns the value v for location l, and works exactly as
µ for any other location.

E-Ref
l 6∈ dom (µ)

ref v | µ→ l | µ[l 7→ v]
E-Deref

µ(l) = v

!l | µ→ v | µ

E-Asgn
l ∈ dom (µ)

l := v | µ→ unit | µ[l 7→ v]

The type system also needs to be extended. Just as we used a type environment Γ to
map variables to types, we statically model stores with a store typing environment Σ. Σ
is a partial function from locations to types. We say that a store is consistent with an
environment, written Γ | Σ � µ, if for every location l in µ, the value µ(l) holds type Σ(l)

13

under context Γ and Σ. Since µ holds values and abstractions are values, a Γ is required to
verify consistency between a store and an environment. An abstraction stored in µ(l) may
hold in its body a variable x different from its parameter. To type the abstraction in µ(l)
and ensure that its type is compatible with Σ(l), we require a Γ from which to obtain the
type associated to x.

Since we introduced memory locations as values, we also introduce a new type constructor
for memory locations, Ref T , denoting a memory location holding values of type T .

T ::= Unit | T−→T | Ref T Types

Typing rules not directly related to state only carry Σ as structural information, using
the same Σ for typing their premises. The type inference rules for the new language features
verify consistency between the store typing environment and the types of expressions being
allocated, read or assigned. These typing rules, named [T-Loc], [T-Ref], [T-Deref] and [T-
Asgn], are introduced in fig. 2.1.

The language using this semantics and type system is type safe, as defined in terms of the
following progress and preservation theorems:
Theorem 2 (Progress). Suppose e is a well-typed closed expression (∅; Σ ` e : T)3. Then e
is either a value v or e | µ→ e′ | µ′ for any store µ such that ∅ | Σ � µ.
Theorem 3 (Preservation). Let e be an expression such that Γ; Σ ` e : T and µ a store such
that Γ | Σ � µ and e | µ → e′ | µ′ for some e′ and µ′. Then there exists a Σ′ such that
Γ | Σ′ � µ′, Σ ⊆ Σ′ and Γ; Σ′ ` e′ : T .

We do not provide a proof of these theorems for brevity. The interested reader is referred
to Chapter 13 of Pierce’s Book [19], where Progress and Preservation theorems, differing
from our theorems only in presentation details, are introduced and proven for this language.

2.2 Gradual typing

Programming languages like ML, Java, Scala, C# and Haskell have type systems that stat-
ically ensure the inexistence of some errors in programs, preventing execution of programs
until every error is corrected. The static type checking in these languages provides both
documentation and consistency guarantees for programs.

However, these guarantees can also prove too restrictive for software developers. During
the first stages of development, there is a lot of prototyping: types are not yet final, thus
fulfilling the type restrictions becomes an unnecessary overhead. Similar cases occur when
software requirements change, which is a common situation.

Several contemporary and popular programming languages do not perform any static

3A closed expression e is an expression without free variables, thus e must have a valid type derivation
using the empty type environment as context.

14

verification, giving the programmer the flexibility to avoid defining type restrictions, but at
the cost of the lack of static checks and therefore more fragile software. Static checks must
be delayed to runtime to verify, for example, that the arguments provided to a function
are the expected ones. These required runtime checks introduce a performance overhead.
Notable examples of languages without static typing, called dynamically typed languages,
are Scheme, Smalltalk, Python, Ruby and Javascript.

Gradual Typing, introduced by Siek and Taha [24], is an attempt to combine the flexibility
of dynamic typing with the guarantees of static typing, allowing the programmer to annotate
parts of the program with their types and to leave portions of the program unannotated at
will. Unannotated programs are associated with a default unknown type (denoted ?). For
example, function (λx . e) is automatically transformed into (λx : ? . e). Important goals
of gradual typing are to provide static guarantees for fully-annotated parts of the code, to
avoid runtime checks and to provide developers with the benefits of both static and dynamic
typing in a single language.

2.2.1 The type consistency relation

The type equality restrictions in the inference rules of a static type system are loosened by
using a consistency (∼) relation instead of equality. This consistency relation permits using
both an exact type and related types with some unknown information, and is defined as
follows:

T ∼ T T ∼? ? ∼ T

T1 ∼ T ′1 T2 ∼ T ′2
T1−→T2 ∼ T ′1−→T ′2

The consistency relation (∼) is reflexive and symmetric, but not transitive. If consistency
were a transitive relation, we could relate any two types a and b through the unknown type
((a ∼?) and (? ∼ b)⇒ a ∼ b) and the type system would become useless because it could
not discard any program, never giving static guarantees.

As an example, we present a typing rule for function application with Gradual Typing:

T-App

Γ; Σ ` e1 : T1

Γ; Σ ` e2 : T2

T1 ∼ (T2−→T3)

Γ; Σ ` e1 e2 : T3
(2.1)

This rule accepts programs where e1 has a function type, but also programs where the type
for e1 is statically unknown. When a program is completely type annotated, the inference
rule works just like in a standard static type system: Programs like (unit unit) are statically
rejected because Γ; Σ ` e1 : Unit and Unit 6∼ Unit−→T3. Whenever static information is
insufficient to prove if a program is either safe or unsafe, it must be checked at runtime. The
standard procedure is to introduce type casts.

15

2.2.2 Casts as runtime checks

The type system presented so far accepts programs that it couldn’t prove safe statically.
For these programs, safety must be verified at runtime. The type system accepted these
programs because it made optimistic assumptions that would make the program safe. These
assumptions are explicited using type casts. A cast delays type verification until runtime. If
runtime verification fails, the program must throw an error.

For example, consider the program (λf : ? . f unit)unit. This program is statically
accepted, because statically the parameter f could be a function. At runtime, however, the
program must clearly fail because the argument unit is not a function. In gradual typing, a
translation algorithm must convert programs into an intermediate language, inserting on the
way enough runtime casts to ensure safety, making the example program fail at runtime.

A cast is denoted 〈T2 ⇐ T1〉e, meaning that even though e statically has type T1, we can
optimistically assume that e also has type T2. The execution semantics of casts, presented
in section 2.2.3, enforces that the assumption always holds: If e does not have type T2 at
runtime, the semantics triggers an error.

Cast insertion is directed by a translation relation (⇒). This relation uses type information
to identify when to introduce a cast. To avoid introducing redundant casts, a cast insertion
predicate may be used to only introduce a cast when there is a chance that the cast may fail:

〈〈T2 ⇐ T1〉〉e=

{
e if T1 = T2

〈T2 ⇐ T1〉e otherwise

The translation relation is defined in terms of a set of cast insertion rules. A cast insertion
rule for the translation relation is introduced for each assumption made by the typing rules
in the gradual type system. We now present the rules for function application, and list the
full translation relation in fig. 2.2. The gradual type inference rule [T-App] introduced in
section 2.2.1, combines two distinct assumptions: First, it assumes that e1 has a function
type. To make this assumption explicit when e1 has the unknown type we introduce rule
[C-App-1]. Second, when e1 has a function type, we assume that e2 has a type compatible
with the argument type of e1. This assumption is made explicit by rule [C-App-2].

C-App-1

Γ; Σ ` e1 ⇒ e′1 : ?
Γ; Σ ` e2 ⇒ e′2 : T2

Γ; Σ ` e1 e2 ⇒ (〈T2−→?⇐?〉e′1) e′2 : ?
C-App-2

Γ; Σ ` e1 ⇒ e′1 : T1−→T3

Γ; Σ ` e2 ⇒ e′2 : T2

T1 ∼ T2

Γ; Σ ` e′1 〈〈T1 ⇐ T2〉〉e′2 : T3

2.2.3 Operational semantics for casts

We now present a simplified operational semantics for casts. Though it is not the same
as defined in the literature, this semantics suffices to present the concepts behind gradual

16

typing. This simplified semantics will also work as a basis for our design of gradual typing
for type-and-effect systems as introduced in chapter 3.

A cast 〈T2 ⇐ T1〉e expresses the static assumption that an expression of type T1 may
also have T2. This assumption will certainly hold if both types are the same. If they are
not the same, the assumption can only hold if also the type consistency relation (T1 ∼ T2)
holds. Cast assumptions hold with respect to the values permitted in certain positions of a
program. Thus a first step for evaluation consists in reducing the expression being casted to
a value. This goal is achieved by introducing a new evaluation frame for casts, 〈T ⇐ T 〉�,
which allows rule [E-Frame] to reduce a casted expression to a value.

A value might be wrapped with more than one cast. For example, consider the abstraction
(λf : ? . f 1). By applying f to 1, the abstraction makes the assumption that f is also a
function. The cast insertion algorithm makes the assumption explicit by translating the
abstraction to (λf : ? . (〈Int−→? ⇐?〉f) 1). If this abstraction is applied to a value like
4, which holds type Int, the argument is also wrapped with a cast〈? ⇐ Int〉, to hide the
information of its type. The translation relation will always insert a cast when a properly
typed value is expected to have type ?. This information must be kept after substitution, so
that the program

(λf : ? . (〈Int−→?⇐?〉f) 1) 〈?⇐ Int〉4 (2.2)

may afterwards proceed to check that the casts are inconsistent. Thus, we also consider
casted values as values in the language.

v ::= unit | λx : T . e | 〈T ⇐ T 〉v Values

Type inconsistencies might arise when composing casts since type consistency is not tran-
sitive, thus individually valid assumptions might hide a global assumption that is not valid.
An example of this situation arises in program 2.2. After substitution, the program becomes
(〈Int−→?⇐?〉〈?⇐ Int〉4) 1. We need to evaluate the pair of casts to see that 4 cannot be
used as a function.

We can merge nested casts that go through a shared type. For this goal we introduce rule
[E-Cast-Merge].

E-Cast-Merge
〈T3 ⇐ T2〉〈T2 ⇐ T1〉v → 〈T3 ⇐ T1〉v

After reducing our program with rule [E-Cast-Merge], we reach a (〈Int−→?⇐ Int〉4) 1.
This cast would only be valid if type Int is consistent with Int−→?, a false assumption. To
signal an error in these situations, we introduce rule [E-Cast-Err].

E-Cast-Err
T1 6∼ T2

〈T2 ⇐ T1〉v → Error

This error must also be propagated out of the frame, so the full program evaluates to an

17

error. For this goal we introduce rule [E-Error].

E-Error
f [Error]→ Error

These rules are sufficient for evaluating our example, but are not sufficient to remove
every cast. Reducing casts by [E-Cast-Merge] leads to identity casts (〈T ⇐ T 〉). An identity
cast holds a tautological assumption, so it can always be safely removed. Rule [E-Cast-Id]
removes identity casts.

E-Cast-Id
〈T ⇐ T 〉v → v

To be completely comprehensive, the semantics also has to reduce casts for function types,
also called higher order casts. A higher order cast for a function can be broken into a cast
for the argument and a cast for the result. Higher order casts can be reduced with rule
[E-Cast-Higher-Order]. This rule transforms the casted value, which we know is a function,
into a new function that is properly applied with the required casts.

E-Cast-Higher-Order
x 6∈ freevars(v)

〈T ′1−→T ′2 ⇐ T1−→T2〉v → λx : T ′1 . 〈T ′2 ⇐ T2〉(v 〈T1 ⇐ T ′1〉x)

Unlike previous rules, our definition of [E-Cast-Higher-Order] does not evaluate the cast
immediately. Instead, rule [E-Cast-Higher-Order] delays cast evaluation until application of
function v. This strategy makes the language more flexible: if there is an invalid sequence
of casts (remember that v is a value, so it may contain more higher order casts), it becomes
part of the body of the new function. If the function v is never applied, then the invalid casts
inside the new function will never be evaluated and the program will execute correctly, like
in a dynamically typed language. If we eagerly evaluated the higher order casts like in the
rest of the cast evaluation rules we introduced, a program with an invalid higher order cast
would always fail, even when the function is never applied. With these rules, we can reduce
all casts in the language. The full semantics is presented in fig. 2.2.

Our simple semantics does not identify which of the casts in a program failed. Though
this is sufficient for our theoretical purposes, a reference to the failing cast acts as good
feedback for the programmer. Formally, providing information of the failing cast is called
blame tracking [27, 1, 10]. Another problem in our semantics is that composed casts may
incur higher space costs, particularly when casts are inserted in recursive calls of a program.
There has been a lot of recent work in avoiding space leaks [13] while managing to identify
the failing cast. Identifying the failing cast is not trivial and different strategies and results
have been generated ([27], [25], [22]). We do not solve questions about blame tracking in this
thesis, but is one of the goals for future work.

18

T ::= Unit |? | T−→T Types
v ::= unit | λx : T . e Values
e ::= v | e1 e2 | 〈T ⇐ T 〉e Expressions
f ::= � e | v � | 〈T ⇐ T 〉� Evaluation Frames

C-Var
Γ(x) = T

Γ ` x⇒ x : T
C-Unit

Γ ` unit⇒ unit : Unit

C-Abs
Γ, x : T1 ` e⇒ e′ : T2

Γ ` λx : T1 . e⇒ λx : T1 . e′ : T1−→T2

C-App-1

Γ; Σ ` e1 ⇒ e′1 : ?
Γ; Σ ` e2 ⇒ e′2 : T2

Γ; Σ ` e1 e2 ⇒ (〈T2−→?⇐?〉e′1) e′2 : ?
C-App-2

Γ; Σ ` e1 ⇒ e′1 : T1−→T3

Γ; Σ ` e2 ⇒ e′2 : T2

T1 ∼ T2

Γ; Σ ` e′1 〈〈T1 ⇐ T2〉〉e′2 : T3

E-Frame
e→ e′

f [e]→ f [e′]
E-Error

f [Error]→ Error
E-App

(λx : T . e) v → [v/x] e

E-Cast-Err
T1 6∼ T2

〈T2 ⇐ T1〉v → Error
E-Cast-Id

〈T ⇐ T 〉v → v

E-Cast-Merge
〈T3 ⇐ T2〉〈T2 ⇐ T1〉v → 〈T3 ⇐ T1〉v

E-Cast-Higher-Order
x 6∈ freevars(v)

〈T ′1−→T ′2 ⇐ T1−→T2〉v → λx : T ′1 . 〈T ′2 ⇐ T2〉(v 〈T1 ⇐ T ′1〉x)

Figure 2.2: A Gradual Simply-Typed Lambda Calculus.

19

2.2.4 Subtyping and gradual typing

What is subtyping

Subtyping [4, 20] extends our notion of types for situations where more than one type satisfies
the restrictions we require for a program. To express which types can be used whenever a
particular type is expected, we introduce the subtyping relation (< : ⊆ T × T). If a type
T1 is a subtype of type T2, T1 < : T2, then whenever T2 is expected, type T1 may also be
used. This property of the subtyping relation is called substitutability. Subtyping may be
introduced in a type system through a new inference rule that expresses the substitutability
property, called the subsumption rule:

T-Subsumption
Γ; Σ ` e1 : T1 T1 < : T2

Γ; Σ ` e1 : T2

Subtyping is a reflexive relation, meaning that every type is a subtype of itself. This means
that rule [T-Subsumption] can be used anywhere and any amount of times in a derivation,
making the type system non deterministic. The standard solution for this problem is to avoid
introducing a [T-Subsumption] rule, but instead making explicit use of subtyping in each rule
that requires the flexibility of subtyping.

Let’s consider as an example a language with different kinds of numbers. For example,
integers and floating point numbers (typed Integer and Float, respectively). We can also
define a type Number that represents situations when any kind of number may be used.

Integer < : Number Float < : Number T < : T

If then we define a function argument as a Number, we want to use either a Float or an
Integer indistinguishably. We may introduce addition as a primitive operation on numbers,
using the following inference rule:

Γ; Σ ` e1 : Number
Γ; Σ ` e2 : Number

Γ; Σ ` e1 + e2 : Number

If we do not have a subsumption rule, addition will need e1 and e2 to explicitly have type
Number. If they only have type Integer or Float, they won’t be accepted. As we already
mentioned, the solution is to make explicit use of subtyping in the rule for addition:

Γ; Σ ` e1 : T1

Γ; Σ ` e2 : T2

T1 < : Number T2 < : Number

Γ; Σ ` e1 + e2 : Number

20

Interesting uses for subtyping arise also for function application. To allow functions to
receive arguments with more specific types than the type declared for their parameter, we
need to modify the inference rule for application:

T-App

Γ; Σ ` e1 : T1−→T3

Γ; Σ ` e2 : T2 T2 < : T1

Γ; Σ ` e1 e2 : T3

Since arguments may hold any valid type, we also need to define subtyping for function
types, T1−→T2 < : T ′1−→T ′2. A naive approach to define function subtyping would be to
directly restrict subtyping both for the arguments and results. Though we need to force that
the result can always be subsumed (T2 < : T ′2), we also need to ensure that the argument
given to the new function is always usable by the original function (T ′1 < : T1), not the
other way around. The subtyping restriction for the results is called covariant, while the
restriction for the arguments is called contravariant. With these restrictions, subtyping for
function types is defined as:

T ′1 < : T1 T2 < : T ′2
T1−→T2 < : T ′1−→T ′2

This requirement for function arguments also arises intuitively from the cast evaluation
rule for higher-order types, by looking at how the higher order casts are broken into two
separated casts in the same way as subtyping is defined:

Higher-Order
x 6∈ freevars(v)

〈T ′1−→T ′2 ⇐ T1−→T2〉v → λx : T ′1 . 〈T ′2 ⇐ T2〉(v 〈T1 ⇐ T ′1〉x)

Though the languages we have presented so far do not require any notion of subtyping,
we will use subtyping for effect systems. As our final goal is to reconcile gradual typing
with effect systems, we need also to introduce the relation between Subtyping and Gradual
Typing.

Combining subtyping with gradual typing

Gradual Typing, introduced in [24], is based on the consistency relation (∼).The consistency
relation was introduced in opposition to contemporary work in which uncertainty was rep-
resented using subtyping 4. In their original paper [24], Siek and Taha left open the issue
of how consistency relates to subtyping. This relation was later addressed when Gradual
Typing for Objects [23] was introduced.

Consistency and Subtyping can be combined in a relation called “consistent subtyping”
(.). Siek and Taha propose that type a is a consistent subtype of b if there exists a type τ

4In “Quasi-Static Typing”, the contemporary work mentioned, the dynamic type was represented as a top
type. A top type in subtyping is a type with whom every other type is related. (For a top type T , T ′ < : T
holds for every other type T ′). Siek and Taha found issues in this approach, which are described in [24].

21

that is consistent with either a or b and relates by subtyping with the other type. Then an
unknown type can be used in any place where a subtype was expected, and any type can be
used as a subtype when a type ? was expected.

a . b⇐⇒ ∃τ ∼ a . τ < : b or ∃τ ∼ b . a < : τ

The idea behind this specification is that types a and b can be related by the subtyping
relation either directly or through consistent types. In their paper, Siek and Taha also prove
that using consistency either with a or with b is equivalent. The definition of Consistent
Subtyping introduced by Siek and Taha overcomes issues that arise with a naive definition.
Suppose we defined consistent subtyping by simply loosening the subtyping relation to use
consistent types as follows:

a . b⇐⇒ ∃α, β . a ∼ α < : β ∼ b

Since subtyping is reflexive, such definition would allow any two types to be related by .,
because a ∼? < : ? ∼ b. We then need a more restrictive definition for ., like the definition
introduced by Siek and Taha.

2.3 Type-and-Effect systems

In our discussion so far, types only represented information about results of programs. The
term effect system [11] refers to programming languages with a static type system that also
provides guarantees about which side-effects are generated during the evaluation of those
programs.

A value is a candidate result of evaluation. Values do not produce side effects themselves.
The languages we have introduced in this work include λ abstractions, values that encapsulate
pending computation. This pending computation is evaluated when the abstraction is applied
to a particular argument.

During application, the instructions encapsulated in a lambda abstraction might generate
side effects. These side effects are analyzed by a type-and-effect system, which then requires
to also contain effect information. In type-and-effect systems, function types carry an effect
annotation, limiting the side effects that may be generated when the function is applied.
This annotation is represented as a set written on top of the function type arrow. Thus

an abstraction of type T1
Φ−→T2 takes an argument of type T1 and produces a result of type

T2, while producing at most the side effects declared in the set Φ. By carrying this extra
information, the type system can produce a conservative approximation of the side effects
that may occur in programs.

With this definition of function types, a different type is assigned to functions that only

22

differ in the side effects generated by applying them. This hides the intuition that the
annotations are a restriction but not a guarantee, meaning that whenever a function is
allowed to generate a set of side effects, it is also allowed to generate fewer side effects. The
subtyping relation between function types introduced in section 2.2.4 can be extended to
account for effect subsumption [26].

T ′1 < : T1 T2 < : T ′2 Φ ⊆ Φ′

T1
Φ−→T2 < : T ′1

Φ′
−→T ′2

The effect information in a type derivation can either be inferred bottom-up [21] or can
be used top-down to enforce an effect discipline [15]. Both designs are valid options, but
we follow the latter approach in this work to later build on top of the work on generic
type-and-effect systems presented in section 2.5.1.

Section 2.4 introduces a simple language with a type-and-effect system, called the fluent
language5. This language has the features presented in the literature that introduced effect
systems for the first time [11], presented in a clearer and more contemporary form. In later
chapters we extend the fluent language to explore the design of gradual effect checking in a
simple context.

2.4 An example: the fluent language

Effect systems were introduced by Gifford and Lucassen in 1986 [11]. They focused on the
relation between programs and memory (or state), categorizing programs into “effect classes”.
Each class is built grouping sets of side effects into equivalence classes that vary according
to the goal of the system. An expression’s effect class determines the subset of the language
that the expression must be restricted to. Therefore, effect classes provide a way to declare
and separate both functional and imperative styles of programming on the same program.

A language with these features is called fluent by Gifford and Lucassen. A fluent language
allows the programmer to declare a piece of code to be purely functional or to be imperative
at different degrees, through the usage of effect ascription, a language feature we write as
e :: Φ6, where e is a program and Φ is a restriction for the side effects that may be generated by
evaluating e. The process of verifying that the effect restrictions declared by the programmer
are actually fulfilled by the program is named “effect checking”.

We introduce a simplified version of the language: change some keywords, remove type
polymorphism and isolate state through the usage of references. Having a language with
few features, clearer keywords and with a clear distinction between identifiers (for function
parameters) and memory locations (whose value may change) produces a simpler declaration

5The name fluent is inspired by Gifford and Lucassen, which use the name “fluent languages” for languages
with a type-and-effect system in [11].

6We have renamed in our analysis the original the keyword used by Gifford and Lucassen to ::, to improve
readability.

23

of the effect checking process in the type system. We present the type system in contemporary
notation, making the type inference rules more readable.

2.4.1 Classifying programs over their use of state

Gifford and Lucassen propose a particular categorization of programs into a set of effect
classes, according to their goal: to identify opportunities for concurrent execution and mem-
oization. Other categorizations may also be constructed.

Gifford and Lucassen separate programs into four categories: those that do not use any
state (Pure), those that only allocate memory (Function), those that also read memory
(Observer) and those that perform assignments (Procedure). We can also describe these
categories through the sets of state-related privileges that entitle an expression to produce
a side effect. We name privileges alloc for allocation, read and write. Effect class Pure
maps to the empty set of privileges, ∅. Function to the singleton {alloc}, Observer to sets
{alloc, read} and {read}, and Procedure to all sets that contain write, like the universe set
{alloc, read,write}.

A model based in sets of privileges has also the benefit of giving the programmer more
granularity than Gifford and Lucassen’s effect classes, allowing to differentiate privilege sets
that were considered “equivalent” by Gifford and Lucassen, like {read,write} and {write}.

To build a simple language, we start from the simply-typed lambda calculus extended with
unit and references, as introduced in section 2.1.5. The full syntax of the fluent language is
defined as follows:

l ∈ Labels
Privileges = {alloc, read, write}

Φ ∈ P (Privileges)

v ::= unit | l | λx : T . e Values
e ::= v | e e | ref e |!e | e := e | e :: Φ Expressions

T ::= Unit | T Φ−→T Types

2.4.2 Generated side-effects or privileges required

Typing rules for fluent languages can handle effect information in two different ways, top-
down or bottom-up. We call a system bottom-up when effect information is conceived as
a result from type inference, and call top-down when effect information is conceived as
contextual information to be enforced.Choosing a style depends on the meaning the designer
wants to focus on.

Side effects can be considered as another result of evaluation. This notion implies that
the static analysis of side effects should infer not only the type of the result, but also the

24

side effects that their evaluation will produce. An effectful expression therefore will introduce
new side-effects into the resulting side effect set.

Another approach is to consider side effects as privileges. In this case, an expression can
only trigger a side effect if it is allowed to do it. In this approach, the type system would type
an effectful expression only if it can check that every side-effect related privilege is available
in the program context.

As a concrete example, we now present typing rule candidates for expressions of the form
ref e, which is a notation to allocate memory. Allocation can be considered as a side effect
of these expressions. As mentioned in the previous section, we will notate this side effect as
alloc.

In an inference system, we can define a typing rule like

T-Ref
Γ; Σ ` e : T !Φ

Γ; Σ ` ref e : Ref T !Φ ∪ {alloc}

where e : T !Φ means that e has type T and generates the side effects in Φ.

Following this approach, typing produces a pair of results: the type Ref T for the ex-
pression ref e, and also an effect set Φ′ which will always contain alloc and the side-effects
produced by e.

In a top-down system, the set of effects (or privileges) is given as part of the context, and
a rule for references shall only verify if the privilege of allocation is available:

T-Ref

Φ; Γ; Σ ` e : T
alloc ∈ Φ

Φ; Γ; Σ ` ref e : Ref T
(2.3)

The first strategy (inference) processes effect information bottom-up, while the second strat-
egy (privilege enforcement) processes effect information top-down.

Throughout this work, we follow the top-down approach where effect sets are considered
as privilege sets, and use both names as synonyms. We follow this approach to be able to
reuse the generic framework presented in section 2.5.1 that follows this strategy. We provide
a proof that the fluent language can be expressed in that generic system in appendix A. A
full type system for the fluent language is presented in fig. 2.3, and follows this approach.

In the systems we present, typing might not necessarily produce the most general type
for an expression, because of the definition for rule [T-Fn]. The premise of the rule has a
free privilege set Φ1, which implies that any superset of the minimal privilege set required
by e would also produce a correct type for the expression. This only means that the type
system could also infer a supertype of the principal type of an abstraction. A subyping
relation for the fluent language is presented in fig. 2.4. It formalizes the intuitive notion that
a function that requires a set of privileges can be used in a context where more privileges are
available. The subtyping relation is used in the rule for typing applications [T-App] and in

25

T-Fn
Φ1; Γ, x : T1; Σ ` e : T2

Φ; Γ; Σ ` (λx : T1 . e) : T1
Φ1−→T2

T-Unit
Φ; Γ; Σ;` unit : Unit

T-Loc
Σ(l) = T

Φ; Γ; Σ ` l : Ref T T-Var
Γ(x) = T

Φ; Γ; Σ ` x : T
T-App

Φ; Γ; Σ ` e1 : T1
Φ1−→T3

Φ; Γ; Σ ` e2 : T2

T2 < : T1 Φ1 ⊆ Φ

Φ; Γ; Σ ` e1 e2 : τ3

T-Ref

Φ; Γ; Σ ` e : T
{alloc} ⊆ Φ

Φ; Γ; Σ ` ref e : Ref T
T-Deref

Φ; Γ; Σ ` e : Ref T
{read} ⊆ Φ

Φ; Γ; Σ `!e : T

T-Assign

Φ; Γ; Σ ` e1 : Ref T1

Φ; Γ; Σ ` e2 : T2

{write} ⊆ Φ T2 < : T1

Φ; Γ; Σ ` e1 := e2 : Unit
T-Ascription

Φ1; Γ; Σ ` e : T
Φ1 ⊆ Φ

Φ; Γ; Σ;` e :: Φ1 : T

Figure 2.3: A type system for the fluent language that follows the top-down approach.

T < : T

T ′1 < : T1

T2 < : T ′2
Φ ⊆ Φ′

T1
Φ−→ T2 < : T ′1

Φ′
−→ T ′2

Figure 2.4: Subtyping relation for fluent languages

rule [T-Assign].

2.4.3 Restricting side effects with ascription

To take advantage of their classification of programs into effect classes, Gifford and Lucassen
propose a language construct that allows the programmer to restrict the effect class (or set
of privileges) that a particular expression in the language may have. The restriction acts
as a contract declared by the programmer regarding the usage of state: it limits the effects
an expression should produce, rejecting the program otherwise, and also ensures an upper
bound of the side effects for consumers of an ascribed program.

We use e :: Φ as notation for effect ascription. An expression (e :: Φ) verifies that the
required privilege set for e is a subset of Φ, the declared set of privileges. This forces the
typechecker to discard programs that are not allowed to use certain features of state. As an
example, the program

(ref unit) :: ∅

fails to typecheck because (ref unit) requires an alloc privilege, which is not available in

26

∅.

An effect ascription also declares itself to require a privilege set Φ, therefore the program
(unit :: {read}) :: ∅ also fails, because the contracted expression (unit :: {read}) is declared
to require privileges not available in the ∅ context.

2.4.4 Typing function application

Even though Gifford and Lucassen propose typing and effect checking as separated processes,
they are related as types contain information required by static effect checking for function
applications, allowing to accept or discard a particular program. Suppose we could typecheck
the following abstraction:

(λf : Unit −→ Unit . (f unit) :: ∅) (2.4)

Statically, the type system cannot identify if this program is correct or not without having
some notion of the privileges required by the body of f . It should fail whenever f requires any
particular privilege, but not if f is pure (requires no privilege). An easy way to distinguish
these situations is to extend the notion of function type to include effect information, resulting
in the following program:

(λf : Unit
∅−→ Unit . (f unit) :: ∅) (2.5)

Addition of this information permits the type system to check the integrity of effect infor-
mation for function applications. If we apply this function with the typed identity function as
an argument (λx : Unit . x), it type checks. If the argument is instead (λx : Unit . (!(ref x))),
which is an identity that uses state, the program fails to typecheck, because the function re-
quires more permissions than those allowed.

2.5 Generic type-and-effect systems

In this section we describe the related work on Generic Type-and-Effect Systems. Marino
and Millstein [15] introduce a framework to define type-and-effect systems, which we denote
M&M. The framework provides type safety guarantees for the systems it derives, requiring
only to prove that some monotonicity restrictions hold. Besides introducing the framework,
we show in appendix A that the fluent language introduced in section 2.4 can be considered
as an instance of this generic framework.

2.5.1 A generic type-and-effect system

This description of generic type-and-effect systems has been edited from section 2.4 of our
paper accepted at the International Conference on Functional Programming 2014[2].

27

To avoid re-inventing gradual effects for each possible effect discipline, we reuse the generic
effect framework introduced by Marino and Millstein (M&M) [15]. The M&M effect frame-
work defines a parametrized typing judgment Φ; Γ; Σ ` e : T . It checks an expression under
a set of privileges Φ, representing the effects that are allowed during the evaluation of the
expression e. For instance, here is the generic typing rule for functions:

T-Abs
Φ1; Γ, x : T1; Σ ` e : T2

Φ; Γ; Σ ` (λx : T1 . e)ε : {ε}
(
T1

Φ1−→T2

)
Since a function needs no specific permissions, any privilege set Φ will do. The function body
itself may require privileges Φ1 and these are used to annotate the function type. We explain
the tag ε shortly.

A given privilege discipline (mutable state, exceptions, etc.) is instantiated by defining
two operations, a check predicate and an adjust function. The check predicate is used to
determine whether the current privileges are sufficient to evaluate non-value expression forms.
To achieve genericity, the check predicate checkC is indexed by check contexts C, which
represent the non-value expression forms. The adjust function is used to evolve the available
privileges while evaluating the subexpressions of a given expression form. This function takes
the current privileges and returns the privileges used to check the considered subexpression.
To achieve genericity, the adjust function adjustA is indexed by adjust contexts A, which
represent the immediate context around a given subexpression.

Marino and Millstein [15] point out that the definition of check contexts maps to the
structure of the reducible expressions in the language (redexes): reducing expressions may
produce side effects, and check contexts are used to enforce that this reduction only occurs
when the privileges required to produce the associated side effects are available. On the
other hand, the definition of adjust contexts maps to the structure of evaluation frames
(introduced in section 2.1.1): adjust contexts are used to modify the set of privileges available
for evaluating subexpressions, and the process of evaluating subexpressions is directed by
evaluation frames.

To increase its overall expressiveness, the framework also incorporates a notion of tags ε7,
which represent auxiliary static information for an effect discipline (e.g. abstract locations).
Expressions that create new values, like constants and lambdas, are indexed with tags (for
example, unitε). The check and adjust contexts contain tag sets π so that checkC and
adjustA can leverage static information about the values of subexpressions. To facilitate
abstract value-tracking, type constructors are annotated with tagsets, so types take the form
T ≡ πρ, with ρ a PreType 8. For more precise control, effect disciplines can associate tags to
privileges e.g., read(ε1), read(ε2), etc.

7 The key concerns for developing gradual effects are captured in the simpler tagless framework, which
we use in chapter 3.

8A pretype represents the part of a type that is not a tagset. In our framework, a pretype ρ may be Unit,

T
Φ−→T (function pretype) or Ref T (reference pretype).

28

For example, a check predicate for controlling mutable state is defined as follows:

check!π(Φ) ⇐⇒ read ∈ Φ

checkrefπ(Φ) ⇐⇒ alloc ∈ Φ

checkπ1:=π2(Φ) ⇐⇒ write ∈ Φ

checkC(Φ) holds for all other C

In this case, only state-manipulating expression forms have interesting check predicates,
which simply require the corresponding privilege; the rest always hold.

Since the assignment expression involves evaluating two subexpressions (the reference
and the new value), there are two adjust contexts. The ↓:=↑ context, which corresponds
to evaluating the reference to be assigned, and the π :=↓ context, which corresponds to
evaluating the assigned value. The ↓ denotes the subexpression for which privileges should
be adjusted. The tagset π represents statically known information about any subexpressions
that would be evaluated before the current expression. The ↑ denotes a subexpression that
would be evaluated after the current expression.

For certain disciplines, like mutable state, the adjust function is simply the identity for ev-
ery context. But one could, for example, require that all subexpressions assigned to references
must be effect-free by defining adjust as follows:

adjustπ:=↓(Φ) = ∅
adjustA(Φ) = Φ otherwise

All typing rules in the generic system use check and adjust to enforce the intended effect
discipline. For instance, here is the typing rule for assignment:

T-Asgn

adjust↓:=↑(Φ) ; Γ; Σ ` e1 : π1Ref T1

adjustπ1:=↓(Φ) ; Γ; Σ ` e2 : π2ρ2

checkπ1:=π2(Φ) π2ρ2 < : T1

Φ; Γ; Σ ` (e1 := e2)ε : {ε}Unit

The subexpressions e1 and e2 are typed using adjusted privilege sets. Their corresponding
types have associated tagsets πi that are used to adjust and check privileges. Note that in
accord with left-to-right evaluation, adjustπ1:=↓ knows which tags are associated with typing
e1. Finally, checkπ1:=π2 verifies that assignment is allowed with the given permissions and
the subexpression tag sets. Subtyping is used here only to account for inclusion of privilege
sets between function types.

For maximum flexibility, the framework imposes only two constraints on the definitions
of check and adjust:
Property 1 (Privilege Monotonicity).

• If Φ1 ⊆ Φ2 then checkC(Φ1) =⇒ checkC(Φ2);

• If Φ1 ⊆ Φ2 then adjustA(Φ1) ⊆ adjustA(Φ2).

29

T-Fn
Φ1; Γ, x : τ1; Σ ` e : τ2

Φ; Γ; Σ ` (λx.e)ε : {ε}(τ1
Φ1−→ τ2)

T-Unit
Φ; Γ; Σ ` unitε : {ε}Unit

T-Loc
Σ(l) = τ

Φ; Γ; Σ ` lε : {ε}Ref τ
T-Var

Γ(x) = τ

Φ; Γ; Σ ` x : τ

T-App

adjust↓↑(Φ) ; Γ; Σ ` e1 : π1(τ2
Φ1−→ τ)

adjustπ1 ↓(Φ) ; Γ; Σ ` e2 : π2ρ2

checkπ1 π2(Φ) π2ρ2 <: τ2 Φ1 ⊆ Φ

Φ; Γ; Σ ` e1 e2 : τ
T-Ref

adjustref ↓(Φ) ; Γ; Σ ` e : τ
τ = πρ checkref π(Φ)

Φ; Γ; Σ ` (ref e)ε : {ε}Ref τ

T-Deref

adjust!↑(Φ) ; Γ; Σ ` e : πRef τ
check!π(Φ)

Φ; Γ; Σ ` (!e)ε : τ
T-Assign

adjust↓:=↑(Φ) ; Γ; Σ ` e1 : π1Ref τ1

adjustπ1:=↓(Φ) ; Γ; Σ ` e2 : π2ρ2

checkπ2:=π2(Φ) π2ρ2 <: τ1

Φ; Γ; Σ ` e1 := e2 : {ε}Unit

Figure 2.5: Generic Type-and-Effect system introduced by Marino and Millstein

Property 2 (Tag Monotonicity).

• If C1 v C2 then checkC2(Φ) =⇒ checkC1(Φ);

• If A1 v A2 then adjustA2
(Φ) ⊆ adjustA1

(Φ).

Privilege monotonicity captures the idea that once an expression has sufficient privileges
to run, one can always safely add more. This corresponds to effect subsumption in many
particular effect systems. In contrast, tag monotonicity captures the idea that more tags
implies more uncertainty about the source of a runtime value. The v relation holds when
contexts have the same structure and the tagsets of the first context are subsets of the
corresponding tagsets of the second context. For example, refπ1 v refπ2 if and only if
π1 ⊆ π2. In summary, check and adjust are order-preserving with respect to privileges and
order-reversing with respect to tags.

The framework can be instantiated with any pair of check and adjust functions that satisfy
both privilege and tag monotonicity. The resulting type system is safe with respect to the
corresponding runtime semantics: no runtime privilege check fails, so no program gets stuck.

2.6 Summary

We have introduced several concepts required to understand the work presented in the follow-
ing chapters. Section 2.1 introduced type systems and language semantics with an example
formalization for a language, also defining what makes a formalization “safe” through a
property called type safety. The formalized language is the Simply Typed Lambda Calculus

30

(STLC), a programming language standard in the literature and used as basis for our re-
search. We have also shown the formalization of mutable references, a standard extension of
the STLC.

Section 2.2 introduced gradual typing, a type discipline more flexible than the static type
system introduced in section 2.1. Gradual typing extends static type systems, accepting
programs for which static type information is missing, and introduces runtime checks (casts)
to ensure that the optimistic static assumptions made by a gradual typing system are fulfilled
at runtime. After introducing gradual typing for the STLC, we extended the language with
subtyping and how gradual typing interacts with subtyping.

Section 2.3 introduced type-and-effect systems, a form of type systems which not only
focuses on program results as abstracted by types, but also focuses on the side effects that
occur during evaluation, like memory usage or exceptions. An example of a language with a
type-and-effect system, the fluent language, is introduced in section 2.4.

Section 2.5.1 ends the chapter introducing a generic type-and-effect framework, which
can be used to define safe type-and-effect systems. This framework abstracts the similarities
between different type-and-effect systems, and allows general reasoning about type-and-effect
systems. The section ends presenting the fluent language introduced in section 2.4 as an
instance of the generic framework.

We assume familiarity with the ideas here introduced in the following chapter, where
concepts from language semantics, type systems, gradual typing and type-and-effect systems
are combined to introduce a new concept, gradual effect checking, using the fluent language
as a running example.

31

Chapter 3

Design of Gradual Effect Checking

As we have discussed in section 2.4, the fluent language is a simple example of a type-
and-effect system. In the fluent language, programs are evaluated with a particular set of
privileges, set that represents the side effects allowed for the program. Programmers may
restrict the privileges available through effect ascriptions. The fluent type system statically
tracks privileges and verifies that all restrictions are consistent with the program require-
ments, signaling an error otherwise.

When first proposing effect systems, Gifford and Lucassen claimed that effect checking
could be performed either statically or dynamically. Unfortunately, they did not provide a
definition of what “dynamic checking” meant, perhaps because the type system they proposed
made runtime verifications redundant.

In this chapter we introduce a statically typed language with gradual effect checking.
This language automatically verifies privilege restrictions in expressions, just as the fluent
language, but without forcing the language user to declare complete privilege information.
Whenever the system cannot infer statically if the available privileges are sufficient or clearly
insufficient, it will introduce a runtime verification. In this language, effect ascription can
not only enforce privilege restrictions, but also hide privilege information, enforcing runtime
verification.

For simplicity, we use the fluent language as a playground to design gradual effect checking.
After we settle on a particular design, in the following chapters we will introduce gradual
effect checking in more complex languages. The rest of this chapter presents our design
goals, different approaches to introduce the notion of unknown effect information in a fluent
language, and our proposal of the gradual effect checking system itself.

3.1 What is gradual effect checking?

In the fluent language, programmers can use the effect ascription construct (e :: Φ) to restrict
privileges available for an expression e. Privileges can also be restricted through function type

32

declarations. For example, the function shown as program 3.1, which is defined in a dynamic
language without type annotations, should not be applied to an argument that requires any
privileges.

(λf . (f unit) :: ∅) (3.1)

With this restriction, the identity function is a valid argument for function 3.1, but (λx . (!(ref x)))
is not, because in the fluent language this function requires both the alloc and read privi-
leges. Statically, this restriction can be enforced annotating the f argument with a function
type that includes effect restrictions. An annotated version of 3.1 valid in the fluent language
would be

(λf : Unit
∅−→Unit . (f unit) :: ∅) (3.2)

The type-and-effect system uses argument f ’s declared privilege set to check if privilege
restrictions in the body of 3.2 are valid. However, this forces the programmer to declare effect
annotations early in the development process. A gradual effect checking system is a type-and-
effect system in which programs both with and without privilege annotations can interact.
The programmer decides when and where to introduce ascriptions and effect annotations in
function types. The type system uses the available static information to catch inconsistencies,
makes optimistic assumptions when lacking information and verifies at runtime that these
assumptions hold.

Therefore, in a gradual effect checking system, the privilege set required by f can be
missing. We want to allow the programmer to declare annotated function types, but also to
be able to declare function 3.1 using plain type annotations like those in the simply-typed
lambda calculus:

(λf : Unit −→ Unit . (f unit) :: ∅) (3.3)

A gradual effect system specifies how the type system behaves when privilege information
is missing, like in program 3.3. The design of a gradual effect system shall decide whether this
program is rejected or accepted. A program may be accepted either because every privilege
restriction is fullfilled, like in the fluent language, or because restrictions may be fullfilled, like
for function 3.1, in which case some checks must be performed at runtime. The decision of
which programs to accept or to reject is guided by the design goals described in the following
section.

3.2 Design goals for gradual effect checking

Several goals guide our design of a gradual effect system. A gradual effect checking type
system should at least accept more programs than a static effect system. In particular, it
should accept all the programs for which static information is not sufficient to make a clear
claim (either a “yes” or a “no”) about the fullfilment of the privilege restrictions.

A first design goal is to reject inconsistent programs. A gradual effect system must iden-
tify inconsistencies between the privilege sets declared in effect ascriptions and the required

33

privileges identified for the ascripted expressions. If a program requires more privileges than
those optimistically assumed, runtime privilege checks will always fail, and thus the program
inconsistency should generate a static error.

A second design goal is to provide the same guarantees given by a static effect system for
annotated programs. This means that programs with complete privilege information should
only be accepted if every side effect produced by an expression in the program is allowed in the
expression’s context. We consider gradual effect checking as an extension to effect checking in
static effect systems to achieve this goal, because then the process of gradual effect checking
a fully annotated program is equivalent to the original effect checking process.

A third design goal is to ensure that every privilege required at execution time is in fact
available. When a gradual effect system does not have enough static effect information, it
must make an optimistic estimation. This estimate can include more privileges than those
actually available at runtime. Thus every privilege requirement that cannot be statically
verified must be verified at runtime.

A fourth design goal is to minimize the runtime cost of privilege checking. Every runtime
check is an overhead, so we want to introduce as few runtime checks as possible. If the type
system identified statically that a privilege is available, it should not check its availability
again at runtime.

3.3 Representing effect uncertainty

To introduce gradual effect checking, we follow a similar approach to how Siek and Taha
introduced Gradual Typing[24]. To handle missing type information, Siek and Taha identified
that types in the STLC are compared by equality, and introduced a new relation, called
consistency (∼), to compare types with missing information. They defined ∼ to work as an
extension of equality (a = b ⇒ a ∼ b). We also want gradual effect checking to work as an
extension of the original fluent type-and-effect system. To do this, we first need to identify
how the fluent language handles privileges, and abstract that behavior as a pattern.

The fluent language represents privileges as sets, and verifies privileges by comparing sets
through the set containment (⊆) operation, which defines a partial order among sets. We
can consider the static fluent effect system as an instance of a generic system depending on
a particular binary relation on sets v, and define our gradual effect system by proposing a
new binary relation to replace containment and handle missing information (which we will
call unknown privileges). To draw an explicit connection with Gradual Typing, we call this
relation consistent containment and use the symbol @∼ to denote it.

The type system of the fluent language also uses subtyping. Subtyping expresses the
notion that if a context allows to apply a function requiring certain privileges, any other
function that requires less privileges is also allowed. To achieve this goal, the subtyping
relation in the fluent language compared privilege sets by containment. We then introduce
a new notion of subtyping for gradual effect checking, using consistent containment instead

34

T-Fn
Ξ1; Γ, x : T1; Σ ` e : T2

Ξ; Γ; Σ ` (λx : T1 . e) : T1
Ξ1−→T2

T-Unit
Ξ; Γ; Σ;` unit : Unit

T-Loc
Σ(l) = T

Ξ; Γ; Σ ` l : Ref T T-Var
Γ(x) = T

Ξ; Γ; Σ ` x : T
T-App

Ξ; Γ; Σ ` e1 : T1
Ξ1−→T3

Ξ; Γ; Σ ` e2 : T2

T2 . T1 Ξ1 @∼ Ξ

Ξ; Γ; Σ ` e1 e2 : τ3

T-Ref

Ξ; Γ; Σ ` e : T
{alloc} @∼ Ξ

Ξ; Γ; Σ ` ref e : Ref T
T-Deref

Ξ; Γ; Σ ` e : Ref T
{read} @∼ Ξ

Ξ; Γ; Σ `!e : T

T-Assign

Ξ; Γ; Σ ` e1 : Ref T1

Ξ; Γ; Σ ` e2 : T2

{write} @∼ Ξ T2 . T1

Ξ; Γ; Σ ` e1 := e2 : Unit
T-Ascription

Ξ1; Γ; Σ ` e : T
Ξ1 @∼ Ξ

Ξ; Γ; Σ;` e :: Ξ1 : T

ST-Id
T . T

ST-Fn

T ′1 . T1 T2 . T ′2
Ξ @∼ Ξ′

T1
Ξ−→T2 . T ′1

Ξ′
−→T ′2

Figure 3.1: A type system for the fluent language with gradual effect checking.

of set containment to compare privilege annotations in function types. We call this notion
consistent subtyping (.), just like Siek and Taha [23].

We use almost the same inference rules of the type system in the fluent language for gradual
effect checking, the only differences being the use of consistent containment @∼ instead of set
containment ⊆ and consistent subtyping . instead of subtyping < : . To achieve the design
goals presented in section 3.2, we need the @∼ relation to always work like set containment
for fully known privilege sets. If this condition holds, the gradual system is equivalent to the
static fluent type system when no information is missing.

For a gradual effect system to accept programs that do not have privilege annotations,
like (λf : Unit−→Unit . f), we need a way to declare missing privilege information in the
language. We chose to use the symbol “¿” for any notion of unknown information related to
effects, much as Siek and Taha used “?” to declare unknown types in their Gradual Typing
framework.

With these definitions, we present in fig. 3.1 a parameterized type system for gradual effect
checking, which only depends on the meaning of privilege uncertainty and the corresponding
definition of consistent containment (@∼).

We now proceed to introduce different candidate meanings for ¿ and their corresponding
definitions for consistent containment. First, we introduce ¿ as an “unknown privilege set”.
Though this design mirrors the “unknown type” introduced by Siek and Taha, we explain

35

why this approach is insufficient for our design goals. We then present how the notion of
“unknown privileges” can be represented as a privilege, which holds a special meaning when
is present in the set. Having the ¿ privilege in a set signals that the system cannot statically
tell if any more privileges are available or are required.

Different meanings for ¿ affect how the domain of privilege sets is defined. To remind the
reader that the domain of privilege sets that can handle missing information is different (and
bigger) than the domain of standard privilege sets, we will use different notation for each.
PSet will represent the domain of standard privilege sets, and Φ ∈ PSet, while CPSet
will represent the domain of privilege sets that can also handle missing information, and
Ξ ∈ CPSet.

3.3.1 First approach: unknown information as a privilege set

In Gradual Typing, unknown type annotations are declared with ?, which is a type like
any other type in the system. Thus we attempt a similar approach to define gradual effect
checking, representing missing effect information with a distinct set, the unknown privilege
set ¿. The ¿ set becomes a black box that may contain any privileges. With this definition,
the domain of privilege sets CPSet becomes PSet ∪ {¿}.

To use this set, we need to define a consistent containment relation. This definition
requires the following properties:
Property 3. The unknown set can always be contained in another set, since in the best case,
¿ is empty.
Property 4. Any set can be contained in the unknown set, since in the worst case, every
privilege is contained in ¿.

Property 3 allows to statically type programs like

(λf : Unit
¿−→ Unit . (f unit) :: ∅)

The effect ascription in the body of this abstraction forces a runtime check that (f unit)
does not require any privilege, as forced by the ascription to the empty privilege set ∅. If a
program applied the previous function to (λx : Unit . !(ref x)), it should identify at runtime
that (f unit) requires a missing privilege set {read,write} 6@∼ ∅, and therefore it should signal
an error.

Property 4 makes the type system accept programs that hide effect information, like the
following:

(ref unit) :: ¿

A simple definition for consistent containment forces both properties, and falls back to set
containment when there is no unknown information:

a @∼ b =

{
true if a = ¿ or b = ¿
a ⊆ b otherwise

(3.4)

36

3.3.2 Limitations of the first approach

The simplicity of the fluent language makes the unknown privilege set sufficient to define
gradual effect checking. The unknown privilege set is sufficient because all the privilege
operations in fluent can be represented in terms of consistent containment. If we considered
richer operations, the language would start losing static information.

Sets may compose through many operations, like union and intersection. Though the un-
known privilege set allows a simple definition for consistent containment, defining consistent
union and intersection operations loses information that could be used by the type system.

Union between a set a and a set b (a ∪ b) shall contain every element in a and every
element in b. Statically, the set ¿ is unknown, so it may range from the empty set ∅ to every
possible privilege. Though we can identify that union with set ¿ should contain at least the
elements in the set being united to ¿, we have no way to distinguish this partially known set
from the set ¿. If the system has an unknown privilege set, we can define consistent union t
as follows:

Ξ1 t Ξ2 = ¿ if either Ξ1 = ¿ or Ξ2 = ¿
Ξ1 t Ξ2 = Ξ1 ∪ Ξ2 otherwise

As an example, consider extending fluent with exceptions in a simple form, having only
one kind of exception: throw. A throw expression would require the privilege of throwing
exceptions:

{throw} @∼ Ξ

Ξ; Γ; Σ ` throw : T

A try e1 catch e2 expression would handle exceptions, making the throw privilege avail-
able for e1:

Ξ t {throw}; Γ; Σ ` e1 : T
Ξ; Γ; Σ ` e2 : T

Ξ; Γ; Σ ` try e1 catch e2 : T

Though it is clear that e1 should assume that throw is available, our definition of consistent
union cannot make this assumption under the unknown privilege set restriction:

¿ t {throw} = ¿; Γ; Σ ` e1 : T
¿; Γ; Σ ` e2 : T

¿; Γ; Σ ` try e1 catch e2 : T
(3.5)

And therefore, whenever an exception is raised in e1, presence of throw privilege needs to
be explicitly checked, even though the system could statically identify that the privilege is

37

always available.

3.3.3 Second approach: unknown information as a privilege

One of the design goals of our system is to minimize the runtime cost of effect checking. In
the previous section we showed an example where using the unknown privilege set introduces
redundant runtime cheks, so we look for a different representation for privilege uncertainty.
Instead of presenting uncertainty as an unknown privilege set, we represent uncertainty with
a special privilege, named ¿. By using standard set operations like ∪ and ∩, ¿ can be used
directly, and programs like 3.5 do not need to introduce redundant runtime checks.

However, there is still a special semantics we want to give to the element ¿, affecting the
behavior of consistent containment. Consistent containment (@∼) differs from standard set
containment, because the @∼ operator has to optimistically consider the unknown part of a
set. At runtime, ¿ might range from no privileges at all to every privilege in the universe,
and both cases have to be accepted statically by a @∼ b. Whenever ¿ ∈ b, any privilege might
be part of the set b at runtime, thus any set a might be contained in set b. If ¿ ∈ a, the
optimistic assumption is that at runtime there is no new privilege introduced, but still the
rest of the set a should be contained in b. We define the “rest of the set” as the static part.
Definition 1 (Static Part). For a set a, we define the static part |a| as a \ {¿}.

We can also define a notion of containment for static parts.
Definition 2 (Static Containment). We define the static containment of two sets, a ≤ b, as
|a| ⊆ |b|.

This definition of static containment encapsulates the second assumption we presented,
so we can introduce consistent containment as follows:
Definition 3 (Consistent Containment). We define Consistent Containment, a @∼ b, as

a @∼ b⇐⇒ ¿ ∈ b or a ≤ b

3.4 The intermediate language: checking inconsisten-

cies at runtime

The type system we have proposed for the gradual effect fluent language also accepts pro-
grams that should fail at runtime. Therefore, to ensure the right runtime behavior we need
to introduce runtime checks for the cases where the static information was insufficient. We
achieve this goal by translating programs in the gradual effect fluent language to an interme-
diate language with explicit checks. The translation is performed by a type-directed relation
that introduces checks while assigning a type to the program.

In our operational semantics, expressions that generate a side effect include an explicit
privilege check, which is required to pass in order to let the expression reduce. If the required
privilege is not available, evaluation gets stuck. We mentioned in section 2.1.3 that type

38

safety guarantees that programs do not get stuck. We include the explicit privilege checks in
reduction rules so that if we prove that the language is type safe, the proof guarantees that
privileges will always be available when required. Type safety for this language is proven in
section 3.5.1.

The intermediate language we propose does not include effect ascription, but introduces
two dynamic features related to privileges, to which we map effect ascription: restrict,
which constrains the set of available privileges, and has, which verifies that a set of privileges
is available at runtime.

The language syntax limits which privilege sets are allowed for restrict and has. Se-
mantically, has represent a check: whenever a has verification passes, the system can be sure
that the privileges it declares are available. To do so, we limit has to only manage concrete
privileges, without uncertainty. However, effect ascription may hide privilege information by
introducing ¿. This behavior is isolated into the restrict construct, which accepts any kind
of privilege set.

The syntax of our intermediate language is defined as follows:

Φ ∈ PSet
Ξ ∈ CPSet

T ::= Unit | Ref T | T Ξ−→T
e ::= unit | ref e |! e | e := e |

λx : T . e | x | e e |
restrict Ξ e | has Φ e | Error

v ::= unit | l | (λx : T . e) | 〈T ⇐ T 〉v

3.4.1 A type system for the intermediate language

The type system for the intermediate language we present in fig. 3.2 is very similar to the
one presented in fig. 3.1, but removing the [T-Ascription] rule (since the construct does not
exist) and adding a [T-Restrict] and a [T-Has] for the new features and, for completeness, a
rule to type the runtime effect errors [T-Error].

A program in the intermediate language is the result of a translation. The translation
algorithm must insert explicit checks for every case where static information was insufficient
in the original program, so that the type system for the intermediate language can be more
restrictive and assume every required privilege to be previously checked. The type system
isolates checks into the has construct, and the type system assumes statically that runtime
checks will pass. Rule [T-Has] types the checked expression under the assumption that the
verified privileges are in fact available.

In effect ascription, consistent containment (@∼) plays two different roles. On one side,
it verifies that the declared set of privileges for the ascripted expression is available. As we
already mentioned, this behavior is managed by inserting has expressions in the intermediate

39

T-Unit
Ξ; Γ; Σ ` unit : Unit

T-Fn
Ξ′; Γ, x : T1; Σ ` e : T2

Ξ; Γ; Σ ` λx : T1 . e : T1
Ξ′
−→T2

T-Loc
Σ(l) = T

Ξ; Γ; Σ ` l : Ref T
T-Var

Γ(x) = T

Ξ; Γ; Σ ` x : T

T-Ref
Ξ; Γ; Σ ` e : T {alloc} ⊆ Ξ

Ξ; Γ; Σ ` ref e : Ref T
T-Deref

Ξ; Γ; Σ ` e : Ref T {read} ⊆ Ξ

Ξ; Γ; Σ `! e : T

T-Assign

Ξ; Γ; Σ ` e1 : Ref T1

Ξ; Γ; Σ ` e2 : T2

T2 < : T1 {write} ⊆ Ξ

Ξ; Γ; Σ ` e1 := e2 : Unit
T-App

Ξ; Γ; Σ ` e1 : T1
Ξ′
−→T3

Ξ; Γ; Σ ` e2 : T2

T2 < : T1 Ξ′ ⊆ Ξ

Ξ; Γ; Σ ` e1 e2 : T3

T-Restrict

Ξ′; Γ; Σ ` e : T
Ξ′ ≤ Ξ

Ξ; Γ; Σ ` restrict Ξ′ e : T
T-Has

Φ ∪ Ξ; Γ; Σ ` e : T

Ξ; Γ; Σ ` has Φ e: T

T-Cast
Ξ; Γ; Σ ` e : T0 T0 < : T1

Ξ; Γ; Σ ` 〈T2 ⇐ T1〉e : T2

T-Error
Ξ; Γ; Σ ` Error : T

Figure 3.2: Type system for the intermediate language

language. But on the other side, it also has to constrain the set of privileges available for
the ascripted expression, constraints that also need to be enforced at runtime. The privilege
constraining behavior of ascription is encapsulated in restrict, as seen in rule [T-Restrict]

3.4.2 Runtime semantics for the intermediate language

In this section, we present the runtime semantics for the intermediate language. We intro-
duce first a notion to relate the privilege sets used for typing and the privilege sets used for
evaluation, and we then introduce the reduction rules for the operational semantics.

Modelling concrete privilege sets

In the fluent language, the type system and the runtime semantics used the same kind of
privilege sets. In gradual effect checking, the type system uses consistent privilege sets,
which model missing information. However, we restrict the operational semantics to use
only privilege sets without uncertainty (Φ) as contexts, so evaluation has full knowledge of
the available privileges. We then require to restrict the privilege sets that may be used for
evaluation when a set with uncertainty is used by the type system.

We call the privilege sets Φ that may be used in the context of a consistent privilege set
Ξ as being modeled by the consistent set (notated Ξ ` Φ).

40

Definition 4 (Modelling privilege sets). A privilege set Φ is modeled by a consistent privilege
set Ξ, denoted Ξ ` Φ, if at least Φ contains all the privileges that are statically known to be
part of Ξ. Formally

Ξ ` Φ ⇐⇒ Ξ ≤ Φ

We use this notion of set modelling to relate the type system to the semantics in our
definition of type safety, in section 3.5.1.

The operational semantics

We now introduce the operational semantics for the intermediate language. Given that
the language is an extension of the simply typed lambda calculus with references and unit,
already introduced in section 2.1.5, we only describe the effect-related features has, restrict,
and our extension to handle higher order casts1 with effect information. The full runtime
semantics is presented in fig. 3.4.

As we have previously described, has expressions verify that a set of explicit privileges is
available at runtime. To do this, it compares the set given as an argument with the set in the
context. Rule [E-Has-F] triggers an error when the required privileges are not available. Rule
[E-Has-T] evaluates the subexpression, but only if the privilege set given as an argument is
contained in the context. Though this verification could be performed only once and then
the has expresion could be removed, we keep the expression around and reduce the contained
expression in it for our type soundness proof. The has wrapping is discarded by rule [E-Has-
V] when a value is reached, and is discarded by rule [E-Error] when reducing the expression
produces an error.

A restrict expression limits privileges available in the context. However, the set given
as an argument that contains the limit might contain uncertainty. How do we limit to a set
which is uncertain? We say that a set that is uncertain does not give any extra runtime
information, so we keep the original context instead for rule [E-Rst-1]. When the set has no
uncertainty, as in the case for rule [E-Rst-2], we can use it as a new context to evaluate the
contained expression.

A higher order cast does not only need to verify the structural subtyping rules, but also
verify that the effect restrictions among the sets declared in the types are actually enforced.
We achieve this by introducing a restrict clause for the set in the target type of the cast,
and verify that the privileges declared for the known static part of the origin cast type
are also available. This restrictions ensure that required privileges are available for nested
higher-order casts.

1We describe how to handle higher order casts when introducing an operational semantics for casts in
Gradual Typing in section 2.2.3.

41

3.4.3 Translating programs to the intermediate language

The consistent containment operation ensures that our type system accepts both the pro-
grams that can be proved correct statically and those that need verification at runtime.
However, we would like our translation to add only a minimal number of verifications, thus
separating the cases when privileges can be found statically in Ξ from those where the pres-
ence of ¿ in Ξ forces a runtime verification. To achieve this goal we propose the translation
algorithm in fig. 3.3.

Our translation algorithm uses two auxiliary functions to reduce the number of rules
required to describe the system and to make rules more readable. The insert-has? function
inserts runtime verifications whenever the statically identified privilege set is not sufficient
to satisfy the privilege restrictions established by the type system.

insert-has? Ξ1 Ξ2 e =

{
e if Ξ1 ⊆ Ξ2

has Ξ1 e if Ξ1 6⊆ Ξ2
(3.6)

We also use a cast insertion function 〈〈T2 ⇐ T1〉〉. This function inserts casts whenever they
are explicitly required: that is, when two types are related by the consistent subtyping relation
of the original language, but not by the subtyping relation of the intermediate language, which
is more restrictive.

〈〈T2 ⇐ T1〉〉e =

{
e if T1 < : T2

〈T2 ⇐ T1〉e otherwise
(3.7)

The subtyping relation is defined exactly as in the fluent language, but changing the
domain of privilege sets to consistent privilege sets.

3.5 Theorems for gradual effect checking

In this section we introduce formal results about the language. We first introduce restrictions
between the original language type system and the translation relation. Lemma 4 guarantees
that if a program holds a type in the original type system, the program will hold the same
type during translation to the intermediate language. We also formalize type safety for the
intermediate language in section 3.5.1.
Lemma 4. [Translation preserves well-typing] If Ξ; Γ; Σ ` e⇒ e′ : τ , then Ξ; Γ; Σ ` e′ : τ in
the intermediate language.

Proof. Straightforward induction on the last step of the translation ⇒.

42

3.5.1 Type safety of the language

We now introduce the type safety statements for the language presented in this chapter.
Detailed proofs are provided in appendix B.
Theorem 5 (Progress). Suppose e is a closed, well typed expression (∃ T,Σ,Ξ . Ξ; ∅; Σ `
e : T). Then either e is a value, an Error, or else, for any store µ such that ∅ | Σ � µ and for
any privilege set Φ such that Ξ ` Φ, there is some e′ and µ′ with Φ ` e | µ→ e′ | µ′.

Proof. By Structural Induction on the typing derivation using the Inversion of Typing for
the Intermediate Language Lemmas and the Inversion of @∼ lemma.

Theorem 6. (Preservation)

If Ξ; Γ; Σ ` e : T , Γ | Σ � µ and Φ ` e | µ → e′ | µ′ with Ξ ` Φ, then ∃Σ′ ⊇ Σ such that
Φ; Γ; Σ′ ` e′ : T and Γ | Σ′ � µ′.

Proof. By structural induction over the type derivation, and then by cases on the rules in
relation → that may apply for terms of the form e accepted by the typing rule.

43

C-Unit
Ξ; Γ; Σ ` unit⇒ unit : Unit

C-Loc
Σ(l) = T

Ξ; Γ; Σ ` l⇒ l : Ref T

C-Var
Γ(x) = T

Ξ; Γ; Σ ` x⇒ x : T
C-Fn

Ξ′; Γ, x : T1; Σ ` e1 ⇒ e2 : T2

Ξ; Γ; Σ ` (λx : T1 . e1)⇒ (λx : T1 . e2) : T1
Ξ′
−→T2

C-App

Ξ; Γ; Σ ` e1 ⇒ e′1 : T1
Ξ′
−→T3

Ξ; Γ; Σ ` e2 ⇒ e′2 : T2

T2 < : T1 Ξ′ @∼ Ξ

Ξ; Γ; Σ ` e1 e2 ⇒ insert-has? Ξ′ Ξ (〈〈T2
Ξ−→T3 ⇐ T1

Ξ′
−→T3〉〉 e′1) e′2 : T3

C-Ref

Ξ; Γ; Σ ` e⇒ e′ : T
{alloc} @∼ Ξ

Ξ; Γ; Σ ` ref e⇒ insert-has? {alloc} Ξ ref e′ : Ref T

C-Deref

Ξ; Γ; Σ ` e⇒ e′ : Ref T
{read} @∼ Ξ

Ξ; Γ; Σ ` deref e⇒ insert-has? {read} Ξ !e′ : T

C-Assign

Ξ; Γ; Σ ` e1 ⇒ e′1 : Ref T1

Ξ; Γ; Σ ` e2 ⇒ e′2 : T2

{write} @∼ Ξ T2 < : T1

Ξ; Γ; Σ ` e1 := e2 ⇒ insert-has? {write} Ξ e′1 := e′2 : Unit

C-Ascription

Ξ1; Γ; Σ ` e⇒ e′ : T
Ξ1 @∼ Ξ

Ξ; Γ; Σ; Φ ` Φ1 :: e⇒ insert-has? Ξ1 Ξ restrict Ξ1 e′ : T

Figure 3.3: The translation algorithm for Gradual Effect Fluent

44

f ::= � e | v � | ref � |!� | � := e | v := � | 〈T2 ⇐ T1〉 �
g ::= f | has Φ � | restrict Φ �

E-Frame
Φ′ ` e | µ→ e′ | µ′ Φ′ = Φ

Φ ` plug(f, e) | µ→ plug(f, e′) | µ′

E-Error
Φ ` plug(g, e) | µ→ Error | µ′

E-App
Φ ` (λx : T . e) v | µ→ [v/x] e | µ

E-Ref
l /∈ dom (µ) {alloc} ⊆ Φ

Φ ` ref v | µ→ l | µ[l 7→ v]
E-Deref

µ l = bvc {read} ⊆ Φ

Φ `!l | µ→ v | µ

E-Assign
{write} ⊆ Φ

Φ ` l := v | µ→ unit | µ[l 7→ v]
E-Has-T

Φ′ ⊆ Φ Φ ` e | µ→ e′ | µ′

Φ ` has Φ′ e | µ→ has Φ′ e′ | µ′

E-Has-V
Φ ` has Φ′ v | µ→ v | µ

E-Has-F
Φ′ 6⊆ Φ

Φ ` has Φ′ e | µ→ Error | µ

E-Rst-V
Φ ` restrict Ξ v | µ→ v | µ

E-Rst-1
¿ ∈ Ξ Φ ` e | µ→ e′ | µ′

Φ ` restrict Ξ e | µ→ restrict Ξ e′ | µ′

E-Rst-2
¿ 6∈ Ξ |Ξ| ` e | µ→ e′ | µ′

Φ ` restrict Ξ e | µ→ restrict Ξ e′ | µ′

E-Cast-Id

Φ ` 〈T ⇐ T 〉v | µ→ v | µ

E-Cast-Fn

Φ ` 〈T21
Ξ2−→T22 ⇐ T11

Ξ1−→T12〉 (λx : T11 . e) | µ→ (λx : T21 . 〈T22 ⇐ T12〉restrict Ξ2 has (|Ξ1| \ |Ξ2|) [(〈T11 ⇐ T21〉x)/x] e) | µ

Figure 3.4: Operational semantics for the Intermediate Language

45

3.6 Summary

In this chapter we have introduced a language with gradual effect checking, an extension for
type-and-effect systems that does not force the language user to declare complete privilege
information, combining static and dynamic checking of an effect discipline. Section 3.2 in-
troduced the four design goals that were considered to provide a definition of gradual effect
checking. Section 3.1 presented the limitations of type-and-effect systems and an example
of a program valid with gradual effect checking that is rejected in a static type-and-effect
system because of its lack of static effect information.

The lack of information in a program must be formally represented. Section 3.3 shows
two different representations for unknown information, first as a privilege set and then as a
privilege. Though both representations are sound for the example of the fluent language, we
decided against representing unknown information as a privilege set. When set operations
like union are part of a type discipline, using a privilege set for unknown information must
discard the available information, and that information could be used to reduce dynamic
checking.

In this chapter we follow a strategy similar to the introduction of gradual typing in [24]
to introduce gradual effect checking. Section 3.4 introduces an intermediate language for
gradual effect checking which can perform explicit runtime checks of effect restrictions, and
a translation algorithm that inserts checks whenever static information was not sufficient to
ensure the availability of a required privilege. Section 3.5 introduced the theorems required
to ensure type safety in the introduced language and to verify that the translation algorithm
preserves the typing semantics of the original language.

We have introduced gradual effect checking only for a particular type-and-effect system,
the fluent language. However, there are many other type-and-effect systems that we’d like to
extend with gradual typing. To avoid having to reintroduce gradual effect checking for every
type-and-effect system and prove type safety for it, in the next chapter we define gradual
effect checking for the generic type-and-effect framework of Marino & Millstein introduced
in section 2.5.1.

46

Chapter 4

Generic Gradual Effect Checking

This chapter introduces Gradual Effect Checking for the Generic Type-and-Effect framework
introduced by Marino and Millstein (M&M) [15], which was briefly presented in section 2.5.1.

In chapter 3, we defined a new operation, consistent containment (@∼), and used it to
introduce a gradual verion of the fluent language. The consistent containment operation
represents our intuitions for gradual effect checking. We also mentioned that for more complex
languages, the design of gradual effect checking would require the introducion of new special
consistent operations, like consistent set union (t) and consistent set intersection (u). This
strategy of building new consistent definitions for the operations used among privilege sets
is ad-hoc and does not scale to build a generic framework.

When building a generic framework, we want the system to abstract from particular priv-
ilege disciplines and provide guarantees for a broad set of disciplines. The M&M framework
accepts any effect discipline that complies with their monotonicity restrictions. We could
define a set of consistent operations and limit the framework only to accept effect disciplines
that use the operations we have defined. However, that would impose extra restrictions to
the original framework, and some disciplines that worked with M&M would not work in the
gradual generic framework. We explored a different approach, based on abstract interpreta-
tion [8]. This new approach accepts any privilege discipline accepted by M&M. With abstract
interpretation, we can provide a system that extends the original generic effect framework
instead of imposing further restrictions.

In section 4.1 we model gradual effects in the context of abstract interpretation. This
sections assumes no previous knowledge of abstract interpretation, introducing the required
concepts as needed. section 4.2 introduces the generic gradual effect checking framework in
detail, much in the spirit of the introduction of gradual typing: it defines a language and a
type system that uses consistency to increase flexibility, an intermediate language with checks
that make the consistency assumptions explicit, triggering an error if static assumptions do
not hold at runtime, and a translation algorithm that accepts programs from the original
language and inserts all the required checks. We also prove type safety for the intermediate
language and that the translation algorithm preserves typing.

47

The two sections of this chapter have been already published as Sections 3 and 4 of our
paper accepted at The ACM SIGPLAN International Conference on Functional Programming
2014 [2].

4.1 Gradual effects as an abstract interpretation

In this section we present a formal analysis of gradual effects, guided by the design principles
presented in section 3.2. We use abstract interpretation [8] to define our notion of unknown
effects, and find that as a result the formal definitions capture our stated design intentions,
and that the resulting framework for gradual effects is quite generic and highly reusable.

4.1.1 The challenge of gradual effects

The central concept underlying gradual effects is the idea of unknown privileges, ¿. This
concept was inspired by the notion of unknown type ? introduced by Siek and Taha [24], but
this concept is not as straightforward to understand and formalize.

First, gradual types reflect the tree structure of type names. Siek and Taha treat gradual
types as trees with unknown leaves. Two types are deemed consistent whenever their known
parts match up exactly. For instance, the types ? → Int and Bool → ? are consistent
because their → constructors line up: ? is consistent with any type structure. In contrast,
privilege sets are unordered collections of individual effects, so a structure-based definition
of consistency is not as immediately apparent.

Second, under gradual typing, the unknown type always stands for one type, so casts al-
ways associate an unknown type with one other concrete type. On the contrary, the unknown
privileges annotation ¿ stands for any number of privileges: zero, one, or many.

Third, simple types are related to the final value of a computation. In contrast, privileges
are related to the dynamic extent of an expression as it produces a final value. As such,
defining what it means to gradually check privileges involves tracking steps of computation,
rather than wrapping a final value with type information.

Finally, as we have seen in section 2.3, effect systems naturally induce a notion of subtyp-
ing, which must be accounted for in a gradual effect system. In general, subtyping charac-
terizes substitutability : which expressions or values can be substituted for others, based on
static properties. In prior work, Siek and Taha demonstrate how structural subtyping and
gradual typing can be combined [23], but the criteria for substitutability differ substantially
between structural types and effects, so it is not straightforward to adapt Siek and Taha’s
design to suit gradual effects.

Our initial attempts to adapt gradual typing to gradual effects met with these challenges.
We found abstract interpretation to be an informative and effective framework in which to
specify and develop gradual effects. The rest of this section develops the notion of unknown

48

effect privileges and consistent privilege sets. The rest of the chapter then uses the framework
as needed to introduce concepts and formalize gradual effect checking.

4.1.2 Fundamental concepts

This subsection conceives gradual effects as an instance of abstract interpretation. We do not
assume any prior familiarity with abstract interpretation: we build up the relevant concepts
as needed.

For purpose of discussion, consider again the effect privileges for mutable state from
section 2.4:

Priv = {read, write, alloc}
CPriv = {read, write, alloc, ¿}

Φ ∈ PrivSet = P (Priv)

Ξ ∈ CPrivSet = P (CPriv)

We already understand privilege sets Φ, but we want a clear understanding of what consis-
tent privilege sets Ξ—privilege sets that may have unknown effects—really mean. Consider
the following two consistent privilege sets:

Ξ1 = {read} Ξ2 = {read, ¿}

The set Ξ1 is completely static: it refers exactly to the set of privileges {read}. The set Ξ2

on the other hand is gradual: it refers to the read privilege, but leaves open the possibility of
other privileges. In this case, the ¿ stands for several possibilities: no additional privileges,
the write privilege alone, the alloc privilege alone, or both write and alloc.

Thus, each consistent privilege set stands for some set of possible privilege sets. To for-
malize this interpretation, we introduce a concretization function γ, which maps a consistent
privilege set Ξ to the concrete set of privilege sets that it stands for.1

Definition 5 (Concretization). Let γ : CPrivSet→ P (PrivSet) be defined as follows:

γ(Ξ) =

{
{Ξ} ¿ /∈ Ξ

{(Ξ \ {¿}) ∪ Φ | Φ ∈ PrivSet} otherwise .

Reconsidering our two example consistent privilege sets, we find that

γ(Ξ1) = {{read}}

γ(Ξ2) =

{
{read, write}, {read, alloc},
{read}, {read, alloc, write}

}
1We introduce an abstraction function α in section 4.1.4

49

Since each consistent privilege set stands for a number of possible concrete privilege sets, we
say that a particular privilege set Φ is represented by a consistent privilege set Ξ if Φ ∈ γ (Ξ).

If we consider these two resulting sets of privilege sets, it is immediately clear that Ξ1 is
more restrictive about what privilege sets it represents (only one), while Ξ2 subsumes Ξ1 in
that it also represents {read}, as well as some others. Thus, Ξ1 is strictly more precise than
Ξ2, and so γ induces a precision relation between different consistent privilege sets.
Definition 6 (Precision). Ξ1 is less imprecise (i.e. more precise) than Ξ2, notation Ξ1 v Ξ2,
if and only if γ(Ξ1) ⊆ γ(Ξ2)

Precision formalizes the idea that some consistent privilege sets imply more information
about the privilege sets that they represent than others. For instance, {read} is strictly more
precise than {read, ¿} because {read} v {read, ¿} but not vice-versa.

4.1.3 Lifting predicates to consistent privilege sets

Now that we have established a formal correspondence between consistent privilege sets and
concrete privilege sets, we can systematically adapt our understanding of the latter to the
former.

Recall the checkC predicates of the generic effect framework (section 2.5.1), which deter-
mine if a particular effect set fulfills the requirements of some effectful operator. Gradual
checking implies that checking a consistent privilege set succeeds so long as checking its
runtime representative could plausibly succeed. We formalize this as a notion of consistent
checking.
Definition 7 (Consistent Checking). Let checkC be a predicate on privilege sets. Then

we define a corresponding consistent check predicate c̃heckC on consistent privilege sets as
follows:

c̃heckC(Ξ) ⇐⇒ checkC(Φ) for some Φ ∈ γ(Ξ).

Under some circumstances, however, we must be sure that a consistent privilege set def-
initely has the necessary privileges to pass a check. For this purpose we introduce a notion
of strict checking.
Definition 8 (Strict Checking). Let checkC be a predicate on privilege sets. Then we define
a corresponding strict check predicate strict-checkC on consistent privilege sets as follows:

strict-checkC(Ξ) ⇐⇒ checkC(Φ) for all Φ ∈ γ(Ξ).

By defining both consistent checking and strict checking in terms of representative sets,
our formalizations are both intuitive and independent of the underlying checkC predicate.
Furthermore, these definitions can be recast directly over consistent privilege sets once we
settle on a particular checkC predicate (As an example, we may use the representation of
the fluent language under the M&M framework introduced in appendix A).

50

4.1.4 Lifting functions to consistent privilege sets

In addition to predicates on consistent privilege sets, we must also define functions on
them. For instance, the M&M framework is parameterized over a family of adjust func-
tions adjustA : PrivSet → PrivSet, which alter the set of available effect privileges
(section 2.5.1). Using abstract interpretation, we lift these to consistent adjust functions

ãdjustA : CPrivSet → CPrivSet. To do so we must first complete the abstract interpre-
tation framework.

Consider our two example consistent privilege sets. Each represents some set of privilege
sets, so we expect that adjusting a consistent privilege set should be related to adjusting
the corresponding concrete privilege sets. The key insight is that adjusting a consistent
privilege set should correspond somehow to adjusting each individual privilege set in its

represented collection. For example ãdjustA({read, alloc}) should be related to the set

{adjustA({read, alloc})}, and ãdjustA({read, ¿}) should be related to the following set:{
adjustA({read, write}) , adjustA({read, alloc}) ,
adjustA({read}) , adjustA({read, alloc, write})

}
To formalize these relationships, we need an abstraction function α : P (PrivSet)→ CPrivSet
that maps collections of privilege sets back to corresponding consistent privilege sets. For
such a function to make sense, it must at least be sound.
Proposition 7 (Soundness).Υ ⊆ γ(α(Υ)) for all Υ∈ P (PrivSet).

Soundness implies that the corresponding consistent privilege set α(Υ) represents at least
as many privilege sets as the original collection Υ. A simple and sound definition of α is
α(Υ) = {¿}. This definition is terrible, though, because it needlessly loses information. For
instance, α(γ(Ξ1)) = {¿}, and since {¿} represents every possible privilege set, that mapping
loses all the information in the original set. At the least, we would like α(γ(Ξ1)) = Ξ1.

Our actual definition of α is far better than the one proposed above:
Definition 9 (Abstraction). Let α : P (PrivSet)→ CPrivSet be defined as follows2:

α(Υ) =

{
Φ Υ = {Φ}
(
⋂

Υ) ∪ {¿} otherwise.

In words, abstraction preserves the common concrete privileges, and adds unknown priv-
ileges to the resulting consistent set if needed. As required, this abstraction function α is
sound.

Even better though, given our interpretation of consistent privilege sets, this α is the best
possible one.
Proposition 8 (Optimality). Suppose Υ ⊆ γ(Ξ). Then α(Υ) v Ξ.

Optimality ensures that α gives us not only a sound consistent privilege set, but also the

2For simplicity, we assume Υ is not empty, since α(∅) = ⊥ plays no role in our development.

51

φ ∈ Priv, ξ ∈ CPriv = Priv ∪ {¿}
Φ ∈ PrivSet = P (Priv) , Ξ ∈ CPrivSet = P (CPriv)

ε ∈ Tags . π ∈ P (Tags)

w ::= unit | λx : T . e | l Prevalues
v ::= wε Values
e ::= x | v | e e | e :: Ξ Terms

| (ref e)ε | !e | (e := e)ε
T ::= π ρ Types

ρ ::= Unit | T Ξ−→T | Ref T PreTypes
A ::= ↓↑ | π ↓| ref ↓ | ! ↓ Adjust Contexts

| ↓:=↑ | π :=↓
C ::= π π | ref π | !π | π := π Check Contexts

Figure 4.1: Syntax of the source language

most precise one3. In our particular case, optimality implies that α(γ(Ξ)) = Ξ for all Ξ but
one: α(γ({read, write, alloc, ¿})) = {read, write, alloc}. Both consistent privilege sets
represent the same thing.

Using α and γ, we can lift any function f on privilege sets to a function on consistent
privilege sets. In particular, we lift the generic adjust functions:
Definition 10 (Consistent Adjust).

Let ãdjustA : CPrivSet→ CPrivSet be defined as follows:

ãdjustA(Ξ) = α ({adjustA(Φ) | Φ ∈ γ (Ξ)}) .

The ãdjust function reflects all of the information that can be retained when conceptually
adjusting all the sets represented by some consistent privilege set.

The c̃heck and ãdjust operators are critical to our generic presentation of gradual effects.
Both definitions are independent of the underlying concrete definitions of check and adjust.
As we show through the rest of the paper, in fact, the abstract interpretation framework
presented here time and again provides a clear and effective way to conceive and formalize
concepts that we need for gradual effect checking.

4.2 A generic framework for gradual effects

In this section we present a generic framework for gradual effect systems. As is standard for
gradual checking, the framework includes a source language that supports unknown annota-

3Abstract interpretation literature expresses this in part by saying that α and γ form a Galois connec-
tion[9].

52

tions, an internal language that introduces runtime checks, and a type-directed translation
from the former to the latter.

4.2.1 The source language

The core language (fig. 4.1) is a simply-typed functional language with a unit value, mutable
state, and effect ascriptions e :: Ξ. The language is parameterized on some finite set of effect
privileges Priv, as well as a set of tags Tag. The Priv set is the basis for consistent privileges
CPriv, privilege sets PrivSet, and consistent privilege sets CPrivSet. The Tag set is the
basis for tag sets TagSet. Each type constructor is annotated with a tag set, so types
are annotated deeply. Each value-creating expression is annotated with a tag so that effect
systems can abstractly track values. The type of a function carries a consistent privilege set
Ξ that characterizes the privileges required to execute the function body.

The source language also specifies a set of adjust contexts A and check contexts C, as
presented in section 2.5.1. Each adjust context is determined by an evaluation context frame f

(section 2.1.1). They index ãdjustA to determine how privileges are altered when evaluating
in a particular context. Similarly, the check contexts correspond to program operations like

function application. They index c̃heckC to determine which privileges are needed to perform
the operation.

Most of the concepts here presented are inherited from the generic M&M framework [15],
already introduced in section 2.5.1.

Figure 4.2 presents the type system. The judgment Ξ; Γ; Σ ` e : T means that the
expression e has type T in the lexical environment Γ and store typing Σ, when provided with
the privileges Ξ. Based on the judgment, e is free to perform any of the effectful operations
denoted by the privileges in Ξ. If the consistent privilege set contains the unknown privileges
¿, then e might also try any other effectful operation, but at runtime a check for the necessary
privileges is performed.

Each type rule extends the standard formulation with operations to account for effects.
All notions of gradual checking are encapsulated in consistent effect sets Ξ and operations
on them. The [T-Fn] rule associates some sufficient set of privileges with the body of the
function. In practice we can deduce a minimal set to avoid spurious checks.

The [T-App] rule illustrates the structure of the non-value typing rules. It enhances the
M&M typing rule for function application (introduced in section 2.5.1) to support gradual
effects. In particular, each privilege check from the original rule is replaced with a consistent
counterpart: consistent predicates succeed as long as the consistent privilege sets represent
some plausible concrete privilege set, and consistent functions represent information about

what is possible in their resulting consistent set. ãdjust and c̃heck are defined in section 4.1,
and we use the same techniques introduced there to lift effect subtyping to a notion of
consistent subtyping. To do so, we first lift traditional privilege set containment to consistent
containment :
Definition 11 (Consistent Containment). Ξ1 is consistently contained in Ξ2, notation Ξ1 @∼

53

Ξ; Γ; Σ ` e : T T-Fn
Ξ1; Γ, x : T1; Σ ` e : T2

Ξ; Γ; Σ ` (λx : T1 . e)ε : {ε}T1
Ξ1−→T2

T-Unit
Ξ; Γ; Σ ` unitε : {ε}Unit

T-Loc
Σ(l) = T

Ξ; Γ; Σ ` lε : {ε}Ref T

T-Var
Γ(x) = T

Ξ; Γ; Σ ` x : T
T-App

ãdjust↓↑(Ξ) ; Γ; Σ ` e1 : π1(T1
Ξ1−→T3)

ãdjustπ1↓(Ξ) ; Γ; Σ ` e2 : π2ρ2

π1(T1
Ξ1−→T3) . π1(π2ρ2

Ξ−→T3) c̃heckπ1π2(Ξ)

Ξ; Γ; Σ ` e1 e2 : T3

T-Eff
Ξ1; Γ; Σ ` e : T Ξ1 @∼ Ξ

Ξ; Γ; Σ ` (e :: Ξ1) : T
T-Ref

ãdjustref ↓(Ξ) ; Γ; Σ ` e : πρ

c̃heckref π(Ξ)

Ξ; Γ; Σ ` (ref e)ε : {ε}Ref πρ

T-Deref

ãdjust!↓(Ξ) ; Γ; Σ ` e : πRef T

c̃heck!π(Ξ)

Ξ; Γ; Σ `!e : T
T-Asgn

ãdjust↓:=↑(Ξ) ; Γ; Σ ` e1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ; Γ; Σ ` e2 : π2ρ2

c̃heckπ1:=π2(Ξ) π2ρ2 . T1

Ξ; Γ; Σ ` (e1 := e2)ε : {ε}Unit

Figure 4.2: Type system for the source language

Ξ2 if and only if Φ1 ⊆ Φ2 for some Φ1 ∈ γ(Ξ1) and Φ2 ∈ γ(Ξ2)4.

Consistent containment means that privilege set containment may hold unless we guar-
antee that it cannot. Of course, this claim must sometimes be protected with a runtime
check in the internal language, as discussed further in the next section. Consistent subtyping
. is defined by replacing the privilege subset premise of traditional effect subtyping with
consistent containment.

π1 ⊆ π2

π1ρ . π2ρ

T3 . T1 T2 . T4

π1 ⊆ π2 Ξ1 @∼ Ξ2

π1T1
Ξ1−→T2 . π2T3

Ξ2−→T4

This relation expresses plausible substitutability. Consistent containment is not transitive,
and as a result neither is consistent subtyping. This property is directly analogous to con-
sistent subtyping for gradual object systems [23].

All other rules in the type system can be characterized as consistent liftings of the cor-
responding M&M rules. Each uses adjustA to type subexpressions, and checkC to check
privileges.

Finally, [T-Eff] reflects the consistent counterpart of static effect ascriptions, which do
not appear in the M&M system. The rule requires that the ascribed consistent privileges be

4We give @∼ a simple direct characterization in section 4.2.2.

54

e ::= . . . | Error | 〈T ⇐ T 〉e Terms
| has Φ e | restrict Ξ e

f ::= � e | v � | (ref �)ε Frames
|!� | (� := e)ε | (wε := �)ε

g ::= f | 〈T2 ⇐ T1〉� | has Φ � Error Frames
| restrict Ξ �

Figure 4.3: Syntax of the internal language

consistently contained in the current consistent privileges. Ascribing ¿ delays some privilege
checks to runtime, as discussed next.

4.2.2 The internal language

The semantics of the source language is given by a type-directed translation to an internal
language that makes runtime checks explicit. This section presents the internal language.
The translation is presented in section 4.2.3.

fig. 4.3 presents the syntax of the internal language. It extends the source language
with explicit features for managing runtime effect checks. The Error construct indicates
that a runtime effect check failed, and aborts the rest of the computation. Casts 〈T ⇐ T 〉e
express type coercions between consistent types. The has operation checks for the availability
of particular effect privileges at runtime. The restrict operation restricts the privileges
available while evaluating its subexpression.

Frames represent evaluation contexts in our small-step semantics. By using frames, we
present a system with structural semantics like the M&M framework while defining fewer
evaluation rules as in a reduction semantics.

55

Ξ; Γ; Σ ` e : T

IT-App

ãdjust↓↑(Ξ) ; Γ; Σ ` e1 : π1(T1
Ξ1−→T3)

ãdjustπ1↓(Ξ) ; Γ; Σ ` e2 : π2ρ2

strict-checkπ1π2(Ξ) π1T1
Ξ1−→T3 < : π1π2ρ2

Ξ−→T3

Ξ; Γ; Σ ` e1 e2 : T3

IT-Cast
Ξ; Γ; Σ ` e : T0 T0 < : T1 T1 . T2

Ξ; Γ; Σ ` 〈T2 ⇐ T1〉e : T2
IT-Has

(Φ ∪ Ξ); Γ; Σ ` e : T

Ξ; Γ; Σ ` has Φ e: T

IT-Error
Ξ; Γ; Σ ` Error : T

IT-Rst
Ξ1; Γ; Σ ` e : T Ξ1 ≤ Ξ

Ξ; Γ; Σ ` restrict Ξ1 e : T

IT-Ref

ãdjustref ↓(Ξ) ; Γ; Σ ` e : πρ

strict-checkref π(Ξ)

Ξ; Γ; Σ ` (ref e)ε : {ε}Ref πρ
IT-Deref

ãdjust!↓(Ξ) ; Γ; Σ ` e : πRef T

strict-check!π(Ξ)

Ξ; Γ; Σ `!e : T

IT-Asgn

ãdjust↓:=↑(Ξ) ; Γ; Σ ` e1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ; Γ; Σ ` e2 : π2ρ2

strict-checkπ1:=π2(Ξ) π2ρ2 < : T1

Ξ; Γ; Σ ` (e1 := e2)ε : {ε}Unit

Figure 4.4: Typing rules for the internal language

56

E-Ref
checkref {ε1}(Φ) l 6∈ dom (µ)

Φ ` (ref wε1)ε2 | µ→ lε2 | µ[l 7→ wε1]
E-Asgn

check{ε1}:={ε2}(Φ)

Φ ` (lε1 := wε2)ε | µ→ unitε | µ[l 7→ wε2]

E-Deref
check!{ε}(Φ) µ(l) = v

Φ `!lε | µ→ v | µ
E-Frame

adjustA(f)(Φ) ` e | µ→ e′ | µ′

Φ ` f [e] | µ→ f [e′] | µ′
E-Error

Φ ` g[Error] | µ→ Error | µ

E-Has-T
Φ′ ⊆ Φ Φ ` e | µ→ e′ | µ′

Φ ` has Φ′ e | µ→ has Φ′ e′ | µ′

E-Has-V

Φ ` has Φ′ v | µ→ v | µ

E-Has-F
Φ′ 6⊆ Φ

Φ ` has Φ′ e | µ→ Error | µ

E-Rst-V
Φ ` restrict Ξ v | µ→ v | µ

E-Rst
Φ′′ = max {Φ′ ∈ γ(Ξ) | Φ′ ⊆ Φ} Φ′′ ` e | µ→ e′ | µ′

Φ ` restrict Ξ e | µ→ restrict Ξ e′ | µ′

E-App

check{ε1}{ε2}(Φ)

Φ ` (λx : T1 . e)ε1 wε2 | µ→ [wε2/x] e | µ

E-Cast-Frame
Φ ` e | µ→ e′ | µ′

Φ ` 〈T2 ⇐ T1〉e | µ→ 〈T2 ⇐ T1〉e′ | µ′

E-Cast-Id
ε ∈ π1 π1 ⊆ π2

Φ ` 〈π2ρ⇐ π1ρ〉wε | µ→ wε | µ

E-Cast-Fn
ε ∈ π1 π1 ⊆ π2

Φ ` 〈π2T21
Ξ2−→T22 ⇐ π1T11

Ξ1−→T12〉 (λx : T11 . e)ε | µ→ (λx : T21 . 〈T22 ⇐ T12〉restrict Ξ2 has (|Ξ1| \ |Ξ2|) [(〈T11 ⇐ T21〉x)/x] e)ε | µ

Figure 4.5: Small-step semantics of the internal language

57

Static semantics The type system of the internal language (fig. 4.4) mostly extends the
surface language type system, with a few critical differences. First, recall that type rules for
source language operators, like function application [T-App], verify effects based on consistent
checking: so long as some representative privilege set is checkable, the expression is accepted.
In contrast, the internal language introduces new typing rules for these operators, like [IT-
App] (changes highlighted in gray).

In the internal language, effectful operations must have enough privileges to be performed:
plausibility is not sufficient anymore. As we see in the next section, consistent checks from
source programs are either resolved statically or rely on runtime privilege checks to guarantee

satisfaction before reaching an effectful operation. For this reason, uses of c̃heck are replaced
with strict-check (section 4.1.3, definition 8). Consistent subtyping . is replaced with a
notion of subtyping <: that is based on ordinary set containment for consistent privilege sets
and tags:

π1 ⊆ π2

π1ρ < : π2ρ

T3 < : T1 T2 < : T4

π1 ⊆ π2 Ξ1 ⊆ Ξ2

π1T1
Ξ1−→T2 < : π2T3

Ξ2−→T4

The intuition is that an expression that can be typed with a given set of consistent permissions
should still be typable if additional permissions become available. We formalize this intuition
below.

In addition to ordinary set containment, the internal language depends on a stronger
notion of containment that focuses on statically known permissions. A consistent privilege set
represents some number of concrete privilege sets, each containing some different privileges,
but most consistent privilege sets have some reliable information. For instance, any set
represented by Ξ = {read, ?} may have a variety of privileges, but any such set will surely
contain the read privilege. We formalize this idea in terms of concretization as the static
part of a consistent privilege set.
Definition 12 (Static Part). The static part of a consistent privilege set, |·| : CPrivSet→
PrivSet is defined as

|Ξ| =
⋂

γ(Ξ).

The definition directly embodies the intuition of “all reliable information,” but this oper-
ation also has a simple direct characterization: |Ξ| = Ξ \ {¿}.5

Using the notion of static part, we define the concept of static containment for consistent
privilege sets.
Definition 13 (Static Containment). Ξ1 is statically contained in Ξ2, notation Ξ1 ≤ Ξ2, if
and only if |Ξ1| ⊆ |Ξ2|.

The intuition behind static containment is that an expression can be safely used in any
context that is guaranteed to provide at least its statically-known privilege requirements.

We need static containment to help us characterize effect subsumption in the internal
language. Privilege subsumption says that if Φ is sufficient to type e, then so can any larger

5The γ-based definition is useful for proving Strong Effect Subsumption (proposition 11 below).

58

set Φ′ [26]. To establish this, we must consider properties of both strict-check and ãdjust.
Conveniently, strict-check is monotonic with respect to consistent privilege set containment.

Lemma 9.
If strict-checkC(Ξ1) and Ξ1 ⊆ Ξ2 then strict-checkC(Ξ2).

To the contrary, though, ãdjust is not monotonic with respect to set containment on
consistent privilege sets. Instead, it is monotonic with respect to static containment.

Lemma 10. If Ξ1 ≤ Ξ2 then ãdjustC(Ξ1) ≤ ãdjustC(Ξ2)

We exploit this to establish effect subsumption.
Proposition 11 (Strong Effect Subsumption).
If Ξ1; Γ; Σ ` e : T and Ξ1 ≤ Ξ2, then Ξ2; Γ; Σ ` e : T .

Proof. By induction over the typing derivations Ξ1; Γ; Σ ` e : T .

Corollary 12 (Effect Subsumption).
If Ξ1; Γ; Σ ` e : T and Ξ1 ⊆ Ξ2, then Ξ2; Γ; Σ ` e : T .

Proof. Set containment implies static containment.

We now turn to the new syntactic forms of the internal language. Casts represent explicit
dynamic checks for consistent subtyping relationships. The has operator checks if the privi-
leges in Φ are currently available. Its subexpression e is typed using the consistent set that
is extended statically with Φ.6

The restrict operator constrains its subexpression to be typable in a consistent privilege
set that is statically-contained in the current set. Since ¿ does not play a role in static
containment, the set Ξ1 can introduce dynamism that was not present in Ξ. As we will
see when we translate source programs, this is key to how ascription can introduce more
dynamism into a program.

As it happens, we can use notions from this section to simply characterize notions that
we, for reasons of conceptual clarity, defined using the concretization function and collections
of plausible privilege sets. The concretization-based definitions clearly formalize our inten-
tions, but these new extensionally equivalent characterizations are well suited to efficient
implementation.

First, we can characterize consistent containment as an extension of static containment,
and strict checking as simply checking the statically known part of a consistent privilege set.

Proposition 13.

1. Ξ1 @∼ Ξ2 if and only if Ξ1≤Ξ2 or ¿ ∈ Ξ2.

6Note that Φ ∪ Ξ is the same as lifting the function f(Φ′) = Φ ∪ Φ′, and Φ @∼ Ξ is the same as lifting the
predicate P (Φ′) = Φ ⊆ Φ′.

59

2. strict-checkC(Ξ) if and only if checkC(|Ξ|).

Furthermore, we can characterize consistent checking based on whether the consistent
privilege set in question contains unknown privileges.
Proposition 14.

1. If ¿ ∈ Ξ then c̃heckC(Ξ) if and only if checkC(PrivSet).

2. If ¿ /∈ Ξ then c̃heckC(Ξ) if and only if checkC(Ξ).

Dynamic semantics Figure 4.5 presents the evaluation rules of the internal language. The
judgment Φ ` e | µ→ e′ | µ′ means that under the privilege set Φ and store µ, the expression
e takes a step to e′ and µ′. Effectful constructs consult Φ to determine whether they have
sufficient privileges to proceed.

The has expression checks dynamically for privileges. If the privileges in Φ are available,
then execution may proceed: if not, then an Error is thrown. Note that in a real implemen-
tation, has only needs to check for privileges once: the semantics keeps has around only to
support our type safety proof.

The restrict expression restricts the privileges available in the dynamic extent of the
current subexpression. The intuition is as follows. Ξ represents any number of privilege sets.
At least one of those sets must be contained in Φ or the program gets stuck: restrict cannot
add new privileges. So restrict limits its subexpression to the largest subset of currently
available privileges that Ξ can represent. In practice, this means that if Ξ is fully static, then
Ξ represents only one subset Φ′ of Φ and the subexpression can only use those privileges. If
¿ ∈ Ξ, then Ξ can represent all of Φ, so the privilege set is not restricted at all. This property
of restrict enables ascription to support dynamic privileges.

Since function application is controlled under some effect disciplines, the [E-App] rule is
guarded by the checkapp predicate inherited from the M&M framework. If this check fails,
then the program is stuck. More generally, any effectful operation added to the framework
is guarded by such a check. These checks are needed to give intensional meaning to our type
safety theorem: if programs never get stuck, then any effectful operation that is encountered
must have the proper privileges to run. This implies that either the permissions were statically
inferred by the type checker, or the operation is guarded by a has expression, which throws
an Error if needed privileges are not available. It also means that thanks to type safety, an
actual implementation would not need any of the checkC checks: the has checks suffice.
This supports the pay-as-you-go principle of gradual checking.

Higher-order casts incrementally verify at runtime that consistent subtyping really implies
privilege set containment. In particular they guard function calls. First, they restrict the
set of available privileges to detect privilege inconsistencies in the function body. Then, they
check the resulting privilege set for the minimal privileges needed to validate the containment
relationship. Intuitively, we only need to check for the statically determined permissions that
are not already accounted for.

To illustrate, consider the following example:{read, alloc} @∼ {read, ¿} because alloc

60

could be in a representative of {read, ¿}, but {read, alloc} 6⊆ {read, ¿} since that is not
definitely true. Thus, to be sure at runtime, we must check for
|{read, alloc}| \ |{read, ¿}| = {alloc}. Note that the rule [E-Cast-Fn] uses the standard
approach to higher-order casts due to Findler and Felleisen [10]. As a formalization conve-
nience, the rule uses substitution directly rather than function application so as to protect
the implementation internals from effect checks and adjustments. In practice the internal
language would simply use function application without checking or adjusting privileges.

Type safety We prove type safety in the style of Wright and Felleisen [28]. Program
execution begins with a closed term e as well as an initial privilege set Φ. The initial program
must be well typed and the privilege set must be represented by the consistent privilege set
Ξ used to type the program. Under these conditions, the program will not get stuck.

Our statements of Progress and Preservation introduce the representation restrictions
between consistent privilege sets and the privilege sets used as contexts for evaluation. These
restrictions can be summarized in that typing ensures that evaluation does not get stuck in
any particular context represented statically.7

Theorem 15 (Progress). Suppose Ξ; ∅; Σ ` e : T . Then either e is a value v, an Error, or
Φ ` e | µ→ e′ | µ′ for all privilege sets Φ such that ∃Φ′ ∈ γ(Ξ) such that Φ′ ⊆ Φ and for any
store µ such that ∅ | Σ � µ.

Proof. By structural induction over derivations of Ξ; ∅; Σ ` e : T .

Theorem 16 (Preservation). If Ξ; Γ; Σ ` e : T , and Φ ` e | µ→ e′ | µ′ for Φ ⊇ Φ′ ∈ γ(Ξ)
and Γ | Σ � µ, then Γ | Σ′ � µ′ and Ξ; Γ; Σ′ ` e′ : T ′ for some T ′ < : T and ∃Σ′ ⊇ Σ.

Proof. By structural induction over the typing derivation. Preservation of types under sub-
stitution for values (required for [E-App]) and for identifiers (required for [E-Cast-Fn]) follows
as a standard proof since neither performs effects.

4.2.3 Translating source programs to the internal language

Figure 4.6 presents the type-directed translation of source programs to the internal language
(the interesting parts have been highlighted). The translation uses static type and effect
information from the source program to determine where runtime checks are needed in the
corresponding internal language program. In particular, any consistent check, containment,
or subtyping that is not also a strict check, static containment, or static subtyping, respec-
tively, must be guarded by a has expression (for checks and containments) or a cast (for
subtypings).

Recall from section 4.2.2 that the has expression checks if some particular privileges
are available at runtime. The translation system determines for each program point which
privileges (if any) must be checked. Since the generic framework imposes only privilege and

7We also proved soundness for a minimal system with neither tags nor state.

61

Ξ; Γ; Σ ` e⇒ e : T

C-Fn
Ξ1; Γ, x : T1; Σ ` e⇒ e′ : T2

Ξ; Γ; Σ ` (λx : T1 . e)ε ⇒ (λx : T1 . e′)ε : {ε}T1
Ξ1−→T2

C-Unit
Ξ; Γ; Σ ` unitε ⇒ unitε : {ε}Unit

C-Var
Γ(x) = T

Ξ; Γ; Σ ` x⇒ x : T

C-Loc
Σ(l) = T

Ξ; Γ; Σ ` lε ⇒ lε : {ε}Ref T
C-App

ãdjust↓↑(Ξ) ; Γ; Σ ` e1 ⇒ e′1 : π1(T1
Ξ1−→T3)

ãdjustπ1↓(Ξ) ; Γ; Σ ` e2 ⇒ e′2 : π2ρ2

e′′1 = (〈〈π1(π2ρ2
Ξ−→T3)⇐ π1(T1

Ξ1−→T3)〉〉 e′1)

π1(T1
Ξ1−→T3) . π1(π2ρ2

Ξ−→T3)

c̃heckπ1π2(Ξ) Φ = ∆π1π2(Ξ)

Ξ; Γ; Σ ` e1 e2 ⇒ insert-has?(Φ, e′′1 e′2) : T3

C-Eff
Ξ1; Γ; Σ ` e⇒ e′ : T Ξ1 @∼ Ξ Φ = (|Ξ1| \ |Ξ|)

Ξ; Γ; Σ ` (e :: Ξ1)⇒ insert-has?(Φ, restrict Ξ1 e′) : T

C-Ref

ãdjustref ↓(Ξ) ; Γ; Σ ` e⇒ e′ : πρ c̃heckref π(Ξ) Φ = ∆ref π(Ξ)

Ξ; Γ; Σ ` (ref e)ε ⇒ insert-has?(Φ,
(
ref e′

)
ε
) : {ε}Ref πρ

C-Deref

ãdjust!↓(Ξ) ; Γ; Σ ` e⇒ e′ : πRef T

c̃heck!π(Ξ) Φ = ∆!π(Ξ)

Ξ; Γ; Σ `!e⇒ insert-has?(Φ, !e′) : T

C-Asgn

ãdjust↓:=↑(Ξ) ; Γ; Σ ` e1 ⇒ e′1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ; Γ; Σ ` e2 ⇒ e′2 : π2ρ2 c̃heckπ1:=π2(Ξ) π2ρ2 . T1 Φ = ∆π1:=π2(Ξ)

Ξ; Γ; Σ ` (e1 := e2)ε ⇒ insert-has?(Φ,
(
e′1 := e′2

)
ε
) : {ε}Unit

Figure 4.6: Translation of source programs to the internal language

62

tag monotonicity restrictions on the check and adjust functions, deducing these checks can
be subtle.

Consider a hypothetical check predicate for a mutable state effect discipline:

checkC(Φ) ⇐⇒ read ∈ Φ or write ∈ Φ.

Though strange here, an effect discipline that is satisfied by one of two possible privileges
is generally plausible, and in fact satisfies the monotonicity restrictions. When, say, the

consistent check c̃heckC({¿}) succeeds in some program, which privileges should be checked
at runtime?

The key insight is that the internal language program must check for all privileges that
can produce a minimal satisfying privilege set. In the case of the above example, we must
conservatively check for both read and write. However, we do not need to check for any
privileges that are already known to be statically available.

We formalize this general idea as follows. First, since we do not want to require and check
for any more permissions than needed, we only consider all possible minimal privilege sets
that satisfy the check. We isolate the minimal privilege sets using the mins function:

mins(Υ) = {Φ ∈ Υ | ∀Φ′ ∈ Υ.Φ′ 6⊂ Φ}.

Given some consistent privilege set Ξ, we identify all of its plausible privilege sets that satisfy
a particular check, and select only the minimal ones. In many cases there is a unique minimal
set, but as above, there may not.8 To finish, we coalesce this collection of minimal privileges,
and remove any that are already statically known to be available based on Ξ. These steps
are combined in the following function.
Definition 14 (Minimal Privilege Check). Let C be some checking context. Then define
∆C : CPrivSet→ PrivSet as follows:

∆C(Ξ) =
(⋃

mins({Φ ∈ γ(Ξ) | checkC(Φ)})
)
\ |Ξ|

The ∆C function transforms a given consistent privilege set into the minimal conservative
set of additional privileges needed to safely pass the checkC function. For instance, the
[C-App] translation rule uses it to guard a function application, if need be, with a runtime
privilege check. These checks are introduced by the insert-has? metafunction.

insert-has?(Φ, e) =

{
e if Φ = ∅
has Φ e otherwise

Note that the metafunction only inserts a check if needed. This supports the pay-as-you-go
principle of gradual checking.

8One could retain precision by extending our abstraction to support disjunctions of consistent effect sets,
at the cost of increased complexity in the translation and type system.

63

Since [C-App] also appeals to consistent subtyping, a cast may be introduced in the
translation as well. For this, we appeal to a cast insertion metafunction:

〈〈T2 ⇐ T1〉〉e =

{
e if T1 < : T2

〈T2 ⇐ T1〉e otherwise.

Once again, casts are only inserted when static subtyping does not already hold.

The [C-Eff] rule translates effect ascription in the source language to the restrict form
in the internal language. If more privileges are needed to ensure static containment between
Ξ1 and Ξ, then translation inserts a runtime has check to bridge the gap.9

Crucially, the translation system preserves typing.
Theorem 17 (Translation preserves typing). If Ξ; Γ; Σ ` e ⇒ e′ : T in the source language
then Ξ; Γ; Σ ` e′ : T in the internal language.

Proof. By structural induction over the translation derivation rules. The proof relies on
the fact that ∆C(Ξ) introduces enough runtime checks (via insert-has?) that any related
strict-checkC(Ξ) predicate is sure to succeed at runtime, so those rules do not get stuck.
The instance of insert-has? in the [C-Eff] rule plays the same role there.

4.3 Summary

The ideas presented in this chapter have already been published in the International Confer-
ence on Functional Programming [2]. In section 4.1, we modelled the ideas of gradual effect
checking already introduced in the previous chapter in terms of abstract interpretation. Using
this model, we introduced in section 4.2 an extension to the generic type-and-effect frame-
work of Marino and Millstein [15] that provides gradual effect checking without imposing any
further restrictions to the framework expressivity.

The original framework introduced by Marino and Millstein required some runtime in-
formation only to prove type safety, and that information could be safely avoided in an
implementation. Implementing the semantics presented in this chapter cannot avoid the
runtime effect information, because it is required to provide dynamic effect checking. In the
next chapter we detail which information is now not redundant, and present an alternative
runtime semantics that requires reduced runtime information. Both semantics are type safe,
and we describe the tradeoffs between them.

9The formula for Φ is analogous to the ∆C operation for checkC .

64

Chapter 5

A Conservative Semantics with
Reduced Runtime Information

In the generic M&M framework [15], both tags and all the privilege-related information are
redundant at execution time. The static type system ensures that every runtime check will
pass, thus runtime tag and privilege information is only included in the operational semantics
to ensure type safety. An implementation of the runtime semantics does not need to carry
any tag or privilege information.

In the generic gradual effect framework, static information might not be sufficient to
ensure that all runtime verifications succeed. When the type system does not have enough
information, the translation algorithm wraps a has expression around the original expression.
This has expression checks for sufficient privileges, and triggers an error if the check fails.
The has construct depends on the set of privileges Φ used as a context, thus for has to work
the privilege context cannot be discarded and has to be available at runtime.

To calculate the appropriate privilege sets useds as contexts, the semantics we have in-
troduced so far requires to hold tag information at runtime. Tag information imposes a
space overhead for evaluation. In this chapter, we explore a way to give implementors the
option of not requiring runtime tags, while understanding the expressiveness impact of the
technique. We propose an alternative semantics for the generic gradual effect framework that
lifts the dependency on runtime tag information, only depending on privilege set Φ context
information at runtime. We call this new semantics a conservative semantics.

We also formalize the relation between the conservative semantics and the semantics
proposed in chapter 4. Programs that reduce to a value in the conservative semantics reduce
to the very same value (modulo tag information) in the semantics for the generic gradual
effect checking system introduced in fig. 4.5. Unfortunately, the price to pay for having less
information is precision: some programs that produced a result in the generic semantics will
instead trigger an error in the conservative semantics.

65

w ::= unit | λx : T . e | l Prevalues
v ::= wε Values

e ::= x | v | (e e)π | Error | 〈T ⇐ T 〉e | (ref e)ε | !e | (e := e)(ε,π) Terms

| has Φ e | restrict Ξ e
T ::= πρ Types

ρ ::= Unit | T Ξ−→T | Ref T PreTypes
A ::= ↓↑ | π ↓| ref ↓ | ! ↓ Adjust Contexts

| ↓:=↑ | π :=↓
C ::= π π | refπ | !π | π := π Check Contexts

f ::= (� e)π | (v �)π Frames

(ref �)ε |!� | (� := e)(ε,π) | (v := �)(ε,π)

g ::= f | 〈T2 ⇐ T1〉� | has Φ � | restrict Ξ � Error Frames

Figure 5.1: Conservative Language Syntax

5.1 Making tag information redundant at runtime

In the generic operational semantics introduced in chapter 4, tag information is used only to
compute privilege sets through adjust functions and to verify check conditions. We will first
clarify why check predicates are redundant, so we can later focus on the usages of adjust
and study how to avoid requiring tag information.

check predicates in the operational semantics are made redundant by the type system.
In the intermediate language presented for the generic gradual effect framework, every call
to check in the operational semantics uses a check context limited to the tags of the values
in the expression to be reduced. For example, to reduce a (ref unitε1)ε2 expression under
a privilege context Φ, rule [E-Ref] verifies that checkref {ε1}(Φ) holds. At the same time,
typing an expression that reduces to (ref unitε1)ε2 requires a matching strict-checkref π(Ξ)
predicate to hold, which may use a check context with either more tags or the same tags
required in the reduction rules. By the tag monotonicity lemma (property 2), checkC(Φ)
implies checkC′(Φ) if C ′ contains less tags than C (C ′ v C). At the same time, a call to
strict-checkC(Ξ) always ensures that for every feasible privilege set Φ ∈ γ(Ξ), checkC(Φ)
holds. Thus by statically requiring a strict-checkref π(Ξ) predicate in the type system with
ε1 ∈ π, type safety (theorem 20 and theorem 21) ensures that every check predicate in the
operational semantics always holds, and therefore checking checkref {ε1}(Φ) at runtime is
redundant.

We can now analyze in which cases adjust requires tag information. The only interesting
case is for evaluation rule [E-Frame], which alters the set of available privileges by using
adjust functions. adjust only use tag information through adjust contexts. An adjust con-
text holds tag information only for expressions composed of multiple subexpressions, where
tag information represents previously reduced subexpressions. Tag information available in

66

the adjust context may be then used to alter the privileges available to evaluate the next
subexpression. This situation only arises for two forms of adjust contexts in our semantics:
π ↓ and π :=↓in rule [E-Frame], corresponding to expressions that use rules [T-App] and
[T-Asgn] in the typing relation. The generic gradual effect system introduced in chapter 4
uses a tag approximation in the type system, using the tagset π obtained when typing e1 in
expressions of the form e1 e2 and e1 := e2 to generate the respective adjust contexts π ↓ and
π :=↓ used to type e2 in rules [T-App] and [T-Asgn], but uses exact tags provided by tag
annotations of values in the operational semantics. By type safety, the exact tag ε used in the
operational semantics is guaranteed to be a member of the set π used in the type derivation.
With this restriction, the tag monotonicity lemmas of the generic framework ensure that the
privilege information available at runtime will always be equal or greater than the privilege
information used by the type system.

In section 5.1.1 we propose a language transformation that does not require runtime tags
on values, using the available static information instead. This comes at the price that some
programs that the generic semantics in fig. 4.5 accepted will now be rejected, because of the
tag monotonicity lemmas. An example of a program rejected by the conservative semantics
is shown in section 5.1.2.

5.1.1 The conservative semantics

Syntax for the conservative language is introduced in fig. 5.1, which highlights the in-
teresting differences with the language from chapter 4. The conservative language carries
syntactic tag information for the only cases where tag information was needed: evaluation
of frames (v �) and π := �, which induced the adjust contexts π ↓ and π :=↓, respectively.
Thus function applications (e1 e2) and assignments ((e1 := e2)ε) now also carry a tagset π
that will be used by adjust instead of the tag obtained from values. This tagset will be
inserted by a translation algorithm (in fig. 5.3) that annotates these expressions with the
tagset used when typing the expression.

The operational semantics is introduced in fig. 5.4. Only 3 rules are different: rules [E-
App], [E-Asgn] and [E-Frame]. Rules [E-App] and [E-Asgn] do not change their semantics,
but they now operate on expressions with extra syntactic information. This extra tagset
information is no longer required after rules [E-App] or [E-Asgn] are applied, so those rules
discard the information.

Rule [E-Frame] changes in how the adjust context for a particular frame is obtained. In
the generic system introduced in fig. 4.5, rule [E-Frame] uses an A function to infer the proper
adjust context for an evaluation frame. In the case for frames v � and (v := �)ε′ , it used the
tag in v to create a singleton tagset and produce the corresponding {ε} ↓ or {ε} :=↓ context.
In the conservative semantics, we introduce a new function A′ shown in fig. 5.2. In A′, frames
of the form (v �)π and (v := �)(ε,π) carry an extra tagset π, which is used to produce the
corresponding π ↓ or π :=↓ adjust context. Therefore, no tag information is used for infering
the adjust context, making tag information redundant at runtime. We formally prove this

67

A′ ((� e)π) = ↓↑
A′
(

(v �) π

)
= π ↓

A′ ((ref �)ε) = ref ↓
A′ (!�) = ! ↓

A′
(
(� := e)(ε,π)

)
= ↓:=↑

A′
(

(v := �)
(ε, π)

)
= π :=↓

Figure 5.2: New frame translation function A′, mapping annotated evaluation frames to
adjust contexts.

statement in section 5.5.

5.1.2 Example of a rejected program

Which programs that are accepted and don’t produce an error in the generic gradual effect
checking semantics result in an error in the conservative semantics? In this section, we try
to answer this question by constructing an example program that produces different results
when evaluated in each semantics. In short, which programs are rejected depends solely on
the concrete definition of the adjust function.

Since programs without has constructs never go to Error, programs with full effect anno-
tations never go to Error either. The difference between both semantics only affects programs
in which some runtime verification needs to take place.

Tag monotonicity lemmas ensure that when tags are removed from a set π, adjust can only
add new privileges to the resulting set. Therefore, for programs to have different behavior
between both semantics, adjust functions have to make strict use of this condition, and
for the same privilege set, produce different resulting privilege sets depending on the adjust
context used.

adjustπ↓(Φ) ⊂ adjust{ε}↓(Φ)

This behavior may only happen with the adjust contexts where there is explicit usage of
the tagsets, π ↓ and π :=↓. We therefore propose, as an example, the following definition
for adjust:

adjustπ↓(Φ) =

{
Φ ∪ {φ} if Φ ⊆ {ε}
Φ otherwise

and use the identity function for any other kind of adjust context.

To build an interesting example, we need different behavior for different privilege infor-
mation at runtime. The only language constructs that change behavior with different Φ’s are
those of the form has Φ e. We also require the has construct to be in the argument position

68

IT-Fn
Ξ1; Γ, x : T1; Σ ` eV e′ : T2

Ξ; Γ; Σ ` (λx : T1 . e)ε V (λx : T1 . e′)ε : {ε}T1
Ξ1−→T2

IT-Unit
Ξ; Γ; Σ ` unitε V unitε : {ε}Unit

IT-Loc
Σ(l) = T

Ξ; Γ; Σ ` lε V lε : {ε}Ref T

IT-Var
Γ(x) = T

Ξ; Γ; Σ ` xV x : T

IT-App

ãdjust↓↑(Ξ) ; Γ; Σ ` e1 V e′1 : π1

(
T1

Ξ1−→T3

)
ãdjustπ1↓(Ξ) ; Γ; Σ ` e2 V e′2 : π2ρ2

strict-checkπ1π2(Ξ) π1T1
Ξ1−→T3 < : π1π2ρ2

Ξ−→T3

Ξ; Γ; Σ ` e1 e2 V (e′1 e′2)π1 : T3

IT-Cast
Ξ; Γ; Σ ` eV e′ : T0 T0 < : T1 T1 . T2

Ξ; Γ; Σ ` 〈T2 ⇐ T1〉eV 〈T2 ⇐ T1〉e′ : T2

IT-Has
(Φ ∪ Ξ); Γ; Σ ` eV e′ : T

Ξ; Γ; Σ ` has Φ eV has Φ e′ : T

IT-Rst
Ξ1; Γ; Σ ` eV e′ : T Ξ1 ≤ Ξ

Ξ; Γ; Σ ` restrict Ξ1 eV restrict Ξ1 e′ : T

IT-Error
Ξ; Γ; Σ ` ErrorV Error : T

IT-Ref

ãdjustref ↓(Ξ) ; Γ; Σ ` eV e′ : πρ
strict-checkref π(Ξ)

Ξ; Γ; Σ ` (ref e)ε V (ref e′)ε : {ε}Ref πρ

IT-Deref

ãdjust!↓(Ξ) ; Γ; Σ ` eV e′ : πRef T
strict-check!π(Ξ)

Ξ; Γ; Σ `!eV!e′ : T

IT-Asgn

ãdjust↓:=↑(Ξ) ; Γ; Σ ` e1 V e′1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ; Γ; Σ ` e2 V e′2 : π2ρ2

strict-checkπ1:=π2(Ξ) π2ρ2 < : T1

Ξ; Γ; Σ ` (e1 := e2)ε V (e′1 := e′2)(ε,π1) : {ε}Unit

Figure 5.3: Type-directed tag addition. It introduces the tag approximation of the generic
language explicitly, to be used on adjust contexts for evaluation.

69

of an application: a program of the form (e1 has Φ′e2){ε1,ε2} in the conservative semantics.
We introduce an annotation {ε1, ε2} as a set of the minimal size required to have different
behavior based only on tags. To have a set {ε1, ε2} frame annotation, expression e1 needs

to be typed as {ε1, ε2}T1
Ξ−→T2, and therefore can only reduce to an abstraction, which may

have either tag ε1 or ε2.

To define a concrete program that follows these restrictions, we just write e1 as a variable
f with the appropiate type, bound in a λ-abstraction.

e3 = (λf : {ε1, ε2}T1
∅−→T2 . f has {φ}!lε)ε

We define function check!π(Φ) ⇐⇒ φ ∈ Φ, and checkC(Φ) to always hold for any other
check context. Given our definition of adjust, the following example is a valid program:

(e3 (λx : T1 . x)ε1){ε}

This program can be typed with Ξ = {¿} and evaluates to different results in each se-
mantics. To focus on the interesting step of evaluation , we first apply substitution of the
argument in the body of the function. Then we get the following cases for evaluation with
Φ = ∅. In the conservative semantics:

adjust{ε1,ε2}↓(Φ) ` has {φ}!l | µ Error | µ
Φ ` ((λx : T1 . x)ε1 has {φ}!l){ε1,ε2} | µ

∗ Error | µ

and in the generic gradual effect checking semantics:

adjust{ε1,ε2}↓(Φ) ` has {φ}!l | µ→!l | µ
Φ ` (λx : T1 . x)ε1 has {φ}!l | µ ∗ (λx : T1 . x)ε1 !l | µ

Which will produce a value depending on µ(l).

70

E-Ref
l 6∈ dom (µ) checkref {ε1}(Φ)

Φ ` (ref wε1)ε2 | µ l | µ[l 7→ w]
E-Deref

µ(l) = v check!ε(Φ)

Φ `!lε | µ v | µ

E-Asgn
check{ε1}{ε2}(Φ)

Φ ` (lε1 := wε2)(ε,π) | µ unitε | µ[l 7→ wε2]
E-Frame

adjustA′(f)(Φ) ` e | µ e′ | µ′

Φ ` f [e] | µ f [e′] | µ′

E-Error
Φ ` g[Error] | µ Error | µ

E-App
check{ε1}{ε2}(Φ)

Φ ` ((λx : T1 . e)ε1 wε2)π | µ [wε2/x] e | µ

E-Cast-Frame
Φ ` e | µ e′ | µ′

Φ ` 〈T2 ⇐ T1〉e | µ 〈T2 ⇐ T1〉e′ | µ′
E-Has-T

Φ′ ⊆ Φ Φ ` e | µ e′ | µ′

Φ ` has Φ′ e | µ has Φ′ e′ | µ′

E-Has-V
Φ ` has Φ′ w | µ w | µ

E-Has-F
Φ′ 6⊆ Φ

Φ ` has Φ′ e | µ Error | µ

E-Rst
Φ′′ = max {Φ′ ∈ γ(Ξ) | Φ′ ⊆ Φ} Φ′′ ` e | µ e′ | µ′

Φ ` restrict Ξ e | µ restrict Ξ e′ | µ′
E-Rst-V

Φ ` restrict Ξ w | µ w | µ

E-Cast-Id
π1 ⊆ π2

Φ ` 〈π2ρ⇐ π1ρ〉w | µ w | µ

E-Cast-Fn
π1 ⊆ π2

Φ ` 〈π2T21
Ξ2−→T22 ⇐ π1T11

Ξ1−→T12〉 (λx : T11 . e) | µ (λx : T21 . 〈T22 ⇐ T12〉restrict Ξ2 has (|Ξ1| \ |Ξ2|) [(〈T11 ⇐ T21〉x)/x] e) | µ

Figure 5.4: Full Conservative Semantics, with special frame translation function A′, that maps annotated evaluation frames to adjust
contexts.

71

5.2 New semantics is a conservative approximation

We call the semantics proposed in section 5.1 a conservative approximation. By conservative
approximation we mean that if a program reduces to a value and a store in the modified
semantics, it reduces to the same value and store in the generic gradual effect checking lan-
guage (modulo tag annotations). If a program reduces to a runtime error in the conservative
semantics, the program either reduces to an error or to a value in the generic gradual effect
checking semantics. Thus the relation between both semantics is not bijective.

We define the relation between both semantics formally in the Conservative Approximation
Theorem (theorem 18). To define the theorem, we first define two auxiliary notions: A
tagset erasure function (JKπ) that maps programs from the conservative language syntax to
the generic gradual effect checking language syntax by removing the extra annotations, and
a simulation relation that captures the relation between both languages. This simulation
relation must be preserved throughout evaluation by theorem 18.
Definition 15 (JKπ function). We define function JKπ : ExprConservative → ExprGeneric as
follows:

JunitεKπ = unitε
JlεKπ = lε

J(λx : T . e)εKπ = (λx : T . JeKπ)ε
J(e1 e2)πKπ = Je1Kπ Je2Kπ

J〈T1 ⇐ T0〉eKπ = 〈T1 ⇐ T0〉JeKπ
Jhas Φ eKπ = has Φ JeKπ

Jrestrict Ξ eKπ = restrict Ξ JeKπ
JErrorKπ = Error

J(ref e)εKπ = (ref JeKπ)ε
J!eKπ = !JeKπ

J(e1 := e2)(ε,π)Kπ = (Je1Kπ := Je2Kπ)ε

Simulation Relation. The simulation relation encapsulates how we want to relate pro-
grams from the conservative semantics with programs in the generic gradual effect checking
semantics. To avoid confusion, we will underscore with a C relations that should hold in
the conservative semantics, and with a O relations that should hold in the generic gradual
semantics introduced in chapter 4.

We define this simulation relation formally as follows:
Definition 16 (Simulation Relation).

Ξ; Γ; Σ `C e2 : T2

e1 = Je2Kπ
Γ; Σ �O µ1 Γ; Σ �C µ2

µ1 = JKπ ◦ µ2

Ξ; Γ; Σ (e1, µ1) ∼ (e2, µ2)

A pair (e2, µ2) from the conservative language is related to a pair (e1, µ1) in the generic

72

gradual effect checking language with a context Ξ; Γ; Σ by the simulation relation if:

1. e2 can be typed in the conservative type system using the context (Exists a type T
such that Ξ; Γ; Σ `C e2 : T).

2. e1 and e2 correspond to the same expression modulo tag information (e1 = Je2Kπ)

3. Both stores µ1 and µ2 are consistent with the context, and µ1 is equivalent to µ2 without
the extra tagset information.

Definition 17 (Valid simulation privilege sets).

Φ ∼ Ξ ⇐⇒ ∃Φ′ ⊆ Φ . Φ′ ∈ γ(Ξ)

We say that a privilege set Φ validly simulates a consistent privilege set Ξ if and only if
there exists a set in the concretization of Ξ that is contained in Φ.

This definition of valid simulation privilege sets is an extension of the concretization
function. Unlike concretization, the set of valid simulation privilege sets always contains all
the sets that contain at least the privileges in the static part of Ξ. We require this flexibility
to prove intermediate results in our path towards proving the conservative approximation
theorem, which we now define.
Theorem 18 (Conservative Approximation). . Let Ξ; Γ; Σ ` e1 V e2 : T , µ1 and µ2 such
that Ξ; Γ; Σ (e1, µ1) ∼ (e2, µ2), and Φ ∼ Ξ. If Φ ` e2 | µ2 ∗ v2 | µ′2, then ∃v1 and µ′1
such that Φ ` e1 | µ1 →∗ v1 | µ′1 and ∃Σ′ ⊇ Σ such that Ξ; Γ; Σ′ (v1, µ

′
1) ∼ (v2, µ

′
2).

Proof. To prove this theorem, we establish an intermediate strong conservative approxima-
tion lemma (theorem 19). Then this theorem reduces to the reflexive-transitive closure of
theorem 19.

Theorem 19 (Strong Conservative Approximation). .

Let Ξ; Γ; Σ (e1, µ1) ∼ (e2, µ2) and Φ ∼ Ξ. If Φ ` e2 | µ2 e′2 | µ′2, then for any
Φ′ ∼ Ξ, either:

• Φ′ ` e′2 | µ′2 ∗ Error | µ′2
• ∃e′1 and µ′1 such that Φ′ ` e1 | µ1 → e′1 | µ′1 and ∃Σ′ ⊇ Σ such that

Ξ; Γ; Σ′ (e′1, µ
′
1) ∼ (e′2, µ

′
2).

Proof. We provide a proof sketch here. The reader interested in more details should also
look at the appendix D.

The proof goes by structural induction over . Since both semantics are mostly equivalent
modulo differences in rules [E-Frame] in each semantics, that rule is the only interesting case
for the proof.

The key step in the proof is allowing usage of the induction hypothesis for rule [E-Frame],
since there are different adjust contexts used in each semantics. To do so we first establish
a principle of well-formedness for frames, in which the tags that are used to generate adjust
contexts are always contained in the syntactic annotations introduced in the conservative

73

IT-Fn
Ξ1; Γ, x : T1; Σ ` e : T2

Ξ; Γ; Σ ` (λx : T1 . e)ε : {ε}T1
Ξ1−→T2

IT-Unit
Ξ; Γ; Σ ` unitε : {ε}Unit

IT-Loc
Σ(l) = T

Ξ; Γ; Σ ` lε : {ε}Ref T
IT-Var

Γ(x) = T

Ξ; Γ; Σ ` x : T

IT-App

ãdjust↓↑(Ξ) ; Γ; Σ ` e1 : π0

(
T1

Ξ1−→T3

)
ãdjustπ1↓(Ξ) ; Γ; Σ ` e2 : π2ρ2

strict-checkπ1π2(Ξ) π0 T1
Ξ1−→T3 < : π1π2ρ2

Ξ−→T3

Ξ; Γ; Σ ` (e1 e2)π1 : T3

IT-Cast
Ξ; Γ; Σ ` e : T0 T0 < : T1 T1 . T2

Ξ; Γ; Σ ` 〈T2 ⇐ T1〉e : T2

IT-Has
(Φ ∪ Ξ); Γ; Σ ` e : T

Ξ; Γ; Σ ` has Φ e: T

IT-Rst
Ξ1; Γ; Σ ` e : T Ξ1 ≤ Ξ

Ξ; Γ; Σ ` restrict Ξ1 e : T
IT-Error

Ξ; Γ; Σ ` Error : T

IT-Ref

ãdjustref ↓(Ξ) ; Γ; Σ ` e : πρ
strict-checkref π(Ξ)

Ξ; Γ; Σ ` (ref e)ε : {ε}Ref πρ
IT-Deref

ãdjust!↓(Ξ) ; Γ; Σ ` e : πRef T
strict-check!π(Ξ)

Ξ; Γ; Σ `!e : T

IT-Asgn

ãdjust↓:=↑(Ξ) ; Γ; Σ ` e1 : π0 Ref T1

ãdjustπ1:=↓(Ξ) ; Γ; Σ ` e2 : π2ρ2

strict-checkπ1:=π2(Ξ) π2ρ2 < : T1 π0 ⊆ π1

Ξ; Γ; Σ ` (e1 := e2)(ε,π1) : {ε}Unit

Figure 5.5: Type system for the language with extra tagset information

language. We then prove that simulation ensures well-formed frames, and that there is a
partial ordering between the adjust context used in the conservative semantics and those in
the original semantics (A(fO) v A′(fC)).

This partial oredering can be used to ensure that if Φ is a valid simulation privilege set

for Ξ (Φ ∼ Ξ), then also adjustA(fO)(Φ) ∼ ãdjustA′(fC)(Ξ). This relation enables usage of
the induction hypothesis.

5.3 Type safety of the conservative semantics

We have presented in this chapter a conservative semantics for the generic gradual effect
framework, ensuring that if a program reduces to a value in the conservative semantics, it

74

will reduce to the same value (without the extra annotations required) in the generic gradual
effect checking semantics. We have not yet proved type safety for this new semantics, and we
proceed to do so in this section. The key difference with the type system for the intermediate
language is the explicit subsumption of tagsets (which is highlighted in boxes in fig. 5.5. We
now proceed to prove type safety.
Theorem 20 (Progress). Suppose Ξ; ∅; Σ ` e : T . Then either e is a value v, an Error, or
Φ ` e | µ e′ | µ′ for all privilege sets Φ ∈ γ(Ξ) and for any store µ such that ∅ | Σ � µ.

Proof. By Structural Induction on type derivation. Since most of the typing rules are equal
to the generic gradual effect checking language, for which we have already proven Progress,
we fall back to the generic gradual effect checking language proof for the uninteresting cases.
For [IT-App] and [IT-Asgn], the proof is almost analogous, except that the new language
does not recur to an argument based on tag monotonicity for adjust. This means that we
do not need the condition ∀Φ′ ⊇ Φ ∈ γ(Ξ) present in the generic gradual effect checking
language.

Theorem 21 (Preservation). If Ξ; Γ; Σ ` e : T , and Φ ` e | µ e′ | µ′ for Φ ∈ γ(Ξ) with
Γ | Σ � µ, then ∃Σ′ ⊇ Σ such that Γ | Σ′ � µ′ and Ξ; Γ; Σ′ ` e′ : T ′ with T ′ < : T .

Proof. By Structural Induction on type derivation. As in the case for progress, the proof
is analogous to the generc gradual effect checking language, except for the cases for rules
[IT-App] with rule [E-Frame] and f = (v�)π, and rule [IT-Asgn] with rule [E-Frame] and
f = (v := �)(ε,π), which are simpler in the sense that they do not require the superset
restriction that was required in the generic gradual effect checking language to account for
the difference between the tagset used at evaluation and the one used for typing.

5.4 Redundancy of tags in the conservative semantics

We have repeatedly stated that we introduced the conservative semantics to avoid carrying
tag information at runtime. To formalize this idea, we introduce a simulation argument. We
can easily define an operational semantics ↪→ based on the conservative semantics, but
removing any calls to check, and also define a tag-removal function JKε as follows

JunitεKε = unit

JlεKε = l
J(λx : T . e)εKε = (λx : T . JeKε)

J(e1 e2)πKε = (Je1Kε Je2Kε)π
J〈T1 ⇐ T0〉eKε = 〈T1 ⇐ T0〉JeKε

Jhas Φ eKε = has Φ JeKε
Jrestrict Ξ eKε = restrict Ξ JeKε

JErrorKε = Error
J(ref e)εKε = ref JeKε

J!eKε = !JeKε
J(e1 := e2)(ε,π)Kε = (Je1Kε := JKεe2)π

75

We can then state the following theorem relating both semantics:
Theorem 22 (check and tags are redundant in). If Ξ; Γ; Σ ` e : T and Φ ` e | µ e′ | µ′
for Φ ∈ γ(Ξ) and Γ | Σ � µ, then also Φ ` E ′(e) | E ′(µ) ↪→ E ′(e′) | E ′(µ′).

Proof. check predicates are made redundant by the typing hypothesis, since we know in
any case that strict-checkA(Ξ) implies checkA(Φ) ∀Φ ∈ γ(Ξ). If we remove the check
predicates, ε tag annotations can be considered redundant because they are not used in the
runtime semantics at any interesting spot.

5.5 Summary

Section 5.1 introduced an alternative semantics for the generic gradual effect checking frame-
work. Unlike the semantics introduced in the previous chapter, this semantics does not
depend on tag annotations for values, which therefore can be safely removed in an imple-
mentation. Section 5.4 presents a proof of this property, while section 5.5 proves that the
new semantics is type safe. We call the introduced semantics a conservative semantics since
whenever a program reduces to a value in the conservative semantics, it reduces to the same
value in the semantics of the previous chapter, modulo tag annotations. This relation is
stated as a theorem and proven in section 5.2.

This chapter closes our exposition about generic gradual effect checking. In the next
chapter, we take a step further to introduce flexibility not only for effect annotations, but
also for type annotations by combining gradual effect checking with gradual typing.

76

Chapter 6

Gradual Type-and-Effect Systems

The generic gradual effect checking framework introduced in chapter 4 empowers the pro-
grammer to decide when and where to introduce effect annotations, introducing the necessary
checks when static information is not sufficient to enforce an effect discipline. However, the
flexibility provided by gradual effect checking only applies to effect annotations: programs
still require type annotations. In this chapter, we take a step further and give the programmer
full flexibility over both effect and type annotations.

We combine the generic gradual effect checking framework introduced in chapter 4 with
gradual typing to provide complete gradual typing for type-and-effect systems. We do so in
two steps: we first combine gradual typing with a simplified version of the generic gradual
effect checking framework that lacks tags, and then we introduce gradual typing for the full
generic gradual effect checking system introduced in chapter 4. Tag annotations interact with
the type system in non trivial ways, so we avoid them at first to show explicitly that gradual
typing is practically orthogonal with gradual effect checking. After introducing gradual typing
without tags, we focus on the interactions between tag annotations and gradual typing.

6.1 Gradual typing for type-and-effect systems without

tags

In this section we introduce gradual typing for a simplified version of the gradual effect
checking framework without tags. We follow a similar strategy to the structure followed by
Siek and Taha to introduce Gradual Typing [24]: After explaining the simplified framework,
we propose an alternative type system that is more flexible than the original language type-
system. The new type system uses type consistency to model which types may produce a
valid program. We then introduce an intermediate language and a translation algorithm
that inserts explicit runtime checks when static information is not sufficient to ensure that
a program is valid according to the type and effect restrictions of the language. Finally, we
introduce a runtime semantics for the language and establish type safety.

77

Source Language

φ ∈ Priv, ξ ∈ CPriv = Priv ∪ {¿}
Φ ∈ PrivSet = P (Priv) , Ξ ∈ CPrivSet = P (CPriv)

v ::= unit | λx : T . e | l Values

e ::= x | v | e e | e :: Ξ Terms

| ref e | !e | e := e

T ::= Unit | T Ξ−→T | Ref T | Dyn Types

A ::= ↓↑ | • ↓| ref ↓ | ! ↓ Adjust Contexts

| ↓:=↑ | • :=↓
C ::= • • | ref• | !• | • := • Check Contexts

Figure 6.1: Syntax of the source language

6.1.1 Simplifying the framework

The generic gradual effect checking framework introduced in chapter 4 provides tag anno-
tations for values. These annotations are inherited from the generic M&M framework and
provide increased expressivity. To focus our analysis on the interactions between gradual
typing and gradual effect checking, we consider a system without tag annotations. With
this restriction, we can simplify our exposition and explain the subtleties introduced by tag
annotations later.

We define a system without tags by imposing restrictions to the generic framework. We
restrict the universe of available tag annotations to be a singleton, which we denote {•} (•
is simply a placeholder). Since there is only one tag annotation available (•), every value in
the language is annotated with the same tag, thus the tag annotation becomes redundant
and we can remove it. For example, value unit is equivalent to the tagged value unit•.

In the generic framework, tag annotations leak from values into types, adjust contexts
and check contexts. By restricting the system to one tag available, leaked tag annotations
also become redundant. We then define types without tag annotations, and replace the tag
set restrictions in adjust and check contexts with • placeholders.

We use notation Dyn instead of ? for the dynamic type used in gradual typing to avoid
confusion with the unknown effect annotation ¿ of gradual effect checking. The full syntax
of the language is presented in fig. 6.1.

78

Ξ; Γ; Σ ` e : T T-Fn
Ξ1; Γ, x : T1; Σ ` e : T2

Ξ; Γ; Σ ` λx : T1 . e : T1
Ξ1−→T2

T-Unit
Ξ; Γ; Σ ` unit : Unit

T-Loc
Σ(l) = T

Ξ; Γ; Σ ` l : Ref T T-Var
Γ(x) = T

Ξ; Γ; Σ ` x : T
T-App

ãdjust↓↑(Ξ) ; Γ; Σ ` e1 : T

ãdjust•↓(Ξ) ; Γ; Σ ` e2 : T2

T . T2
Ξ−→T3 c̃heck••(Ξ)

Ξ; Γ; Σ ` e1 e2 : T3

T-Eff
Ξ1; Γ; Σ ` e : T Ξ1 @∼ Ξ

Ξ; Γ; Σ ` (e :: Ξ1) : T
T-Ref

ãdjustref ↓(Ξ) ; Γ; Σ ` e : T

c̃heckref •(Ξ)

Ξ; Γ; Σ ` ref e : Ref T

T-Deref

ãdjust!↓(Ξ) ; Γ; Σ ` e : T1

T1 ∼ Ref T c̃heck!•(Ξ)

Ξ; Γ; Σ `!e : T
T-Asgn

ãdjust↓:=↑(Ξ) ; Γ; Σ ` e1 : T T ∼ Ref T1

ãdjust•:=↓(Ξ) ; Γ; Σ ` e2 : T2

c̃heck•:=•(Ξ) T2 . T1

Ξ; Γ; Σ ` e1 := e2 : Unit

Figure 6.2: Typing rules for the source language

6.1.2 A type system based on consistency

We automatically annotate programs with a Dyn type wherever static type annotations are
missing. Type restrictions must be able to handle both the Dyn type and types with partial
missing information (like Ref Dyn). Like in the case of Gradual Typing as introduced in
section 2.2.1, we replace any important type equality restriction with type consistency. We
define type consistency for the language in section 6.1.3. The type system obtained is very
similar to the typesystem used for gradual effect checking and introduced in fig. 4.2. The
only rules that differ are rules [T-App], [T-Deref] and [T-Asgn], rules on which we add a type
consistency restriction. The full type system is introduced in fig. 6.2.

6.1.3 Extending type consistency for effects

The type system uses type consistency to statically accept expressions with type Dyn (or
whose type is partially unknown) whenever expressions with particular type are required,
like in the function position of a function application. Type consistency acts as a relaxed
form of equivalence: whenever a certain type T1 is required for a program to be valid, a
program with an unknown type must also be statically accepted, because the type system is
not able to distinguish between them. The definition of type consistency introduced by Siek
and Taha [24] does not consider effect annotations, so we need to provide a type consistency
relation that provides this flexibility for type-and-effect systems.

79

Our analysis of gradual effect checking did not require a notion of effect consistency. In-
stead, we based gradual effect checking on consistent containment, which acted as a relaxed
form of set containment. We can reuse consistent containment to define a notion of effect
consistency, building on the same strategy that reduces set equality to a pair of set contain-
ment operations (a = b ⇐⇒ a ⊆ b and b ⊆ a)1. We use this property to define effect
consistency as follows:
Definition 18 (Effect consistency).

We say that two consistent privilege sets Ξ1 and Ξ2 are consistent , denoted Ξ1 ' Ξ2, if
Ξ1 @∼ Ξ2 and Ξ2 @∼ Ξ1.

We use this definition of effect consistency to provide a definition of type consistency
that handles effects. As in Siek and Taha [24], reference cell types are only consistent with
themselves (since type consistency is reflexive). We define type consistency as follows:

C-Refl τ ∼ τ C-UnR
τ ∼ Dyn

C-UnL
Dyn ∼ τ

C-Fun

σ1 ∼ τ1 σ2 ∼ τ2

Ξσ ' Ξτ(
σ1

Ξσ−→ σ2

)
∼
(
τ1

Ξτ−→ τ2

)

6.1.4 Consistent subtyping

Effect annotations on type-and-effect systems lead to a natural notion of subtyping, so sub-
typing must considered from the start to define an interesting notion of gradual typing for
type-and-effect systems. As introduced in section 2.2.4, we can combine subtyping and grad-
ual typing by introducing consistent subtyping, which we defined as follows2:
Definition 19 (Consistent Subtyping). Consistent subtyping (.) is defined as

a . b⇐⇒ ∃α ∼ a . α < : b or ∃β ∼ b . a < : β

This definition of consistent subtyping makes use of subtyping, which we already defined
for gradual effect checking in section 4.2.2 and we now transcribe:

ST-Id
T < : T

ST-Abs
T3 < : T1 T2 < : T4 Ξ1 ⊆ Ξ2

T1
Ξ1−→T2 < : T3

Ξ2−→T4

This definition of subtyping plus the type consistency relation we have just introduced
sustain our definition for consistent subtyping.

1This theorem can be proved by the axiom of extensionality in ZFC set theory.
2When Siek and Taha introduce consistent subtyping in [23], they provide first an algorithmic definition

of the relation and then prove that the definition we provide in theorem 23 is equivalent. We do not provide
an algorithmic definition of consistent subtyping, we attempt to focus on the specification of the problem
instead of the implementation of the solution.

80

v ::= . . . | 〈T ⇐ T 〉v Values
e ::= . . . | Error | 〈T ⇐ T 〉e Terms

| has Φ e | restrict Ξ e
f ::= � e | v � | ref � Frames

|!� | � := e | v := �
g ::= f | 〈T2 ⇐ T1〉� | has Φ � Error Frames

| restrict Ξ �

Figure 6.3: Syntax of the internal language

Properties of consistent subtyping

When defining consistent containment, Siek and Taha [23] went a step further than our
definition, proving that if there exist an α that fullfills the α < : b, then also exists a β that
fullfills a < : β, meaning that both definitions are equivalent. We also want to state this
property for our definition of consistent subtyping.
Theorem 23 (Consistent subtyping equivalence).

∃α ∼ a . α < : b ⇐⇒ ∃β ∼ b . a < : β

Proof. By structural induction over the type consistency definition ∼. Detailed proof in
appendix E.

This is not the only interesting property our definition of consistent subtyping has. When
defining gradual effect checking in chapter 3, we provided a definition of consistent subtyping
that took into account only effect annotations. That definition is clearly different from what
we have just proposed, but we can prove that in absence of the Dyn type, both definitions are
equivalent. If both definitions are equivalent in presence of gradual effect annotations, we can
consider our new definition of consistent subtyping as an extension of consistent subtyping
for gradual effect checking.
Theorem 24. If T1 .GE T2, then also T1 .GT T2

3

Proof. By structural induction on the definition of subtyping in gradual effect checking
(.GE), using lemma 69 for effect annotations in function types. Both the lemma and a
proof for it are provided in appendix E.

6.1.5 Intermediate language

Introducing gradual typing requires extending the language with type casts, but type casts
were already introduced for gradual effect checking. Thus the intermediate language intro-

3We use .GE to denote the consistent subtyping relation used in chapter 3 and chapter 4. We use .GT
to denote the consistent subtyping relation defined in this chapter.

81

duced in fig. 6.3 does not introduce any new language constructs. The typing relation for the
intermediate language introduced in fig. 6.4 is almost the same as the one used for generic
gradual effect checking without tag annotations.

The only difference between both typing relations is that we have removed the consistent
subtyping restriction used in rule [IT-Cast]. In gradual effect checking, we could include that
restriction because type casts would never fail on themselves, but would instead be reduced
to a combination of effect-related restrict and has constructs that may or may not fail.
When we introduce type Dyn, we require more flexibility to preserve safety, in particular
for type preservation: A program 〈Nat ⇐ Dyn〉〈Dyn ⇐ Unit〉unit should reduce to a cast
〈Nat ⇐ Unit〉unit that would later fail, but a cast 〈Nat ⇐ Unit〉 cannot be typed if rule
[IT-Cast] considers a consistent subtyping restriction between Unit and Nat.

The operational semantics introduced in fig. 6.5 extends the semantics defined for gradual
effect checking with the extra behavior required to handle casts with Dyn types. Unlike grad-
ual effect checking, type casts in this semantics may fail for reasons other than effect restric-
tions, because type consistency is not transitive. Consider the program ((λf : Dyn . (f unit)) unit).
After translation and substitution, this program translates to

((〈Unit Ξ−→Dyn⇐ Dyn〉〈Dyn⇐ Unit〉unit) unit)

First, both casts should be merged into a 〈Unit Ξ−→Dyn⇐ Unit〉 cast, behavior provided
by rule [E-Cast-Merge]. This new cast should then fail because both types are not consistent
subtypes, behavior provided by rule [E-Cast-Bad].

Minimal interactions between gradual typing and gradual effect checking in the
translation algorithm

The translation algorithm, presented in fig. 6.6, is a combination between the translation rules
defined for generic gradual effect checking and gradual typing. The only interesting overlap

arises in rule [C-App-2], where a 〈T2
Ξ−→Dyn ⇐ Dyn〉 is introduced. In gradual typing, an

application where e1 has type Dyn requires a cast to ensure that e1 is actually a function.
That restriction would be fulfilled by inserting a cast with any privilege set, in particular a
set with unknown privileges like {¿}. Unfortulately, this set is not sufficient. Using a privilege
set {¿} does not take into account the restriction arising from type-and-effect systems that a
function that is applied cannot generate more side effects than those allowed in the context
of application. To make this assumption explicit, the cast must restrict the privileges to the
context of privileges available Ξ.

The following program shows an example of improper behavior if we introduce a cast to
{¿} instead of a cast to the effect context Ξ, using the generic gradual effect version of the
fluent language as the effect discipline:

((λf : Dyn . (f unit) :: ∅) effectful-argument)

In this program, effectful-argument represent a properly typed function in scope that gen-

82

erates a write effect (Γ(effectful-argument) = Unit
{write}−→ Unit, for example). The translation

should introduce enough runtime checks to make this program fail, since the context where
f is applied does not allow side effects ((f unit) :: ∅). If rule [C-App-2] used {¿} instead of
Ξ, then this program would not produce the required runtime error for the use of effectful-
argument, because the {write} effects of effectful-argument can safely be hidden into a set
with unknown effects like {¿}. Since rule [C-App-2] uses the privilege context instead, which
in this case is the empty set ∅, the runtime semantics produces an effect error as expected.

6.1.6 Type safety

In this section we provide proof sketches for type safety of the intermediate language we have
introduced. Detailed versions of these proofs are provided in appendix E.
Theorem 25 (Progress). Suppose Ξ; ∅; Σ ` e : T . Then either e is a value v, an Error, or
Φ ` e | µ→ e′ | µ′ for all privilege sets Φ such that ∃Φ′ ∈ γ(Ξ) such that Φ′ ⊆ Φ and for any
store µ such that ∅ | Σ � µ.

Proof. By structural induction over derivations of Ξ; ∅; Σ ` e : T . Compared with the proof of
progress for theorem 15, the only interesting cases arise for rule [IT-Cast]. For rule [IT-Cast],
the proof proceeds by cases over the presence (or lack) of consistent subtyping between T1

and T2.

Theorem 26 (Preservation). If Ξ; Γ; Σ ` e : T , and Φ ` e | µ→ e′ | µ′ for Φ ⊇ Φ′ ∈ γ(Ξ)
and Γ | Σ � µ, then Γ | Σ′ � µ′ and Ξ; Γ; Σ′ ` e′ : T ′ for some T ′ < : T and ∃Σ′ ⊇ Σ.

Proof. By structural induction over the typing derivation and the applicable evaluation rules.
All the new evaluation rules apply to casts, so the only interesting case again is for typing
with [IT-Cast], where for most cases the conclusion follows directly from the typing derivation
of the premise, since the rules do not modify terms but extract a subexpression instead. The
case for failing casts is also trivial thanks to rule [IT-Error].

Theorem 27 (Translation preserves typing). If Ξ; Γ; Σ ` e ⇒ e′ : T in the source language
then Ξ; Γ; Σ ` e′ : T in the internal language.

Proof. By structural induction over the translation rules. There is no interesting details for
the proof beyond the details presented in the proof of theorem 17.

83

Ξ; Γ ` e : T

IT-App

ãdjust↓↑(Ξ) ; Γ; Σ ` e1 :
(
T1

Ξ1−→T3

)
ãdjust•↓(Ξ) ; Γ; Σ ` e2 : T2

strict-check••(Ξ) T1
Ξ1−→T3 < : T2

Ξ−→T3

Ξ; Γ; Σ ` e1 e2 : T3
IT-Loc

Σ(l) = T

Ξ; Γ; Σ ` l : Ref T

IT-Var
Γ(x) = T

Ξ; Γ; Σ ` x : T
IT-Cast

Ξ; Γ; Σ ` e : T0 T0 < : T1

Ξ; Γ; Σ ` 〈T2 ⇐ T1〉e : T2

IT-Has
(Φ ∪ Ξ); Γ; Σ ` e : T

Ξ; Γ; Σ ` has Φ e: T
IT-Error

Ξ; Γ; Σ ` Error : T

IT-Rst
Ξ1; Γ; Σ ` e : T Ξ1 ≤ Ξ

Ξ; Γ; Σ ` restrict Ξ1 e : T
IT-Ref

ãdjustref ↓(Ξ) ; Γ; Σ ` e : T
strict-checkref •(Ξ)

Ξ; Γ; Σ ` ref e : Ref T

IT-Deref

ãdjust!↓(Ξ) ; Γ; Σ ` e : Ref T
strict-check!•(Ξ)

Ξ; Γ; Σ `!e : T
IT-Asgn

ãdjust↓:=↑(Ξ) ; Γ; Σ ` e1 : Ref T1

ãdjust•:=↓(Ξ) ; Γ; Σ ` e2 : T2

strict-check•:=•(Ξ) T2 < : T1

Ξ; Γ; Σ ` e1 := e2 : Unit

Figure 6.4: Typing rules for the internal language

84

E-Ref
checkref •(Φ) l 6∈ dom (µ)

Φ ` (ref v) | µ→ l | µ[l 7→ v]
E-Asgn

check•:=•(Φ)

Φ ` (l := v) | µ→ unit | µ[l 7→ v]
E-Deref

check!•(Φ) µ(l) = v

Φ `!l | µ→ v | µ

E-Frame
adjustA(f)(Φ) ` e | µ→ e′ | µ′

Φ ` f [e] | µ→ f [e′] | µ′
E-Error

Φ ` g[Error] | µ→ Error | µ

E-Has-T
Φ′ ⊆ Φ Φ ` e | µ→ e′ | µ′

Φ ` has Φ′ e | µ→ has Φ′ e′ | µ′

E-Has-V

Φ ` has Φ′ v | µ→ v | µ

E-Has-F
Φ′ 6⊆ Φ

Φ ` has Φ′ e | µ→ Error | µ
E-Rst-V

Φ ` restrict Ξ v | µ→ v | µ

E-Rst
Φ′′ = max {Φ′ ∈ γ(Ξ) | Φ′ ⊆ Φ} Φ′′ ` e | µ→ e′ | µ′

Φ ` restrict Ξ e | µ→ restrict Ξ e′ | µ′

E-App

check••(Φ)

Φ ` (λx : T1 . e) v | µ→ [vε2/x] e | µ

E-Cast-Frame
Φ ` e | µ→ e′ | µ′

Φ ` 〈T2 ⇐ T1〉e | µ→ 〈T2 ⇐ T1〉e′ | µ′

E-Cast-Id

Φ ` 〈T ⇐ T 〉v | µ→ v | µ

E-Cast-Merge

Φ ` 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉v | µ→ 〈T2 ⇐ T1〉v | µ

E-Cast-Bad
T1 6. T2

Φ ` 〈T2 ⇐ T1〉v | µ→ Error | µ

E-Cast-Fn

Φ ` 〈T21
Ξ2−→T22 ⇐ T11

Ξ1−→T12〉 (λx : T01 . e) | µ→ (λx : T21 . 〈T22 ⇐ T12〉restrict Ξ2 has (|Ξ1| \ |Ξ2|) [(〈T01 ⇐ T21〉x)/x] e) | µ

Figure 6.5: Small-step semantics of the internal language

85

Ξ; Γ ` e⇒ e : T

C-Fn
Ξ1; Γ, x : T1; Σ ` e⇒ e′ : T2

Ξ; Γ; Σ ` (λx : T1 . e)⇒ (λx : T1 . e′) : T1
Ξ1−→T2

C-Unit
Ξ; Γ; Σ ` unit⇒ unit : Unit

C-Var
Γ(x) = T

Ξ; Γ; Σ ` x⇒ x : T

C-App-1

ãdjust↓↑(Ξ) ; Γ; Σ ` e1 ⇒ e′1 : (T1
Ξ1−→T3)

ãdjust•↓(Ξ) ; Γ; Σ ` e2 ⇒ e′2 : T2

e′′1 = (〈〈(T2
Ξ−→T3)⇐ (T1

Ξ1−→T3)〉〉e′1)

(T1
Ξ1−→T3) . (T2

Ξ−→T3)

c̃heck••(Ξ) Φ = ∆••(Ξ)

Ξ; Γ; Σ ` e1 e2 ⇒ insert-has? (Φ, e′′1 e′2) : T3
C-App-2

ãdjust↓↑(Ξ) ; Γ; Σ ` e1 ⇒ e′1 : Dyn

ãdjust•↓(Ξ) ; Γ; Σ ` e2 ⇒ e′2 : T2

e′′1 = (〈(T2
Ξ−→Dyn)⇐ Dyn〉e′1)

c̃heck••(Ξ) Φ = ∆••(Ξ)

Ξ; Γ; Σ ` e1 e2 ⇒ insert-has? (Φ, e′′1 e′2) : Dyn

C-Loc
Σ(l) = T

Ξ; Γ; Σ ` l⇒ l : Ref T

C-Ref

ãdjustref ↓(Ξ) ; Γ; Σ ` e⇒ e′ : T c̃heckref •(Ξ) Φ = ∆ref •(Ξ)

Ξ; Γ; Σ ` (ref e)⇒ insert-has?
(
Φ,
(
ref e′

))
: Ref T

C-Deref-1

ãdjust!↓(Ξ) ; Γ; Σ ` e⇒ e′ : Ref T

c̃heck!•(Ξ) Φ = ∆!•(Ξ)

Ξ; Γ; Σ `!e⇒ insert-has? (Φ, !e′) : T

C-Deref-2

ãdjust!↓(Ξ) ; Γ; Σ ` e⇒ e′ : Dyn c̃heck!•(Ξ) Φ = ∆!•(Ξ)

Ξ; Γ; Σ `!e⇒ insert-has?
(

Φ, ! 〈Ref Dyn⇐ Dyn〉e′
)

: Dyn

C-Eff
Ξ1; Γ; Σ ` e⇒ e′ : T Ξ1 @∼ Ξ Φ = (|Ξ1| \ |Ξ|)

Ξ; Γ; Σ ` (e :: Ξ1)⇒ insert-has?
(
Φ, restrict Ξ1 e′

)
: T

C-Asgn-1

ãdjust↓:=↑(Ξ) ; Γ; Σ ` e1 ⇒ e′1 : Ref T1

ãdjust•:=↓(Ξ) ; Γ; Σ ` e2 ⇒ e′2 : T2

c̃heck•:=•(Ξ) T2 . T1 Φ = ∆•:=•(Ξ)

Ξ; Γ; Σ ` (e1 := e2)⇒ insert-has?
(

Φ,
(

e′1 := 〈〈T1 ⇐ T2〉〉e′2
))

: Unit

C-Asgn-2

ãdjust↓:=↑(Ξ) ; Γ; Σ ` e1 ⇒ e′1 : Dyn ãdjust•:=↓(Ξ) ; Γ; Σ ` e2 ⇒ e′2 : T2 c̃heck•:=•(Ξ) T2 . T1 Φ = ∆•:=•(Ξ)

Ξ; Γ; Σ ` (e1 := e2)⇒ insert-has?
(

Φ,
((
〈Ref T2 ⇐ Dyn〉e′1

)
:= e′2

))
: Unit

Figure 6.6: Translation of source programs to the internal language

86

φ ∈ Priv, ξ ∈ CPriv = Priv ∪ {¿}
Φ ∈ PrivSet = P (Priv) , Ξ ∈ CPrivSet = P (CPriv)

ε ∈ Tags . π ∈ P (Tags)

w ::= unit | λx : T . e | l Prevalues

v ::= wε Values

e ::= x | v | e e | e :: Ξ Terms

| (ref e)ε | !e | (e := e)ε
T ::= π ρ | Dyn Types

ρ ::= Unit | T Ξ−→T | Ref T PreTypes

A ::= ↓↑ | π ↓| ref ↓ | ! ↓ Adjust Contexts

| ↓:=↑ | π :=↓
C ::= π π | refπ | !π | π := π Check Contexts

Figure 6.7: Syntax of the source language

6.2 System with tags with conservative assumptions

We have already introduced gradual typing for a simplified version of gradual effect checking
without tag annotations. In this section we describe the challenges introduced by combining
gradual typing and tag annotations. Tag annotations interact with types and the type system.
For example, the tag set of the function type in an application is used to generate the context
of privileges available for typing the argument. To avoid diving into these details from the
start, we have separated the introduction of gradual typing as presented in previous section
from the interactions between gradual typing and tag annotations, topic on which we focus
in this section.

Tag annotations are part of types. A type contains a set of tags that restrict the valid tag
annotations for values in that type. Thus any proposal for gradual typing in a system with
tag annotations must be explicit about what tags are assumed valid in the context of a type
that does not explicitly declare a set of tags, like type Dyn. We take advantage of the tag
monotonicity restrictions imposed by the generic M&M framework to conservatively assume
the universe of tag annotations as a valid set for these contexts.

6.2.1 Tags and gradual typing

Gradual effect checking inherits a novel definition of types from the generic M&M framework
on which it builds [15]. In gradual effect checking, types are the combination of a set of
tag annotations and a pretype ρ. The set of tag annotations in a particular type denotes
which tag annotations a value may carry to have the declared type: values with other tag
annotations cannot have that type. The pretype denotes our previous definition for types:

87

the system contains a Unit pretype, reference pretypes (Ref T) and function pretypes T
Ξ−→T .

Both reference and function pretypes are defined recursively with respect to types, so they
contain nested tuples of pretypes and tag annotation sets.

Gradual typing extends a type system to permit programs missing type information, which
in the context of gradual effect checking forces Dyn to represent a type, not a pretype. If Dyn
were a pretype instead, programs would require tag annotations in every type, forcing static
checking of tag annotations. This requirement defeats the idea of gradual typing, which is
to combine both static and dynamic checking in programs.

We introduce the syntax for the gradual type-and-effect language in fig. 6.7. The only
difference between the gradual type-and-effect language and the language introduced for
gradual effect checking in fig. 4.1 is the introduction of the Dyn type.

Since tags affect the definition of types, we need to introduce new definitions for the
gradual typing concepts based on types that were presented in the previous section, like type
consistency and consistent subtyping.
Definition 20 (Type Consistency). We define type consistency as a reflexive relation, so we
introduce the necessary changes to the relation to be reflexive with respect to tags:

C-Refl τ ∼ τ C-UnR
τ ∼ Dyn

C-UnL
Dyn ∼ τ

C-Fun

σ1 ∼ τ1 σ2 ∼ τ2

Ξσ ' Ξτ

π
(
σ1

Ξσ−→ σ2

)
∼ π

(
τ1

Ξτ−→ τ2

)
The consistency relation is defined over types, not over pretypes. The function pretype is

recursively defined in terms of two types (T
Ξ−→T , with T a type), so rule [C-Fun] can ensure

that the relation is reflexive for function types simply by restricting the tag set on the related
types to be the same, and falling back to requiring structural type consistency between the
types in the function pretype.

For subtyping, we just preserve the subtyping relation introduced in chapter 4, treating
Dyn as being neutral to subtyping as Siek and Taha do in [23]:

ST-Id
π1 ⊆ π2

π1ρ < : π2ρ
ST-Abs

T3 < : T1 T2 < : T4 Ξ1 ⊆ Ξ2 π1 ⊆ π2

π1(T1
Ξ1−→T2) < : π2(T3

Ξ2−→T4)

ST-Dyn
Dyn < : Dyn

As in section 6.1, we combine subtyping with type consistency to provide consistent sub-
typing. Though at first glance both definitions may look the same, the reader must not forget
that the difference lays on the definitions of subtyping (< :) and type consistency (∼) just
introduced, as consistent subtyping is defined in terms of these definitions.

88

Ξ; Γ; Σ ` e : T T-Fn
Ξ1; Γ, x : T1; Σ ` e : T2

Ξ; Γ; Σ ` (λx : T1 . e)ε : {ε}T1
Ξ1−→T2

T-Unit
Ξ; Γ; Σ ` unitε : {ε}Unit

T-Loc
Σ(l) = T

Ξ; Γ; Σ ` lε : {ε}Ref T
T-Var

Γ(x) = T

Ξ; Γ; Σ ` x : T

T-App

ãdjust↓↑(Ξ) ; Γ; Σ ` e1 : T

ãdjustπ1↓(Ξ) ; Γ; Σ ` e2 : T2

T2 ∼ π2ρ2 T . π1(T2
Ξ−→T3) c̃heckπ1π2(Ξ)

Ξ; Γ; Σ ` e1 e2 : T3
T-Eff

Ξ1; Γ; Σ ` e : T Ξ1 @∼ Ξ

Ξ; Γ; Σ ` (e :: Ξ1) : T

T-Ref

ãdjustref ↓(Ξ) ; Γ; Σ ` e : T

T ∼ πρ c̃heckref π(Ξ)

Ξ; Γ; Σ ` (ref e)ε : {ε}Ref πρ
T-Deref

ãdjust!↓(Ξ) ; Γ; Σ ` e : T1

T1 ∼ πRef T c̃heck!π(Ξ)

Ξ; Γ; Σ `!e : T

T-Asgn

ãdjust↓:=↑(Ξ) ; Γ; Σ ` e1 : T T ∼ π1Ref T1

ãdjustπ1:=↓(Ξ) ; Γ; Σ ` e2 : T2 T2 ∼ π2ρ2

c̃heckπ1:=π2(Ξ) T2 . T1

Ξ; Γ; Σ ` (e1 := e2)ε : {ε}Unit

Figure 6.8: Typing rules for the source language

Definition 21 (Consistent Subtyping). Consistent subtyping (.) is defined as

a . b⇐⇒ ∃α ∼ a . α < : b or ∃β ∼ b . a < : β

We use type consistency and consistent subtyping in our definition of a type system for the
language as presented in fig. 6.8. The intermediate language syntax is introduced in fig. 6.9,
and only differs from the syntax for the intermediate language presented in the previous
section in the usage of tag annotations. This is only the only difference arising in the type
system for the intermediate language, which is introduced in fig. 6.10.

Like in the previous section, the operational semantics introduced in fig. 6.11 is the se-
mantics of the generic gradual effect checking framework (in this case, making full usage of
tag annotations) with extensions to manage casts related to type Dyn. We introduce rule
[E-Cast-Merge] to reduce casts that go through the Dyn type, rule [E-Cast-Dyn] to elimi-
nate identity casts for type Dyn, a case that is not managed by rule [E-Cast-Id], and rule
[E-Cast-Bad] for casts that should fail at runtime and generate an error.

Section 6.2.2 presents the interactions between gradual typing and tag annotations that
the translation algorithm must take into consideration. The translation algorithm itself is
introduced in section 6.2.3, where we describe the rationale behind the design of the different
translation rules.

89

v ::= . . . | 〈T ⇐ T 〉v Values
e ::= . . . | Error | 〈T ⇐ T 〉e Terms

| has Φ e | restrict Ξ e
f ::= � e | v � | (ref �)ε Frames

|!� | (� := e)ε | (wε := �)ε
g ::= f | 〈T2 ⇐ T1〉� | has Φ � Error Frames

| restrict Ξ �

Figure 6.9: Syntax of the internal language

Ξ; Γ ` e : T

IT-App

ãdjust↓↑(Ξ) ; Γ; Σ ` e1 : π1

(
T1

Ξ1−→T3

)
ãdjustπ1↓(Ξ) ; Γ; Σ ` e2 : π2ρ2

strict-checkπ1π2(Ξ) π1T1
Ξ1−→T3 < : π1π2ρ2

Ξ−→T3

Ξ; Γ; Σ ` e1 e2 : T3

IT-Loc
Σ(l) = T

Ξ; Γ; Σ ` l : Ref T IT-Var
Γ(x) = T

Ξ; Γ; Σ ` x : T
IT-Cast

Ξ; Γ; Σ ` e : T0 T0 < : T1

Ξ; Γ; Σ ` 〈T2 ⇐ T1〉e : T2

IT-Has
(Φ ∪ Ξ); Γ; Σ ` e : T

Ξ; Γ; Σ ` has Φ e: T
IT-Error

Ξ; Γ; Σ ` Error : T

IT-Rst
Ξ1; Γ; Σ ` e : T Ξ1 ≤ Ξ

Ξ; Γ; Σ ` restrict Ξ1 e : T
IT-Ref

ãdjustref ↓(Ξ) ; Γ; Σ ` e : πρ

strict-checkref π(Ξ)

Ξ; Γ; Σ ` (ref e)ε : {ε}Ref πρ

IT-Deref

ãdjust!↓(Ξ) ; Γ; Σ ` e : πRef T

strict-check!π(Ξ)

Ξ; Γ; Σ `!e : T
IT-Asgn

ãdjust↓:=↑(Ξ) ; Γ; Σ ` e1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ; Γ; Σ ` e2 : π2ρ2

strict-checkπ1:=π2(Ξ) π2ρ2 < : T1

Ξ; Γ; Σ ` (e1 := e2)ε : {ε}Unit

Figure 6.10: Typing rules for the internal language

90

E-Ref
checkref {ε1}(Φ) l 6∈ dom (µ)

Φ ` (ref wε1)ε2 | µ→ lε2 | µ[l 7→ wε1]
E-Asgn

check{ε1}:={ε2}(Φ)

Φ ` (lε1 := wε2)ε | µ→ unitε | µ[l 7→ wε2]

E-Deref
check!{ε}(Φ) µ(l) = v

Φ `!lε | µ→ v | µ
E-Frame

adjustA(f)(Φ) ` e | µ→ e′ | µ′

Φ ` f [e] | µ→ f [e′] | µ′
E-Error

Φ ` g[Error] | µ→ Error | µ

E-Has-T
Φ′ ⊆ Φ Φ ` e | µ→ e′ | µ′

Φ ` has Φ′ e | µ→ has Φ′ e′ | µ′

E-Has-V

Φ ` has Φ′ v | µ→ v | µ

E-Has-F
Φ′ 6⊆ Φ

Φ ` has Φ′ e | µ→ Error | µ

E-Rst-V
Φ ` restrict Ξ v | µ→ v | µ

E-Rst
Φ′′ = max {Φ′ ∈ γ(Ξ) | Φ′ ⊆ Φ} Φ′′ ` e | µ→ e′ | µ′

Φ ` restrict Ξ e | µ→ restrict Ξ e′ | µ′

E-App

check{ε1}{ε2}(Φ)

Φ ` (λx : T1 . e)ε1 vε2 | µ→ [vε2/x] e | µ

E-Cast-Frame
Φ ` e | µ→ e′ | µ′

Φ ` 〈T2 ⇐ T1〉e | µ→ 〈T2 ⇐ T1〉e′ | µ′

E-Cast-Id
ε ∈ π1 π1 ⊆ π2

Φ ` 〈π2ρ⇐ π1ρ〉wε | µ→ wε | µ

E-Cast-Merge

Φ ` 〈T2 ⇐ Dyn〉〈Dyn⇐ T1〉v | µ→ 〈T2 ⇐ T1〉v | µ

E-Cast-Dyn

Φ ` 〈Dyn⇐ Dyn〉v | µ→ v | µ

E-Cast-Bad
T1 6. T2

Φ ` 〈T2 ⇐ T1〉v | µ→ Error | µ

E-Cast-Fn
ε ∈ π1 π1 ⊆ π2

Φ ` 〈π2T21
Ξ2−→T22 ⇐ π1T11

Ξ1−→T12〉 (λx : T01 . e)ε | µ→ (λx : T21 . 〈T22 ⇐ T12〉restrict Ξ2 has (|Ξ1| \ |Ξ2|) [(〈T01 ⇐ T21〉x)/x] e)ε | µ

Figure 6.11: Small-step semantics of the internal language

91

6.2.2 Tags interact with the translation algorithm

The job of the translation algorithm is to introduce the runtime checks necessary to ensure
that a program is safe. The translation algorithm makes the optimistic assumptions of
the original language explicit by inserting effect checks (restrict and has constructs) and
type casts. In gradual effect checking, a type contains a set of tags that restricts the tag
annotations a value with that type may have. But what tags are valid for the case when we
do not statically know the type of an expression (the case of type Dyn)?

We cannot avoid this question to introduce gradual typing for type-and-effect systems.
In the generic type-and-effect framework, the tag sets derived from typing subexpressions
are repeatedly used to define check and adjust contexts required to type the expression. If
we revisit the type system presented in fig. 6.8, tag sets from subexpression types are used

repeatedly, either to define the c̃heck predicates as in rules [T-App], [T-Ref], [T-Deref] and
[T-Asgn], or to define adjust contexts that generate consistent privilege sets, sets which are
then required as context to type e2 subexpressions in rules [T-App] and [T-Asgn]. Any
assumption for a tag set in the context of a Dyn type must ensure safety for these uses, so

that c̃heck predicates hold and that the privileges provided by ãdjust are always available.

To generate a safe system, we make the conservative assumption that an expression with
a type Dyn may at runtime have any tag annotation. Therefore, we assume that an expres-
sion with type Dyn must provide the universe set of tag annotations (denoted Tags). This
assumption is also sustained by the tag monotonicity restrictions part of gradual effect check-
ing, which were inherited from the generic M&M framework. If we use the set Tags, these
monotonicity restrictions ensure that the required restrictions for strict-check predicates

and ãdjust functions will always hold in the ways required to provide type safety for the
system.

6.2.3 Rules for the translation algorithm

In this section, we introduce the translation algorithm for gradual type-and-effect systems
proposed in fig. 6.12 and fig. 6.13. As already mentioned in the previous section, the trans-
lation assumes the universe of tag annotations in the situations when types do not provide
tag information (the case of Dyn).

Whenever possible, we use the tag information available on types instead of recurring
to the assumptions introduced in the previous section. To do so, we introduce two separate
translation rules for (ref e) and !e constructs (when e has type Dyn or does not, respectively),
and to four separate translation rules for application and assignment expressions (when e1

and e2 have type Dyn or do not, respectively).

In the case of ref e and !e constructs, rules [C-Ref-1], [C-Ref-2], [C-Deref-1] and [C-Deref-
2] handle type and tag assumptions. In gradual typing, there was no need to introduce
separate rules for ref e constructs. We introduce separate rules to limit the case where
assumptions for the check context are required. In rule [C-Ref-2], when e has type Dyn, the

92

Ξ; Γ ` e⇒ e : T

C-Fn
Ξ1; Γ, x : T1; Σ ` e⇒ e′ : T2

Ξ; Γ; Σ ` (λx : T1 . e)ε ⇒ (λx : T1 . e′)ε : {ε}T1
Ξ1−→T2

C-Unit
Ξ; Γ; Σ ` unitε ⇒ unitε : {ε}Unit

C-Var
Γ(x) = T

Ξ; Γ; Σ ` x⇒ x : T

C-Loc
Σ(l) = T

Ξ; Γ; Σ ` lε ⇒ lε : {ε}Ref T
C-App-1

ãdjust↓↑(Ξ) ; Γ; Σ ` e1 ⇒ e′1 : π1(T1
Ξ1−→T3)

ãdjustπ1↓(Ξ) ; Γ; Σ ` e2 ⇒ e′2 : π2ρ2

e′′1 = (〈〈π1(π2ρ2
Ξ−→T3)⇐ π1(T1

Ξ1−→T3)〉〉e′1)

π1(T1
Ξ1−→T3) . π1(π2ρ2

Ξ−→T3)

c̃heckπ1π2
(Ξ) Φ = ∆π1π2

(Ξ)

Ξ; Γ; Σ ` e1 e2 ⇒ insert-has? (Φ, e′′1 e′2) : T3

C-App-2

ãdjust↓↑(Ξ) ; Γ; Σ ` e1 ⇒ e′1 : π1(T1
Ξ1−→T3)

ãdjustπ1↓(Ξ) ; Γ; Σ ` e2 ⇒ e′2 : Dyn

e′′1 = (〈〈π1(T1
Ξ−→T3)⇐ π1(T1

Ξ1−→T3)〉〉e′1)

Ξ1 @∼ Ξ c̃heckπ1Tags(Ξ) Φ = ∆π1Tags(Ξ)

Ξ; Γ; Σ ` e1 e2 ⇒ insert-has?
(

Φ, e′′1 (〈〈T1 ⇐ Dyn〉〉e′2)
)

: T3

C-App-3

ãdjust↓↑(Ξ) ; Γ; Σ ` e1 ⇒ e′1 : Dyn

ãdjustTags↓(Ξ) ; Γ; Σ ` e2 ⇒ e′2 : π2ρ2

e′′1 = (〈〈Tags(π2ρ2
Ξ−→Dyn)⇐ Dyn〉〉 e′1)

c̃heckTagsπ2
(Ξ) Φ = ∆Tagsπ2

(Ξ)

Ξ; Γ; Σ ` e1 e2 ⇒ insert-has? (Φ, e′′1 e′2) : T3

C-App-4

ãdjust↓↑(Ξ) ; Γ; Σ ` e1 ⇒ e′1 : Dyn

ãdjustTags↓(Ξ) ; Γ; Σ ` e2 ⇒ e′2 : Dyn

e′′1 = (〈〈Tags(Dyn Ξ−→T3)⇐ Dyn〉〉 e′1)

c̃heckTagsTags(Ξ) Φ = ∆TagsTags(Ξ)

Ξ; Γ; Σ ` e1 e2 ⇒ insert-has? (Φ, e′′1 e′2) : T3

C-Eff
Ξ1; Γ; Σ ` e⇒ e′ : T Ξ1 @∼ Ξ Φ = (|Ξ1| \ |Ξ|)

Ξ; Γ; Σ ` (e :: Ξ1)⇒ insert-has? (Φ, restrict Ξ1 e′) : T

Figure 6.12: Translation of source programs to the internal language, part I

93

Ξ; Γ ` e⇒ e : T

C-Ref-1
ãdjustref ↓(Ξ) ; Γ; Σ ` e⇒ e′ : πρ c̃heckref π(Ξ) Φ = ∆ref π(Ξ)

Ξ; Γ; Σ ` (ref e)ε ⇒ insert-has? (Φ, (ref e′)ε) : {ε}Ref πρ

C-Ref-2

ãdjustref ↓(Ξ) ; Γ; Σ ` e⇒ e′ : Dyn c̃heckref Tags(Ξ) Φ = ∆ref Tags(Ξ)

Ξ; Γ; Σ ` (ref e)ε ⇒ insert-has? (Φ, (ref e′)ε) : {ε}Ref Dyn

C-Deref-1

ãdjust!↓(Ξ) ; Γ; Σ ` e⇒ e′ : πRef T

c̃heck!π(Ξ) Φ = ∆!π(Ξ)

Ξ; Γ; Σ `!e⇒ insert-has? (Φ, !e′) : T

C-Deref-2

ãdjust!↓(Ξ) ; Γ; Σ ` e⇒ e′ : Dyn

c̃heck!Tags(Ξ) Φ = ∆!Tags(Ξ)

Ξ; Γ; Σ `!e⇒ insert-has?
(

Φ, !〈Tags(Ref Dyn)⇐ Dyn〉e′
)

: T

C-Asgn-1

ãdjust↓:=↑(Ξ) ; Γ; Σ ` e1 ⇒ e′1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ; Γ; Σ ` e2 ⇒ e′2 : π2ρ2 c̃heckπ1:=π2(Ξ) π2ρ2 . T1 Φ = ∆π1:=π2(Ξ)

Ξ; Γ; Σ ` (e1 := e2)ε ⇒ insert-has? (Φ, (e′1 := e′2)ε) : {ε}Unit

C-Asgn-2

ãdjust↓:=↑(Ξ) ; Γ; Σ ` e1 ⇒ e′1 : π1Ref T1

ãdjustπ1:=↓(Ξ) ; Γ; Σ ` e2 ⇒ e′2 : Dyn c̃heckπ1:=Tags(Ξ) Φ = ∆π1:=Tags(Ξ)

Ξ; Γ; Σ ` (e1 := e2)ε ⇒ insert-has?
(

Φ,
(

e′1 := 〈T1 ⇐ Dyn〉e′2
)
ε

)
: {ε}Unit

C-Asgn-3

ãdjust↓:=↑(Ξ) ; Γ; Σ ` e1 ⇒ e′1 : Dyn

ãdjustTags:=↓(Ξ) ; Γ; Σ ` e2 ⇒ e′2 : π2ρ2 c̃heckTags:=π2
(Ξ) Φ = ∆Tags:=π2

(Ξ)

Ξ; Γ; Σ ` (e1 := e2)ε ⇒ insert-has?
(

Φ,
(

(〈Tags(Ref Dyn)⇐ Dyn〉e′1) := e′2

)
ε

)
: {ε}Unit

C-Asgn-4

ãdjust↓:=↑(Ξ) ; Γ; Σ ` e1 ⇒ e′1 : Dyn

ãdjustTags:=↓(Ξ) ; Γ; Σ ` e2 ⇒ e′2 : Dyn c̃heckTags:=Tags(Ξ) Φ = ∆Tags:=Tags(Ξ)

Ξ; Γ; Σ ` (e1 := e2)ε ⇒ insert-has?
(

Φ,
(

(〈Tags(Ref Dyn)⇐ Dyn〉e′1) := e′2

)
ε

)
: {ε}Unit

Figure 6.13: Translation of source programs to the internal language, part II

94

translation rule uses a check context ref Tags for the c̃heck predicate and for the ∆ function
that collects the missing privileges (if any) to perform allocation. For !e constructs, like in
gradual typing, we have two separate translation rules. Rule [C-Deref-2] makes explicit the
assumption that e should be a reference cell (or that e should have type πRef T for some π

and T) and the assumptions required for the check contexts used in c̃heck and ∆ as in rule
[C-Ref-2].

There are four translation rules for function applications. Rule [C-App-1] is exactly the
same rule [C-App-1] used in the generic gradual effect system, and handles gradual effect
checking assuming that types for the function and the argument are known. Rule [C-App-
2] handles the case when the argument type is unknown (Dyn), and inserts a cast for the
argument from Dyn to the type of the function parameter. It makes the assumption that e′2
might hold any particular set of tags, so the check and ∆ functions use the universe of tags
available for the argument side. Rule [C-App-2] needs a cast on the function side for gradual
effect checking, cast that performs an effect coercion ensuring that the privileges required for
the function type (Ξ1) are actually available on the context Ξ.

Rule [C-App-3] handles the case where the expression in the function position of an ap-
plication has type Dyn. We assume that the type of the argument is known, leaving the case
of both elements having type Dyn for rule [C-App-4]. In rule [C-App-3], we do not have tag
information about the function type, information that is needed to adjust the set of privi-
leges available to translate e2. As in rule [C-App-2], we make the assumption of carrying the
maximum set of tags, because monotonicity ensures that a maximum set of tags provides
the minimum set of privileges. This set is also used for the check and ∆ functions, and for
the cast that ensures that e1 is a function at all. By our definition of subtyping, a function
which has any set of tags π1 (and the appropriate privilege set and parameter and return
types) will pass the cast since always π1 ⊆ Tags.

Rule [C-App-4] makes the assumptions from rule [C-App-3] explicit, but also it assumes
that the argument has type Dyn. This is done separately because if e′2 has type Dyn, we need
to make tag assumptions also for the argument to generate the check contexts required by
check and ∆.

Analogous assumptions are made for translation of assignment expressions in rules [C-
Asgn-1], [C-Asgn-2], [C-Asgn-3] and [C-Asgn-4].

6.2.4 Type safety

In this section we provide proof sketches for type safety of the intermediate language we have
introduced. Detailed versions of these proofs are provided in appendix E.
Theorem 28 (Progress). Suppose Ξ; ∅; Σ ` e : T . Then either e is a value v, an Error, or
Φ ` e | µ→ e′ | µ′ for all privilege sets Φ such that ∃Φ′ ∈ γ(Ξ) such that Φ′ ⊆ Φ and for any
store µ such that ∅ | Σ � µ.

Proof. By structural induction over derivations of Ξ; ∅; Σ ` e : T . The proof strategy is equiv-

95

alent to the one followed in the case without tags, making use of the tag monotonicity lemmas
to ensure restrictions for check and adjust.

Theorem 29 (Preservation). If Ξ; Γ; Σ ` e : T , and Φ ` e | µ→ e′ | µ′ for Φ ⊇ Φ′ ∈ γ(Ξ)
and Γ | Σ � µ, then Γ | Σ′ � µ′ and Ξ; Γ; Σ′ ` e′ : T ′ for some T ′ < : T and ∃Σ′ ⊇ Σ.

Proof. By structural induction over the typing derivation and the applicable rules. The proof
follows as in the system without tags, since there is no particularly interesting interaction.

Theorem 30 (Translation preserves typing). If Ξ; Γ; Σ ` e ⇒ e′ : T in the source language
then Ξ; Γ; Σ ` e′ : T in the internal language.

Proof. This is the only interesting theorem for tags, since the major differences with the
tagless framework arise for the translation algorithm. The extra casts introduced assign tags
in a way that typing in the intermediate language is preserved.

6.3 Summary

This chapter describes the final contribution of our work, a system that integrates gradual
typing with gradual effect checking. This system combines static and dynamic checking of
effect and type annotations for generic type-and-effect systems.

We have isolated the combination of gradual typing and gradual effect checking in sec-
tion 6.1 from the analysis of the interactions between tag annotations and gradual typing
in section 6.2. This separation highlights the minimal interactions that arise between grad-
ual typing and gradual effect checking when tag annotations are not required for an effect
discipline.

At this point, we have introduced all the technical contributions of our work. The next
and final chapter describes on the conclusions that arise from our research.

96

Chapter 7

Conclusions

7.1 Contributions

In this work we have proven that gradual type-and-effect systems are both possible and
sound. We addressed the challenges of combining gradual typing with type-and-effect sys-
tems, introducing new relations among types and language constructs to provide gradual
enforcement of an effect discpline. We also explored and presented how these new features
interact with previous ideas to provide complete gradual typing for type-and-effect systems.

Gradual effect checking encapsulates the concepts and restrictions required to provide
gradual effect annotations and for allowing the migration from unannotated programs towards
a static effect discipline. Introducing gradual typing in a system with gradual effect checking
is practically orthogonal, because every interaction between gradual typing and gradual effect
checking can be represented in terms of previously defined concepts and does not require
new language constructions. Even the challenges introduced by the increased expressivity
of the generic framework with tag annotations prove self contained: we provided a simpler
explanation of gradual typing for type-and-effect systems in terms of a simplified gradual
effect checking system without tag-related features, and later moved on to address these
challenges.

Part of our work has already been published in an international peer-reviewed ACM
conference. The paper “A theory of Gradual Effect Systems” [2] presents our proposal for
generic gradual effect checking. Our work in gradual typing for type-and-effect systems is
yet to be published. We believe our work to also be of interest for language designers,
implementors and researchers interested in providing more flexible and more expresive type
disciplines, as well as for those interested in the theoretical background of novel language
features and their design.

This work adapts for type-and-effect systems the core idea behind gradual typing, the
introduction of a consistency relation to loosen static type restrictions. Consistency provides
flexibility with its lack of transitivity. To ensure type safety, gradual typing requires runtime
checks that verify the transitivity of consistent static assumptions. This notion of consistency

97

may be applied to different type disciplines and concepts, as we do in this work for effect
annotations. By introducing a definition for consistency in a previously unexplored context
(effect annotations), we show that there is still interesting research to be done in the theory
of gradual typing, both to analyze the application of gradual ideas on different unexplored
type disciplines, and to extract from these different applications a more general theory that
encompasses the core concepts of gradual typing and guides their application in a particular
type discipline.

We have followed both lines of exploration for the restricted domain of type-and-effect
systems, both introducing gradual typing for a particular type-and-effect system and provid-
ing guidelines for generic applications of the core concepts of gradual effect checking using
the abstract interpretation framework. The abstract interpretation framework provides a
clear and sound justification for our design intuitions. It provided a generalization of gradual
effects that was sufficient to introduce gradual effect checking as a new feature for a generic
type-and-effect framework. With abstract interpretation, gradual effect checking did not
require any further restrictions to the generic framework on which we based our work. In
future work we want to explore broader applications of abstract interpretation in the context
of gradual typing.

Reasoning about side effects introduces further complexity for the design of a type system,
and we must take this complexity into consideration to provide developers with the flexibility
for migrating unnatotated programs towards a static effect discipline. As has been presented
in previous work, effect annotations interact in nontrivial ways with type annotations, specif-
ically for the case of function type annotations. These interactions also arise in our design of
gradual effect checking, where we combine language constructions from the literature used
to verify type restictions at runtime (type casts) and we introduce new operations to verify
effect restrictions at runtime. Interactions between types and effects led us to propose novel
semantics for the behavior of higher-order casts (type casts between function types), which
must take into consideration the side effect restrictions that must be imposed and verified at
runtime.

Previous work on gradual typing has presented type casts as performing a double function,
both “run-time type checking and coercing” [22]. Both functions must also be performed
for the effect discipline, but we provided different constructs for each action, has for effect
checking and restrict for effect coercing. We provide separate constructs to clarify concepts
in our proposed framework.

We provide a specification for gradual effect checking, so that we may both focus in the
novel ideas introduced by the language and provide guarantees for the language behavior (pri-
marily type safety). A type safety proof requires carrying some extra information at runtime,
information also used by the runtime effect checking structures to provide the appropriate
runtime behavior. In a fully annotated program, this extra runtime information is made re-
dundant by the static guarantees provided by the type system, but this information must be
available at runtime when a program makes use of gradual effect annotations, so that runtime
checks are properly performed. We attempted to provide choices for developers interested
in implementing our framework by designing two different operational semantics that handle
the tradeoff between the need for runtime tag information and the full preservation of the

98

original effect discipline.

7.2 Future work

We believe that the following research ideas may be explored in future work:

• Blame for effects. In the event of a runtime inconsistency related to the effect
discipline, the languages we have so far introduced produce an Error expression. This
construction makes our language simple, but does not provide the programmer with
feedback about the source of the runtime inconsistency or failure. In gradual typing, a
similar issue arises for type casts, and solutions like the blame calculus and the coercion
calculus have been proposed. These approaches take into consideration the fact that the
lazy semantics of higher order casts may produce a late cast failure, which might relate
to a cast error in a non local portion of the program. A blame system should point to
the original source of failure to provide developers with appropriate feedback. A blame
system also characterizes which programs should never be signaled as the cause of a
failure (a blame theorem). We believe that gradual effect checking would benefit from
a blame system, and the design of such a system is a line of work we certainly hope to
pursue in the near future.

• Gradual tags. Our exposition of gradual typing for type-and-effect systems made
conservative assumptions about tag annotations for types. Though a thorough explo-
ration of gradual typing might benefit of the development of an extended version of
our generic gradual effect checking system with gradual tags, it is yet to be determined
if type-and-effect systems that make use of tag annotations would benefit at all from
a notion of gradual tags that would permit interactions between programs with and
without tag annotations. This research question must be addressed before attempting
to build a sound system, for which we believe our generic gradual effect framework may
serve as a starting point.

• Abstract interpretation for gradual typing Throughout this work we benefit from
the use of abstract interpretation to present and justify the core concepts of gradual
effect checking in a generic way. We believe that abstract interpretation ideas may be
introduced to find patterns in other representations of gradual typing and to provide
a simpler base to present and define gradual typing in general, from which to derive
generic guidelines to introduce gradual typing for any particular type discipline.

• Mining software repositories for source code that may benefit from a gradual
effect systems. We recognize that our work lacks an empirical validation as a useful
tool for programmers. Our hypothesis is that analyzing software repositories would
provide concrete examples of the use of type-and-effect systems that may benefit from
gradual effect checking, as well as cases where the restrictive nature of type-and-effect
systems makes programmers avoid declaring effect annotations and where migration
would become feasible with the introduction of gradual effect checking. This analysis
would also provide interesting feedback on how programmers reason about side effects
throughout the evolution of software projects.

• Implement our concepts in a practical programming language with an ef-

99

fect system. We are interested in making our work available for programmers to
use in a practical programming language. An implementation may also aid software
engineering researchers in evaluating the impact of the use of our proposal, and aid
to empirically evaluate the claim that gradual effect checking improves the use and
declaration of type-and-effect disciplines by software developers. Though we did not
pursue this line of research yet, there are some programming languages which may
work as an interesting starting point to implement gradual effect checking. Scala, an
increasingly popular programming language, already provides a form of generic effect
systems, which could be extended with gradual effect checking. Koka, a research-
oriented programming language with a type-and-effect system developed by Microsoft,
may be another particularly interesting candidate to consider.

• Type-and-effect systems for gradual typing. In this work we have explored the
combination of gradual typing and type-and-effect systems by introducing a type-and-
effect system and then presenting gradual typing as a language extension. We conjec-
ture that this approach should be equivalent to having started with a language that
has gradual typing, and extending it with a type-and-effect system. Since we have not
explored this road yet, the equivalence is not proven. We are not certain if designing a
type-and-effect system for a gradual typing system sheds new light on the interactions
between gradual typing and type-and-effect systems or if it is trivial and redundant
from the work we have already presented.

100

Bibliography

[1] Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. Blame for all.
In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles
of programming languages (POPL 2011), pages 201–214, Austin, Texas, USA, January
2011. ACM Press.

[2] Felipe Bañados, Ronald Garcia, and Éric Tanter. A theory of gradual effect systems. In
ICFP, 2014.

[3] Corrado Böhm and Alessandro Berarducci. Automatic synthesis of typed Λ-programs on
term algebras. Theoretical Computer Science, 39(0):135 – 154, 1985. Third Conference
on Foundations of Software Technology and Theoretical Computer Science.

[4] Luca Cardelli. A semantics of multiple inheritance. In Information and Computation,
pages 51–67. Springer-Verlag, 1988.

[5] Luca Cardelli. Type systems. Handbook of Computer Science and Engineering, 1997.

[6] Alonso Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5(2):56–68, June 1940.

[7] Alonzo Church. A set of postulates for the foundation of logic. Annals of Mathematics,
33(2):pp. 346–366, April 1932.

[8] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In POPL,
pages 238–252, 1977.

[9] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks.
In POPL, pages 269–282, 1979.

[10] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In
Int. Conf. on Functional Programming, October 2002.

[11] David K. Gifford and John M. Lucassen. Integrating functional and imperative pro-
gramming. In LFP, pages 28–38, 1986.

[12] Robert Harper. A simplified account of polymorphic references. Information Processing
Letters, 51(4):201 – 206, 1994.

101

[13] David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient gradual typing. In
HOSC, volume 23, pages 167–189, 2010.

[14] Daan Leijen. Koka: Programming with row polymorphic effect types. In Mathematically
Structured Functional Programming 2014. EPTCS, March 2014.

[15] Daniel Marino and Todd Millstein. A generic type-and-effect system. In TLDI, pages
39–50, 2009.

[16] Robin Milner. A theory of type polymorphism in programming. In JCSS, pages 348–375,
1978.

[17] Andrew Myers. Evaluation contexts: Lecture notes. Retrieved from
www.cs.cornell.edu/Courses/cs6110/2011sp/lectures/lecture09.pdf, February 2011.

[18] Martin Odersky, Philippe Altherr, Vincent Cremet, Gilles Dubochet, Burak Emir,
Philipp Haller, Stéphane Micheloud, Nikolay Mihaylov, Adriaan Moors, Lukas Rytz,
Michel Schinz, Erik Stenman, and Matthias Zenger. The Scala Language Specification,
Version 2.11.

[19] Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge, MA,
USA, 2002.

[20] John C. Reynolds. Using category theory to design implicit conversions and generic
operators. In Semantics-Directed Compiler Generation, volume 94 of Lecture Notes in
Computer Science, pages 211–258. Springer Berlin Heidelberg, 1980.

[21] Lukas Rytz, Martin Odersky, and Philipp Haller. Lightweight polymorphic effects. In
ECOOP, pages 258–282, 2012.

[22] Jeremy Siek, Ronald Garcia, and Walid Taha. Exploring the design space of higher-order
casts. In ESOP, 2009.

[23] Jeremy Siek and Walid Taha. Gradual typing for objects. In ECOOP, pages 2–27, 2007.

[24] Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In SFP, pages
81–92, 2006.

[25] Jeremy G. Siek and Philip Wadler. Threesomes, with and without blame. In Symposium
on Principles of Programming Languages, 2010.

[26] Yan Mei Tang and Pierre Jouvelot. Effect systems with subtyping. In PEPM, pages
45–53, 1995.

[27] Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In
ESOP, 2009.

[28] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Inf.
Comput., 115(1):38–94, November 1994.

102

Appendix A

The Fluent Language as an
Instantiation of Marino and
Millstein’s Generic Type-and-Effect
System

The Fluent Language and the type system in fig. 2.3 can be considered as an instantiation
of Marino and Millstein’s generic type-and-effect system. Though this claim is discussed in
section 4.3 of the original paper [15], Marino and Millstein neither formalize the semantics
of fluent languages nor present a proof of instantiation.

We prove the fluent language as an instance of the generic framework to show that fluent
is a simple example that can drive our discussion of gradual effect checking and that if the
same intuitions are applied to the generic framework, we can get back the original fluent
system as an instantiation.

We also aim to show in this section a formal example of how to use Marino and Millstein
and the requirements that the framework imposes.

By using Marino and Millstein’s framework, a sound type system (and semantics) can be
obtained for a type-and-effect system just by defining a set of privileges, the particular extra
syntax of the system (in our case, effect ascription) and two particular functions, check and
adjust, which will manage privileges for all language constructs and will be part of their type
system.

When introducing the fluent language, the privilege domain was already defined (Φ ⊆
{alloc, read, write}). We propose the following check and adjust functions for the system:

103

checkC(Φ) =

{alloc} ⊆ Φ if C = ref π
{read} ⊆ Φ if C =!π
{write} ⊆ Φ if C = π1 := π2

Φ1 ⊆ Φ if C = π :: Φ1

true otherwise

adjustA(Φ) =

{
Φ1 if A = ↓:: Φ1 and Φ1 ⊆ Φ
Φ otherwise

To ensure type safety, the framework requires the user to prove the following properties
about the proposed check and adjust functions:
Lemma 31. If Φ1 ⊆ Φ2 and checkC(Φ1), then checkC(Φ2)

Proof. By cases on the structural definition of Check Contexts and using transitivity of⊆.

Proof. (Detailed) Let’s recall how a Check Context is defined.

C ::= π1 π2

| ref π
| !π
| π1 := π2

| π :: Φ1

Since our definition of check does not take into account the tagsets, we can structurally
prove by cases on the definition of check contexts and our definition of the check function.

• C = ref π Then if checkC(Φ1), then {alloc} ⊆ Φ1. Since Φ1 ⊆ Φ2, then by transi-
tivity of ⊆ also {alloc} ⊆ Φ2 and thus checkC(Φ2).

• C =!π. Analogous to C = ref π.

• C = π1 := π2. Analogous to C = ref π.

• C = π :: Φ. If checkC(Φ1), then Φ ⊆ Φ1. Since Φ1 ⊆ Φ2, then also Φ ⊆ Φ2 and thus
checkC(Φ2).

• Rest of the cases. checkC(Φ) holds for any Φ, thus always checkC(Φ2).

Lemma 32. If Φ1 ⊆ Φ2, then adjust(Φ1, A) ⊆ adjust(Φ2, A)

Proof. By cases on the structural definition of adjust contexts.

• A = ↓:: Φ′. If Φ′ ⊆ Φ1, then adjustA(Φ1) = Φ′. By transitivity of ⊆, then Φ′ ⊆ Φ2 too
and adjustA(Φ2) = adjustA(Φ1).

If Φ′ 6⊆ Φ1, then Φ1 ⊂ Φ′ and adjustA(Φ1) = Φ1. If Φ1 ⊆ Φ2, then either adjustA(Φ2) =
Φ′ or adjustA(Φ2) = Φ2, but both cases are ⊇ adjustA(Φ1).

104

• Rest of the cases. Direct from the definition of adjustA(Φ) = Φ

Lemma 33. If C2 v C1 and checkC1(Φ), then checkC2(Φ)

Proof. Trivial since our definition of check depends only on Φ and not in C.

Lemma 34. If A2 v A1, then adjustA1
(Φ) ⊆ adjustA2

(Φ)

Proof. Like in the case of lemma 33, this case is also trivial since our definition of adjust
depends only on Φ and not on A.

To make the instantiation even more clear, in fig. A.1 we map the original rules in Marino
and Millstein generic system to the rules in fig. 2.3. It is clear that the rules map one to one
after discarding the unused tag annotations.

105

T-Fn
Φ1; Γ, x : τ1; Σ ` e : τ2

Φ; Γ; Σ ` (λx.e)ε : {ε}(τ1
Φ1−→ τ2)

⇒ T-Fn
Φ1; Γ, x : T1; Σ ` e : T2

Φ; Γ; Σ ` (λx : T1 . e) : T1
Φ1−→T2

T-Unit
Φ; Γ; Σ ` unitε : {ε}Unit

⇒ T-Unit
Φ; Γ; Σ;` unit : Unit

T-Loc
Σ(l) = τ

Φ; Γ; Σ ` lε : {ε}Ref τ
⇒ T-Loc

Σ(l) = T

Φ; Γ; Σ ` l : Ref T

T-Var
Γ(x) = τ

Φ; Γ; Σ ` x : τ
⇒ T-Var

Γ(x) = T

Φ; Γ; Σ ` x : T

T-App

adjust↓↑(Φ) = Φ Φ; Γ; Σ ` e1 : π1(τ2
Φ1−→ τ)

adjustπ1 ↓(Φ) = Φ Φ; Γ; Σ ` e2 : π2ρ2

checkπ1 π2(Φ) π2ρ2 <: τ2 Φ1 ⊆ Φ

Φ; Γ; Σ ` e1 e2 : τ
⇒ T-App

Φ; Γ; Σ ` e1 : T1
Φ1−→T3

Φ; Γ; Σ ` e2 : T2

T2 < : T1 Φ1 ⊆ Φ

Φ; Γ; Σ ` e1 e2 : τ3

T-Ref

adjustref ↓(Φ) = Φ Φ; Γ; Σ ` e : τ
τ = πρ checkref π(Φ) = {alloc} ⊆ Φ

Φ; Γ; Σ ` (ref e)ε : {ε}Ref τ
⇒ T-Ref

Φ; Γ; Σ ` e : T
{alloc} ⊆ Φ

Φ; Γ; Σ ` ref e : Ref T

T-Deref

adjust!↑(Φ) = Φ Φ; Γ; Σ ` e : πRef τ
check!π(Φ) = {read} ⊆ Φ

Φ; Γ; Σ ` (!e)ε : τ
⇒ T-Deref

Φ; Γ; Σ ` e : Ref T
{read} ⊆ Φ

Φ; Γ; Σ `!e : T

T-Assign

adjust↓:=↑(Φ) = Φ Φ; Γ; Σ ` e1 : π1Ref τ1

adjustπ1:=↓(Φ) = Φ Φ; Γ; Σ ` e2 : π2ρ2

checkπ2:=π2(Φ) = {write} ⊆ Φ π2ρ2 <: τ1

Φ; Γ; Σ ` e1 := e2 : {ε}Unit
⇒ T-Assign

Φ; Γ; Σ ` e1 : Ref T1

Φ; Γ; Σ ` e2 : T2

{write} ⊆ Φ T2 < : T1

Φ; Γ; Σ ` e1 := e2 : Unit

T-Ascription

adjust↓::Φ1
(Φ) = Φ1 Φ1 ` e : τ

τ = πρ checkπ::Φ1(Φ) = Φ1 ⊆ Φ

Φ; Γ; Σ ` e :: Φ1 : τ
⇒ T-Ascription

Φ1; Γ; Σ ` e : T
Φ1 ⊆ Φ

Φ; Γ; Σ;` e :: Φ1 : T

Figure A.1: Simplifying the rules of the Marino and Millstein framework to produce an ad-hoc type system for the Fluent Language

106

Appendix B

Soundness Proof for Gradual Effect
Fluent

In this section we prove some statements and theorems about the Gradual Effect Fluent
language. Any program typable in the Fluent language gets the same type in Gradual Effect
Fluent, and its translation won’t insert any check or adjust constructs. We also prove
type soundness as presented by [28], by introducing and proving theorems for Progress and
Preservation in the language.

We have already introduced the statements and theorems for type safety with section 3.5.1.
The following section shows proofs in detail.

Whenever there is a risk of confusion, like in theorem 36, we introduce subscripts to
distinguish operations defined both for the fluent language (with a F subscript) and for the
gradual effect fluent language (with a GEF subscript).
Lemma 35. (Preorder)

If a ⊆ b, then a @∼ b.

Proof. Since a ⊆ b, |a| ⊆ |b|, then a @∼ b.

Theorem 36. (Consistency of Fluent with Gradual Effect Fluent)

If Φ; Γ; Σ `F e : T , then Φ; Γ; Σ `GEF e : T .

Proof. By induction on the structure of `F .

Case (T-Unit). By [T-Unit]GEF , Φ; Γ; Σ `GEF unit : Unit.

Case (T-Fn). By the induction hypothesis, Φ1; Γ, x : T1; Σ `GEF e : T2. We can thus use

[T-Fn]GEF and Φ; Γ; Σ `GEF (λx : T1 . e) : T1
Φ1−→T2.

Case (T-Loc). , As Φ; Γ; Σ `F l : Ref T , Σ(l) = T . Then we can use the rule [T-Loc]GEF
and Φ; Γ; Σ `GEF l : Ref T .

107

Case (T-Var). Analogous to [T-Loc].

Case (T-Ref). Since Φ; Γ; Σ `F ref e : Ref T , then {alloc} ⊆ Φ. By The Preorder Lemma,
then {alloc} @∼ Φ.

By Induction Hypothesis Φ; Γ; Σ `GEF e : T . Then we can use the rule [T-Ref]GEF and
Φ; Γ; Σ `GEF ref e : Ref T .

Case (T-Deref). Analogous to [T-Ref].

Case (T-Assign). . As in [T-Ref], by the Preorder Lemma, {alloc} @∼ Φ. As [T-Assign]F
applies, T2 < : T1. We can then use the [T-Assign]GEF rule since all other premises are
fullfilled by induction hypothesis.

Case (T-App). Since Φ; Γ; Σ `F e1 e2 : T3, by inversion lemmas we know that ∃T1, T2,Φ1

such that T2 < : T1 , Φ1 ⊆ Φ, Φ; Γ; Σ `F e1 : T1
Φ1−→T3 and Φ; Γ; Σ `F e2 : T2.

Then, by induction hypothesis, Φ; Γ; Σ `GEF e1 : T1
Φ1−→T3 and Φ; Γ; Σ `GEF e2 : T2.

We can then apply the [T-App]GEF rule and then Φ; Γ; Σ `GEF e1 e2 : T3.

Case (T-Ascription). Since Φ; Γ; Σ;`F e :: Φ1 : T , then Φ1 ⊆ Φ. By the Preorder Lemma,
then Φ1 @∼ Φ.

By Induction Hypothesis Φ; Γ; Σ `GEF e : T . Then we can use the rule [T-With-Effects]GEF
and Φ; Γ; Σ `GEF e :: Φ1 : T .

Theorem 37. (Static Translation)

If Φ; Γ; Σ `F e : T , then Φ; Γ; Σ `GEF e⇒ e′ : T with e′ 6= has Φ′ e′′.

Proof. By induction on the structure of `F .

Case (T-Unit). By [C-Unit], Φ; Γ; Σ ` unit⇒ unit : Unit.

And unit 6= has Φ′ e′′.

Case (T-Fn). By Induction Hypothesis, we know that Φ′; Γ, x : T1; Σ ` e1 ⇒ e2 : T2. Thus we

can apply [C-Fn] to know that Φ; Γ; Σ ` (λx : T1 . e1)⇒ (λx : T1 . e2)TT1
Φ′
−→T2.

(λx : T1 . e2) 6= has Φ′ e′′.

Case (T-Loc). By inversion on the hypothesis, we know that Γ(l) = T , then by [C-Loc],
Φ; Γ; Σ ` l⇒ l : Ref T . l 6= has Φ′ e′′

Case (T-Var). By inversion on the hypothesis, we know that Σ(x) = T . Then by [C-Var],
Φ; Γ; Σ ` x⇒ x : T . x 6= has Φ′ e′′

Case (T-Ref). By inversion on the hypothesis, we know that {alloc} ⊆ Φ and by Induction
Hypothesis, Φ; Γ; Σ ` e⇒ e′ : T . By the preorder lemma, {alloc} @∼ Φ.

108

Since {alloc} ⊆ Φ, insert-has?{alloc} Φ e = e, so we can infer that Φ; Γ; Σ ` ref e ⇒
ref e′ : Ref T .

ref e′ 6= has Φ′ e′′

Case (T-Deref). Analogous to [T-Ref].

Case (T-Assign). By inversion on the hypothesis and induction hypothesis, we know that
Φ; Γ; Σ ` e1 ⇒ e′1 : Ref T1, Φ; Γ; Σ ` e2 ⇒ e′2 : T2, {write} ⊆ Φ and T2 < : T1.

We can only use [C-Assign] to transform e1 := e2, and since insert-has?{write} Φ e = e,
Φ; Γ; Σ ` e1 := e2 ⇒ e′1 := e′2 : Unit.

e′1 := e′2 6= has Φ′ e′′

Case (T-App). By inversion on the hypothesis and induction hypothesis, we know that

Φ; Γ; Σ ` e1 ⇒ e′1 : T1
Φ1−→T3, Φ; Γ; Σ ` e2 ⇒ e′2 : T2, T2 < : T1 and Φ1 ⊆ Φ. By preorder

lemma, also Φ1 @∼ Φ.

Given the definition of privilege sets in the fluent language, {¿} 6⊆ Φ, {¿} 6⊆ Φ1, thus
Φ1 ⊆ Φ and insert-has? does not introduce any has constructs. Since rule [T-App]F uses
subtyping, then no casts are inserted either.

Then by [C-App], Φ; Γ; Σ ` e1 e2 ⇒ e′1 e′2 : T3.

e′1 e′2 6= has Φ′ e′′

Case (T-Ascription). By inversion on the hypothesis and induction hypothesis,we know both
that Φ1; Γ; Σ ` e ⇒ e′ : T and Φ1 ⊆ Φ. By preorder lemma also Φ1 @∼ Φ. We can only
use [C-With-Effects] to translate and, since Φ1 ⊆ Φ, insert-has?Φ1 Φrestrict Φ1 e =
restrict Φ1 e and then infer that Φ; Γ; Σ ` e :: Φ1 ⇒ restrict Φ1 e′ : T .

restrict Φ1 e′ 6= has Φ′ e′′.

B.0.1 Type safety of the intermediate language

Lemma 38. (Translation preserves well-typing) If Φ; Γ; Σ ` e⇒ e′ : T , then Φ; Γ; Σ ` e′ : T
in the intermediate language.

Proof. Straightforward induction on the last step of the translation ⇒.

Lemma 39. (Inversion of @∼) If a @∼ b, then either

1. a ⊆ b

2. a 6⊆ b, and either (a \ {¿}) ⊆ b or ¿ ∈ b.

Proof. Immediate from the definition of @∼.

109

Lemma 40. (Inversion of Typing for the Intermediate Language)

1. If Ξ; Γ; Σ ` l : T , then l ∈ dom (Σ) and T = Ref (Σ(l)).

2. If Ξ; Γ; Σ ` x : T , then x ∈ dom (Γ) and T = Γ(x).

3. If Ξ; Γ; Σ ` λx : T1 . e : T , then ∃Ξ′, T2 . Ξ′; Γ, x : T1; Σ ` e : T2 and T = T1
Ξ−→T2.

4. If Ξ; Γ; Σ ` ref e : T , then ∃T ′ . Ξ; Γ; Σ ` e : T ′, T = Ref T ′ and {alloc} ⊆ Ξ.

5. If Ξ; Γ; Σ `!e : T , then Ξ; Γ; Σ ` e : Ref T , and {read} ⊆ Ξ.

6. If Ξ; Γ; Σ ` e1 := e2 : T , then ∃T1, T2 . Ξ; Γ; Σ ` e1 : Ref T1 and Ξ; Γ; Σ ` e2 : T2,
{write} ⊆ Ξ and T2 < : T1 and T = Unit.

7. If Ξ; Γ; Σ ` e1 e2 : T , then ∃T1, T2, T3,Ξ
′ such that Ξ; Γ; Σ ` e1 : T1

Ξ′
−→T3, Ξ; Γ; Σ ` e2 : T2,

T2 < : T1, Ξ′ @∼ Ξ and T = T3.

8. If Ξ; Γ; Σ ` restrict Ξ′ e : T , then Ξ′; Γ; Σ ` e : T and Ξ′ ≤ Ξ.

9. If Ξ; Γ; Σ ` has Φ′ e : T , then Φ′ ∪ Ξ; Γ; Σ ` e : T .

10. If Ξ; Γ; Σ ` 〈T2 ⇐ T1〉e : T2, then ∃T0.T0 < : T1 such that Ξ; Γ; Σ ` e : T0.

Proof. Immediate from the definition of the typing relation.

Lemma 41. (Canonical Forms)

1. If v is a value of type Unit, then v = unit or v = 〈Unit⇐ T1〉v′.
2. If v is a value of type Ref T , then either ∃ l . v = l and Σ(l) = T or v = 〈Ref T ⇐ T1〉v′.
3. If v is a value of type T1

Φ−→T2, then v = λx : T1 . e or v = 〈T1
Φ−→T2 ⇐ T 〉v′.

Proof. For each type, there is only one possible derivation rule from values to that type.

Theorem 42 (Progress). Suppose e is a closed, well typed expression (∃ T,Σ,Ξ . Ξ; ∅; Σ `
e : T). Then either e is a value, an Error, or else, for any store µ such that ∅ | Σ � µ, and
for any privilege set Φ such that Ξ ` Φ, there is some e′ and µ′ with Φ ` e | µ→ e′ | µ′.

Proof. By Structural Induction on the typing derivation using the Inversion of Typing for
the Intermediate Language Lemmas and the Inversion of @∼ lemma. The only interesting case
is rule [T-Has] (e = has Φ e′). By structural induction with e′, it is either a value, in which
case e can always progress with [E-Has-V], an Error, in which case e can always progress with
rule [E-Error], or it progresses. In case it progresses, depending on Φ, the system can always
choose between rules [E-Has-T] and [E-Has-F] to progress.

Lemma 43. (Permutation) If Ξ; Γ; Σ ` e : T and ∆ is a permutation of Γ, then Ξ; ∆; Σ `
e : T . Moreover, the latter derivation has the same depth as the former.

Proof. As in Pierce [19], by straightforward induction on typing derivations since our exten-
sions to the lambda calculus do not make any special usage of the environment Γ.

Lemma 44. (Weakening) If Ξ; Γ; Σ ` e : T and x 6∈ dom (Γ), then Ξ; Γ, x : T ′; Σ ` e : T .
Moreover, the latter derivation has the same depth as the former.

110

Proof. As in Pierce [19], by straightforward induction on typing derivations since our exten-
sions to the lambda calculus do not make any special usage of the environment Γ.

Lemma 45. (Preservation of Types Under Substitution) If Ξ; Γ, x : T ′; Σ ` e : T and Ξ; Γ; Σ `
s : T ′, then Ξ; Γ; Σ ` [s/x] e : T .

Proof. By induction on the last step of derivation for the statement Ξ; Γ, x : T ′; Σ ` e : T , as
in Pierce [19].

Theorem 46. (Preservation)

If Ξ; Γ; Σ ` e : T , Γ | Σ � µ and Φ ` e | µ → e′ | µ′ with Ξ ` Φ, then ∃Σ′ ⊇ Σ such that
Ξ; Γ; Σ′ ` e′ : T and Γ | Σ′ � µ′.

Proof. By structural induction over the type derivation Ξ; Γ; Σ ` e : T , and then by cases on
the rules in relation→ that may apply for terms of the form e accepted by the typing rule.

Case (T-Unit). By definition of the semantics, @e′ . unit→ e′.

Case (T-Fn). Analogous to [T-Unit].

Case (T-Loc). Analogous to [T-Unit].

Case (T-Var). Analogous to [T-Unit].

Case (T-Ref). If Γ | Σ � µ, Φ ` ref e | µ→ e′ | µ′ only by:

• [E-Ref]. Then e is a value of type T and Φ ` ref e | µ → l | µ[l 7→ e]. We can build
Σ′ = Σ[l 7→ T], with l 6∈ dom (Σ). By construction Σ′ ⊇ Σ. Thanks to this extension
and the fact that e : T , we know that Γ | Σ′ � µ[l 7→ v]. With Σ′,we can use [T-Loc] to
infer that Ξ; Γ; Σ′ ` l : Ref T .

• [E-Frame] with f = ref � By Induction Hypothesis, we know that, as Φ ` e | µ →
e′′ | µ′, ∃Σ′ ⊇ Σ such that Ξ; Γ; Σ′ ` e′′ : T and Γ | Σ′ � µ′. Besides that, we know
that {alloc} ⊆ Φ and {alloc} ⊆ Ξ. We can then use [T-Ref] to infer that Ξ; Γ; Σ′ `
ref e′′ : Ref T .

• [E-Error] Trivial by rule [T-Error].

Case (T-Deref). We can also analyze the → cases that apply for !e.

• [E-Deref]. Then e = l for some l ∈ dom (Σ). Since the rule [E-Deref] preserves µ, then
we can use Σ′ = Σ. By hypothesis Γ | Σ � µ, and since v = µ(l) then Ξ; Γ; Σ ` v : T .

• [E-Frame] with f =!� Analogous to [E-Frame] in [T-Ref].

• [E-Error] Trivial by rule [T-Error].

Case (T-Assign). If Γ | Σ � µ, then Φ ` e1 := e2 | µ→ e′ | µ′ only by:

• [E-Assign]. Then e1 = l for some l ∈ dom (Σ) and e2 = v. Since Ξ; Γ; Σ ` l := v : Unit
and e′ = unit, we can know by [T-Unit] that Ξ; Γ; Σ ` unit : Unit. Finally, since
l ∈ dom (Σ) and Γ | Σ � µ, Γ | Σ � µ[l 7→ v] = µ′.

• [E-Frame] with f = � := e.Analogous to [E-Frame] in [T-Ref], but using [T-Assign]
instead of [T-Ref] and write instead of alloc.

111

• [E-Frame] with f = v := �.Analogous to [E-Frame] with f = � := e.

• [E-Error] Trivial by rule [T-Error].

Case (T-App). If Γ | Σ � µ, then Φ ` e1 e2 | µ→ e′ | µ′ only by:

• [E-App]. By preservation of types under substitution lemma.

• [E-Frame] with f = � e. Analogous to [T-Assign] and [E-Frame] with f = � := e.

• [E-Frame] with f = v �. Analogous to [T-Assign] and [E-Frame] with f = v := �.

• [E-Error] Trivial by rule [T-Error].

Case (T-Restrict). Φ ` restrict Ξ′ e | µ→ e′ | µ′ only by:

• [E-Rst-V]. Direct by induction hypothesis.

• [E-Rst-1]. Then we can use the induction hypothesis and [T-Restrict] again.

• [E-Rst-2]. Always Ξ ` |Ξ|, thus we can use the induction hypothesis and [T-Restrict]
again.

• [E-Frame] with f = restrict Ξ′ �. Analogous to [T-Ref] with [E-Frame].

• [E-Error] Trivial by rule [T-Error].

Case (T-Has). Φ ` has Φ′ e | µ→ e′ | µ′ only by:

• [E-Has-T] By Induction hypothesis and using rule [T-Has] again.

• [E-Has-V] Direct by induction hypothesis.

• [E-Has-F] We can always use rule [T-Error] to type e′ = Error.

• [E-Error] Trivial by rule [T-Error].

Case (T-Error). Cannor occur since there is no evaluation rule just for e = Error.

Case (T-Cast). Φ ` 〈T2 ⇐ T1〉e | µ→ e′ | µ′ only by:

• [E-Cast-Id] Then is direct by the induction hypothesis.

• [E-Frame] with f = 〈T2 ⇐ T1〉� Also direct by induction hypothesis and reusing rule
[T-Cast].

• [E-Cast-Fn]. By applying rules [T-Has], [T-Restrict] and [T-Cast] and rebuilding the
function with [T-Fn].

112

Appendix C

Detailed Proofs for Generic Gradual
Effect Checking

In this appendix we present detailed proofs for the theorems presented in chapter 4. If the
reader is not interested in the detailed proofs and considers the higher level descriptions of
the proofs already described as sufficient, then the reader may skip this chapter.
Lemma 47. ∀Φ ∈ γ(Ξ), |Ξ| ⊆ Φ.

Proof. By definition of |•|,
|Ξ| =

⋂
Φ∈γ(Ξ)

Φ

and then the lemma follows by definition of intersection.

Proposition 48. |Ξ| = Ξ \ {¿}

Proof. By cases on the definition of γ.

Case (¿ 6∈ Ξ). Then |Ξ| =
⋂
{Ξ} = Ξ = Ξ \ {¿}.

Case (¿ ∈ Ξ). Then |Ξ| =
⋂
{(Ξ \ {¿}) ∪ Φ | Φ ∈ P (PrivSet)} = Ξ \ {¿}.

Lemma 49. |Ξ| ∈ γ(Ξ).

Proof. By cases on the definition of γ:

Case (¿ 6∈ Ξ). Since γ produces a singleton with Ξ, intersection over the singleton retrieves
Ξ.

Case (¿ ∈ Ξ). Since ∅ ∈ P (CPrivSet), Ξ \ {¿} ∈ γ(Ξ), which also is the intersection of
every possible set in γ(Ξ).

113

Lemma 50. Ξ1 ⊆ Ξ2 ⇒ Ξ1 ≤ Ξ2

Proof. By proposition 48 and definition of ⊆, |Ξ1| ⊆ |Ξ2|, which is the definition of ≤.

Lemma 51. Ξ1 ≤ Ξ2 and strict-checkA(Ξ1)⇒ strict-checkA(Ξ2)

Proof. Since strict-checkC(Ξ1), then ∀Φ ∈ γ(Ξ1), checkC(Φ). In particular, by lemma 49,
checkC(|Ξ1|). By Privilege Monotonicity property 1 for check, therefore, checkC(|Ξ2|).
Then by property 1 for check and by lemma 47, checkC(Φ)∀Φ ∈ Ξ2 and thus
strict-checkC(Ξ2).

Lemma 9.
If strict-checkC(Ξ1) and Ξ1 ⊆ Ξ2 then strict-checkC(Ξ2).

Proof. By lemma 50, Ξ1 ≤ Ξ2. Therefore, the lemma follows from lemma 51.

Lemma 52. |α(Υ)| =
⋂

Υ, for Υ 6= ∅.

Proof. By cases on the definition of α(Υ).

Case (Υ = {Φ} branch). then Φ = α(Υ), and since dom (α) = P (PrivSet), ¿ 6∈ Φ.
Therefore γ(Φ) = Υ, and therefore by definition of |•|, |α(Υ)| =

⋂
Υ.

Case (otherwise branch). Then α(Υ) = (
⋂

Υ) ∪ {¿}.
Thus |α(Υ)| =

⋂
{(
⋂

Υ) ∪ Φ | Φ ∈ P (PrivSet)} and thus |α(Υ)| =
⋂

Υ.

Lemma 53. If
⋂

(Υ1) ∈ Υ1 and
⋂

(Υ1) ⊆
⋂

(Υ2), then
⋂
{adjustA(Φ) | ∀Φ ∈ Υ1} ⊆⋂

{adjustA(Φ) | ∀Φ ∈ Υ2}.

Proof. Suppose
⋂

(Υ1) ∈ Υ1 and
⋂

(Υ1) ⊆
⋂

(Υ2). Now suppose φ ∈⋂
{adjustA(Φ) | ∀Φ ∈ Υ1}. Then since

⋂
(Υ1) ∈ Υ1, in particular φ ∈ adjustA(

⋂
(Υ1)) too.

Now let Φ ∈ Υ2. Since
⋂

(Υ1) ⊆
⋂

(Υ2), it follows that
⋂

(Υ1) ⊆ Φ. So by monotonicity,
φ ∈ adjustA(Φ).

Thus, since Φ is arbitrary, φ ∈ adjustA(Φ) for all Φ ∈ Υ2 and thus φ ∈⋂
{adjustA(Φ) | ∀Φ ∈ Υ2}.

Lemma 10. If Ξ1 ≤ Ξ2 then ãdjustC(Ξ1) ≤ ãdjustC(Ξ2)

Proof. By definition of ≤ and |•|,
⋂

(γ(Ξ1)) ⊆
⋂

(γ(Ξ2)). Also, by lemma 49,
⋂

(γ(Ξ1)) ∈
γ(Ξ1). Thus, by lemma 53,

⋂
{adjustA(Φ) | ∀Φ ∈ γ(Ξ1)} ⊆

⋂
{adjustA(Φ) | ∀Φ ∈ γ(Ξ2)}.

Given that by definition of γ, for any Ξ γ(Ξ) 6= ∅, we can infer by lemma 52 that

|α({adjustA(Φ) | ∀Φ ∈ γ(Ξ1)})| ⊆ |α({adjustA(Φ | ∀Φ ∈ γ(Ξ2))})|. By definition of ãdjust,

this is equivalent to |ãdjustA(Ξ1)| ⊆ |ãdjustA(Ξ2)|, which at the same time is the definition

of ãdjustA(Ξ1) ≤ ãdjustA(Ξ2).

114

Proposition 13.

1. Ξ1 @∼ Ξ2 if and only if Ξ1≤Ξ2 or ¿ ∈ Ξ2.

2. strict-checkC(Ξ) if and only if checkC(|Ξ|).

Proof. 1.
Case (⇐). By definition of @∼, ¿ ∈ Ξ2 ⇒ Priv ∈ γ(Ξ2), thus for any Φ1 ∈ γ(Ξ1, there
exists Priv ∈ γ(Ξ2) such that Φ1 ⊆ Priv.
Case (⇒). By definition of @∼, there exists Φ1 ∈ γ(Ξ1) and Φ2 ∈ γ(Ξ2) such that
Φ1 ⊆ Φ2. By lemma 49, we know that |Ξ1| ∈ γ(Ξ1) and |Ξ2| ∈ γ(Ξ2). We thus proceed
by cases over Φ2.

• Φ2 = |Ξ2|. Then Φ1 ⊆ |Ξ2|. By lemma 47, |Ξ1| ⊆ |Ξ2| and thus Ξ1 ≤ Ξ2.

• Φ2 6= |Ξ2|. Then by lemma 49, card (γ(Ξ2)) > 1 and by the definition of γ, we can
infer that ¿ ∈ Ξ2.

2.
Case (⇒). By definition of strict-check, checkC(Φ)∀Φ ∈ γ(Ξ). By lemma 49, then
checkC(|Ξ|).
Case (⇐). By lemma 47 and privilege monotonicity property 1 for check, then
checkC(Φ)∀Φ ∈ γ(Ξ), which is the definition of strict-check.

Proposition 14.

1. If ¿ ∈ Ξ then c̃heckC(Ξ) if and only if checkC(PrivSet).

2. If ¿ /∈ Ξ then c̃heckC(Ξ) if and only if checkC(Ξ).

Proof. 1.
Case (⇐). Since ¿ ∈ Ξ, then PrivSet ∈ γ(Ξ). Thus since checkC(PrivSet), ∃Φ =

PrivSet ∈ γ(Ξ) | checkC(Φ), which is the definition of c̃heckC(Ξ).

Case (⇒). By definition of c̃heck, ∃Φ ∈ γ(Ξ) | checkC(Φ). Since Φ ∈ P (PrivSet),
then Φ ⊆ PrivSet, and thus by privilege monotonicity property 1 for check, then
checkC(PrivSet).

2. Since ¿ 6∈ Ξ, γ(Ξ) = {Ξ}. This means that, by definition of c̃heck, checkC(Ξ).

Also, by definition of |•|, |Ξ| = Ξ and thus checkC(|Ξ|).

Theorem 54. Φ ∈ γ(Ξ)⇒ adjustA(Φ) ∈ γ(ãdjustA(Ξ)).

Proof. Let Φ ∈ γ(Ξ). Then adjustA(Φ) ∈ {adjustA(Φ′) | Φ′ ∈ γ(Ξ)}.

By proposition 7, {adjustA(Φ′) | Φ′ ∈ γ(Ξ)} ⊆ γ(α({adjustA(Φ′) | Φ′ ∈ γ(Ξ)})), which

by definition 10 is equivalent to γ(ãdjustA(Ξ)).

115

Lemma 55. c̃heckC(Ξ)⇒ strict-checkC(∆C(Ξ) ∪ Ξ)

i.e. If checkC(Φ) for some Φ ∈ γ(Ξ), then checkC(Φ) for every Φ ∈ γ(∆C(Ξ) ∪ Ξ).

Proof. Suppose checkC(Φ) for some Φ ∈ γ(Ξ)]

Then Υ = {Φ ∈ γ(Ξ) | checkC(Φ)} 6= ∅ so Φ =
⋃

mins(Υ) exists.

Furthermore, by M & M monotonicity, checkC(Φ).

Note that Φ ⊆ Φ \ |Ξ| ∪ Ξ = ∆C(Ξ) ∪ Ξ, so if Φ2 ∈ γ(∆C(Ξ) ∪ Ξ) then Φ ⊆ Φ2 and by M
& M monotonicity, checkC(Φ2).

Lemma 56. Ξ1 ≤ (|Ξ1| \ |Ξ2|) ∪ Ξ2

Proof. By definition of set complement, Φ ∪ ΦC = U. thus |Ξ1| = |Ξ1| ∩ (|Ξ2|C ∪ |Ξ2|). By
the law of distributivity among sets, it is equal to (|Ξ1| ∩ |Ξ2|C)∪ (|Ξ1| ∩ |Ξ2|). By definition
of set difference, it is equivalent to (|Ξ1| \ |Ξ2|) ∪ (|Ξ1| ∩ |Ξ2|) ⊆ (|Ξ1| \ |Ξ2|) ∪ |Ξ2|), by
properties of set intersection. By proposition 48, this is equal to |(|Ξ1| \ |Ξ2|)∪Ξ2|, and thus
Ξ1 ≤ (|Ξ1| \ Ξ2) ∪ Ξ2.

C.1 Progress and preservation proofs for the gradual

effect framework presented in the paper

In this section we introduce proofs for progress and preservation in the Gradual Effect Frame-
work. It also introduces items that will be used at some point in one of the proofs. Note
that some required items have already been proven in previous sections.
Lemma 57 (Canonical Values).

1. If Ξ; Γ; Σ ` v : πUnit, then ∃ε ∈ π and v = unitε.

2. If Ξ; Γ; Σ ` v : πT1
Ξ−→T2, then ∃ε ∈ π and v = (λx : T1 . e)ε.

3. If Ξ; Γ; Σ ` v : πRef T , then ∃ε ∈ π and v = lε and Σ(l) = T .

Proof. The only rules for typing values in our type system are [IT-Loc], [IT-Fn] and [IT-
Unit], respectively. They associate the types in the premises with the expressions in the
conclusions.

Theorem 15 (Progress). Suppose Ξ; ∅; Σ ` e : T . Then either e is a value v, an Error, or
Φ ` e | µ→ e′ | µ′ for all privilege sets Φ such that ∃Φ′ ∈ γ(Ξ) such that Φ′ ⊆ Φ and for any
store µ such that ∅ | Σ � µ.

Proof. By structural induction over derivations of Ξ; ∅; Σ ` e : T .

116

Case ([IT-Unit], [IT-Loc] and [IT-Fn]). unitε, lε and λx : T . eε are values.

Case ([IT-Var]). This case cannot happen by hypothesis.

Case ([IT-Error]). Error is an Error.

Case ([IT-App]). By Induction Hypothesis, we know that e1 either:

• ∀Φ′ ⊇ Φ′′ ∈ γ(ãdjust↓↑(Ξ)) and ∀µ.∅ | Σ � µ, Φ′ ` e1 | µ → e′1 | µ′. By theorem 54,

since Φ ∈ γ(Ξ), adjust↓↑(Φ) ∈ γ(ãdjust↓↑(Ξ)). Then adjust↓↑(Φ) ` e1 | µ → e′1 | µ′
and we can use rule [E-Frame] with f = �e2 and Φ ` e1 e2 | µ→ e′1 e2 | µ′.

• e1 = Error. Then rule [E-Error] applies with g = � e.

• e1 is a value. By lemma 57, Ξ; ∅; Σ ` e1 : π1T1
Ξ1−→T3 means that ∃ε1 ∈ π1 such that

e1 = (λx : T1 . e)π1. Now by Induction Hypothesis, we also know that e2 either:

– ∀Φ′ ⊇ Φ′′ ∈ γ(ãdjustπ1↓(Ξ)) and ∀µ.∅ | Σ � µ, Φ′ ` e2 | µ→ e′2 | µ′. In particular,
by monotonicity we know that adjustπ1↓(Φ) ⊆ adjust{ε}↓(Φ) for ε ∈ π1. Then
by arguments analogous to the case for e1 we can use rule [E-Frame] with frame
f = v� and thus Φ ` e1 e2 | µ→ e1 e′2 | µ′.

– e2 = Error. Then rule [E-Error] applies with g = v �.

– Is a value. By lemma 57, we only know that ∃ε2 ∈ π2 such that v = wε2. This
means that {ε1}{ε2} vC π1π2

1

By typing premises, strict-checkπ1π2(Ξ). By definion of strict-check, then
∀Φ ∈ γ(Ξ).checkπ1π2(Φ). By M & M tag monotonicity lemma, then ∀Φ ∈
γ(Ξ).check{ε1}{ε2}(Φ) and thus rule [E-App] can be applied.

Case ([IT-Cast]). By induction hypothesis, either

• ∀Φ ⊇ Φ′ ∈ γ(Ξ) and ∀µ.∅ | Σ � µ, Φ ` e | µ → e′ | µ′. Then rule [E-Cast-Frame] can
always be applied.

• e = Error. Then rule [E-Error] always applies.

• e is a value. Then by lemma 57, either:

– T0 = π0Unit. By lemma 57, e = unitε for some ε ∈ π0. Since T1 . T2, then
T1 = π1ρ1, T2 = π2ρ2 and π1 ⊆ π2. Thus [E-Cast-Id] applies.

– T0 = π0Ref T . Analogous to the case for Unit.

– T0 = π0T
′
1

Ξ′
1−→T ′3. By analogous arguments, ∃ε ∈ π0 . e = (λx : T . e′)ε. Then rule

[E-Cast-Fn] applies.

Case ([IT-Has]). By induction hypothesis, either

• ∀Φ′ ⊇ Φ′′′ ∈ γ(Φ∪Ξ) and ∀µ.∅ | Σ � µ, Φ′ ` e | µ→ e′ | µ′. Our original expression is
of the form has Φ′′e. We proceed by cases on Φ′′.

– Φ′′ ⊆ Φ′. Then rule [E-Has-T] can be applied.

– Φ′′ 6⊆ Φ′. Then rule [E-Has-F] can be applied.

• e = Error. Then rule [E-Error] can be applied with g = has Φ �.

1vC means the partial order on check contexts defined by Marino and Millstein.

117

• e is a value. Then rule [E-Has-V] can be applied.

Case ([IT-Rst]). By induction hypothesis, either

• ∀Φ1 ⊇ Φ′1 ∈ γ(Ξ1) and ∀µ.∅ | Σ � µ, Φ1 ` e | µ → e′ | µ′. By the typing hypothesis,
we know that Ξ1 ≤ Ξ. Thus ∃Φ1 ∈ γ(Ξ1).Φ1 ⊆ Φ,∀Φ ∈ γ(Ξ), and therefore also
∀Φ′ ⊇ Φ ∈ γ(Ξ) Thus rule [E-Rst] can alwaysbe applied.

• e = Error. Then rule [E-Error] can be applied.

• e is a value. Then rule [E-Rst-V] can be applied.

Case ([IT-Ref]). By induction hypothesis, either

• ∀Φ ⊇ Φ′ ∈ γ(ãdjustref ↓(Ξ)) and ∀µ.∅ | Σ � µ, Φ ` e | µ→ e′ | µ′. By theorem 54, for

any Φ ∈ γ(Ξ), adjustref ↓(Φ) ∈ γ(ãdjustref ↓(Ξ)). Thus adjustref ↓(Φ) ` e | µ→ e′ |
µ′ and rule [E-Frame] can be applied with f = (ref �)ε.

• e = Error. Thus rule [E-Error] can be applied.

• e is a value.

By Hypothesis, strict-checkref π(Ξ). By definition of strict-check, then
∀Φ ∈ γ(Ξ).checkref π(Ξ). By lemma 57, we know that e = wε for some ε ∈ π. Thus
ref {ε} vC ref π and by M & M tag monotonicity lemma, ∀Φ ∈ γ(Ξ).checkref {ε}(Φ).
Therefore, rule [E-Ref] can be applied.

Case ([IT-Deref]). By induction hypothesis, either

• ∀Φ′ ⊇ Φ ∈ γ(Ξ) and ∀µ.∅ | Σ � µ, Φ ` e | µ → e′ | µ′. By theorem 54, for any

Φ ∈ γ(Ξ), adjust!↓(Φ) ∈ γ(ãdjust!↓(Ξ)). Thus adjust!↓(Φ) ` e | µ → e′ | µ′ and rule
[E-Frame] can be applied with frame f = ref �.

• e = Error. Thus rule [E-Error] can be applied.

• e is a value. By lemma 57, then e = lε for some εinπ.

By Hypothesis, strict-check!π(Ξ). By definition of strict-check, then
∀Φ ∈ γ(Ξ).check!π(Ξ). Since ε ∈ π, !{ε} vC !π. Thus by M & M tag monotonicity
lemma, ∀Φ ∈ γ(Ξ).check!{ε}(Φ). Since lε is typed, then l ∈ dom (Σ), and since ∅ | Σ �
µ, then l ∈ dom (µ) and then rule [E-Deref] can always be applied.

Case ([IT-Asgn]). By induction hypothesis, either

• ∀Φ ⊇ Φ′ ∈ γ(Ξ) and ∀µ.∅ | Σ � µ, Φ ` e1 | µ → e′1 | µ′. By theorem 54, for any

Φ ∈ γ(Ξ), adjust↓:=↑(Ξ) ∈ γ(ãdjust↓:=↑(Ξ)). Thus adjust↓:=↑(Φ) ` e | µ→ e′ | µ′ and
rule [E-Frame] can be applied with frame � := e.

• e1 = Error. Thus rule [E-Error] can be applied.

• e1 is a value. By lemma 57 (Canonical Values), e1 = lε1 for some ε1 ∈ π1. Now, also
by induction hypothesis, either

– ∀Φ ⊇ Φ′ ∈ γ(Ξ) and ∀µ.∅ | Σ � µ, Φ ` e2 | µ → e′2 | µ′. By theorem 54, for any

Φ ∈ γ(Ξ), adjustπ1:=↓(Φ) ∈ γ(ãdjustπ1:=↓(Ξ)). Thus adjustπ1:=↓(Φ) ` e | µ →
e′ | µ′ and rule [E-Frame] can be applied with frame lε1 := �.

– e = Error. Thus rule [E-Error] can be applied.

118

– e is a value.

By lemma 57 we only know that ∃ε2 ∈ π2 such that v = wε2. This means that
{ε1} := {ε2} vC π1 := π2.

By hypothesis we know that strict-checkπ1:=π2(Ξ). By definition of strict-check,
then ∀Φ ∈ γ(Ξ).checkπ1:=π2(Φ). By M & M tag monotonicity lemma, then ∀Φ ∈
γ(Ξ).check{ε1}{ε2}(Φ) and thus rule [E-Asgn] can be applied.

Lemma 58.

1. Ξ; Γ; Σ ` v : T ⇒ Ξ′; Γ; Σ ` v : T

2. Ξ; Γ; Σ ` x : T ⇒ Ξ′; Γ; Σ ` x : T

3. Ξ; Γ; Σ ` 〈T2 ⇐ T1〉x : T2 ⇒ Ξ′; Γ; Σ ` 〈T2 ⇐ T1〉x : T2

Proof. 1. We proceed by cases on v.
Case (unitε). Then we can use rule [IT-Unit] for any other Ξ′.
Case ((λx : T . e)ε). There is only one typing rule for functions. We can reuse the
same [IT-Fn] To type the function to the same type in a context Ξ′ by reusing the
original premise.
Case (lε). Since Σ is preserved, we can reuse rule [IT-Loc] to type lε with any other
Ξ′.

2. There is only one rule for typing variable identifiers, [IT-Var]. Since the lemma preserves
the environment Γ, we can use rule [IT-Var] to type the identifier in any Ξ′ context.

3. The typing rule for casts reduces this case to the previous one.

Proposition 11 (Strong Effect Subsumption).
If Ξ1; Γ; Σ ` e : T and Ξ1 ≤ Ξ2, then Ξ2; Γ; Σ ` e : T .

Proof. By structural induction over the typing derivations for Ξ1; Γ; Σ ` e : T

Case (Rules [IT-Fn], [IT-Unit], [IT-Loc], [IT-Var] and [IT-Error]). All of these rules do not
enfore a restriction between the Ξ2 in the conclusions and any Ξ (if existent) in the premises,
so the same rule can be directly re-used to infer Ξ2; Γ; Σ ` e : T .

Case (Rule [IT-App]). By lemma 10, since Ξ1 ≤ Ξ2, ãdjustA(Ξ1) ≤ ãdjustA(Ξ2) for any
A, in particular both for A =↓↑ and A = π1 ↓.

Thus by Induction Hypothesis, we can infer both that ãdjust↓↑(Ξ2) ; Γ; Σ ` e1 : π1T1
Ξ′
−→T3

and that ãdjustπ1↓(Ξ2) ; Γ; Σ ` e2 : π2T2.

By lemma 51, we also know that strict-checkπ1π2(Ξ2).

By hypothesis we also know that π1T1
Ξ′
−→T2 < : π1T2

Ξ−→T3 and then we can use rule [IT-
App] to infer that Ξ2; Γ; Σ ` e1 e2 : T3.

119

Case (Rule [IT-Cast]). By Induction Hypothesis, Ξ2; Γ; Σ ` e : T1 and thus we can directly
use [IT-Cast] to infer Ξ2; Γ; Σ ` 〈T2 ⇐ T1〉e : T2.

Case (Rule [IT-Has]). Since by hypothesis |Ξ1| ⊆ |Ξ2|, in particular we know that Φ∪ |Ξ1| ⊆
Φ ∪ Ξ2.

We know that |Φ ∪ Ξ| = Φ ∪ |Ξ|, then |Φ ∪ Ξ1| ⊆ |Φ ∪ Ξ2| and thus Φ ∪ Ξ1 ≤ Φ ∪ Ξ2.

By Induction Hypothesis, Φ∪Ξ2; Γ; Σ ` e : T . Then we can use rule [IT-Has] to infer that
Ξ2; Γ; Σ ` has Φ e: T .

Case (Rule [IT-Rst]). (Ξ1; Γ; Σ ` restrict Ξ′ e : T)

By hypothesis we know that Ξ′ ≤ Ξ1 and thus by transitivity of ⊆, Ξ′ ≤ Ξ2.

Therefore, we can use rule [IT-Rst] with the premises of the hypothesis to infer that
Ξ2; Γ; Σ ` restrict Ξ′ e : T .

Case (Rule [IT-Ref]). By lemma 10, ãdjustref ↓(Ξ1) ≤ ãdjustref ↓(Ξ2), and thus by Induc-

tion Hypothesis, ãdjustref ↓(Ξ2) ; Γ; Σ ` e : πρ. By lemma 51, strict-checkref π(Ξ2). Thus
we can reuse rule [IT-Ref] to infer that Ξ2; Γ; Σ ` ref e : Ref T .

Case (Rule [IT-Deref]). Analogous to rule [IT-Ref].

Case (Rule [IT-Asgn]). By lemma 10 and Induction Hypothesis, ãdjust↓:=↑(Ξ2) ; Γ; Σ `
e1 : π1Ref T1 and ãdjustπ1:=↓(Ξ2) ; Γ; Σ ` e2 : π2ρ2.

By lemma 51, strict-checkπ1:=π2(Ξ2). Since also π2ρ2 < : T1, we can reuse rule [IT-Asgn]
to infer that Ξ2; Γ; Σ ` (e1 := e2)ε : {ε}Unit.

Corollary 12 (Effect Subsumption).
If Ξ1; Γ; Σ ` e : T and Ξ1 ⊆ Ξ2, then Ξ2; Γ; Σ ` e : T .

Proof. By lemma 50, Ξ1 ≤ Ξ2. Thus, by Strong Subsumption proposition 11, Ξ2; Γ; Σ `
e : T .

Lemma 59 (Tag monotonicity for strict-check). If C2 vC C1 and strict-checkC1(Ξ) ⇒
strict-checkC2(Ξ)

Proof. By definition of strict-check, ∀Φ ∈ γ(Ξ), checkC1(Φ). By M & M tag monotonicity
lemma, since C2 vC C1, then checkC2(Φ) too and therefore strict-checkC2(Ξ).

Lemma 60. If
⋂

Υ ∈ Υ and A2 vA A1, then⋂{
adjustA1

(Φ)∀Φ ∈ Υ
}
⊆
⋂{

adjustA2
(Φ)∀{∈}Υ

}
.

Proof. Suppose φ ∈
⋂{

adjustA1
(Φ)∀Φ ∈ Υ

}
. Since

⋂
Υ ∈ Υ, then also φ ∈ adjustA1

(
⋂

Υ).
By M & M tag monotonicity for adjust, then also φ ∈ adjustA2

(
⋂

Υ). Since
⋂

Υ ⊆

120

Φ∀Φ ∈ Υ, then ∀Φ ∈ Υ, by privilege monotonicity, φ ∈ adjustA2
(Φ) and therefore φ ∈⋂{

adjustA2
(Φ)∀Φ ∈ Υ

}
.

Lemma 61 (Tag Monotonicity for ãdjust). If A2 vA A1, then ãdjustA1
(Ξ) ≤ ãdjustA2

(Ξ).

Proof. By lemma 49,
⋂
γ(Ξ) ∈ γ(Ξ). Thus, by lemma 60, then

⋂{
adjustA1

(Φ)∀Φ ∈ Υ
}
⊆⋂{

adjustA2
(Φ)∀Φ ∈ Υ

}
.

Given that by definition of γ, for any Ξ, γ(Ξ) 6= ∅, we can infer by lemma 52 that

|α(
{
adjustA1

(Φ)∀Φ ∈ γ(Ξ)
}

)| ⊆ |α(
{
adjustA2

(Φ)∀Φ ∈ γ(Ξ)
}

)|. By definition of ãdjust,

this is equivalent to |ãdjustA1
(Ξ)| ⊆ |ãdjustA2

(Ξ)|, which at the same time is the definition

of ãdjustA1
(Ξ) ≤ ãdjustA2

(Ξ).

Theorem 62 (Preservation of types under substitution). If Ξ; Γ, x : T1; Σ ` e3 : T3 and
Ξ; Γ; Σ ` e2 : T2 with T2 < : T1 and either e2 = v or e2 = 〈T1 ⇐ T0〉x, then Ξ; Γ; Σ `
[e2/x] e3 : T ′ and T ′ < : T3.

Proof. By structural induction over the typing derivation for e2.

Case ([IT-Unit], [IT-Loc] and [IT-Error]). Trivial since substitution does not change the
expression.

Case ([IT-Var]). By definition of substitution, the interesting cases are:

• e3 = y 6= x ([e2/x] y = y). Then by assumption we know that Γ(y) = T3 and thus we can
infer that Ξ; Γ; Σ ` y : T3.

• e3 = x ([e2/x]x = e2). Then by the theorem hypothesis we know that Ξ; Γ; Σ ` e2 : T2.
We also know that Ξ; Γ, x : T1; Σ ` x : T3, which means that T3 = T1 and thus T ′ =
T2 < : T1 = T3.

Case ([IT-Fn]).

• λx : T . e. Then substitution does not affect the body and thus we reuse the original
type derivation.

• λy : T . e Then by induction hypothesis, substitution of the body preserves typing and
thus rule [IT-Fn] can be used to reconstruct the type for the modified expression.

Case ([IT-Ref], [IT-Deref], [IT-Cast], [IT-Has] and [IT-Rst]). Analogous to the case for [T-
Fn], since substitution for these expression is defined just as recursive calls to substitution
for the premises in the typing rules.

Case ([IT-App]). (e3 = e′1 e′2)

By lemma 58, we can can infer that Ξ′; Γ; Σ ` e2 : T2, in particular for Ξ′ = ãdjust↓↑(Ξ)

and for Ξ′ = ãdjustπ′
1↓(Ξ) . Thus we can use the induction hypotheses in both subexpressions

of e3 = e′1 e′2.

121

Therefore, while ãdjust↓↑(Ξ) ; Γ; Σ ` e′1 : π′1T
′
1

Ξ′
−→T ′3 , by induction hypothesis also

ãdjust↓↑(Ξ) ; Γ; Σ ` [e2/x] e′1 : π′′1T
′′
1

Ξ′′
−→T ′′3 with π′′1T

′′
1

Ξ′′
−→T ′′3 < : π′1T

′
1

Ξ′
−→T ′3 which means

that π′′1 ⊆ π′1 and T ′1 < : T ′′1.

At the same time, since ãdjustπ′
1↓(Ξ) ; Γ; Σ ` e′2 : T ′2, by induction hypothesis also

ãdjustπ′
1↓(Ξ) ; Γ; Σ ` [e2/x] e′2 : T ′′2 with and T ′′2 < : T ′2, thus T ′′2 = π′′2ρ

′′
2, T ′2 = π′2ρ

′
2 and

π′′2 ⊆ π′2.

Snce π′′1 ↓vA π′1 ↓, then by lemma 61 ãdjustπ′′
1↓(Ξ) ≤ ãdjustπ′

1↓(Ξ). Then by Strong

Subsumption proposition 11, ãdjustπ′′
1↓(Ξ) ; Γ; Σ ` [e2/x] e′2 : T ′′2.

Since π′′1π
′′
2 vC π′1π′2 and strict-checkπ′

1π
′
2
(Ξ), by lemma 59, strict-checkπ′′

1π
′′
2
(Ξ).

Also, by hypothesis T ′2 < : T ′1, which by transitivity of subtyping means that T ′′2 < : T ′′1.

Therefore, we know that π′′1T
′′
1

Ξ′′
−→T ′′3 < : π′′1T

′′
2

Ξ−→T ′′3, and we can use rule [IT-App] to infer
back that Ξ; Γ;Sigma ` [e2/x] e′1 [e2/x] e′2 : T ′′3, and by transitivity of subtyping, T ′′3 < : T3.

Case ([IT-Asgn]). By Induction Hypothesis, if Ξ; Γ; Σ ` e′1 : π′1Ref T1 and Ξ; Γ; Σ ` e′2 : π′2ρ
′
2,

also ãdjust↓:=↑(Ξ) ; Γ; Σ ` [e2/x] e′1 : π′′1Ref T1 with π′′1 ⊆ π′1(by the definition of subtyping

for Ref T) and ãdjustπ′
1:=↓(Ξ) ; Γ; Σ ` [e2/x] e′2 : π′′2ρ

′′
2, with π′′2ρ

′′
2 < : π′2ρ

′
2. By transitivity of

subtyping, since π′1ρ
′
2 < : T1, then π′′2ρ

′′
2 < : T1.

Given that π′′1 :=↓vA π′1 :=↓, we can infer by lemma 61 that

ãdjustπ′
1:=↓(Ξ) ≤ ãdjustπ′′

1:=↓(Ξ). Then, by proposition 11, also

ãdjustπ′′
1:=↓(Ξ) ; Γ; Σ ` [e2/x] e′2 : π′′2ρ

′′
2.

Finally, since π′′1 := π′′2 ⊆C π′1 := π′2 and strict-checkπ′
1:=π′

2
(Ξ), then also

strict-checkπ′′
1:=π′′

2
(Ξ) and we then can use rule [IT-Asgn] to infer back that Ξ; Γ; Σ `

([e2/x] e′1 := [e2/x] e′2)ε : {ε}Unit.

Lemma 63. If Ξ; Γ; Σ ` e : T , then Ξ; Γ; Σ′ ` e : T for Σ′ ⊇ Σ.

Proof. By structural induction over the typing derivation. The only interesting case is for
[IT-Loc]. The rest follow by applying the induction hypothesis and reusing the typing rules.

Case (Rule [IT-Loc]). Since Σ ⊆ Σ′, then Σ′(l) = Σ(l)∀l ∈ dom (Σ). Thus we can reuse
[IT-Loc] to infer that Ξ; Γ; Σ′ ` l : Ref T with T = Σ′(l) = Σ(l).

Theorem 16 (Preservation). If Ξ; Γ; Σ ` e : T , and Φ ` e | µ→ e′ | µ′ for Φ ⊇ Φ′ ∈ γ(Ξ)
and Γ | Σ � µ, then Γ | Σ′ � µ′ and Ξ; Γ; Σ′ ` e′ : T ′ for some T ′ < : T and ∃Σ′ ⊇ Σ.

122

Proof. By structural induction over the typing derivation and the applicable evaluation rules.

Case (Rules [IT-Fn], [IT-Unit], [IT-Loc] [IT-Var] and [IT-Error]). These rules are trivial
since there is no rule in the operational semantics that takes these expressions as premises
to step.

Case ([IT-App] and [E-Frame] with f = � t). By theorem 54, we can use the Induction

Hypothesis to infer that ãdjust↓↑(Ξ) ; Γ; Σ′ ` e1
′ : π′1T

′
1

Ξ′′
−→T ′3 and π′1T

′
1

Ξ′′
−→T ′3 < : π1T1

Ξ′
−→T3.

By definition of subtyping, T1 < : T ′1 and therefore T2 < : T ′1.

Since π′1 ↓vA π1 ↓, ãdjustπ1↓(Ξ) ≤ ãdjustπ′
1↓(Ξ) and therefore by proposition 11, since

ãdjustπ1↓(Ξ) ; Γ; Σ ` e2 : T2, also ãdjustπ′
1↓(Ξ) ; Γ; Σ ` e2 : T2.

Also, by lemma 63, we know that ãdjustπ′
1↓(Ξ) ; Γ; Σ′ ` e2 : T2.

Since T2 = π2ρ2 and π′1π2 vC π1π2, we can use lemma 59 to infer that strict-checkπ′
1π2

(Ξ).

Finally, since we already know thatπ′1T
′
1

Ξ′′
−→T ′3 < : π1T1

Ξ′
−→T3, also we know that

π′1T
′
1

Ξ′′
−→T ′3 < : π′1T2

Ξ−→T3 . Thus we can reuse rule [IT-App] to infer that Ξ; Γ; Σ′ ` e′1 e2 : T ′3
and we know that T ′3 < : T3.

Case ([IT-App] and [E-Frame] with f = wε �). By hypothesis,

ãdjust↓↑(Ξ) ; Γ; Σ ` e1 : π1T1
Ξ1−→T3. By lemma 63, we know that

ãdjust↓↑(Ξ) ; Γ; Σ′ ` e1 : T1
Ξ1−→T3.

Since adjustπ1↓(Φ) ∈ γ(ãdjustπ1↓(Ξ)) and adjustπ1↓(Φ) ⊆ adjust{ε}↓(Φ) for ε ∈ π1, we

can also use the induction hypothesis to infer that ãdjustπ1↓(Ξ) ; Γ; Σ′ ` e′2 : T ′2 and T ′2 < : T2.

Since by hypothesis and definition of subtyping, T2 < : T1, then also T ′2 < : T1, and therefore

we can infer that π1T1
Ξ1−→T3 < : π1T

′
2

Ξ−→T3 and we can reuse rule [IT-App] to infer that
Ξ; Γ; Σ′ ` e1 e′2 : T3.

Case ([IT-App] and [E-App]). In this case, e1 = λx : T1 . e, and Ξ′; Γ, x : T1; Σ ` e : T3.

Thus by theorem 62, Ξ′; Γ; Σ ` [e2/x] e : T ′3, with T ′3 < : T3. Then by corollary 12, Ξ; Γ; Σ `
[e2/x] e : T ′3, T ′3 < : T3.

Case ([IT-Has] and [E-Has-T]). e = has Φ e′. Therefore, application of [E-Has-T] takes the

form
Φ ⊆ Φ′ Φ′ ` e′ → e′′

Φ′ ` has Φ e′ → has Φ e′′
with Φ′ ∈ γ(Ξ).

Since Φ ⊆ Φ′, then also Φ′ ∈ γ(Φ ∪ Ξ) and then by induction hypothesis Φ ∪ Ξ; Γ; Σ′ `
e′′ : T ′, T ′ < : T . We can then use rule [IT-Has] to infer that Ξ; Γ; Σ′ ` has Φe′′ : T ′ too.

Case ([IT-Has] and [E-Has-V]). By induction hypothesis and lemma 58, in particular Ξ
instead of Φ ∪ Ξ.

Case ([IT-Has] and [E-Has-F]). Trivial by using rule [T-Error].

123

Case ([IT-Rst] and [E-Rst]). Since by rule [E-Rst] Φ′′ ∈ γ(Ξ1), we can use induction hy-
pothesis to infer that Ξ1; Γ; Σ′ ` e′ : T ′, T ′ < : T . Then we reuse rule [IT-Rst] to infer that
Ξ; Γ; Σ′ ` restrict Ξ1 e′ : T ′.

Case ([IT-Rst] and [E-Rst-V]). By induction hypothesis and using lemma 58, in particular
Ξ instead of Ξ1 (analogous to [IT-Has] and [E-Has-V]).

Case ([IT-Cast] and [E-Cast-Id]). Follows trivially by induction hypothesis.

Case ([IT-Cast] and [E-Cast-Fn]). By definition of [IT-Cast] and static subtyping, Ξ1 ≤ Ξ2.

By Induction Hypothesis, Ξ; Γ; Σ′ ` λx : T11 . e : T11

Ξ′
1−→T ′12, T11

Ξ′
1−→T ′12 < : T11

Ξ1−→T12. By
construction this means that Ξ1; Γ, x : T11; Σ′ ` e : T ′12.

We can use then the following inference for the type of the resulting expression of [E-
Cast-Fn]:

T-Fn

IT-Cast

IT-Rst

IT-Has

Proposition 11

Theorem 62

Hypothesis
Ξ1; Γ, x : T11; Σ′ ` e : T ′

12

Ξ1; Γ, x : T21; Σ′ ` [〈T11 ⇐ T21〉/x] e : T ′
12

|Ξ1| ∪ Ξ2; Γ, x : T21; Σ′ ` [〈T11 ⇐ T21〉/x] e : T ′
12

Ξ2; Γ, x : T21; Σ′ ` has (|Ξ1| \ |Ξ2|) [〈T11 ⇐ T21〉/x] e : T ′
12

Ξ2; Γ, x : T21; Σ′ ` restrict Ξ2 has (|Ξ1| \ |Ξ2|) [〈T11 ⇐ T21〉/x] e : T ′
12

Ξ2; Γ, x : T21; Σ′ ` 〈T22 ⇐ T12〉restrict Ξ2 has (|Ξ1| \ |Ξ2|) [〈T11 ⇐ T21〉/x] e : T22

Ξ; Γ; Σ′ ` λx : T21 . 〈T22 ⇐ T12〉restrict Ξ2 has (|Ξ1| \ |Ξ2|) [〈T11 ⇐ T21〉/x] e : T21
Ξ2−→T22

Case ([IT-Cast] and [E-Cast-Frame]). By Induction Hypothesis, Ξ; Γ; Σ′ ` e′ : T ′1, T ′1 < : T1.
Then we can reuse rule [IT-Cast] to infer Ξ; Γ; Σ′ ` 〈T2 ⇐ T1〉e′ : T2.

Case ([IT-Ref] and [E-Frame] with f = ref�). By theorem 54, since Φ ∈ γ(Ξ), adjust↓↑(Φ) ∈
γ(ãdjust↓↑(Ξ)) and thus by Induction Hypothesis, ãdjustref ↓(Ξ) ; Γ; Σ′ ` e′ : π′ρ′ , π′ρ′ < : πρ.

Since ref π′ vC ref π, by lemma 59 then strict-checkref π′(Ξ) .Thus we can use rule
[IT-Ref] to infer that Ξ; Γ; Σ′ ` (ref e)ε : {ε}Ref π′ρ′.

Case ([IT-Ref] and [E-Ref]). (Φ ` ref v | µ→ l | µ′ = µ[l 7→ v])

By Hypothesis we know that ãdjustref ↓(Ξ) ; Γ; Σ ` v : T . By lemma 58, then also Ξ; Γ; Σ `
v : T . Since l 6∈ dom (Σ), we can introduce Σ′ = Σ[l 7→ T]. By construction, Σ ⊆ Σ′ and
Γ | Σ′ � µ′. Thus we can use rule [IT-Loc] to infer that Ξ; Γ; Σ′ ` l : Ref T .

Case ([IT-Deref] and [E-Frame] with f =!�). By Induction Hypothesis, ãdjust!↓(Ξ) ; Γ; Σ′ `
e′ : π′Ref T , π′Ref T < : πRef T .

Since !π′ vC !π, by lemma 59 we know that strict-check!π′(Ξ). Then we can reuse rule
[IT-Deref] to infer that Ξ; Γ; Σ′ `!e′ : T .

Case ([IT-Deref] and [E-Deref]). Direct from Γ | Σ � µ. This implies that if Σ(l) = T1,
Ξ; Γ; Σ ` v : T0, T0 < : T1.

Case ([IT-Asgn] and [E-Frame] with f = (� := e)ε). By theorem 54 since Φ ∈ γ(Ξ), we

know that adjust↓:=↑(Φ) ∈ γ(ãdjust↓:=↑(Ξ)). Therefore, by Induction Hypothesis we know

that ãdjust↓:=↑(Ξ) ; Γ; Σ′ ` e′1 : π′1Ref T1 with π′1Ref T1 < : π1Ref T1.

124

Since Σ′ ⊇ Σ, by lemma 63 we know that ãdjustπ1:=↓(Ξ) ; Γ; Σ′ ` e2 : T2. Since π′1 :=↓vA
π1 :=↓, by lemma 61 we know that ãdjustπ1:=↓(Ξ) ≤ ãdjustπ′

1:=↓(Ξ). Therefore by Strong

Subsumption proposition 11, we also know that ãdjustπ′
1:=↓(Ξ) ; Γ; Σ′ ` e2 : T2.

T2 = π2ρ2. Since π′1π2 ⊆C π1π2, then also strict-checkπ′
1π2

(Ξ) by lemma 59.

Since by hypothesis T2 < : T1, we can use rule [IT-Asgn] to infer that
Ξ; Γ; Σ′ ` (e′1 := e2)ε : {ε}Unit.

Case ([IT-Asgn] and [E-Frame] with f = (wε′ := �)ε). By Hypothesis, ãdjust↓↑(Ξ) ; Γ; Σ `
e1 : π1Ref T1.

By theorem 54, since Φ ∈ γ(Ξ), adjustπ1:=↓(Φ) ∈ ãdjustπ1:=↓(Ξ). By Monotonicity, also
adjustπ1:=↓(Φ) ⊆ adjust{ε′}:=↓(Φ) for ε′ ∈ π1. Thus we can use the Induction Hypothesis

to infer that ãdjustπ1:=↓(Ξ) ; Γ; Σ′ ` e′2 : T ′2 with T ′2 < : T2. By transitivity of subtyping,
T ′2 < : T1.

By lemma 63, also ãdjust↓↑(Ξ) ; Γ; Σ′ ` e1 : π1Ref T1.

Since we have all the premises required, we can reuse rule [IT-Asgn] to infer that Ξ; Γ; Σ′ `
(e1 := e′2)ε : {ε}Unit.

Case ([IT-Asgn] and [E-Asgn]). Since rule [E-Asgn] preserves the tag from the assignment
into the unitε value, we can always use rule [IT-Unit] to infer that Ξ; Γ; Σ ` unitε : {ε}Unit,
and since by hypothesis we know that Ξ; Γ; Σ ` v : T2 and Ξ; Γ; Σ ` l : Ref T1 with T2 < : T1,
we also know that Γ | Σ � µ[l 7→ v].

Theorem 17 (Translation preserves typing). If Ξ; Γ; Σ ` e ⇒ e′ : T in the source language
then Ξ; Γ; Σ ` e′ : T in the internal language.

Proof. By structural induction over the translation derivation rules.

Case ([C-Unit], [C-Loc] and [C-Var]). Using the rule premises we can trivially apply rules
[IT-Unit] and [IT-Var], respectively.

Case ([C-Fn]). By Induction Hypothesis, Ξ1; Γ, x : T1; Σ ` e′ : T2. Thus we can use rule

[IT-Fn] to infer that Ξ; Γ; Σ ` λx : T1 . e′ : T1
Ξ1−→T2.

Case ([C-App]). By Induction Hypothesis, we know that ãdjust↓↑(Ξ) ; Γ; Σ ` e′1 : π1

(
T1

Ξ′
−→T3

)
.

And therefore also ãdjustπ1↓(Ξ) ; Γ; Σ ` e′2 : π2ρ2.

We also know that π1

(
T1

Ξ′
−→T3

)
. π1

(
π2ρ2

Ξ−→T3

)
. Thus we can use rule [IT-Cast]

to infer that ãdjust↓↑(Ξ) ; Γ; Σ ` 〈〈π1

(
π2ρ2

Ξ−→T3

)
⇐ π1

(
T1

Ξ′
−→T3

)
〉〉e′1 : π1

(
T ′2

Ξ′′
−→T3

)
with

T ′2 = T1 or T ′2 = π2ρ2, and Ξ′′ = Ξ′ or Ξ′′ = Ξ (depending on the insertions of casts). In

any case, T ′2
Ξ′′
−→T3 < : π2T2

Ξ−→T3

125

Since c̃heckπ1π2(Ξ), by lemma 55, we know that strict-checkπ1π2(∆app(Ξ) ∪ Ξ).

Finally, we proceed on the cases for insert-has?.

1. Φ = ∅. In this case, we also know that strict-checkπ1π2(Ξ) because ∅ ∪ Ξ = Ξ. Then
we can apply rule [IT-App] to infer that

Ξ; Γ; Σ `
(
〈〈π1

(
π2ρ2

Ξ−→T3

)
⇐ π1

(
T1

Ξ′
−→T3

)
〉〉e′1
)

e′2 : T3.

2. Φ 6= ∅. By privilege monotonicity and subsumption corollary 12, we know both that

ãdjust↓↑(∆π1π2(Ξ) ∪ Ξ) ; Γ; Σ ` 〈〈π1

(
π2ρ2

Ξ−→T3

)
⇐ π1

(
T1

Ξ′
−→T3

)
〉〉e′1 : T ′2

Ξ′′
−→T3 and

ãdjustπ1↓(∆π1π2(Ξ) ∪ Ξ) ; Γ; Σ ` e′2 : π2ρ2. We can then use rule [IT-App] to infer that

∆π1π2(Ξ)∪Ξ; Γ; Σ `
(
〈〈π1

(
π2ρ2

Ξ−→T3

)
⇐ π1

(
T1

Ξ′
−→T3

)
〉〉e′1
)

e′2 : T3. Therefore, we can

use rule [IT-Has] to infer that

Ξ; Γ; Σ ` has ∆π1π2(Ξ)
((
〈〈π1

(
π2ρ2

Ξ−→T3

)
⇐ π1

(
T1

Ξ′
−→T3

)
〉〉e′1
)

e′2

)
: T3.

Case ([C-Eff]). By Induction Hypothesis, Ξ1; Γ ` e′ : T . We proceed on the cases for
insert-has?.

1. Φ = ∅. Therefore @φ ∈ |Ξ1| such that φ 6∈ |Ξ|, thus |Ξ1| ⊆ |Ξ| and Ξ1 ≤ Ξ. We can
therefore use rule [IT-Rst] to infer that Ξ; Γ; Σ ` restrict Ξ1 e′ : T .

2. Φ 6= ∅. By lemma 56, Ξ1 ≤ (|Ξ1| \ |Ξ|) ∪ Ξ. We can then use rule [IT-Rst] to
infer that Φ ∪ Ξ1; Γ; Σ ` restrict Ξ1 e′ : T and thus use rule [IT-Has] to infer that
Ξ; Γ; Σ ` has (|Ξ1| \ |Ξ|) restrict Ξ1 e′ : T .

Case ([C-Ref]). By Induction Hypothesis, ãdjustref ↓(Ξ) ; Γ; Σ ` e′ : πρ. We proceed on the

cases for insert-has?. Since c̃heckref π(Ξ), by lemma 55, we know that
strict-checkref π(∆ref π(Ξ) ∪ Ξ).

1. Φ = ∅. Then strict-checkref π(Ξ) and we can use rule [IT-Ref] to infer that Ξ; Γ; Σ `
(ref e′)ε : {ε}Ref πρ.

2. Φ 6= ∅. By privilege monotonicity, ∆ref π(Ξ) ∪ ãdjustref ↓(Ξ) ; Γ; Σ ` e′ : πρ. Since
strict-checkref π(∆ref π(Ξ) ∪ Ξ), we therefore can use rule [IT-Ref] to infer that

∆ref π(Ξ)∪ãdjustref ↓(Ξ) ; Γ; Σ ` (ref e′)ε : {ε}Ref πρ. We then can use rule [IT-Has]
to infer that Ξ; Γ; Σ ` has ∆ref π(Ξ) (ref e′)ε : {ε}Ref πρ.

Case ([C-Deref]). Analogous to case [C-Ref]

Case ([C-Asgn]). Analogous to case [C-App].

126

Appendix D

Proof of the Conservative
Approximation Theorem

To prove the conservative approximation theorem we define a series of lemmas, which we use
to prove a strong conservative approximation lemma, from which the original conservative
approximation theorem follows as a corollary. We now proceed to provide the details of the
proof.

Definition 22 (Well-formed conservative frames). We say that a frame fC is well-formed
when the frame is of the form (� e)π, (ref �)ε, (� := e)(ε,π) or !�.

If a frame is (wε �)π, then it is well-formed if ε ∈ π.

If a frame is of the form (wε1 := �)(ε,π), then the frame is well-formed if ε1 ∈ π.

.
Lemma 64 (Typing in the conservative semantics ensures well-formed frames). If Ξ; Γ; Σ `
e : T , and e = fC [e′], then fC is a well-formed frame.

Proof. By cases on the final rule of the type derivation.

Case (Rules [IT-Fn], [IT-Unit], [IT-Loc], [IT-Var], [IT-Cast], [IT-Has], [IT-Rst], and [IT-Er-
ror]). Trivial sinced the typed expresion is not of the form fC [e′].

Case (Rules [IT-Ref] and [IT-Deref]). Trivial since the candidate frames are always well-
formed.

Case (Rule [IT-App]). There are two candiate structures for frames fC with rule [IT-App],
and we analize each case:

• fC = (� e)π. This kind of frame is always well-formed.

• fC = (wε �)π. Then e = fC [e′]. By inversion lemmas, we know that ãdjust↓ ↑(Ξ) ; Γ; Σ `
wε : {ε}T1

Ξ1−→T3 and also that {ε}T1
Ξ1−→T3 < : πT2

Ξ−→T3, with ãdjustπ↓(Ξ) ; Γ; Σ `

127

e′ : T2. By inversion of the subtyping relation we know that {ε} ⊆ π, and therefore
frame fC is well-formed.

Case (Rule [IT-Asgn]). Analogous to rule [IT-App].

Lemma 65 (Partial order for adjust context’s tagset erasure). Let fC be a well-formed frame
such that JfC [e]Kπ = fO[JeKπ]. Then A(fO) v A′(fC).

Proof. By cases on frames fC .

Case. (� e)π, (ref �)ε, !�, and (� := e)(ε,π) Trivial since if JfC [e]Kπ = fO[JeKπ], A′(fC) =
A(fO).

Case (fC = (wε �)π). By definition, A′(fC) = π ↓. Also, since JfC [e]Kπ = fO[JeKπ], then
fO = wε �, and thus A(fO) = {ε} ↓.

Since fC is well formed, ε ∈ π, and thus {ε} ⊆ π, which implies that A(fO) v A′(fC).

Case (fC = (wε1 := �)(ε,π)). Analogous to case fC = (wε �)π.

Lemma 66 (Adjust context simulation). If Φ ∼ Ξ and A(fO) v A′(fC), then adjustA(fO)(Φ) ∼
ãdjustA′(fC)(Ξ).

Proof. By definition of the simulation relation, Φ ∼ Ξ⇒ ∃Φ′ ⊆ Φ such that Φ′ ∈ γ(Ξ).
By Soundness of the abstract interpretation (proposition 7),

adjustA′(fC)(Φ
′) = Φ′′ ∈ γ(ãdjustA′(fC)(Ξ)).

By monotonicity lemmas, since Φ′ ⊆ Φ, then also Φ′′ ⊆ adjustA′(fC)(Φ). Since A(fO) v
A′(fC), then by tag monotonicity lemma, adjustA′(fC)(Φ) ⊆ adjustA(fO)(Φ). Thus by tran-
sitivity of ⊆, Φ′′ ⊆ adjustA(fO)(Φ).

Thus we know that ∃Φ′′ ⊆ adjustA(fO)(Φ), such that Φ′′ ∈ γ(ãdjustA′(fC)(Ξ), which is

the definition of adjustA(fO)(Φ) ∼ ãdjustA′(fC)(Ξ).

Lemma 67 (Inversion Lemmas for the Simulation Relation).

1. If Ξ; Γ; Σ (e1, µ1) ∼ (e2, µ2), then:

• There exists T2 such that Ξ; Γ; Σ `C e2 : T2 in the conservative language type sys-
tem.

• e1 = Je2Kπ.

• Γ; Σ �O µ1 (for the generic gradual effect checking language), Γ; Σ �C µ2 (for the
conservative language), and µ1 = JKπ ◦ µ2.

128

2. If Φ ∼ Ξ, then there exists a set Φ′ ⊆ Φ such that Φ′ ∈ γ(Ξ).

Theorem 19 (Strong Conservative Approximation). .

Let Ξ; Γ; Σ (e1, µ1) ∼ (e2, µ2) and Φ ∼ Ξ. If Φ ` e2 | µ2 e′2 | µ′2, then for any
Φ′ ∼ Ξ, either:

• Φ′ ` e′2 | µ′2 ∗ Error | µ′2
• ∃e′1 and µ′1 such that Φ′ ` e1 | µ1 → e′1 | µ′1 and ∃Σ′ ⊇ Σ such that

Ξ; Γ; Σ′ (e′1, µ
′
1) ∼ (e′2, µ

′
2).

Proof. By structural induction over . To avoid ambiguity, we use fC for frames used in
evaluation with .

Case ([E-Frame] with fC = (wε �)π). (e2 = fC [e′2]) We know by inversion lemmas for the
simulation relation that e1 = Je2Kπ. By definition of JKπ, we then know that e1 = fO[e′1] with
fO = (JwεKπ �) and e′1 = Je′2Kπ.

Since by inversion lemmas for the simulation relation, we know that e2 types in the conser-
vative semantics, we then also know by the “typing ensures well-formed conservative frames”
lemma that fC is well-formed, so that the tag ε ∈ π.

We can now rewrite e1 = Je2Kπ as fO[Je′2Kπ] = JfC [e′2]Kπ. Since fc is also well-formed, we
can use the partial order for adjust context’s tagset erasure lemma 65 to infer that A(fO) v
A′(fC). This assumption will be useful to define a Φ′ to usage with the structural induction
hypothesis.

Since evaluation follows by [E-Frame], we use the induction hypothesis with

adjustA′(fC)(Φ) ` e′2 | µ2 e′′2 | µ′2, as we know that ãdjustA′(fC)(Ξ) ; Γ Σ (e′1, µ1) ∼
(e′2, µ2).

Let Φ′ be any Φ′ ∼ Ξ. Since A(fO) v A′(fC), by the adjust context simulation lemma,

adjustA(fO)(Φ
′) ∼ ãdjustA′(fC)(Ξ). Thus we then know that either:

• adjustA(fO)(Φ
′) ` e′′2 | µ′2 ∗ Error | µ′2. Then [E-Error] applies and therefore Φ′ `

fC [e′′2] | µ′2 ∗ Error | µ′2.

• adjustA(fO)(Φ
′) ` e′1 | µ1 → e′′1 | µ′1, and Ξ; Γ; Σ′ (e′′1, µ

′
1) ∼ (e′′2, µ

′
2). We can

therefore apply rule [E-Frame] to infer that Φ′ ` fO[e′1] | µ1 → fO[e′′1] | µ′1.

By inversion lemmas of the simulation relation, we know that Ξ; Γ; Σ′ ` e′′2 : T . We
can use typing rule [IT-App] to infer that Ξ; Γ; Σ′ ` fC [e′′2] : T ′. Therefore, also
Ξ; Γ; Σ′ (fO[e′′1] µ′1) ∼ (fC [e′′2], µ′2).

Case ([E-Frame] with f = v := �). Analogous to [E-Frame] with f = v �.

Case ([E-Frame] with other frames). In any other case, fC = fO, so it is analogous to
[E-Frame] with f = v �, but does not require a call to the adjust context simulation lemma.

Case (Other rules). The rest of the rules follow by structural induction. Any other rule is
structurally equivalent between → and .

129

Lemma 68 (Translation implies simulation). Let Ξ; Γ; Σ ` e1 V e2 : T . For any µ2 such
that Γ; Σ � µ2, then exists µ1 such that Ξ; Γ; Σ (e1, µ1) ∼ (e2, µ2).

Proof. By structural induction over the translation relation. We use µ1 = JKπ ◦ µ2, and
inductively we collect all the preconditions to infer simulation. There is no particularly
interesting case, since the translation relation ensures that always e1 = Je2Kπ.

Theorem 18 (Conservative Approximation). . Let Ξ; Γ; Σ ` e1 V e2 : T , µ1 and µ2 such
that Ξ; Γ; Σ (e1, µ1) ∼ (e2, µ2), and Φ ∼ Ξ. If Φ ` e2 | µ2 ∗ v2 | µ′2, then ∃v1 and µ′1
such that Φ ` e1 | µ1 →∗ v1 | µ′1 and ∃Σ′ ⊇ Σ such that Ξ; Γ; Σ′ (v1, µ

′
1) ∼ (v2, µ

′
2).

Proof. This theorem reduces to the reflexive-transitive closure of the Strong Conservative
Approximation Lemma, using Φ′ = Φ.

130

Appendix E

Proofs Related to Gradual
Type-and-Effect Systems

E.1 Properties of consistent subtyping

Theorem 23 (Consistent subtyping equivalence).

∃α ∼ a . α < : b ⇐⇒ ∃β ∼ b . a < : β

Proof. (⇒)

By structural induction over the type consistency definition ∼.

Case ([C-Refl]). Then a = α and a < : b, so β = b suffices.

Case ([C-UnR]). Then a = Dyn. By rule [C-UnL], we know that Dyn ∼ b for any b and
Dyn < : Dyn, so β = Dyn suffices.

Case ([C-UnL]). Then α = Dyn and therefore b = Dyn. By rule [C-UnR], any type β ∼ Dyn,
so in particular β = a suffices since a < : a.

Case ([C-Fun]). Then α, a and b are function types (a = a1
Ξa−→a2 and b = b1

Ξb−→b2). By
hypothesis we know that ∃α1 ∼ b1 such that α1 < : a1 and by induction hypothesis we know

that ∃β2 ∼ b2 such that a2 < : β2. We can then build β = α1
Ξ1−→β2 and a < : β.

(⇐) Analogous.

Lemma 69. Ξ1 @∼ Ξ2 if and only if there exists a Ξ′ such that Ξ1 ' Ξ′ and Ξ′ ⊆ Ξ2

Proof. ⇒ On cases for the definition of @∼.

Case (¿ ∈ Ξ2). Trivially, Ξ′ ⊆ Ξ2 for any Ξ′. Let Ξ′ = {¿} ∪ (Ξ1 \ |Ξ2|). The question is
whether Ξ1 ' Ξ′.

131

Since ¿ ∈ Ξ′, Ξ1 @∼ Ξ′. At the same time, by construction |Ξ′| ⊆ |Ξ1| and thus in any case
Ξ′ @∼ Ξ1, meaning that Ξ1 ' Ξ′.

Case (|Ξ1| ⊆ |Ξ2|). Trivial with Ξ′ = |Ξ1|.

⇐ On cases for '. Since Ξ1 ' Ξ′, there are two possible cases:

Case (¿ ∈ Ξ1 and ¿ ∈ Ξ′). Since Ξ′ ⊆ Ξ2, then ¿ ∈ Ξ2 and thus Ξ1 @∼ Ξ2.

Case (|Ξ1| ⊆ |Ξ′| or |Ξ′| ⊆ |Ξ1|). • If |Ξ1| ⊆ |Ξ′|, then since Ξ′ ⊆ Ξ2, then also |Ξ1| ⊆
|Ξ2| and thus Ξ1 @∼ Ξ2.

• If |Ξ′| ⊆ |Ξ1|, for Ξ′ ' Ξ1 to hold, either ¿ ∈ Ξ′ or |Ξ1| ⊆ |Ξ′| must be true. If the first
is true, then also ¿ ∈ Ξ2 and thus Ξ1 @∼ Ξ2. In the second case, by transitivity, also
|Ξ1| ⊆ |Ξ2| and thus Ξ1 @∼ Ξ2.

E.2 Gradual typing for type-and-effect systems with-

out tags

Lemma 70 (Canonical Values). • If Ξ; Γ; Σ ` v : Unit, then v = unit.

• If Ξ; Γ; Σ ` l : Ref T , then v = l, with Σ(l) = T .

• If Ξ; Γ; Σ ` v : Unit, then v = unit.

• If Ξ; Γ; Σ ` v : Dyn, then v = 〈Dyn⇐ T 〉v′.

Proof. By structural induction over the typing derivation. There is only one typing rule that
applies in each case and inversion of the rule provides the conclusions in the lemmas.

Theorem 25 (Progress). Suppose Ξ; ∅; Σ ` e : T . Then either e is a value v, an Error, or
Φ ` e | µ→ e′ | µ′ for all privilege sets Φ such that ∃Φ′ ∈ γ(Ξ) such that Φ′ ⊆ Φ and for any
store µ such that ∅ | Σ � µ.

Proof. By structural induction over derivations of Ξ; ∅; Σ ` e : T .

Case ([IT-Cast]). Since the only difference with Gradual Effect Checking arises
on casts, this is the only interesting rule for this proof. By induction hypothesis,
either:

• e′ is a value. In this case, types T1 and T2 may or may not be a consistent subtype.
If they are not, [E-Cast-Bad] always applies. If they are, we can verify cases on the
structural definition of consistent subtyping. We follow the structure of

a . b ⇐⇒ ∃β ∼ b . a < : β

and analyze for all the cases by definition of type consistency for T2:

132

– Dyn < : T1, and T2 is any type. Thus by definition of subtyping T1 = Dyn and
also T0 = Dyn. By Canonical Values lemma 70, then e′ = 〈Dyn ⇐ T ′〉v. then
e = 〈T2 ⇐ Dyn〉〈Dyn ⇐ T ′〉v and rule [E-Cast-Merge] applies. If T2 = Dyn, then
rule [E-Cast-Id] also applies.

– T2 = T21
Ξ−→T22 and ∃T ′21, T

′
22, and Ξ′ such that T1 < : T ′21

Ξ′
−→T ′22. By definition

of subtyping, this means that T1 = T11
Ξ′′
−→T12. Since e′ : T0 with T0 < : T1, we also

know that T0 is a function type and by canonical values lemma 70 we know that
e′ = λx : T01 . e′′ and rule [E-Cast-Fn] can always be applied.

– T1 < : T2. We analyze all the cases for the last step of the derivation of subtyping.
If rule [ST-Id] is used, then rule [E-Cast-Id] may always be applied. If rule [ST-
Abs] is used, we know that both T1 and T2 are function types and we can apply
rule [E-Cast-Fn].

• e′ is an Error, in which case rule [E-Error] applies.

• For any Φ such that ∃Φ′ ∈ γ(Ξ′) such that Φ′ ⊆ Φ, then Φ ` e′ | µ→ e′′ | µ′ for any µ.
We can then always apply rule [E-Cast-Frame].

Case (Other rules). Since we have not modified the progress theorem, we can reuse the proof
strategy followed for generic gradual effect checking.

Theorem 26 (Preservation). If Ξ; Γ; Σ ` e : T , and Φ ` e | µ→ e′ | µ′ for Φ ⊇ Φ′ ∈ γ(Ξ)
and Γ | Σ � µ, then Γ | Σ′ � µ′ and Ξ; Γ; Σ′ ` e′ : T ′ for some T ′ < : T and ∃Σ′ ⊇ Σ.

Proof. By structural induction over the typing derivation and the applicable evaluation rules.
Since the only typing rule that changes is [IT-Cast], we focus on that case and rely on the
previously introduced proofs for preservation for the interesting reader. The proof strategy
is equivalent for all of these rules.

Case ([IT-Cast] and rule [E-Cast-Frame]). By induction hypothesis, there exists T ′ such that
Ξ; Γ; Σ ` e′ : T ′ and T ′ < : T0. By transitivity of subtyping, we can reuse rule [IT-Cast] to
infer that Ξ; Γ; Σ ` 〈T2 ⇐ T1〉e′ : T2.

Case ([IT-Cast] and rule [E-Cast-Id]). Trivial from the typing derivation, since Ξ; Γ; Σ `
v : T0, T0 < : T1 and T1 = T2.

Case ([IT-Cast] and rule [E-Cast-Merge]). From the typing derivation we know that Ξ; Γ; Σ `
v : T0, with T0 < : T1. We then may reuse rule [IT-Cast] to prove that Ξ; Γ; Σ ` 〈T2 ⇐
T1〉v : T2.

Case ([IT-Cast] and rule [E-Cast-Bad]). We can always use [IT-Error] to reconstruct the
required type T .

Case ([IT-Cast] and rule [E-Cast-Fn]). From the typing derivation we know that e : T01
Ξ0−→T02.

We can follow the same derivation done in theorem 16 for this very case and prove that types
are preserved.

133

Theorem 27 (Translation preserves typing). If Ξ; Γ; Σ ` e ⇒ e′ : T in the source language
then Ξ; Γ; Σ ` e′ : T in the internal language.

Proof. By structural induction over the translation derivation rules. The casts introduced for
the translation algorithm preserve typing in the intermediate language. There is no interest-
ing details for the proof, besides of what is already presented in the proof of theorem 17.

134

	List of Figures
	Introduction
	Background and Related Work
	Type systems and language semantics
	The lambda calculus
	The simply typed lambda calculus (STLC)
	Type safety
	The Unit type
	Extending the simply typed lambda calculus with references

	Gradual typing
	The type consistency relation
	Casts as runtime checks
	Operational semantics for casts
	Subtyping and gradual typing

	Type-and-Effect systems
	An example: the fluent language
	Classifying programs over their use of state
	Generated side-effects or privileges required
	Restricting side effects with ascription
	Typing function application

	Generic type-and-effect systems
	A generic type-and-effect system

	Summary

	Design of Gradual Effect Checking
	What is gradual effect checking?
	Design goals for gradual effect checking
	Representing effect uncertainty
	First approach: unknown information as a privilege set
	Limitations of the first approach
	Second approach: unknown information as a privilege

	The intermediate language: checking inconsistencies at runtime
	A type system for the intermediate language
	Runtime semantics for the intermediate language
	Translating programs to the intermediate language

	Theorems for gradual effect checking
	Type safety of the language

	Summary

	Generic Gradual Effect Checking
	Gradual effects as an abstract interpretation
	The challenge of gradual effects
	Fundamental concepts
	Lifting predicates to consistent privilege sets
	Lifting functions to consistent privilege sets

	A generic framework for gradual effects
	The source language
	The internal language
	Translating source programs to the internal language

	Summary

	A Conservative Semantics with Reduced Runtime Information
	Making tag information redundant at runtime
	The conservative semantics
	Example of a rejected program

	New semantics is a conservative approximation
	Type safety of the conservative semantics
	Redundancy of tags in the conservative semantics
	Summary

	Gradual Type-and-Effect Systems
	Gradual typing for type-and-effect systems without tags
	Simplifying the framework
	A type system based on consistency
	Extending type consistency for effects
	Consistent subtyping
	Intermediate language
	Type safety

	System with tags with conservative assumptions
	Tags and gradual typing
	Tags interact with the translation algorithm
	Rules for the translation algorithm
	Type safety

	Summary

	Conclusions
	Contributions
	Future work

	Bibliography
	The Fluent Language as an Instantiation of Marino and Millstein's Generic Type-and-Effect System
	Soundness Proof for Gradual Effect Fluent
	Type safety of the intermediate language

	Detailed Proofs for Generic Gradual Effect Checking
	Progress and preservation proofs for the gradual effect framework presented in the paper

	Proof of the Conservative Approximation Theorem
	Proofs Related to Gradual Type-and-Effect Systems
	Properties of consistent subtyping
	Gradual typing for type-and-effect systems without tags

