

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA MECÁNICA

## INESTABILIDAD ELÁSTICA EN MATERIALES ELECTROELÁSTICOS BAJO EL EFECTO DE UN CAMPO ELÉCTRICO.

## MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL MECÁNICO

## JUAN PABLO PARRA VILLALOBOS

## PROFESOR GUÍA: ROGER BUSTAMANTE PLAZA

MIEMBROS DE LA COMISIÓN: ELENA ATROSHCHENKO WILLIAMS CALDERON MUÑOZ

> SANTIAGO DE CHILE MAYO 2014

# Resumen

Los Elastómeros Electro-Sensibles son materiales que se caracterizan por sufrir grandes deformaciones en presencia de un campo eléctrico. Debido a esto la atención de los científicos se ha centrado en estudiar el comportamiento de estos materiales con el propósito de determinar su potencial uso como actuadores, para músculos artificiales en robótica y para aplicaciones biomédicas en prótesis entre otras aplicaciones. El comportamiento de estos materiales ha recibido la atención de los investigadores solo recientemente, y el objetivo de este trabajo es abordar en más detalle algunos aspectos de la modelación del comportamiento de estos materiales.

Los conceptos básicos a considerar para el estudio del comportamiento de los elastómeros electro-sensibles en presencia de un campo eléctrico son la cinemática de los cuerpos al momento de la deformación, las ecuaciones de Maxwell para las variables de campo eléctrico en ausencia de campos magnéticos, corrientes libres y cargas eléctricas, y sin dependencia del tiempo; además de las leyes del balance de masa, la formulación Lagrangiana y la simetría de los materiales.

Este trabajo consiste en estudiar el comportamiento de la segunda variación para tres problemas de valor de frontera por medio del software Mathematica con diferentes geometrías para los cuerpos electro-activos y diferentes vectores de campo eléctrico, considerando ademas algunos ejemplos simples de ecuaciones constitutivas para el material. La segunda variación, y en particular su signo, se estudió como criterio para predecir la aparición de inestabilidades electro-elásticas.

# Agradecimientos

Quiero agradecer a mi familia, por su incondicional apoyo y comprensión durante el estudio y desarrollo de mi memoria de título. En especial a mis padres y hermanos que siempre confiaron en mí y en lo que podía lograr.

Un especial agradecimiento al Profesor Roger Bustamante, quien siempre estuvo presente con buena voluntad y disponibilidad para la realización de este trabajo. Además quiero agradecer la confianza que tuvo en mí para permitirme ser parte de su cuerpo docente en uno de sus ramos y por todo lo que me enseñó. Y muchas gracias por toda la dedicación y paciencia.

A los profesores del Departamento de Ingeniería Mecánica, que confiaron en nosotros como futuros profesionales y que dedicaron estos años a nuestra formación. También un agradecimiento a los funcionarios del Departamento y del Taller Mecánico por toda su disponibilidad durante estos años.

A los amigos que conocí durante mi paso por la Universidad, que siempre estuvieron ahí para darme apoyo y motivación. En especial los amigos mas cercanos que conocí durante mis primeros años de Universidad y aquellos que conocí en la especialidad, les deseo lo mejor. Éxito.

| 1 | Intr | ntroducción 1                                      |           |  |
|---|------|----------------------------------------------------|-----------|--|
|   | 1.1  | Motivación                                         | 1         |  |
|   | 1.2  | Objetivos                                          | 1         |  |
|   | 1.3  | Alcances                                           | 2         |  |
| 2 | Mat  | teriales Electroelásticos                          | 3         |  |
| 3 | Eleo | ctroelasticidad No-lineal                          | 6         |  |
|   | 3.1  | Cinemática                                         | 6         |  |
|   | 3.2  | Ecuaciones de Campo Eléctrico                      | 6         |  |
|   | 3.3  | Leyes del Balance Mecánico                         | 7         |  |
|   | 3.4  | Condiciones de Borde                               | 8         |  |
|   | 3.5  | Formulación Lagrangiana                            | 8         |  |
|   | 3.6  | Ecuaciones Constitutivas                           | 10        |  |
|   | 3.7  | Simetría de Materiales                             | 13        |  |
|   | 3.8  | Funcional y Formulación Variacional                | 14        |  |
| 4 | Pro  | Problemas a Estudiar 1                             |           |  |
|   | 4.1  | Funciones de Energía Libre                         | 19        |  |
|   | 4.2  | Geometrías Base                                    | 22        |  |
| 5 | Me   | moria de Cálculo                                   | <b>24</b> |  |
|   | 5.1  | Derivadas Generales de la Función de Energía Libre | 24        |  |

|   | 5.2            | Derivadas de los Invariantes |                                                                                       |    |  |  |
|---|----------------|------------------------------|---------------------------------------------------------------------------------------|----|--|--|
|   |                | 5.2.1                        | Primer Invariante                                                                     | 26 |  |  |
|   |                | 5.2.2                        | Segundo Invariante                                                                    | 26 |  |  |
|   |                | 5.2.3                        | Tercer Invariante                                                                     | 28 |  |  |
|   |                | 5.2.4                        | Cuarto Invariante                                                                     | 30 |  |  |
|   |                | 5.2.5                        | Quinto Invariante                                                                     | 30 |  |  |
|   | 5.3            | Deriva                       | das Particulares de las Funciones de Energía Libre                                    | 31 |  |  |
|   |                | 5.3.1                        | Primera Función de Energía Libre Caso Compresible                                     | 32 |  |  |
|   |                | 5.3.2                        | Primera Función de Energía Libre Caso Incompresible                                   | 33 |  |  |
|   |                | 5.3.3                        | Segunda Función de Energía Libre Caso Compresible                                     | 33 |  |  |
|   |                | 5.3.4                        | Segunda Función de Energía Libre Caso Incompresible                                   | 34 |  |  |
|   | 5.4            | Cálcul                       | os en las Deformaciones                                                               | 35 |  |  |
|   |                | 5.4.1                        | Caso 1: Deformación en un Medio Semi-Infinito                                         | 35 |  |  |
|   |                | 5.4.2                        | Caso 2: Deformación de un Tubo de Sección Circular                                    | 37 |  |  |
|   |                | 5.4.3                        | Caso 3: Deformación de un Cuerpo Esférico                                             | 41 |  |  |
| 6 | $\mathbf{Res}$ | ultado                       | s                                                                                     | 46 |  |  |
|   | 6.1            | Deforr<br>Energi             | nación en un Medio Semi-Infinito Plano considerando la Primera Función de<br>la Libre | 46 |  |  |
|   |                | 6.1.1                        | Resolución de Problemas                                                               | 46 |  |  |
|   |                | 6.1.2                        | Resultados                                                                            | 48 |  |  |
|   | 6.2            | Deforr<br>Energi             | nación en un Medio Semi-Infinito Plano considerando la Segunda Función de<br>la Libre | 49 |  |  |
|   |                | 6.2.1                        | Resolución de Problemas                                                               | 49 |  |  |
|   |                | 6.2.2                        | Resultados                                                                            | 51 |  |  |
|   | 6.3            | Deform                       | nación de un Tubo Cilíndrico considerando la Primera Función de Energía Libre         | 52 |  |  |

|    |                                                                                                              | 6.3.1            | Resolución de Problemas                                                                       | 52   |
|----|--------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------|------|
|    |                                                                                                              | 6.3.2            | Resultados                                                                                    | 55   |
|    | 6.4                                                                                                          | Deform           | nación de un Tubo Cilíndrico considerando la Segunda Función de Energía Libre                 | e 64 |
|    |                                                                                                              | 6.4.1            | Resolución de Problemas                                                                       | 64   |
|    |                                                                                                              | 6.4.2            | Resultados                                                                                    | 69   |
|    | 6.5 Deformación de una Esfera Hueca bajo Presión Interna considerando la Primera<br>Función de Energía Libre |                  | 78                                                                                            |      |
|    |                                                                                                              | 6.5.1            | Resolución de Problemas                                                                       | 78   |
|    |                                                                                                              | 6.5.2            | Resultados                                                                                    | 84   |
|    | 6.6                                                                                                          | Deforn<br>Funció | nación de una Esfera Hueca bajo Presión Interna considerando la Segunda<br>n de Energía Libre | 93   |
|    |                                                                                                              | 6.6.1            | Resolución de Problemas                                                                       | 93   |
|    |                                                                                                              | 6.6.2            | Resultados                                                                                    | 100  |
|    | 6.7                                                                                                          | Comer            | itarios                                                                                       | 109  |
|    |                                                                                                              | 6.7.1            | Deformación en un Medio Semi-Infinito Plano                                                   | 109  |
|    |                                                                                                              | 6.7.2            | Deformación de un Tubo Cilíndrico                                                             | 110  |
|    |                                                                                                              | 6.7.3            | Deformación de una Esfera Hueca bajo Presión Interna                                          | 111  |
| 7  | Con                                                                                                          | clusior          | nes                                                                                           | 112  |
| Bi | bliog                                                                                                        | grafía           |                                                                                               | 114  |

# CAPÍTULO 1

# Introducción

Los Elastómeros Electro-Sensibles, también conocidos como Elastómeros Electroactivos, son materiales que se caracterizan por presentar grandes deformaciones en presencia de un campo eléctrico. Es debido a esto que han llamado la atención de la comunidad científica desde hace algunos años. Uno de los primeros trabajos teóricos para modelar el comportamiento de un cuerpo elástico que presente grandes deformaciones con interacción con campos eléctricos fue el paper escrito por Toupin en el año 1956, donde logró obtener las ecuaciones gobernantes de los cuerpos electroelásticos no-lineales [1]. Este trabajo es la base de las investigaciones subsequentes en el área.

### 1.1. Motivación

Últimamente el interés por estudiar estos materiales ha aumentado debido a su potencial uso como actuadores, para músculos artificiales en robótica y para aplicaciones biomédicas en prótesis [2], además del uso en el diseño de dispositivos para el control de vibraciones. Todo esto no ha sido fácil de estudiar ya que la modelación matemática de las propiedades de estos materiales se encuentra en una etapa temprana de desarrollo, lo cual se debe en parte por la escasez de datos experimentales que se pueden utilizar para la caracterización del material.

### 1.2. Objetivos

Los objetivos de la memoria son estudiar el comportamiento de la segunda variación para el funcional asociado a la formulación variacional para estos materiales electroelásticos en presencia de un campo eléctrico externo, donde se asume el cuerpo electroelástico completamente rodeado de espacio vacío. Además se considera parte del estudio comparar el comportamiento del material para diferentes geometrías y direcciones de campos eléctricos externos.

En particular se tienen dos trabajos a realizar. El primero consiste en estudiar el comportamiento de los materiales electroelásticos para algunos ejemplos de ecuaciones constitutivas, considerando un espacio libre infinito que rodea al cuerpo electroelástico; y el segundo es estudiar el comportamiento de la segunda variación para el funcional asociado a la formulación variacional para estos materiales electroelásticos para tres problemas de valor de frontera por medio del software Mathematica. Estos problemas son:

• La extensión homogénea de un espacio semi-infinito, cuya deformación es plana y bajo el efecto de un campo eléctrico perpendicular al plano.

- Extensión e Inflación de un tubo rodeado de espacio libre en presencia de un campo eléctrico radial.
- La inflación de una ésfera de pared gruesa en presencia de una campo eléctrico radial.

## 1.3. Alcances

Se considera en este trabajo cuerpos electroelásticos rodeados de espacio vacío, los materiales no presentan carga eléctrica alguna y se desprecian las cargas y campos magnéticos.

Se asumen deformaciones cuasi-estáticas, es decir el efecto del tiempo no se considera.

# CAPÍTULO 2

# Materiales Electroelásticos

Los Polímeros Electroactivos son materiales compuestos hechos de una matriz de elastómeros con una distribución de partículas electroactivas. Estos materiales presentan un cambio de tamaño o forma cuando son estimulados por un campo eléctrico. Una propiedad característica típica de estos materiales es que pueden presentar grandes deformaciones mientras están en presencia de fuerzas y campos eléctricos. Esto se debe a que las fuerzas eléctricas que actúan sobre las partículas son transmitidas directamente a las cadenas poliméricas, dando como resultado su deformación o traslado. La distorsión de la forma ocurre casi instantáneamente y desaparece abruptamente cuando el campo eléctrico externo es aplicado o removido [3].

La microestructura de los Polímeros Electroactivos se puede ver en la figura 1, donde se pueden observar diferentes partículas esféricas (las partículas electroactivas) las cuales están rodeadas por la matriz de elastómeros (que generalmente se consideran como materiales no activos desde el punto de vista eléctrico).



а

b

Figura 1: Microestructura de dos Elastómeros Electro-Sensibles con distintos tipos y tamaños de partículas, (a) Hierro (Fe) y (b) Magnetita ( $Fe_3O_4$ ), tomadas con un microscopio electrónico de barrido [4]

Estos materiales se están usando en muchos mecanismos que se utilizan en la vida cotidiana. Cada vez más, se están realizando esfuerzos para reducir su tamaño, masa y energía, así como utilizarlos para controlar dispositivos biológicamente inspirados. Durante muchos años, se ha sabido que ciertos tipos de polímeros pueden cambiar de forma en respuesta a la estimulación eléctrica, sin embargo, inicialmente estos materiales solo presentaban una pequeña deformación (estiramiento, contracción o de flexión). Desde principios de la década de 1990 surgen los nuevos materiales Polímeros Electroactivos (EAP) que presentan grandes deformaciones bajo campos eléctricos externos.

Las propiedades únicas de estos materiales son altamente atractivas para usos en actuadores, músculos artificiales en robótica, aplicaciones biomédicas en prótesis, entre otras aplicaciones. Cada vez más, los ingenieros son capaces de desarrollar mecanismos accionados que antes eran sólo imaginables en la ciencia ficción.

En los últimos años, ha habido un progreso significativo en el campo de los Polímeros Electroelásticos hacia la fabricación de actuadores prácticos, y diversos productos comerciales están comenzando a surgir. Los mecanismos y dispositivos que se están considerando son aplicables a la industria aeroespacial, automotriz, médica, robótica, exoesqueletos, mecanismos de articulación, entretención, animación, juguetes, ropa, interfaces táctiles, control de ruido, transductores, generadores de energía y estructuras inteligentes [3].

La inestabilidad elástica que pueden presentar estos materiales se puede explicar como un conjunto de fenómenos no lineales en la geometría, donde los desplazamientos en un cuerpo no son proporcionales a las fuerzas aplicadas. Algunos modelos que mejor explican el comportamiento que tienen estos materiales en presencia de un campo eléctrico son una lámina cargada uniaxialmente y una lámina cargada biaxialmente, como se observa en la figura 2 y 3.



Figura 2: Lámina Plana de un Material Polimérico, (a) Sin Carga Eléctrica, (b) Con Carga Eléctrica



Figura 3: Membrana Esférica (carga biaxial) de un Material Polimérico, (a) Sin Carga Eléctrica, (b) Con Carga Eléctrica

La deformación que estas geometrías presentan es la que se observa en estas figuras, pero en algunas ocasiones existe una inestabilidad elástica al momento de actuar un campo eléctrico, como se logra observar en la figura 5. Esta inestabilidad se presenta como unas pequeñas "arrugas" en el material, lo que indica que para los rangos de desplazamientos y fuerzas las ecuaciones que modelan al cuerpo presentan no linealidad.



Figura 4: Ej. de posibles deformaciones asociadas a un fenómeno de inestabilidad electroelástica en una lámina cargada uniaxialmente [5]



Voltage On

Figura 5: Ej. de posibles deformaciones asociadas a un fenómeno de inestabilidad electroelástica en una lámina cargada biaxialmente [6]

## Electroelasticidad No-lineal

El estudio de los materiales electroelásticos no lineales considera la deformación de los cuerpos y además la presencia de un campo eléctrico, y para eso se darán a entender conceptos necesarios para este estudio [7, 8].

#### 3.1. Cinemática

Se considera un sólido continuo electroelástico que ocupa la región  $B_o \subset \mathbb{R}^3$  en la configuración de referencia (libre de esfuerzos mecánicos y en ausencia de un campo eléctrico). Se define la posición en la configuración inicial de un cuerpo como el vector  $\mathbf{X} \in B_o$  y en una configuración deformada el punto  $\mathbf{X}$  ocupa la posición  $\mathbf{x} = \boldsymbol{\chi}(\mathbf{X})$ , donde el vector  $\boldsymbol{\chi}$  describe la deformación del material.

El Tensor Gradiente de Deformación  ${\bf F}$  se define como:

$$\mathbf{F} = Grad \ \mathbf{x}.\tag{3.1}$$

También usamos la notación estándar:

$$J = \det \mathbf{F},\tag{3.2}$$

con la convención J > 0.

#### 3.2. Ecuaciones de Campo Eléctrico

La forma simplificada de las ecuaciones de Maxwell para las variables del Campo Eléctrico en ausencia de campos magnéticos, corrientes libres y cargas eléctricas, y sin dependencia del tiempo son las siguientes:

$$div \mathbf{D} = \mathbf{0},\tag{3.3}$$

$$curl \mathbf{E} = \mathbf{0},\tag{3.4}$$

donde  $\mathbf{E}$  es el vector campo eléctrico y  $\mathbf{D}$  es el vector desplazamiento eléctrico. Considerando curl y div como los operadores curl y divergencia con respecto a  $\mathbf{x}$ .

En el espacio vacío se tiene:

$$\mathbf{D} = \varepsilon_{\mathbf{o}} \mathbf{E},\tag{3.5}$$

donde la constante  $\varepsilon_o$  es la permitividad eléctrica en el vacío. Para materia condensada es necesario considerar una variable adicional llamada la polarización eléctrica **P**, donde:

$$\mathbf{D} = \varepsilon_{\mathbf{o}} \mathbf{E} + \mathbf{P}. \tag{3.6}$$

#### 3.3. Leyes del Balance Mecánico

La ecuación de equilibrio en ausencia de fuerzas de cuerpo mecánicas y de efecto del tiempo es:

$$div \,\boldsymbol{\sigma} + \mathbf{f}_e = \mathbf{0},\tag{3.7}$$

donde  $\sigma$  es el Tensor de Esfuerzos de Cauchy y  $\mathbf{f}_e$  es la fuerza de cuerpo eléctrica (por unidad de volumen), la cual se expresa como:

$$\mathbf{f}_e = (grad \ \mathbf{E})^T \mathbf{P}. \tag{3.8}$$

Considerando esto y las ecuaciones 3.3, 3.4 y 3.6 se obtiene:

$$\mathbf{f}_e = div \ \boldsymbol{\tau}_m,\tag{3.9}$$

donde:

$$\boldsymbol{\tau}_m = \varepsilon_o \left[ \mathbf{E} \otimes \mathbf{E} - \frac{1}{2} (\mathbf{E} \cdot \mathbf{E}) \mathbf{I} \right], \qquad (3.10)$$

con I el tensor identidad y  $\boldsymbol{\tau}_m$  se define como el Tensor de Esfuerzos de Maxwell.

Ahora bien, se puede introducir el Tensor de Esfuerzos Total au definido como:

$$\boldsymbol{\tau} = \boldsymbol{\sigma} + \boldsymbol{\tau}_m. \tag{3.11}$$

Entonces la ecuación de equilibrio 3.7 se puede expresar como:

$$div \ \boldsymbol{\tau} = \boldsymbol{0}. \tag{3.12}$$

#### 3.4. Condiciones de Borde

El Campo Eléctrico  $\mathbf{E}$  y el Vector Desplazamiento Eléctrico  $\mathbf{D}$  satisfacen condiciones de continuidad en particular a través de la superficie del cuerpo con el espacio vacío. En la configuración deformada, en ausencia de cargas eléctricas de superficie, las condiciones de continuidad son:

$$\mathbf{n} \cdot [\mathbf{D}] = 0, \quad \mathbf{n} \times [\mathbf{E}] = \mathbf{0}, \tag{3.13}$$

donde el paréntesis cuadrado indica la discontinuidad al<br/>rededor de la superficie y  $\mathbf{n}$  es la normal a la superficie.

La condición de borde correspondiente al Tensor de Esfuerzos Total au es:

$$[\boldsymbol{\tau}]\mathbf{n} = \mathbf{0}.\tag{3.14}$$

Si  $\mathbf{t}_a$  es la fuerza de tracción mecánica aplicada por unidad de área, entonces el tensor de Esfuerzos calculado dentro del material debe cumplir que:

$$\boldsymbol{\tau}\mathbf{n} = \boldsymbol{\tau}_m \mathbf{n} + \mathbf{t}_a, \tag{3.15}$$

donde  $\tau_m$  es el Tensor de Esfuerzos de Maxwell en el exterior del cuerpo definido en la ecuación 3.10.

#### 3.5. Formulación Lagrangiana

La forma global de las ecuaciones 3.3 y 3.4 son:

$$\int_{B} div \mathbf{D} \, dv = \int_{\partial B} \mathbf{D} \cdot \mathbf{n} \, da = 0, \tag{3.16}$$

$$\int_{C} \operatorname{curl} \mathbf{E} \cdot \mathbf{n} \, da = \int_{\partial C} \mathbf{E} \cdot d\mathbf{x} = 0, \qquad (3.17)$$

donde  $B \neq \partial B$  son la configuración actual de un cuerpo y su contorno respectivamente, y además **n** es el vector normal a  $\partial B$ .  $C \neq \partial C$  corresponden a una superficie abierta en la configuración actual

de un material y su contorno curvo cerrado respectivamente, además **n** es el vector normal a C, y  $d\mathbf{x}$  es tangente a  $\partial C$ .

La contraparte Lagrangiana de  $\mathbf{D}$  y  $\mathbf{E}$ , denotadas como  $\mathbf{D}_l$  y  $\mathbf{E}_l$  respectivamente, se definen como [2, 7]:

$$\mathbf{D}_l = J\mathbf{F}^{-1}\mathbf{D},\tag{3.18}$$

$$\mathbf{E}_l = \mathbf{F}^T \mathbf{E}.\tag{3.19}$$

Y se cumple que:

$$Div \mathbf{D}_l = 0, \tag{3.20}$$

$$Curl \mathbf{E}_l = \mathbf{0},\tag{3.21}$$

donde Div y Curl son los operadores divergencia y curl definidos con  $\mathbf{X}$  en la configuración de referencia.

Ahora bien, se puede expresar la forma Lagrangiana de  $\mathbf{P}$ , la cual se denota como  $\mathbf{P}_l$  como:

$$\mathbf{P}_l = J \mathbf{F}^{-1} \mathbf{P}. \tag{3.22}$$

Considerando la ecuación 3.6 se obtiene:

$$\mathbf{D}_l = \varepsilon_o J \mathbf{c}^{-1} \mathbf{E}_l + \mathbf{P}_l, \tag{3.23}$$

donde  $\mathbf{c}$  es el Tensor de Deformación de Cauchy-Green Derecho, definido como:

$$\mathbf{c} = \mathbf{F}^T \mathbf{F}.\tag{3.24}$$

A partir del Tensor de Esfuerzos Total $\pmb{\tau}$ se puede definir un tensor total de esfuerzos nominal  $\mathbf T$  como:

$$\mathbf{T} = J\mathbf{F}^{-1}\boldsymbol{\tau}.\tag{3.25}$$

Considerando la ecuación 3.12 se obtiene que:

$$Div \mathbf{T} = \mathbf{0},\tag{3.26}$$

y considerando la ecuación de borde 3.15 en la configuración de referencia se tiene que:

$$\mathbf{T}^T \mathbf{N} = \mathbf{T}_M^T \mathbf{N} + \mathbf{t}_A, \tag{3.27}$$

donde N es el vector normal en la configuración de referencia y  $\mathbf{t}_A$  es la fuerza de tracción mecánica aplicada en la configuración de referencia, con:

$$\mathbf{T}_M = J \mathbf{F}^{-1} \boldsymbol{\tau}_m. \tag{3.28}$$

#### 3.6. Ecuaciones Constitutivas

Las leves constitutivas permiten expresar, por ejemplo, el Tensor de Esfuerzo de Cauchy  $\sigma$ y la Polarización **P** en términos de las variables independientes. Consideramos la función  $\Psi$  que depende sólo de **F** y **E**, la cual se puede escribir como  $\Psi = \Psi(\mathbf{F}, \mathbf{E})$ . Como se sabe que existe una conexión entre **E** y **E**<sub>l</sub>, se puede expresar lo siguiente:

$$\Psi(\mathbf{F}, \mathbf{E}) = \Psi(\mathbf{F}, \mathbf{F}^{-T} \mathbf{E}_l) \equiv \Phi(\mathbf{F}, \mathbf{E}_l), \qquad (3.29)$$

considerando como  $\Phi$  la función que depende sólo de  $\mathbf{F}$  y  $\mathbf{E}_l$ .

Se puede expresar el Tensor de Esfuerzos de Cauchy y la Polarización como:

$$\boldsymbol{\sigma} = \rho \mathbf{F} \frac{\partial \Psi}{\partial \mathbf{F}},\tag{3.30}$$

$$\mathbf{P} = -\rho \frac{\partial \Psi}{\partial \mathbf{E}}.\tag{3.31}$$

Para basar los cálculos en el uso de  $\Phi$  se tiene la conexión:

$$\mathbf{F}\frac{\partial\Phi}{\partial\mathbf{F}} = \mathbf{F}\frac{\partial\Psi}{\partial\mathbf{F}} - \frac{\partial\Psi}{\partial\mathbf{E}} \otimes \mathbf{E},\tag{3.32}$$

con lo cual se puede expresar el Tensor de Esfuerzos de Cauchy $\sigma$  como:

$$\boldsymbol{\sigma} = \rho \mathbf{F} \frac{\partial \Phi}{\partial \mathbf{F}} - \mathbf{P} \otimes \mathbf{E}, \qquad (3.33)$$

y el Tensor de Esfuerzos Total $\boldsymbol{\tau}$ como:

$$\boldsymbol{\tau} = \rho \mathbf{F} \frac{\partial \Phi}{\partial \mathbf{F}} + \varepsilon_o \left[ \mathbf{E} \otimes \mathbf{E} - \frac{1}{2} (\mathbf{E} \cdot \mathbf{E}) \mathbf{I} \right].$$
(3.34)

Basados en el uso de  $\Phi$  la forma Euleriana y Lagrangiana de la Polarización son:

$$\mathbf{P} = -\rho \mathbf{F} \frac{\partial \Phi}{\partial \mathbf{E}_l},\tag{3.35}$$

$$\mathbf{P}_{l} = -\rho_{o} \frac{\partial \Phi}{\partial \mathbf{E}_{l}}.$$
(3.36)

Considerando la ecuación 3.25 en 3.34 se obtiene:

$$\mathbf{T} = \rho_o \frac{\partial \Phi}{\partial \mathbf{F}} + \varepsilon_o J \mathbf{F}^{-1} \left[ \mathbf{E} \otimes \mathbf{E} - \frac{1}{2} (\mathbf{E} \cdot \mathbf{E}) \mathbf{I} \right].$$
(3.37)

Usando la transformación definida en la ecuación 3.19 y luego derivándola se obtiene:

$$J\mathbf{E} \cdot \mathbf{E} = J\mathbf{E}_l \cdot (\mathbf{c}^{-1}\mathbf{E}_l), \qquad (3.38)$$

$$\frac{\partial}{\partial \mathbf{F}} (J\mathbf{E} \cdot \mathbf{E}) = -2J\mathbf{F}^{-1} \left[ \mathbf{E} \otimes \mathbf{E} - \frac{1}{2} (\mathbf{E} \cdot \mathbf{E}) \mathbf{I} \right].$$
(3.39)

Ahora bien, se introduce una Función de Energía Libre, la cual llamaremos  $\Omega$ , definida como:

$$\Omega = \rho_o \Phi - \frac{1}{2} \varepsilon_o J \mathbf{E}_l \cdot (\mathbf{c}^{-1} \mathbf{E}_l).$$
(3.40)

Entonces el Tensor de Esfuerzos Total en la forma Lagrangiana y Euleriana se puede expresar como:

$$\mathbf{T} = \frac{\partial \Omega}{\partial \mathbf{F}},\tag{3.41}$$

$$\boldsymbol{\tau} = J^{-1} \mathbf{F} \frac{\partial \Omega}{\partial \mathbf{F}}.$$
(3.42)

Con lo que se obtiene también:

$$\mathbf{D}_l = -\frac{\partial\Omega}{\partial\mathbf{E}_l},\tag{3.43}$$

$$\mathbf{D} = -J^{-1}\mathbf{F}\frac{\partial\Omega}{\partial\mathbf{E}_l},\tag{3.44}$$

$$\mathbf{P}_l = \mathbf{D}_l - \varepsilon_o J \mathbf{c}^{-1} \mathbf{E}_l. \tag{3.45}$$

En caso de un material incompresible (J=1) se tiene que:

$$\boldsymbol{\tau} = \mathbf{F} \frac{\partial \Omega}{\partial \mathbf{F}} - p \mathbf{I}, \qquad (3.46)$$

$$\mathbf{D} = -\mathbf{F} \frac{\partial \Omega}{\partial \mathbf{E}_l},\tag{3.47}$$

$$\mathbf{P} = \mathbf{D} - \varepsilon_o \mathbf{E}.\tag{3.48}$$

Otro caso es usar  $\mathbf{D}_l$  como la variable eléctrica independiente en vez de  $\mathbf{E}_l$ , para lo cual se usa una transformación de tipo Legendre definida por:

$$\Omega^*(\mathbf{F}, \mathbf{D}_l) = \Omega(\mathbf{F}, \mathbf{E}_l) + \mathbf{D}_l \cdot \mathbf{E}_l, \qquad (3.49)$$

con la cual se tiene que, para un material compresible:

$$\mathbf{T} = \frac{\partial \Omega^*}{\partial \mathbf{F}},\tag{3.50}$$

$$\mathbf{E}_l = \frac{\partial \Omega^*}{\partial \mathbf{D}_l}.\tag{3.51}$$

La Función de Energía Libre con respecto al espacio vacío alrededor del cuerpo se puede expresar como:

$$\Omega_e(\mathbf{F}, \mathbf{E}_l) = -\frac{1}{2} \varepsilon_o J(\mathbf{F}^{-T} \mathbf{E}_l) \cdot (\mathbf{F}^{-T} \mathbf{E}_l).$$
(3.52)

#### 3.7. Simetría de Materiales

Los materiales electroelásticos que consideramos son isotrópicos, es decir se asume a las partículas electroactivas distribuidas de forma aleatoria en la matriz polimérica. Si  $\Phi$  es una función isotrópica de los dos tensores **c** y  $\mathbf{E}_l \otimes \mathbf{E}_l$ , en este caso la dependencia de  $\Phi$  se reduce a la dependencia de invariantes combinados  $I_1, I_2, I_3, I_4, I_5, I_6$  de **c** y  $\mathbf{E}_l \otimes \mathbf{E}_l$ , los cuales se definen como [9]:

$$I_1 = tr \mathbf{c},\tag{3.53}$$

$$I_2 = \frac{1}{2} \left[ (tr \ \mathbf{c})^2 - tr \ (\mathbf{c}^2) \right], \qquad (3.54)$$

$$I_3 = \det \mathbf{c} = J^2, \tag{3.55}$$

$$I_4 = |\mathbf{E}_l|^2, \tag{3.56}$$

$$I_5 = \mathbf{E}_l \cdot (\mathbf{c} \mathbf{E}_l), \tag{3.57}$$

$$I_6 = \mathbf{E}_l \cdot (\mathbf{c}^2 \mathbf{E}_l). \tag{3.58}$$

Con lo cual podemos escribir que  $\Omega(I_1, I_2, I_3, I_4, I_5, I_6)$ , y además definimos que:

$$\Omega_i = \frac{\partial \Omega}{\partial \mathbf{I}_i},\tag{3.59}$$

con lo cual se obtiene:

$$\boldsymbol{\tau} = 2J^{-1}[\Omega_1 \mathbf{b} + \Omega_2(I_1 \mathbf{b} - \mathbf{b}^2) + \Omega_3 I_3 \mathbf{I} + \Omega_5 \mathbf{b} \mathbf{E} \otimes \mathbf{b} \mathbf{E} + \Omega_6 (\mathbf{b} \mathbf{E} \otimes \mathbf{b}^2 \mathbf{E} + \mathbf{b}^2 \mathbf{E} \otimes \mathbf{b} \mathbf{E})], \quad (3.60)$$

у

$$\mathbf{D} = -2J^{-1}[\Omega_4 \mathbf{b}\mathbf{E} + \Omega_5 \mathbf{b}^2 \mathbf{E} + \Omega_6 \mathbf{b}^3 \mathbf{E}], \qquad (3.61)$$

donde **b** es el Tensor de Deformación de Cauchy-Green Izquierdo, definido como:

$$\mathbf{b} = \mathbf{F}\mathbf{F}^T. \tag{3.62}$$

Además para un material incompresible (J=1) se tiene que:

$$\boldsymbol{\tau} = 2\Omega_1 \mathbf{b} + 2\Omega_2 (I_1 \mathbf{b} - \mathbf{b}^2) - p\mathbf{I} + 2\Omega_5 \mathbf{b}\mathbf{E} \otimes \mathbf{b}\mathbf{E} + 2\Omega_6 (\mathbf{b}\mathbf{E} \otimes \mathbf{b}^2 \mathbf{E} + \mathbf{b}^2 \mathbf{E} \otimes \mathbf{b}\mathbf{E}),$$
(3.63)

$$\mathbf{D} = -2[\Omega_4 \mathbf{b}\mathbf{E} + \Omega_5 \mathbf{b}^2 \mathbf{E} + \Omega_6 \mathbf{b}^3 \mathbf{E}].$$
(3.64)

En particular, para la función  $\Omega^*$  se consideran los mismos invariantes  $I_1, I_2, I_3$  junto con las tres invariantes independientes basadas por  $\mathbf{D}_l$ , entonces se tiene que:

$$\boldsymbol{\tau} = 2J^{-1}[\Omega_1^* \mathbf{b} + \Omega_2^* (I_1 \mathbf{b} - \mathbf{b}^2) + \Omega_3^* I_3 \mathbf{I} + \Omega_5^* \mathbf{b} \mathbf{D} \otimes \mathbf{b} \mathbf{D} + \Omega_6^* (\mathbf{b} \mathbf{D} \otimes \mathbf{b}^2 \mathbf{D} + \mathbf{b}^2 \mathbf{D} \otimes \mathbf{b} \mathbf{D})], \quad (3.65)$$

$$\mathbf{E} = 2J[\Omega_4^*\mathbf{b}\mathbf{D} + \Omega_5^*\mathbf{b}^2\mathbf{D} + \Omega_6^*\mathbf{b}^3\mathbf{D}],\tag{3.66}$$

donde  $I_4$ ,  $I_5$  e  $I_6$  se reemplazan por:

$$K_4 = \mathbf{D}_l \cdot \mathbf{D}_l, \tag{3.67}$$

$$K_5 = \mathbf{D}_l \cdot (\mathbf{c} \mathbf{D}_l), \tag{3.68}$$

$$K_6 = \mathbf{D}_l \cdot (\mathbf{c}^2 \mathbf{D}_l). \tag{3.69}$$

#### 3.8. Funcional y Formulación Variacional

Para identificar si existe inestabilidad o no en el material al aplicarle un campo eléctrico se puede hacer el análisis considerando el funcional  $\Pi$  asociado a la formulación variacional [1].

Considerando la ecuación 3.4 se puede introducir el potencial escalar  $\varphi(\mathbf{x})$ , el cual se obtiene de:

$$\mathbf{E} = -grad\,\varphi,\tag{3.70}$$

y considerando la ecuación 3.21 se puede introducir el potencial escalar Lagrangiano  $\varphi_l(\mathbf{X})$ , que se obtiene de:

$$\mathbf{E}_l = -Grad \,\varphi_l. \tag{3.71}$$

El funcional  $\Pi$  asociado a la formulación variacional es una expresión para la energía total acumulada por el cuerpo (elástica y eléctrica) mas la energía eléctrica del espacio vacío que rodea al cuerpo, la cual se expresa como:

$$\Pi(\mathbf{x},\varphi_l) = \int_{B_r} \Omega(\mathbf{F}, \mathbf{E}_l) \, dV + \int_{B'_r} \Omega_e(\mathbf{F}, \mathbf{E}_l) \, dV - \int_{\partial B_r^\tau} \mathbf{x} \cdot \mathbf{t}_A \, dA - \int_{B_r} \rho_r \mathbf{x} \cdot \mathbf{f} \, dV - \int_{\partial B^\infty} \varphi \mathbf{D}_a \cdot \mathbf{n} \, da,$$
(3.72)

donde **f** es la fuerza mecánica del cuerpo,  $\mathbf{D}_a$  es un desplazamiento eléctrico aplicado lejos,  $\partial B_r^{\tau}$  es el contorno con tracciones ya existentes en la configuración de referencia y  $\partial B^{\infty}$  es el contorno de  $\partial B$  en el infinito.

Estudiando el signo de la segunda variación del funcional  $\Pi$  asociado a la formulación variacional se puede determinar si existe inestabilidad o no en el material al aplicarle un campo eléctrico, y su segunda variación se expresa como [10]:

$$\delta^{2}\Pi = \int_{B_{r}} \left( \frac{\partial^{2}\Omega}{\partial F_{i\alpha}\partial F_{j\beta}} \delta F_{i\alpha}\delta F_{j\beta} + 2\frac{\partial^{2}\Omega}{\partial F_{i\alpha}\partial E_{l_{\beta}}} \delta F_{i\alpha}\delta E_{l_{\beta}} + \frac{\partial^{2}\Omega}{\partial E_{l_{\alpha}}\partial E_{l_{\beta}}} \delta E_{l_{\alpha}}\delta E_{l_{\beta}} \right) dV + \varepsilon_{o} \int_{B} \left( \left[ (\delta_{ip}E_{j}E_{q} + \delta_{jq}E_{i}E_{p} - \delta_{iq}E_{j}E_{p} - \delta_{jp}E_{i}E_{q} - \delta_{pq}E_{i}E_{j} \right] + \frac{1}{2} (\mathbf{E} \cdot \mathbf{E}) \left( \delta_{iq}\delta_{jp} - \delta_{ip}\delta_{jq} \right) a_{pi}a_{qj} + \left( \delta_{pq}E_{i} + \delta_{iq}E_{p} - \delta_{ip}E_{q} \right) a_{ip}\delta E_{q} - \delta_{pq}\delta E_{p}\delta E_{q} \right) dv.$$
(3.73)

Una solución del problema de valor de frontera es estable si:

$$\delta^2 \Pi \ge 0 \quad \forall \quad \delta \mathbf{x}, \delta \mathbf{E}. \tag{3.74}$$

Se necesita determinar si la solución de este problema es estable o no considerando un problema en tres dimensiones, para lo cual definimos los vectores  $\mathbb{F}$  y  $\mathbb{F}'$  como:

$$\mathbb{F} = (\delta F_{11}, \delta F_{12}, \delta F_{13}, \delta F_{21}, \delta F_{22}, \delta F_{23}, \delta F_{31}, \delta F_{32}, \delta F_{33}, \delta E_{l_1}, \delta E_{l_2}, \delta E_{l_3})^T,$$
(3.75)

$$\mathbb{F}' = (a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33}, \delta E_1, \delta E_2, \delta E_3)^T.$$
(3.76)

donde  $a_{ij}$  son los componentes del tensor grad  $\delta \mathbf{x}$ . Luego, la ecuación 3.74 es satisfecha si<sup>1</sup>:

$$\mathbb{F}^T \mathbb{M} \mathbb{F} \ge 0, \qquad \mathbb{F}^T \mathbb{M}^T \mathbb{F}^T \ge 0, \tag{3.77}$$

 $<sup>^1\</sup>mathrm{Es}$ solo una condición suficiente, no necesaria.

donde las matrices  $\mathbb{M} = \mathbb{M}_{12x12}$  y  $\mathbb{M}' = \mathbb{M}'_{12x12}$  se definen como:

$$\mathbb{M} = \begin{pmatrix} \mathbb{A} & \mathbb{B} \\ \mathbb{B}^T & \mathbb{C} \end{pmatrix}, \tag{3.78}$$

$$\mathbb{M}' = \begin{pmatrix} \mathbb{A}' & \mathbb{B}' \\ \mathbb{B}'^T & \mathbb{C}' \end{pmatrix}, \tag{3.79}$$

donde las matrices  $\mathbb{A} = \mathbb{A}_{9x9}$ ,  $\mathbb{B} = \mathbb{B}_{9x3}$  y  $\mathbb{C} = \mathbb{C}_{3x3}$  están dadas por:

$$\mathbb{A} = \begin{pmatrix} \frac{\partial^{2}\Omega}{\partial F_{11}\partial F_{11}} & \frac{\partial^{2}\Omega}{\partial F_{12}\partial F_{11}} & \frac{\partial^{2}\Omega}{\partial F_{13}\partial F_{11}} & \frac{\partial^{2}\Omega}{\partial F_{21}\partial F_{11}} & \frac{\partial^{2}\Omega}{\partial F_{22}\partial F_{11}} & \frac{\partial^{2}\Omega}{\partial F_{23}\partial F_{11}} & \frac{\partial^{2}\Omega}{\partial F_{31}\partial F_{11}} & \frac{\partial^{2}\Omega}{\partial F_{32}\partial F_{12}} & \frac{\partial^{2}\Omega}{\partial F_{32}\partial F_{13}} & \frac{\partial^{2}\Omega}{\partial F_{32}\partial F_{13}} & \frac{\partial^{2}\Omega}{\partial F_{22}\partial F_{13}} & \frac{\partial^{2}\Omega}{\partial F_{22}\partial F_{13}} & \frac{\partial^{2}\Omega}{\partial F_{22}\partial F_{13}} & \frac{\partial^{2}\Omega}{\partial F_{22}\partial F_{13}} & \frac{\partial^{2}\Omega}{\partial F_{32}\partial F_{21}} & \frac{\partial^{2}\Omega}{\partial F_{32}\partial F_{22}} & \frac{\partial^{2}\Omega}{\partial F_{32}\partial F_{22}} & \frac{\partial^{2}\Omega}{\partial F_{31}\partial F_{23}} & \frac{\partial^{2}\Omega}{\partial F_{31}\partial F_{23}} & \frac{\partial^{2}\Omega}{\partial F_{31}\partial F_{23}} & \frac{\partial^{2}\Omega}{\partial F_{31}\partial F_{23}} & \frac{\partial^{2}\Omega}{\partial F_{31}\partial F_{31}} & \frac{\partial^{2}\Omega}{\partial F_{31}\partial F_{23}} & \frac{\partial^{2}\Omega}{\partial F_{31}\partial F_{23$$

$$\mathbb{B} = \begin{pmatrix} \frac{\partial^2 \Omega}{\partial F_{11} \partial E_{l_1}} & \frac{\partial^2 \Omega}{\partial F_{11} \partial E_{l_2}} & \frac{\partial^2 \Omega}{\partial F_{11} \partial E_{l_3}} \\ \frac{\partial^2 \Omega}{\partial F_{12} \partial E_{l_1}} & \frac{\partial^2 \Omega}{\partial F_{12} \partial E_{l_2}} & \frac{\partial^2 \Omega}{\partial F_{13} \partial E_{l_3}} \\ \frac{\partial^2 \Omega}{\partial F_{13} \partial E_{l_1}} & \frac{\partial^2 \Omega}{\partial F_{21} \partial E_{l_2}} & \frac{\partial^2 \Omega}{\partial F_{21} \partial E_{l_3}} \\ \frac{\partial^2 \Omega}{\partial F_{22} \partial E_{l_1}} & \frac{\partial^2 \Omega}{\partial F_{22} \partial E_{l_2}} & \frac{\partial^2 \Omega}{\partial F_{22} \partial E_{l_3}} \\ \frac{\partial^2 \Omega}{\partial F_{23} \partial E_{l_1}} & \frac{\partial^2 \Omega}{\partial F_{23} \partial E_{l_2}} & \frac{\partial^2 \Omega}{\partial F_{23} \partial E_{l_3}} \\ \frac{\partial^2 \Omega}{\partial F_{33} \partial E_{l_1}} & \frac{\partial^2 \Omega}{\partial F_{33} \partial E_{l_2}} & \frac{\partial^2 \Omega}{\partial F_{33} \partial E_{l_3}} \\ \frac{\partial^2 \Omega}{\partial F_{33} \partial E_{l_1}} & \frac{\partial^2 \Omega}{\partial F_{33} \partial E_{l_2}} & \frac{\partial^2 \Omega}{\partial F_{33} \partial E_{l_3}} \\ \frac{\partial^2 \Omega}{\partial F_{33} \partial E_{l_1}} & \frac{\partial^2 \Omega}{\partial F_{33} \partial E_{l_2}} & \frac{\partial^2 \Omega}{\partial F_{33} \partial E_{l_3}} \end{pmatrix},$$
(3.81)

$$\mathbb{C} = \begin{pmatrix} \frac{\partial^2 \Omega}{\partial E_{l_1} \partial E_{l_1}} & \frac{\partial^2 \Omega}{\partial E_{l_1} \partial E_{l_2}} & \frac{\partial^2 \Omega}{\partial E_{l_1} \partial E_{l_3}} \\ \frac{\partial^2 \Omega}{\partial E_{l_1} \partial E_{l_2}} & \frac{\partial^2 \Omega}{\partial E_{l_2} \partial E_{l_2}} & \frac{\partial^2 \Omega}{\partial E_{l_2} \partial E_{l_3}} \\ \frac{\partial^2 \Omega}{\partial E_{l_1} \partial E_{l_3}} & \frac{\partial^2 \Omega}{\partial E_{l_2} \partial E_{l_3}} & \frac{\partial^2 \Omega}{\partial E_{l_3} \partial E_{l_3}} \end{pmatrix}.$$
(3.82)

En el caso de considerar un cuerpo incompresible la matriz  $\mathbbm{A}$  depende de una variable p, por lo cual se expresa como:

$$\mathbb{A}_{i\alpha j\beta} = \frac{\partial^2 \Omega}{\partial F_{i\alpha} \partial F_{j\beta}} - p[F_{\alpha i}^{-1} F_{\beta j}^{-1} - F_{\alpha j}^{-1} F_{i\beta}^{-1}], \qquad (3.83)$$

donde sus componentes se distribuyen como:

$$\mathbb{A} = \begin{pmatrix} \mathbb{A}_{1111} & \mathbb{A}_{1211} & \mathbb{A}_{1311} & \mathbb{A}_{2111} & \mathbb{A}_{2211} & \mathbb{A}_{3311} & \mathbb{A}_{3311} & \mathbb{A}_{3311} \\ \mathbb{A}_{1211} & \mathbb{A}_{1212} & \mathbb{A}_{1312} & \mathbb{A}_{2112} & \mathbb{A}_{2212} & \mathbb{A}_{2312} & \mathbb{A}_{3312} & \mathbb{A}_{3312} \\ \mathbb{A}_{1311} & \mathbb{A}_{1312} & \mathbb{A}_{1313} & \mathbb{A}_{2113} & \mathbb{A}_{2213} & \mathbb{A}_{2313} & \mathbb{A}_{3113} & \mathbb{A}_{3213} & \mathbb{A}_{3313} \\ \mathbb{A}_{2111} & \mathbb{A}_{2112} & \mathbb{A}_{2113} & \mathbb{A}_{2211} & \mathbb{A}_{2221} & \mathbb{A}_{2322} & \mathbb{A}_{3321} & \mathbb{A}_{3321} \\ \mathbb{A}_{2211} & \mathbb{A}_{2212} & \mathbb{A}_{2221} & \mathbb{A}_{2222} & \mathbb{A}_{2322} & \mathbb{A}_{3122} & \mathbb{A}_{3322} \\ \mathbb{A}_{2311} & \mathbb{A}_{2312} & \mathbb{A}_{2313} & \mathbb{A}_{2321} & \mathbb{A}_{2322} & \mathbb{A}_{3123} & \mathbb{A}_{3223} & \mathbb{A}_{3323} \\ \mathbb{A}_{3111} & \mathbb{A}_{3112} & \mathbb{A}_{3113} & \mathbb{A}_{3121} & \mathbb{A}_{3122} & \mathbb{A}_{3123} & \mathbb{A}_{3331} \\ \mathbb{A}_{3211} & \mathbb{A}_{3212} & \mathbb{A}_{3213} & \mathbb{A}_{3221} & \mathbb{A}_{3222} & \mathbb{A}_{3223} & \mathbb{A}_{3333} \\ \mathbb{A}_{3311} & \mathbb{A}_{3312} & \mathbb{A}_{3313} & \mathbb{A}_{3321} & \mathbb{A}_{3322} & \mathbb{A}_{3333} \\ \mathbb{A}_{3311} & \mathbb{A}_{3312} & \mathbb{A}_{3313} & \mathbb{A}_{3321} & \mathbb{A}_{3322} & \mathbb{A}_{3333} \\ \mathbb{A}_{3311} & \mathbb{A}_{3312} & \mathbb{A}_{3332} & \mathbb{A}_{3323} & \mathbb{A}_{33331} & \mathbb{A}_{3332} \\ \mathbb{A}_{3311} & \mathbb{A}_{3312} & \mathbb{A}_{3331} & \mathbb{A}_{3322} & \mathbb{A}_{3323} & \mathbb{A}_{3333} \\ \mathbb{A}_{3311} & \mathbb{A}_{3312} & \mathbb{A}_{3332} & \mathbb{A}_{3332} \\ \mathbb{A}_{33311} & \mathbb{A}_{3312} & \mathbb{A}_{3332} & \mathbb{A}_{33331} \\ \mathbb{A}_{3322} & \mathbb{A}_{33331} & \mathbb{A}_{3332} & \mathbb{A}_{3333} \\ \mathbb{A}_{33311} & \mathbb{A}_{3332} & \mathbb{A}_{3332} \\ \mathbb{A}_{33311} & \mathbb{A}_{33321} & \mathbb{A}_{3322} & \mathbb{A}_{33333} \\ \mathbb{A}_{33311} & \mathbb{A}_{33321} & \mathbb{A}_{3322} \\ \mathbb{A}_{33321} & \mathbb{A}_{33321} & \mathbb{A}_{33321} & \mathbb{A}_{3332} \\ \mathbb{A}_{33331} & \mathbb{A}_{33332} & \mathbb{A}_{33333} \\ \mathbb{A}_{33311} & \mathbb{A}_{33321} & \mathbb{A}_{33321} \\ \mathbb{A}_{33321} & \mathbb{A}_{33321} & \mathbb{A}_{33322} \\ \mathbb{A}_{33331} & \mathbb{A}_{33332} & \mathbb{A}_{33333} \\ \mathbb{A}_{33331} & \mathbb{A}_{33331} \\ \mathbb{A}_{33311} & \mathbb{A}_{33321} & \mathbb{A}_{33321} \\ \mathbb{A}_{33321} & \mathbb{A}_{33333} \\ \mathbb{A}_{333311} & \mathbb{A}_{333321} & \mathbb{A}_{33333} \\ \mathbb{A}_{33331} & \mathbb{A}_{33332} & \mathbb{A}_{33333} \\ \mathbb{A}_{33331} & \mathbb{A}_{33331} & \mathbb{A}_{333333} \\ \mathbb{A}_{33331} & \mathbb{A}_{33333333}$$

Las matrices  $\mathbb{A}' = \mathbb{A}'_{9x9}$ ,  $\mathbb{B}' = \mathbb{B}'_{9x3}$  y  $\mathbb{C}' = \mathbb{C}'_{3x3}$  están dadas por:

$$\mathbb{A}' = \begin{pmatrix} -E_1^2 & -E_1E_2 & -E_1E_3 & -E_1E_2 & -E_2^2 & -E_2E_3 & -E_1E_3 & -E_2E_3 & -E_3^2 \\ -E_1E_2 & \frac{1}{2}(E_1^2 + E_2^2 - E_3^2) & E_2E_3 & \frac{1}{2}(E_3^2 - E_1^2 - E_2^2) & 0 & -E_1E_3 & -E_2E_3 & E_1E_3 & 0 \\ -E_1E_3 & E_2E_3 & \frac{1}{2}(E_1^2 - E_2^2 + E_3^2) & -E_2E_3 & 0 & E_1E_2 & \frac{1}{2}(E_2^2 - E_1^2 - E_3^2) & -E_1E_2 & 0 \\ -E_1E_2 & \frac{1}{2}(E_3^2 - E_1^2 - E_2^2) & -E_2E_3 & \frac{1}{2}(E_1^2 + E_2^2 - E_3^2) & 0 & -E_1E_3 & -E_2E_3 & -E_1E_3 & 0 \\ -E_2^2 & 0 & 0 & 0 & -E_2^2 & -E_2E_3 & -E_1E_3 & 0 & -E_2E_3 & -E_1E_3 & 0 \\ -E_2E_3 & -E_1E_3 & E_1E_2 & E_1E_3 & -E_2E_3 & \frac{1}{2}(E_2^2 - E_1^2 + E_3^2) & -E_1E_2 & \frac{1}{2}(E_1^2 - E_2^2 - E_3^2) & 0 \\ -E_2E_3 & -E_1E_3 & \frac{1}{2}(E_2^2 - E_1^2 - E_3^2) & E_2E_3 & -E_1E_3 & -E_1E_2 & \frac{1}{2}(E_1^2 - E_2^2 - E_3^2) & 0 \\ -E_2E_3 & E_1E_3 & -E_1E_2 & -E_1E_3 & -E_2E_3 & \frac{1}{2}(E_2^2 - E_1^2 - E_2^2) & E_1E_2 & 0 \\ -E_2E_3 & E_1E_3 & -E_1E_2 & -E_1E_3 & -E_1E_3 & -E_1E_2 & \frac{1}{2}(E_1^2 - E_2^2 - E_3^2) & 0 \\ -E_2E_3 & E_1E_3 & -E_1E_2 & -E_1E_3 & -E_2E_3 & \frac{1}{2}(E_2^2 - E_1^2 - E_3^2) & E_1E_2 & 0 \\ -E_2E_3 & E_1E_3 & -E_1E_2 & -E_1E_3 & -E_2E_3 & \frac{1}{2}(E_1^2 - E_2^2 - E_3^2) & E_1E_2 & 0 \\ -E_2E_3 & E_1E_3 & -E_1E_2 & -E_1E_3 & -E_2E_3 & \frac{1}{2}(E_1^2 - E_2^2 - E_3^2) & 0 \\ -E_2E_3 & E_1E_3 & -E_1E_2 & -E_1E_3 & -E_2E_3 & \frac{1}{2}(E_1^2 - E_2^2 - E_3^2) & 0 \\ -E_2E_3 & E_1E_3 & -E_1E_2 & -E_1E_3 & -E_2E_3 & \frac{1}{2}(E_1^2 - E_2^2 - E_3^2) & 0 \\ -E_2E_3 & E_1E_3 & -E_1E_2 & -E_1E_3 & -E_2E_3 & \frac{1}{2}(E_1^2 - E_2^2 - E_3^2) & 0 \\ -E_2E_3 & E_1E_3 & -E_1E_2 & -E_1E_3 & -E_2E_3 & \frac{1}{2}(E_1^2 - E_2^2 - E_3^2) & 0 \\ -E_2E_3 & E_1E_3 & -E_1E_2 & -E_1E_3 & -E_2E_3 & \frac{1}{2}(E_1^2 - E_2^2 - E_3^2) & 0 \\ -E_2E_3 & 0 & 0 & 0 & -E_3^2 & 0 & 0 \\ -E_3 & 0 & 0 & 0 & -E_3^2 & 0 & 0 \\ -E_3 & 0 & 0 & 0 & -E_3^2 & 0 & 0 \\ \end{array}$$

$$\mathbb{B}' = \begin{pmatrix}
E_1 & -E_2 & -E_3 \\
E_2 & E_1 & 0 \\
E_3 & 0 & E_1 \\
E_2 & E_1 & 0 \\
-E_1 & E_2 & -E_3 \\
0 & E_3 & E_2 \\
E_3 & 0 & E_1 \\
0 & E_3 & E_2 \\
-E_1 & -E_2 & E_3
\end{pmatrix},$$
(3.86)
$$\mathbb{C}' = -\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.$$
(3.87)

La ecuación 3.77 se satisface si los valores propios de  $\mathbb{M} \ge \mathbb{M}'$  son mayores o iguales a cero. Si la matriz es simétrica, se sabe que los valores propios son reales.

Entonces, si se tienen soluciones exactas para los problemas de valor de frontera, con estas soluciones se pueden evaluar en  $\mathbb{M}$  y  $\mathbb{M}'$  y estudiar el comportamiento de los valores propios en particular en función de la magnitud de las deformaciones y/o del campo eléctrico aplicado. Es decir, si  $\lambda$  y  $\lambda'$  son los valores propios de  $\mathbb{M}$  y  $\mathbb{M}'$  calculados de:

$$det(\mathbb{M} - \lambda \mathbb{I}) = 0, \qquad det(\mathbb{M}' - \lambda' \mathbb{I}) = 0, \tag{3.88}$$

donde  $\mathbb{I} = \mathbb{I}_{12x12}$  es la matriz identidad, la configuración es estable si se obtiene que todos los valores propios de la matriz  $\mathbb{M} \ y \ \mathbb{M}'$  son iguales o mayores a cero, pero si todos son negativos se obtiene una configuración inestable. En el caso de que existan valores propios positivos y negativos en la matriz  $\mathbb{M} \ y \ \mathbb{M}'$  la configuración es denominada en equilibrio neutro.

## Problemas a Estudiar

En esta capítulo se estudia el comportamiento de la segunda variación para el funcional asociado a la formulación variacional para estos materiales electroelásticos para tres problemas de valor de frontera por medio del software Mathematica, para los cuales se tienen diferentes geometrías base y diferentes funciones de Energía Libre.

Cada geometría base se estudia para las dos funciones de Energía Libre con lo cual se tienen seis problemas en total. Sólo la primera de estas geometrías se considera como un caso compresible, mientras las otras dos se consideran como un caso incompresible.

#### 4.1. Funciones de Energía Libre

• Primera Función de Energía Libre Caso Compresible:

$$\Omega = \frac{1}{4}\mu(0)[(1+\gamma)(I_1I_3^{-1/3}-3) + (1-\gamma)(I_2I_3^{-2/3}-3)] + \varepsilon_o(\alpha I_4 + \beta I_5I_3^{-1/3}) + \frac{1}{2}\kappa(I_3^{1/2}-1)^2, \quad (4.1)$$

donde  $\mu(0), \, \alpha, \, \beta, \, \gamma$ ,  $\kappa$  son constantes, y sus valores se expresan en la tabla 1.

• Primera Función de Energía Libre Caso Incompresible:

$$\Omega = \frac{1}{4}\mu(0)[(1+\gamma)(I_1-3) + (1-\gamma)(I_2-3)] + \varepsilon_o(\alpha I_4 + \beta I_5),$$
(4.2)

donde  $\mu(0), \alpha, \beta, \gamma$  son constantes, y sus valores se expresan en la tabla 1.

• Segunda Función de Energía Libre Caso Compresible:

$$\Omega = \left(\frac{I_1 I_3^{-1/3} - 3}{2}\right) (g_0 + g_1 I_4) - \log\left[\cosh\left(\frac{\sqrt{I_4}}{m_1}\right)\right] m_0 m_1 - \frac{1}{2}\zeta_o I_4 + \frac{1}{2}\varepsilon_o I_5 I_3^{-1/3} + \frac{1}{2}\kappa (I_3^{1/2} - 1)^2,$$

$$\tag{4.3}$$

donde  $g_0, g_1, m_0, m_1, \zeta_o$  y  $\kappa$  son constantes, y sus valores se expresan en la tabla 2.

• Segunda Función de Energía Libre Caso Incompresible:

$$\Omega = \left(\frac{I_1 - 3}{2}\right)\left(g_0 + g_1 I_4\right) - \log\left[\cosh\left(\frac{\sqrt{I_4}}{m_1}\right)\right] m_0 m_1 - \frac{1}{2}\zeta_o I_4 + \frac{1}{2}\varepsilon_o I_5,\tag{4.4}$$

donde  $g_0, g_1, m_0, m_1 \neq \zeta_o$  son constantes, y sus valores se expresan en la tabla 2.

Los valores de las constantes de las Funciones de Energía Libre se obtuvieron de forma muy aproximada de la poca información experimental [11]. Para eso se asumió un cilindro en tracción/compresión como se observa en la figura 6, donde  $\sigma$  sería el esfuerzo total de tracción/compresión,  $\lambda_z$  el alargamiento/acortamiento, y  $E_o$  sería el campo eléctrico uniforme axial aplicado en el cilindro.



Figura 6: Cilindro en Tracción/Compresión

Sus valores se presentan en las tablas 1 y 2, y sus comportamientos se puede observar en las figuras 7 - 8 y 9 - 10.

Tabla 1: Valores de las Constantes de la Primera Función de Energía Libre

| Constante       | Valor                   | Unidad                    |
|-----------------|-------------------------|---------------------------|
| $\mu(0)$        | $3.92 \cdot 10^5$       | [Pa]                      |
| $\alpha$        | $6 \cdot 10^{3}$        | $[N^2 m^2 A^{-2} C^{-2}]$ |
| $\beta$         | $-10^{4}$               | $[N^2 m^2 A^{-2} C^{-2}]$ |
| $\gamma$        | 1                       |                           |
| $\kappa$        | $10^{9}$                | [Pa]                      |
| $\varepsilon_o$ | $8.8419 \cdot 10^{-12}$ | $[C^2 N^{-1} m^{-2}]$     |



Figura 7: Primera Función de Energía Libre ( $\sigma$  vs  $\varepsilon$ )



Figura 8: Primera Función de Energía Libre (D vs  $E_o$ )

Tabla 2: Valores de las Constantes de la Segunda Función de Energía Libre

| Constante       | Valor                   | Unidad                   |
|-----------------|-------------------------|--------------------------|
| $g_0$           | $3.92 \cdot 10^5$       | [Pa]                     |
| $g_1$           | $-10^{-8}$              | $[Pa A^{-2}m^2]$         |
| $m_0$           | $3 \cdot 10^{-2}$       | [T]                      |
| $m_1$           | $0.2 \cdot 10^{6}$      | $[{\rm A} {\rm m}^{-1}]$ |
| $\zeta_o$       | $10^{-10}$              | $[Pa A^{-2}m^2]$         |
| $\kappa$        | $10^{9}$                | [Pa]                     |
| $\varepsilon_o$ | $8.8419 \cdot 10^{-12}$ | $[C^2 N^{-1} m^{-2}]$    |



Figura 9: Segunda Función de Energía Libre ( $\sigma$  vs  $\varepsilon$ )



Figura 10: Segunda Función de Energía Libre  $(D \text{ vs } E_o)$ 

#### 4.2. Geometrías Base

**•** Caso 1:

La extensión homogénea de un espacio semi-infinito. En la figura 11 está la descripción del problema, el cual asume una deformación:

$$x_1 = \lambda X_1, \qquad x_2 = \lambda^{-1} X_2, \qquad x_3 = X_3,$$
(4.5)

donde  $-\infty \leq X_1 \leq \infty, X_2 \leq 0$  y  $-\infty \leq X_3 \leq \infty$ , y se asume la presencia de un campo eléctrico uniforme  $\mathbf{E} = Ee_2$ .



Figura 11: Espacio semi-infinito

• Caso 2:

La extensión e inflación de un tubo (ver figura 12), con  $a \le r \le b$ ,  $0 \le \theta \le 2\pi$ , dada por [2]:

$$r^{2} = a^{2} + \lambda_{z}^{-1} (R^{2} - A^{2}), \quad \theta = \Theta, \quad z = \lambda_{z} Z,$$
(4.6)

donde A, B son los radios iniciales interior y exterior,  $0 \le z \le L$ , L es el largo inicial con  $L >> B \ge 0 \le \Theta \le 2\pi$ , y asumiendo  $rD_r = constante$ ,  $E_z = constante$ , donde  $D_z$ ,  $E_r$ depende de r.



Figura 12: Tubo (vista frontal)

• Caso 3:

La inflación de una esfera de pared gruesa, donde  $A \leq R \leq B$ ,  $0 \leq \Theta \leq \pi$ ,  $0 \leq \Phi \leq 2\pi$ , y la deformación está dada por [2]:

$$r^{3} = R^{3} + a^{3} - A^{3}, \quad \theta = \Theta, \quad \phi = \Phi,$$
 (4.7)

y donde se asume  $E_r = E_r(r), D_r = D_r(r), \text{ con } r^2 D_r = constante.$ 

## Memoria de Cálculo

La configuración estable o inestable de estos materiales se puede determinar conociendo la matriz M de la ecuación 3.78, la cual considera las segundas derivadas de las funciones de energía libre con respecto al tensor de deformación y campo eléctrico Lagrangiano, además del campo eléctrico que actúa en el material y la presión. Para esto es necesario encontrar las expresiones a ocupar para determinar los valores propios de M.

#### 5.1. Derivadas Generales de la Función de Energía Libre

La función de energía libre  $\Omega$  depende de los invariantes (definidos en 3.53 - 3.58), los cuales pueden depender del tensor de deformación y del campo eléctrico Lagrangiano:

$$\Omega = \Omega(I_i) = \Omega(I_i(\mathbf{F}, \mathbf{E}_l)), \tag{5.1}$$

con i=1....6.

Se deriva la función de energía libre en términos del gradiente de deformación considerando los 6 invariantes con la regla de la cadena:

$$\frac{\partial\Omega}{\partial F_{i\alpha}} = \frac{\partial\Omega}{\partial I_1}\frac{\partial I_1}{\partial F_{i\alpha}} + \frac{\partial\Omega}{\partial I_2}\frac{\partial I_2}{\partial F_{i\alpha}} + \frac{\partial\Omega}{\partial I_3}\frac{\partial I_3}{\partial F_{i\alpha}} + \frac{\partial\Omega}{\partial I_4}\frac{\partial I_4}{\partial F_{i\alpha}} + \frac{\partial\Omega}{\partial I_5}\frac{\partial I_5}{\partial F_{i\alpha}} + \frac{\partial\Omega}{\partial I_6}\frac{\partial I_6}{\partial F_{i\alpha}}.$$
 (5.2)

Pero el invariante 4 no depende del tensor de deformación, y para las funciones de energía libre a ocupar no se considera el invariante 6 (ver sección 4.1), por lo cual esta derivada se puede expresar como:

$$\frac{\partial\Omega}{\partial F_{i\alpha}} = \frac{\partial\Omega}{\partial I_1} \frac{\partial I_1}{\partial F_{i\alpha}} + \frac{\partial\Omega}{\partial I_2} \frac{\partial I_2}{\partial F_{i\alpha}} + \frac{\partial\Omega}{\partial I_3} \frac{\partial I_3}{\partial F_{i\alpha}} + \frac{\partial\Omega}{\partial I_5} \frac{\partial I_5}{\partial F_{i\alpha}}.$$
(5.3)

Derivando por segunda vez en términos del gradiente de deformación se logra obtener:

$$\frac{\partial^{2}\Omega}{\partial F_{i\alpha}\partial F_{j\beta}} = \frac{\partial^{2}\Omega}{\partial I_{1}^{2}} \frac{\partial I_{1}}{\partial F_{i\alpha}} \frac{\partial I_{1}}{\partial F_{j\beta}} + \frac{\partial^{2}\Omega}{\partial I_{1}\partial I_{2}} \left( \frac{\partial I_{1}}{\partial F_{i\alpha}} \frac{\partial I_{2}}{\partial F_{j\beta}} + \frac{\partial I_{2}}{\partial F_{i\alpha}} \frac{\partial I_{1}}{\partial F_{j\beta}} \right) + \frac{\partial^{2}\Omega}{\partial I_{1}\partial I_{3}} \left( \frac{\partial I_{1}}{\partial F_{i\alpha}} \frac{\partial I_{3}}{\partial F_{j\beta}} + \frac{\partial I_{3}}{\partial F_{j\beta}} \frac{\partial I_{1}}{\partial F_{j\beta}} \right) + \frac{\partial^{2}\Omega}{\partial I_{2}} \left( \frac{\partial I_{1}}{\partial F_{i\alpha}} \frac{\partial I_{5}}{\partial F_{j\beta}} + \frac{\partial I_{5}}{\partial F_{j\beta}} \frac{\partial I_{1}}{\partial F_{j\beta}} \right) + \frac{\partial^{2}\Omega}{\partial I_{2}^{2}} \frac{\partial I_{2}}{\partial F_{i\alpha}} \frac{\partial I_{2}}{\partial F_{j\beta}} + \frac{\partial I_{3}}{\partial F_{j\beta}} \frac{\partial I_{2}}{\partial F_{i\alpha}} \frac{\partial I_{2}}{\partial F_{j\beta}} + \frac{\partial I_{5}}{\partial F_{j\beta}} \frac{\partial I_{1}}{\partial F_{i\alpha}} \frac{\partial I_{5}}{\partial F_{j\beta}} + \frac{\partial I_{5}}{\partial F_{j\beta}} \frac{\partial I_{1}}{\partial F_{i\alpha}} \frac{\partial I_{5}}{\partial F_{j\beta}} + \frac{\partial I_{5}}{\partial F_{j\beta}} \frac{\partial I_{5}}{\partial I_{2}} \frac{\partial I_{5}}{\partial F_{j\beta}} + \frac{\partial I_{5}}{\partial F_{j\beta}} \frac{\partial I_{2}}{\partial I_{2}} \frac{\partial I_{5}}{\partial F_{j\beta}} + \frac{\partial I_{5}}{\partial F_{j\beta}} \frac{\partial I_{5}}{\partial F_{j\beta}} + \frac{\partial I_{5}}{\partial I_{5}} \frac{\partial I_{5}}{\partial F_{$$

Derivando la ecuación 5.3 en términos del campo eléctrico Lagrangiano se obtiene:

$$\frac{\partial^{2}\Omega}{\partial F_{i\alpha}\partial E_{l_{\beta}}} = \frac{\partial^{2}\Omega}{\partial I_{1}\partial I_{4}} \frac{\partial I_{1}}{\partial F_{i\alpha}} \frac{\partial I_{4}}{\partial E_{l_{\beta}}} + \frac{\partial^{2}\Omega}{\partial I_{1}\partial I_{5}} \frac{\partial I_{1}}{\partial F_{i\alpha}} \frac{\partial I_{5}}{\partial E_{l_{\beta}}} + \frac{\partial^{2}\Omega}{\partial I_{2}\partial I_{4}} \frac{\partial I_{2}}{\partial F_{i\alpha}} \frac{\partial I_{4}}{\partial E_{l_{\beta}}} + \frac{\partial^{2}\Omega}{\partial I_{2}\partial I_{5}} \frac{\partial I_{5}}{\partial E_{l_{\beta}}} + \frac{\partial^{2}\Omega}{\partial I_{5}} \frac{\partial^{2}I_{5}}{\partial E_{l_{\beta}}} + \frac{\partial^{2}\Omega}{\partial I_{$$

Ahora bien, se deriva la función de energía libre en términos del campo eléctrico Lagrangiano considerando los 6 invariantes con la regla de la cadena:

$$\frac{\partial\Omega}{\partial E_{l_{\alpha}}} = \frac{\partial\Omega}{\partial I_{1}}\frac{\partial I_{1}}{\partial E_{l_{\alpha}}} + \frac{\partial\Omega}{\partial I_{2}}\frac{\partial I_{2}}{\partial E_{l_{\alpha}}} + \frac{\partial\Omega}{\partial I_{3}}\frac{\partial I_{3}}{\partial E_{l_{\alpha}}} + \frac{\partial\Omega}{\partial I_{4}}\frac{\partial I_{4}}{\partial E_{l_{\alpha}}} + \frac{\partial\Omega}{\partial I_{5}}\frac{\partial I_{5}}{\partial E_{l_{\alpha}}} + \frac{\partial\Omega}{\partial I_{6}}\frac{\partial I_{6}}{\partial E_{l_{\alpha}}}, \quad (5.6)$$

pero sólo los invariantes 4, 5 y 6 dependen del campo eléctrico Lagrangiano, donde el último no se considera para las funciones de energía libre a estudiar (ver sección 4.1), por lo cual esta derivada se puede expresar como:

$$\frac{\partial\Omega}{\partial E_{l_{\alpha}}} = \frac{\partial\Omega}{\partial I_4} \frac{\partial I_4}{\partial E_{l_{\alpha}}} + \frac{\partial\Omega}{\partial I_5} \frac{\partial I_5}{\partial E_{l_{\alpha}}}.$$
(5.7)

Derivando por segunda vez en términos del campo eléctrico Lagrangiano se logra obtener:

$$\frac{\partial^2 \Omega}{\partial E_{l_{\alpha}} \partial E_{l_{\beta}}} = \frac{\partial^2 \Omega}{\partial I_4^2} \frac{\partial I_4}{\partial E_{l_{\alpha}}} \frac{\partial I_4}{\partial E_{l_{\beta}}} + \frac{\partial^2 \Omega}{\partial I_4 \partial I_5} \left( \frac{\partial I_4}{\partial E_{l_{\alpha}}} \frac{\partial I_5}{\partial E_{l_{\beta}}} + \frac{\partial I_5}{\partial E_{l_{\alpha}}} \frac{\partial I_4}{\partial E_{l_{\beta}}} \right) + \frac{\partial^2 \Omega}{\partial I_5^2} \frac{\partial I_5}{\partial E_{l_{\alpha}}} \frac{\partial I_5}{\partial E_{l_{\beta}}} + \frac{\partial \Omega}{\partial I_4} \frac{\partial^2 I_4}{\partial E_{l_{\alpha}} \partial E_{l_{\beta}}} + \frac{\partial \Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial E_{l_{\alpha}} \partial E_{l_{\beta}}}.$$
(5.8)

#### 5.2. Derivadas de los Invariantes

Considerando los 5 invariantes que se ocupan en los casos a estudiar se obtienen sus derivadas con respecto al tensor de deformación y campo eléctrico Lagrangiano.

#### 5.2.1. Primer Invariante

El Primer Invariante se expresa como:

$$I_1 = tr \mathbf{c},\tag{5.9}$$

y en notación indicial como:

$$I_1 = c_{\gamma\gamma} = F_{k\gamma} F_{k\gamma}. \tag{5.10}$$

Se deriva con respecto al tensor de deformación, se despejan los índices y se obtiene:

$$\frac{\partial I_1}{\partial F_{i\alpha}} = \frac{\partial (F_{k\gamma}F_{k\gamma})}{\partial F_{i\alpha}} = 2\frac{\partial F_{k\gamma}}{\partial F_{i\alpha}}F_{k\gamma} = 2\delta_{ki}\delta_{\gamma\alpha}F_{k\gamma} = 2F_{i\alpha},\tag{5.11}$$

luego se deriva otra vez con respecto al tensor de deformación y se obtiene:

$$\frac{\partial^2 I_1}{\partial F_{i\alpha} \partial F_{j\beta}} = \frac{\partial}{\partial F_{j\beta}} \left( \frac{\partial I_1}{\partial F_{i\alpha}} \right) = 2 \frac{\partial F_{i\alpha}}{\partial F_{j\beta}} = 2\delta_{ij}\delta_{\alpha\beta}.$$
(5.12)

#### 5.2.2. Segundo Invariante

El Segundo Invariante se expresa como:

$$I_2 = \frac{1}{2} \left[ I_1^2 - tr \left( \mathbf{c}^2 \right) \right], \tag{5.13}$$

y en notación indicial como:

$$I_2 = \frac{1}{2} \left[ c_{\gamma\gamma} c_{\delta\delta} - c_{\gamma\delta} c_{\delta\gamma} \right] = \frac{1}{2} \left[ F_{k\gamma} F_{k\gamma} F_{q\delta} F_{q\delta} - F_{k\gamma} F_{k\delta} F_{q\delta} F_{q\gamma} \right].$$
(5.14)

Se deriva con respecto al tensor de deformación:

$$\frac{\partial I_2}{\partial F_{i\alpha}} = \frac{1}{2} \left[ 2 \frac{\partial F_{k\gamma}}{\partial F_{i\alpha}} F_{k\gamma} F_{q\delta} F_{q\delta} + 2F_{k\gamma} F_{k\gamma} \frac{\partial F_{q\delta}}{\partial F_{i\alpha}} F_{q\delta} - \frac{\partial F_{k\gamma}}{\partial F_{i\alpha}} F_{k\delta} F_{q\delta} F_{q\gamma} - F_{k\gamma} \frac{\partial F_{k\delta}}{\partial F_{i\alpha}} F_{q\gamma} - F_{k\gamma} F_{k\delta} \frac{\partial F_{q\delta}}{\partial F_{i\alpha}} F_{q\gamma} - F_{k\gamma} F_{k\delta} F_{q\delta} \frac{\partial F_{q\gamma}}{\partial F_{i\alpha}} \right],$$
(5.15)

se resuelven las derivadas internas y se despejan los índices:

$$\frac{\partial I_2}{\partial F_{i\alpha}} = \frac{1}{2} [2\delta_{ki}\delta_{\gamma\alpha}F_{k\gamma}F_{q\delta}F_{q\delta} + 2F_{k\gamma}F_{k\gamma}\delta_{qi}\delta_{\delta\alpha}F_{q\delta} - \delta_{ki}\delta_{\gamma\alpha}F_{k\delta}F_{q\delta}F_{q\gamma} - F_{k\gamma}\delta_{ki}\delta_{\delta\alpha}F_{q\delta} - F_{k\gamma}F_{k\delta}\delta_{qi}\delta_{\delta\alpha}F_{q\gamma} - F_{k\gamma}F_{k\delta}F_{q\delta}\delta_{qi}\delta_{\gamma\alpha}], \qquad (5.16)$$

$$\frac{\partial I_2}{\partial F_{i\alpha}} = \frac{1}{2} [2F_{i\alpha}F_{q\delta}F_{q\delta} + 2F_{k\gamma}F_{k\gamma}F_{i\alpha} - F_{i\delta}F_{q\delta}F_{q\alpha} - F_{i\gamma}F_{q\alpha}F_{q\gamma} - F_{k\gamma}F_{k\alpha}F_{i\gamma} - F_{k\alpha}F_{k\delta}F_{i\delta}], \qquad (5.17)$$

considerando  $\gamma$  y  $\delta$  como índices mudos se despeja y se obtiene:

$$\frac{\partial I_2}{\partial F_{i\alpha}} = \frac{1}{2} [2F_{i\alpha}c_{\delta\delta} + 2c_{\gamma\gamma}F_{i\alpha} - F_{i\delta}c_{\delta\alpha} - F_{i\gamma}c_{\alpha\gamma} - c_{\gamma\alpha}F_{i\gamma} - c_{\alpha\delta}F_{i\delta}], \qquad (5.18)$$

$$\frac{\partial I_2}{\partial F_{i\alpha}} = \frac{1}{2} [4F_{i\alpha}c_{\gamma\gamma} - 4F_{i\gamma}c_{\gamma\alpha}] = 2[F_{i\alpha}c_{\gamma\gamma} - F_{i\gamma}c_{\gamma\alpha}].$$
(5.19)

Se deriva la ecuación 5.19 con respecto al tensor de deformación:

$$\frac{\partial^2 I_2}{\partial F_{i\alpha} \partial F_{j\beta}} = \frac{\partial}{\partial F_{j\beta}} \left( \frac{\partial I_2}{\partial F_{i\alpha}} \right) = 2 \frac{\partial (F_{i\alpha} c_{\gamma\gamma} - F_{i\gamma} c_{\gamma\alpha})}{\partial F_{j\beta}}, \tag{5.20}$$

$$\frac{\partial^2 I_2}{\partial F_{i\alpha} \partial F_{j\beta}} = 2 \left( \frac{\partial F_{i\alpha}}{\partial F_{j\beta}} c_{\gamma\gamma} + F_{i\alpha} \frac{\partial c_{\gamma\gamma}}{\partial F_{j\beta}} - \frac{\partial F_{i\gamma}}{\partial F_{j\beta}} c_{\gamma\alpha} - F_{i\gamma} \frac{\partial c_{\gamma\alpha}}{\partial F_{j\beta}} \right), \tag{5.21}$$

$$\frac{\partial^2 I_2}{\partial F_{i\alpha} \partial F_{j\beta}} = 2 \left( \frac{\partial F_{i\alpha}}{\partial F_{j\beta}} c_{\gamma\gamma} + 2F_{i\alpha} \frac{\partial F_{k\gamma}}{\partial F_{j\beta}} F_{k\gamma} - \frac{\partial F_{i\gamma}}{\partial F_{j\beta}} c_{\gamma\alpha} - F_{i\gamma} \frac{\partial F_{k\gamma}}{\partial F_{j\beta}} F_{k\alpha} - F_{i\gamma} F_{k\gamma} \frac{\partial F_{k\alpha}}{\partial F_{j\beta}} \right), \quad (5.22)$$

se resuelven las derivadas internas:

$$\frac{\partial^2 I_2}{\partial F_{i\alpha} \partial F_{j\beta}} = 2(\delta_{ij} \delta_{\alpha\beta} c_{\gamma\gamma} + 2F_{i\alpha} \delta_{kj} \delta_{\gamma\beta} F_{k\gamma} - \delta_{ij} \delta_{\gamma\beta} c_{\gamma\alpha} - F_{i\gamma} \delta_{kj} \delta_{\gamma\beta} F_{k\alpha} - F_{i\gamma} F_{k\gamma} \delta_{kj} \delta_{\alpha\beta}), \quad (5.23)$$

se despejan los índices y se obtiene:

$$\frac{\partial^2 I_2}{\partial F_{i\alpha} \partial F_{j\beta}} = 2(\delta_{ij} \delta_{\alpha\beta} c_{\gamma\gamma} + 2F_{i\alpha} F_{j\beta} - \delta_{ij} c_{\beta\alpha} - F_{i\beta} F_{j\alpha} - F_{i\gamma} F_{j\gamma} \delta_{\alpha\beta}).$$
(5.24)

#### 5.2.3. Tercer Invariante

El Tercer Invariante se expresa como:

$$I_3 = \det \mathbf{c} = J^2, \tag{5.25}$$

y su primera derivada parcial con respecto al tensor de deformación es [12]:

$$\frac{\partial I_3}{\partial \mathbf{F}} = 2I_3 \mathbf{F}^{-1},\tag{5.26}$$

la cual en notación indicial es:

$$\frac{\partial I_3}{\partial F_{i\alpha}} = 2I_3 F_{\alpha i}^{-1},\tag{5.27}$$

donde  $F_{\alpha i}^{-1}$  es la componente  $(\alpha, i)$  del Tensor  $\mathbf{F}^{-1}$ .

Se deriva la ecuación 5.27 con respecto al tensor de deformación:

$$\frac{\partial^2 I_3}{\partial F_{i\alpha} \partial F_{j\beta}} = \frac{\partial}{\partial F_{j\beta}} \left( \frac{\partial I_3}{\partial F_{i\alpha}} \right) = 2 \frac{\partial (I_3 F_{\alpha i}^{-1})}{\partial F_{j\beta}} = 2 \frac{\partial I_3}{\partial F_{j\beta}} F_{\alpha i}^{-1} + 2I_3 \frac{\partial F_{\alpha i}^{-1}}{\partial F_{j\beta}}, \tag{5.28}$$

donde el primer término se conoce por la ecuación 5.27, entonces se reemplaza y se obtiene:

$$\frac{\partial^2 I_3}{\partial F_{i\alpha} \partial F_{j\beta}} = 4I_3 F_{\beta j}^{-1} F_{\alpha i}^{-1} + 2I_3 \frac{\partial F_{\alpha i}^{-1}}{\partial F_{j\beta}}, \tag{5.29}$$

pero el segundo término es necesario calcularlo, y para eso se tiene que:

$$\mathbf{F}^{-1}\mathbf{F} = \mathbf{I},\tag{5.30}$$

donde la derivada de esto se expresa como:

$$\frac{\partial(\mathbf{F}^{-1}\mathbf{F})}{\partial\mathbf{F}} = \frac{\partial\mathbf{I}}{\partial\mathbf{F}} = \mathbf{0},\tag{5.31}$$

la cual en notación indicial se puede escribir como:

$$\frac{\partial (F_{\alpha k}^{-1} F_{k\gamma})}{\partial F_{j\beta}} = 0, \qquad (5.32)$$

separando ambas derivadas se tiene:

$$\frac{\partial F_{\alpha k}^{-1}}{\partial F_{j\beta}}F_{k\gamma} + F_{\alpha k}^{-1}\frac{\partial F_{k\gamma}}{\partial F_{j\beta}} = 0, \qquad (5.33)$$

pasando uno de los términos al otro lado y multiplicando por  $F_{\gamma i}^{-1}$  por ambos lados se tiene:

$$\frac{\partial F_{\alpha k}^{-1}}{\partial F_{j\beta}} F_{k\gamma} = -F_{\alpha k}^{-1} \delta_{kj} \delta_{\gamma\beta}, \qquad (5.34)$$

$$\frac{\partial F_{\alpha k}^{-1}}{\partial F_{j\beta}} F_{k\gamma} F_{\gamma i}^{-1} = -F_{\alpha k}^{-1} F_{\gamma i}^{-1} \delta_{kj} \delta_{\gamma\beta}, \qquad (5.35)$$

despejando los tensores de deformación y despejando los índices se tiene:

$$\frac{\partial F_{\alpha k}^{-1}}{\partial F_{j\beta}}\delta_{ki} = -F_{\alpha j}^{-1}F_{\beta i}^{-1},\tag{5.36}$$

$$\frac{\partial F_{\alpha i}^{-1}}{\partial F_{j\beta}} = -F_{\alpha j}^{-1}F_{\beta i}^{-1},\tag{5.37}$$

reemplazando este valor en la ecuación 5.29 se obtiene finalmente que:

$$\frac{\partial^2 I_3}{\partial F_{i\alpha} \partial F_{j\beta}} = 4I_3 F_{\beta j}^{-1} F_{\alpha i}^{-1} - 2I_3 F_{\alpha j}^{-1} F_{\beta i}^{-1}.$$
(5.38)

#### 5.2.4. Cuarto Invariante

El Cuarto Invariante se expresa como:

$$I_4 = \mid \mathbf{E}_l \mid^2, \tag{5.39}$$

y en notación indicial como:

$$I_4 = E_{l_\gamma} E_{l_\gamma}. \tag{5.40}$$

Se deriva con respecto al campo eléctrico Lagrangiano, se despejan los índices y se obtiene:

$$\frac{\partial I_4}{\partial E_{l_\alpha}} = 2 \frac{\partial E_{l_\gamma}}{\partial E_{l_\alpha}} E_{l_\gamma} = 2\delta_{\gamma\alpha} E_{l_\gamma} = 2E_{l_\alpha},\tag{5.41}$$

luego se deriva otra vez con respecto al campo eléctrico Lagrangiano y se obtiene:

$$\frac{\partial^2 I_4}{\partial E_{l_\alpha} \partial E_{l_\beta}} = \frac{\partial}{\partial E_{l_\beta}} \left( \frac{\partial I_4}{\partial E_{l_\alpha}} \right) = 2 \frac{\partial E_{l_\alpha}}{\partial E_{l_\beta}} = 2\delta_{\alpha\beta}.$$
(5.42)

#### 5.2.5. Quinto Invariante

El Quinto Invariante se expresa como:

$$I_5 = \mathbf{E}_l \cdot (\mathbf{c}\mathbf{E}_l), \tag{5.43}$$

y en notación indicial como:

$$I_5 = E_{l_\delta} c_{\delta\gamma} E_{l_\gamma} = E_{l_\delta} F_{k\delta} F_{k\gamma} E_{l_\gamma}.$$
(5.44)

Se deriva con respecto al tensor de deformación:

$$\frac{\partial I_5}{\partial F_{i\alpha}} = E_{l_\delta} \frac{\partial F_{k\delta}}{\partial F_{i\alpha}} F_{k\gamma} E_{l_\gamma} + E_{l_\delta} F_{k\delta} \frac{\partial F_{k\gamma}}{\partial F_{i\alpha}} E_{l_\gamma}, \qquad (5.45)$$

se resuelven las derivadas internas:

$$\frac{\partial I_5}{\partial F_{i\alpha}} = E_{l_\delta} \delta_{ki} \delta_{\delta\alpha} F_{k\gamma} E_{l\gamma} + E_{l_\delta} F_{k\delta} \delta_{ki} \delta_{\gamma\alpha} E_{l\gamma}, \qquad (5.46)$$
se despejan los índices y se obtiene:

$$\frac{\partial I_5}{\partial F_{i\alpha}} = E_{l_\alpha} F_{i\gamma} E_{l_\gamma} + E_{l_\delta} F_{i\delta} E_{l_\alpha} = 2E_{l_\alpha} F_{i\gamma} E_{l_\gamma}.$$
(5.47)

Se deriva la ecuación 5.47 con respecto al tensor de deformación, se despejan los índices y se obtiene:

$$\frac{\partial^2 I_5}{\partial F_{i\alpha} \partial F_{j\beta}} = \frac{\partial}{\partial F_{j\beta}} \left( \frac{\partial I_5}{\partial F_{i\alpha}} \right) = 2E_{l\alpha} \frac{\partial F_{i\gamma}}{\partial F_{j\beta}} E_{l\gamma} = 2E_{l\alpha} \delta_{ij} \delta_{\gamma\beta} E_{l\gamma} = 2E_{l\alpha} \delta_{ij} E_{l\beta}.$$
(5.48)

Se deriva la ecuación 5.47 con respecto al campo eléctrico Lagrangiano, se despejan los índices y se obtiene:

$$\frac{\partial^2 I_5}{\partial F_{i\alpha} \partial E_{l_\beta}} = \frac{\partial}{\partial E_{l_\beta}} \left( \frac{\partial I_5}{\partial F_{i\alpha}} \right) = 2 \frac{\partial E_{l_\alpha}}{\partial E_{l_\beta}} F_{i\gamma} E_{l_\gamma} + 2 E_{l_\alpha} F_{i\gamma} \frac{\partial E_{l_\gamma}}{\partial E_{l_\beta}}, \tag{5.49}$$

$$\frac{\partial^2 I_5}{\partial F_{i\alpha} \partial E_{l_\beta}} = 2\delta_{\alpha\beta} F_{i\gamma} E_{l_\gamma} + 2E_{l_\alpha} F_{i\gamma} \delta_{\gamma\beta} = 2\delta_{\alpha\beta} F_{i\gamma} E_{l_\gamma} + 2E_{l_\alpha} F_{i\beta}.$$
(5.50)

Se deriva la ecuación 5.44 con respecto al campo eléctrico Lagrangiano, se despejan los índices y se obtiene:

$$\frac{\partial I_5}{\partial E_{l_{\alpha}}} = \frac{\partial E_{l_{\delta}}}{\partial E_{l_{\alpha}}} c_{\delta\gamma} E_{l_{\gamma}} + E_{l_{\delta}} c_{\delta\gamma} \frac{\partial E_{l_{\gamma}}}{\partial E_{l_{\alpha}}} = \delta_{\delta\alpha} c_{\delta\gamma} E_{l_{\gamma}} + E_{l_{\delta}} c_{\delta\gamma} \delta_{\gamma\alpha} = c_{\alpha\gamma} E_{l_{\gamma}} + E_{l_{\delta}} c_{\delta\alpha} = 2c_{\alpha\gamma} E_{l_{\gamma}}, \quad (5.51)$$

luego se deriva otra vez con respecto al campo eléctrico Lagrangiano y se obtiene:

$$\frac{\partial^2 I_5}{\partial E_{l_{\alpha}} \partial E_{l_{\beta}}} = \frac{\partial}{\partial E_{l_{\beta}}} \left( \frac{\partial I_5}{\partial E_{l_{\alpha}}} \right) = 2c_{\alpha\gamma} \frac{\partial E_{l_{\gamma}}}{\partial E_{l_{\beta}}} = 2c_{\alpha\gamma} \delta_{\gamma\beta} = 2c_{\alpha\beta}.$$
(5.52)

# 5.3. Derivadas Particulares de las Funciones de Energía Libre

Considerando las dos funciones de energía libre a estudiar es necesario determinar todas sus derivadas con respecto a los invariantes. Esto se realiza en cada caso de forma particular.

# 5.3.1. Primera Función de Energía Libre Caso Compresible

La Primera Función de Energía Libre en el caso compresible es:

$$\Omega = \frac{1}{4}\mu(0)[(1+\gamma)(I_1I_3^{-1/3} - 3) + (1-\gamma)(I_2I_3^{-2/3} - 3)] + \varepsilon_o(\alpha I_4 + \beta I_5I_3^{-1/3}) + \frac{1}{2}\kappa(I_3^{1/2} - 1)^2.$$
(5.53)

Las derivadas de esta Función de Energía son:

$$\frac{\partial\Omega}{\partial I_1} = \frac{1}{4}\mu(0)(1+\gamma)I_3^{-1/3},$$
(5.54)

$$\frac{\partial\Omega}{\partial I_2} = \frac{1}{4}\mu(0)(1-\gamma)I_3^{-2/3},\tag{5.55}$$

$$\frac{\partial\Omega}{\partial I_3} = \frac{1}{4}\mu(0)\left[-\frac{1}{3}(1+\gamma)I_1I_3^{-4/3} - \frac{2}{3}(1-\gamma)I_2I_3^{-5/3}\right] - \frac{1}{3}\varepsilon_o\beta I_5I_3^{-4/3} + \frac{1}{2}\kappa(I_3^{1/2}-1)I_3^{-1/2}, \quad (5.56)$$

$$\frac{\partial\Omega}{\partial I_4} = \varepsilon_o \alpha, \tag{5.57}$$

$$\frac{\partial\Omega}{\partial I_5} = \varepsilon_o \beta I_3^{-1/3},\tag{5.58}$$

$$\frac{\partial^2 \Omega}{\partial I_1 \partial I_3} = -\frac{1}{12} \mu(0)(1+\gamma) I_3^{-4/3}, \tag{5.59}$$

$$\frac{\partial^2 \Omega}{\partial I_2 \partial I_3} = -\frac{1}{6} \mu(0)(1-\gamma) I_3^{-5/3}, \tag{5.60}$$

$$\frac{\partial^2 \Omega}{\partial I_3^2} = \frac{1}{4} \mu(0) \left[ \frac{4}{9} (1+\gamma) I_1 I_3^{-7/3} + \frac{10}{9} (1-\gamma) I_2 I_3^{-8/3} \right] + \frac{4}{9} \varepsilon_o \beta I_5 I_3^{-7/3} + \frac{1}{4} \kappa I_3^{-3/2}, \tag{5.61}$$

$$\frac{\partial^2 \Omega}{\partial I_3 \partial I_5} = -\frac{1}{3} \varepsilon_o \beta I_3^{-4/3}.$$
(5.62)

# 5.3.2. Primera Función de Energía Libre Caso Incompresible

La Primera Función de Energía Libre en el caso incompresible es:

$$\Omega = \frac{1}{4}\mu(0)[(1+\gamma)(I_1-3) + (1-\gamma)(I_2-3)] + \varepsilon_o(\alpha I_4 + \beta I_5).$$
(5.63)

Las derivadas de esta Función de Energía son:

$$\frac{\partial\Omega}{\partial I_1} = \frac{1}{4}\mu(0)(1+\gamma),\tag{5.64}$$

$$\frac{\partial\Omega}{\partial I_2} = \frac{1}{4}\mu(0)(1-\gamma),\tag{5.65}$$

$$\frac{\partial\Omega}{\partial I_4} = \varepsilon_o \alpha, \tag{5.66}$$

$$\frac{\partial\Omega}{\partial I_5} = \varepsilon_o \beta. \tag{5.67}$$

# 5.3.3. Segunda Función de Energía Libre Caso Compresible

La Segunda Función de Energía Libre en el caso compresible es:

$$\Omega = \left(\frac{I_1 I_3^{-1/3} - 3}{2}\right) (g_0 + g_1 I_4) - \log\left[\cosh\left(\frac{\sqrt{I_4}}{m_1}\right)\right] m_0 m_1 - \frac{1}{2}\zeta_o I_4 + \frac{1}{2}\varepsilon_o I_5 I_3^{-1/3} + \frac{1}{2}\kappa (I_3^{1/2} - 1)^2.$$
(5.68)

Las derivadas de esta Función de Energía son:

$$\frac{\partial\Omega}{\partial I_1} = \frac{1}{2} I_3^{-1/3} (g_0 + g_1 I_4), \tag{5.69}$$

$$\frac{\partial\Omega}{\partial I_3} = -\frac{1}{6}I_1I_3^{-4/3}(g_0 + g_1I_4) - \frac{1}{6}\varepsilon_o I_5I_3^{-4/3} + \frac{1}{2}\kappa(I_3^{1/2} - 1)I_3^{-1/2},$$
(5.70)

$$\frac{\partial\Omega}{\partial I_4} = \left(\frac{I_1 I_3^{-1/3} - 3}{2}\right) g_1 - \frac{m_0}{2\sqrt{I_4}} tanh\left(\frac{\sqrt{I_4}}{m_1}\right) - \frac{\zeta_o}{2},\tag{5.71}$$

$$\frac{\partial\Omega}{\partial I_5} = \frac{\varepsilon_o}{2} I_3^{-1/3},\tag{5.72}$$

$$\frac{\partial^2 \Omega}{\partial I_1 \partial I_3} = -\frac{1}{6} I_3^{-4/3} (g_0 + g_1 I_4), \tag{5.73}$$

$$\frac{\partial^2 \Omega}{\partial I_1 \partial I_4} = \frac{1}{2} g_1 I_3^{-1/3}, \tag{5.74}$$

$$\frac{\partial^2 \Omega}{\partial I_3^2} = \frac{2}{9} I_1 I_3^{-7/3} (g_0 + g_1 I_4) + \frac{2}{9} \varepsilon_o I_5 I_3^{-7/3} + \frac{1}{4} \kappa I_3^{-3/2}, \tag{5.75}$$

$$\frac{\partial^2 \Omega}{\partial I_3 \partial I_4} = -\frac{1}{6} g_1 I_1 I_3^{-4/3}, \tag{5.76}$$

$$\frac{\partial^2 \Omega}{\partial I_3 \partial I_5} = -\frac{1}{6} \varepsilon_o I_3^{-4/3}, \tag{5.77}$$

$$\frac{\partial^2 \Omega}{\partial I_4^2} = \frac{m_0}{4m_1 I_4} sech^2 \left(\frac{\sqrt{I_4}}{m_1}\right) + \frac{m_0}{4I_4^{3/2}} tanh\left(\frac{\sqrt{I_4}}{m_1}\right).$$
(5.78)

# 5.3.4. Segunda Función de Energía Libre Caso Incompresible

La Segunda Función de Energía Libre en el caso incompresible es:

$$\Omega = \left(\frac{I_1 - 3}{2}\right)(g_0 + g_1 I_4) - \log\left[\cosh\left(\frac{\sqrt{I_4}}{m_1}\right)\right] m_0 m_1 - \frac{1}{2}\zeta_o I_4 + \frac{1}{2}\varepsilon_o I_5.$$
(5.79)

Las derivadas de esta Función de Energía son:

$$\frac{\partial\Omega}{\partial I_1} = \frac{1}{2}(g_0 + g_1 I_4),\tag{5.80}$$

$$\frac{\partial\Omega}{\partial I_4} = \left(\frac{I_1 - 3}{2}\right)g_1 - \frac{m_0}{2\sqrt{I_4}} tanh\left(\frac{\sqrt{I_4}}{m_1}\right) - \frac{\zeta_o}{2},\tag{5.81}$$

$$\frac{\partial\Omega}{\partial I_5} = \frac{\varepsilon_o}{2},\tag{5.82}$$

$$\frac{\partial^2 \Omega}{\partial I_1 \partial I_4} = \frac{g_1}{2},\tag{5.83}$$

$$\frac{\partial^2 \Omega}{\partial I_4^2} = \frac{m_0}{4m_1 I_4} sech^2 \left(\frac{\sqrt{I_4}}{m_1}\right) + \frac{m_0}{4I_4^{3/2}} tanh\left(\frac{\sqrt{I_4}}{m_1}\right).$$
(5.84)

#### 5.4. Cálculos en las Deformaciones

Considerando los diferentes casos de deformaciones que se presentan es necesario determinar las variables vectoriales y tensoriales de cada deformación, además del campo eléctrico y presión que se generan en el cuerpo.

#### 5.4.1. Caso 1: Deformación en un Medio Semi-Infinito

Se asume una deformación en un medio semi-infinito como:

$$x_1 = \lambda X_1, \qquad x_2 = \lambda^{-1} X_2, \qquad x_3 = X_3, \qquad \operatorname{con} \lambda > 0 \ \operatorname{constante}, \tag{5.85}$$

donde  $-\infty \leq X_1 \leq \infty, X_2 \leq 0$  y  $-\infty \leq X_3 \leq \infty$ , y se asume la presencia de un campo eléctrico uniforme  $\mathbf{E} = E_2$ .

Considerando las ecuaciones 3.1, 3.24 y 3.62 se determina el Tensor Gradiente de Deformación, el Tensor de Deformación de Cauchy-Green Derecho y el Tensor de Deformación de Cauchy-Green Izquierdo, respectivamente:

$$\mathbf{F} = \begin{pmatrix} \frac{\partial x_1}{\partial X_1} & \frac{\partial x_1}{\partial X_2} & \frac{\partial x_1}{\partial X_3} \\ \frac{\partial x_2}{\partial X_1} & \frac{\partial x_2}{\partial X_2} & \frac{\partial x_2}{\partial X_3} \\ \frac{\partial x_3}{\partial X_1} & \frac{\partial x_3}{\partial X_2} & \frac{\partial x_3}{\partial X_3} \end{pmatrix} = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
(5.86)

$$\mathbf{c} = \mathbf{b} = \mathbf{F}^T \mathbf{F} = \begin{pmatrix} \lambda^2 & 0 & 0\\ 0 & \lambda^{-2} & 0\\ 0 & 0 & 1 \end{pmatrix}.$$
 (5.87)

Para este campo de deformación y eléctrico, debido a que son uniformes, cumplen con la ecuación de equilibrio y la de Maxwell.

Debido a que el Campo Eléctrico es uniforme en la dirección perpendicular al plano se considera que  $E_1 = E_3 = 0$  y  $E_2 = constante$ . Con la ecuación 3.19 se determina el Campo Eléctrico

Lagrangiano:

$$\mathbf{E}_l = \mathbf{F}^T \mathbf{E} = \begin{pmatrix} 0\\ \lambda^{-1} E_2\\ 0 \end{pmatrix}.$$
 (5.88)

Considerando las ecuaciones 3.53 - 3.58 se determinan los invariantes para esta deformación:

$$I_1 = tr \ \mathbf{c} = \lambda^2 + \lambda^{-2} + 1, \tag{5.89}$$

$$I_2 = \frac{1}{2} \left[ (tr \ \mathbf{c})^2 - tr \ (\mathbf{c}^2) \right] = \frac{1}{2} \left[ (\lambda^2 + \lambda^{-2} + 1)^2 - (\lambda^4 + \lambda^{-4} + 1) \right] = \lambda^2 + \lambda^{-2} + 1, \tag{5.90}$$

$$I_3 = det \mathbf{c} = 1, \qquad (isocorrico) \tag{5.91}$$

$$I_4 = |\mathbf{E}_l|^2 = \begin{pmatrix} 0\\ \lambda^{-1}E_2\\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0\\ \lambda^{-1}E_2\\ 0 \end{pmatrix} = \lambda^{-2}E_2^2,$$
(5.92)

$$I_{5} = \mathbf{E}_{l} \cdot (\mathbf{c}\mathbf{E}_{l}) = \begin{pmatrix} 0 \\ \lambda^{-1}E_{2} \\ 0 \end{pmatrix} \cdot \begin{pmatrix} \lambda^{2} & 0 & 0 \\ 0 & \lambda^{-2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ \lambda^{-1}E_{2} \\ 0 \end{pmatrix} = \lambda^{-4}E_{2}^{2},$$
(5.93)

$$I_{6} = \mathbf{E}_{l} \cdot (\mathbf{c}^{2} \mathbf{E}_{l}) = \begin{pmatrix} 0 \\ \lambda^{-1} E_{2} \\ 0 \end{pmatrix} \cdot \begin{pmatrix} \lambda^{4} & 0 & 0 \\ 0 & \lambda^{-4} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ \lambda^{-1} E_{2} \\ 0 \end{pmatrix} = \lambda^{-6} E_{2}^{2}.$$
 (5.94)

El Campo Eléctrico externo  $\mathbf{E}^o$  se define como:

$$\mathbf{E}^{o} = (0, E_{o}, 0)^{T}, \tag{5.95}$$

donde sólo se considera la dirección perpendicular al plano.

Asumiendo las ecuaciones de condición de borde 3.13 y 3.15 se obtiene, respectivamente, que:

$$D_2 = D_2^o, (5.96)$$

$$\tau_{22} = \tau_{m_{22}} + t_{a_2},\tag{5.97}$$

donde la componente del Vector Desplazamiento Eléctrico  $D_2$  se obtiene de la ecuación 3.61:

$$D_2 = -2J^{-1}(\lambda^{-2}E_2\Omega_4 + \lambda^{-4}E_2\Omega_5)$$
(5.98)

y la componente del Vector Desplazamiento Eléctrico en el exterior  $D^o_2$  se define como:

$$D_2^o = \varepsilon_o E_o. \tag{5.99}$$

Considerando las ecuaciones 5.98 y 5.99 en la ecuación 5.96 y despejando  $E_2$  se obtiene que:

$$E_2 = -\frac{\varepsilon_o E_o \lambda^2}{2(\Omega_4 + \lambda^{-2}\Omega_5)}.$$
(5.100)

El Tensor de Esfuerzos Total y el Tensor de Esfuerzos de Maxwell en el exterior del cuerpo se obtienen por las ecuaciones 3.60 y 3.10, respectivamente como:

$$\tau_{22} = 2\lambda^{-2}\Omega_1 + 2[(\lambda^2 + \lambda^{-2} + 1)\lambda^{-2} - \lambda^{-4}]\Omega_2 + 2\Omega_3 + 2\lambda^{-4}E_2^2\Omega_5,$$
(5.101)

$$\tau_{m_{22}} = \varepsilon_o \left( E_o^2 - \frac{1}{2} E_o^2 \right) = \frac{\varepsilon_o E_o^2}{2}, \tag{5.102}$$

las cuales se consideran en la ecuación 5.97, y además asumiendo una fuerza de tracción mecánica aplicada por unidad de área  $t_{a_2}$  nula se obtiene que:

$$2\lambda^{-2}\Omega_1 + 2(1+\lambda^{-2})\Omega_2 + 2\Omega_3 + 2\lambda^{-4}E_2^2\Omega_5 = \frac{\varepsilon_o E_o^2}{2}.$$
(5.103)

Finalmente con las ecuaciones 5.100 y 5.103 se puede determinar  $E_2$  y  $\lambda$  por ejemplo para un valor dado  $E_o$ .

#### 5.4.2. Caso 2: Deformación de un Tubo de Sección Circular

Se asume la extensión e inflación de un tubo como:

$$r^{2} = a^{2} + \lambda_{z}^{-1}(R^{2} - A^{2}), \qquad \theta = \Theta, \qquad z = \lambda_{z}Z, \qquad con \ \lambda_{z} > 0 \ constante, \qquad (5.104)$$

donde a, b son los radios finales interior y exterior; A, B son los radios iniciales interior y exterior, con  $a \leq r \leq b$ ,  $0 \leq \theta \leq 2\pi$ ,  $0 \leq z \leq L$ , L es el largo inicial con L >> B y  $0 \leq \Theta \leq 2\pi$ , y

 $rD_r = constante$ ,  $E_z = constante$ ,  $E_r$  depende de r. La deformación anterior, el campo eléctrico y desplazamiento eléctrico mencionados aquí satisfacen las ecuaciones de equilibrio y las de Maxwell [2].

Considerando la ecuación 3.1 se determina el Tensor Gradiente de Deformación en coordenadas cilíndricas:

$$\mathbf{F} = \begin{pmatrix} \frac{\partial r}{\partial R} & \frac{1}{R} \frac{\partial r}{\partial \Theta} & \frac{\partial r}{\partial Z} \\ r \frac{\partial r}{\partial R} & \frac{r}{R} \frac{\partial \theta}{\partial \Theta} & r \frac{\partial \theta}{\partial Z} \\ \frac{\partial z}{\partial R} & \frac{1}{R} \frac{\partial z}{\partial \Theta} & \frac{\partial z}{\partial Z} \end{pmatrix} = \begin{pmatrix} \lambda_z^{-1} \frac{R}{r} & 0 & 0 \\ 0 & \frac{r}{R} & 0 \\ 0 & 0 & \lambda_z \end{pmatrix},$$
(5.105)

para lo cual se asume que  $\lambda_z = 1$ ,

$$\mathbf{F} = \begin{pmatrix} \frac{R}{r} & 0 & 0\\ 0 & \frac{r}{R} & 0\\ 0 & 0 & 1 \end{pmatrix}.$$
 (5.106)

Considerando las ecuaciones 3.24 y 3.62 se determina el Tensor de Deformación de Cauchy-Green Derecho y el Tensor de Deformación de Cauchy-Green Izquierdo, respectivamente, y quedan como:

$$\mathbf{c} = \mathbf{b} = \mathbf{F}^T \mathbf{F} = \begin{pmatrix} \frac{R^2}{r^2} & 0 & 0\\ 0 & \frac{r^2}{R^2} & 0\\ 0 & 0 & 1 \end{pmatrix}.$$
 (5.107)

Debido a que el Campo Eléctrico  $E_r$  depende de r,  $E_{\theta}$  es nulo y  $E_z$  es constante se considera que  $E_r \neq 0$  y  $E_{\theta} = E_z = 0$ . Con la ecuación 3.19 se determina el Campo Eléctrico Lagrangiano:

$$\mathbf{E}_{l} = \mathbf{F}^{T} \mathbf{E} = \begin{pmatrix} \frac{R}{r} E_{r} \\ 0 \\ 0 \end{pmatrix}.$$
 (5.108)

Considerando las ecuaciones 3.53 - 3.58 se determinan los invariantes para esta deformación:

$$I_1 = tr \ \mathbf{c} = \frac{R^2}{r^2} + \frac{r^2}{R^2} + 1, \tag{5.109}$$

$$I_2 = \frac{1}{2} \left[ (tr \ \mathbf{c})^2 - tr \ (\mathbf{c}^2) \right] = \frac{1}{2} \left[ \left( \frac{R^2}{r^2} + \frac{r^2}{R^2} + 1 \right)^2 - \left( \frac{R^4}{r^4} + \frac{r^4}{R^4} + 1 \right) \right] = \frac{R^2}{r^2} + \frac{r^2}{R^2} + 1, \quad (5.110)$$

$$I_3 = det \mathbf{c} = 1, \qquad (incompresible) \tag{5.111}$$

$$I_4 = |\mathbf{E}_l|^2 = \begin{pmatrix} \frac{R}{r} E_r \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{R}{r} E_r \\ 0 \\ 0 \end{pmatrix} = \frac{R^2}{r^2} E_r^2,$$
(5.112)

$$I_{5} = \mathbf{E}_{l} \cdot (\mathbf{c}\mathbf{E}_{l}) = \begin{pmatrix} \frac{R}{r}E_{r} \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{R^{2}}{r^{2}} & 0 & 0 \\ 0 & \frac{r^{2}}{R^{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{R}{r}E_{r} \\ 0 \\ 0 \end{pmatrix} = \frac{R^{4}}{r^{4}}E_{r}^{2},$$
(5.113)

$$I_{6} = \mathbf{E}_{l} \cdot (\mathbf{c}^{2} \mathbf{E}_{l}) = \begin{pmatrix} \frac{R}{r} E_{r} \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{R^{4}}{r^{4}} & 0 & 0 \\ 0 & \frac{r^{4}}{R^{4}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{R}{r} E_{r} \\ 0 \\ 0 \end{pmatrix} = \frac{R^{6}}{r^{6}} E_{r}^{2}.$$
 (5.114)

Debido a que  $rD_r = constante$ , se define:

$$rD_r = C_o, (5.115)$$

donde la componente radial del Vector Desplazamiento Eléctrico  $D_r$  se obtiene de la ecuación 3.61:

$$D_r = -2\left(\frac{R^2}{r^2}E_r\Omega_4 + \frac{R^4}{r^4}E_r\Omega_5\right).$$
 (5.116)

Reemplazando la ecuación 5.115 en 5.116 y despejando se obtiene que:

$$E_r = -\frac{C_o r^3}{2R^2 (r^2 \Omega_4 + R^2 \Omega_5)}.$$
(5.117)

El Tensor de Esfuerzos Total se obtiene de la ecuación 3.60, con lo cual se calculan $\tau_{rr}$  y  $\tau_{\theta\theta}$  como:

$$\tau_{rr}(r) = 2\Omega_1 \frac{R^2}{r^2} + 2\Omega_2 \left[ \left( \frac{R^2}{r^2} + \frac{r^2}{R^2} + 1 \right) \frac{R^2}{r^2} - \frac{R^4}{r^4} \right] - p + 2\Omega_5 \frac{R^4}{r^4} E_r^2, \tag{5.118}$$

$$\tau_{\theta\theta}(r) = 2\Omega_1 \frac{r^2}{R^2} + 2\Omega_2 \left[ \left( \frac{R^2}{r^2} + \frac{r^2}{R^2} + 1 \right) \frac{r^2}{R^2} - \frac{r^4}{R^4} \right] - p.$$
(5.119)

Asumiendo la ecuación de condición de borde 3.13 se obtiene que:

$$D_r^o(r) = \frac{C_o}{r}, \quad para \quad 0 < r \le a \quad y \quad b \le r < \infty, \tag{5.120}$$

donde  $D_r^o$  es el Vector Desplazamiento Eléctrico en el exterior.

Se define el Campo Eléctrico externo  $\mathbf{E}^{o}$  como:

$$\mathbf{E}^{o} = \varepsilon_{o}^{-1} \mathbf{D}^{o}, \tag{5.121}$$

y considerando el Vector Desplazamiento Eléctrico en el exterior de la ecuación 5.120 se obtiene que:

$$\mathbf{E}^{o} = \varepsilon_{o}^{-1} C_{o} \begin{pmatrix} \frac{1}{r} \\ 0 \\ 0 \end{pmatrix}.$$
(5.122)

Asumiendo la ecuación de condición de borde 3.15 en la pared interna y externa del cuerpo se obtiene, respectivamente, que:

$$\tau_{rr}(a) = -P_o + \tau_{m_{rr}}(a), \tag{5.123}$$

$$\tau_{rr}(b) = \tau_{m_{rr}}(b),$$
 (5.124)

donde  $P_o$  es la presión interna.

El Tensor de Esfuerzos de Maxwell en el espacio vacío que rodea el cuerpo se obtiene por la ecuación 3.10:

$$\tau_{m_{rr}} = \varepsilon_o^{-1} C_o^2 \left( \frac{1}{r^2} - \frac{1}{2r^2} \right) = \varepsilon_o^{-1} \frac{C_o^2}{2r^2}, \tag{5.125}$$

y el Tensor de Esfuerzos de Maxwell en la pared interna y externa del cuerpo se expresa, respectivamente, como:

$$\tau_{m_{rr}}(a) = \varepsilon_o^{-1} \frac{C_o^2}{2a^2},\tag{5.126}$$

$$\tau_{m_{rr}}(b) = \varepsilon_o^{-1} \frac{C_o^2}{2b^2}.$$
(5.127)

Se considera la ecuación de equilibrio 3.12 para un componente radial:

$$\frac{\partial \tau_{rr}}{\partial r} = \frac{1}{r} (\tau_{\theta\theta} - \tau_{rr}), \qquad (5.128)$$

la que se puede integrar como:

$$\tau_{rr}(r) = \int_{a}^{r} \frac{1}{\xi} (\tau_{\theta\theta}(\xi) - \tau_{rr}(\xi)) d\xi + \tau_{rr}(a).$$
(5.129)

Reemplazando las expresiones de las ecuaciones 5.123 y 5.126 en la integral se obtiene:

$$\tau_{rr}(r) = \int_{a}^{r} \frac{1}{\xi} (\tau_{\theta\theta}(\xi) - \tau_{rr}(\xi)) d\xi - P_o + \varepsilon_o^{-1} \frac{C_o^2}{2a^2}.$$
 (5.130)

Considerando el Tensor de Esfuerzos Total para r = b se reemplaza la ecuación 5.124 en 5.130, con lo que se obtiene:

$$\int_{a}^{b} \frac{1}{\xi} (\tau_{\theta\theta}(\xi) - \tau_{rr}(\xi)) d\xi - P_o + \varepsilon_o^{-1} \frac{C_o^2}{2a^2} = \varepsilon_o^{-1} \frac{C_o^2}{2b^2},$$
(5.131)

que es la relación que nos permitiría obtener el radio interno a del cuerpo cilíndrico, asumiendo conocido  $C_o$  y  $P_o$ , dada la ecuación 5.104 se tiene que b depende de a como:

$$b = \sqrt{a^2 + B^2 - A^2}.$$
 (5.132)

Considerando las ecuaciones 5.118 y 5.130, y despejando se obtiene p en el cuerpo:

$$p = 2\Omega_1 \frac{R^2}{r^2} + 2\Omega_2 \left(\frac{R^2}{r^2} + 1\right) + 2\Omega_5 \frac{R^4}{r^4} E_r^2 - \int_a^r \frac{1}{\xi} (\tau_{\theta\theta}(\xi) - \tau_{rr}(\xi)) d\xi + P_o - \varepsilon_o^{-1} \frac{C_o^2}{2a^2}.$$
 (5.133)

#### 5.4.3. Caso 3: Deformación de un Cuerpo Esférico

Se asume la inflación de una esfera de pared gruesa como:

$$r^{3} = R^{3} + a^{3} - A^{3}, \quad \theta = \Theta, \quad \phi = \Phi,$$
 (5.134)

donde *a*, *b* son los radios finales interior y exterior; *A*, *B* son los radios iniciales interior y exterior, con  $a \leq r \leq b$ ,  $0 \leq \theta \leq \pi$ ,  $0 \leq \phi \leq 2\pi$ , y  $A \leq R \leq B$ ,  $0 \leq \Theta \leq \pi$ ,  $0 \leq \Phi \leq 2\pi$ , y  $E_r(r)$ ,  $D_r(r)$ ,  $r^2D_r = constante$ . Esta deformación y este campo eléctrico y desplazamiento eléctrico satisfacen la ecuación de equilibrio y las ecuaciones de Maxwell [2]. Considerando la ecuación 3.1 se determina el Tensor Gradiente de Deformación en coordenadas esféricas:

$$\mathbf{F} = \begin{pmatrix} \frac{\partial r}{\partial R} & \frac{1}{R} \frac{\partial r}{\partial \Theta} & \frac{1}{Rsin\Theta} \frac{\partial r}{\partial \Phi} \\ r \frac{\partial \theta}{\partial R} & \frac{r}{R} \frac{\partial \theta}{\partial \Theta} & \frac{r}{Rsin\Theta} \frac{\partial \theta}{\partial \Phi} \\ rsin\theta \frac{\partial \phi}{\partial R} & \frac{rsin\theta}{R} \frac{\partial \phi}{\partial \Theta} & \frac{rsin\theta}{Rsin\Theta} \frac{\partial \phi}{\partial \Phi} \end{pmatrix} = \begin{pmatrix} \frac{R^2}{r^2} & 0 & 0 \\ 0 & \frac{r}{R} & 0 \\ 0 & 0 & \frac{r}{R} \end{pmatrix}.$$
(5.135)

Considerando las ecuaciones 3.24 y 3.62 se determina el Tensor de Deformación de Cauchy-Green Derecho y el Tensor de Deformación de Cauchy-Green Izquierdo, respectivamente como:

$$\mathbf{c} = \mathbf{b} = \mathbf{F}^T \mathbf{F} = \begin{pmatrix} \frac{R^4}{r^4} & 0 & 0\\ 0 & \frac{r^2}{R^2} & 0\\ 0 & 0 & \frac{r^2}{R^2} \end{pmatrix}.$$
 (5.136)

Debido a que el Campo Eléctrico  $E_r$  depende de r,  $E_{\theta}$  y  $E_{\phi}$  son nulos se considera que  $E_r \neq 0$  y  $E_{\theta} = E_{\phi} = 0$ . Con la ecuación 3.19 se determina el Campo Eléctrico Lagrangiano:

$$\mathbf{E}_{l} = \mathbf{F}^{T} \mathbf{E} = \begin{pmatrix} \frac{R^{2}}{r^{2}} E_{r} \\ 0 \\ 0 \end{pmatrix}.$$
 (5.137)

Considerando las ecuaciones 3.53 - 3.58 se determinan los invariantes para esta deformación:

$$I_1 = tr \ \mathbf{c} = \frac{R^4}{r^4} + 2\frac{r^2}{R^2},\tag{5.138}$$

$$I_2 = \frac{1}{2} \left[ (tr \ \mathbf{c})^2 - tr \ (\mathbf{c}^2) \right] = \frac{1}{2} \left[ \left( \frac{R^4}{r^4} + 2\frac{r^2}{R^2} \right)^2 - \left( \frac{R^8}{r^8} + 2\frac{r^4}{R^4} \right) \right] = \frac{r^4}{R^4} + 2\frac{R^2}{r^2}, \tag{5.139}$$

$$I_3 = det \mathbf{c} = 1, \qquad (incompresible) \tag{5.140}$$

$$I_4 = |\mathbf{E}_l|^2 = \begin{pmatrix} \frac{R^2}{r^2} E_r \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{R^2}{r^2} E_r \\ 0 \\ 0 \end{pmatrix} = \frac{R^4}{r^4} E_r^2,$$
(5.141)

$$I_{5} = \mathbf{E}_{l} \cdot (\mathbf{c}\mathbf{E}_{l}) = \begin{pmatrix} \frac{R^{2}}{r^{2}}E_{r} \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{R^{4}}{r^{4}} & 0 & 0 \\ 0 & \frac{r^{2}}{R^{2}} & 0 \\ 0 & 0 & \frac{r^{2}}{R^{2}} \end{pmatrix} \begin{pmatrix} \frac{R^{2}}{r^{2}}E_{r} \\ 0 \\ 0 \end{pmatrix} = \frac{R^{8}}{r^{8}}E_{r}^{2},$$
(5.142)

$$I_{6} = \mathbf{E}_{l} \cdot (\mathbf{c}^{2} \mathbf{E}_{l}) = \begin{pmatrix} \frac{R^{2}}{r^{2}} E_{r} \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{R^{8}}{r^{8}} & 0 & 0 \\ 0 & \frac{r^{4}}{R^{4}} & 0 \\ 0 & 0 & \frac{r^{4}}{R^{4}} \end{pmatrix} \begin{pmatrix} \frac{R^{2}}{r^{2}} E_{r} \\ 0 \\ 0 \end{pmatrix} = \frac{R^{12}}{r^{12}} E_{r}^{2}.$$
(5.143)

Debido a que  $r^2 D_r = constante$ , se define:

$$r^2 D_r = C_o,$$
 (5.144)

donde el Vector Desplazamiento Eléctrico ${\cal D}_r$ se obtiene por la ecuación 3.61:

$$D_r = -2\left(\frac{R^4}{r^4}E_r\Omega_4 + \frac{R^8}{r^8}E_r\Omega_5\right).$$
 (5.145)

Reemplazando la ecuación 5.144 en 5.145 y despejando se obtiene que:

$$E_r = -\frac{C_o r^6}{2R^4 (r^4 \Omega_4 + R^4 \Omega_5)}.$$
(5.146)

El Tensor de Esfuerzos Total se obtiene por la ecuación 3.60, con lo cual se calculan  $\tau_{rr}$ ,  $\tau_{\theta\theta}$  y  $\tau_{\phi\phi}$  como:

$$\tau_{rr}(r) = 2\Omega_1 \frac{R^4}{r^4} + 2\Omega_2 \left[ \left( \frac{R^4}{r^4} + 2\frac{r^2}{R^2} \right) \frac{R^4}{r^4} - \frac{R^8}{r^8} \right] - p + 2\Omega_5 \frac{R^8}{r^8} E_r^2,$$
(5.147)

$$\tau_{\theta\theta}(r) = \tau_{\phi\phi}(r) = 2\Omega_1 \frac{r^2}{R^2} + 2\Omega_2 \left[ \left( \frac{R^4}{r^4} + 2\frac{r^2}{R^2} \right) \frac{r^2}{R^2} - \frac{r^4}{R^4} \right] - p.$$
(5.148)

Asumiendo la ecuación de condición de borde 3.13 se obtiene que:

$$D_r^o(r) = \frac{C_o}{r^2}, \quad para \quad 0 < r \le a \quad y \quad b \le r < \infty, \tag{5.149}$$

donde  $D_r^o$  es el Vector Desplazamiento Eléctrico en el exterior.

Se define el Campo Eléctrico externo  $\mathbf{E}^o$  como:

$$\mathbf{E}^o = \varepsilon_o^{-1} \mathbf{D}^o, \tag{5.150}$$

y considerando el Vector Desplazamiento Eléctrico en el exterior de la ecuación 5.149 se obtiene que:

$$\mathbf{E}^{o} = \varepsilon_{o}^{-1} C_{o} \begin{pmatrix} \frac{1}{r^{2}} \\ 0 \\ 0 \end{pmatrix}.$$
(5.151)

Asumiendo la ecuación de condición de borde 3.15 en la pared interna y externa del cuerpo se obtiene, respectivamente, que:

$$\tau_{rr}(a) = -P_o + \tau_{m_{rr}}(a), \tag{5.152}$$

$$\tau_{rr}(b) = \tau_{m_{rr}}(b),$$
 (5.153)

donde  $P_o$  es la presión interna.

El Tensor de Esfuerzos de Maxwell en el exterior del cuerpo se obtiene por la ecuación 3.10:

$$\tau_{m_{rr}} = \varepsilon_o^{-1} C_o^2 \left( \frac{1}{r^4} - \frac{1}{2r^4} \right) = \varepsilon_o^{-1} \frac{C_o^2}{2r^4}, \tag{5.154}$$

y el Tensor de Esfuerzos de Maxwell en la pared interna y externa del cuerpo se expresa, respectivamente, como:

$$\tau_{m_{rr}}(a) = \varepsilon_o^{-1} \frac{C_o^2}{2a^4},\tag{5.155}$$

$$\tau_{m_{rr}}(b) = \varepsilon_o^{-1} \frac{C_o^2}{2b^4}.$$
(5.156)

Se considera la ecuación de equilibrio 3.12 para un componente radial:

$$\frac{d\tau_{rr}}{dr} = \frac{1}{r}(\tau_{\theta\theta} + \tau_{\phi\phi} - 2\tau_{rr}) = \frac{2}{r}(\tau_{\theta\theta} - \tau_{rr}), \qquad (5.157)$$

la cual se integra como:

$$\tau_{rr}(r) = \int_{a}^{r} \frac{2}{\xi} (\tau_{\theta\theta}(\xi) - \tau_{rr}(\xi)) d\xi + \tau_{rr}(a).$$
(5.158)

Se reemplazan los valores de la ecuación 5.152 y 5.155 en la integral y se obtiene:

$$\tau_{rr}(r) = \int_{a}^{r} \frac{2}{\xi} (\tau_{\theta\theta}(\xi) - \tau_{rr}(\xi)) d\xi - P_o + \varepsilon_o^{-1} \frac{C_o^2}{2a^4}.$$
(5.159)

Considerando el Tensor de Esfuerzos Total para r = b se reemplaza la ecuación 5.153 en 5.159, con lo que se obtiene la ecuación para encontrar a.

$$\int_{a}^{b} \frac{2}{\xi} (\tau_{\theta\theta}(\xi) - \tau_{rr}(\xi)) d\xi - P_o + \varepsilon_o^{-1} \frac{C_o^2}{2a^4} = \varepsilon_o^{-1} \frac{C_o^2}{2b^4},$$
(5.160)

asumiendo conocido  $C_o$  y  $P_o,$  dada la ecuación 5.134 se tiene que b depende de a como:

$$b = \sqrt[3]{a^3 + B^3 - A^3}.$$
 (5.161)

Considerando las ecuaciones 5.147 y 5.159, y despejando se obtiene p en el cuerpo:

$$p = 2\Omega_1 \frac{R^4}{r^4} + 4\Omega_2 \frac{R^2}{r^2} + 2\Omega_5 \frac{R^8}{r^8} E_r^2 - \int_a^r \frac{2}{\xi} (\tau_{\theta\theta}(\xi) - \tau_{rr}(\xi)) d\xi + P_o - \varepsilon_o^{-1} \frac{C_o^2}{2a^4}.$$
 (5.162)

# Resultados

La resolución de los problemas considera el estudio del comportamiento de la segunda variación para el funcional asociado a la formulación variacional para materiales electroelásticos. Para eso es necesario obtener los valores propios de las matrices  $\mathbb{M}$  y  $\mathbb{M}'$  mencionadas en las ecuaciones 3.78 y 3.79 respectivamente, con ayuda del software Mathematica, y estudiar el signo de dichos valores propios.

La matriz  $\mathbb{M}$  se expresa como función de las matrices  $\mathbb{A}$ ,  $\mathbb{B} \in \mathbb{C}$ , mencionadas en las ecuaciones 3.80, 3.81 y 3.82 respectivamente. La forma de expresar estas matrices considera las segundas derivadas de la función de Energía Libre obtenidas por la regla de la cadena en las ecuaciones 5.4, 5.5 y 5.8. Mientras que la matriz  $\mathbb{M}'$  se expresa como función de las matrices  $\mathbb{A}'$ ,  $\mathbb{B}' \in \mathbb{C}'$ , y su forma de expresar está determinada por las ecuaciones 3.85, 3.86 y 3.87 respectivamente.

Los problemas a considerar son un medio semi-infinito plano, un tubo cilíndrico y un cuerpo esférico, para los cuales se estudia el comportamiento de los valores propios de  $\mathbb{M}$  y  $\mathbb{M}'$  en presencia de dos funciones de Energía Libre diferentes para cada una. Además es necesario determinar algunas variables correspondientes a cada tipo de geometría.

# 6.1. Deformación en un Medio Semi-Infinito Plano considerando la Primera Función de Energía Libre

Se considera un medio semi-infinito plano cuya función de Energía Libre se estudia en un caso compresible, donde es necesario determinar el parámetro  $\lambda$  de deformación y el Campo Eléctrico uniforme  $E_2$  que actúa en el cuerpo. Obteniendo estos valores se calculan las matrices  $\mathbb{M}$  y  $\mathbb{M}'$  con sus respectivos valores propios.

La Primera Función de Energía Libre para este caso comprensible es:

$$\Omega = \frac{1}{4}\mu(0)[(1+\gamma)(I_1I_3^{-1/3} - 3) + (1-\gamma)(I_2I_3^{-2/3} - 3)] + \varepsilon_o(\alpha I_4 + \beta I_5I_3^{-1/3}) + \frac{1}{2}\kappa(I_3^{1/2} - 1)^2.$$
(6.1)

# 6.1.1. Resolución de Problemas

Para calcular el parámetro  $\lambda$  de deformación y el Campo Eléctrico uniforme  $E_2$  que actúa en el cuerpo se tienen las ecuaciones 5.100 y 5.103, donde se reemplazan las derivadas de esta función

de Energía Libre calculadas en la sección 5.3.1, obteniendo las ecuaciones:

$$E_2 = -\frac{E_o \lambda^2}{2(\alpha + \lambda^{-2}\beta)},\tag{6.2}$$

$$\frac{1}{2}\mu(0)\lambda^{-2}(1+\gamma) + \frac{1}{2}\mu(0)(1+\lambda^{-2})(1-\gamma) + \frac{1}{6}\mu(0)(\gamma-3)(\lambda^2+\lambda^{-2}+1) + \frac{4}{3}\varepsilon_o\beta\lambda^{-4}E_2^2 - \frac{\varepsilon_o E_o^2}{2} = 0.$$
(6.3)

Con sólo dos variables a determinar ( $\lambda \ y \ E_2$ ) y con las ecuaciones 6.2 y 6.3 se pueden obtener estos valores, considerando las constantes de la Función de Energía Libre expresadas en la tabla 1. Para esto se consideran cinco valores diferentes de  $E_o$ , y así obtener diferentes valores de  $\lambda \ y \ E_2$ como se muestra en la tabla 3.

Tabla 3: Valores los Parámetros para diferentes valores de  $E_o$ 

| $E_o [V/m]$ | $\lambda$     | $E_2  \mathrm{[V/m]}$ |
|-------------|---------------|-----------------------|
| $10^{2}$    | 0.99999999999 | 0.0125                |
| $10^{3}$    | 0.99999999999 | 0.125                 |
| $10^{4}$    | 0.9999999994  | 1.25                  |
| $10^{5}$    | 0.9999999435  | 12.5                  |
| $10^{6}$    | 0.9999943587  | 124.995               |

Las expresiones de los componentes de la matriz  $\mathbb{M}$  se pueden definir con los componentes de  $\mathbb{A}_{i\alpha j\beta}$ ,  $\mathbb{B}_{i\alpha\beta}$  y  $\mathbb{C}_{\alpha\beta}$  para este problema. Considerando solo los valores no nulos, estas componentes se expresan como:

$$\mathbb{A}_{i\alpha j\beta} = \frac{\partial^2 \Omega}{\partial I_1 \partial I_3} \left( \frac{\partial I_1}{\partial F_{i\alpha}} \frac{\partial I_3}{\partial F_{j\beta}} + \frac{\partial I_3}{\partial F_{i\alpha}} \frac{\partial I_1}{\partial F_{j\beta}} \right) + \frac{\partial^2 \Omega}{\partial I_2 \partial I_3} \left( \frac{\partial I_2}{\partial F_{i\alpha}} \frac{\partial I_3}{\partial F_{j\beta}} + \frac{\partial I_3}{\partial F_{i\alpha}} \frac{\partial I_2}{\partial F_{j\beta}} \right) \\
+ \frac{\partial^2 \Omega}{\partial I_3^2} \frac{\partial I_3}{\partial F_{i\alpha}} \frac{\partial I_3}{\partial F_{j\beta}} + \frac{\partial^2 \Omega}{\partial I_3 \partial I_5} \left( \frac{\partial I_3}{\partial F_{i\alpha}} \frac{\partial I_5}{\partial F_{j\beta}} + \frac{\partial I_5}{\partial F_{i\alpha}} \frac{\partial I_3}{\partial F_{j\beta}} \right) + \frac{\partial \Omega}{\partial I_1} \frac{\partial^2 I_1}{\partial F_{i\alpha} \partial F_{j\beta}} \\
+ \frac{\partial \Omega}{\partial I_2} \frac{\partial^2 I_2}{\partial F_{i\alpha} \partial F_{j\beta}} + \frac{\partial \Omega}{\partial I_3} \frac{\partial^2 I_3}{\partial F_{i\alpha} \partial F_{j\beta}} + \frac{\partial \Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial F_{i\alpha} \partial F_{j\beta}},$$
(6.4)

$$\mathbb{B}_{i\alpha\beta} = \frac{\partial^2 \Omega}{\partial I_3 \partial I_5} \frac{\partial I_3}{\partial F_{i\alpha}} \frac{\partial I_5}{\partial E_{l_\beta}} + \frac{\partial \Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial F_{i\alpha} \partial E_{l_\beta}},\tag{6.5}$$

$$\mathbb{C}_{\alpha\beta} = \frac{\partial\Omega}{\partial I_4} \frac{\partial^2 I_4}{\partial E_{l_\alpha} \partial E_{l_\beta}} + \frac{\partial\Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial E_{l_\alpha} \partial E_{l_\beta}}.$$
(6.6)

Reemplazando las derivadas calculadas en las secciones 5.2 y 5.3.1 se obtiene:

$$\begin{aligned} \mathbb{A}_{i\alpha j\beta} &= -\frac{1}{3} \mu(0)(1+\gamma) [F_{i\alpha} F_{\beta j}^{-1} + F_{j\beta} F_{\alpha i}^{-1}] - \frac{2}{3} \mu(0)(1-\gamma) [(F_{i\alpha} c_{\gamma\gamma} - F_{i\gamma} c_{\gamma\alpha}) F_{\beta j}^{-1} \\ &+ (F_{j\beta} c_{\gamma\gamma} - F_{j\gamma} c_{\gamma\beta}) F_{\alpha i}^{-1}] + \left[ \frac{1}{9} \mu(0)(14-6\gamma)(\lambda^{2}+\lambda^{-2}+1) + \frac{16}{9} \varepsilon_{o} \beta \lambda^{-4} E_{2}^{2} \right] \\ &+ \kappa \right] F_{\alpha i}^{-1} F_{\beta j}^{-1} - \frac{4}{3} \varepsilon_{o} \beta \left[ E_{l_{\beta}} F_{j\gamma} E_{l_{\gamma}} F_{\alpha i}^{-1} + E_{l_{\alpha}} F_{i\gamma} E_{l_{\gamma}} F_{\beta j}^{-1} \right] + \frac{1}{2} \mu(0)(1+\gamma) \delta_{ij} \delta_{\alpha\beta} \\ &+ \frac{1}{2} \mu(0)(1-\gamma)(\delta_{ij} \delta_{\alpha\beta} c_{\gamma\gamma} + 2F_{i\alpha} F_{j\beta} - \delta_{ij} c_{\beta\alpha} - F_{i\beta} F_{j\alpha} - F_{i\gamma} F_{j\gamma} \delta_{\alpha\beta}) \\ &+ \left[ \frac{1}{6} \mu(0)(\gamma-3)(\lambda^{2}+\lambda^{-2}+1) - \frac{2}{3} \varepsilon_{o} \beta \lambda^{-4} E_{2}^{2} \right] (2F_{\beta j}^{-1} F_{\alpha i}^{-1} - F_{\alpha j}^{-1} F_{\beta i}^{-1}) \\ &+ 2\varepsilon_{o} \beta E_{l_{\alpha}} \delta_{ij} E_{l_{\beta}}, \end{aligned}$$

$$(6.7)$$

$$\mathbb{B}_{i\alpha\beta} = -\frac{4}{3}\varepsilon_o\beta F_{\alpha i}^{-1}c_{\beta\gamma}E_{l\gamma} + 2\varepsilon_o\beta(\delta_{\alpha\beta}F_{i\gamma}E_{l\gamma} + E_{l_\alpha}F_{i\beta}), \tag{6.8}$$

$$\mathbb{C}_{\alpha\beta} = 2\varepsilon_o \alpha \delta_{\alpha\beta} + 2\varepsilon_o \beta c_{\alpha\beta}. \tag{6.9}$$

# 6.1.2. Resultados

Introduciendo las matrices en el software Mathematica y reemplazando los valores de las variables se obtiene finalmente la matriz  $\mathbb{M}$  y a su vez los valores propios de ella, como se expresan en la tabla 4 para los diferentes casos considerados.

| $E_o [V/m]$ | Valores Propios       |                       |                       |                       |                       |                       |  |  |  |  |
|-------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|--|--|--|
| 102         | $3 \cdot 10^9$        | 784000                | 784000                | 784000                | 784000                | 784000                |  |  |  |  |
| 10-         | $-5.46 \cdot 10^{-7}$ | $-1.53 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-2.45 \cdot 10^{-8}$ | $2.21 \cdot 10^{-8}$  | $7.13 \cdot 10^{-11}$ |  |  |  |  |
| 103         | $3 \cdot 10^9$        | 784000                | 784000                | 784000                | 784000                | 784000                |  |  |  |  |
| 10*         | $2.21 \cdot 10^{-6}$  | $-2.16 \cdot 10^{-6}$ | $2.38 \cdot 10^{-7}$  | $-9.24 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-4.71 \cdot 10^{-8}$ |  |  |  |  |
| 104         | $3 \cdot 10^9$        | 784000                | 784000                | 784000                | 784000                | 784000                |  |  |  |  |
| 10          | $2.21 \cdot 10^{-4}$  | $-2.20 \cdot 10^{-4}$ | $-2.03 \cdot 10^{-7}$ | $-1.28 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $1.99 \cdot 10^{-8}$  |  |  |  |  |
| 105         | $3 \cdot 10^9$        | 784000                | 784000                | 784000                | 784000                | 784000                |  |  |  |  |
| 10          | $2.21 \cdot 10^{-2}$  | $-2.21 \cdot 10^{-2}$ | $-4.60 \cdot 10^{-6}$ | $-1.47 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-6.76 \cdot 10^{-8}$ |  |  |  |  |
| 106         | $3 \cdot 10^9$        | 784003                | 784002                | 784000                | 783998                | 783997                |  |  |  |  |
| 10*         | 2.210                 | -2.210                | $-4.77 \cdot 10^{-4}$ | $-2.06 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $3.06 \cdot 10^{-8}$  |  |  |  |  |

Tabla 4: Valores Propios de la Matriz $\mathbbm{M}$ para algunos valores de  $E_o$ 

Además considerando el valor del Campo Eléctrico se puede determinar la matriz  $\mathbb{M}'$  y a su vez los valores propios de ella, como se expresan en la tabla 5 para los diferentes casos considerados.

| $E_o  [V/m]$ |          |          | Valore   | s Propios |         |                        |
|--------------|----------|----------|----------|-----------|---------|------------------------|
| 102          | -1.00047 | -1.00031 | -1.00031 | 0.00053   | 0.00031 | 0.00031                |
| 10           | -0.00024 | 0.00015  | -0.00015 | 0.00015   | 0.00003 | $-3.11 \cdot 10^{-17}$ |
| 103          | -1.0446  | -1.0303  | -1.0303  | 0.0507    | 0.0303  | 0.0303                 |
| 10           | -0.0246  | 0.0156   | -0.0156  | 0.0156    | 0.0029  | $-5.89 \cdot 10^{-17}$ |
| 104          | -2.8454  | -2.337   | -2.337   | 2.1827    | -2.1827 | 1.5624                 |
| 10           | -1.5624  | 1.5624   | 1.337    | 1.337     | 0.2815  | $2.75 \cdot 10^{-16}$  |
| 105          | -252.864 | -156.238 | 156.238  | 156.238   | 99.5518 | -18.184                |
| 10           | -18.184  | 17.184   | 17.184   | -14.4271  | 10.5013 | $2.79 \cdot 10^{-15}$  |
| 106          | -25279.8 | 15623.8  | 15623.8  | -15623.8  | 9659.08 | -177.27                |
| 10           | -177.27  | 176.27   | 176.27   | -126.991  | 122.991 | $-1.81 \cdot 10^{-11}$ |

Tabla 5: Valores Propios de la Matriz  $\mathbb{M}'$  para algunos valores de  $E_o$ 

# 6.2. Deformación en un Medio Semi-Infinito Plano considerando la Segunda Función de Energía Libre

Se considera un medio semi-infinito plano cuya función de Energía Libre se estudia en un caso compresible, donde es necesario determinar el parámetro  $\lambda$  de deformación y el Campo Eléctrico uniforme  $E_2$  que actúa en el cuerpo. Obteniendo estos valores se calculan las matrices  $\mathbb{M}$  y  $\mathbb{M}'$  con sus respectivos valores propios.

La Segunda Función de Energía Libre para este caso comprensible es:

$$\Omega = \left(\frac{I_1 I_3^{-1/3} - 3}{2}\right) (g_0 + g_1 I_4) - \log\left[\cosh\left(\frac{\sqrt{I_4}}{m_1}\right)\right] m_0 m_1 - \frac{1}{2}\zeta_o I_4 + \frac{1}{2}\varepsilon_o I_5 I_3^{-1/3} + \frac{1}{2}\kappa (I_3^{1/2} - 1)^2.$$
(6.10)

#### 6.2.1. Resolución de Problemas

Para calcular el parámetro  $\lambda$  de deformación y el Campo Eléctrico uniforme  $E_2$  que actúa en el cuerpo se tienen las ecuaciones 5.100 y 5.103, donde se reemplazan las derivadas de esta función de Energía Libre calculadas en la sección 5.3.3, obteniendo las ecuaciones:

$$E_2 = -\frac{\varepsilon_o E_o \lambda^2}{(\lambda^2 + \lambda^{-2} - 2)g_1 - \frac{m_0}{\lambda^{-1} E_2} tanh\left(\frac{\lambda^{-1} E_2}{m_1}\right) - \zeta_o + \lambda^{-2} \varepsilon_o},\tag{6.11}$$

$$\frac{1}{3}(2\lambda^{-2} - \lambda^2 - 1)(g_0 + g_1\lambda^{-2}E_2^2) + \frac{2}{3}\varepsilon_o\lambda^{-4}E_2^2 = \frac{\varepsilon_o E_o^2}{2}.$$
(6.12)

Con sólo dos variables a determinar ( $\lambda \ y \ E_2$ ) y con las ecuaciones 6.11 y 6.12 se pueden obtener estos valores, considerando las constantes de la Función de Energía Libre expresadas en la tabla 2. Para esto se consideran cinco valores diferentes de  $E_o$ , para así obtener diferentes valores de  $\lambda \ y \ E_2$  como se muestra en la tabla 6.

| $E_o [V/m]$      | λ            | $E_2  [V/m]$ |
|------------------|--------------|--------------|
| $5 \cdot 10^4$   | 0.9999999859 | 2.94551      |
| $1 \cdot 10^{5}$ | 0.9999994361 | 5.89102      |
| $5 \cdot 10^{5}$ | 0.9999985902 | 29.455       |
| $1 \cdot 10^{6}$ | 0.9999943610 | 58.9095      |
| $5 \cdot 10^6$   | 0.9998590424 | 294.468      |

Tabla 6: Valores los Parámetros para diferentes valores de  $E_o$ 

Las expresiones de los componentes de la matriz  $\mathbb{M}$  se pueden definir con los componentes de  $\mathbb{A}_{i\alpha j\beta}$ ,  $\mathbb{B}_{i\alpha\beta}$  y  $\mathbb{C}_{\alpha\beta}$  para este problema. Considerando solo los valores no nulos, estas componentes se expresan como:

$$\mathbb{A}_{i\alpha j\beta} = \frac{\partial^2 \Omega}{\partial I_1 \partial I_3} \left( \frac{\partial I_1}{\partial F_{i\alpha}} \frac{\partial I_3}{\partial F_{j\beta}} + \frac{\partial I_3}{\partial F_{i\alpha}} \frac{\partial I_1}{\partial F_{j\beta}} \right) + \frac{\partial^2 \Omega}{\partial I_3^2} \frac{\partial I_3}{\partial F_{i\alpha}} \frac{\partial I_3}{\partial F_{j\beta}} + \frac{\partial^2 \Omega}{\partial I_3 \partial I_5} \left( \frac{\partial I_3}{\partial F_{i\alpha}} \frac{\partial I_5}{\partial F_{j\beta}} + \frac{\partial I_5}{\partial I_1} \frac{\partial^2 I_1}{\partial F_{i\alpha} \partial F_{j\beta}} + \frac{\partial \Omega}{\partial I_3} \frac{\partial^2 I_3}{\partial F_{i\alpha} \partial F_{j\beta}} + \frac{\partial \Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial F_{i\alpha} \partial F_{j\beta}} \right) + \frac{\partial \Omega}{\partial I_1} \frac{\partial^2 I_1}{\partial F_{i\alpha} \partial F_{j\beta}} + \frac{\partial \Omega}{\partial I_3} \frac{\partial^2 I_3}{\partial F_{i\alpha} \partial F_{j\beta}} + \frac{\partial \Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial F_{i\alpha} \partial F_{j\beta}},$$
(6.13)

$$\mathbb{B}_{i\alpha\beta} = \frac{\partial^2 \Omega}{\partial I_1 \partial I_4} \frac{\partial I_1}{\partial F_{i\alpha}} \frac{\partial I_4}{\partial E_{l_\beta}} + \frac{\partial^2 \Omega}{\partial I_3 \partial I_4} \frac{\partial I_3}{\partial F_{i\alpha}} \frac{\partial I_4}{\partial E_{l_\beta}} + \frac{\partial^2 \Omega}{\partial I_3 \partial I_5} \frac{\partial I_3}{\partial F_{i\alpha}} \frac{\partial I_5}{\partial E_{l_\beta}} + \frac{\partial \Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial F_{i\alpha} \partial E_{l_\beta}}, \quad (6.14)$$

$$\mathbb{C}_{\alpha\beta} = \frac{\partial^2 \Omega}{\partial I_4^2} \frac{\partial I_4}{\partial E_{l_\alpha}} \frac{\partial I_4}{\partial E_{l_\beta}} + \frac{\partial \Omega}{\partial I_4} \frac{\partial^2 I_4}{\partial E_{l_\alpha} \partial E_{l_\beta}} + \frac{\partial \Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial E_{l_\alpha} \partial E_{l_\beta}}.$$
(6.15)

Reemplazando las derivadas calculadas en las secciones 5.2 y 5.3.3 se obtiene:

$$\begin{aligned} \mathbb{A}_{i\alpha j\beta} &= -\frac{2}{3} (g_0 + g_1 \lambda^{-2} E_2^2) [F_{i\alpha} F_{\beta j}^{-1} + F_{j\beta} F_{\alpha i}^{-1}] + \left[ \frac{8}{9} (\lambda^2 + \lambda^{-2} + 1) (g_0 + g_1 \lambda^{-2} E_2^2) \right. \\ &\quad \left. + \frac{8}{9} \varepsilon_o \lambda^{-4} E_2^2 + \kappa \right] F_{\alpha i}^{-1} F_{\beta j}^{-1} - \frac{2}{3} \varepsilon_o \left[ E_{l_\beta} F_{j\gamma} E_{l_\gamma} F_{\alpha i}^{-1} + E_{l_\alpha} F_{i\gamma} E_{l_\gamma} F_{\beta j}^{-1} \right] \\ &\quad \left. + (g_0 + g_1 \lambda^{-2} E_2^2) \delta_{ij} \delta_{\alpha\beta} - \frac{1}{3} \left[ (\lambda^2 + \lambda^{-2} + 1) (g_0 + g_1 \lambda^{-2} E_2^2) + \varepsilon_o \lambda^{-4} E_2^2 \right] \\ &\quad \left. (2F_{\beta j}^{-1} F_{\alpha i}^{-1} - F_{\alpha j}^{-1} F_{\beta i}^{-1}) + \varepsilon_o E_{l_\alpha} \delta_{ij} E_{l_\beta}, \end{aligned}$$

$$(6.16)$$

$$\mathbb{B}_{i\alpha\beta} = 2g_1 F_{i\alpha} E_{l_\beta} - \frac{2}{3} [g_1(\lambda^2 + \lambda^{-2} + 1) F_{\alpha i}^{-1} E_{l_\beta} + \varepsilon_o F_{\alpha i}^{-1} c_{\beta\gamma} E_{l_\gamma}] + \varepsilon_o (\delta_{\alpha\beta} F_{i\gamma} E_{l_\gamma} + E_{l_\alpha} F_{i\beta}), \qquad (6.17)$$

$$\mathbb{C}_{\alpha\beta} = \left[\frac{m_0}{m_1\lambda^{-2}E_2^2} \operatorname{sech}^2\left(\frac{\lambda^{-1}E_2}{m_1}\right) + \frac{m_0}{\lambda^{-3}E_2^3} \operatorname{tanh}\left(\frac{\lambda^{-1}E_2}{m_1}\right)\right] E_{l_{\alpha}}E_{l_{\beta}} \\
+ \left[(\lambda^2 + \lambda^{-2} - 2)g_1 - \frac{m_0}{\lambda^{-1}E_2} \operatorname{tanh}\left(\frac{\lambda^{-1}E_2}{m_1}\right) - \zeta_o\right] \delta_{\alpha\beta} + \varepsilon_o c_{\alpha\beta}.$$
(6.18)

# 6.2.2. Resultados

Introduciendo las matrices en el software Mathematica y reemplazando los valores de las variables se obtiene finalmente la matriz  $\mathbb{M}$  y a su vez los valores propios de ella, como se expresan en la tabla 7 para los diferentes casos considerados.

| $E_o [V/m]$       | Valores Propios       |                       |                       |                       |                       |                        |  |  |  |
|-------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|--|--|--|
| 5 104             | $3.10^{9}$            | 784000                | 784000                | 784000                | 784000                | 784000                 |  |  |  |
| 3.10              | $5.52 \cdot 10^{-3}$  | $-5.52 \cdot 10^{-3}$ | $-3.56 \cdot 10^{-7}$ | $-2.82 \cdot 10^{-7}$ | $1.19 \cdot 10^{-7}$  | $-5.82 \cdot 10^{-11}$ |  |  |  |
| 1 105             | $3 \cdot 10^9$        | 784000                | 784000                | 784000                | 784000                | 784000                 |  |  |  |
| 1.10              | $-2.21 \cdot 10^{-2}$ | $2.21 \cdot 10^{-2}$  | $-1.50 \cdot 10^{-7}$ | $1.27 \cdot 10^{-7}$  | $-9.05 \cdot 10^{-8}$ | $-1.66 \cdot 10^{-8}$  |  |  |  |
| 5 105             | $3 \cdot 10^9$        | 784001                | 784001                | 784000                | 783999                | 783999                 |  |  |  |
| 0·10 <sup>-</sup> | -0.552                | 0.552                 | $-1.03 \cdot 10^{-6}$ | $2.40 \cdot 10^{-7}$  | $-1.50 \cdot 10^{-7}$ | $-1.32 \cdot 10^{-7}$  |  |  |  |
| 1 106             | $3 \cdot 10^{9}$      | 784003                | 784002                | 784000                | 783997                | 783997                 |  |  |  |
| 1 .10             | -2.21                 | 2.21                  | $-1.66 \cdot 10^{-5}$ | $-2.49 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.19 \cdot 10^{-7}$   |  |  |  |
| 5 106             | $3 \cdot 10^9$        | 784064                | 784055                | 784000                | 783945                | 783936                 |  |  |  |
| $3.10^{-10}$      | -55.2736              | 55.245                | -0.0103               | $-1.50 \cdot 10^{-7}$ | $1.29 \cdot 10^{-7}$  | $-1.03 \cdot 10^{-7}$  |  |  |  |

Tabla 7: Valores Propios de la Matriz  $\mathbb{M}$  para algunos valores de  $E_o$ 

Además considerando el valor del Campo Eléctrico se puede determinar la matriz  $\mathbb{M}'$  y a su vez los valores propios de ella, como se expresan en la tabla 8 para los diferentes casos considerados.

| $E_o  [V/m]$   | Valores Propios |          |          |          |         |                        |  |  |  |  |
|----------------|-----------------|----------|----------|----------|---------|------------------------|--|--|--|--|
| 5 104          | -14.1167        | 8.67603  | 8.67603  | -8.67603 | 7.58391 | -4.69548               |  |  |  |  |
| 3.10           | -4.69548        | -4.49911 | 3.69548  | 3.69548  | 1.35585 | $4.74 \cdot 10^{-15}$  |  |  |  |  |
| 1 105          | -56.2206        | 34.7041  | 34.7041  | -34.7041 | 24.2178 | -8.84615               |  |  |  |  |
| 1.10           | -8.84615        | 7.84615  | 7.84615  | -7.69215 | 3.99085 | $-3.06 \cdot 10^{-15}$ |  |  |  |  |
| F 105          | -1403.87        | 867.598  | -867.598 | 867.598  | 539.257 | -42.1587               |  |  |  |  |
| $3.10^{-1}$    | -42.1587        | 41.1587  | 41.1587  | -31.4315 | 27.4453 | $-1.81 \cdot 10^{-13}$ |  |  |  |  |
| 1 106          | -5615.18        | -3470.33 | 3470.33  | 3470.33  | 2147.85 | -83.8122               |  |  |  |  |
| 1 •10*         | -83.8122        | 82.8122  | 82.8122  | -60.8994 | 56.9028 | $1.82 \cdot 10^{-12}$  |  |  |  |  |
| 5 106          | -140302         | -86711.5 | 86711.5  | 86711.5  | 53593.8 | -416.941               |  |  |  |  |
| $0.10^{\circ}$ | -416.941        | 415.941  | 415.941  | -296.466 | 292.467 | $1.66 \cdot 10^{-11}$  |  |  |  |  |

Tabla 8: Valores Propios de la Matriz  $\mathbb{M}'$  para algunos valores de  $E_o$ 

# 6.3. Deformación de un Tubo Cilíndrico considerando la Primera Función de Energía Libre

Se considera un tubo cilíndrico cuya función de Energía Libre se estudia en un caso incompresible, donde es necesario determinar el Campo Eléctrico  $E_r$ , los radios finales interior y exterior,  $a ext{ y } b$  respectivamente, y el parámetro p que aparece en la modelación de cuerpos incompresibles. Obteniendo estos valores se calculan las matrices  $\mathbb{M} ext{ y } \mathbb{M}'$  con sus respectivos valores propios.

La Primera Función de Energía Libre para este caso incomprensible es:

$$\Omega = \frac{1}{4}\mu(0)[(1+\gamma)(I_1-3) + (1-\gamma)(I_2-3)] + \varepsilon_o(\alpha I_4 + \beta I_5).$$
(6.19)

#### 6.3.1. Resolución de Problemas

Para calcular el Campo Eléctrico  $E_r$  en función de r se tiene las ecuación 5.117, donde se reemplazan las derivadas de esta función de Energía Libre calculadas en la sección 5.3.2, obteniendo que:

$$E_r(r) = -\frac{C_o r^3}{2(r^2 - a^2 + A^2)[\varepsilon_o \alpha r^2 + \varepsilon_o \beta (r^2 - a^2 + A^2)]}.$$
(6.20)

Para calcular el radio interno final a se tiene la ecuación 5.131, donde se reemplazan los valores de las ecuaciones 5.118 y 5.119 en la integral con lo que se obtiene:

$$\begin{split} \int_{a}^{b} \frac{1}{\xi} \left[ 2(\Omega_{1} + \Omega_{2}) \left( \frac{\xi^{2}}{\xi^{2} - a^{2} + A^{2}} - \frac{\xi^{2} - a^{2} + A^{2}}{\xi^{2}} \right) - 2\Omega_{5} \frac{(\xi^{2} - a^{2} + A^{2})^{2}}{\xi^{4}} E_{r}^{2} \right] d\xi \\ - P_{o} + \varepsilon_{o}^{-1} \frac{C_{o}^{2}}{2a^{2}} = \varepsilon_{o}^{-1} \frac{C_{o}^{2}}{2b^{2}}, \end{split}$$
(6.21)

se reemplazan los valores de las derivadas de la función de Energía Libre calculadas en la sección 5.3.2 y el Campo Eléctrico  $E_r(\xi)$  de la ecuación 6.20, obteniendo que:

$$\int_{a}^{b} \left[ \mu(0) \left( \frac{\xi}{\xi^{2} - a^{2} + A^{2}} - \frac{\xi^{2} - a^{2} + A^{2}}{\xi^{3}} \right) - \frac{\beta C_{o}^{2} \xi}{2\varepsilon_{o} [\alpha \xi^{2} + \beta (\xi^{2} - a^{2} + A^{2})]^{2}} \right] d\xi - P_{o} + \varepsilon_{o}^{-1} \frac{C_{o}^{2}}{2a^{2}} = \varepsilon_{o}^{-1} \frac{C_{o}^{2}}{2b^{2}},$$
(6.22)

resolviendo la integral se obtiene que:

$$\frac{\mu(0)}{2} \left[ ln(a^2) - ln(A^2) + ln(B^2) - ln(a^2 - A^2 + B^2) + \frac{(a - A)(a + A)}{a^2} - \frac{(a - A)(a + A)}{a^2 - A^2 + B^2} \right] \\ + \frac{C_o^2 \beta}{4(\alpha + \beta)} \left[ \frac{1}{\varepsilon_o \alpha a^2 - \varepsilon_o \alpha A^2 + B^2(\varepsilon_o \alpha + \varepsilon_o \beta)} - \frac{1}{\varepsilon_o \alpha a^2 + \varepsilon_o \beta A^2} \right] \\ - P_o + \varepsilon_o^{-1} \frac{C_o^2}{2a^2} = \varepsilon_o^{-1} \frac{C_o^2}{2(a^2 - A^2 + B^2)}.$$
(6.23)

Introduciendo esta ecuación en el software Mathematica y asumiendo que:

$$A = 0.025$$
 [m],  $B = 0.035$  [m],

y se obtienen de forma numérica los radios finales del tubo cilíndrico, para lo cual se asumen tres valores diferentes para las constantes  $C_o$  y  $P_o$  como se muestra en la tabla 9.

Tabla 9: Radios Finales del Tubo Cilíndrico para algunos valores de  $\mathcal{C}_o$  y  $\mathcal{P}_o$ 

| $C_o \ [{\rm C}^2 V N^{-1} m^{-2}]$ | $P_o$ [Pa]       | $a  [\mathrm{m}]$ | <i>b</i> [m] |
|-------------------------------------|------------------|-------------------|--------------|
| $1 \cdot 10^{-6}$                   | $1 \cdot 10^{4}$ | 0.0256798         | 0.0354888    |
| $1 \cdot 10^{-6}$                   | $5 \cdot 10^4$   | 0.0293026         | 0.0381922    |
| $1 \cdot 10^{-6}$                   | $1 \cdot 10^{5}$ | 0.0392174         | 0.0462386    |
| $3 \cdot 10^{-6}$                   | $1 \cdot 10^{4}$ | 0.0256564         | 0.0354718    |
| $3 \cdot 10^{-6}$                   | $5 \cdot 10^4$   | 0.0292774         | 0.0381728    |
| $3 \cdot 10^{-6}$                   | $1 \cdot 10^{5}$ | 0.0391870         | 0.0462128    |
| $5 \cdot 10^{-6}$                   | $1 \cdot 10^4$   | 0.0256093         | 0.0354378    |
| $5 \cdot 10^{-6}$                   | $5 \cdot 10^4$   | 0.0292268         | 0.0381341    |
| $5 \cdot 10^{-6}$                   | $1 \cdot 10^5$   | 0.0391260         | 0.0461611    |

Para calcular p en función de r se tiene la ecuación 5.133, donde se reemplazan los valores de las ecuaciones 5.118 y 5.119 en la integral con lo que se obtiene:

$$p(r) = 2\Omega_1 \frac{r^2 - a^2 + A^2}{r^2} + 2\Omega_2 \left(\frac{2r^2 - a^2 + A^2}{r^2}\right) + 2\Omega_5 \frac{(r^2 - a^2 + A^2)^2}{r^4} E_r^2 - \int_a^r \frac{1}{\xi} \left[ 2(\Omega_1 + \Omega_2) \left(\frac{\xi^2}{\xi^2 - a^2 + A^2} - \frac{\xi^2 - a^2 + A^2}{\xi^2}\right) - 2\Omega_5 \frac{(\xi^2 - a^2 + A^2)^2}{\xi^4} E_r^2 \right] d\xi + P_o - \varepsilon_o^{-1} \frac{C_o^2}{2a^2},$$
(6.24)

se reemplazan los valores de las derivadas de la función de Energía Libre calculadas en la sección 5.3.2 y el Campo Eléctrico  $E_r(\xi)$  de la ecuación 6.20 obteniéndose:

$$p(r) = \frac{1}{2}\mu(0) \left[ (1+\gamma)\frac{r^2 - a^2 + A^2}{r^2} + (1-\gamma)\frac{2r^2 - a^2 + A^2}{r^2} \right] + \frac{\beta C_o^2 r^2}{2\varepsilon_o [\alpha r^2 + \beta (r^2 - a^2 + A^2)]^2} - \int_a^r \left[ \mu(0) \left( \frac{\xi}{\xi^2 - a^2 + A^2} - \frac{\xi^2 - a^2 + A^2}{\xi^3} \right) - \frac{\beta C_o^2 \xi}{2\varepsilon_o [\alpha \xi^2 + \beta (\xi^2 - a^2 + A^2)]^2} \right] d\xi + P_o - \varepsilon_o^{-1} \frac{C_o^2}{2a^2},$$
(6.25)

resolviendo la integral se obtiene finalmente que:

$$p(r) = \frac{1}{2}\mu(0) \left[ \frac{3r^2 - 2a^2 + 2A^2}{r^2} - \gamma \right] + \frac{\beta C_o^2 r^2}{2\varepsilon_o [\alpha r^2 + \beta (r^2 - a^2 + A^2)]^2} \\ - \frac{\mu(0)}{2} \left[ ln(a^2) - ln(A^2) + ln(r^2 + A^2 - a^2) - ln(r^2) + (a^2 - A^2) \left( \frac{1}{a^2} - \frac{1}{r^2} \right) \right] \\ - \frac{C_o^2 \beta}{4(\alpha + \beta)} \left[ \frac{1}{\varepsilon_o (\alpha + \beta) r^2 - \varepsilon_o \beta a^2 + \varepsilon_o \beta A^2} - \frac{1}{\varepsilon_o \alpha a^2 + \varepsilon_o \beta A^2} \right] + P_o - \varepsilon_o^{-1} \frac{C_o^2}{2a^2}.$$
(6.26)

Las expresiones de los componentes de la matriz  $\mathbb{M}$  se pueden definir con los componentes de  $\mathbb{A}_{i\alpha j\beta}$ ,  $\mathbb{B}_{i\alpha\beta}$  y  $\mathbb{C}_{\alpha\beta}$  para este problema. Considerando solo los valores no nulos, estas componentes se expresan como:

$$\mathbb{A}_{i\alpha j\beta} = \frac{\partial\Omega}{\partial I_1} \frac{\partial^2 I_1}{\partial F_{i\alpha} \partial F_{j\beta}} + \frac{\partial\Omega}{\partial I_2} \frac{\partial^2 I_2}{\partial F_{i\alpha} \partial F_{j\beta}} + \frac{\partial\Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial F_{i\alpha} \partial F_{j\beta}} - p[F_{\alpha i}^{-1} F_{\beta j}^{-1} - F_{\alpha j}^{-1} F_{i\beta}^{-1}], \quad (6.27)$$

$$\mathbb{B}_{i\alpha\beta} = \frac{\partial\Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial F_{i\alpha} \partial E_{l_\beta}},\tag{6.28}$$

$$\mathbb{C}_{\alpha\beta} = \frac{\partial\Omega}{\partial I_4} \frac{\partial^2 I_4}{\partial E_{l_\alpha} \partial E_{l_\beta}} + \frac{\partial\Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial E_{l_\alpha} \partial E_{l_\beta}}.$$
(6.29)

Reemplazando las derivadas calculadas en las secciones 5.2 y 5.3.2 se obtiene:

$$\mathbb{A}_{i\alpha j\beta} = \frac{1}{2}\mu(0)(1+\gamma)\delta_{ij}\delta_{\alpha\beta} + \frac{1}{2}\mu(0)(1-\gamma)(\delta_{ij}\delta_{\alpha\beta}c_{\gamma\gamma} + 2F_{i\alpha}F_{j\beta} - \delta_{ij}c_{\beta\alpha} - F_{i\beta}F_{j\alpha} - F_{i\gamma}F_{j\gamma}\delta_{\alpha\beta}) + 2\varepsilon_o\beta E_{l_\alpha}\delta_{ij}E_{l_\beta} - p[F_{\alpha i}^{-1}F_{\beta j}^{-1} - F_{\alpha j}^{-1}F_{i\beta}^{-1}],$$
(6.30)

$$\mathbb{B}_{i\alpha\beta} = 2\varepsilon_o\beta(\delta_{\alpha\beta}F_{i\gamma}E_{l\gamma} + E_{l\alpha}F_{i\beta}), \qquad (6.31)$$

$$\mathbb{C}_{\alpha\beta} = 2\varepsilon_o \alpha \delta_{\alpha\beta} + 2\varepsilon_o \beta c_{\alpha\beta}. \tag{6.32}$$

# 6.3.2. Resultados

Introduciendo las matrices en el software Mathematica y reemplazando los valores de las variables se obtiene finalmente la matriz  $\mathbb{M}(r)$  (que ahora depende de la posición radial r) y a su vez los valores propios de ella. Considerando 8 valores de r entre a y b se calculan los valores propios para los diferentes valores de  $C_o$  y  $P_o$ , como se expresan en las tablas 10 - 18.

Tabla 10: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-6} \ [C^2 V N^{-1} m^{-2}] \ y \ P_o = 1 \cdot 10^4 \ [Pa]$ 

| <i>r</i> [m] |         |         | Va      | lores Propios         |                       |                       |
|--------------|---------|---------|---------|-----------------------|-----------------------|-----------------------|
| 0.0256709    | 785374  | 783806  | 773434  | 763336                | 761738                | -371112               |
| 0.0230798    | 20663.6 | 10565.8 | 193.578 | $-8.03 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.15 \cdot 10^{-8}$ |
| 0.0270811    | 784074  | 782667  | 773380  | 764314                | 762883                | -370957               |
| 0.0270811    | 19685.8 | 10619.7 | 1332.93 | $-7.93 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.25 \cdot 10^{-8}$ |
| 0.0284824    | 782974  | 781704  | 773339  | 765153                | 763864                | -370837               |
| 0.0284824    | 18846.6 | 10661.1 | 2296.07 | $-7.84 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.32 \cdot 10^{-8}$ |
| 0.0208837    | 782034  | 780882  | 773307  | 765879                | 764710                | -370745               |
| 0.0290001    | 18121.1 | 10693.3 | 3118    | $-7.79 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.39 \cdot 10^{-8}$ |
| 0.0312840    | 781225  | 780175  | 773281  | 766510                | 765447                | -370671               |
| 0.0312049    | 17489.6 | 10718.7 | 3825.34 | $-7.73 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.45 \cdot 10^{-8}$ |
| 0.0326862    | 780522  | 779561  | 773261  | 767063                | 766091                | -370613               |
| 0.0520002    | 16936.7 | 10738.9 | 4438.67 | $-7.64 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.50 \cdot 10^{-8}$ |
| 0.0340875    | 779909  | 779026  | 773245  | 767550                | 766658                | -370566               |
| 0.0040010    | 16449.8 | 10755.1 | 4974.11 | $-7.60 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.55 \cdot 10^{-8}$ |
| 0.035/888    | 779369  | 778556  | 773232  | 767981                | 767159                | -370528               |
| 0.0004000    | 16018.9 | 10768.3 | 5444.43 | $-7.56 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.59 \cdot 10^{-8}$ |

Tabla 11: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-6} \ [C^2 V N^{-1} m^{-2}] \ y \ P_o = 5 \cdot 10^4 \ [Pa]$ 

| r [m]     |         |         | Va       | lores Propios         |                       |                       |
|-----------|---------|---------|----------|-----------------------|-----------------------|-----------------------|
| 0.0000000 | 792664  | 784969  | 727268   | 678040                | 669422                | -286087               |
| 0.0293020 | 105960  | 56731.5 | -969.282 | $-1.36 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-2.26 \cdot 10^{-8}$ |
| 0.0205725 | 784345  | 777356  | 725735   | 681029                | 673285                | -281630               |
| 0.0303723 | 102971  | 58264.6 | 6643.34  | $-1.29 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-2.66 \cdot 10^{-8}$ |
| 0.0218425 | 777431  | 771052  | 724524   | 683708                | 676702                | -278134               |
| 0.0318423 | 100292  | 59475.6 | 12947.8  | $-1.23 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-2.97 \cdot 10^{-8}$ |
| 0.0221194 | 771612  | 765762  | 723556   | 686116                | 679742                | -275354               |
| 0.0551124 | 97884.1 | 60444   | 18238.1  | $-1.18 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-3.31 \cdot 10^{-8}$ |
| 0 0949999 | 766658  | 761272  | 722773   | 688288                | 682460                | -273118               |
| 0.0343823 | 95711.8 | 61266.8 | 22728.2  | $-1.14 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-3.57 \cdot 10^{-8}$ |
| 0.0256593 | 762401  | 757423  | 722134   | 690254                | 684900                | -271301               |
| 0.0330323 | 93746.5 | 61865.7 | 26577.2  | $-1.10 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-3.82 \cdot 10^{-8}$ |
| 0.0260222 | 758710  | 754094  | 721608   | 692037                | 687099                | -269810               |
| 0.0309222 | 91963.4 | 62391.7 | 29905.6  | $-1.07 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-4.03 \cdot 10^{-8}$ |
| 0.0281022 | 755487  | 751194  | 721172   | 693659                | 689089                | -268575               |
| 0.0301922 | 90341.1 | 62828.3 | 32806.3  | $-1.04 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-4.23 \cdot 10^{-8}$ |

Tabla 12: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-6} \ [C^2 V N^{-1} m^{-2}] \ y \ P_o = 1 \cdot 10^5 \ [Pa]$ 

| <i>r</i> [m] |         |          | Vale     | ores Propios          |                       |                      |
|--------------|---------|----------|----------|-----------------------|-----------------------|----------------------|
| 0.0202174    | 812859  | 798701   | 651260   | 557271                | 538073                | 226729               |
| 0.0392174    | -174932 | 132739   | -14700.9 | $-3.29 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $3.42 \cdot 10^{-8}$ |
| 0.0402204    | 785840  | 772864   | 643373   | 557908                | 540679                | 226092               |
| 0.0402204    | -150519 | 140627   | 11135.8  | $-2.99 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $2.90 \cdot 10^{-8}$ |
| 0.0419925    | 763898  | 751939   | 636848   | 558558                | 542974                | 225442               |
| 0.0412233    | 147151  | -130872  | 32061.1  | $-2.76 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $2.42 \cdot 10^{-8}$ |
| 0.0422265    | 745776  | 734699   | 631390   | 559224                | 545030                | 224776               |
| 0.0422203    | 152610  | -114807  | 49300.1  | $-2.56 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $1.97 \cdot 10^{-8}$ |
| 0.0422205    | 730596  | 720292   | 626779   | 559904                | 546898                | 224096               |
| 0.0432293    | 157220  | -101495  | 63707.5  | $-2.39 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $1.57 \cdot 10^{-8}$ |
| 0.0442225    | 717724  | 708102   | 622852   | 560594                | 548614                | 223406               |
| 0.0442323    | 161147  | -90339.5 | 75896.8  | $-2.25 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $1.17 \cdot 10^{-8}$ |
| 0.0452255    | 706694  | 697678   | 619482   | 561290                | 550205                | 222710               |
| 0.0452555    | 164516  | 86319.2  | -80900.6 | $-2.13 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $8.20 \cdot 10^{-9}$ |
| 0.0469286    | 697151  | 688679   | 616569   | 561988                | 551687                | 222012               |
| 0.0402380    | 167425  | 95314.6  | -72844.6 | $-2.02 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $4.81 \cdot 10^{-9}$ |

| r [m]     |         |         | Va      | lores Propios         |                       |                       |
|-----------|---------|---------|---------|-----------------------|-----------------------|-----------------------|
| 0.0256564 | 784954  | 783439  | 773425  | 763667                | 762124                | -371079               |
| 0.0230304 | 20332.6 | 10574.2 | 559.885 | $-8.01 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.18 \cdot 10^{-8}$ |
| 0.0270586 | 783700  | 782341  | 773375  | 764615                | 763233                | -370934               |
| 0.0270580 | 19385.1 | 10624.6 | 1658.38 | $-7.89 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.27 \cdot 10^{-8}$ |
| 0.0284608 | 782639  | 781412  | 773336  | 765428                | 764183                | -370822               |
| 0.0284008 | 18572   | 10663.2 | 2587.15 | $-7.84 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.35 \cdot 10^{-8}$ |
| 0 0008620 | 781733  | 780620  | 773306  | 766131                | 765003                | -370735               |
| 0.0298030 | 17869.3 | 10693.3 | 3379.86 | $-7.76 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.42 \cdot 10^{-8}$ |
| 0.0212652 | 780952  | 779937  | 773283  | 766742                | 765715                | -370667               |
| 0.0312032 | 17257.8 | 10717   | 4062.14 | $-7.68 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.49 \cdot 10^{-8}$ |
| 0.0326674 | 780274  | 779346  | 773264  | 767277                | 766339                | -370613               |
| 0.0320074 | 16722.5 | 10735.8 | 4653.79 | $-7.63 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.52 \cdot 10^{-8}$ |
| 0.0240606 | 779682  | 778829  | 773249  | 767749                | 766887                | -370569               |
| 0.0340090 | 16251.3 | 10751   | 5170.34 | $-7.60 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.56 \cdot 10^{-8}$ |
| 0.0354718 | 779161  | 778376  | 773236  | 768166                | 767372                | -370534               |
| 0.0004710 | 15834.3 | 10763.3 | 5624.1  | $-7.53 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.62 \cdot 10^{-8}$ |

Tabla 13: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-6} \ [\text{C}^2 V N^{-1} m^{-2}] \ y \ \text{P}_o = 1 \cdot 10^4 \ [\text{Pa}]$ 

Tabla 14: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-6} \ [\text{C}^2 V N^{-1} m^{-2}] \ y \ \text{P}_o = 5 \cdot 10^4 \ [\text{Pa}]$ 

| <i>r</i> [m] |         |         | Val      | lores Propios         |                       |                       |
|--------------|---------|---------|----------|-----------------------|-----------------------|-----------------------|
| 0.0000774    | 792238  | 784582  | 727226   | 678252                | 669684                | -285926               |
| 0.0292774    | 105748  | 56769   | -587.065 | $-1.36 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-2.28 \cdot 10^{-8}$ |
| 0.0205482    | 783975  | 777023  | 725709   | 681236                | 673536                | -281515               |
| 0.0303482    | 102764  | 58287.4 | 6973.41  | $-1.29 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-2.67 \cdot 10^{-8}$ |
| 0.0218180    | 777108  | 770762  | 724511   | 683909                | 676944                | -278054               |
| 0.0318189    | 100091  | 59486.6 | 13235.3  | $-1.23 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-3.00 \cdot 10^{-8}$ |
| 0.0220807    | 771327  | 765508  | 723553   | 686311                | 679974                | -275303               |
| 0.0550697    | 97688.8 | 60445.5 | 18490.4  | $-1.18 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-3.31 \cdot 10^{-8}$ |
| 0.0242605    | 766406  | 761048  | 722778   | 688478                | 682683                | -273090               |
| 0.0343003    | 95522.2 | 61220.4 | 22950.8  | $-1.14 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-3.60 \cdot 10^{-8}$ |
| 0.0256212    | 762176  | 757224  | 722146   | 690437                | 685115                | -271291               |
| 0.0300313    | 93562.5 | 61852.9 | 26774.6  | $-1.10 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-3.83 \cdot 10^{-8}$ |
| 0.0260021    | 758509  | 753918  | 721626   | 692215                | 687306                | -269816               |
| 0.0369021    | 91784.8 | 62373.5 | 30081.3  | $-1.07 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-4.06 \cdot 10^{-8}$ |
| 0.0291799    | 755305  | 751036  | 721194   | 693832                | 689289                | -268595               |
| 0.0301728    | 90167.7 | 62805.5 | 32963.3  | $-1.04 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-4.25 \cdot 10^{-8}$ |

| r [m]     |         |          | Vale     | ores Propios          |                       |                      |
|-----------|---------|----------|----------|-----------------------|-----------------------|----------------------|
| 0.0201070 | 812448  | 798309   | 651211   | 557211                | 538205                | 226631               |
| 0.0391870 | -174656 | 132787   | -14311.1 | $-3.28 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $3.42 \cdot 10^{-8}$ |
| 0.0401007 | 785495  | 772537   | 643341   | 558010                | 540813                | 225990               |
| 0.0401907 | -150310 | 140656   | 11460.2  | $-2.99 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $2.89 \cdot 10^{-8}$ |
| 0.0411044 | 763606  | 751664   | 636831   | 558664                | 543108                | 225336               |
| 0.0411944 | 147165  | -130718  | 32332.9  | $-2.75 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $2.40 \cdot 10^{-8}$ |
| 0.0491091 | 745527  | 734466   | 631385   | 559333                | 545166                | 224667               |
| 0.0421981 | 152610  | -114697  | 49529.1  | $-2.55 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $1.97 \cdot 10^{-8}$ |
| 0.0422018 | 730381  | 720092   | 626784   | 560016                | 547035                | 223984               |
| 0.0432018 | 157209  | -101422  | 63901.1  | $-2.39 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $1.55 \cdot 10^{-8}$ |
| 0.0442054 | 717535  | 707928   | 622863   | 560708                | 548751                | 223292               |
| 0.0442034 | 161125  | -90296.7 | 76061    | $-2.25 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $1.16 \cdot 10^{-8}$ |
| 0.0452001 | 706518  | 697518   | 619493   | 561404                | 550338                | 222596               |
| 0.0452091 | 164486  | 86460.1  | -80878.4 | $-2.12 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $8.11 \cdot 10^{-9}$ |
| 0.0462128 | 696952  | 688498   | 616550   | 562089                | 551807                | 221911               |
| 0.0462128 | 167390  | 95442.5  | -72818.5 | $-2.02 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $4.68 \cdot 10^{-9}$ |

Tabla 15: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-6} \ [\text{C}^2 V N^{-1} m^{-2}] \ y \ \text{P}_o = 1 \cdot 10^5 \ [\text{Pa}]$ 

Tabla 16: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-6} \ [C^2 V N^{-1} m^{-2}] \ y \ P_o = 1 \cdot 10^4 \ [Pa]$ 

| <i>r</i> [m] |         |         | Va      | lores Propios         |                       |                       |
|--------------|---------|---------|---------|-----------------------|-----------------------|-----------------------|
| 0.0256002    | 784144  | 782706  | 773410  | 764336                | 762903                | -371019               |
| 0.0200095    | 19663.9 | 10588.1 | 1292.09 | $-7.95 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.24 \cdot 10^{-8}$ |
| 0.0970194    | 782953  | 781689  | 773367  | 765222                | 763939                | -370893               |
| 0.0270134    | 18777.6 | 10631.7 | 2308.92 | $-7.86 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.33 \cdot 10^{-8}$ |
| 0.0284175    | 781970  | 780830  | 773333  | 765982                | 764826                | -370797               |
|              | 18017.6 | 10665.2 | 3168.96 | $-7.78 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.38 \cdot 10^{-8}$ |
| 0.0208215    | 781130  | 780096  | 773308  | 766639                | 765592                | -370722               |
| 0.0298215    | 17361.1 | 10691.2 | 3903.22 | $-7.70 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.45 \cdot 10^{-8}$ |
| 0.0319956    | 780406  | 779464  | 773287  | 767210                | 766257                | -370663               |
| 0.0312230    | 16790.1 | 10711.7 | 4535.33 | $-7.65 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.52 \cdot 10^{-8}$ |
| 0.0326207    | 779777  | 778915  | 773271  | 767709                | 766838                | -370617               |
| 0.0520291    | 16290.5 | 10728   | 5083.59 | $-7.60 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.56 \cdot 10^{-8}$ |
| 0.0340337    | 779229  | 778437  | 773258  | 768149                | 767350                | -370579               |
| 0.0340337    | 15850.9 | 10741.1 | 5562.33 | $-7.57 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.60 \cdot 10^{-8}$ |
| 0.035/378    | 778746  | 778016  | 773247  | 768538                | 767802                | -370548               |
| 0.0354378    | 15462   | 10751.7 | 5982.92 | $-7.51 \cdot 10^{-8}$ | $-7.07 \cdot 10^{-8}$ | $-6.63 \cdot 10^{-8}$ |

| r [m]     |         |         | Va      | lores Propios         |                       |                       |
|-----------|---------|---------|---------|-----------------------|-----------------------|-----------------------|
| 0.0000060 | 791385  | 783810  | 727145  | 678681                | 670211                | -285610               |
| 0.0292208 | 105319  | 56842.3 | 177.342 | $-1.35 \cdot 10^{-7}$ | $-7.08 \cdot 10^{-8}$ | $-2.32 \cdot 10^{-8}$ |
| 0.0204002 | 783237  | 776358  | 725660  | 681654                | 674043                | -281288               |
| 0.0304995 | 102346  | 58331.3 | 7633.45 | $-1.28 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-2.70 \cdot 10^{-8}$ |
| 0.0217717 | 776462  | 770184  | 724487  | 684315                | 677430                | -277898               |
| 0.0317717 | 99685.3 | 59507.1 | 13810.2 | $-1.22 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-3.05 \cdot 10^{-8}$ |
| 0.0320449 | 770757  | 765001  | 723549  | 686705                | 680442                | -275204               |
| 0.0330442 | 97294.7 | 60446.8 | 18994.6 | $-1.17 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-3.34 \cdot 10^{-8}$ |
| 0 0949167 | 765900  | 760601  | 722790  | 688860                | 683133                | -273037               |
| 0.0343107 | 95139.8 | 61206.1 | 23395.7 | $-1.13 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-3.63 \cdot 10^{-8}$ |
| 0.0255801 | 761725  | 756828  | 722172  | 690808                | 685548                | -271276               |
| 0.0355591 | 93191.5 | 61825.6 | 27169   | $-1.09 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-3.88 \cdot 10^{-8}$ |
| 0.0268616 | 758105  | 753565  | 721662  | 692575                | 687724                | -269832               |
| 0.0308010 | 91424.8 | 62335.5 | 30432.4 | $-1.06 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-4.09 \cdot 10^{-8}$ |
| 0.0281241 | 754943  | 750721  | 721240  | 694182                | 689692                | -268637               |
| 0.0381341 | 89818.2 | 62758.5 | 33276.7 | $-1.03 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $-4.27 \cdot 10^{-8}$ |

Tabla 17: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-6} \ [\text{C}^2 V N^{-1} m^{-2}] \ y \ \text{P}_o = 5 \cdot 10^4 \ [\text{Pa}]$ 

Tabla 18: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-6} \ [\text{C}^2 V N^{-1} m^{-2}] \ y \ \text{P}_o = 1 \cdot 10^5 \ [\text{Pa}]$ 

| <i>r</i> [m] |         |          | Vale     | ores Propios          |                       |                      |
|--------------|---------|----------|----------|-----------------------|-----------------------|----------------------|
| 0.0201260    | 811624  | 797525   | 651113   | 557565                | 538473                | 226435               |
| 0.0591200    | -174103 | 132880   | -13530.7 | $-3.27 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $3.38 \cdot 10^{-8}$ |
| 0.0401210    | 784804  | 771883   | 643279   | 558215                | 541082                | 225785               |
| 0.0401310    | -149893 | 140714   | 12109.3  | $-2.97 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $2.88 \cdot 10^{-8}$ |
| 0.0411260    | 763021  | 751114   | 636798   | 558877                | 543380                | 225123               |
| 0.0411300    | 147192  | -130411  | 32876.6  | $-2.74 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $2.40 \cdot 10^{-8}$ |
| 0.0401410    | 745028  | 734000   | 631377   | 559554                | 545439                | 224446               |
| 0.0421410    | 152610  | -114480  | 49986.8  | $-2.54 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $1.94 \cdot 10^{-8}$ |
| 0.0421460    | 729950  | 719693   | 626795   | 560243                | 547310                | 223757               |
| 0.0431400    | 157185  | -101280  | 64287.6  | $-2.38 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $1.52 \cdot 10^{-8}$ |
| 0.0441510    | 717155  | 707579   | 622887   | 560938                | 549026                | 223062               |
| 0.0441310    | 161081  | -90213.4 | 76388.9  | $-2.24 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $1.14 \cdot 10^{-8}$ |
| 0.0451561    | 706164  | 697194   | 619511   | 561631                | 550607                | 222369               |
| 0.0401001    | 164425  | 86741.9  | -80834.7 | $-2.12 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $7.91 \cdot 10^{-9}$ |
| 0.0461611    | 696532  | 688115   | 616497   | 562286                | 552041                | 221714               |
| 0.0461611    | 167320  | 95702.1  | -72755.7 | $-2.01 \cdot 10^{-7}$ | $-7.07 \cdot 10^{-8}$ | $4.74 \cdot 10^{-9}$ |

Además considerando el valor del Campo Eléctrico se puede determinar la matriz  $\mathbb{M}'(r)$  y a su vez los valores propios de ella. Considerando 8 valores de r entre a y b se calculan los valores propios para los diferentes valores de  $C_o$  y  $P_o$ , como se expresan en las tablas 19 - 27.

Tabla 19: Valores Propios de la Matriz M' para algunos valores de r<br/> entre a y b considerando  $C_o=1\cdot 10^{-6}~[{\rm C}^2VN^{-1}m^{-2}]~y~{\rm P}_o=1\cdot 10^4~[{\rm Pa}]$ 

| r [m]     |         | Valores Propios |                     |                     |                        |                        |  |  |  |
|-----------|---------|-----------------|---------------------|---------------------|------------------------|------------------------|--|--|--|
| 0.0256709 | -446403 | 446402          | 446402              | -446402             | -945.383               | -945.383               |  |  |  |
| 0.0230798 | 944.882 | -944.882        | 944.383             | 944.383             | $5.42 \cdot 10^{-11}$  | $-5.25 \cdot 10^{-11}$ |  |  |  |
| 0.0270811 | -385220 | -385219         | 385219              | 385219              | -878.246               | -878.246               |  |  |  |
| 0.0270811 | 877.745 | -877.745        | 877.246             | 877.246             | $9.05 \cdot 10^{-11}$  | $8.54 \cdot 10^{-11}$  |  |  |  |
| 0.0284824 | -336330 | -336329         | 336329              | 336329              | -820.658               | -820.658               |  |  |  |
| 0.0284824 | 820.156 | -820.156        | 819.658             | 819.658             | $-1.80 \cdot 10^{-10}$ | $-1.39 \cdot 10^{-10}$ |  |  |  |
| 0.0000027 | -296573 | 296572          | 296572              | -296572             | -770.659               | -770.659               |  |  |  |
| 0.0298831 | 770.157 | -770.157        | 769.659             | 769.659             | $-5.80 \cdot 10^{-11}$ | $1.10 \cdot 10^{-11}$  |  |  |  |
| 0.0312840 | -263754 | 263753          | 263753              | -263753             | -726.797               | -726.797               |  |  |  |
| 0.0312849 | 726.295 | -726.295        | 725.797             | 725.797             | $-1.19 \cdot 10^{-10}$ | $-4.36 \cdot 10^{-11}$ |  |  |  |
| 0 0326862 | -236310 | -236309         | 236309              | 236309              | -687.973               | -687.973               |  |  |  |
| 0.0520002 | 687.471 | -687.471        | 686.973             | 686.973             | $-6.65 \cdot 10^{-11}$ | $-4.98 \cdot 10^{-11}$ |  |  |  |
| 0.0340875 | -213099 | -213098         | 213098              | 213098              | -653.338               | -653.338               |  |  |  |
| 0.0340075 | 652.836 | -652.836        | 652.338             | 652.338             | $5.32 \cdot 10^{-11}$  | $-2.24 \cdot 10^{-11}$ |  |  |  |
| 0.035/888 | -193273 | -193272         | $193\overline{272}$ | $193\overline{272}$ | -622.227               | -622.227               |  |  |  |
| 0.0354888 | 621.725 | -621.725        | 621.227             | 621.227             | $2.01 \cdot 10^{-11}$  | $9.98 \cdot 10^{-12}$  |  |  |  |

Tabla 20: Valores Propios de la Matriz  $\mathbb{M}'$  para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-6} \, [\text{C}^2 V N^{-1} m^{-2}] \, y \, \text{P}_o = 5 \cdot 10^4 \, [\text{Pa}]$ 

| r [m]     |                      |                      | Valor                | es Propios           |                        |                        |
|-----------|----------------------|----------------------|----------------------|----------------------|------------------------|------------------------|
| 0.0000000 | $-4.29 \cdot 10^{6}$ | $4.29 \cdot 10^{6}$  | $-4.29 \cdot 10^6$   | $4.29 \cdot 10^{6}$  | -2932.17               | -2932.17               |
| 0.0295020 | 2931.67              | -2931.67             | 2931.17              | 2931.17              | $-5.14 \cdot 10^{-10}$ | $-2.29 \cdot 10^{-10}$ |
| 0.0205725 | $-2.70 \cdot 10^{6}$ | $-2.70 \cdot 10^{6}$ | $2.70 \cdot 10^6$    | $2.70 \cdot 10^6$    | -2325.11               | -2325.11               |
| 0.0303723 | 2324.61              | -2324.61             | 2324.11              | 2324.11              | $6.64 \cdot 10^{-10}$  | $-1.39 \cdot 10^{-10}$ |
| 0.0218495 | $-1.85 \cdot 10^{6}$ | $1.85 \cdot 10^{6}$  | $-1.85 \cdot 10^{6}$ | $1.85 \cdot 10^{6}$  | -1925.06               | -1925.06               |
| 0.0318425 | 1924.56              | -1924.56             | 1924.06              | 1924.06              | $5.99 \cdot 10^{-10}$  | $8.45 \cdot 10^{-11}$  |
| 0.0001104 | $-1.34 \cdot 10^{6}$ | $-1.34 \cdot 10^6$   | $1.34 \cdot 10^{6}$  | $1.34 \cdot 10^{6}$  | -1642.6                | -1642.6                |
| 0.0551124 | 1642.1               | -1642.1              | 1641.6               | 1641.6               | $-1.25 \cdot 10^{-10}$ | $5.31 \cdot 10^{-11}$  |
| 0.0242892 | $-1.02 \cdot 10^{6}$ | $1.02 \cdot 10^{6}$  | $1.02 \cdot 10^{6}$  | $-1.02 \cdot 10^{6}$ | -1433.07               | -1433.07               |
| 0.0343823 | 1432.57              | -1432.57             | 1432.07              | 1432.07              | $1.17 \cdot 10^{-10}$  | $9.05 \cdot 10^{-11}$  |
| 0.0256522 | -808041              | 808040               | -808040              | 808040               | -1271.75               | -1271.75               |
| 0.0550525 | 1271.25              | -1271.25             | 1270.75              | 1270.75              | $1.36 \cdot 10^{-10}$  | $-3.80 \cdot 10^{-11}$ |
| 0.0260222 | -653674              | 653673               | 653673               | -653673              | -1143.89               | -1143.89               |
| 0.0309222 | 1143.39              | -1143.39             | 1142.89              | 1142.89              | $1.80 \cdot 10^{-10}$  | $3.03 \cdot 10^{-11}$  |
| 0.0281022 | -540438              | -540437              | 540437               | 540437               | -1040.15               | -1040.15               |
| 0.0381922 | 1039.65              | -1039.65             | 1039.15              | 1039.15              | $5.89 \cdot 10^{-11}$  | $3.89 \cdot 10^{-11}$  |

| r [m]     |                      | Valores Propios      |                      |                     |                        |                        |  |  |  |
|-----------|----------------------|----------------------|----------------------|---------------------|------------------------|------------------------|--|--|--|
| 0.0202174 | $-3.35 \cdot 10^{6}$ | $-3.35 \cdot 10^{6}$ | $3.35 \cdot 10^{6}$  | $3.35 \cdot 10^{6}$ | -2592.09               | -2592.09               |  |  |  |
| 0.0392174 | 2591.59              | -2591.59             | 2591.09              | 2591.09             | $6.26 \cdot 10^{-10}$  | $-4.80 \cdot 10^{-10}$ |  |  |  |
| 0.0402204 | $-3.85 \cdot 10^{6}$ | $-3.85 \cdot 10^{6}$ | $3.85 \cdot 10^6$    | $3.85 \cdot 10^{6}$ | -2777.13               | -2777.13               |  |  |  |
| 0.0402204 | 2776.63              | -2776.63             | 2776.13              | 2776.13             | $-2.37 \cdot 10^{-10}$ | $1.04 \cdot 10^{-10}$  |  |  |  |
| 0.0412235 | $-4.66 \cdot 10^6$   | $-4.66 \cdot 10^6$   | $4.66 \cdot 10^6$    | $4.66 \cdot 10^{6}$ | -3054.82               | -3054.82               |  |  |  |
| 0.0412235 | 3054.32              | -3054.32             | 3053.82              | 3053.82             | $-3.10 \cdot 10^{-10}$ | $7.06 \cdot 10^{-11}$  |  |  |  |
| 0.0422265 | $-6.00 \cdot 10^{6}$ | $-6.00 \cdot 10^{6}$ | $6.00 \cdot 10^{6}$  | $6.00 \cdot 10^{6}$ | -3464.66               | -3464.66               |  |  |  |
| 0.0422205 | 3464.16              | -3464.16             | 3463.66              | 3463.66             | $-1.52 \cdot 10^{-9}$  | $3.57 \cdot 10^{-10}$  |  |  |  |
| 0.0432205 | $-8.34 \cdot 10^{6}$ | $8.34 \cdot 10^{6}$  | $-8.34 \cdot 10^{6}$ | $8.34 \cdot 10^{6}$ | -4085.11               | -4085.11               |  |  |  |
| 0.0432295 | 4084.61              | -4084.61             | 4084.11              | 4084.11             | $-1.87 \cdot 10^{-9}$  | $-3.11 \cdot 10^{-10}$ |  |  |  |
| 0.0442325 | $-1.29 \cdot 10^7$   | $-1.29 \cdot 10^7$   | $1.29 \cdot 10^{7}$  | $1.29 \cdot 10^{7}$ | -5086.71               | -5086.71               |  |  |  |
| 0.0442323 | 5086.21              | -5086.21             | 5085.71              | 5085.71             | $-2.25 \cdot 10^{-9}$  | $-5.42 \cdot 10^{-10}$ |  |  |  |
| 0.0452355 | $-2.38 \cdot 10^7$   | $-2.38 \cdot 10^7$   | $2.38 \cdot 10^7$    | $2.38 \cdot 10^{7}$ | -6912.54               | -6912.54               |  |  |  |
| 0.0402000 | 6912.04              | -6912.04             | 6911.54              | 6911.54             | $2.35 \cdot 10^{-9}$   | $2.82 \cdot 10^{-11}$  |  |  |  |
| 0.0462386 | $-6.23 \cdot 10^7$   | $-6.23 \cdot 10^7$   | $6.23 \cdot 10^{7}$  | $6.23 \cdot 10^{7}$ | -11165.7               | -11165.7               |  |  |  |
| 0.0462386 | 11165.2              | -11165.2             | 11164.7              | 11164.7             | $1.33 \cdot 10^{-8}$   | $3.99 \cdot 10^{-10}$  |  |  |  |

Tabla 21: Valores Propios de la Matriz M' para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-6} \ [C^2 V N^{-1} m^{-2}] \ y \ P_o = 1 \cdot 10^5 \ [Pa]$ 

Tabla 22: Valores Propios de la Matriz  $\mathbb{M}'$  para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-6} \ [\text{C}^2 V N^{-1} m^{-2}] \ y \ \text{P}_o = 1 \cdot 10^4 \ [\text{Pa}]$ 

| <i>r</i> [m] |                      |                      | Valor                | es Propios           |                        |                        |
|--------------|----------------------|----------------------|----------------------|----------------------|------------------------|------------------------|
| 0.0256564    | $-3.97 \cdot 10^{6}$ | $3.97 \cdot 10^{6}$  | $-3.97 \cdot 10^{6}$ | $3.97 \cdot 10^{6}$  | -2818.52               | -2818.52               |
|              | 2818.02              | -2818.02             | 2817.52              | 2817.52              | $-1.17 \cdot 10^{-9}$  | $1.39 \cdot 10^{-10}$  |
| 0.0270586    | $-3.43 \cdot 10^6$   | $-3.43 \cdot 10^{6}$ | $3.43 \cdot 10^{6}$  | $3.43 \cdot 10^{6}$  | -2619.99               | -2619.99               |
| 0.0270580    | 2619.49              | -2619.49             | 2618.99              | 2618.99              | $-2.49 \cdot 10^{-10}$ | $-6.19 \cdot 10^{-11}$ |
| 0.0284608    | $-2.99 \cdot 10^6$   | $2.99 \cdot 10^{6}$  | $-2.99 \cdot 10^6$   | $2.99 \cdot 10^{6}$  | -2449.45               | -2449.45               |
| 0.0284008    | 2448.95              | -2448.95             | 2448.45              | 2448.45              | $-7.40 \cdot 10^{-10}$ | $2.63 \cdot 10^{-10}$  |
| 0.0208630    | $-2.64 \cdot 10^{6}$ | $-2.64 \cdot 10^{6}$ | $2.64 \cdot 10^6$    | $2.64 \cdot 10^{6}$  | -2301.21               | -2301.21               |
| 0.0298030    | 2300.71              | -2300.71             | 2300.21              | 2300.21              | $8.80 \cdot 10^{-10}$  | $-2.11 \cdot 10^{-10}$ |
| 0.0212652    | $-2.35 \cdot 10^6$   | $2.35 \cdot 10^{6}$  | $2.35 \cdot 10^{6}$  | $-2.35 \cdot 10^6$   | -2171.03               | -2171.03               |
| 0.0312032    | 2170.53              | -2170.53             | 2170.03              | 2170.03              | $-4.89 \cdot 10^{-11}$ | $-2.54 \cdot 10^{-11}$ |
| 0.0326674    | $-2.11 \cdot 10^6$   | $-2.11 \cdot 10^6$   | $2.11 \cdot 10^6$    | $2.11 \cdot 10^{6}$  | -2055.69               | -2055.69               |
| 0.0320074    | 2055.19              | -2055.19             | 2054.69              | 2054.69              | $-9.46 \cdot 10^{-10}$ | $5.66 \cdot 10^{-11}$  |
| 0.0340606    | $-1.90 \cdot 10^{6}$ | $-1.90 \cdot 10^{6}$ | $1.90 \cdot 10^{6}$  | $1.90 \cdot 10^{6}$  | -1952.71               | -1952.71               |
| 0.0340090    | 1952.21              | -1952.21             | 1951.71              | 1951.71              | $4.08 \cdot 10^{-10}$  | $-1.77 \cdot 10^{-10}$ |
| 0.025/718    | $-1.72 \cdot 10^{6}$ | $1.72 \cdot 10^{6}$  | $1.72 \cdot 10^{6}$  | $-1.72 \cdot 10^{6}$ | -1860.15               | -1860.15               |
| 0.0354718    | 1859.65              | -1859.65             | 1859.15              | 1859.15              | $5.21 \cdot 10^{-10}$  | $1.71 \cdot 10^{-10}$  |

| r [m]     |                      |                      | Valore               | es Propios           |                       |                        |
|-----------|----------------------|----------------------|----------------------|----------------------|-----------------------|------------------------|
| 0.0009774 | $-3.78 \cdot 10^7$   | $-3.78 \cdot 10^7$   | $3.78 \cdot 10^7$    | $3.78 \cdot 10^7$    | -8702.65              | -8702.65               |
| 0.0292774 | 8702.15              | -8702.15             | 8701.65              | 8701.65              | $7.57 \cdot 10^{-9}$  | $3.96 \cdot 10^{-10}$  |
| 0.0205492 | $-2.39 \cdot 10^7$   | $-2.39 \cdot 10^7$   | $2.39 \cdot 10^{7}$  | $2.39 \cdot 10^{7}$  | -6914.38              | -6914.38               |
| 0.0303482 | 6913.88              | -6913.88             | 6913.38              | 6913.38              | $6.81 \cdot 10^{-9}$  | $5.00 \cdot 10^{-9}$   |
| 0.0218180 | $-1.64 \cdot 10^7$   | $-1.64 \cdot 10^7$   | $1.64 \cdot 10^{7}$  | $1.64 \cdot 10^{7}$  | -5732.31              | -5732.31               |
| 0.0318189 | 5731.81              | -5731.81             | 5731.31              | 5731.31              | $5.27 \cdot 10^{-10}$ | $-4.40 \cdot 10^{-10}$ |
| 0.0220807 | $-1.19 \cdot 10^7$   | $1.19 \cdot 10^{7}$  | $-1.19 \cdot 10^7$   | $1.19 \cdot 10^{7}$  | -4895.9               | -4895.9                |
| 0.0550697 | 4895.4               | -4895.4              | 4894.9               | 4894.9               | $-3.23 \cdot 10^{-9}$ | $-1.19 \cdot 10^{-9}$  |
| 0.0242605 | $-9.13 \cdot 10^{6}$ | $-9.13 \cdot 10^{6}$ | $9.13 \cdot 10^{6}$  | $9.13 \cdot 10^{6}$  | -4274.49              | -4274.49               |
| 0.0343003 | 4273.99              | -4273.99             | 4273.49              | 4273.49              | $2.17 \cdot 10^{-10}$ | $-1.00 \cdot 10^{-10}$ |
| 0.0256212 | $-7.20 \cdot 10^{6}$ | $-7.20 \cdot 10^{6}$ | $7.20 \cdot 10^6$    | $7.20 \cdot 10^6$    | -3795.48              | -3795.48               |
| 0.0300313 | 3794.98              | -3794.98             | 3794.48              | 3794.48              | $2.39 \cdot 10^{-9}$  | $-4.91 \cdot 10^{-11}$ |
| 0.0360091 | $-5.83 \cdot 10^{6}$ | $5.83 \cdot 10^{6}$  | $-5.83 \cdot 10^{6}$ | $5.83 \cdot 10^{6}$  | -3415.45              | -3415.45               |
| 0.0509021 | 3414.95              | -3414.95             | 3414.45              | 3414.45              | $-1.90 \cdot 10^{-9}$ | $2.17 \cdot 10^{-10}$  |
| 0.0281728 | $-4.82 \cdot 10^{6}$ | $4.82 \cdot 10^{6}$  | $4.82 \cdot 10^{6}$  | $-4.82 \cdot 10^{6}$ | -3106.85              | -3106.85               |
| 0.0381728 | 3106.35              | -3106.35             | 3105.85              | 3105.85              | $1.46 \cdot 10^{-9}$  | $1.19 \cdot 10^{-9}$   |

Tabla 23: Valores Propios de la Matriz M' para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-6} \ [\text{C}^2 V N^{-1} m^{-2}] \ y \ \text{P}_o = 5 \cdot 10^4 \ [\text{Pa}]$ 

Tabla 24: Valores Propios de la Matriz M' para algunos valores de r<br/> entre a y b considerando  $C_o=3\cdot10^{-6}~[{\rm C}^2VN^{-1}m^{-2}]~y~{\rm P}_o=1\cdot10^5~[{\rm Pa}]$ 

| <i>r</i> [m] |                    |                     | Valore              | es Propios          |                       |                        |
|--------------|--------------------|---------------------|---------------------|---------------------|-----------------------|------------------------|
| 0.0391870    | $-3.03 \cdot 10^7$ | $-3.03 \cdot 10^7$  | $3.03 \cdot 10^{7}$ | $3.03 \cdot 10^{7}$ | -7794.63              | -7794.63               |
|              | 7794.13            | -7794.13            | 7793.63             | 7793.63             | $-8.99 \cdot 10^{-9}$ | $2.61 \cdot 10^{-9}$   |
| 0.0401007    | $-3.49 \cdot 10^7$ | $-3.49 \cdot 10^7$  | $3.49 \cdot 10^7$   | $3.49 \cdot 10^{7}$ | -8356.85              | -8356.85               |
| 0.0401907    | 8356.35            | -8356.35            | 8355.85             | 8355.85             | $-1.02 \cdot 10^{-8}$ | $-3.02 \cdot 10^{-9}$  |
| 0.0411044    | $-4.23 \cdot 10^7$ | $4.23 \cdot 10^{7}$ | $4.23 \cdot 10^{7}$ | $-4.23 \cdot 10^7$  | -9200.41              | -9200.41               |
| 0.0411944    | 9199.91            | -9199.91            | 9199.41             | 9199.41             | $9.13 \cdot 10^{-9}$  | $5.22 \cdot 10^{-9}$   |
| 0.0491091    | $-5.45 \cdot 10^7$ | $-5.45 \cdot 10^7$  | $5.45 \cdot 10^7$   | $5.45 \cdot 10^7$   | -10446.6              | -10446.6               |
| 0.0421901    | 10446.1            | -10446.1            | 10445.6             | 10445.6             | $-1.34 \cdot 10^{-8}$ | $4.62 \cdot 10^{-9}$   |
| 0.0432018    | $-7.60 \cdot 10^7$ | $7.60 \cdot 10^7$   | $-7.60 \cdot 10^7$  | $7.60 \cdot 10^7$   | -12337                | -12337                 |
| 0.0432018    | 12336.5            | -12336.5            | 12336               | 12336               | $3.08 \cdot 10^{-9}$  | $-1.95 \cdot 10^{-12}$ |
| 0.0442054    | $-1.18 \cdot 10^8$ | $-1.18 \cdot 10^8$  | $1.18 \cdot 10^8$   | $1.18 \cdot 10^8$   | -15399.5              | -15399.5               |
| 0.0442004    | 15399              | -15399              | 15398.5             | 15398.5             | $3.35 \cdot 10^{-8}$  | $6.81 \cdot 10^{-9}$   |
| 0.0452091    | $-2.20 \cdot 10^8$ | $-2.20 \cdot 10^8$  | $2.20 \cdot 10^8$   | $2.20 \cdot 10^8$   | -21017.6              | -21017.6               |
|              | 21017.1            | -21017.1            | 21016.6             | 21016.6             | $7.22 \cdot 10^{-8}$  | $3.57 \cdot 10^{-8}$   |
| 0.0462128    | $-5.87 \cdot 10^8$ | $5.87 \cdot 10^8$   | $5.87 \cdot 10^8$   | $-5.87 \cdot 10^8$  | -34288                | -34288                 |
| 0.0462128    | 34287.5            | -34287.5            | 34287               | 34287               | $4.91 \cdot 10^{-8}$  | $3.87 \cdot 10^{-8}$   |

| <i>r</i> [m] |                      |                      | Valor                | es Propios           |                        |                        |
|--------------|----------------------|----------------------|----------------------|----------------------|------------------------|------------------------|
| 0.0256002    | $-1.07 \cdot 10^7$   | $-1.07 \cdot 10^7$   | $1.07 \cdot 10^{7}$  | $1.07 \cdot 10^{7}$  | -4642.2                | -4642.2                |
| 0.0200095    | 4641.7               | -4641.7              | 4641.2               | 4641.2               | $1.17 \cdot 10^{-9}$   | $-1.17 \cdot 10^{-9}$  |
| 0.0270124    | $-9.33 \cdot 10^{6}$ | $9.33 \cdot 10^{6}$  | $-9.33 \cdot 10^{6}$ | $9.33 \cdot 10^{6}$  | -4320.79               | -4320.79               |
| 0.0270134    | 4320.29              | -4320.29             | 4319.79              | 4319.79              | $-1.19 \cdot 10^{-9}$  | $-2.51 \cdot 10^{-11}$ |
| 0.0284175    | $-8.17 \cdot 10^{6}$ | $8.17 \cdot 10^{6}$  | $-8.17 \cdot 10^{6}$ | $8.17 \cdot 10^{6}$  | -4043.91               | -4043.91               |
| 0.0204175    | 4043.41              | -4043.41             | 4042.91              | 4042.91              | $8.61 \cdot 10^{-10}$  | $5.35 \cdot 10^{-10}$  |
| 0.0208215    | $-7.22 \cdot 10^{6}$ | $7.22 \cdot 10^{6}$  | $-7.22 \cdot 10^{6}$ | $7.22 \cdot 10^{6}$  | -3802.63               | -3802.63               |
| 0.0298215    | 3802.13              | -3802.13             | 3801.63              | 3801.63              | $4.80 \cdot 10^{-10}$  | $-2.47 \cdot 10^{-10}$ |
| 0.0312256    | $-6.44 \cdot 10^{6}$ | $6.44 \cdot 10^{6}$  | $6.44 \cdot 10^{6}$  | $-6.44 \cdot 10^{6}$ | -3590.28               | -3590.28               |
| 0.0312230    | 3589.78              | -3589.78             | 3589.28              | 3589.28              | $1.62 \cdot 10^{-9}$   | $6.17 \cdot 10^{-10}$  |
| 0.0326207    | $-5.78 \cdot 10^{6}$ | $5.78 \cdot 10^{6}$  | $-5.78 \cdot 10^6$   | $5.78 \cdot 10^{6}$  | -3401.8                | -3401.8                |
| 0.0320291    | 3401.3               | -3401.3              | 3400.8               | 3400.8               | $1.70 \cdot 10^{-9}$   | $-1.74 \cdot 10^{-10}$ |
| 0.0340337    | $-5.22 \cdot 10^{6}$ | $5.22 \cdot 10^{6}$  | $5.22 \cdot 10^{6}$  | $-5.22 \cdot 10^{6}$ | -3233.24               | -3233.24               |
| 0.0340337    | 3232.74              | -3232.74             | 3232.24              | 3232.24              | $-5.98 \cdot 10^{-10}$ | $-3.04 \cdot 10^{-11}$ |
| 0.035/1378   | $-4.74 \cdot 10^{6}$ | $-4.74 \cdot 10^{6}$ | $4.74 \cdot 10^{6}$  | $4.74 \cdot 10^{6}$  | -3081.52               | -3081.52               |
| 0.0354378    | 3081.02              | -3081.02             | 3080.52              | 3080.52              | $-4.65 \cdot 10^{-10}$ | $-1.16 \cdot 10^{-10}$ |

Tabla 25: Valores Propios de la Matriz M' para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-6} \ [\text{C}^2 V N^{-1} m^{-2}] \ y \ \text{P}_o = 1 \cdot 10^4 \ [\text{Pa}]$ 

Tabla 26: Valores Propios de la Matriz  $\mathbb{M}'$  para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-6} \ [\text{C}^2 V N^{-1} m^{-2}] \ y \ \text{P}_o = 5 \cdot 10^4 \ [\text{Pa}]$ 

| <i>r</i> [m] |                    |                     | Valores              | s Propios           |                       |                       |
|--------------|--------------------|---------------------|----------------------|---------------------|-----------------------|-----------------------|
| 0.0292268    | $-1.00 \cdot 10^8$ | $-1.00 \cdot 10^8$  | $1.00 \cdot 10^8$    | $1.00 \cdot 10^8$   | -14201.4              | -14201.4              |
|              | 14200.9            | -14200.9            | 14200.4              | 14200.4             | $-1.13 \cdot 10^{-8}$ | $-1.15 \cdot 10^{-9}$ |
| 0.0304003    | $-6.41 \cdot 10^7$ | $6.41 \cdot 10^7$   | $-6.41 \cdot 10^7$   | $6.41 \cdot 10^7$   | -11327.2              | -11327.2              |
| 0.0304993    | 11326.7            | -11326.7            | 11326.2              | 11326.2             | $1.49 \cdot 10^{-8}$  | $-9.87 \cdot 10^{-9}$ |
| 0.0317717    | $-4.43 \cdot 10^7$ | $-4.43 \cdot 10^7$  | $4.43 \cdot 10^{7}$  | $4.43 \cdot 10^{7}$ | -9415.82              | -9415.82              |
| 0.0317717    | 9415.32            | -9415.32            | 9414.82              | 9414.82             | $-7.98 \cdot 10^{-9}$ | $7.37 \cdot 10^{-9}$  |
| 0.0330442    | $-3.24 \cdot 10^7$ | $3.24 \cdot 10^{7}$ | $-3.24 \cdot 10^{7}$ | $3.24 \cdot 10^{7}$ | -8057.69              | -8057.69              |
| 0.0550442    | 8057.19            | -8057.19            | 8056.69              | 8056.69             | $1.19 \cdot 10^{-8}$  | $5.79 \cdot 10^{-9}$  |
| 0.03/3167    | $-2.48 \cdot 10^7$ | $-2.48 \cdot 10^7$  | $2.48 \cdot 10^{7}$  | $2.48 \cdot 10^{7}$ | -7045.49              | -7045.49              |
| 0.0545107    | 7044.99            | -7044.99            | 7044.49              | 7044.49             | $5.22 \cdot 10^{-9}$  | $2.57 \cdot 10^{-9}$  |
| 0.0355801    | $-1.96 \cdot 10^7$ | $-1.96 \cdot 10^7$  | $1.96 \cdot 10^{7}$  | $1.96 \cdot 10^{7}$ | -6263.38              | -6263.38              |
| 0.00000000   | 6262.88            | -6262.88            | 6262.38              | 6262.38             | $-6.63 \cdot 10^{-9}$ | $6.27 \cdot 10^{-9}$  |
| 0.0368616    | $-1.59 \cdot 10^7$ | $-1.59 \cdot 10^7$  | $1.59 \cdot 10^{7}$  | $1.59 \cdot 10^{7}$ | -5641.66              | -5641.66              |
| 0.0508010    | 5641.16            | -5641.16            | 5640.66              | 5640.66             | $-2.86 \cdot 10^{-9}$ | $-1.78 \cdot 10^{-9}$ |
| 0.03813/1    | $-1.31 \cdot 10^7$ | $-1.31 \cdot 10^7$  | $1.31 \cdot 10^{7}$  | $1.31 \cdot 10^{7}$ | -5136.01              | -5136.01              |
| 0.0381341    | 5135.51            | -5135.51            | 5135.01              | 5135.01             | $-3.96 \cdot 10^{-9}$ | $3.90 \cdot 10^{-10}$ |

|           |                      |                     | <b>V</b> -1          |                     |                       |                       |
|-----------|----------------------|---------------------|----------------------|---------------------|-----------------------|-----------------------|
| r [m]     |                      |                     | valore               | es Propios          |                       |                       |
| 0.0391260 | $-8.52 \cdot 10^{7}$ | $8.52 \cdot 10^{7}$ | $-8.52 \cdot 10^{7}$ | $8.52 \cdot 10^{7}$ | -13056.4              | -13056.4              |
|           | 13055.9              | -13055.9            | 13055.4              | 13055.4             | $3.93 \cdot 10^{-9}$  | $-3.72 \cdot 10^{-9}$ |
| 0.0401310 | $-9.82 \cdot 10^7$   | $9.82 \cdot 10^7$   | $-9.82 \cdot 10^7$   | $9.82 \cdot 10^7$   | -14017.7              | -14017.7              |
|           | 14017.2              | -14017.2            | 14016.7              | 14016.7             | $5.46 \cdot 10^{-9}$  | $-2.65 \cdot 10^{-9}$ |
| 0.0411360 | $-1.19 \cdot 10^8$   | $1.19 \cdot 10^8$   | $-1.19 \cdot 10^8$   | $1.19 \cdot 10^8$   | -15459.6              | -15459.6              |
|           | 15459.1              | -15459.1            | 15458.6              | 15458.6             | $-2.18 \cdot 10^{-8}$ | $5.27 \cdot 10^{-9}$  |
| 0.0421410 | $-1.54 \cdot 10^8$   | $1.54 \cdot 10^8$   | $-1.54 \cdot 10^8$   | $1.54 \cdot 10^8$   | -17594                | -17594                |
|           | 17593.5              | -17593.5            | 17593                | 17593               | $-1.05 \cdot 10^{-8}$ | $1.54 \cdot 10^{-9}$  |
| 0.0431460 | $-2.17 \cdot 10^8$   | $2.17 \cdot 10^8$   | $2.17 \cdot 10^8$    | $-2.17 \cdot 10^8$  | -20845.3              | -20845.3              |
|           | -20844.8             | 20844.8             | 20844.3              | 20844.3             | $3.46 \cdot 10^{-8}$  | $1.08 \cdot 10^{-8}$  |
| 0.0441510 | $-3.41 \cdot 10^8$   | $3.41 \cdot 10^8$   | $3.41 \cdot 10^8$    | $-3.41 \cdot 10^8$  | -26150.7              | -26150.7              |
|           | 26150.2              | -26150.2            | 26149.7              | 26149.7             | $-8.99 \cdot 10^{-8}$ | $2.07 \cdot 10^{-8}$  |
| 0.0451561 | $-6.48 \cdot 10^8$   | $6.48 \cdot 10^8$   | $-6.48 \cdot 10^8$   | $6.48 \cdot 10^8$   | -36013.3              | -36013.3              |
|           | -36012.8             | 36012.8             | 36012.3              | 36012.3             | $-7.58 \cdot 10^{-8}$ | $1.42 \cdot 10^{-8}$  |
| 0.0461611 | $-1.80 \cdot 10^9$   | $1.80 \cdot 10^9$   | $-1.80 \cdot 10^9$   | $1.80 \cdot 10^9$   | -60006.6              | -60006.6              |
|           | -60006.1             | 60006.1             | 60005.6              | 60005.6             | $3.17 \cdot 10^{-7}$  | $1.02 \cdot 10^{-7}$  |

Tabla 27: Valores Propios de la Matriz  $\mathbb{M}'$  para algunos valores de r entre  $a \neq b$  considerando  $C_o = 5 \cdot 10^{-6} [C^2 V N^{-1} m^{-2}] y P_o = 1 \cdot 10^5 [Pa]$ 

# 6.4. Deformación de un Tubo Cilíndrico considerando la Segunda Función de Energía Libre

Se considera un tubo cilíndrico cuya función de Energía Libre se estudia en un caso incompresible, donde es necesario determinar el Campo Eléctrico  $E_r$ , los radios finales interior y exterior,  $a ext{ y } b$  respectivamente, y el parámetro p que aparece en la modelación de cuerpos incompresibles. Obteniendo estos valores se calculan las matrices  $\mathbb{M} ext{ y } \mathbb{M}'$  con sus respectivos valores propios.

La Segunda Función de Energía Libre para este caso incomprensible es:

$$\Omega = \left(\frac{I_1 - 3}{2}\right)\left(g_0 + g_1 I_4\right) - \log\left[\cosh\left(\frac{\sqrt{I_4}}{m_1}\right)\right]m_0 m_1 - \frac{1}{2}\zeta_o I_4 + \frac{1}{2}\varepsilon_o I_5.$$
(6.33)

#### 6.4.1. Resolución de Problemas

Para calcular el Campo Eléctrico  $E_r$  en función de r se tiene las ecuación 5.117, donde se reemplazan las derivadas de esta función de Energía Libre calculadas en la sección 5.3.4, obteniendo que:

$$E_r(r) = -\frac{C_o r^3}{\left(r^2 - a^2 + A^2\right) \left[ \left(\frac{(A^2 - a^2)^2}{r^2 (r^2 - a^2 + A^2)} g_1 - \frac{m_0 r}{RE_r} tanh\left(\frac{RE_r}{m_1 r}\right) - \zeta_o \right) r^2 + \varepsilon_o (r^2 - a^2 + A^2) \right]}, \quad (6.34)$$

la cual es una ecuación implícita para obtener  $E_r$ , la que presenta algunos desafíos para poder resolverse, por lo cual se aplica una interpolación entre el radio interno final a, el radio r y el Campo Eléctrico  $E_r$ . Es necesario realizar esta aproximación con interpolación debido a que existe una tangente hiperbólica en la que se incluye el término  $E_r$  que depende de r y no se puede determinar numéricamente.

Para realizar la interpolación se dieron 9 valores diferentes del radio interior a entre 0.03 [m] y 0.07 [m], y para cada uno de estos radios interiores se consideran 6 valores diferentes de un radio r entre a y b, y para cada valor de r se calcula el Campo Eléctrico  $E_r$  de forma numérica de la ecuación 6.34. Luego con todos estos valores se hace una triple interpolación entre a, r y  $E_r$  con la herramienta "fitting" de Mathematica y se obtiene la ecuación 6.35.

$$E_r(r) = H_o + H_1 r + H_2 r^2, (6.35)$$

donde los valores de  $H_o$ ,  $H_1$  y  $H_2$  dependen de la constante  $C_o$ , y se presentan en la tabla 28. Los términos fueron testeados obteniendo la mejor aproximación con ellos, y además se intentó de obtener la menor cantidad de términos posibles para así tener un fácil manejo de datos.

Tabla 28: Valores de las Constantes de la ecuación 6.35 para algunos valores de  $C_o$ 

| $C_o [C^2 V N^{-1} m^{-2}]$ | H <sub>o</sub>                                  | $H_1$   | $H_2$                |
|-----------------------------|-------------------------------------------------|---------|----------------------|
| $1 \cdot 10^{-6}$           | $3.93 - 5251.45 \ a + 378176 \ a^2$             | 17613.9 | -449014              |
| $3\cdot 10^{-6}$            | 11.81 - 15754.4 $a$ + 1.13 $\cdot 10^{6}~a^{2}$ | 52841.7 | $-1.34 \cdot 10^{6}$ |
| $5 \cdot 10^{-6}$           | 19.69 - 26257.3 $a$ + 1.89 $\cdot 10^{6} a^{2}$ | 88069.6 | $-2.24 \cdot 10^{6}$ |

Para calcular el radio interno final a se tiene la ecuación 5.131, donde se reemplazan los valores de las ecuaciones 5.118 y 5.119 en la integral con lo que se obtiene:

$$\int_{a}^{b} \frac{1}{\xi} \left[ 2(\Omega_{1} + \Omega_{2}) \left( \frac{\xi^{2}}{\xi^{2} - a^{2} + A^{2}} - \frac{\xi^{2} - a^{2} + A^{2}}{\xi^{2}} \right) - 2\Omega_{5} \frac{(\xi^{2} - a^{2} + A^{2})^{2}}{\xi^{4}} E_{r}^{2} \right] d\xi - P_{o} + \varepsilon_{o}^{-1} \frac{C_{o}^{2}}{2a^{2}} = \varepsilon_{o}^{-1} \frac{C_{o}^{2}}{2b^{2}},$$
(6.36)

se reemplazan los valores de las derivadas de la función de Energía Libre calculadas en la sección 5.3.4 obteniéndose:

$$\int_{a}^{b} \left[ g_{0} \frac{\xi^{4} - (\xi^{2} - a^{2} + A^{2})^{2}}{\xi^{3}(\xi^{2} - a^{2} + A^{2})} + \frac{g_{1}(\xi^{4} - (\xi^{2} - a^{2} + A^{2})^{2}) - \varepsilon_{o}(\xi^{2} - a^{2} + A^{2})^{2}}{\xi^{5}} E_{r}^{2} \right] d\xi - P_{o} + \varepsilon_{o}^{-1} \frac{C_{o}^{2}}{2a^{2}} = \varepsilon_{o}^{-1} \frac{C_{o}^{2}}{2b^{2}},$$

$$(6.37)$$

se reemplaza el valor del Campo Eléctrico  $E_r(\xi)$  de la ecuación 6.35 y se tiene:

$$\int_{a}^{b} g_{0} \frac{\xi^{4} - (\xi^{2} - a^{2} + A^{2})^{2}}{\xi^{3}(\xi^{2} - a^{2} + A^{2})} d\xi + \int_{a}^{b} \frac{g_{1}(\xi^{4} - (\xi^{2} - a^{2} + A^{2})^{2}) - \varepsilon_{o}(\xi^{2} - a^{2} + A^{2})^{2}}{\xi^{5}} (H_{o} + H_{1}\xi + H_{2}\xi^{2})^{2} d\xi - P_{o} + \varepsilon_{o}^{-1} \frac{C_{o}^{2}}{2a^{2}} = \varepsilon_{o}^{-1} \frac{C_{o}^{2}}{2(a^{2} - A^{2} + B^{2})}.$$
(6.38)

y resolviendo la integral se obtiene:

$$\begin{aligned} &-\frac{2}{3}\varepsilon_{o}(a^{2}-A^{2}+B^{2})^{3/2}H_{1}H_{2}-\frac{1}{4}\varepsilon_{o}(a^{2}-A^{2}+B^{2})^{2}H_{2}^{2}+\frac{1}{4}\frac{(g_{1}+\varepsilon_{o})(a^{2}-A^{2}+B^{2})^{2}H_{o}^{2}}{(a^{2}-A^{2}+B^{2})^{3/2}}\\ &+\frac{2}{3}\frac{(g_{1}+\varepsilon_{o})(a^{2}-A^{2}+B^{2})^{3/2}}{(a^{2}-A^{2}+B^{2})^{3/2}}+2\frac{(g_{1}+\varepsilon_{o})(a^{2}-A^{2})^{2}H_{1}(-2H_{o}+(a^{2}-A^{2})H_{2})}{(a^{2}-A^{2}+B^{2})^{1/2}}\\ &+2(a^{2}-A^{2}+B^{2})^{1/2}H_{1}(-\varepsilon_{o}H_{o}+2(g_{1}+\varepsilon_{o})a^{2}H_{2}-2(g_{1}+\varepsilon_{o})A^{2}H_{2})\\ &-\frac{1}{2}(a^{2}-A^{2}+B^{2})(\varepsilon_{o}(H_{1}^{2}+2H_{o}H_{2})-2(g_{1}+\varepsilon_{o})a^{2}H_{2}^{2}+2(g_{1}+\varepsilon_{o})A^{2}H_{2}^{2})\\ &+\frac{1}{2}\frac{(a^{2}-A^{2})(-g_{o}-(2H_{o}^{2}+(-a^{2}+A^{2})H_{1}^{2}+2(-a^{2}+A^{2})H_{o}H_{2})(g_{1}+\varepsilon_{o})}{a^{2}-A^{2}+B^{2}}\\ &+\frac{1}{2}\frac{(a^{2}-A^{2})(-g_{o}-(2H_{o}^{2}+A^{2})^{2}H_{0}H_{2}+g_{1}A^{4}H_{2}^{2}+\varepsilon_{o}H_{o}^{2}+2\varepsilon_{o}A^{2}H_{1}^{2}+4\varepsilon_{o}A^{2}H_{o}H_{2}}{a^{2}-A^{2}+B^{2}})\\ &+\frac{1}{2}(g_{o}+2g_{1}A^{2}H_{1}^{2}+4g_{1}A^{2}H_{o}H_{2}+g_{1}A^{4}H_{2}^{2}+\varepsilon_{o}H_{o}^{2}+2\varepsilon_{o}A^{2}H_{1}^{2}+4\varepsilon_{o}A^{2}H_{o}H_{2}}{a^{3}}\\ &-\frac{1}{2}(g_{o}+2g_{1}A^{2}H_{1}^{2}+4g_{1}A^{2}H_{o}H_{2}+g_{1}A^{2}H_{o}H_{2}+A^{2}H_{2}))log(a^{2}-A^{2}+B^{2})\\ &+\frac{2}{3}\varepsilon_{o}a^{3}H_{1}H_{2}+\frac{1}{4}\varepsilon_{o}a^{4}H_{2}^{2}-\frac{1}{4}\frac{(g_{1}+\varepsilon_{o})(a^{2}-A^{2})^{2}H_{o}}{a^{4}}-\frac{2}{3}\frac{(g_{1}+\varepsilon_{o})(a^{2}-A^{2})^{2}H_{o}H_{1}}{a^{3}}}\\ &-2(g_{1}+\varepsilon_{o})(a^{2}-A^{2})^{2}H_{1}(-2H_{o}+(a^{2}-A^{2})H_{2})\\ &+\frac{1}{2}a^{2}(\varepsilon_{o}(H_{1}^{2}+2H_{o}H_{2})-2(g_{1}+\varepsilon_{o})a^{2}H_{2}^{2}+2(g_{1}+\varepsilon_{o})A^{2}H_{2}^{2})\\ &+\frac{1}{2}(g_{o}+2g_{1}A^{2}H_{1}^{2}+(-a^{2}+A^{2})H_{1}^{2}+2(-a^{2}+A^{2})H_{o}H_{2})(g_{1}+\varepsilon_{o})}\\ &+\frac{1}{2}(g_{o}+2g_{1}A^{2}H_{1}^{2}+4g_{1}A^{2}H_{o}H_{2}+g_{1}A^{4}H_{2}^{2}+\varepsilon_{o}H_{o}^{2}+2\varepsilon_{o}A^{2}H_{1}^{2}+4\varepsilon_{o}A^{2}H_{o}H_{2}\\ &+\varepsilon_{o}A^{2}H_{2}^{2}+(g_{1}+\varepsilon_{o})a^{4}H_{2}^{2}-2(g_{1}+\varepsilon_{o})a^{2}(H_{1}^{2}+2H_{o}H_{2}+A^{2}H_{0})H_{2}\\ &+\frac{1}{2}(g_{o}+2g_{1}A^{2}H_{1}^{2}+4g_{1}A^{2}H_{o}H_{2}+g_{1}A^{4}H_{2}^{2}+\varepsilon_{o}H_{o}^{2}+2\varepsilon_{o}A^{2}H_{1}^{2}+4\varepsilon_{o}A^{2}H_{o}H_{2}\\ &+\varepsilon_{o}A^{2}H_{2}^{2}+(g_{1}+\varepsilon_{o})a^{4}H_{2}^{2}-2(g_{1}+\varepsilon_{o})a^{2}(H_{1}^{2}+2H_{o}$$

Introduciendo esta ecuación en el software Mathematica y asumiendo que:

$$A = 0.025$$
 [m],  $B = 0.035$  [m],

y se obtienen de forma numérica los radios finales del tubo cilíndrico, para lo cual se asumen tres valores diferentes para las constantes  $C_o$  y  $P_o$  como se muestra en la tabla 29.
| $C_o [C^2 V N^{-1} m^{-2}]$ | $P_o$ [Pa]       | $a  [\mathrm{m}]$ | <i>b</i> [m] |
|-----------------------------|------------------|-------------------|--------------|
| $1 \cdot 10^{-6}$           | $1 \cdot 10^4$   | 0.0256798         | 0.0354888    |
| $1 \cdot 10^{-6}$           | $5 \cdot 10^4$   | 0.0293026         | 0.0381922    |
| $1 \cdot 10^{-6}$           | $1 \cdot 10^5$   | 0.0392174         | 0.0462386    |
| $3 \cdot 10^{-6}$           | $1 \cdot 10^4$   | 0.0256564         | 0.0354718    |
| $3 \cdot 10^{-6}$           | $5 \cdot 10^4$   | 0.0292774         | 0.0381729    |
| $3 \cdot 10^{-6}$           | $1 \cdot 10^{5}$ | 0.0391874         | 0.0462131    |
| $5 \cdot 10^{-6}$           | $1 \cdot 10^4$   | 0.0256093         | 0.0354378    |
| $5 \cdot 10^{-6}$           | $5 \cdot 10^4$   | 0.0292269         | 0.0381342    |
| $5 \cdot 10^{-6}$           | $1 \cdot 10^5$   | 0.0391270         | 0.0461619    |

Tabla 29: Radios Finales del Tubo Cilíndrico para algunos valores de  $C_o$  y  $P_o$ 

Para calcular p en función de r se tiene la ecuación 5.133, donde se reemplazan los valores de las ecuaciones 5.118 y 5.119 en la integral con lo que se obtiene:

$$p(r) = 2\Omega_1 \frac{r^2 - a^2 + A^2}{r^2} + 2\Omega_2 \left(\frac{2r^2 - a^2 + A^2}{r^2}\right) + 2\Omega_5 \frac{(r^2 - a^2 + A^2)^2}{r^4} E_r^2$$
  
$$- \int_a^r \frac{1}{\xi} \left[ 2(\Omega_1 + \Omega_2) \left(\frac{\xi^2}{\xi^2 - a^2 + A^2} - \frac{\xi^2 - a^2 + A^2}{\xi^2}\right) - 2\Omega_5 \frac{(\xi^2 - a^2 + A^2)^2}{\xi^4} E_r^2 \right] d\xi$$
  
$$+ P_o - \varepsilon_o^{-1} \frac{C_o^2}{2a^2}, \tag{6.40}$$

se reemplazan los valores de las derivadas de la función de Energía Libre calculadas en la sección 5.3.4:

$$p(r) = \left(g_0 + g_1 \frac{r^2 - a^2 + A^2}{r^2} E_r^2\right) \frac{r^2 - a^2 + A^2}{r^2} + \varepsilon_o \frac{(r^2 - a^2 + A^2)^2}{r^4} E_r^2$$
  
$$- \int_a^r \left(g_0 + g_1 \frac{\xi^2 - a^2 + A^2}{\xi^2} E_r^2\right) \left(\frac{\xi}{\xi^2 - a^2 + A^2} - \frac{\xi^2 - a^2 + A^2}{\xi^3}\right) d\xi$$
  
$$+ \int_a^r \varepsilon_o \frac{(\xi^2 - a^2 + A^2)^2}{\xi^5} E_r^2 d\xi + P_o - \varepsilon_o^{-1} \frac{C_o^2}{2a^2},$$
(6.41)

se reemplaza el valor del Campo Eléctrico  $E_r(\xi)$  de la ecuación 6.35 obteniéndose:

$$p(r) = g_0 \frac{r^2 - a^2 + A^2}{r^2} + (g_1 + \varepsilon_o) \frac{(r^2 - a^2 + A^2)^2}{r^4} (H_o + H_1 r + H_2 r^2)^2 - \int_a^r g_0 \frac{\xi^4 - (\xi^2 - a^2 + A^2)^2}{\xi^3 (\xi^2 - a^2 + A^2)} d\xi - \int_a^r \left(\frac{g_1}{\xi} - (g_1 + \varepsilon_o) \frac{(\xi^2 - a^2 + A^2)^2}{\xi^5}\right) (H_o + H_1 \xi + H_2 \xi^2)^2 d\xi + P_o - \varepsilon_o^{-1} \frac{C_o^2}{2a^2},$$
(6.42)

resolviendo la integral se obtiene:

$$\begin{split} p(r) &= g_0 \frac{r^2 - a^2 + A^2}{r^2} + (g_1 + \varepsilon_o) \frac{(r^2 - a^2 + A^2)^2}{r^4} (H_o + H_1 r + H_2 r^2)^2 \\ &+ \frac{2}{3} \varepsilon_o r^3 H_1 H_2 + \frac{1}{4} \varepsilon_o r^4 H_2^2 - \frac{1}{4} \frac{(g_1 + \varepsilon_o)(a^2 - A^2)^2 H_o^2}{r^4} \\ &- \frac{2}{3} \frac{(g_1 + \varepsilon_o)(a^2 - A^2)^2 H_o H_1}{r^3} - 2 \frac{(g_1 + \varepsilon_o)(a^2 - A^2)^2 H_1(-2H_o + (a^2 - A^2)H_2)}{r} \\ &- 2r H_1(-\varepsilon_o H_o + 2(g_1 + \varepsilon_o)a^2 H_2 - 2(g_1 + \varepsilon_o)A^2 H_2) - \frac{1}{2} g_o \log(r^2 - a^2 + A^2) \\ &+ \frac{1}{2} r^2 (\varepsilon_o(H_1^2 + 2H_o H_2) - 2(g_1 + \varepsilon_o)a^2 H_2^2 + 2(g_1 + \varepsilon_o)A^2 H_2^2) \\ &- \frac{1}{2} \frac{(a^2 - A^2)(-g_o - (2H_o^2 + (-a^2 + A^2)H_1^2 + 2(-a^2 + A^2)H_o H_2)(g_1 + \varepsilon_o))}{r^2} \\ &+ \frac{1}{2} (g_o + 2g_1 A^2 H_1^2 + 4g_1 A^2 H_o H_2 + g_1 A^4 H_2^2 + \varepsilon_o H_o^2 + 2\varepsilon_o A^2 H_1^2 + 4\varepsilon_o A^2 H_o H_2 \\ &+ \varepsilon_o A^2 H_2^2 + (g_1 + \varepsilon_o)a^4 H_2^2 - 2(g_1 + \varepsilon_o)a^2 (H_1^2 + 2H_o H_2 + A^2 H_2)) \log(r^2) \\ &- \frac{2}{3} \varepsilon_o a^3 H_1 H_2 - \frac{1}{4} \varepsilon_o a^4 H_2^2 + \frac{1}{4} \frac{(g_1 + \varepsilon_o)(a^2 - A^2)^2 H_o^2}{a^4} + \frac{2}{3} \frac{(g_1 + \varepsilon_o)(a^2 - A^2)^2 H_o H_1}{a^3} \\ &+ 2 \frac{(g_1 + \varepsilon_o)(a^2 - A^2)^2 H_1(-2H_o + (a^2 - A^2) H_2)}{a} - \frac{1}{2} g_o \log(A^2) \\ &+ 2aH_1(-\varepsilon_o H_o + 2(g_1 + \varepsilon_o)a^2 H_2 - 2(g_1 + \varepsilon_o)A^2 H_2) \\ &- \frac{1}{2} a^2 (\varepsilon_o(H_1^2 + 2H_o H_2) - 2(g_1 + \varepsilon_o)a^2 H_2^2 + 2(g_1 + \varepsilon_o)A^2 H_2^2) \\ &+ \frac{1}{2} \frac{(a^2 - A^2)(-g_o - (2H_o^2 + (-a^2 + A^2) H_1^2 + 2(-a^2 + A^2) H_o H_2)(g_1 + \varepsilon_o))}{a^2} \\ &- \frac{1}{2} (g_o + 2g_1 A^2 H_1^2 + 4g_1 A^2 H_o H_2 + g_1 A^4 H_2^2 + \varepsilon_o H_o^2 + 2\varepsilon_o A^2 H_1^2 + 4\varepsilon_o A^2 H_o H_2 \\ &+ \varepsilon_o A^2 H_2^2 + (g_1 + \varepsilon_o)a^4 H_2^2 - 2(g_1 + \varepsilon_o)a^2 (H_1^2 + 2H_o H_2 + 4\varepsilon_o A^2 H_o H_2 \\ &+ \varepsilon_o A^2 H_2^2 + (g_1 + \varepsilon_o)a^4 H_2^2 - 2(g_1 + \varepsilon_o)a^2 (H_1^2 + 2H_o H_2 + 4\varepsilon_o A^2 H_o H_2 \\ &+ \varepsilon_o A^2 H_2^2 + (g_1 + \varepsilon_o)a^4 H_2^2 - 2(g_1 + \varepsilon_o)a^2 (H_1^2 + 2H_o H_2 + A^2 H_2)) log(a^2) \\ &+ P_o - \varepsilon_o^{-1} \frac{C_o^2}{2a^2}. \end{split}$$

Las expresiones de los componentes de la matriz  $\mathbb{M}$  se pueden definir con los componentes de  $\mathbb{A}_{i\alpha j\beta}$ ,  $\mathbb{B}_{i\alpha\beta}$  y  $\mathbb{C}_{\alpha\beta}$  para este problema. Considerando solo los valores no nulos, estas componentes se expresan como:

$$\mathbb{A}_{i\alpha j\beta} = \frac{\partial \Omega}{\partial I_1} \frac{\partial^2 I_1}{\partial F_{i\alpha} \partial F_{j\beta}} + \frac{\partial \Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial F_{i\alpha} \partial F_{j\beta}} - p[F_{\alpha i}^{-1} F_{\beta j}^{-1} - F_{\alpha j}^{-1} F_{i\beta}^{-1}], \tag{6.44}$$

$$\mathbb{B}_{i\alpha\beta} = \frac{\partial^2 \Omega}{\partial I_1 \partial I_4} \frac{\partial I_1}{\partial F_{i\alpha}} \frac{\partial I_4}{\partial E_{l_\beta}} + \frac{\partial \Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial F_{i\alpha} \partial E_{l_\beta}},\tag{6.45}$$

$$\mathbb{C}_{\alpha\beta} = \frac{\partial^2 \Omega}{\partial I_4^2} \frac{\partial I_4}{\partial E_{l_\alpha}} \frac{\partial I_4}{\partial E_{l_\beta}} + \frac{\partial \Omega}{\partial I_4} \frac{\partial^2 I_4}{\partial E_{l_\alpha} \partial E_{l_\beta}} + \frac{\partial \Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial E_{l_\alpha} \partial E_{l_\beta}}.$$
(6.46)

Reemplazando las derivadas calculadas en las secciones 5.2 y 5.3.4 se obtiene:

$$\mathbb{A}_{i\alpha j\beta} = \left(g_0 + g_1 \frac{R^2}{r^2} E_r^2\right) \delta_{ij} \delta_{\alpha\beta} + \varepsilon_o E_{l_\alpha} \delta_{ij} E_{l_\beta} - p[F_{\alpha i}^{-1} F_{\beta j}^{-1} - F_{\alpha j}^{-1} F_{i\beta}^{-1}], \tag{6.47}$$

$$\mathbb{B}_{i\alpha\beta} = 2g_1 F_{i\alpha} E_{l_\beta} + \varepsilon_o (\delta_{\alpha\beta} F_{i\gamma} E_{l_\gamma} + E_{l_\alpha} F_{i\beta}), \qquad (6.48)$$

$$\mathbb{C}_{\alpha\beta} = \left[\frac{m_0 r^2}{m_1 R^2 E_r^2} \operatorname{sech}^2\left(\frac{RE_r}{m_1 r}\right) + \frac{m_0 r^3}{R^3 E_r^3} \tanh\left(\frac{RE_r}{m_1 r}\right)\right] E_{l_\alpha} E_{l_\beta} \\
+ \left[\left(\frac{R^2}{r^2} + \frac{r^2}{R^2} - 2\right) g_1 - \frac{m_0 r}{RE_r} \tanh\left(\frac{RE_r}{m_1 r}\right) - \zeta_o\right] \delta_{\alpha\beta} + \varepsilon_o c_{\alpha\beta}.$$
(6.49)

## 6.4.2. Resultados

Introduciendo las matrices en el software Mathematica y reemplazando los valores de las variables se obtiene finalmente la matriz  $\mathbb{M}(r)$  (que ahora depende de la posición radial r) y a su vez los valores propios de ella. Considerando 8 valores de r entre a y b se calculan los valores propios para los diferentes valores de  $C_o$  y  $P_o$ , como se expresan en las tablas 30 - 38.

Tabla 30: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-6} \, [\text{C}^2 V N^{-1} m^{-2}] \, y \, \text{P}_o = 1 \cdot 10^4 \, [\text{Pa}]$ 

| <i>r</i> [m] |         |         | Va      | lores Propios         |                       |                       |
|--------------|---------|---------|---------|-----------------------|-----------------------|-----------------------|
| 0.0256708    | 711623  | 710349  | 701921  | 693717                | 692418                | -228041               |
| 0.0230798    | 90283   | 82078.6 | 73651   | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.50 \cdot 10^{-7}$  |
| 0.0270811    | 714660  | 713502  | 705859  | 698398                | 697220                | -235880               |
| 0.0270811    | 85601.8 | 78140.9 | 70498.2 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.50 \cdot 10^{-7}$  |
| 0 0284824    | 718687  | 717626  | 710636  | 703797                | 702719                | -245406               |
| 0.0284824    | 80203.2 | 73363.6 | 66374   | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$  |
| 0.0208837    | 723554  | 722575  | 716135  | 709821                | 708828                | -256382               |
| 0.0298831    | 74179   | 67864.9 | 61425.4 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$  |
| 0.0312840    | 729100  | 728191  | 722221  | 716357                | 715435                | -268536               |
| 0.0312049    | 67643.4 | 61779.2 | 55809   | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$  |
| 0.0326862    | 735155  | 734306  | 728742  | 723268                | 722409                | -281564               |
| 0.0520002    | 60732.4 | 55258.3 | 49693.8 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.50 \cdot 10^{-7}$  |
| 0.0340875    | 741533  | 740738  | 735529  | 730397                | 729593                | -295127               |
| 0.0340873    | 53602.6 | 48471.3 | 43262.2 | $-1.50 \cdot 10^{-7}$ | $1.50 \cdot 10^{-7}$  | $-1.50 \cdot 10^{-7}$ |
| 0.035/1888   | 748036  | 747288  | 742395  | 737569                | 736814                | -308850               |
| 0.0004000    | 46431   | 41605.1 | 36711.9 | $-1.50 \cdot 10^{-7}$ | $-1.49 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$  |

| r [m]     |         |         | Val     | lores Propios         |                       |                      |
|-----------|---------|---------|---------|-----------------------|-----------------------|----------------------|
| 0.0000006 | 711550  | 705412  | 659393  | 620131                | 613258                | 163869               |
| 0.0293020 | -148808 | 124607  | 78587.5 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.48 \cdot 10^{-7}$ |
| 0.0205795 | 708341  | 702706  | 661085  | 625039                | 618795                | 158961               |
| 0.0505725 | -151136 | 122915  | 81293.7 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0 0218425 | 707312  | 702093  | 664030  | 630639                | 624908                | -156219              |
| 0.0316423 | 153361  | 119970  | 81907.1 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0 0991194 | 708006  | 703136  | 668002  | 636836                | 631530                | -163536              |
| 0.0551124 | 147164  | 115998  | 80863.5 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0 0040000 | 710047  | 705474  | 672793  | 643518                | 638571                | -172618              |
| 0.0343823 | 140482  | 111207  | 78525.8 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0256592 | 713105  | 708789  | 678197  | 650560                | 645918                | -183023              |
| 0.0550525 | 133440  | 105803  | 75210.5 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0260222 | 716885  | 712795  | 684014  | 657815                | 653441                | -194325              |
| 0.0369222 | 126185  | 99985.9 | 71205   | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0281022 | 721108  | 717221  | 690038  | 665128                | 660990                | -206098              |
| 0.0381922 | 118872  | 93961.6 | 66779.1 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |

Tabla 31: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-6} \ [C^2 V N^{-1} m^{-2}] \ y \ P_o = 5 \cdot 10^4 \ [Pa]$ 

Tabla 32: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-6} \ [C^2 V N^{-1} m^{-2}] \ y \ P_o = 1 \cdot 10^5 \ [Pa]$ 

| <i>r</i> [m] |        |         | Val      | lores Propios         |                       |                      |
|--------------|--------|---------|----------|-----------------------|-----------------------|----------------------|
| 0.0202174    | 717697 | 706740  | 592638   | 519901                | 505044                | 264099               |
| 0.0392174    | 191362 | 77260.1 | -46740.5 | $-1.58 \cdot 10^{-7}$ | $-1.58 \cdot 10^{-7}$ | $1.41 \cdot 10^{-7}$ |
| 0.0402205    | 696549 | 686515  | 586382   | 520293                | 506971                | 263707               |
| 0.0402203    | 197618 | 97485   | -27519.7 | $-1.57 \cdot 10^{-7}$ | $-1.57 \cdot 10^{-7}$ | $1.42 \cdot 10^{-7}$ |
| 0.0419935    | 681357 | 672052  | 582505   | 521591                | 509466                | 262409               |
| 0.0412235    | 201495 | 111948  | -14822.2 | $-1.56 \cdot 10^{-7}$ | $-1.56 \cdot 10^{-7}$ | $1.43 \cdot 10^{-7}$ |
| 0.0422265    | 670647 | 661923  | 580552   | 523711                | 512532                | 260289               |
| 0.0422205    | 203448 | 122077  | -7178.99 | $-1.55 \cdot 10^{-7}$ | $-1.55 \cdot 10^{-7}$ | $1.44 \cdot 10^{-7}$ |
| 0.0432205    | 663344 | 655086  | 580147   | 526554                | 516132                | 257446               |
| 0.0432293    | 203853 | 128914  | -3475.78 | $-1.54 \cdot 10^{-7}$ | $-1.54 \cdot 10^{-7}$ | $1.45 \cdot 10^{-7}$ |
| 0.0449296    | 658628 | 650752  | 580969   | 530005                | 520199                | 253995               |
| 0.0442320    | 203031 | 133248  | -2827.37 | $-1.54 \cdot 10^{-7}$ | $-1.54 \cdot 10^{-7}$ | $1.45 \cdot 10^{-7}$ |
| 0.0452356    | 655855 | 648296  | 582732   | 533941                | 524646                | 250059               |
| 0.0402500    | 201268 | 135704  | -4500.89 | $-1.53 \cdot 10^{-7}$ | $-1.53 \cdot 10^{-7}$ | $1.46 \cdot 10^{-7}$ |
| 0.0462286    | 654501 | 647213  | 585182   | 538227                | 529366                | 245773               |
| 0.0402380    | 198818 | 136787  | -7867.26 | $-1.53 \cdot 10^{-7}$ | $-1.53 \cdot 10^{-7}$ | $1.46 \cdot 10^{-7}$ |

| <i>r</i> [m] |         |         | Va      | lores Propios         |                       |                       |
|--------------|---------|---------|---------|-----------------------|-----------------------|-----------------------|
| 0.0256564    | 711256  | 710025  | 701889  | 693961                | 692707                | -227963               |
| 0.0230304    | 90039.1 | 82111   | 73974.8 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.50 \cdot 10^{-7}$  |
| 0.0270586    | 714332  | 713214  | 705835  | 698627                | 697489                | -235822               |
| 0.0270380    | 85373.5 | 78164.5 | 70786.1 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$  |
| 0.0284608    | 718393  | 717368  | 710620  | 704012                | 702971                | -245364               |
| 0.0284008    | 79988.1 | 73380.2 | 66632.2 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.50 \cdot 10^{-7}$  |
| 0.0208630    | 723287  | 722341  | 716125  | 710025                | 709066                | -256353               |
| 0.0298030    | 73975.2 | 67875.5 | 61658.7 | $-1.50 \cdot 10^{-7}$ | $1.50 \cdot 10^{-7}$  | $-1.50 \cdot 10^{-7}$ |
| 0.0319659    | 728857  | 727979  | 722215  | 716551                | 715661                | -268519               |
| 0.0312032    | 67449.4 | 61784.7 | 56021.1 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$  |
| 0.0326674    | 734932  | 734113  | 728741  | 723453                | 722624                | -281557               |
| 0.0320014    | 60546.7 | 55259.2 | 49887.3 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.50 \cdot 10^{-7}$  |
| 0.0340696    | 741329  | 740561  | 735532  | 730576                | 729800                | -295128               |
| 0.0340090    | 53424.2 | 48468.1 | 43439.5 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.50 \cdot 10^{-7}$  |
| 0.035/718    | 747848  | 747125  | 742402  | 737741                | 737012                | -308859               |
| 0.0004110    | 46259.1 | 41598.3 | 36874.7 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.50 \cdot 10^{-7}$  |

Tabla 33: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-6} \ [\text{C}^2 V N^{-1} m^{-2}] \ y \ \text{P}_o = 1 \cdot 10^4 \ [\text{Pa}]$ 

Tabla 34: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-6} \ [\text{C}^2 V N^{-1} m^{-2}] \ y \ \text{P}_o = 5 \cdot 10^4 \ [\text{Pa}]$ 

| <i>r</i> [m] |         |         | Va      | lores Propios         |                       |                      |
|--------------|---------|---------|---------|-----------------------|-----------------------|----------------------|
| 0.0000774    | 711176  | 705071  | 659331  | 620274                | 613441                | 163726               |
| 0.0292114    | -148617 | 124669  | 78929.2 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0205482    | 708018  | 702413  | 661042  | 625186                | 618978                | 158814               |
| 0.0303482    | -150996 | 122958  | 81587.1 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0318100    | 707030  | 701838  | 664003  | 630788                | 625091                | -156120              |
| 0.0318190    | 153212  | 119997  | 82161.7 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0330808    | 707758  | 702914  | 667989  | 636988                | 631713                | -163471              |
| 0.0330898    | 147012  | 116011  | 81086.3 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0242605    | 709826  | 705278  | 672791  | 643674                | 638755                | -172581              |
| 0.0343003    | 140326  | 111209  | 78722   | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0256212    | 712908  | 708616  | 678206  | 650717                | 646103                | -183011              |
| 0.0300313    | 133283  | 105794  | 75384.3 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0360021    | 716708  | 712641  | 684031  | 657974                | 653626                | -194333              |
| 0.0509021    | 126026  | 99968.9 | 71359.4 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0381720    | 720949  | 717083  | 690063  | 665288                | 661175                | -206123              |
| 0.0301729    | 118712  | 93937.2 | 66916.8 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |

| r [m]     |        |         | Val      | lores Propios         |                       |                      |
|-----------|--------|---------|----------|-----------------------|-----------------------|----------------------|
| 0.0201974 | 717318 | 706378  | 592561   | 519950                | 505123                | 264050               |
| 0.0391874 | 191439 | 77621.8 | -46441   | $-1.58 \cdot 10^{-7}$ | $-1.58 \cdot 10^{-7}$ | $1.41 \cdot 10^{-7}$ |
| 0.0401010 | 696236 | 686218  | 586327   | 520350                | 507054                | 263650               |
| 0.0401910 | 197673 | 97782.2 | -27290.4 | $-1.57 \cdot 10^{-7}$ | $-1.57 \cdot 10^{-7}$ | $1.42 \cdot 10^{-7}$ |
| 0.0411047 | 681097 | 671806  | 582469   | 521656                | 509554                | 262344               |
| 0.0411947 | 201531 | 112194  | -14651   | $-1.56 \cdot 10^{-7}$ | $-1.56 \cdot 10^{-7}$ | $1.43 \cdot 10^{-7}$ |
| 0.0421084 | 670430 | 661719  | 580533   | 523785                | 512627                | 260215               |
| 0.0421984 | 203467 | 122281  | -7056.88 | $-1.55 \cdot 10^{-7}$ | $-1.55 \cdot 10^{-7}$ | $1.44 \cdot 10^{-7}$ |
| 0.0422021 | 663162 | 654917  | 580144   | 526636                | 516234                | 257364               |
| 0.0432021 | 203856 | 129083  | -3395.99 | $-1.54 \cdot 10^{-7}$ | $-1.54 \cdot 10^{-7}$ | $1.45 \cdot 10^{-7}$ |
| 0.0442057 | 658476 | 650611  | 580979   | 530096                | 520309                | 253904               |
| 0.0442037 | 203021 | 133389  | -2784.47 | $-1.54 \cdot 10^{-7}$ | $-1.54 \cdot 10^{-7}$ | $1.45 \cdot 10^{-7}$ |
| 0.0452004 | 655728 | 648180  | 582756   | 534040                | 524762                | 249960               |
| 0.0402094 | 201244 | 135820  | -4490.41 | $-1.53 \cdot 10^{-7}$ | $-1.53 \cdot 10^{-7}$ | $1.46 \cdot 10^{-7}$ |
| 0.0469191 | 654396 | 647118  | 585216   | 538335                | 529490                | 245665               |
| 0.0402131 | 198784 | 136882  | -7885.37 | $-1.53 \cdot 10^{-7}$ | $-1.53 \cdot 10^{-7}$ | $1.46 \cdot 10^{-7}$ |

Tabla 35: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-6} \ [\text{C}^2 V N^{-1} m^{-2}] \ y \ \text{P}_o = 1 \cdot 10^5 \ [\text{Pa}]$ 

Tabla 36: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-6} \ [C^2 V N^{-1} m^{-2}] \ y \ P_o = 1 \cdot 10^4 \ [Pa]$ 

| <i>r</i> [m] |         |         | Va      | lores Propios         |                       |                       |
|--------------|---------|---------|---------|-----------------------|-----------------------|-----------------------|
| 0.0256002    | 710522  | 709378  | 701827  | 694455                | 693291                | -227813               |
| 0.0230093    | 89545.3 | 82173.3 | 74621.6 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.50 \cdot 10^{-7}$  |
| 0.0270124    | 713679  | 712639  | 705790  | 699088                | 698032                | -235711               |
| 0.0270134    | 84911.6 | 78209.5 | 71361.2 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$  |
| 0.028/175    | 717805  | 716852  | 710589  | 704447                | 703480                | -245285               |
| 0.0284175    | 79553.4 | 73411.1 | 67148.1 | $-1.50 \cdot 10^{-7}$ | $1.50 \cdot 10^{-7}$  | $-1.50 \cdot 10^{-7}$ |
| 0.0209215    | 722754  | 721875  | 716105  | 710436                | 709546                | -256300               |
| 0.0298215    | 73563.7 | 67894.7 | 62124.7 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.50 \cdot 10^{-7}$  |
| 0.0212256    | 728372  | 727555  | 722206  | 716942                | 716117                | -268488               |
| 0.0312230    | 67057.6 | 61793.7 | 56444.6 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.50 \cdot 10^{-7}$  |
| 0.0326207    | 734488  | 733726  | 728741  | 723828                | 723059                | -281546               |
| 0.0320297    | 60171.9 | 55259.2 | 50273.8 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.50 \cdot 10^{-7}$  |
| 0.0340337    | 740920  | 740207  | 735540  | 730936                | 730215                | -295135               |
| 0.0340337    | 53064.2 | 48460.1 | 43793.4 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$  |
| 0.0254279    | 747471  | 746800  | 742417  | 738088                | 737411                | -308882               |
| 0.0504578    | 45912.3 | 41583.1 | 37199.7 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.50 \cdot 10^{-7}$  |

| <i>r</i> [m] |         |         | Val     | lores Propios         |                       |                      |
|--------------|---------|---------|---------|-----------------------|-----------------------|----------------------|
| 0.0202260    | 710429  | 704388  | 659209  | 620564                | 613811                | 163436               |
| 0.0292209    | -148240 | 124791  | 79612.4 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0204004    | 707372  | 701826  | 660959  | 625482                | 619347                | 158518               |
| 0.0304994    | -150719 | 123041  | 82173.5 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0217710    | 706465  | 701330  | 663952  | 631091                | 625460                | -155925              |
| 0.0317719    | 152909  | 120048  | 82670.4 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0220442    | 707261  | 702469  | 667965  | 637296                | 632083                | -163344              |
| 0.0330443    | 146704  | 116035  | 81531.3 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.02/2168    | 709385  | 704886  | 672790  | 643986                | 639125                | -172510              |
| 0.0343108    | 140014  | 111210  | 79113.9 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0355802    | 712514  | 708269  | 678224  | 651034                | 646474                | -182988              |
| 0.0555892    | 132966  | 105776  | 75731.1 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0268617    | 716355  | 712332  | 684067  | 658295                | 653998                | -194352              |
| 0.0306017    | 125705  | 99933.2 | 71667.7 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0381342    | 720631  | 716809  | 690113  | 665612                | 661547                | -206178              |
| 0.0381342    | 118388  | 93886.7 | 67191.5 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |

Tabla 37: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-6} \ [\text{C}^2 V N^{-1} m^{-2}] \ y \ \text{P}_o = 5 \cdot 10^4 \ [\text{Pa}]$ 

Tabla 38: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-6} \ [C^2 V N^{-1} m^{-2}] \ y \ P_o = 1 \cdot 10^5 \ [Pa]$ 

| r [m]     |        |         | Val      | lores Propios         |                       |                      |
|-----------|--------|---------|----------|-----------------------|-----------------------|----------------------|
| 0.0201970 | 716560 | 705654  | 592408   | 520050                | 505282                | 263950               |
| 0.0591270 | 191592 | 78345.6 | -45842.6 | $-1.58 \cdot 10^{-7}$ | $-1.58 \cdot 10^{-7}$ | $1.41 \cdot 10^{-7}$ |
| 0.0401220 | 695611 | 685623  | 586217   | 520465                | 507222                | 263535               |
| 0.0401320 | 197783 | 98376.9 | -26832.7 | $-1.57 \cdot 10^{-7}$ | $-1.57 \cdot 10^{-7}$ | $1.42 \cdot 10^{-7}$ |
| 0.0411370 | 680576 | 671314  | 582398   | 521787                | 509733                | 262213               |
| 0.0411370 | 201602 | 112686  | -14309.8 | $-1.56 \cdot 10^{-7}$ | $-1.56 \cdot 10^{-7}$ | $1.43 \cdot 10^{-7}$ |
| 0.0491410 | 669996 | 661311  | 580497   | 523934                | 512819                | 260066               |
| 0.0421419 | 203503 | 122689  | -6814.39 | $-1.55 \cdot 10^{-7}$ | $-1.55 \cdot 10^{-7}$ | $1.44 \cdot 10^{-7}$ |
| 0.0421460 | 662799 | 654578  | 580139   | 526802                | 516440                | 257198               |
| 0.0431409 | 203861 | 129422  | -3238.4  | $-1.54 \cdot 10^{-7}$ | $-1.54 \cdot 10^{-7}$ | $1.45 \cdot 10^{-7}$ |
| 0.0441510 | 658172 | 650331  | 581002   | 530279                | 520529                | 253721               |
| 0.0441319 | 202998 | 133669  | -2700.87 | $-1.54 \cdot 10^{-7}$ | $-1.54 \cdot 10^{-7}$ | $1.45 \cdot 10^{-7}$ |
| 0.0451560 | 655475 | 647949  | 582804   | 534240                | 524997                | 249760               |
| 0.0431309 | 201196 | 136051  | -4471.83 | $-1.53 \cdot 10^{-7}$ | $-1.53 \cdot 10^{-7}$ | $1.46 \cdot 10^{-7}$ |
| 0.0461610 | 654185 | 646929  | 585288   | 538551                | 529739                | 245449               |
| 0.0401019 | 198712 | 137071  | -7924.16 | $-1.53 \cdot 10^{-7}$ | $-1.53 \cdot 10^{-7}$ | $1.46 \cdot 10^{-7}$ |

Además considerando el valor del Campo Eléctrico se puede determinar la matriz  $\mathbb{M}'(r)$  y a su vez los valores propios de ella. Considerando 8 valores de r entre a y b se calculan los valores propios para los diferentes valores de  $C_o$  y  $P_o$ , como se expresan en las tablas 39 - 47.

Tabla 39: Valores Propios de la Matriz M' para algunos valores de r<br/> entre a y b considerando  $C_o=1\cdot 10^{-6}~[{\rm C}^2VN^{-1}m^{-2}]~y~{\rm P}_o=1\cdot 10^4~[{\rm Pa}]$ 

| r [m]      |          |          | Valor    | res Propio | s                      |                        |
|------------|----------|----------|----------|------------|------------------------|------------------------|
| 0.0256708  | -75455.9 | -75454.9 | 75454.9  | 75454.9    | -388.972               | -388.972               |
| 0.0230798  | 388.469  | -388.469 | 387.972  | 387.972    | $1.74 \cdot 10^{-11}$  | $1.35 \cdot 10^{-11}$  |
| 0.0270811  | -70850.5 | -70849.5 | 70849.5  | 70849.5    | -376.93                | -376.93                |
| 0.0270811  | 376.427  | -376.427 | 375.93   | 375.93     | $7.41 \cdot 10^{-11}$  | $-1.48 \cdot 10^{-11}$ |
| 0.0284824  | -65484.6 | -65483.6 | 65483.6  | 65483.6    | -362.394               | -362.394               |
| 0.0284824  | 361.891  | -361.891 | 361.394  | 361.394    | $-1.30 \cdot 10^{-11}$ | $-1.36 \cdot 10^{-12}$ |
| 0.0208837  | -59466.8 | -59465.8 | 59465.8  | 59465.8    | -345.365               | -345.365               |
| 0.0298837  | 344.862  | -344.862 | 344.365  | 344.365    | $-2.28 \cdot 10^{-12}$ | $4.54 \cdot 10^{-13}$  |
| 0.0312840  | -52924.5 | -52923.5 | 52923.5  | 52923.5    | -325.842               | -325.842               |
| 0.0312849  | 325.338  | -325.338 | 324.842  | 324.842    | $1.87 \cdot 10^{-11}$  | $1.59 \cdot 10^{-11}$  |
| 0.0326862  | -46003.9 | -46002.9 | 46002.95 | 46002.9    | -303.825               | -303.825               |
| 0.0520002  | 303.321  | -303.321 | 302.825  | 302.825    | $-4.33 \cdot 10^{-12}$ | $8.07 \cdot 10^{-13}$  |
| 0.0340875  | -38869.7 | -38868.7 | 38868.7  | 38868.7    | -279.315               | -279.315               |
| 0.0340075  | 278.811  | -278.811 | 278.315  | 278.315    | $3.72 \cdot 10^{-12}$  | $-2.95 \cdot 10^{-12}$ |
| 0.035/1888 | -31705.1 | -31704.1 | 31704.1  | 31704.1    | -252.31                | -252.31                |
| 0.0334000  | 251.806  | -251.806 | 251.31   | 251.31     | $3.28 \cdot 10^{-12}$  | $-2.67 \cdot 10^{-12}$ |

Tabla 40: Valores Propios de la Matriz  $\mathbb{M}'$  para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-6} \, [\text{C}^2 V N^{-1} m^{-2}] \, y \, \text{P}_o = 5 \cdot 10^4 \, [\text{Pa}]$ 

| r [m]     |          |          | Valo     | res Propio | os                     |                        |
|-----------|----------|----------|----------|------------|------------------------|------------------------|
| 0.0000000 | -93250   | 93249    | 93249    | -93249     | -432.354               | -432.354               |
| 0.0293020 | 431.852  | -431.852 | 431.354  | 431.354    | $-5.30 \cdot 10^{-11}$ | $2.69 \cdot 10^{-11}$  |
| 0.0205725 | -86198.2 | 86197.2  | -86197.2 | 86197.2    | -415.704               | -415.704               |
| 0.0303723 | 415.202  | -415.202 | 414.704  | 414.704    | $-1.73 \cdot 10^{-11}$ | $1.36 \cdot 10^{-13}$  |
| 0.0218425 | -78609.4 | 78608.4  | -78608.4 | 78608.4    | -397.006               | -397.006               |
| 0.0316423 | 396.503  | -396.503 | 396.006  | 396.006    | $1.35 \cdot 10^{-11}$  | $-3.40 \cdot 10^{-12}$ |
| 0 0221194 | -70598.5 | 70597.5  | -70597.5 | 70597.5    | -376.26                | -376.26                |
| 0.0551124 | 375.757  | -375.757 | 375.26   | 375.26     | $6.38 \cdot 10^{-12}$  | $1.95 \cdot 10^{-12}$  |
| 0 0242892 | -62293   | -62292   | 62292    | 62292      | -353.465               | -353.465               |
| 0.0343823 | 352.962  | -352.962 | 352.465  | 352.465    | $8.57 \cdot 10^{-12}$  | $-8.57 \cdot 10^{-12}$ |
| 0.0256522 | -53832.9 | -53831.9 | 53831.9  | 53831.9    | -328.622               | -328.622               |
| 0.0330323 | 328.119  | -328.119 | 327.622  | 327.622    | $1.93 \cdot 10^{-11}$  | $-1.55 \cdot 10^{-11}$ |
| 0.0260222 | -45370.9 | 45369.9  | -45369.9 | 45369.9    | -301.731               | -301.731               |
| 0.0309222 | 301.227  | -301.227 | 300.731  | 300.731    | $-7.27 \cdot 10^{-12}$ | $9.52 \cdot 10^{-26}$  |
| 0.0291099 | -37072.3 | -37071.3 | 37071.3  | 37071.3    | -272.792               | -272.792               |
| 0.0381922 | 272.288  | -272.288 | 271.792  | 271.792    | $4.69 \cdot 10^{-12}$  | $-8.95 \cdot 10^{-13}$ |

| Tabla 41: Valores Propios de la Matriz $\mathbb{M}'$ para                                                           | , algunos valores de $r$ entre $a$ y $b$ considerando |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| $C_o = 1 \cdot 10^{-6} \left[ C^2 V N^{-1} m^{-2} \right] y \mathbf{P}_o = 1 \cdot 10^5 \left[ \mathbf{Pa} \right]$ |                                                       |

| r [m]     |          |          | Valo     | res Propio | s                      |                        |
|-----------|----------|----------|----------|------------|------------------------|------------------------|
| 0.0392174 | -144260  | -144259  | 144259   | 144259     | -537.639               | -537.639               |
|           | 537.137  | -537.137 | 536.639  | 536.639    | $-1.62 \cdot 10^{-11}$ | $-1.48 \cdot 10^{-12}$ |
| 0.0402205 | -130832  | 130831   | 130831   | -130831    | -512.029               | -512.029               |
| 0.0402203 | 511.526  | -511.526 | 511.029  | 511.029    | $2.26 \cdot 10^{-11}$  | $1.18 \cdot 10^{-11}$  |
| 0.0419925 | -117439  | 117438   | -117438  | 117438     | -485.14                | -485.14                |
| 0.0412233 | 484.638  | -484.638 | 484.14   | 484.14     | $3.17 \cdot 10^{-11}$  | $1.42 \cdot 10^{-12}$  |
| 0.0499965 | -104185  | -104184  | 104184   | 104184     | -456.975               | -456.975               |
| 0.0422203 | 456.472  | -456.472 | 455.975  | 455.975    | $-1.22 \cdot 10^{-11}$ | $-1.36 \cdot 10^{-12}$ |
| 0.0422205 | -91178.6 | -91177.6 | 91177.6  | 91177.6    | -427.531               | -427.531               |
| 0.0432293 | 427.028  | -427.028 | 426.531  | 426.531    | $1.47 \cdot 10^{-11}$  | $-3.46 \cdot 10^{-12}$ |
| 0.0449396 | -78531.6 | -78530.6 | 78530.6  | 78530.6    | -396.81                | -396.81                |
| 0.0442320 | 396.307  | -396.307 | 395.81   | 395.81     | $1.68 \cdot 10^{-11}$  | $1.32 \cdot 10^{-11}$  |
| 0.0459256 | -66362.1 | -66361.1 | 66361.1  | 66361.1    | -364.811               | -364.811               |
| 0.0452550 | 364.308  | -364.308 | 363.811  | 363.811    | $4.00 \cdot 10^{-11}$  | $-3.63 \cdot 10^{-12}$ |
| 0.0462386 | -54792.7 | 54791.7  | -54791.7 | 54791.7    | -331.534               | -331.534               |
| 0.0402380 | 331.031  | -331.031 | 330.534  | 330.534    | $2.26 \cdot 10^{-11}$  | $5.28 \cdot 10^{-12}$  |

Tabla 42: Valores Propios de la Matriz M' para algunos valores de r<br/> entre a y b considerando  $C_o=3\cdot10^{-6}~[{\rm C}^2VN^{-1}m^{-2}]~y~{\rm P}_o=1\cdot10^4~[{\rm Pa}]$ 

|           |         |          | Vale    | ores Propi | OS                     |                        |
|-----------|---------|----------|---------|------------|------------------------|------------------------|
| L _ J     | -678085 | -678084  | 678084  | 678084     | -1165.05               | -1165.05               |
| 0.0256564 | 1164.55 | -1164.55 | 1164.05 | 1164.05    | $1.28 \cdot 10^{-10}$  | $-8.73 \cdot 10^{-11}$ |
| 0.0070506 | -636779 | -636778  | 636778  | 636778     | -1129.02               | -1129.02               |
| 0.0270586 | 1128.52 | -1128.52 | 1128.02 | 1128.02    | $1.65 \cdot 10^{-10}$  | $-1.33 \cdot 10^{-10}$ |
| 0.0004600 | -588615 | -588614  | 588614  | 588614     | -1085.5                | -1085.5                |
| 0.0284008 | 1085    | -1085    | 1084.5  | 1084.5     | $3.44 \cdot 10^{-10}$  | $-7.78 \cdot 10^{-11}$ |
| 0.0000620 | -534572 | -534571  | 534571  | 534571     | -1034.49               | -1034.49               |
| 0.0298030 | 1033.99 | -1033.99 | 1033.49 | 1033.49    | $1.93 \cdot 10^{-10}$  | $1.05 \cdot 10^{-10}$  |
| 0.0219659 | -475794 | 475793   | 475793  | -475793    | -975.993               | -975.993               |
| 0.0512052 | 975.492 | -975.492 | 974.993 | 974.993    | $-4.87 \cdot 10^{-11}$ | $3.33 \cdot 10^{-11}$  |
| 0.0226674 | -413598 | 413597   | 413597  | -413597    | -910.002               | -910.002               |
| 0.0520074 | 909.501 | -909.501 | 909.002 | 909.002    | $7.31 \cdot 10^{-11}$  | $-2.94 \cdot 10^{-11}$ |
| 0.0240606 | -349465 | -349464  | 349464  | 349464     | -836.52                | -836.52                |
| 0.0340696 | 836.018 | -836.018 | 835.52  | 835.52     | $-3.93 \cdot 10^{-11}$ | $-1.17 \cdot 10^{-12}$ |
| 0.0254719 | -285048 | 285047   | 285047  | -285047    | -755.546               | -755.546               |
| 0.0504718 | 755.045 | -755.045 | 754.546 | 754.546    | $-1.43 \cdot 10^{-10}$ | $2.04 \cdot 10^{-12}$  |

| $r  [\mathrm{m}]$ |         |          | Valo    | ores Propie | OS                     |                        |
|-------------------|---------|----------|---------|-------------|------------------------|------------------------|
| 0.0000774         | -838106 | 838105   | -838105 | 838105      | -1295.19               | -1295.19               |
| 0.0292774         | 1294.68 | -1294.68 | 1294.19 | 1294.19     | $1.11 \cdot 10^{-10}$  | $4.22 \cdot 10^{-12}$  |
| 0.0205499         | -774792 | -774791  | 774791  | 774791      | -1245.32               | -1245.32               |
| 0.0303482         | 1244.82 | -1244.82 | 1244.32 | 1244.32     | $-9.01 \cdot 10^{-11}$ | $-8.94 \cdot 10^{-11}$ |
| 0.0218100         | -706631 | 706630   | -706630 | 706630      | -1189.31               | -1189.31               |
| 0.0318190         | 1188.81 | -1188.81 | 1188.31 | 1188.31     | $1.56 \cdot 10^{-10}$  | $-5.03 \cdot 10^{-11}$ |
| 0 0220808         | -634657 | 634656   | -634656 | 634656      | -1127.14               | -1127.14               |
| 0.0330898         | 1126.64 | -1126.64 | 1126.14 | 1126.14     | $-1.39 \cdot 10^{-10}$ | $-3.07 \cdot 10^{-11}$ |
| 0.0242605         | -560017 | 560016   | -560016 | 560016      | -1058.82               | -1058.82               |
| 0.0343003         | 1058.31 | -1058.31 | 1057.82 | 1057.82     | $-2.26 \cdot 10^{-10}$ | $-1.17 \cdot 10^{-10}$ |
| 0.0256212         | -483973 | -483972  | 483972  | 483972      | -984.342               | -984.342               |
| 0.0550515         | 983.84  | -983.84  | 983.342 | 983.342     | $6.95 \cdot 10^{-11}$  | $4.09 \cdot 10^{-12}$  |
| 0.0260021         | -407899 | -407898  | 407898  | 407898      | -903.715               | -903.715               |
| 0.0309021         | 903.213 | -903.213 | 902.715 | 902.715     | $-3.38 \cdot 10^{-11}$ | $-4.77 \cdot 10^{-12}$ |
| 0.0381720         | -333284 | -333283  | 333283  | 333283      | -816.935               | -816.935               |
| 0.0301729         | 816.434 | -816.434 | 815.935 | 815.935     | $1.85 \cdot 10^{-10}$  | $2.51 \cdot 10^{-11}$  |

Tabla 43: Valores Propios de la Matriz M' para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-6} \ [\text{C}^2 V N^{-1} m^{-2}] \ y \ \text{P}_o = 5 \cdot 10^4 \ [\text{Pa}]$ 

Tabla 44: Valores Propios de la Matriz  $\mathbb{M}'$  para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-6} \ [\text{C}^2 V N^{-1} m^{-2}] \ y \ \text{P}_o = 1 \cdot 10^5 \ [\text{Pa}]$ 

| <i>r</i> [m] |                      |                      | Valor               | es Propios           |                        |                        |
|--------------|----------------------|----------------------|---------------------|----------------------|------------------------|------------------------|
| 0.0301874    | $-1.29 \cdot 10^{6}$ | $-1.29 \cdot 10^{6}$ | $1.29 \cdot 10^{6}$ | $1.29 \cdot 10^{6}$  | -1611.05               | -1611.05               |
| 0.0391074    | 1610.55              | -1610.55             | 1610.05             | 1610.05              | $-1.70 \cdot 10^{-10}$ | $7.65 \cdot 10^{-11}$  |
| 0.0401010    | $-1.17 \cdot 10^{6}$ | $-1.17 \cdot 10^{6}$ | $1.17 \cdot 10^{6}$ | $1.17 \cdot 10^{6}$  | -1534.28               | -1534.28               |
| 0.0401910    | 1533.78              | -1533.78             | 1533.28             | 1533.28              | $-1.26 \cdot 10^{-10}$ | $2.87 \cdot 10^{-11}$  |
| 0.0411047    | $-1.05 \cdot 10^{6}$ | $1.05 \cdot 10^{6}$  | $1.05 \cdot 10^{6}$ | $-1.05 \cdot 10^{6}$ | -1453.67               | -1453.67               |
| 0.0411947    | 1453.17              | -1453.17             | 1452.67             | 1452.67              | $3.98 \cdot 10^{-10}$  | $-2.12 \cdot 10^{-10}$ |
| 0.0421984    | -936712              | 936711               | -936711             | 936711               | -1369.23               | -1369.23               |
| 0.0421904    | 1368.73              | -1368.73             | 1368.23             | 1368.23              | $-1.98 \cdot 10^{-10}$ | $-8.74 \cdot 10^{-11}$ |
| 0.0432021    | -819775              | 819774               | 819774              | -819774              | -1280.95               | -1280.95               |
| 0.0432021    | 1280.45              | -1280.45             | 1279.95             | 1279.95              | $-1.51 \cdot 10^{-10}$ | $1.03 \cdot 10^{-10}$  |
| 0.0442057    | -706063              | -706062              | 706062              | 706062               | -1188.83               | -1188.83               |
| 0.0442037    | 1188.33              | -1188.33             | 1187.83             | 1187.83              | $3.79 \cdot 10^{-10}$  | $1.17 \cdot 10^{-10}$  |
| 0.0452094    | -596637              | -596636              | 596636              | 596636               | -1092.87               | -1092.87               |
| 0.0452054    | 1092.37              | -1092.37             | 1091.87             | 1091.87              | $-1.98 \cdot 10^{-10}$ | $9.19 \cdot 10^{-12}$  |
| 0.0462131    | -492603              | 492602               | 492602              | -492602              | -993.074               | -993.074               |
| 0.0402131    | 992.573              | -992.573             | 992.074             | 992.074              | $4.26 \cdot 10^{-11}$  | $2.00 \cdot 10^{-11}$  |

| <i>r</i> [m] |                      |                      | Valor                | es Propios           |                        |                        |
|--------------|----------------------|----------------------|----------------------|----------------------|------------------------|------------------------|
| 0.0256002    | $-1.87 \cdot 10^{6}$ | $1.87 \cdot 10^{6}$  | $-1.87 \cdot 10^{6}$ | $1.87 \cdot 10^{6}$  | -1938.51               | -1938.51               |
| 0.0200095    | 1938.01              | -1938.01             | 1937.51              | 1937.51              | $-6.17 \cdot 10^{-10}$ | $-5.34 \cdot 10^{-10}$ |
| 0.0970124    | $-1.76 \cdot 10^{6}$ | $-1.76 \cdot 10^{6}$ | $1.76 \cdot 10^{6}$  | $1.76 \cdot 10^{6}$  | -1878.79               | -1878.79               |
| 0.0270134    | 1878.29              | -1878.29             | 1877.79              | 1877.79              | $2.32 \cdot 10^{-10}$  | $-1.82 \cdot 10^{-10}$ |
| 0.0284175    | $-1.63 \cdot 10^{6}$ | $1.63 \cdot 10^{6}$  | $1.63 \cdot 10^{6}$  | $-1.63 \cdot 10^{6}$ | -1806.56               | -1806.56               |
| 0.0204175    | 1806.06              | -1806.06             | 1805.56              | 1805.56              | $2.34 \cdot 10^{-10}$  | $-1.97 \cdot 10^{-10}$ |
| 0.0208215    | $-1.48 \cdot 10^{6}$ | $1.48 \cdot 10^{6}$  | $-1.48 \cdot 10^{6}$ | $1.48 \cdot 10^{6}$  | -1721.81               | -1721.81               |
| 0.0298215    | 1721.31              | -1721.31             | 1720.81              | 1720.81              | $5.86 \cdot 10^{-10}$  | $1.35 \cdot 10^{-10}$  |
| 0.0212256    | $-1.31 \cdot 10^{6}$ | $1.31 \cdot 10^{6}$  | $1.31 \cdot 10^{6}$  | $-1.31 \cdot 10^{6}$ | -1624.54               | -1624.54               |
| 0.0312230    | 1624.04              | -1624.04             | 1623.54              | 1623.54              | $2.89 \cdot 10^{-10}$  | $-2.25 \cdot 10^{-10}$ |
| 0.0326207    | $-1.14 \cdot 10^{6}$ | $1.14 \cdot 10^{6}$  | $-1.14 \cdot 10^{6}$ | $1.14 \cdot 10^{6}$  | -1514.76               | -1514.76               |
| 0.0320291    | 1514.26              | -1514.26             | 1513.76              | 1513.76              | $-6.13 \cdot 10^{-10}$ | $3.98 \cdot 10^{-10}$  |
| 0.0340337    | -968767              | 968766               | -968766              | 968766               | -1392.45               | -1392.45               |
| 0.0340331    | 1391.95              | -1391.95             | 1391.45              | 1391.45              | $-2.93 \cdot 10^{-10}$ | $1.47 \cdot 10^{-10}$  |
| 0.0354378    | -790188              | 790187               | 790187               | -790187              | -1257.63               | -1257.63               |
| 0.0004010    | 1257.13              | -1257.13             | 1256.63              | 1256.63              | $4.50 \cdot 10^{-10}$  | $1.90 \cdot 10^{-10}$  |

Tabla 45: Valores Propios de la Matriz M' para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-6} \ [\text{C}^2 V N^{-1} m^{-2}] \ y \ \text{P}_o = 1 \cdot 10^4 \ [\text{Pa}]$ 

Tabla 46: Valores Propios de la Matriz  $\mathbb{M}'$  para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-6} \ [\text{C}^2 V N^{-1} m^{-2}] \ y \ \text{P}_o = 5 \cdot 10^4 \ [\text{Pa}]$ 

| r [m]     |                      |                      | Valor                | es Propios           |                        |                        |
|-----------|----------------------|----------------------|----------------------|----------------------|------------------------|------------------------|
| 0.0202260 | $-2.32 \cdot 10^{6}$ | $2.32 \cdot 10^{6}$  | $2.32 \cdot 10^{6}$  | $-2.32 \cdot 10^{6}$ | -2155.38               | -2155.38               |
| 0.0292209 | 2154.88              | -2154.88             | 2154.38              | 2154.38              | $-4.78 \cdot 10^{-10}$ | $-1.24 \cdot 10^{-11}$ |
| 0.0204004 | $-2.14 \cdot 10^6$   | $2.14 \cdot 10^6$    | $-2.14 \cdot 10^6$   | $2.14 \cdot 10^{6}$  | -2072.56               | -2072.56               |
| 0.0304994 | 2072.06              | -2072.06             | 2071.56              | 2071.56              | $6.19 \cdot 10^{-10}$  | $3.19 \cdot 10^{-10}$  |
| 0.0217710 | $-1.95 \cdot 10^{6}$ | $1.95 \cdot 10^{6}$  | $1.95 \cdot 10^{6}$  | $-1.95 \cdot 10^{6}$ | -1979.46               | -1979.46               |
| 0.0317719 | 1978.96              | -1978.96             | 1978.46              | 1978.46              | $7.94 \cdot 10^{-10}$  | $5.61 \cdot 10^{-10}$  |
| 0.0220442 | $-1.75 \cdot 10^{6}$ | $1.75 \cdot 10^{6}$  | $-1.75 \cdot 10^{6}$ | $1.75 \cdot 10^{6}$  | -1876.09               | -1876.09               |
| 0.0330443 | 1875.59              | -1875.59             | 1875.09              | 1875.09              | $2.66 \cdot 10^{-10}$  | $-1.42 \cdot 10^{-10}$ |
| 0.02/2168 | $-1.55 \cdot 10^{6}$ | $1.55 \cdot 10^{6}$  | $-1.55 \cdot 10^{6}$ | $1.55 \cdot 10^{6}$  | -1762.43               | -1762.43               |
| 0.0343108 | 1761.93              | -1761.93             | 1761.43              | 1761.43              | $-6.85 \cdot 10^{-10}$ | $-5.26 \cdot 10^{-10}$ |
| 0.0255802 | $-1.34 \cdot 10^{6}$ | $-1.34 \cdot 10^{6}$ | $1.34 \cdot 10^{6}$  | $1.34 \cdot 10^{6}$  | -1638.49               | -1638.49               |
| 0.0333892 | 1637.98              | -1637.98             | 1637.49              | 1637.49              | $-3.48 \cdot 10^{-11}$ | $1.30 \cdot 10^{-11}$  |
| 0.0368617 | $-1.13 \cdot 10^{6}$ | $-1.13 \cdot 10^{6}$ | $1.13 \cdot 10^{6}$  | $1.13 \cdot 10^{6}$  | -1504.26               | -1504.26               |
| 0.0308017 | 1503.76              | -1503.76             | 1503.26              | 1503.26              | $2.28 \cdot 10^{-10}$  | $1.18 \cdot 10^{-10}$  |
| 0.0381349 | -923792              | -923791              | 923791               | 923791               | -1359.76               | -1359.76               |
| 0.0301342 | 1359.26              | -1359.26             | 1358.76              | 1358.76              | $1.10 \cdot 10^{-10}$  | $1.30 \cdot 10^{-12}$  |

Tabla 47: Valores Propios de la Matriz M' para algunos valores de r<br/> entre a y b considerando  $C_o=5\cdot10^{-6}~[{\rm C}^2VN^{-1}m^{-2}]~y~{\rm P}_o=1\cdot10^5~[{\rm Pa}]$ 

| r [m]     |                      |                      | Valor                | es Propios           |                        |                        |
|-----------|----------------------|----------------------|----------------------|----------------------|------------------------|------------------------|
| 0.0201970 | $-3.59 \cdot 10^{6}$ | $3.59 \cdot 10^{6}$  | $3.59 \cdot 10^{6}$  | $-3.59 \cdot 10^{6}$ | -2681.84               | -2681.84               |
| 0.0391270 | 2681.34              | -2681.34             | 2680.84              | 2680.84              | $6.14 \cdot 10^{-10}$  | $2.72 \cdot 10^{-10}$  |
| 0.0401220 | $-3.26 \cdot 10^{6}$ | $-3.26 \cdot 10^{6}$ | $3.26 \cdot 10^6$    | $3.26 \cdot 10^{6}$  | -2554.1                | -2554.1                |
| 0.0401320 | 2553.6               | -2553.6              | 2553.1               | 2553.1               | $1.12 \cdot 10^{-9}$   | $5.95 \cdot 10^{-10}$  |
| 0.0411270 | $-2.92 \cdot 10^6$   | $2.92 \cdot 10^{6}$  | $-2.92 \cdot 10^6$   | $2.92 \cdot 10^{6}$  | -2419.96               | -2419.96               |
| 0.0411370 | 2419.46              | -2419.46             | 2418.96              | 2418.96              | $-6.69 \cdot 10^{-10}$ | $8.70 \cdot 10^{-11}$  |
| 0.0491410 | $-2.59 \cdot 10^{6}$ | $-2.59 \cdot 10^{6}$ | $2.59 \cdot 10^{6}$  | $2.59 \cdot 10^{6}$  | -2279.4                | -2279.4                |
| 0.0421419 | 2278.9               | -2278.9              | 2278.4               | 2278.4               | $4.65 \cdot 10^{-10}$  | $3.75 \cdot 10^{-10}$  |
| 0.0431460 | $-2.27 \cdot 10^{6}$ | $2.27 \cdot 10^{6}$  | $2.27 \cdot 10^{6}$  | $-2.27 \cdot 10^{6}$ | -2132.43               | -2132.43               |
| 0.0431409 | 2131.92              | -2131.92             | 2131.43              | 2131.43              | $-7.82 \cdot 10^{-10}$ | $-2.70 \cdot 10^{-11}$ |
| 0.0441510 | $-1.95 \cdot 10^{6}$ | $1.95 \cdot 10^{6}$  | $1.95 \cdot 10^{6}$  | $-1.95 \cdot 10^{6}$ | -1979.04               | -1979.04               |
| 0.0441019 | 1978.54              | -1978.54             | 1978.04              | 1978.04              | $4.80 \cdot 10^{-10}$  | $-2.91 \cdot 10^{-10}$ |
| 0.0451560 | $-1.65 \cdot 10^{6}$ | $1.65 \cdot 10^{6}$  | $-1.65 \cdot 10^{6}$ | $1.65 \cdot 10^{6}$  | -1819.24               | -1819.24               |
| 0.0431309 | 1818.74              | -1818.74             | 1818.24              | 1818.24              | $7.42 \cdot 10^{-10}$  | $2.18 \cdot 10^{-10}$  |
| 0.0461610 | $-1.36 \cdot 10^{6}$ | $-1.36 \cdot 10^{6}$ | $1.36 \cdot 10^{6}$  | $1.36 \cdot 10^{6}$  | -1653.03               | -1653.03               |
| 0.0401019 | 1652.52              | -1652.52             | 1652.03              | 1652.03              | $-3.29 \cdot 10^{-10}$ | $-1.26 \cdot 10^{-10}$ |

# 6.5. Deformación de una Esfera Hueca bajo Presión Interna considerando la Primera Función de Energía Libre

Se considera un cuerpo esférico cuya función de Energía Libre se estudia en un caso incompresible, donde es necesario determinar el Campo Eléctrico  $E_r$ , los radios finales interior y exterior,  $a ext{ y } b$  respectivamente, y el parámetro p que aparece en la modelación de cuerpos incompresibles. Obteniendo estos valores se calculan las matrices  $\mathbb{M} ext{ y } \mathbb{M}'$  con sus respectivos valores propios.

La Primera Función de Energía Libre para este caso incomprensible es:

$$\Omega = \frac{1}{4}\mu(0)[(1+\gamma)(I_1-3) + (1-\gamma)(I_2-3)] + \varepsilon_o(\alpha I_4 + \beta I_5).$$
(6.50)

### 6.5.1. Resolución de Problemas

Para calcular el Campo Eléctrico  $E_r$  en función de r se tiene las ecuación 5.146, donde se reemplazan las derivadas de esta función de Energía Libre calculadas en la sección 5.3.2, obteniendo que:

$$E_r(r) = -\frac{C_o r^6}{2(r^3 - a^3 + A^3)^{4/3} [\varepsilon_o \alpha r^4 + \varepsilon_o \beta (r^3 - a^3 + A^3)^{4/3}]}.$$
(6.51)

Para calcular el radio interno final a se tiene la ecuación 5.160, donde se reemplazan los valores de las ecuaciones 5.147 y 5.148 en la integral con lo que se obtiene:

$$\int_{a}^{b} \frac{2}{\xi} \left[ 2\Omega_{1} \left( \frac{\xi^{2}}{(\xi^{3} - a^{3} + A^{3})^{2/3}} - \frac{(\xi^{3} - a^{3} + A^{3})^{4/3}}{\xi^{4}} \right) + 2\Omega_{2} \left( \frac{\xi^{4}}{(\xi^{3} - a^{3} + A^{3})^{4/3}} - \frac{(\xi^{3} - a^{3} + A^{3})^{2/3}}{\xi^{2}} \right) - 2\Omega_{5} \frac{(\xi^{3} - a^{3} + A^{3})^{8/3}}{\xi^{8}} E_{r}^{2} \right] d\xi - P_{o} + \varepsilon_{o}^{-1} \frac{C_{o}^{2}}{2a^{4}} = \varepsilon_{o}^{-1} \frac{C_{o}^{2}}{2b^{4}}, \quad (6.52)$$

se reemplazan los valores de las derivadas de la función de Energía Libre calculadas en la sección 5.3.2 y el Campo Eléctrico  $E_r(\xi)$  de la ecuación 6.51, obteniéndose:

$$\int_{a}^{b} \left[ \mu(0)(1+\gamma) \frac{\xi^{6} - (\xi^{3} - a^{3} + A^{3})^{2}}{\xi^{5}(\xi^{3} - a^{3} + A^{3})^{2/3}} + \mu(0)(1-\gamma) \frac{\xi^{6} - (\xi^{3} - a^{3} + A^{3})^{2}}{\xi^{3}(\xi^{3} - a^{3} + A^{3})^{2/3}} - \frac{\beta C_{o}^{2}\xi^{3}}{\varepsilon_{o}[\alpha\xi^{4} + \beta(\xi^{3} - a^{3} + A^{3})^{4/3}]^{2}} \right] d\xi - P_{o} + \varepsilon_{o}^{-1} \frac{C_{o}^{2}}{2a^{4}} = \varepsilon_{o}^{-1} \frac{C_{o}^{2}}{2b^{4}},$$
(6.53)

resolviendo la integral se obtiene:

$$-\frac{\mu(0)(a^{3}-A^{3})B}{4(B^{3}+a^{3}-A^{3})^{4/3}}\left(1-\frac{2(B^{3}+a^{3}-A^{3})^{2/3}(2a^{3}-2A^{3}+B^{3})(\gamma-1)}{(a^{3}-A^{3})B^{2}}+\gamma\right)$$
$$-\frac{5(B^{3}+a^{3}-A^{3})(1+\gamma)}{a^{3}-A^{3}}\right)+\frac{\mu(0)(a^{3}-A^{3})A}{4a^{4}}\left(1-\frac{2a^{2}(2a^{3}-A^{3})(\gamma-1)}{(a^{3}-A^{3})A^{2}}+\gamma-\frac{5a^{3}(1+\gamma)}{a^{3}-A^{3}}\right)$$
$$-\int_{a}^{b}T(\xi)d\xi-P_{o}+\varepsilon_{o}^{-1}\frac{C_{o}^{2}}{2a^{4}}=\varepsilon_{o}^{-1}\frac{C_{o}^{2}}{2(B^{3}+a^{3}-A^{3})^{4/3}},$$
(6.54)

donde uno de los términos de la integral presenta algunos desafíos para poder resolverse, el que es el término:

$$T(\xi) = \frac{\beta C_o^2 \xi^3}{\varepsilon_o [\alpha \xi^4 + \beta (\xi^3 - a^3 + A^3)^{4/3}]^2}.$$
(6.55)

Se asumen varias series de Taylor de este término donde se observa que para una orden mayor a 6 los radios finales presentan una variación demasiado baja, es por eso que se aproxima este término como una Serie de Taylor de orden 6, la cual se expresa como:

$$T(\xi) = H_o + H_1(\xi - a) + H_2(\xi - a)^2 + H_3(\xi - a)^3 + H_4(\xi - a)^4 + H_5(\xi - a)^5 + H_6(\xi - a)^6,$$
(6.56)

donde:

$$H_o = \frac{C_o^2 \beta \varepsilon_o a^3}{(\alpha \varepsilon_o a^4 + \beta \varepsilon_o A^4)^2},\tag{6.57}$$

$$H_1 = \frac{C_o^2 \beta (-5\alpha a^6 - 8\beta a^5 A + 3\beta a^2 A^4)}{\varepsilon_o (\alpha a^4 + \beta A^4)^3},$$
(6.58)

$$H_{2} = \frac{C_{o}^{2}\beta}{\varepsilon_{o}(\alpha a^{4} + \beta A^{4})^{4}A^{3}}(15\alpha^{2}a^{9}A^{3} - \alpha\beta a^{11}A - 30\alpha\beta a^{5}A^{7} + 64\alpha\beta a^{8}A^{4} - 32\beta^{2}a^{4}A^{8} + 3\beta^{2}aA^{11} + 44\beta^{2}a^{7}A^{5}), \qquad (6.59)$$

$$H_{3} = -\frac{C_{o}^{2}\beta}{3\varepsilon_{o}(\alpha a^{4} + \beta A^{4})^{5}A^{6}}(105\alpha^{3}a^{12}A^{6} - 8\alpha^{2}\beta a^{17}A + 872\alpha^{2}\beta a^{11}A^{7} - 465\alpha^{2}\beta a^{8}A^{10} - 84\alpha^{2}\beta a^{14}A^{4} + 1560\alpha\beta^{2}a^{10}A^{8} - 1280\alpha\beta^{2}a^{7}A^{11} + 195\alpha\beta^{2}a^{4}A^{14} - 160\alpha\beta^{2}a^{13}A^{5} + 616\beta^{3}a^{9}A^{9} - 660\beta^{3}a^{6}A^{12} + 152\beta^{3}a^{3}A^{15} - 3\beta^{3}A^{18}),$$
(6.60)

$$H_{4} = -\frac{2C_{o}^{2}\beta}{3\varepsilon_{o}(\alpha a^{4} + \beta A^{4})^{6}A^{9}}(-105\alpha^{4}a^{15}A^{9} + 5\alpha^{3}\beta a^{23}A + 172\alpha^{3}\beta a^{17}A^{7} - 1476\alpha^{3}\beta a^{14}A^{10} + 855\alpha^{3}\beta a^{11}A^{13} + 24\alpha^{3}\beta a^{20}A^{4} + 744\alpha^{2}\beta^{2}a^{16}A^{8} - 4968\alpha^{2}\beta^{2}a^{13}A^{11} + 4404\alpha^{2}\beta^{2}a^{10}A^{14} - 855\alpha^{2}\beta^{2}a^{7}A^{17} + 45\alpha^{2}\beta^{2}a^{19}A^{5} + 651\alpha\beta^{3}a^{15}A^{9} - 5112\alpha\beta^{3}a^{12}A^{12} + 5676\alpha\beta^{3}a^{9}A^{15} - 1740\alpha\beta^{3}a^{6}A^{18} + 105\alpha\beta^{3}a^{3}A^{21} - 1309\beta^{4}a^{11}A^{13} + 1848\beta^{4}a^{8}A^{16} - 704\beta^{4}a^{5}A^{19} + 60\beta^{4}a^{2}A^{22}),$$

$$(6.61)$$

$$H_{5} = -\frac{2C_{o}^{2}\beta}{3\varepsilon_{o}(\alpha a^{4} + \beta A^{4})^{7}A^{12}}(189\alpha^{5}a^{18}A^{12} - 8\alpha^{4}\beta a^{29}A - 88\alpha^{4}\beta a^{23}A^{7} - 25\alpha^{4}\beta a^{26}A^{4} + 4140\alpha^{4}\beta a^{17}A^{13} - 2538\alpha^{4}\beta a^{14}A^{16} - 536\alpha^{4}\beta a^{20}A^{10} + 22708\alpha^{3}\beta^{2}a^{16}A^{14} - 3976\alpha^{3}\beta^{2}a^{19}A^{11} - 310\alpha^{3}\beta^{2}a^{22}A^{8} - 21252\alpha^{3}\beta^{2}a^{13}A^{17} + 4788\alpha^{3}\beta^{2}a^{10}A^{20} - 68\alpha^{3}\beta^{2}a^{25}A^{5} - 252\alpha^{2}\beta^{3}a^{21}A^{9} - 7788\alpha^{2}\beta^{3}a^{18}A^{12} + 43320\alpha^{2}\beta^{3}a^{15}A^{15} - 49812\alpha^{2}\beta^{3}a^{12}A^{18} + 18060\alpha^{2}\beta^{3}a^{9}A^{21} - 1638\alpha^{2}\beta^{3}a^{6}A^{24} - 4172\alpha\beta^{4}a^{17}A^{13} + 29414\alpha\beta^{4}a^{14}A^{16} - 40024\alpha\beta^{4}a^{11}A^{19} + 18268\alpha\beta^{4}a^{8}A^{22} - 2604\alpha\beta^{4}a^{5}A^{25} + 63\alpha\beta^{4}a^{2}A^{28} + 5236\beta^{5}a^{13}A^{17} - 9163\beta^{5}a^{10}A^{20} + 4928\beta^{5}a^{7}A^{23} - 836\beta^{5}a^{4}A^{26} + 24\beta^{5}aA^{29}),$$

$$(6.62)$$

$$\begin{split} H_6 &= -\frac{2C_o^2\beta}{9\varepsilon_o(\alpha a^4 + \beta A^4)^8 A^{15}} (-945\alpha^6 a^{21}A^{15} + 44\alpha^5\beta a^{35}A + 245\alpha^5\beta a^{29}A^7 \\ &\quad +756\alpha^5\beta a^{26}A^{10} + 4214\alpha^5\beta a^{23}A^{13} - 30492\alpha^5\beta a^{20}A^{16} + 19467\alpha^5\beta a^{17}A^{19} \\ &\quad +96\alpha^5\beta a^{32}A^4 + 1056\alpha^4\beta^2 a^{28}a^8 + 4045\alpha^4\beta^2 a^{25}A^{11} + 47628\alpha^4\beta^2 a^{22}A^{14} \\ &\quad -250628\alpha^4\beta^2 a^{19}A^{17} + 244188\alpha^4\beta^2 a^{16}A^{20} - 60858\alpha^4\beta^2 a^{13}A^{23} + 394\alpha^4\beta^2 a^{31}A^5 \\ &\quad +1568\alpha^3\beta^3 a^{27}A^9 + 4992\alpha^3\beta^3 a^{24}A^{12} + 158162\alpha^3\beta^3 a^{21}A^{15} - 763992\alpha^3\beta^3 a^{18}A^{18} \\ &\quad +905828\alpha^3\beta^3 a^{15}A^{21} - 367416\alpha^3\beta^3 a^{12}A^{24} + 41958\alpha^3\beta^3 a^9A^{27} + 1820\alpha^2\beta^4 a^{23}A^{13} \\ &\quad +188160\alpha^2\beta^4 a^{20}A^{16} - 957574\alpha^2\beta^4 a^{17}A^{19} + 1304376\alpha^2\beta^4 a^{14}A^{22} - 5733\alpha^2\beta^4 a^5A^{31} \\ &\quad +124824\alpha^2\beta^4 a^8A^{28} - 670048\alpha^2\beta^4 a^{11}A^{25} + 69412\alpha\beta^5 a^{19}A^{17} - 464352\alpha\beta^5 a^{16}A^{20} \\ &\quad +735721\alpha\beta^5 a^{13}A^{23} - 442140\alpha\beta^5 a^{10}A^{26} + 102838\alpha\beta^5 a^{729} - 7212\alpha\beta^5 a^4A^{32} \\ &\quad +63\alpha\beta^5 aA^{35} - 60214\beta^6 a^{15}A^{21} + 125664\beta^6 a^{12}A^{24} - 87703\beta^6 a^9A^{27} \\ &\quad +23100\beta^6 a^6A^{30} - 1804\beta^6 a^3A^{33} + 12\beta^6A^{36}), \end{split}$$

resolviendo la integral de esta aproximación se obtiene finalmente que:

$$-\frac{\mu(0)(a^{3}-A^{3})B}{4(B^{3}+a^{3}-A^{3})^{4/3}}\left(1-\frac{2(B^{3}+a^{3}-A^{3})^{2/3}(2a^{3}-2A^{3}+B^{3})(\gamma-1)}{(a^{3}-A^{3})B^{2}}+\gamma\right)$$
  
$$-\frac{5(B^{3}+a^{3}-A^{3})(1+\gamma)}{a^{3}-A^{3}}\right)+\frac{\mu(0)(a^{3}-A^{3})A}{4a^{4}}\left(1-\frac{2a^{2}(2a^{3}-A^{3})(\gamma-1)}{(a^{3}-A^{3})A^{2}}+\gamma-\frac{5a^{3}(1+\gamma)}{a^{3}-A^{3}}\right)$$
  
$$+H_{o}(a-(B^{3}+a^{3}-A^{3})^{1/3})+\frac{1}{2}H_{1}(2a(B^{3}+a^{3}-A^{3})^{1/3}-(B^{3}+a^{3}-A^{3})^{2/3}-a^{2})$$
  
$$+\frac{1}{3}H_{2}(a-(B^{3}+a^{3}-A^{3})^{1/3})^{3}-\frac{1}{4}H_{3}((B^{3}+a^{3}-A^{3})^{1/3}-a)^{4}+\frac{1}{5}H_{4}(a-(B^{3}+a^{3}-A^{3})^{1/3})^{5}$$
  
$$-\frac{1}{6}H_{5}((B^{3}+a^{3}-A^{3})^{1/3}-a)^{6}+\frac{1}{7}H_{6}(a-(B^{3}+a^{3}-A^{3})^{1/3})^{7}$$
  
$$-P_{o}+\varepsilon_{o}^{-1}\frac{C_{o}^{2}}{2a^{4}}=\varepsilon_{o}^{-1}\frac{C_{o}^{2}}{2(B^{3}+a^{3}-A^{3})^{4/3}}.$$
 (6.64)

Introduciendo esta ecuación en el software Mathematica y asumiendo que:

$$A = 0.025 \text{ [m]}, \quad B = 0.035 \text{ [m]},$$

y se obtienen de forma numérica los radios finales del cuerpo esférico, para lo cual se asumen tres valores diferentes para las constantes  $C_o$  y  $P_o$  como se muestra en la tabla 48.

| $C_o [C^2 V N^{-1} m^{-1}]$ | $P_o$ [Pa]         | $a  [\mathrm{m}]$ | <i>b</i> [m] |
|-----------------------------|--------------------|-------------------|--------------|
| $1 \cdot 10^{-8}$           | $5.0 \cdot 10^4$   | 0.0264679         | 0.0357764    |
| $1 \cdot 10^{-8}$           | $1.0 \cdot 10^{5}$ | 0.0278258         | 0.0365419    |
| $1 \cdot 10^{-8}$           | $1.5 \cdot 10^{5}$ | 0.0289522         | 0.0372096    |
| $3 \cdot 10^{-8}$           | $5.0 \cdot 10^4$   | 0.0264655         | 0.0357751    |
| $3 \cdot 10^{-8}$           | $1.0 \cdot 10^{5}$ | 0.0276686         | 0.0364511    |
| $3 \cdot 10^{-8}$           | $1.5 \cdot 10^{5}$ | 0.0291388         | 0.0373229    |
| $5 \cdot 10^{-8}$           | $5.0 \cdot 10^{4}$ | 0.0264608         | 0.0357725    |
| $5 \cdot 10^{-8}$           | $1.0 \cdot 10^{5}$ | 0.0275827         | 0.0364016    |
| $5 \cdot 10^{-8}$           | $1.5 \cdot 10^5$   | 0.0292483         | 0.0373898    |

Tabla 48: Radios Finales del Cuerpo Esférico para algunos valores de  $C_o$  y  $P_o$ 

Para calcular p en función de r se tiene la ecuación 5.162, donde se reemplazan los valores de las ecuaciones 5.147 y 5.148 en la integral con lo que se obtiene:

$$p(r) = 2\Omega_1 \frac{(\xi^3 - a^3 + A^3)^{4/3}}{r^4} + 4\Omega_2 \frac{(\xi^3 - a^3 + A^3)^{2/3}}{r^2} + 2\Omega_5 \frac{(\xi^3 - a^3 + A^3)^{8/3}}{r^8} E_r^2 - \int_a^r \frac{2}{\xi} \left[ 2\Omega_1 \left( \frac{\xi^2}{(\xi^3 - a^3 + A^3)^{2/3}} - \frac{(\xi^3 - a^3 + A^3)^{4/3}}{\xi^4} \right) + 2\Omega_2 \left( \frac{\xi^4}{(\xi^3 - a^3 + A^3)^{4/3}} - \frac{(\xi^3 - a^3 + A^3)^{2/3}}{\xi^2} \right) - 2\Omega_5 \frac{(\xi^3 - a^3 + A^3)^{8/3}}{\xi^8} E_r^2 \right] d\xi + P_o - \varepsilon_o^{-1} \frac{C_o^2}{2a^4},$$
(6.65)

se reemplazan los valores de las derivadas de la función de Energía Libre calculadas en la sección 5.3.2 y el Campo Eléctrico  $E_r(\xi)$  de la ecuación 6.51:

$$p(r) = \frac{1}{2}\mu(0)(1+\gamma)\frac{(r^3-a^3+A^3)^{4/3}}{r^4} + \mu(0)(1-\gamma)\frac{(r^3-a^3+A^3)^{2/3}}{r^2} + \frac{\beta C_o^2 r^4}{2\varepsilon_o [\alpha r^4 + \beta (r^3-a^3+A^3)^{4/3}]^2} - \int_a^r \mu(0)(1+\gamma)\frac{\xi^6 - (\xi^3-a^3+A^3)^2}{\xi^5 (\xi^3-a^3+A^3)^{2/3}}d\xi - \int_a^r \mu(0)(1-\gamma)\frac{\xi^6 - (\xi^3-a^3+A^3)^2}{\xi^3 (\xi^3-a^3+A^3)^{2/3}}d\xi + \int_a^r \frac{\beta C_o^2 \xi^3}{\varepsilon_o [\alpha \xi^4 + \beta (\xi^3-a^3+A^3)^{4/3}]^2}d\xi + P_o - \varepsilon_o^{-1}\frac{C_o^2}{2a^4},$$
(6.66)

resolviendo la integral se obtiene:

$$p(r) = \frac{1}{2}\mu(0)(1+\gamma)\frac{(r^3-a^3+A^3)^{4/3}}{r^4} + \mu(0)(1-\gamma)\frac{(r^3-a^3+A^3)^{2/3}}{r^2} + \frac{\beta C_o^2 r^4}{2\varepsilon_o [\alpha r^4 + \beta (r^3-a^3+A^3)^{4/3}]^2} + \frac{\mu(0)(a^3-A^3)(r^3-a^3+A^3)^{1/3}}{4r^4} \\ \left(1 - \frac{2r^2(a^3-A^3+r^3)(\gamma-1)}{(a^3-A^3)(r^3-a^3+A^3)^{2/3}} + \gamma - \frac{5r^3(1+\gamma)}{a^3-A^3}\right) - \frac{\mu(0)(a^3-A^3)A}{4a^4} \\ \left(1 - \frac{2a^2(2a^3-A^3)(\gamma-1)}{(a^3-A^3)A^2} + \gamma - \frac{5a^3(1+\gamma)}{a^3-A^3}\right) + \int_a^r T(\xi)d\xi + P_o - \varepsilon_o^{-1}\frac{C_o^2}{2a^4}, \quad (6.67)$$

asumiendo la misma Serie de Taylor de la ecuación 6.56 se resuelve la integral y se obtiene finalmente que:

$$p(r) = \frac{1}{2}\mu(0)(1+\gamma)\frac{(r^3-a^3+A^3)^{4/3}}{r^4} + \mu(0)(1-\gamma)\frac{(r^3-a^3+A^3)^{2/3}}{r^2} + \frac{\beta C_o^2 r^4}{2\varepsilon_o [\alpha r^4 + \beta (r^3-a^3+A^3)^{4/3}]^2} + \frac{\mu(0)(a^3-A^3)(r^3-a^3+A^3)^{1/3}}{4r^4} \left(1 - \frac{2r^2(a^3-A^3+r^3)(\gamma-1)}{(a^3-A^3)(r^3-a^3+A^3)^{2/3}} + \gamma - \frac{5r^3(1+\gamma)}{a^3-A^3}\right) - \frac{\mu(0)(a^3-A^3)A}{4a^4} \left(1 - \frac{2a^2(2a^3-A^3)(\gamma-1)}{(a^3-A^3)A^2} + \gamma - \frac{5a^3(1+\gamma)}{a^3-A^3}\right) - H_o(a-r) + \frac{1}{2}H_1(r-a)^2 - \frac{1}{3}H_2(a-r)^3 + \frac{1}{4}H_3(r-a)^4 - \frac{1}{5}H_4(a-r)^5 + \frac{1}{6}H_5(r-a)^6 - \frac{1}{7}H_6(a-r)^7 + P_o - \varepsilon_o^{-1}\frac{C_o^2}{2a^4}.$$
(6.68)

Las expresiones de los componentes de la matriz  $\mathbb{M}$  se pueden definir con los componentes de  $\mathbb{A}_{i\alpha j\beta}$ ,  $\mathbb{B}_{i\alpha\beta}$  y  $\mathbb{C}_{\alpha\beta}$  para este problema. Considerando solo los valores no nulos, estas componentes se expresan como:

$$\mathbb{A}_{i\alpha j\beta} = \frac{\partial\Omega}{\partial I_1} \frac{\partial^2 I_1}{\partial F_{i\alpha} \partial F_{j\beta}} + \frac{\partial\Omega}{\partial I_2} \frac{\partial^2 I_2}{\partial F_{i\alpha} \partial F_{j\beta}} + \frac{\partial\Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial F_{i\alpha} \partial F_{j\beta}} - p[F_{\alpha i}^{-1}F_{\beta j}^{-1} - F_{\alpha j}^{-1}F_{i\beta}^{-1}], \quad (6.69)$$

$$\mathbb{B}_{i\alpha\beta} = \frac{\partial\Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial F_{i\alpha} \partial E_{l_\beta}},\tag{6.70}$$

$$\mathbb{C}_{\alpha\beta} = \frac{\partial\Omega}{\partial I_4} \frac{\partial^2 I_4}{\partial E_{l_\alpha} \partial E_{l_\beta}} + \frac{\partial\Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial E_{l_\alpha} \partial E_{l_\beta}}.$$
(6.71)

Reemplazando las derivadas calculadas en las secciones 5.2 y 5.3.2 se obtiene:

$$\mathbb{A}_{i\alpha j\beta} = \frac{1}{2}\mu(0)(1+\gamma)\delta_{ij}\delta_{\alpha\beta} + \frac{1}{2}\mu(0)(1-\gamma)(\delta_{ij}\delta_{\alpha\beta}c_{\gamma\gamma} + 2F_{i\alpha}F_{j\beta} - \delta_{ij}c_{\beta\alpha} - F_{i\beta}F_{j\alpha} - F_{i\gamma}F_{j\gamma}\delta_{\alpha\beta}) + 2\varepsilon_o\beta E_{l_\alpha}\delta_{ij}E_{l_\beta} - p[F_{\alpha i}^{-1}F_{\beta j}^{-1} - F_{\alpha j}^{-1}F_{i\beta}^{-1}], \qquad (6.72)$$

$$\mathbb{B}_{i\alpha\beta} = 2\varepsilon_o\beta(\delta_{\alpha\beta}F_{i\gamma}E_{l_{\gamma}} + E_{l_{\alpha}}F_{i\beta}), \tag{6.73}$$

$$\mathbb{C}_{\alpha\beta} = 2\varepsilon_o \alpha \delta_{\alpha\beta} + 2\varepsilon_o \beta c_{\alpha\beta}. \tag{6.74}$$

### 6.5.2. Resultados

Introduciendo las matrices en el software Mathematica y reemplazando los valores de las variables se obtiene finalmente la matriz  $\mathbb{M}(r)$  (que ahora depende de la posición radial r) y a su vez los valores propios de ella. Considerando 8 valores de r entre a y b se calculan los valores propios para los diferentes valores de  $C_o$  y  $P_o$ , como se expresan en las tablas 49 - 57.

Tabla 49: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-8} [C^2 V N^{-1} m^{-1}] y P_o = 5 \cdot 10^4 [Pa]$ 

| r [m]     |         |         | Va      | lores Propios         |                       |                       |
|-----------|---------|---------|---------|-----------------------|-----------------------|-----------------------|
| 0.0004670 | 796067  | 775255  | 775255  | 714962                | 714962                | -335030               |
| 0.0204079 | 69037.7 | 8744.96 | 8744.96 | $-9.21 \cdot 10^{-8}$ | $-9.19 \cdot 10^{-8}$ | $-3.45 \cdot 10^{-8}$ |
| 0.0277076 | 788772  | 771086  | 771086  | 719605                | 719605                | -332377               |
| 0.0277970 | 64394.9 | 12913.9 | 12913.9 | $-8.88 \cdot 10^{-8}$ | $-8.88 \cdot 10^{-8}$ | $-3.94 \cdot 10^{-8}$ |
| 0.0201274 | 783032  | 767851  | 767851  | 723486                | 723486                | -330518               |
| 0.0291274 | 60514.1 | 16148.9 | 16148.9 | $-8.61 \cdot 10^{-8}$ | $-8.60 \cdot 10^{-8}$ | $-4.34 \cdot 10^{-8}$ |
| 0.0204572 | 778437  | 765293  | 765293  | 726753                | 726753                | -329190               |
| 0.0304572 | 57247.3 | 18707.3 | 18707.3 | $-8.40 \cdot 10^{-8}$ | $-8.39 \cdot 10^{-8}$ | $-4.68 \cdot 10^{-8}$ |
| 0.0217870 | 774704  | 763237  | 763237  | 729521                | 729521                | -328225               |
| 0.0317870 | 54479.3 | 20763.4 | 20763.4 | $-8.24 \cdot 10^{-8}$ | $-8.23 \cdot 10^{-8}$ | $-4.98 \cdot 10^{-8}$ |
| 0.0221168 | 771633  | 761561  | 761561  | 731880                | 731880                | -327513               |
| 0.0331108 | 52119.8 | 22439.1 | 22439.1 | $-8.09 \cdot 10^{-8}$ | $-8.08 \cdot 10^{-8}$ | $-5.20 \cdot 10^{-8}$ |
| 0.0244466 | 769007  | 760179  | 760179  | 733903                | 733903                | -326980               |
| 0.0344400 | 50097   | 23821.4 | 23821.4 | $-7.96 \cdot 10^{-8}$ | $-7.96 \cdot 10^{-8}$ | $-5.41 \cdot 10^{-8}$ |
| 0.0357764 | 766930  | 759026  | 759026  | 735646                | 735646                | -326576               |
| 0.0337704 | 48353.9 | 24974.2 | 24974.2 | $-7.87 \cdot 10^{-8}$ | $-7.86 \cdot 10^{-8}$ | $-5.58 \cdot 10^{-8}$ |

| r [m]     |         |          | Val      | ores Propios          |                       |                       |
|-----------|---------|----------|----------|-----------------------|-----------------------|-----------------------|
| 0.0079959 | 826091  | 787582   | 787582   | 678888                | 678888                | -328979               |
| 0.0278238 | 105112  | -3582.44 | -3582.44 | $-1.13 \cdot 10^{-7}$ | $-1.13 \cdot 10^{-7}$ | $-9.21 \cdot 10^{-9}$ |
| 0.0200710 | 811324  | 778569   | 778569   | 685424                | 685424                | -320748               |
| 0.0290710 | 98576.4 | 5430.39  | 5430.39  | $-1.06 \cdot 10^{-7}$ | $-1.06 \cdot 10^{-7}$ | $-1.62 \cdot 10^{-8}$ |
| 0 0202162 | 799868  | 771679   | 771679   | 691009                | 691009                | -314877               |
| 0.0303102 | 92990.6 | 12320.9  | 12320.9  | $-1.01 \cdot 10^{-7}$ | $-1.01 \cdot 10^{-7}$ | $-2.25 \cdot 10^{-8}$ |
| 0 0915619 | 790755  | 766260   | 766260   | 695787                | 695787                | -310542               |
| 0.0313013 | 88213   | 17739.6  | 17739.6  | $-9.71 \cdot 10^{-8}$ | $-9.70 \cdot 10^{-8}$ | $-2.77 \cdot 10^{-8}$ |
| 0.0222065 | 783151  | 761705   | 761705   | 699719                | 699719                | -306870               |
| 0.0328003 | 84280.8 | 22294.8  | 22294.8  | $-9.37 \cdot 10^{-8}$ | $-9.37 \cdot 10^{-8}$ | $-3.24 \cdot 10^{-8}$ |
| 0.0240516 | 775874  | 757013   | 757013   | 702285                | 702285                | -302158               |
| 0.0340310 | 81715.1 | 26986.9  | 26986.9  | $-9.09 \cdot 10^{-8}$ | $-9.09 \cdot 10^{-8}$ | $-3.62 \cdot 10^{-8}$ |
| 0.0252068 | 766615  | 750060   | 750060   | 701857                | 701857                | -292472               |
| 0.0352908 | 82142.5 | 33940.4  | 33940.4  | $-8.86 \cdot 10^{-8}$ | $-8.86 \cdot 10^{-8}$ | $-3.95 \cdot 10^{-8}$ |
| 0.0365410 | 750748  | 736438   | 736438   | 694650                | 694650                | -269398               |
| 0.0303419 | 89349.9 | 47561.8  | 47561.8  | $-8.66 \cdot 10^{-8}$ | $-8.66 \cdot 10^{-8}$ | $-4.27 \cdot 10^{-8}$ |

Tabla 50: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-8} \ [\text{C}^2 V N^{-1} m^{-1}] \ y \ \text{P}_o = 1 \cdot 10^5 \ [\text{Pa}]$ 

Tabla 51: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-8} \, [\text{C}^2 V N^{-1} m^{-1}] \, y \, \text{P}_o = 1.5 \cdot 10^5 \, [\text{Pa}]$ 

| <i>r</i> [m] |         |          | Val      | ores Propios          |                       |                       |
|--------------|---------|----------|----------|-----------------------|-----------------------|-----------------------|
| 0.000500     | 872827  | 818087   | 818087   | 666332                | 666332                | -363160               |
| 0.0289522    | 117668  | -34088.2 | -34088.2 | $-1.31 \cdot 10^{-7}$ | $-1.31 \cdot 10^{-7}$ | $7.89 \cdot 10^{-9}$  |
| 0.0201219    | 850661  | 804118   | 804118   | 673963                | 673963                | -348777               |
| 0.0301318    | 110037  | -20271.4 | -20271.4 | $-1.21 \cdot 10^{-7}$ | $-1.21 \cdot 10^{-7}$ | $-5.00 \cdot 10^{-9}$ |
| 0.0212114    | 833946  | 793803   | 793803   | 680669                | 680669                | -338615               |
| 0.0313114    | 103331  | -9803.72 | -9803.72 | $-1.14 \cdot 10^{-7}$ | $-1.14 \cdot 10^{-7}$ | $-7.52 \cdot 10^{-9}$ |
| 0.0224010    | 820445  | 785491   | 785491   | 686331                | 686331                | -330776               |
| 0.0324910    | 97668.7 | -1490.74 | -1490.74 | $-1.08 \cdot 10^{-7}$ | $-1.08 \cdot 10^{-7}$ | $-1.39 \cdot 10^{-8}$ |
| 0.0226707    | 808718  | 778076   | 778076   | 690657                | 690657                | -323375               |
| 0.0550707    | 93343.4 | 5923.93  | 5923.93  | $-1.03 \cdot 10^{-7}$ | $-1.03 \cdot 10^{-7}$ | $-1.95 \cdot 10^{-8}$ |
| 0.0348503    | 795893  | 769038   | 769038   | 692044                | 692044                | -311938               |
| 0.0348505    | 91955.6 | 14961.7  | 14961.7  | $-9.98 \cdot 10^{-8}$ | $-9.98 \cdot 10^{-8}$ | $-2.41 \cdot 10^{-8}$ |
| 0.0260200    | 776008  | 752848   | 752848   | 686164                | 686164                | -286171               |
| 0.0300299    | 97836.3 | 31151.7  | 31151.7  | $-9.66 \cdot 10^{-8}$ | $-9.65 \cdot 10^{-8}$ | $-2.85 \cdot 10^{-8}$ |
| 0.0272006    | 737166  | 718229   | 718229   | 663496                | 663496                | -224662               |
| 0.0372090    | 120504  | 65770.9  | 65770.9  | $-9.37 \cdot 10^{-8}$ | $-9.37 \cdot 10^{-8}$ | $-3.24 \cdot 10^{-8}$ |

| Tabla 52: Valores Propios de la Matriz $\mathbb{M}$ para algunos valores de $r$ entre $a$ y $b$ considerat | ndo |
|------------------------------------------------------------------------------------------------------------|-----|
| $C_o = 3 \cdot 10^{-8} \left[ C^2 V N^{-1} m^{-1} \right] y P_o = 5 \cdot 10^4 \left[ Pa \right]$          |     |
|                                                                                                            |     |

| r [m]     |         | Valores Propios |         |                       |                       |                       |  |  |  |
|-----------|---------|-----------------|---------|-----------------------|-----------------------|-----------------------|--|--|--|
| 0.0264655 | 796021  | 775240          | 775240  | 715036                | 715036                | -335057               |  |  |  |
| 0.0204033 | 68963.9 | 8759.36         | 8759.36 | $-9.20 \cdot 10^{-8}$ | $-9.20 \cdot 10^{-8}$ | $-3.47 \cdot 10^{-8}$ |  |  |  |
| 0.0277054 | 788738  | 771079          | 771079  | 719674                | 719674                | -332413               |  |  |  |
| 0.0211954 | 64325.8 | 12920.6         | 12920.6 | $-8.88 \cdot 10^{-8}$ | $-8.87 \cdot 10^{-8}$ | $-3.94 \cdot 10^{-8}$ |  |  |  |
| 0.0201254 | 783008  | 767850          | 767850  | 723551                | 723551                | -330559               |  |  |  |
| 0.0291204 | 60449.1 | 16149.8         | 16149.8 | $-8.61 \cdot 10^{-8}$ | $-8.61 \cdot 10^{-8}$ | $-4.35 \cdot 10^{-8}$ |  |  |  |
| 0.0304553 | 778421  | 765296          | 765296  | 726814                | 726814                | -329235               |  |  |  |
| 0.0304333 | 57185.9 | 18703.6         | 18703.6 | $-8.40 \cdot 10^{-8}$ | $-8.39 \cdot 10^{-8}$ | $-4.69 \cdot 10^{-8}$ |  |  |  |
| 0.0317853 | 774694  | 763244          | 763244  | 729579                | 729579                | -328273               |  |  |  |
| 0.0317833 | 54421.2 | 20756.1         | 20756.1 | $-8.23 \cdot 10^{-8}$ | $-8.23 \cdot 10^{-8}$ | $-4.96 \cdot 10^{-8}$ |  |  |  |
| 0.0331152 | 771627  | 761571          | 761571  | 731935                | 731935                | -327562               |  |  |  |
| 0.0001102 | 52064.6 | 22429.1         | 22429.1 | $-8.10 \cdot 10^{-8}$ | $-8.08 \cdot 10^{-8}$ | $-5.21 \cdot 10^{-8}$ |  |  |  |
| 0.0344452 | 769075  | 760190          | 760190  | 733955                | 733955                | -327030               |  |  |  |
| 0.0344432 | 50045.1 | 23809.9         | 23809.9 | $-7.96 \cdot 10^{-8}$ | $-7.95 \cdot 10^{-8}$ | $-5.41 \cdot 10^{-8}$ |  |  |  |
| 0.0357751 | 766929  | 759037          | 759037  | 735694                | 735694                | -326623               |  |  |  |
| 0.0001101 | 48306.3 | 24962.8         | 24962.8 | $-7.86 \cdot 10^{-8}$ | $-7.86 \cdot 10^{-8}$ | $-5.58 \cdot 10^{-8}$ |  |  |  |

Tabla 53: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-8} \ [\text{C}^2 V N^{-1} m^{-1}] \ y \ \text{P}_o = 1 \cdot 10^5 \ [\text{Pa}]$ 

| <i>r</i> [m] |         |          | Val      | ores Propios          |                       |                       |
|--------------|---------|----------|----------|-----------------------|-----------------------|-----------------------|
| 0.0076696    | 828789  | 791738   | 791738   | 686873                | 686873                | -339665               |
| 0.0270080    | 97127.2 | -7741.21 | -7741.21 | $-1.10 \cdot 10^{-7}$ | $-1.10 \cdot 10^{-7}$ | $-1.17 \cdot 10^{-8}$ |
| 0 0000000    | 814755  | 783238   | 783238   | 693388                | 693388                | -332144               |
| 0.0289233    | 90612.3 | 760.591  | 760.591  | $-1.04 \cdot 10^{-7}$ | $-1.04 \cdot 10^{-7}$ | $-1.86 \cdot 10^{-8}$ |
| 0.0301770    | 803848  | 776728   | 776728   | 698940                | 698940                | -326788               |
| 0.0301779    | 85059.6 | 7271.74  | 7271.74  | $-9.94 \cdot 10^{-8}$ | $-9.93 \cdot 10^{-8}$ | $-2.46 \cdot 10^{-8}$ |
| 0.0214225    | 795151  | 771593   | 771593   | 703672                | 703672                | -322823               |
| 0.0314323    | 80328   | 12406.8  | 12406.8  | $-9.55 \cdot 10^{-8}$ | $-9.55 \cdot 10^{-8}$ | $-2.99 \cdot 10^{-8}$ |
| 0.0226872    | 787830  | 767215   | 767215   | 707515                | 707515                | -319345               |
| 0.0320872    | 76485   | 16785.2  | 16785.2  | $-9.24 \cdot 10^{-8}$ | $-9.24 \cdot 10^{-8}$ | $-3.43 \cdot 10^{-8}$ |
| 0.0320418    | 780578  | 762466   | 762466   | 709820                | 709820                | -314397               |
| 0.0339418    | 74180.2 | 21533.9  | 21533.9  | $-8.97 \cdot 10^{-8}$ | $-8.97 \cdot 10^{-8}$ | $-3.81 \cdot 10^{-8}$ |
| 0.0351064    | 770688  | 754832   | 754832   | 708590                | 708590                | -303278               |
| 0.0331904    | 75409.9 | 29168.2  | 29168.2  | $-8.75 \cdot 10^{-8}$ | $-8.75 \cdot 10^{-8}$ | $-4.13 \cdot 10^{-8}$ |
| 0.0364511    | 752607  | 738994   | 738994   | 699182                | 699182                | -275789               |
| 0.0304311    | 84818   | 45005.9  | 45005.9  | $-8.57 \cdot 10^{-8}$ | $-8.56 \cdot 10^{-8}$ | $-4.41 \cdot 10^{-8}$ |

| r [m]     |         | Valores Propios |          |                       |                       |                       |  |  |  |
|-----------|---------|-----------------|----------|-----------------------|-----------------------|-----------------------|--|--|--|
| 0.0001200 | 870591  | 814312          | 814312   | 658709                | 658709                | -353305               |  |  |  |
| 0.0291388 | 125291  | -30315.4        | -30315.4 | $-1.34 \cdot 10^{-7}$ | $-1.34 \cdot 10^{-7}$ | $1.03 \cdot 10^{-8}$  |  |  |  |
| 0.0303080 | 847635  | 799781          | 799781   | 666287                | 666287                | -338011               |  |  |  |
| 0.0303080 | 117713  | -15869.5        | -15869.5 | $-1.24 \cdot 10^{-7}$ | $-1.24 \cdot 10^{-7}$ | $1.92 \cdot 10^{-9}$  |  |  |  |
| 0.0314779 | 830160  | 788901          | 788901   | 672893                | 672893                | -327062               |  |  |  |
| 0.0314772 | 111107  | -4909.26        | -4909.26 | $-1.16 \cdot 10^{-7}$ | $-1.16 \cdot 10^{-7}$ | $-5.40 \cdot 10^{-9}$ |  |  |  |
| 0.0326463 | 816164  | 780229          | 780229   | 678514                | 678514                | -318679               |  |  |  |
| 0.0520405 | 105486  | 3769.42         | 3769.42  | $-1.10 \cdot 10^{-7}$ | $-1.10 \cdot 10^{-7}$ | $-1.18 \cdot 10^{-8}$ |  |  |  |
| 0.0338155 | 804065  | 772553          | 772553   | 682837                | 682837                | -310903               |  |  |  |
| 0.0338133 | 101163  | 11446.3         | 11446.3  | $-1.05 \cdot 10^{-7}$ | $-1.05 \cdot 10^{-7}$ | $-1.75 \cdot 10^{-8}$ |  |  |  |
| 0.03/08/6 | 791106  | 763468          | 763468   | 684384                | 684384                | -299489               |  |  |  |
| 0.0049040 | 99616.4 | 20531.6         | 20531.6  | $-1.01 \cdot 10^{-7}$ | $-1.01 \cdot 10^{-7}$ | $-2.23 \cdot 10^{-8}$ |  |  |  |
| 0.0361538 | 771703  | 747822          | 747822   | 679183                | 679183                | -274886               |  |  |  |
| 0.0301338 | 104817  | 36177.8         | 36177.8  | $-9.79 \cdot 10^{-8}$ | $-9.78 \cdot 10^{-8}$ | $-2.67 \cdot 10^{-8}$ |  |  |  |
| 0.0373220 | 734882  | 715240          | 715240   | 658564                | 658564                | -217445               |  |  |  |
| 0.0373229 | 125436  | 68760.3         | 68760.3  | $-9.49 \cdot 10^{-8}$ | $-9.49 \cdot 10^{-8}$ | $-3.06 \cdot 10^{-8}$ |  |  |  |

Tabla 54: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-8} \ [\text{C}^2 V N^{-1} m^{-1}] \ y \ \text{P}_o = 1.5 \cdot 10^5 \ [\text{Pa}]$ 

Tabla 55: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-8} \ [\text{C}^2 V N^{-1} m^{-1}] \ y \ \text{P}_o = 5 \cdot 10^4 \ [\text{Pa}]$ 

| <i>r</i> [m] |         |         | Va      | lores Propios         |                       |                       |
|--------------|---------|---------|---------|-----------------------|-----------------------|-----------------------|
| 0.0264608    | 795928  | 775211  | 775211  | 715183                | 715183                | -335112               |
| 0.0204008    | 68816.6 | 8788.42 | 8788.42 | $-9.20 \cdot 10^{-8}$ | $-9.20 \cdot 10^{-8}$ | $-3.47 \cdot 10^{-8}$ |
| 0.0277011    | 788670  | 771065  | 771065  | 719812                | 719812                | -332483               |
| 0.0277911    | 64187.9 | 12934.2 | 12934.2 | $-8.87 \cdot 10^{-8}$ | $-8.87 \cdot 10^{-8}$ | $-3.96 \cdot 10^{-8}$ |
| 0.0201213    | 782960  | 767848  | 767848  | 723681                | 723681                | -330641               |
| 0.0291213    | 60319.5 | 16151.8 | 16151.8 | $-8.61 \cdot 10^{-8}$ | $-8.61 \cdot 10^{-8}$ | $-4.34 \cdot 10^{-8}$ |
| 0.0304515    | 778388  | 765303  | 765303  | 726936                | 726936                | -329324               |
| 0.0304313    | 57063.5 | 18696.5 | 18696.5 | $-8.40 \cdot 10^{-8}$ | $-8.40 \cdot 10^{-8}$ | $-4.71 \cdot 10^{-8}$ |
| 0.0317818    | 774673  | 763258  | 763258  | 729695                | 729695                | -328368               |
| 0.0317818    | 54305.2 | 20741.9 | 20741.9 | $-8.23 \cdot 10^{-8}$ | $-8.22 \cdot 10^{-8}$ | $-4.98 \cdot 10^{-8}$ |
| 0.0331190    | 771615  | 761590  | 761590  | 732045                | 732045                | -327661               |
| 0.0331120    | 51954.7 | 22409.5 | 22409.5 | $-8.08 \cdot 10^{-8}$ | $-8.05 \cdot 10^{-8}$ | $-5.21 \cdot 10^{-8}$ |
| 0.0344493    | 769070  | 760213  | 760213  | 734058                | 734058                | -327128               |
| 0.0344423    | 49941.5 | 23787   | 23787   | $-7.96 \cdot 10^{-8}$ | $-7.95 \cdot 10^{-8}$ | $-5.40 \cdot 10^{-8}$ |
| 0 0357725    | 766927  | 759060  | 759060  | 735789                | 735789                | -326716               |
| 0.0331123    | 48211   | 24940.2 | 24940.2 | $-7.86 \cdot 10^{-8}$ | $-7.86 \cdot 10^{-8}$ | $-5.59 \cdot 10^{-8}$ |

| r [m]     |         |          | Val      | ores Propios          |                       |                       |
|-----------|---------|----------|----------|-----------------------|-----------------------|-----------------------|
| 0.0975997 | 830144  | 793929   | 793929   | 691271                | 691271                | -345421               |
| 0.0275827 | 92729.4 | -9935.11 | -9935.11 | $-1.09 \cdot 10^{-7}$ | $-1.09 \cdot 10^{-7}$ | $-1.30 \cdot 10^{-8}$ |
| 0.0000405 | 816520  | 785713   | 785713   | 697762                | 697762                | -338284               |
| 0.0288423 | 86237.9 | -1714.89 | -1714.89 | $-1.03 \cdot 10^{-7}$ | $-1.03 \cdot 10^{-7}$ | $-2.02 \cdot 10^{-8}$ |
| 0.0201024 | 805919  | 779412   | 779412   | 703286                | 703286                | -333206               |
| 0.0301024 | 80713.7 | 4586.93  | 4586.93  | $-9.85 \cdot 10^{-8}$ | $-9.85 \cdot 10^{-8}$ | $-2.61 \cdot 10^{-8}$ |
| 0.0212699 | 7974546 | 774434   | 774434   | 707984                | 707984                | -329440               |
| 0.0313022 | 76016.1 | 9565.1   | 9565.1   | $-9.47 \cdot 10^{-8}$ | $-9.47 \cdot 10^{-8}$ | $-3.09 \cdot 10^{-8}$ |
| 0.0226221 | 790296  | 770156   | 770156   | 711771                | 711771                | -326067               |
| 0.0320221 | 72229   | 13844.1  | 13844.1  | $-9.16 \cdot 10^{-8}$ | $-9.16 \cdot 10^{-8}$ | $-3.54 \cdot 10^{-8}$ |
| 0.0999910 | 783066  | 765382   | 765382   | 713929                | 713929                | -320994               |
| 0.0556619 | 70071.5 | 18618.2  | 18618.2  | $-8.92 \cdot 10^{-8}$ | $-8.91 \cdot 10^{-8}$ | $-3.89 \cdot 10^{-8}$ |
| 0.0251419 | 772847  | 757386   | 757386   | 712258                | 712258                | -309106               |
| 0.0331418 | 71741.6 | 26613.7  | 26613.7  | $-8.70 \cdot 10^{-8}$ | $-8.69 \cdot 10^{-8}$ | $-4.21 \cdot 10^{-8}$ |
| 0.0364016 | 753582  | 740356   | 740356   | 701646                | 701646                | -279228               |
| 0.0304010 | 82353.8 | 43643.7  | 43643.7  | $-8.53 \cdot 10^{-8}$ | $-8.51 \cdot 10^{-8}$ | $-4.51 \cdot 10^{-8}$ |

Tabla 56: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-8} \ [\text{C}^2 V N^{-1} m^{-1}] \ y \ \text{P}_o = 1 \cdot 10^5 \ [\text{Pa}]$ 

Tabla 57: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-8} \, [\text{C}^2 V N^{-1} m^{-1}] \, y \, \text{P}_o = 1.5 \cdot 10^5 \, [\text{Pa}]$ 

| <i>r</i> [m] |        |          | Val      | lores Propios         |                       |                       |
|--------------|--------|----------|----------|-----------------------|-----------------------|-----------------------|
| 0.0000400    | 869191 | 812051   | 812051   | 654316                | 654316                | -347515               |
| 0.0292485    | 129684 | -28058.8 | -28058.8 | $-1.36 \cdot 10^{-7}$ | $-1.36 \cdot 10^{-7}$ | $1.18 \cdot 10^{-8}$  |
| 0.020/11/    | 845738 | 797158   | 797158   | 661838                | 661838                | -331659               |
| 0.0304114    | 122162 | -13241.6 | -13241.6 | $-1.26 \cdot 10^{-7}$ | $-1.25 \cdot 10^{-7}$ | $3.24 \cdot 10^{-9}$  |
| 0.0215744    | 827830 | 785953   | 785953   | 668377                | 668377                | -320250               |
| 0.0313744    | 115623 | -1995.43 | -1995.43 | $-1.17 \cdot 10^{-7}$ | $-1.17 \cdot 10^{-7}$ | $-4.26 \cdot 10^{-9}$ |
| 0.0227275    | 813584 | 777104   | 777104   | 673978                | 673978                | -311567               |
| 0.0321313    | 110022 | 6891.09  | 6891.09  | $-1.11 \cdot 10^{-7}$ | $-1.11 \cdot 10^{-7}$ | $-1.06 \cdot 10^{-8}$ |
| 0.0220006    | 801275 | 769279   | 769279   | 678293                | 678293                | -303570               |
| 0.0339000    | 105707 | 14719.6  | 14719.6  | $-1.06 \cdot 10^{-7}$ | $-1.06 \cdot 10^{-7}$ | $-1.62 \cdot 10^{-8}$ |
| 0.0250627    | 788243 | 760170   | 760170   | 679926                | 679926                | -292170               |
| 0.0300037    | 104074 | 23829.6  | 23829.6  | $-1.02 \cdot 10^{-7}$ | $-1.02 \cdot 10^{-7}$ | $-2.14 \cdot 10^{-8}$ |
| 0.0262267    | 769134 | 744847   | 744847   | 675115                | 675115                | -268249               |
| 0.0302207    | 108885 | 39152.4  | 39152.4  | $-9.87 \cdot 10^{-8}$ | $-9.87 \cdot 10^{-8}$ | $-2.56 \cdot 10^{-8}$ |
| 0 0272000    | 733505 | 713459   | 713459   | 655676                | 655676                | -213181               |
| 0.0373698    | 128324 | 70540.5  | 70540.5  | $-9.57 \cdot 10^{-8}$ | $-9.57 \cdot 10^{-8}$ | $-2.97 \cdot 10^{-8}$ |

Además considerando el valor del Campo Eléctrico se puede determinar la matriz  $\mathbb{M}'(r)$  y a su vez los valores propios de ella. Considerando 8 valores de r entre a y b se calculan los valores propios para los diferentes valores de  $C_o$  y  $P_o$ , como se expresan en las tablas 58 - 66.

Tabla 58: Valores Propios de la Matriz M' para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-8} [C^2 V N^{-1} m^{-1}] y P_o = 5 \cdot 10^4 [Pa]$ 

| r [m]     |          |          | Valo     | res Propio | S                      |                        |
|-----------|----------|----------|----------|------------|------------------------|------------------------|
| 0.0264670 | -267866  | -267865  | 267865   | 267865     | -732.437               | -732.437               |
| 0.0204079 | 731.935  | -731.935 | 731.437  | 731.437    | $-1.02 \cdot 10^{-10}$ | $2.13 \cdot 10^{-11}$  |
| 0.0277076 | -158717  | -158716  | 158716   | 158716     | -563.911               | -563.911               |
| 0.0211910 | 563.409  | -563.409 | 562.911  | 562.911    | $-2.64 \cdot 10^{-11}$ | $-1.71 \cdot 10^{-12}$ |
| 0.0201274 | -102793  | -102792  | 102792   | 102792     | -453.914               | -453.914               |
| 0.0291274 | 453.411  | -453.411 | 452.914  | 452.914    | $4.89 \cdot 10^{-11}$  | $1.15 \cdot 10^{-11}$  |
| 0.0204572 | -70886.7 | 70885.7  | -70885.7 | 70885.7    | -377.026               | -377.026               |
| 0.0304572 | 376.523  | -376.523 | 376.026  | 376.026    | $6.12 \cdot 10^{-12}$  | $1.40 \cdot 10^{-12}$  |
| 0.0317870 | -51215.5 | -51214.5 | 51214.5  | 51214.5    | -320.546               | -320.546               |
| 0.0317870 | 320.042  | -320.042 | 319.546  | 319.546    | $1.40 \cdot 10^{-11}$  | $-2.30 \cdot 10^{-12}$ |
| 0.0331168 | -38355.2 | -38354.2 | 38354.2  | 38354.2    | -277.463               | -277.463               |
| 0.0551100 | 276.959  | -276.959 | 276.463  | 276.463    | $5.09 \cdot 10^{-12}$  | $-3.18 \cdot 10^{-12}$ |
| 0.0344466 | -29552.7 | -29551.7 | 29551.7  | 29551.7    | -243.613               | -243.613               |
| 0.0344466 | 243.108  | -243.108 | 242.613  | 242.613    | $-1.13 \cdot 10^{-11}$ | $-3.98 \cdot 10^{-13}$ |
| 0.0357764 | -23301.7 | -23300.7 | 23300.7  | 23300.7    | -216.374               | -216.374               |
| 0.0337704 | 215.869  | -215.869 | 215.374  | 215.374    | $5.43 \cdot 10^{-12}$  | $-3.39 \cdot 10^{-12}$ |

Tabla 59: Valores Propios de la Matriz  $\mathbb{M}'$  para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-8} [C^2 V N^{-1} m^{-1}] y P_o = 1 \cdot 10^5 [Pa]$ 

|           |                      |                     | Valor                | res Propios          |                        |                        |
|-----------|----------------------|---------------------|----------------------|----------------------|------------------------|------------------------|
| 0.0278258 | $-4.72 \cdot 10^{6}$ | $4.72 \cdot 10^{6}$ | $4.72 \cdot 10^{6}$  | $-4.72 \cdot 10^{6}$ | -3073.82               | -3073.82               |
| 0.0210200 | 3073.32              | -3073.32            | 3072.82              | 3072.82              | $1.20 \cdot 10^{-9}$   | $5.00 \cdot 10^{-10}$  |
| 0.0200710 | $-1.09 \cdot 10^{6}$ | $1.09 \cdot 10^{6}$ | $-1.09 \cdot 10^{6}$ | $1.09 \cdot 10^{6}$  | -1479.59               | -1479.59               |
| 0.0290710 | 1479.09              | -1479.09            | 1478.59              | 1478.59              | $-5.18 \cdot 10^{-10}$ | $-2.42 \cdot 10^{-10}$ |
| 0.0303162 | -441952              | 441951              | 441951               | -441951              | -940.661               | -940.661               |
| 0.0505102 | 940.159              | -940.159            | 939.661              | 939.661              | $7.68 \cdot 10^{-11}$  | $-6.23 \cdot 10^{-11}$ |
| 0.0215612 | -227562              | 227561              | -227561              | 227561               | -675.127               | -675.127               |
| 0.0313013 | 674.626              | -674.626            | 674.127              | 674.127              | $-7.32 \cdot 10^{-11}$ | $-2.60 \cdot 10^{-11}$ |
| 0.0228065 | -134556              | -134555             | 134555               | 134555               | -519.257               | -519.257               |
| 0.0328003 | 518.755              | -518.755            | 518.257              | 518.257              | $3.95 \cdot 10^{-11}$  | $-3.67 \cdot 10^{-12}$ |
| 0.0340516 | -87060.3             | 87059.3             | 87059.3              | -87059.3             | -417.776               | -417.776               |
| 0.0340310 | 417.273              | -417.273            | 416.776              | 416.776              | $2.33 \cdot 10^{-11}$  | $-2.13 \cdot 10^{-12}$ |
| 0.0252068 | -60021.8             | 60020.8             | 60020.8              | -60020.8             | -346.97                | -346.97                |
| 0.0352908 | 346.467              | -346.467            | 345.97               | 345.97               | $-1.45 \cdot 10^{-11}$ | $-1.94 \cdot 10^{-12}$ |
| 0.0265410 | -43379.6             | 43378.6             | -43378.6             | 43378.6              | -295.046               | -295.046               |
| 0.0303419 | 294.542              | -294.542            | 294.046              | 294.046              | $-9.70 \cdot 10^{-12}$ | $-4.38 \cdot 10^{-12}$ |

| <i>r</i> [m] |                      |                     | Valor                | es Propios          |                        |                        |
|--------------|----------------------|---------------------|----------------------|---------------------|------------------------|------------------------|
| 0.0220522    | $-7.58 \cdot 10^{6}$ | $7.58 \cdot 10^{6}$ | $-7.58 \cdot 10^{6}$ | $7.58 \cdot 10^{6}$ | -3896.29               | -3896.29               |
| 0.0289322    | 3895.79              | -3895.79            | 3895.29              | 3895.29             | $-5.93 \cdot 10^{-10}$ | $-6.73 \cdot 10^{-11}$ |
| 0.0201210    | $-1.43 \cdot 10^9$   | $1.43 \cdot 10^9$   | $-1.43 \cdot 10^9$   | $1.43 \cdot 10^9$   | -53639.2               | -53639.2               |
| 0.0301318    | -53638.7             | 53638.7             | 53638.2              | 53638.2             | $4.07 \cdot 10^{-7}$   | $-3.24 \cdot 10^{-7}$  |
| 0.0212114    | $-4.25 \cdot 10^6$   | $4.25 \cdot 10^{6}$ | $4.25 \cdot 10^6$    | $-4.25 \cdot 10^6$  | -2918.12               | -2918.12               |
| 0.0313114    | 2917.62              | -2917.62            | 2917.12              | 2917.12             | $-9.87 \cdot 10^{-10}$ | $-4.05 \cdot 10^{-10}$ |
| 0.0324010    | -997262              | -997261             | 997261               | 997261              | -1412.78               | -1412.78               |
| 0.0324310    | 1412.28              | -1412.28            | 1411.78              | 1411.78             | $-2.27 \cdot 10^{-10}$ | $-1.18 \cdot 10^{-10}$ |
| 0.0336707    | -406853              | 406852              | 406852               | -406852             | -902.555               | -902.555               |
| 0.0330101    | 902.054              | -902.054            | 901.555              | 901.555             | $-5.77 \cdot 10^{-11}$ | $-4.95 \cdot 10^{-12}$ |
| 0.0348503    | -210989              | -210988             | 210988               | 210988              | -650.097               | -650.097               |
| 0.0340303    | 649.595              | -649.595            | 649.097              | 649.097             | $6.97 \cdot 10^{-11}$  | $1.96 \cdot 10^{-11}$  |
| 0.0360200    | -125409              | -125408             | 125408               | 125408              | -501.316               | -501.316               |
| 0.0300299    | 500.814              | -500.814            | 500.316              | 500.316             | $-4.39 \cdot 10^{-11}$ | $1.37 \cdot 10^{-11}$  |
| 0.0372006    | -81460.1             | 81459.1             | -81459.1             | 81459.1             | -404.131               | -404.131               |
| 0.0372090    | 403.629              | -403.629            | 403.131              | 403.131             | $1.57 \cdot 10^{-11}$  | $-6.84 \cdot 10^{-13}$ |

Tabla 60: Valores Propios de la Matriz  $\mathbb{M}'$  para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-8} \ [\mathrm{C}^2 V N^{-1} m^{-1}] \ y \ \mathrm{P}_o = 1.5 \cdot 10^5 \ [\mathrm{Pa}]$ 

Tabla 61: Valores Propios de la Matriz  $\mathbb{M}'$  para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-8} \, [\text{C}^2 V N^{-1} m^{-1}] \, y \, \text{P}_o = 5 \cdot 10^4 \, [\text{Pa}]$ 

| r [m]     |                      |                      | Valor               | es Propios           |                        |                        |
|-----------|----------------------|----------------------|---------------------|----------------------|------------------------|------------------------|
| 0.0264655 | $-2.40 \cdot 10^{6}$ | $2.40 \cdot 10^{6}$  | $2.40 \cdot 10^{6}$ | $-2.40 \cdot 10^{6}$ | -2192.76               | -2192.76               |
| 0.0204055 | 2192.25              | -2192.25             | 2191.76             | 2191.76              | $3.52 \cdot 10^{-10}$  | $2.70 \cdot 10^{-10}$  |
| 0.0277054 | $-1.42 \cdot 10^6$   | $-1.42 \cdot 10^{6}$ | $1.42 \cdot 10^{6}$ | $1.42 \cdot 10^6$    | -1688.58               | -1688.58               |
| 0.0211954 | 1688.08              | -1688.08             | 1687.58             | 1687.58              | $2.12 \cdot 10^{-10}$  | $1.59 \cdot 10^{-10}$  |
| 0.0201254 | -923216              | 923215               | -923215             | 923215               | -1359.33               | -1359.33               |
| 0.0291204 | 1358.83              | -1358.83             | 1358.33             | 1358.33              | $1.45 \cdot 10^{-10}$  | $4.05 \cdot 10^{-11}$  |
| 0.0304553 | -636873              | -636872              | 636872              | 636872               | -1129.1                | -1129.1                |
| 0.0304333 | 1128.6               | -1128.6              | 1128.1              | 1128.1               | $-6.83 \cdot 10^{-11}$ | $4.80 \cdot 10^{-11}$  |
| 0.0217852 | -460257              | 460256               | -460256             | 460256               | -959.933               | -959.933               |
| 0.0317833 | 959.432              | -959.432             | 958.933             | 958.933              | $-1.00 \cdot 10^{-10}$ | $-2.91 \cdot 10^{-11}$ |
| 0.0331152 | -344752              | -344751              | 344751              | 344751               | -830.863               | -830.863               |
| 0.0551152 | 830.361              | -830.361             | 829.863             | 829.863              | $6.29 \cdot 10^{-11}$  | $1.13 \cdot 10^{-12}$  |
| 0.0244459 | -365673              | 365672               | -365672             | 365672               | -729.433               | -729.433               |
| 0.0344432 | 728.932              | -728.932             | 728.433             | 728.433              | $-8.74 \cdot 10^{-11}$ | $-2.20 \cdot 10^{-11}$ |
| 0.0357751 | -209503              | -209502              | 209502              | 209502               | -647.805               | -647.805               |
| 0.0307731 | 647.303              | -647.303             | 646.805             | 646.805              | $-6.25 \cdot 10^{-11}$ | $-3.34 \cdot 10^{-11}$ |

| r [m]     |                      |                     | Valor                | es Propios           |                        |                        |
|-----------|----------------------|---------------------|----------------------|----------------------|------------------------|------------------------|
| 0.0076696 | $-2.49 \cdot 10^7$   | $-2.49 \cdot 10^7$  | $2.49 \cdot 10^7$    | $2.49 \cdot 10^{7}$  | -7069.47               | -7069.47               |
| 0.0270080 | 7068.97              | -7068.97            | 7068.47              | 7068.47              | $-8.46 \cdot 10^{-9}$  | $1.48 \cdot 10^{-9}$   |
| 0.0000000 | $-7.31 \cdot 10^{6}$ | $7.31 \cdot 10^{6}$ | $7.31 \cdot 10^{6}$  | $-7.31 \cdot 10^{6}$ | -3825.58               | -3825.58               |
| 0.0269255 | 3825.08              | -3825.08            | 3824.58              | 3824.58              | $1.86 \cdot 10^{-9}$   | $4.65 \cdot 10^{-10}$  |
| 0.0201770 | $-3.23 \cdot 10^{6}$ | $-3.23 \cdot 10^6$  | $3.23 \cdot 10^{6}$  | $3.23 \cdot 10^{6}$  | -2544.53               | -2544.53               |
| 0.0301779 | 2544.02              | -2544.02            | 2543.53              | 2543.53              | $4.65 \cdot 10^{-10}$  | $-2.32 \cdot 10^{-10}$ |
| 0.0214225 | $-1.75 \cdot 10^{6}$ | $1.75 \cdot 10^{6}$ | $-1.75 \cdot 10^{6}$ | $1.75 \cdot 10^{6}$  | -1871.06               | -1871.06               |
| 0.0314323 | 1870.56              | -1870.56            | 1870.06              | 1870.06              | $5.49 \cdot 10^{-10}$  | $3.27 \cdot 10^{-10}$  |
| 0.0326872 | $-1.06 \cdot 10^{6}$ | $1.06 \cdot 10^{6}$ | $-1.06 \cdot 10^{6}$ | $1.06 \cdot 10^{6}$  | -1461.11               | -1461.11               |
| 0.0320872 | 1460.61              | -1460.61            | 1460.11              | 1460.11              | $2.54 \cdot 10^{-10}$  | $-6.54 \cdot 10^{-11}$ |
| 0.0220/18 | -704920              | 704919              | -704919              | 704919               | -1187.87               | -1187.87               |
| 0.0339410 | 1187.37              | -1187.37            | 1186.87              | 1186.87              | $-3.20 \cdot 10^{-10}$ | $-8.90 \cdot 10^{-11}$ |
| 0.0351064 | -493558              | -493558             | 493558               | 493558               | -994.036               | -994.036               |
| 0.0551904 | 993.535              | -993.535            | 993.036              | 993.036              | $-5.00 \cdot 10^{-11}$ | $2.63 \cdot 10^{-11}$  |
| 0.0364511 | -360930              | 360929              | -360929              | 360929               | -850.122               | -850.122               |
| 0.0504511 | 849.621              | -849.621            | 849.122              | 849.122              | $-1.42 \cdot 10^{-10}$ | $1.22 \cdot 10^{-11}$  |

Tabla 62: Valores Propios de la Matriz  $\mathbb{M}'$  para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-8} \ [\text{C}^2 V N^{-1} m^{-1}] \ y \ \text{P}_o = 1 \cdot 10^5 \ [\text{Pa}]$ 

Tabla 63: Valores Propios de la Matriz  $\mathbb{M}'$  para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-8} \, [\text{C}^2 V N^{-1} m^{-1}] \, y \, \text{P}_o = 1.5 \cdot 10^5 \, [\text{Pa}]$ 

| <i>r</i> [m] |                      |                      | Valor               | es Propios           |                        |                        |
|--------------|----------------------|----------------------|---------------------|----------------------|------------------------|------------------------|
| 0 0201200    | $-4.02 \cdot 10^7$   | $4.02 \cdot 10^{7}$  | $-4.02 \cdot 10^7$  | $4.02 \cdot 10^{7}$  | -8966.99               | -8966.99               |
| 0.0291300    | 8966.49              | -8966.49             | 8965.99             | 8965.99              | $-6.47 \cdot 10^{-9}$  | $3.75 \cdot 10^{-9}$   |
| 0.0202080    | $-8.52 \cdot 10^8$   | $8.52 \cdot 10^8$    | $-8.52 \cdot 10^8$  | $8.52 \cdot 10^8$    | -41278.8               | -41278.8               |
| 0.0303080    | -41278.3             | 41278.3              | 41277.8             | 41277.8              | $1.90 \cdot 10^{-7}$   | $-6.49 \cdot 10^{-8}$  |
| 0.0314779    | $-7.83 \cdot 10^7$   | $7.83 \cdot 10^7$    | $-7.83 \cdot 10^7$  | $7.83 \cdot 10^7$    | -12516.7               | -12516.7               |
| 0.0314112    | 12516.2              | -12516.2             | 12515.7             | 12515.7              | $2.80 \cdot 10^{-8}$   | $8.72 \cdot 10^{-9}$   |
| 0.0206462    | $-1.27 \cdot 10^7$   | $-1.27 \cdot 10^7$   | $1.27 \cdot 10^{7}$ | $1.27 \cdot 10^{7}$  | -5044.11               | -5044.11               |
| 0.0520405    | 5043.61              | -5043.61             | 5043.11             | 5043.11              | $-2.19 \cdot 10^{-9}$  | $6.05 \cdot 10^{-10}$  |
| 0.0228155    | $-4.62 \cdot 10^{6}$ | $4.62 \cdot 10^{6}$  | $4.62 \cdot 10^{6}$ | $-4.62 \cdot 10^{6}$ | -3041.73               | -3041.73               |
| 0.0336133    | 3041.23              | -3041.23             | 3040.73             | 3040.73              | $-2.77 \cdot 10^{-9}$  | $1.38 \cdot 10^{-10}$  |
| 0.0240846    | $-2.26 \cdot 10^6$   | $2.26 \cdot 10^6$    | $-2.26 \cdot 10^6$  | $2.26 \cdot 10^6$    | -2128.84               | -2128.84               |
| 0.0349840    | 2128.34              | -2128.34             | 2127.84             | 2127.84              | $6.70 \cdot 10^{-10}$  | $5.54 \cdot 10^{-10}$  |
| 0.0261529    | $-1.30 \cdot 10^{6}$ | $-1.30 \cdot 10^{6}$ | $1.30 \cdot 10^{6}$ | $1.30 \cdot 10^{6}$  | -1613.31               | -1613.31               |
| 0.0301338    | 1612.81              | -1612.81             | 1612.31             | 1612.31              | $-1.43 \cdot 10^{-10}$ | $-5.57 \cdot 10^{-10}$ |
| 0.0272220    | -825415              | -825414              | 825414              | 825414               | -1285.35               | -1285.35               |
| 0.0373229    | 1284.84              | -1284.84             | 1284.35             | 1284.35              | $-1.64 \cdot 10^{-10}$ | $2.51 \cdot 10^{-11}$  |

| r [m]     |                      |                      | Valor                | es Propios           |                        |                        |
|-----------|----------------------|----------------------|----------------------|----------------------|------------------------|------------------------|
| 0.0964608 | $-6.63 \cdot 10^{6}$ | $6.63 \cdot 10^{6}$  | $6.63 \cdot 10^{6}$  | $-6.63 \cdot 10^{6}$ | -3642.47               | -3642.47               |
| 0.0204008 | 3641.97              | -3641.97             | 3641.47              | 3641.47              | $1.04 \cdot 10^{-9}$   | $-2.94 \cdot 10^{-10}$ |
| 0.0977011 | $-3.93 \cdot 10^{6}$ | $-3.93 \cdot 10^{6}$ | $3.93 \cdot 10^{6}$  | $3.93 \cdot 10^{6}$  | -2806.84               | -2806.84               |
| 0.0277911 | 2806.34              | -2806.34             | 2805.84              | 2805.84              | $9.51 \cdot 10^{-10}$  | $-3.28 \cdot 10^{-10}$ |
| 0.0201212 | $-2.55 \cdot 10^6$   | $2.55 \cdot 10^{6}$  | $2.55 \cdot 10^{6}$  | $-2.55 \cdot 10^6$   | -2260.55               | -2260.55               |
| 0.0291213 | 2260.05              | -2260.05             | 2259.55              | 2259.55              | $-1.79 \cdot 10^{-10}$ | $-1.79 \cdot 10^{-10}$ |
| 0.0204515 | $-1.76 \cdot 10^{6}$ | $1.76 \cdot 10^{6}$  | $-1.76 \cdot 10^{6}$ | $1.76 \cdot 10^{6}$  | -1878.27               | -1878.27               |
| 0.0304313 | 1877.77              | -1877.77             | 1877.27              | 1877.27              | $3.71 \cdot 10^{-10}$  | $-8.94 \cdot 10^{-11}$ |
| 0.0217010 | $-1.27 \cdot 10^{6}$ | $-1.27 \cdot 10^{6}$ | $1.27 \cdot 10^{6}$  | $1.27 \cdot 10^{6}$  | -1597.22               | -1597.22               |
| 0.0317818 | 1596.72              | -1596.72             | 1596.22              | 1596.22              | $3.39 \cdot 10^{-10}$  | $-1.84 \cdot 10^{-10}$ |
| 0.0221120 | -955228              | 955227               | -955227              | 955227               | -1382.69               | -1382.69               |
| 0.0331120 | 1382.19              | -1382.19             | 1381.69              | 1381.69              | $-3.16 \cdot 10^{-10}$ | $-9.95 \cdot 10^{-11}$ |
| 0.0244492 | -736351              | 736350               | -736350              | 736350               | -1214.05               | -1214.05               |
| 0.0344423 | 1213.55              | -1213.55             | 1213.05              | 1213.05              | $1.87 \cdot 10^{-10}$  | $1.32 \cdot 10^{-10}$  |
| 0.0257725 | -580815              | -580814              | 580814               | 580814               | -1078.29               | -1078.29               |
| 0.0337723 | 1077.79              | -1077.79             | 1077.29              | 1077.29              | $-6.90 \cdot 10^{-11}$ | $-5.44 \cdot 10^{-11}$ |

Tabla 64: Valores Propios de la Matriz M' para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-8} \ [\text{C}^2 V N^{-1} m^{-1}] \ y \ \text{P}_o = 5 \cdot 10^4 \ [\text{Pa}]$ 

Tabla 65: Valores Propios de la Matriz  $\mathbb{M}'$  para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-8} \, [\text{C}^2 V N^{-1} m^{-1}] \, y \, \text{P}_o = 1 \cdot 10^5 \, [\text{Pa}]$ 

| <i>r</i> [m] |                      |                      | Valor                | es Propios           |                        |                        |
|--------------|----------------------|----------------------|----------------------|----------------------|------------------------|------------------------|
| 0.0275827    | $-5.41 \cdot 10^7$   | $-5.41 \cdot 10^7$   | $5.41 \cdot 10^{7}$  | $5.41 \cdot 10^{7}$  | -10403.4               | -10403.4               |
| 0.0275627    | 10402.9              | -10402.9             | 10402.4              | 10402.4              | $-9.60 \cdot 10^{-9}$  | $-4.75 \cdot 10^{-9}$  |
| 0.0288425    | $-1.75 \cdot 10^7$   | $1.75 \cdot 10^7$    | $-1.75 \cdot 10^7$   | $1.75 \cdot 10^7$    | -5915.08               | -5915.08               |
| 0.0200423    | 5914.58              | -5914.58             | 5914.08              | 5914.08              | $6.29 \cdot 10^{-9}$   | $-5.12 \cdot 10^{-9}$  |
| 0.0201024    | $-8.07 \cdot 10^{6}$ | $-8.07 \cdot 10^{6}$ | $8.07 \cdot 10^{6}$  | $8.07 \cdot 10^{6}$  | -4019.37               | -4019.37               |
| 0.0301024    | 4018.87              | -4018.87             | 4018.37              | 4018.37              | $1.13 \cdot 10^{-9}$   | $7.75 \cdot 10^{-10}$  |
| 0.0212622    | $-4.47 \cdot 10^{6}$ | $-4.47 \cdot 10^{6}$ | $4.47 \cdot 10^{6}$  | $4.47 \cdot 10^{6}$  | -2991.42               | -2991.42               |
| 0.0313022    | 2990.92              | -2990.92             | 2990.42              | 2990.42              | $-1.06 \cdot 10^{-9}$  | $-4.95 \cdot 10^{-10}$ |
| 0.0226221    | $-2.77 \cdot 10^{6}$ | $-2.77 \cdot 10^{6}$ | $2.77 \cdot 10^{6}$  | $2.77 \cdot 10^{6}$  | -2354.25               | -2354.25               |
| 0.0320221    | 2353.75              | -2353.75             | 2353.25              | 2353.25              | $1.04 \cdot 10^{-9}$   | $2.84 \cdot 10^{-11}$  |
| 0.0228810    | $-1.85 \cdot 10^{6}$ | $1.85 \cdot 10^{6}$  | $1.85 \cdot 10^{6}$  | $-1.85 \cdot 10^{6}$ | -1924.42               | -1924.42               |
| 0.0338819    | 1923.92              | -1923.92             | 1923.42              | 1923.42              | $5.07 \cdot 10^{-10}$  | $1.14 \cdot 10^{-10}$  |
| 0.0251419    | $-1.30 \cdot 10^{6}$ | $1.30 \cdot 10^{6}$  | $-1.30 \cdot 10^{6}$ | $1.30 \cdot 10^{6}$  | -1616.87               | -1616.87               |
| 0.0331418    | 1616.37              | -1616.37             | 1615.87              | 1615.87              | $-4.19 \cdot 10^{-10}$ | $1.39 \cdot 10^{-11}$  |
| 0.0364016    | -961241              | 961241               | -961241              | 961241               | -1387.04               | -1387.04               |
| 0.0304010    | 1386.53              | -1386.53             | 1386.04              | 1386.04              | $3.48 \cdot 10^{-10}$  | $5.11 \cdot 10^{-11}$  |

| r [m]      |                      |                      | Valor                | es Propios          |                        |                        |
|------------|----------------------|----------------------|----------------------|---------------------|------------------------|------------------------|
| 0.0000.100 | $-8.74 \cdot 10^7$   | $8.74 \cdot 10^7$    | $-8.74 \cdot 10^7$   | $8.74 \cdot 10^7$   | -13223.3               | -13223.3               |
| 0.0292485  | 13222.8              | -13222.8             | 13222.3              | 13222.3             | $1.50 \cdot 10^{-9}$   | $6.62 \cdot 10^{-10}$  |
| 0.020/11/  | $-8.10 \cdot 10^8$   | $-8.10 \cdot 10^8$   | $8.10 \cdot 10^8$    | $8.10 \cdot 10^8$   | -40270.9               | -40270.9               |
| 0.0304114  | -40270.4             | 40270.4              | 40269.9              | 40269.9             | $1.54 \cdot 10^{-7}$   | $1.14 \cdot 10^{-7}$   |
| 0.0215744  | $-3.80 \cdot 10^8$   | $3.80 \cdot 10^8$    | $3.80 \cdot 10^8$    | $-3.80 \cdot 10^8$  | -27590.5               | -27590.5               |
| 0.0313744  | -27590               | 27590                | 27589.5              | 27589.5             | $-6.16 \cdot 10^{-8}$  | $3.37 \cdot 10^{-8}$   |
| 0 0207275  | $-4.44 \cdot 10^7$   | $-4.44 \cdot 10^7$   | $4.44 \cdot 10^{7}$  | $4.44 \cdot 10^{7}$ | -9430.29               | -9430.29               |
| 0.0327373  | 9429.79              | -9429.79             | 9429.29              | 9429.29             | $1.36 \cdot 10^{-8}$   | $-4.75 \cdot 10^{-9}$  |
| 0.0220006  | $-1.48 \cdot 10^7$   | $-1.48 \cdot 10^7$   | $1.48 \cdot 10^{7}$  | $1.48 \cdot 10^{7}$ | -5455.93               | -5455.93               |
| 0.0339000  | 5455.43              | -5455.43             | 5454.93              | 5454.93             | $-1.56 \cdot 10^{-9}$  | $4.85 \cdot 10^{-11}$  |
| 0.0250627  | $-7.01 \cdot 10^{6}$ | $-7.01 \cdot 10^{6}$ | $7.01 \cdot 10^{6}$  | $7.01 \cdot 10^{6}$ | -3745.98               | -3745.98               |
| 0.0550057  | 3745.48              | -3745.48             | 3744.98              | 3744.98             | $1.40 \cdot 10^{-9}$   | $-1.40 \cdot 10^{-9}$  |
| 0.0200007  | $-3.94 \cdot 10^{6}$ | $3.94 \cdot 10^{6}$  | $-3.94 \cdot 10^{6}$ | $3.94 \cdot 10^{6}$ | -2807.31               | -2807.31               |
| 0.0302207  | 2806.81              | -2806.81             | 2806.31              | 2806.31             | $-9.58 \cdot 10^{-10}$ | $-2.49 \cdot 10^{-11}$ |
| 0.0272808  | $-2.46 \cdot 10^{6}$ | $-2.46 \cdot 10^{6}$ | $2.46 \cdot 10^6$    | $2.46 \cdot 10^{6}$ | -2220.22               | -2220.22               |
| 0.0373090  | 2219.72              | -2219.72             | 2219.22              | 2219.22             | $-9.43 \cdot 10^{-11}$ | $8.07 \cdot 10^{-11}$  |

Tabla 66: Valores Propios de la Matriz  $\mathbb{M}'$  para algunos valores de r entre  $a \ge b$  considerando  $C_o = 5 \cdot 10^{-8} [C^2 V N^{-1} m^{-1}] y P_o = 1.5 \cdot 10^5 [Pa]$ 

# 6.6. Deformación de una Esfera Hueca bajo Presión Interna considerando la Segunda Función de Energía Libre

Se considera un cuerpo esférico cuya función de Energía Libre se estudia en un caso incompresible, donde es necesario determinar el Campo Eléctrico  $E_r$ , los radios finales interior y exterior,  $a ext{ y } b$  respectivamente, y el parámetro p que aparece en la modelación de cuerpos incompresibles. Obteniendo estos valores se calculan las matrices  $\mathbb{M} ext{ y } \mathbb{M}'$  con sus respectivos valores propios.

La Segunda Función de Energía Libre para este caso incomprensible es:

$$\Omega = \left(\frac{I_1 - 3}{2}\right)\left(g_0 + g_1 I_4\right) - \log\left[\cosh\left(\frac{\sqrt{I_4}}{m_1}\right)\right]m_0 m_1 - \frac{1}{2}\zeta_o I_4 + \frac{1}{2}\varepsilon_o I_5.$$
(6.75)

#### 6.6.1. Resolución de Problemas

Para calcular el Campo Eléctrico  $E_r$  en función de r se tiene las ecuación 5.146, donde se reemplazan las derivadas de esta función de Energía Libre calculadas en la sección 5.3.4, obteniendo que:

$$E_r(r) = -\frac{C_o r^6}{(r^3 - a^3 + A^3)^{4/3} [((I_1 - 3)g_1 - \frac{m_0}{\sqrt{I_4}} tanh\left(\frac{\sqrt{I_4}}{m_1}\right) - \zeta_o)r^4 + \varepsilon_o (r^3 - a^3 + A^3)^{4/3}]}, \quad (6.76)$$

la cual es una ecuación implícita para obtener  $E_r$ , la que presenta algunos desafíos para poder resolverse, por lo cual se aplica una interpolación entre el radio interno final a, el radio r y el Campo Eléctrico  $E_r$ . Es necesario realizar esta aproximación con interpolación debido a que existe una tangente hiperbólica en la que se incluye el término  $E_r$  que depende de r y no se puede determinar numéricamente.

Para realizar la interpolación se dieron 7 valores diferentes del radio interior a entre 0.03 [m] y 0.06 [m], y para cada uno de estos radios interiores se consideran 6 valores diferentes de un radio r entre a y b, y para cada valor de r se calcula el Campo Eléctrico  $E_r$  de forma numérica de la ecuación 6.76. Luego con todos estos valores se hace una triple interpolación entre a, r y  $E_r$  con la herramienta "fitting" de Mathematica y se obtiene la ecuación 6.77.

$$E_r(r) = H_o + H_1 r + H_2 r^3, ag{6.77}$$

donde los valores de  $H_o$ ,  $H_1$  y  $H_2$  dependen de la constante  $C_o$ , y se presentan en la tabla 67. Los términos fueron testeados obteniendo la mejor aproximación con ellos, y además se intentó de obtener la menor cantidad de términos posibles para así tener un fácil manejo de datos.

Tabla 67: Valores de las Constantes de la ecuación 6.77 para algunos valores de  $C_o$ 

| $C_o \ [{\rm C}^2 V N^{-1} m^{-1}]$ | $H_o$                                             | $H_1$   | $H_2$              |
|-------------------------------------|---------------------------------------------------|---------|--------------------|
| $1 \cdot 10^{-8}$                   | -168.92 - 15905 $a + 9.99 \cdot 10^6 a^3$         | 26348.2 | $-1.05 \cdot 10^7$ |
| $3\cdot 10^{-8}$                    | $-506.78 - 47715.1 \ a + 2.99 \ \cdot 10^7 \ a^3$ | 79044.7 | $-3.15 \cdot 10^7$ |
| $5 \cdot 10^{-8}$                   | $-844.63 - 79525.2 \ a + 4.99 \ \cdot 10^7 \ a^3$ | 131741  | $-5.26 \cdot 10^7$ |

Para calcular el radio interno final a se tiene la ecuación 5.160, donde se reemplazan los valores de las ecuaciones 5.147 y 5.148 en la integral con lo que se obtiene:

$$\int_{a}^{b} \frac{2}{\xi} \left[ 2\Omega_{1} \left( \frac{\xi^{2}}{(\xi^{3} - a^{3} + A^{3})^{2/3}} - \frac{(\xi^{3} - a^{3} + A^{3})^{4/3}}{\xi^{4}} \right) + 2\Omega_{2} \left( \frac{\xi^{4}}{(\xi^{3} - a^{3} + A^{3})^{4/3}} - \frac{(\xi^{3} - a^{3} + A^{3})^{2/3}}{\xi^{2}} \right) - 2\Omega_{5} \frac{(\xi^{3} - a^{3} + A^{3})^{8/3}}{\xi^{8}} E_{r}^{2} \right] d\xi - P_{o} + \varepsilon_{o}^{-1} \frac{C_{o}^{2}}{2a^{4}} = \varepsilon_{o}^{-1} \frac{C_{o}^{2}}{2b^{4}}, \quad (6.78)$$

se reemplazan los valores de las derivadas de la función de Energía Libre calculadas en la sección 5.3.4, obteniendo que:

$$2\int_{a}^{b} \left[ g_{0} \frac{2\xi^{3}(A^{3}-a^{3})+(A^{3}-a^{3})^{2}}{\xi^{5}(\xi^{3}-a^{3}+A^{3})^{2/3}} + g_{1} \frac{(\xi^{3}-a^{3}+A^{3})^{2/3}(2\xi^{3}(A^{3}-a^{3})+(A^{3}-a^{3})^{2})}{\xi^{9}} E_{r}^{2} \right] \\ -\varepsilon_{o} \frac{(\xi^{3}-a^{3}+A^{3})^{8/3}}{\xi^{9}} E_{r}^{2} \right] d\xi - P_{o} + \varepsilon_{o}^{-1} \frac{C_{o}^{2}}{2a^{4}} = \varepsilon_{o}^{-1} \frac{C_{o}^{2}}{2b^{4}},$$
(6.79)

se reemplaza el valor del Campo Eléctrico  $E_r(\xi)$  de la ecuación 6.77, obteniéndose:

$$2\int_{a}^{b}g_{0}\frac{2\xi^{3}(A^{3}-a^{3})+(A^{3}-a^{3})^{2}}{\xi^{5}(\xi^{3}-a^{3}+A^{3})^{2/3}}d\xi+2\int_{a}^{b}\left[g_{1}\frac{(\xi^{3}-a^{3}+A^{3})^{2/3}(2\xi^{3}(A^{3}-a^{3})+(A^{3}-a^{3})^{2})}{\xi^{9}}-\varepsilon_{o}\frac{(\xi^{3}-a^{3}+A^{3})^{8/3}}{\xi^{9}}\right](H_{o}+H_{1}r+H_{2}r^{3})^{2}d\xi-P_{o}+\varepsilon_{o}^{-1}\frac{C_{o}^{2}}{2a^{4}}=\varepsilon_{o}^{-1}\frac{C_{o}^{2}}{2b^{4}},$$
(6.80)

donde los términos de la integral presentan algunos desafíos para poder resolverse, por lo cual éste se define como:

$$T(\xi) = 2 \frac{g_1(\xi^3 - a^3 + A^3)^{2/3}(2\xi^3(A^3 - a^3) + (A^3 - a^3)^2) - \varepsilon_o(\xi^3 - a^3 + A^3)^{8/3}}{\xi^9} (H_o + H_1r + H_2r^3)^2 + 2g_0 \frac{2\xi^3(A^3 - a^3) + (A^3 - a^3)^2}{\xi^5(\xi^3 - a^3 + A^3)^{2/3}},$$
(6.81)

con lo que tenemos:

$$\int_{a}^{b} T(\xi)d\xi - P_{o} + \varepsilon_{o}^{-1}\frac{C_{o}^{2}}{2a^{4}} = \varepsilon_{o}^{-1}\frac{C_{o}^{2}}{2b^{4}}.$$
(6.82)

Se asumen varias series de Taylor de este término donde se observa que para una orden mayor a 4 los radios finales presentan una variación demasiado baja, es por eso que se aproxima este término como una Serie de Taylor de orden 4, la cual se expresa como:

$$T(\xi) = K_o + K_1(\xi - a) + K_2(\xi - a)^2 + K_3(\xi - a)^3 + K_4(\xi - a)^4,$$
(6.83)

donde:

$$K_{o} = 2\left(\frac{a}{A^{2}} - \frac{A^{4}}{a^{5}}\right)\left(g_{0} + g_{1}\frac{A^{4}(H_{o}^{2} + 2aH_{o}H_{1} + a^{2}H_{1}^{2} + 2a^{3}H_{o}H_{2} + 2a^{4}H_{1}H_{2} + a^{6}H_{2}^{2})}{a^{4}}\right) - 2\frac{\varepsilon_{o}A^{8}(H_{o}^{2} + 2aH_{o}H_{1} + a^{2}H_{1}^{2} + 2a^{3}H_{o}H_{2} + 2a^{4}H_{1}H_{2} + a^{6}H_{2}^{2})}{a^{9}},$$

$$(6.84)$$

$$\begin{split} K_{1} &= 2 \left[ \left( \frac{a}{A^{2}} - \frac{A^{4}}{a^{5}} \right) g_{1} \left( \frac{A^{4} (2H_{o}H_{1} + 2aH_{1}^{2} + 6a^{2}H_{o}H_{2} + 8a^{3}H_{1}H_{2} + 6a^{5}H_{2}^{2})}{a^{4}} \right. \\ &+ 4 \left( \frac{A}{a^{2}} - \frac{A^{4}}{a^{5}} \right) (H_{o}^{2} + 2aH_{o}H_{1} + a^{2}H_{1}^{2} + 2a^{3}H_{o}H_{2} + 2a^{4}H_{1}H_{2} + a^{6}H_{2}^{2}) \right) \\ &+ \left( g_{0} + g_{1} \frac{A^{4} (H_{o}^{2} + 2aH_{o}H_{1} + a^{2}H_{1}^{2} + 2a^{3}H_{o}H_{2} + 2a^{4}H_{1}H_{2} + a^{6}H_{2}^{2}) \right) \\ &\left( 5\frac{A^{4}}{a^{6}} - 4\frac{A}{a^{3}} + \frac{A^{3} - 2a^{3}}{A^{5}} \right) - \left( \frac{A^{8} (2H_{o}H_{1} + 2aH_{1}^{2} + 6a^{2}H_{o}H_{2} + 8a^{3}H_{1}H_{2} + 6a^{5}H_{2}^{2})}{a^{9}} \right. \\ &+ \left( 8\frac{A^{5}}{a^{7}} - 9\frac{A^{8}}{a^{10}} \right) (H_{o}^{2} + 2aH_{o}H_{1} + a^{2}H_{1}^{2} + 2a^{3}H_{o}H_{2} + 2a^{4}H_{1}H_{2} + a^{6}H_{2}^{2}) \right) \varepsilon_{o} \bigg], \quad (6.85) \end{split}$$

$$\begin{split} K_{2} &= 2 \left[ \left( 5 \frac{A^{4}}{a^{6}} - 4 \frac{A}{a^{3}} + \frac{A^{3} - 2a^{3}}{A^{5}} \right) g_{1} \left( \frac{A^{4} (2H_{o}H_{1} + 2aH_{1}^{2} + 6a^{2}H_{o}H_{2} + 8a^{3}H_{1}H_{2} + 6a^{5}H_{2}^{2})}{a^{4}} \right) \\ &+ 4 \left( \frac{A}{a^{2}} - \frac{A^{4}}{a^{5}} \right) (H_{o}^{2} + 2aH_{o}H_{1} + a^{2}H_{1}^{2} + 2a^{3}H_{o}H_{2} + 2a^{4}H_{1}H_{2} + a^{6}H_{2}^{2}) \right) \\ &+ \left( \frac{a}{A^{2}} - \frac{A^{4}}{a^{5}} \right) g_{1} \left( \frac{A^{4}(H_{1}^{2} + 6aH_{o}H_{2} + 12a^{2}H_{1}H_{2} + 15a^{4}H_{2}^{2})}{a^{4}} + 4 \left( \frac{A}{a^{2}} - \frac{A^{4}}{a^{5}} \right) \right) \\ &(2H_{o}H_{1} + 2aH_{1}^{2} + 6a^{2}H_{o}H_{2} + 8a^{3}H_{1}H_{2} + 6a^{5}H_{2}^{2}) + \left( 10\frac{A^{4}}{a^{6}} - 16\frac{A}{a^{3}} + \frac{4A^{3} + 2a^{3}}{a^{3}A^{2}} \right) \\ &(H_{o}^{2} + 2aH_{o}H_{1} + a^{2}H_{1}^{2} + 2a^{3}H_{o}H_{2} + 2a^{4}H_{1}H_{2} + a^{6}H_{2}^{2}) \right) + \left( \frac{16a^{3}A^{3} - 2a^{6} - 15A^{6}}{a^{7}A^{2}} \right) \\ &- \frac{4a^{2}A^{3} - 5a^{5}}{A^{8}} \right) \left( g_{0} + g_{1}\frac{A^{4}(H_{o}^{2} + 2aH_{o}H_{1} + a^{2}H_{1}^{2} + 2a^{3}H_{o}H_{2} + 2a^{3}H_{o}H_{2} + 2a^{3}H_{o}H_{2} + 2a^{3}H_{o}H_{2} + 8a^{3}H_{1}H_{2} + 6a^{5}H_{2}^{2}) \\ &- \left( \left( \left( 8\frac{A^{5}}{a^{7}} - 9\frac{A^{8}}{a^{10}} \right) (2H_{o}H_{1} + 2aH_{1}^{2} + 6a^{2}H_{o}H_{2} + 8a^{3}H_{1}H_{2} + 6a^{5}H_{2}^{2}) \right) \\ &+ \frac{A^{8}(H_{1}^{2} + 6aH_{o}H_{2} + 12a^{2}H_{1}H_{2} + 15a^{4}H_{2}^{2})}{a^{9}} + \left( 45\frac{A^{8}}{a^{11}} - 72\frac{A^{5}}{a^{8}} + \frac{20a^{3}A^{2} + 8A^{5}}{a^{8}} \right) \\ &(H_{o}^{2} + 2aH_{o}H_{1} + a^{2}H_{1}^{2} + 2a^{3}H_{o}H_{2} + 2a^{4}H_{1}H_{2} + a^{6}H_{2}^{2}) \right) \varepsilon_{o} \right],$$

$$(6.86)$$

$$\begin{split} K_{3} &= \frac{2}{3a^{12}A^{12}} \Big[ g_{0} \Big( -40a^{19}A - 4a^{13}A^{7} + 18a^{10}A^{10} - 124a^{7}A^{13} + 105a^{4}A^{16} + 45a^{16}A^{4} \big) \\ &+ g_{1} \Big( H_{o}^{2} \Big( 3a^{12}A^{8} - 20a^{9}A^{11} + 390a^{6}A^{14} - 872a^{3}A^{17} + 495A^{20} + 4a^{15}A^{5} \big) \\ &+ H_{o}H_{1} \Big( 64a^{10}A^{11} + 696a^{7}A^{14} - 1360a^{4}A^{17} + 720aA^{20} + 8a^{16}A^{5} \big) \\ &+ H_{0}H_{2} \Big( -3a^{14}A^{8} - 38a^{11}A^{11} + 297a^{8}A^{14} - 512a^{5}A^{17} + 252a^{2}A^{20} + 4a^{17}A^{5} \big) \\ &+ H_{o}H_{2} \Big( -12a^{15}A^{8} - 76a^{12}A^{11} + 480a^{9}A^{14} - 736a^{6}A^{17} + 336a^{3}a^{20} + 8a^{18}A^{5} \big) \\ &+ H_{1}H_{2} \Big( -18a^{16}A^{8} - 64a^{13}A^{11} + 360a^{10}A^{14} - 496a^{7}A^{17} + 210a^{4}A^{20} + 8a^{19}A^{5} \big) \\ &+ H_{2}^{2} \Big( -15a^{18}A^{8} - 2a^{15}A^{11} + 63a^{12}A^{14} - 80a^{9}A^{17} + 30a^{6}A^{20} + 4a^{21}A^{5} \big) \Big] \\ &- 2 \left( \left( \frac{8\frac{A^{5}}{a^{7}} - 9\frac{A^{8}}{a^{10}} \right) \Big( H_{1}^{2} + 6aH_{o}H_{2} + 12a^{2}H_{1}H_{2} + 15a^{4}H_{2}^{2} \big) \right) \\ &+ \frac{A^{8}(2H_{o}H_{2} + 8aH_{1}H_{2} + 20a^{3}H_{2}^{2} \Big)}{a^{9}} + \left( 45\frac{A^{8}}{a^{11}} - 72\frac{A^{5}}{a^{8}} + \frac{20a^{3}A^{2} + 8A^{5}}{a^{8}} \right) \\ &(2H_{o}H_{1} + 2aH_{1}^{2} + 6a^{2}H_{o}H_{2} + 8a^{3}H_{1}H_{2} + 6a^{5}H_{2}^{2} \big) \\ &+ \left( -165\frac{A^{8}}{a^{12}} + 360\frac{A^{5}}{a^{9}} + \frac{120a^{3}A^{3} + 40a^{6} + 8A^{6}}{3a^{8}A} - 9\frac{20a^{3}A^{2} + 8A^{5}}{a^{9}} \right) \right) \\ &(H_{o}^{2} + 2aH_{o}H_{1} + a^{2}H_{1}^{2} + 2a^{3}H_{o}H_{2} + 2a^{4}H_{1}H_{2} + a^{6}H_{2}^{2} \Big) \right) \varepsilon_{o}, \end{split}$$

$$\begin{split} K_4 &= -\frac{2}{3a^{13}A^{15}} [g_0(160a^{19}A^4 - 110a^{22}A - 50a^{16}A^7 + 10a^{13}A^{10} + 40a^{10}A^{13} - 260a^7A^{16} + 210a^4A^{19}) \\ &+ g_1(H_o^2(-5a^{12}A^{11} - 210a^9A^{14} + 1675a^6A^{17} - 2952a^3A^{20} + 1485A^{23} + 7a^{18}A^5) \\ &+ H_oH_1(-8a^{16}A^8 - 16a^{13}A^{11} - 380a^{10}A^{14} + 2570a^7A^{17} - 4160a^4A^{20} + 1980aA^{23} + 14a^{19}A^5) \\ &+ H_1^2(-8a^{17}A^8 - 8a^{14}A^{11} - 158a^{11}A^{14} + 937a^8A^{17} - 1400a^5A^{20} + 630a^2A^{23} + 7a^{20}A^5) \\ &+ H_oH_2(-24a^{18}A^8 - 10a^{15}A^{11} - 240a^{12}A^{14} + 1280a^9A^{17} - 1776a^6a^{20} + 756a^3A^{23} + 14a^{21}A^5) \\ &+ H_1H_2(-32a^{19}A^8 + 2a^{16}A^{11} - 164a^{13}A^{14} + 800a^{10}A^{17} - 1040a^7A^{20} + 420a^4A^{23} + 14a^{22}A^5) \\ &+ H_2^2(-24a^{21}A^8 + 22a^{18}A^{11} - 30a^{15}A^{14} + 100a^{12}A^{17} - 120a^9A^{20} + 45a^6A^{23} + 7a^{24}A^5))] \\ &- \frac{2}{3a^{13}A^6}[H_o^2(-10a^{12}A^2 + 1720a^6A^8 - 2952a^3A^{11} + 1485A^{14} - 240a^9A^5) \\ &+ H_oH_1(-20a^{13}A^2 + 2600a^7A^8 - 4160a^4A^{11} + 1980aA^{14} - 400a^{10}A^5) \\ &+ H_oH_2(-20a^{15}A^2 + 1280a^9A^8 - 1776a^6A^{11} + 756a^3A^{14} - 240a^{12}A^5) \\ &+ H_0H_2(-20a^{16}A^2 + 800a^{10}A^8 - 1040a^7A^{11} + 420a^4A^{14} - 160a^{13}A^5) \\ &+ H_2^2(-10a^{18}A^2 + 100a^{12}A^8 - 120a^9A^{11} + 45a^6A^{14})]\varepsilon_o, \end{split}$$

resolviendo la integral se obtiene:

$$K_{o}[(a^{3} - A^{3} + B^{3})^{1/3} - a] + \frac{1}{2}K_{1}[(a^{3} - A^{3} + B^{3})^{1/3} - a]^{2} + \frac{1}{3}K_{2}[(a^{3} - A^{3} + B^{3})^{1/3} - a]^{3} + \frac{1}{4}K_{3}[(a^{3} - A^{3} + B^{3})^{1/3} - a]^{4} + \frac{1}{5}K_{4}[(a^{3} - A^{3} + B^{3})^{1/3} - a]^{5} - P_{o} + \varepsilon_{o}^{-1}\frac{C_{o}^{2}}{2a^{4}} = \varepsilon_{o}^{-1}\frac{C_{o}^{2}}{2b^{4}}.$$
 (6.89)

Introduciendo esta ecuación en el software Mathematica y asumiendo que:

$$A = 0.025 \text{ [m]}, B = 0.035 \text{ [m]},$$

y se obtienen de forma numérica los radios finales del cuerpo esférico, para lo cual se asumen tres valores diferentes para las constantes  $C_o$  y  $P_o$  como se muestra en la tabla 68.

| $C_o \ [{\rm C}^2 V N^{-1} m^{-1}]$ | $P_o$ [Pa]         | $a  [\mathrm{m}]$ | <i>b</i> [m] |
|-------------------------------------|--------------------|-------------------|--------------|
| $1 \cdot 10^{-8}$                   | $5.0 \cdot 10^4$   | 0.0263289         | 0.0357006    |
| $1 \cdot 10^{-8}$                   | $1.0 \cdot 10^{5}$ | 0.0282219         | 0.0367734    |
| $1 \cdot 10^{-8}$                   | $1.5 \cdot 10^{5}$ | 0.0311632         | 0.0386004    |
| $3 \cdot 10^{-8}$                   | $5.0 \cdot 10^{4}$ | 0.0263268         | 0.0356994    |
| $3 \cdot 10^{-8}$                   | $1.0 \cdot 10^{5}$ | 0.0282197         | 0.0367721    |
| $3 \cdot 10^{-8}$                   | $1.5 \cdot 10^{5}$ | 0.0311611         | 0.0385990    |
| $5 \cdot 10^{-8}$                   | $5.0 \cdot 10^{4}$ | 0.0263227         | 0.0356972    |
| $5 \cdot 10^{-8}$                   | $1.0 \cdot 10^{5}$ | 0.0282155         | 0.0367696    |
| $5 \cdot 10^{-8}$                   | $1.5 \cdot 10^5$   | 0.0311568         | 0.0385962    |
|                                     |                    |                   |              |

Tabla 68: Radios Finales del Cuerpo Esférico para algunos valores de  $C_o$  y  $P_o$ 

Para calcular p en función de r se tiene la ecuación 5.162, donde se reemplazan los valores de las ecuaciones 5.147 y 5.148 en la integral con lo que se obtiene:

$$p(r) = 2\Omega_1 \frac{(\xi^3 - a^3 + A^3)^{4/3}}{r^4} + 4\Omega_2 \frac{(\xi^3 - a^3 + A^3)^{2/3}}{r^2} + 2\Omega_5 \frac{(\xi^3 - a^3 + A^3)^{8/3}}{r^8} E_r^2 - \int_a^r \frac{2}{\xi} \left[ 2\Omega_1 \left( \frac{\xi^2}{(\xi^3 - a^3 + A^3)^{2/3}} - \frac{(\xi^3 - a^3 + A^3)^{4/3}}{\xi^4} \right) + 2\Omega_2 \left( \frac{\xi^4}{(\xi^3 - a^3 + A^3)^{4/3}} - \frac{(\xi^3 - a^3 + A^3)^{2/3}}{\xi^2} \right) - 2\Omega_5 \frac{(\xi^3 - a^3 + A^3)^{8/3}}{\xi^8} E_r^2 \right] d\xi + P_o - \varepsilon_o^{-1} \frac{C_o^2}{2a^4},$$
(6.90)

se reemplazan los valores de las derivadas de la función de Energía Libre calculadas en la sección 5.3.4 y el Campo Eléctrico  $E_r(\xi)$  de la ecuación 6.77 obteniéndose:

$$p(r) = \left(g_0 + g_1 \frac{(r^3 - a^3 + A^3)^{4/3}}{r^4} (H_o + H_1 r + H_2 r^3)^2\right) \frac{(\xi^3 - a^3 + A^3)^{4/3}}{r^4} + \varepsilon_o \frac{(\xi^3 - a^3 + A^3)^{8/3}}{r^8} (H_o + H_1 r + H_2 r^3)^2 - 2 \int_a^r g_0 \frac{2\xi^3 (A^3 - a^3) + (A^3 - a^3)^2}{\xi^5 (\xi^3 - a^3 + A^3)^{2/3}} d\xi - 2 \int_a^r \frac{g_1 (\xi^3 - a^3 + A^3)^{2/3} (2\xi^3 (A^3 - a^3) + (A^3 - a^3)^2) - \varepsilon_o (\xi^3 - a^3 + A^3)^{8/3}}{\xi^9} (H_o + H_1 r + H_2 r^3)^2 d\xi + P_o - \varepsilon_o^{-1} \frac{C_o^2}{2a^4},$$
(6.91)

donde la integral presenta algunos desafíos para poder resolverse y definimos sus términos al igual que la ecuación 6.81, con lo que tenemos:

$$p(r) = \left(g_0 + g_1 \frac{(r^3 - a^3 + A^3)^{4/3}}{r^4} (H_o + H_1 r + H_2 r^3)^2\right) \frac{(\xi^3 - a^3 + A^3)^{4/3}}{r^4} + \varepsilon_o \frac{(\xi^3 - a^3 + A^3)^{8/3}}{r^8} (H_o + H_1 r + H_2 r^3)^2 - \int_a^r T(\xi) d\xi + P_o - \varepsilon_o^{-1} \frac{C_o^2}{2a^4}, \quad (6.92)$$

asumiendo la misma Serie de Taylor de la ecuación 6.83 se resuelve la integral y se obtiene finalmente que:

$$p(r) = \left(g_0 + g_1 \frac{(r^3 - a^3 + A^3)^{4/3}}{r^4} (H_o + H_1 r + H_2 r^3)^2\right) \frac{(\xi^3 - a^3 + A^3)^{4/3}}{r^4} + \varepsilon_o \frac{(\xi^3 - a^3 + A^3)^{8/3}}{r^8} (H_o + H_1 r + H_2 r^3)^2 - K_o(r - a) - \frac{1}{2} K_1 (r - a)^2 - \frac{1}{3} K_2 (r - a)^3 - \frac{1}{4} K_3 (r - a)^4 - \frac{1}{5} K_4 (r - a)^5 + P_o - \varepsilon_o^{-1} \frac{C_o^2}{2a^4}.$$
(6.93)

Las expresiones de los componentes de la matriz  $\mathbb{M}$  se pueden definir con los componentes de  $\mathbb{A}_{i\alpha j\beta}$ ,  $\mathbb{B}_{i\alpha\beta}$  y  $\mathbb{C}_{\alpha\beta}$  para este problema. Considerando solo los valores no nulos, estas componentes se expresan como:

$$\mathbb{A}_{i\alpha j\beta} = \frac{\partial \Omega}{\partial I_1} \frac{\partial^2 I_1}{\partial F_{i\alpha} \partial F_{j\beta}} + \frac{\partial \Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial F_{i\alpha} \partial F_{j\beta}} - p[F_{\alpha i}^{-1} F_{\beta j}^{-1} - F_{\alpha j}^{-1} F_{i\beta}^{-1}], \tag{6.94}$$

$$\mathbb{B}_{i\alpha\beta} = \frac{\partial^2 \Omega}{\partial I_1 \partial I_4} \frac{\partial I_1}{\partial F_{i\alpha}} \frac{\partial I_4}{\partial E_{l_\beta}} + \frac{\partial \Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial F_{i\alpha} \partial E_{l_\beta}},\tag{6.95}$$

$$\mathbb{C}_{\alpha\beta} = \frac{\partial^2 \Omega}{\partial I_4^2} \frac{\partial I_4}{\partial E_{l_\alpha}} \frac{\partial I_4}{\partial E_{l_\beta}} + \frac{\partial \Omega}{\partial I_4} \frac{\partial^2 I_4}{\partial E_{l_\alpha} \partial E_{l_\beta}} + \frac{\partial \Omega}{\partial I_5} \frac{\partial^2 I_5}{\partial E_{l_\alpha} \partial E_{l_\beta}}.$$
(6.96)

Reemplazando las derivadas calculadas en las secciones  $5.2 ext{ y} 5.3.4 ext{ se obtiene:}$ 

$$\mathbb{A}_{i\alpha j\beta} = \left(g_0 + g_1 \frac{R^4}{r^4} E_r^2\right) \delta_{ij} \delta_{\alpha\beta} + \varepsilon_o E_{l_\alpha} \delta_{ij} E_{l_\beta} - p[F_{\alpha i}^{-1} F_{\beta j}^{-1} - F_{\alpha j}^{-1} F_{i\beta}^{-1}], \tag{6.97}$$

$$\mathbb{B}_{i\alpha\beta} = 2g_1 F_{i\alpha} E_{l_\beta} + \varepsilon_o (\delta_{\alpha\beta} F_{i\gamma} E_{l_\gamma} + E_{l_\alpha} F_{i\beta}), \tag{6.98}$$

$$\mathbb{C}_{\alpha\beta} = \left[\frac{m_0 r^4}{m_1 R^4 E_r^2} \operatorname{sech}^2\left(\frac{R^2 E_r}{m_1 r^2}\right) + \frac{m_0 r^6}{R^6 E_r^3} tanh\left(\frac{R^2 E_r}{m_1 r^2}\right)\right] E_{l_\alpha} E_{l_\beta} \\
+ \left[\left(\frac{R^4}{r^4} + 2\frac{r^2}{R^2} - 3\right) g_1 - \frac{m_0 r^2}{R^2 E_r} tanh\left(\frac{R^2 E_r}{m_1 r^2}\right) - \zeta_o\right] \delta_{\alpha\beta} + \varepsilon_o c_{\alpha\beta}.$$
(6.99)

## 6.6.2. Resultados

Introduciendo las matrices en el software Mathematica y reemplazando los valores de las variables se obtiene finalmente la matriz  $\mathbb{M}(r)$  (que ahora depende de la posición radial r) y a su vez los valores propios de ella. Considerando 8 valores de r entre a y b se calculan los valores propios para los diferentes valores de  $C_o$  y  $P_o$ , como se expresan en las tablas 69 - 77.

Tabla 69: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-8} [C^2 V N^{-1} m^{-1}] y P_o = 5 \cdot 10^4 [Pa]$ 

| <i>r</i> [m] |         |         | Va      | lores Propios         |                       |                      |
|--------------|---------|---------|---------|-----------------------|-----------------------|----------------------|
| 0.0969990    | 799462  | 780234  | 780234  | 724365                | 724365                | -347827              |
| 0.0205289    | 59634.9 | 3765.7  | 3765.7  | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0276677    | 792808  | 776471  | 776471  | 728793                | 728793                | -345601              |
| 0.0210011    | 55207.2 | 7528.88 | 7528.88 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0200065    | 787558  | 773540  | 773540  | 732479                | 732479                | -344037              |
| 0.0290003    | 51520.9 | 10459.8 | 10459.8 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0202452    | 783321  | 771190  | 771190  | 735548                | 735548                | -342870              |
| 0.0303433    | 48451.6 | 12809.9 | 12809.9 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0316841    | 779757  | 769183  | 769183  | 738037                | 738037                | -341794              |
| 0.0310041    | 45963.3 | 14817.2 | 14817.2 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0330330    | 776485  | 767214  | 767214  | 739848                | 739848                | -340332              |
| 0.0330230    | 44152.2 | 16786.4 | 16786.4 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.50 \cdot 10^{-7}$ |
| 0.03/3618    | 772995  | 764833  | 764833  | 740697                | 740697                | -337692              |
| 0.0343018    | 43302.9 | 19166.9 | 19166.9 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0357006    | 768568  | 761369  | 761369  | 740048                | 740048                | -332615              |
| 0.0337000    | 43952.3 | 22631.1 | 22631.1 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |

|                   | 1       |         |         |                       |                       |                      |
|-------------------|---------|---------|---------|-----------------------|-----------------------|----------------------|
| $r  [\mathrm{m}]$ |         |         | Va      | lores Propios         |                       |                      |
| 0.0000010         | 819269  | 777367  | 777367  | 659878                | 659878                | -303147              |
| 0.0282219         | 124122  | 6633.42 | 6633.42 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.48 \cdot 10^{-7}$ |
| 0.0204425         | 802701  | 767074  | 767074  | 666375                | 666375                | -293075              |
| 0.0294433         | 117625  | 16926.1 | 16926.1 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.48 \cdot 10^{-7}$ |
| 0.0206651         | 789897  | 759230  | 759230  | 671957                | 671957                | -285854              |
| 0.0300031         | 112043  | 24769.8 | 24769.8 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0210060         | 779724  | 753062  | 753062  | 676744                | 676744                | -280468              |
| 0.0310000         | 107256  | 30937.6 | 30937.6 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0221024         | 771283  | 747921  | 747921  | 680714                | 680714                | -275997              |
| 0.0331084         | 103286  | 36078.9 | 36078.9 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.02/2201         | 763661  | 743080  | 743080  | 683615                | 683615                | -271277              |
| 0.0343301         | 100385  | 40920   | 40920   | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0255517         | 755734  | 737561  | 737561  | 684860                | 684860                | -264594              |
| 0.0555517         | 99139.8 | 46438.6 | 46438.6 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0 0367734         | 745984  | 729976  | 729976  | 683400                | 683400                | -253383              |
| 0.0307734         | 100600  | 54024.3 | 54024.3 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |

Tabla 70: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-8} \ [\text{C}^2 V N^{-1} m^{-1}] \ y \ \text{P}_o = 1 \cdot 10^5 \ [\text{Pa}]$ 

Tabla 71: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-8} \, [\text{C}^2 V N^{-1} m^{-1}] \, y \, \text{P}_o = 1.5 \cdot 10^5 \, [\text{Pa}]$ 

| <i>r</i> [m] |         |         | Val     | lores Propios         |                       |                      |
|--------------|---------|---------|---------|-----------------------|-----------------------|----------------------|
| 0.0211622    | 851222  | 781357  | 781357  | 593021                | 593021                | -268243              |
| 0.0311032    | 190979  | 2642.91 | 2642.91 | $-1.55 \cdot 10^{-7}$ | $-1.55 \cdot 10^{-7}$ | $1.44 \cdot 10^{-7}$ |
| 0.0200057    | 819322  | 760181  | 760181  | 599128                | 599128                | -242450              |
| 0.0322237    | 184872  | 23819.3 | 23819.3 | $-1.54 \cdot 10^{-7}$ | $-1.54 \cdot 10^{-7}$ | $1.46 \cdot 10^{-7}$ |
| 0.0222881    | 795089  | 744214  | 744214  | 604432                | 604432                | -223521              |
| 0.0332881    | 179568  | 39785.9 | 39785.9 | $-1.53 \cdot 10^{-7}$ | $-1.53 \cdot 10^{-7}$ | $1.46 \cdot 10^{-7}$ |
| 0.0242506    | 776045  | 731736  | 731736  | 609034                | 609034                | -209078              |
| 0.03433000   | 174966  | 52264   | 52264   | $-1.52 \cdot 10^{-7}$ | $-1.52 \cdot 10^{-7}$ | $1.47 \cdot 10^{-7}$ |
| 0.025/120    | 760264  | 721334  | 721334  | 612776                | 612776                | -197040              |
| 0.0334130    | 171224  | 62665.5 | 62665.5 | $-1.52 \cdot 10^{-7}$ | $-1.52 \cdot 10^{-7}$ | $1.48 \cdot 10^{-7}$ |
| 0.0364755    | 745800  | 711456  | 711456  | 615090                | 615090                | -184890              |
| 0.0304755    | 168910  | 72544.3 | 72544.3 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.48 \cdot 10^{-7}$ |
| 0.0375370    | 730261  | 700043  | 700043  | 614789                | 614789                | 169211               |
| 0.0375379    | -169049 | 83957.1 | 83957.1 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.48 \cdot 10^{-7}$ |
| 0.0386004    | 710455  | 684221  | 684221  | 609842                | 609842                | 174158               |
| 0.0380004    | -144297 | 99778.7 | 99778.7 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.48 \cdot 10^{-7}$ |

| r [m]     |         |         | Va      | lores Propios         |                       |                      |
|-----------|---------|---------|---------|-----------------------|-----------------------|----------------------|
| 0.0062060 | 799409  | 780210  | 780210  | 724423                | 724423                | -347833              |
| 0.0203208 | 59576.6 | 3789.55 | 3789.55 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0276659 | 792766  | 776454  | 776454  | 728846                | 728846                | -345612              |
| 0.0270058 | 55153.7 | 7545.91 | 7545.91 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0200047 | 787525  | 773528  | 773528  | 732528                | 732528                | -344054              |
| 0.0290047 | 51471.6 | 10471.7 | 10471.7 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0 0202427 | 783295  | 771182  | 771182  | 735594                | 735594                | -342889              |
| 0.0303437 | 48405.8 | 12817.6 | 12817.6 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0216996 | 779736  | 769178  | 769178  | 738079                | 738079                | -341816              |
| 0.0310820 | 45920.5 | 14821.6 | 14821.6 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0220216 | 776469  | 767212  | 767212  | 739888                | 739888                | -340357              |
| 0.0330210 | 44111.8 | 16787.7 | 16787.7 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0242605 | 772985  | 764835  | 764835  | 740736                | 740736                | -337721              |
| 0.0343003 | 43263.8 | 19164.7 | 19164.7 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0356004 | 768563  | 761376  | 761376  | 740087                | 740087                | -332650              |
| 0.0550994 | 43913   | 22624.4 | 22624.4 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |

Tabla 72: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-8} \ [\text{C}^2 V N^{-1} m^{-1}] \ y \ \text{P}_o = 5 \cdot 10^4 \ [\text{Pa}]$ 

Tabla 73: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-8} \, [\text{C}^2 V N^{-1} m^{-1}] \, y \, \text{P}_o = 1 \cdot 10^5 \, [\text{Pa}]$ 

| <i>r</i> [m] |         |         | Va      | lores Propios         |                       |                      |
|--------------|---------|---------|---------|-----------------------|-----------------------|----------------------|
| 0.0282107    | 819216  | 777339  | 777339  | 659920                | 659920                | -303135              |
| 0.0282197    | 124080  | 6660.75 | 6660.75 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.48 \cdot 10^{-7}$ |
| 0.0204415    | 802659  | 767055  | 767055  | 666415                | 666415                | -293074              |
| 0.0294415    | 117585  | 16945.2 | 16945.2 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.48 \cdot 10^{-7}$ |
| 0.0306633    | 789865  | 759217  | 759217  | 671996                | 671996                | -285861              |
| 0.0300033    | 112004  | 24782.7 | 24782.7 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0318850    | 779699  | 753054  | 753054  | 676782                | 676782                | -280481              |
| 0.0318850    | 107218  | 30945.8 | 30945.8 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0331068    | 771264  | 747917  | 747917  | 680751                | 680751                | -276014              |
| 0.0331008    | 103249  | 36083.1 | 36083.1 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.03/3286    | 763648  | 743079  | 743079  | 683651                | 683651                | -271299              |
| 0.0343280    | 100349  | 40920.6 | 40920.6 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0355504    | 755726  | 737565  | 737565  | 684896                | 684896                | -264622              |
| 0.0355504    | 99103.9 | 46435.2 | 46435.2 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0367791    | 745982  | 729984  | 729984  | $683\overline{437}$   | 683437                | -253419              |
| 0.0307721    | 100563  | 54015.7 | 54015.7 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| Tabla 74          | Valores         | Propios        | de la                  | Matriz        | $\mathbb{M}$ | para | algunos | valores | de | r entre | e a | y ł | b co | nsidera | ando |
|-------------------|-----------------|----------------|------------------------|---------------|--------------|------|---------|---------|----|---------|-----|-----|------|---------|------|
| $C_o = 3 \cdot 1$ | $0^{-8} [C^2 V$ | $N^{-1}m^{-1}$ | <sup>1</sup> ] $y P_o$ | = 1.5 $\cdot$ | $10^{5}$     | [Pa] |         |         |    |         |     |     |      |         |      |

| r [m]     |         |         | Val     | lores Propios         |                       |                      |
|-----------|---------|---------|---------|-----------------------|-----------------------|----------------------|
| 0.0211611 | 851168  | 781326  | 781326  | 593046                | 593046                | -268214              |
| 0.0311011 | 190954  | 2674.04 | 2674.04 | $-1.55 \cdot 10^{-7}$ | $-1.55 \cdot 10^{-7}$ | $1.44 \cdot 10^{-7}$ |
| 0.0200027 | 819280  | 760158  | 760158  | 599153                | 599153                | -242433              |
| 0.0322237 | 184847  | 23841.9 | 23841.9 | $-1.54 \cdot 10^{-7}$ | $-1.54 \cdot 10^{-7}$ | $1.45 \cdot 10^{-7}$ |
| 0 0222862 | 795056  | 744198  | 744198  | 604457                | 604457                | -223513              |
| 0.0332802 | 179543  | 39802.1 | 39802.1 | $-1.53 \cdot 10^{-7}$ | $-1.53 \cdot 10^{-7}$ | $1.46 \cdot 10^{-7}$ |
| 0 02/2/00 | 776020  | 731725  | 731725  | 609059                | 609059                | -209079              |
| 0.0343400 | 174941  | 52275.2 | 52275.2 | $-1.52 \cdot 10^{-7}$ | $-1.52 \cdot 10^{-7}$ | $1.47 \cdot 10^{-7}$ |
| 0.025/112 | 760245  | 721328  | 721328  | 612802                | 612802                | -197047              |
| 0.0554115 | 171198  | 62672.5 | 62672.5 | $-1.52 \cdot 10^{-7}$ | $-1.52 \cdot 10^{-7}$ | $1.48 \cdot 10^{-7}$ |
| 0.0264720 | 745786  | 711453  | 711453  | 615116                | 615116                | -184903              |
| 0.0304739 | 168884  | 72547.1 | 72547.1 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.48 \cdot 10^{-7}$ |
| 0.0275264 | 730253  | 700045  | 700045  | 614816                | 614816                | 169184               |
| 0.0373304 | -169069 | 83955   | 83955   | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.48 \cdot 10^{-7}$ |
| 0.0385000 | 710456  | 684230  | 684230  | 609872                | 609872                | 174128               |
| 0.0383990 | -144329 | 99769.7 | 99769.7 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.48 \cdot 10^{-7}$ |

Tabla 75: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-8} \ [\text{C}^2 V N^{-1} m^{-1}] \ y \ \text{P}_o = 5 \cdot 10^4 \ [\text{Pa}]$ 

| <i>r</i> [m] |         |         | Va      | lores Propios         |                       |                      |
|--------------|---------|---------|---------|-----------------------|-----------------------|----------------------|
| 0.0969997    | 799303  | 780163  | 780163  | 724540                | 724540                | -347843              |
| 0.0203227    | 59459.9 | 3837.24 | 3837.24 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0276610    | 792682  | 776420  | 776420  | 728953                | 728953                | -345636              |
| 0.0270019    | 55046.6 | 7579.98 | 7579.98 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0200011    | 787459  | 773505  | 773505  | 732627                | 732627                | -344086              |
| 0.0290011    | 51372.8 | 10495.3 | 10495.3 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0303403    | 783242  | 771167  | 771167  | 735686                | 735686                | -342928              |
| 0.0303403    | 48314.3 | 12833.1 | 12833.1 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0316705    | 779695  | 769170  | 769170  | 738165                | 738165                | -341860              |
| 0.0310795    | 45835   | 14830.3 | 14830.3 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0330188    | 776438  | 767210  | 767210  | 739969                | 739969                | -340407              |
| 0.0330188    | 44031   | 16790.2 | 16790.2 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.50 \cdot 10^{-7}$ |
| 0.0343580    | 772964  | 764840  | 764840  | 740814                | 740814                | -337778              |
|              | 43185.6 | 19160.4 | 19160.4 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0356072    | 768554  | 761389  | 761389  | 740166                | 740166                | -332720              |
| 0.0550912    | 43834.2 | 22611.1 | 22611.1 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.50 \cdot 10^{-7}$ |

| r [m]     |         |         | Va      | lores Propios         |                       |                      |
|-----------|---------|---------|---------|-----------------------|-----------------------|----------------------|
| 0 0282155 | 819109  | 777285  | 777285  | 660003                | 660003                | -303112              |
| 0.0282133 | 123997  | 6715.39 | 6715.39 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.48 \cdot 10^{-7}$ |
| 0.0204275 | 802577  | 767017  | 767017  | 666495                | 666495                | -293072              |
| 0.0294373 | 117505  | 16983.4 | 16983.4 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.48 \cdot 10^{-7}$ |
| 0.0206505 | 789801  | 759191  | 759191  | 672074                | 672074                | -285875              |
| 0.0300393 | 111926  | 24808.6 | 24808.6 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0210015 | 779649  | 753038  | 753038  | 676857                | 676857                | -280507              |
| 0.0310013 | 107143  | 30962.1 | 30962.1 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0991095 | 771226  | 747908  | 747908  | 680824                | 680824                | -276050              |
| 0.0551055 | 103176  | 36091.5 | 36091.5 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0242256 | 763620  | 743078  | 743078  | 683723                | 683723                | -271343              |
| 0.0343230 | 100277  | 40921.8 | 40921.8 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0255476 | 755709  | 737572  | 737572  | 684968                | 684968                | -264677              |
| 0.0355470 | 99032.1 | 46428.4 | 46428.4 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |
| 0.0267606 | 745979  | 730002  | 730002  | 683511                | 683511                | -253490              |
| 0.0307090 | 100489  | 53998.5 | 53998.5 | $-1.50 \cdot 10^{-7}$ | $-1.50 \cdot 10^{-7}$ | $1.49 \cdot 10^{-7}$ |

Tabla 76: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-8} \ [\text{C}^2 V N^{-1} m^{-1}] \ y \ \text{P}_o = 1 \cdot 10^5 \ [\text{Pa}]$ 

Tabla 77: Valores Propios de la Matriz M para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-8} \, [\text{C}^2 V N^{-1} m^{-1}] \, y \, \text{P}_o = 1.5 \cdot 10^5 \, [\text{Pa}]$ 

| <i>r</i> [m] |         |         | Va      | lores Propios         |                       |                      |
|--------------|---------|---------|---------|-----------------------|-----------------------|----------------------|
| 0.0211569    | 851061  | 781264  | 781264  | 593096                | 593096                | -268157              |
| 0.0311308    | 190904  | 2736.29 | 2736.29 | $-1.55 \cdot 10^{-7}$ | $-1.55 \cdot 10^{-7}$ | $1.44 \cdot 10^{-7}$ |
| 0.0222106    | 819197  | 760113  | 760113  | 599203                | 599203                | -242401              |
| 0.0322190    | 184797  | 23887.1 | 23887.1 | $-1.54 \cdot 10^{-7}$ | $-1.54 \cdot 10^{-7}$ | $1.46 \cdot 10^{-7}$ |
| 0.0332824    | 794992  | 744165  | 744165  | 604508                | 604508                | -223499              |
| 0.0332824    | 179492  | 39834.5 | 39834.5 | $-1.53 \cdot 10^{-7}$ | $-1.53 \cdot 10^{-7}$ | $1.46 \cdot 10^{-7}$ |
| 0.03/3/51    | 775969  | 731702  | 731702  | 609110                | 609110                | -209079              |
| 0.0040401    | 174890  | 52297.6 | 52297.6 | $-1.52 \cdot 10^{-7}$ | $-1.52 \cdot 10^{-7}$ | $1.47 \cdot 10^{-7}$ |
| 0.0254070    | 760206  | 721314  | 721314  | 612853                | 612853                | -197059              |
| 0.0334079    | 171147  | 62686.4 | 62686.4 | $-1.52 \cdot 10^{-7}$ | $-1.52 \cdot 10^{-7}$ | $1.47 \cdot 10^{-7}$ |
| 0.0364707    | 745759  | 711447  | 711447  | 615169                | 615169                | -184927              |
| 0.0304101    | 168831  | 72552.8 | 72552.8 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.48 \cdot 10^{-7}$ |
| 0.0375334    | 730238  | 700049  | 700049  | 614871                | 614871                | 169129               |
|              | -169109 | 83950.8 | 83950.8 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.48 \cdot 10^{-7}$ |
| 0.0385062    | 710458  | 684248  | 684248  | 609933                | 609933                | 174067               |
| 0.0383902    | -144391 | 99751.6 | 99751.6 | $-1.51 \cdot 10^{-7}$ | $-1.51 \cdot 10^{-7}$ | $1.48 \cdot 10^{-7}$ |

Además considerando el valor del Campo Eléctrico se puede determinar la matriz  $\mathbb{M}'(r)$  y a su vez los valores propios de ella. Considerando 8 valores de r entre a y b se calculan los valores propios para los diferentes valores de  $C_o$  y  $P_o$ , como se expresan en las tablas 78 - 86.

Tabla 78: Valores Propios de la Matriz M' para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-8} \, [\text{C}^2 V N^{-1} m^{-1}] \, y \, \text{P}_o = 5 \cdot 10^4 \, [\text{Pa}]$ 

| r [m]     |          |          | Valo     | res Propio | S                      |                        |
|-----------|----------|----------|----------|------------|------------------------|------------------------|
| 0.0962990 | -9302.74 | 9301.74  | -9301.74 | 9301.74    | -136.896               | -136.896               |
| 0.0203289 | 136.387  | -136.387 | 135.896  | 135.896    | $4.09 \cdot 10^{-12}$  | $-2.57 \cdot 10^{-14}$ |
| 0.0276677 | -10183.7 | 10182.7  | -10182.7 | 10182.7    | -143.209               | -143.209               |
| 0.0270077 | 142.701  | -142.701 | 142.209  | 142.209    | $6.89 \cdot 10^{-13}$  | $-6.96 \cdot 10^{-15}$ |
| 0.0200065 | -10454.6 | 10453.6  | -10453.6 | 10453.6    | -145.094               | -145.094               |
| 0.0290005 | 144.586  | -144.586 | 144.094  | 144.094    | $-2.03 \cdot 10^{-12}$ | $-5.13 \cdot 10^{-13}$ |
| 0.0202452 | -10059.8 | -10058.8 | 10058.8  | 10058.8    | -142.337               | -142.337               |
| 0.0303433 | 141.829  | -141.829 | 141.337  | 141.337    | $4.92 \cdot 10^{-12}$  | $1.60 \cdot 10^{-12}$  |
| 0.0316841 | -9008.94 | -9007.94 | 9007.94  | 9007.94    | -134.724               | -134.724               |
| 0.0510641 | 134.216  | -134.216 | 133.724  | 133.724    | $-3.12 \cdot 10^{-12}$ | $2.30 \cdot 10^{-12}$  |
| 0.0330230 | -7386.95 | 7385.95  | -7385.95 | 7385.95    | -122.041               | -122.041               |
| 0.0550250 | 121.532  | -121.531 | 121.041  | 121.041    | $1.73 \cdot 10^{-12}$  | $-2.60 \cdot 10^{-13}$ |
| 0.0343618 | -5364.51 | 5363.51  | -5363.51 | 5363.51    | -104.073               | -104.073               |
| 0.0343618 | 103.562  | -103.562 | 103.073  | 103.073    | $-5.00 \cdot 10^{-13}$ | $-1.99 \cdot 10^{-13}$ |
| 0.0357006 | -3209.33 | 3208.33  | -3208.33 | 3208.33    | -80.6056               | -80.6056               |
| 0.0557000 | 80.0918  | -80.0912 | 79.6056  | 79.6056    | $-5.85 \cdot 10^{-13}$ | $-2.46 \cdot 10^{-13}$ |

Tabla 79: Valores Propios de la Matriz  $\mathbb{M}'$  para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-8} [C^2 V N^{-1} m^{-1}] y P_o = 1 \cdot 10^5 [Pa]$ 

| $r  [\mathrm{m}]$ |          |          | Valc     | ores Propio | S                      |                        |
|-------------------|----------|----------|----------|-------------|------------------------|------------------------|
| 0.0222210         | -12995.7 | 12994.7  | -12994.7 | 12994.7     | -161.713               | -161.713               |
| 0.0282219         | 161.206  | -161.206 | 160.713  | 160.713     | $-5.12 \cdot 10^{-12}$ | $2.52 \cdot 10^{-12}$  |
| 0.0204425         | -13024.2 | 13023.2  | 13023.2  | -13023.2    | -161.89                | -161.89                |
| 0.0294455         | 161.383  | -161.383 | 160.89   | 160.89      | $-1.92 \cdot 10^{-12}$ | $-3.05 \cdot 10^{-13}$ |
| 0.0206651         | -12426.5 | 12425.5  | -12425.5 | 12425.5     | -158.143               | -158.143               |
| 0.0300031         | 157.636  | -157.636 | 157.143  | 157.143     | $3.43 \cdot 10^{-12}$  | $-5.06 \cdot 10^{-13}$ |
| 0.0210060         | -11222.4 | -11221.4 | 11221.4  | 11221.4     | -150.31                | -150.31                |
| 0.0310000         | 149.803  | -149.803 | 149.31   | 149.31      | $-4.07 \cdot 10^{-12}$ | $-2.66 \cdot 10^{-14}$ |
| 0.0221084         | -9485.44 | -9484.44 | 9484.44  | 9484.44     | -138.228               | -138.228               |
| 0.0331084         | 137.72   | -137.72  | 137.228  | 137.228     | $-2.75 \cdot 10^{-12}$ | $1.35 \cdot 10^{-12}$  |
| 0.0242201         | -7349.86 | 7348.86  | 7348.86  | -7348.86    | -121.735               | -121.735               |
| 0.0343301         | 121.226  | -121.226 | 120.735  | 120.735     | $1.11 \cdot 10^{-12}$  | $-3.37 \cdot 10^{-14}$ |
| 0.0255517         | -5017.65 | 5016.65  | 5016.65  | -5016.65    | -100.668               | -100.668               |
| 0.0333317         | 100.157  | -100.156 | 99.6676  | 99.6676     | $-1.32 \cdot 10^{-12}$ | $-8.47 \cdot 10^{-13}$ |
| 0.0967794         | -2765.8  | -2764.8  | 2764.8   | 2764.8      | -74.863                | -74.863                |
| 0.0307734         | 74.3482  | -74.3482 | 73.863   | 73.863      | $-1.62 \cdot 10^{-13}$ | $4.08 \cdot 10^{-14}$  |

| r [m]      |          |          | Vale    | ores Propio | s                      |                        |
|------------|----------|----------|---------|-------------|------------------------|------------------------|
| 0.0211622  | -19775.6 | -19775.6 | 19775.6 | 19775.6     | -199.371               | -199.371               |
| 0.0311032  | 198.865  | -198.865 | 198.371 | 198.371     | $5.37 \cdot 10^{-12}$  | $2.51 \cdot 10^{-14}$  |
| 0.0222257  | -18205.1 | -18204.1 | 18204.1 | 18204.1     | -191.31                | -191.31                |
| 0.0322237  | 190.804  | -190.804 | 190.31  | 190.31      | $-5.97 \cdot 10^{-12}$ | $2.41 \cdot 10^{-12}$  |
| 0.0332881  | -16111.3 | -16110.3 | 16110.3 | 16110.3     | -180.002               | -180.002               |
| 0.0552881  | 179.496  | -179.496 | 179.002 | 179.002     | $1.73 \cdot 10^{-12}$  | $1.39 \cdot 10^{-12}$  |
| 0.0343506  | -13586.8 | -13585.8 | 13585.8 | 13585.8     | -165.339               | -165.339               |
| 0.03433000 | 164.832  | -164.832 | 164.339 | 164.339     | $-1.98 \cdot 10^{-12}$ | $-4.88 \cdot 10^{-13}$ |
| 0.0354130  | -10763.3 | 10762.3  | 10762.3 | -10762.3    | -147.214               | -147.214               |
| 0.0334130  | 146.706  | -146.706 | 146.214 | 166.339     | $-2.97 \cdot 10^{-12}$ | $1.12 \cdot 10^{-12}$  |
| 0.0364755  | -7815.82 | -7814.82 | 7814.82 | 7814.82     | -125.52                | -125.52                |
| 0.0304733  | 125.011  | -125.01  | 124.52  | 124.52      | $-4.42 \cdot 10^{-13}$ | $-3.13 \cdot 10^{-13}$ |
| 0.0375370  | -4965.89 | -4964.89 | 4964.89 | 4964.89     | -100.149               | -100.149               |
| 0.0375379  | 99.6384  | -99.638  | 99.1495 | 99.1495     | $1.30 \cdot 10^{-12}$  | $-2.91 \cdot 10^{-13}$ |
| 0.0386004  | -2485.75 | -2484.75 | 2484.75 | 2484.75     | -70.9965               | -70.9965               |
| 0.0530004  | 70.4809  | -70.4801 | 69.9965 | 69.9965     | $5.95 \cdot 10^{-13}$  | $2.47 \cdot 10^{-13}$  |

Tabla 80: Valores Propios de la Matriz  $\mathbb{M}'$  para algunos valores de r entre a y b considerando  $C_o = 1 \cdot 10^{-8} \ [\mathrm{C}^2 V N^{-1} m^{-1}] \ y \ \mathrm{P}_o = 1.5 \cdot 10^5 \ [\mathrm{Pa}]$ 

Tabla 81: Valores Propios de la Matriz M' para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-8} \, [\text{C}^2 V N^{-1} m^{-1}] \, y \, \text{P}_o = 5 \cdot 10^4 \, [\text{Pa}]$ 

| <i>r</i> [m] |          |          | Valo     | ores Propios | 5                      |                        |
|--------------|----------|----------|----------|--------------|------------------------|------------------------|
| 0.0263268    | -83683   | -83682   | 83682    | 83682        | -409.602               | -409.602               |
|              | 409.099  | -409.099 | 408.602  | 408.602      | $-2.10 \cdot 10^{-11}$ | $-2.90 \cdot 10^{-12}$ |
| 0.0276658    | -91619.5 | -91618.5 | 91618.5  | 91618.5      | -428.562               | -428.562               |
| 0.0270058    | 428.06   | -428.06  | 427.562  | 427.562      | $4.02 \cdot 10^{-11}$  | $2.20 \cdot 10^{-11}$  |
| 0.0200047    | -94065.1 | -94064.1 | 94064.1  | 94064.1      | -434.238               | -434.238               |
| 0.0290047    | 433.735  | -433.735 | 433.238  | 433.238      | $2.50 \cdot 10^{-11}$  | $1.23 \cdot 10^{-11}$  |
| 0.0303437    | -90519.7 | -90518.7 | 90518.7  | 90518.7      | -425.985               | -425.985               |
| 0.0303437    | 425.483  | -425.483 | 424.985  | 424.985      | $-2.79 \cdot 10^{-11}$ | $-2.44 \cdot 10^{-12}$ |
| 0.0216826    | -81069.1 | -81068.1 | 81068.1  | 81068.1      | -403.162               | -403.162               |
| 0.0310820    | 402.659  | -402.659 | 402.162  | 402.162      | $-2.18 \cdot 10^{-11}$ | $-1.45 \cdot 10^{-11}$ |
| 0.0330216    | -66476.3 | -66475.3 | 66475.3  | 66475.3      | -365.124               | -365.124               |
| 0.0330210    | 364.621  | -364.621 | 364.124  | 364.124      | $6.55 \cdot 10^{-12}$  | $-2.11 \cdot 10^{-12}$ |
| 0.0343605    | -48277.5 | 48276.5  | 48276.5  | -48276.5     | -311.23                | -311.23                |
|              | 310.727  | -310.726 | 310.23   | 310.23       | $-8.49 \cdot 10^{-12}$ | $3.57 \cdot 10^{-12}$  |
| 0.0356004    | -28881.6 | 28880.6  | -28880.6 | 28880.6      | -240.836               | -240.836               |
| 0.0000994    | 240.331  | -240.331 | 239.836  | 239.836      | $-8.39 \cdot 10^{-12}$ | $6.05 \cdot 10^{-13}$  |

Tabla 82: Valores Propios de la Matriz M' para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-8} \ [\text{C}^2 V N^{-1} m^{-1}] \ y \ \text{P}_o = 1 \cdot 10^5 \ [\text{Pa}]$ 

| <i>r</i> [m] |          |          | Valc     | ores Propio | s                      |                        |
|--------------|----------|----------|----------|-------------|------------------------|------------------------|
| 0.0282107    | -116913  | -116912  | 116912   | 116912      | -484.054               | -484.054               |
| 0.0282197    | 483.552  | -483.552 | 483.054  | 483.054     | $1.62 \cdot 10^{-11}$  | $-1.56 \cdot 10^{-11}$ |
| 0.0204415    | -117179  | -117178  | 117178   | 117178      | -484.603               | -484.603               |
| 0.0294415    | 484.101  | -484.101 | 483.603  | 483.603     | $4.22 \cdot 10^{-11}$  | $-1.59 \cdot 10^{-11}$ |
| 0.0206633    | -111809  | -111808  | 111808   | 111808      | -473.381               | -473.381               |
| 0.0300033    | 472.879  | -472.879 | 472.381  | 472.381     | $5.34 \cdot 10^{-12}$  | $-3.34 \cdot 10^{-12}$ |
| 0.0219950    | -100980  | 100979   | 100979   | -100979     | -449.899               | -449.899               |
| 0.0318830    | 449.396  | -449.396 | 448.899  | 448.899     | $2.75 \cdot 10^{-11}$  | $7.90 \cdot 10^{-12}$  |
| 0 0221069    | -85354.7 | -85353.7 | 85353.7  | 85353.7     | -413.668               | -413.668               |
| 0.0551008    | 413.165  | -413.165 | 412.668  | 412.668     | $-6.08 \cdot 10^{-12}$ | $3.01 \cdot 10^{-12}$  |
| 0.0242286    | -66139.7 | 66138.7  | -66138.7 | 66138.7     | -364.2                 | -364.2                 |
| 0.0343280    | 363.697  | -363.697 | 363.2    | 363.2       | $-1.25 \cdot 10^{-11}$ | $-3.34 \cdot 10^{-12}$ |
| 0.0255504    | -45153   | -45152   | 45152    | 45152       | -301.007               | -301.007               |
| 0.0555504    | 300.503  | -300.503 | 300.007  | 300.007     | $7.09 \cdot 10^{-12}$  | $2.77 \cdot 10^{-12}$  |
| 0.0367791    | -24887.5 | 24886.5  | 24886.5  | -24886.5    | -223.599               | -223.599               |
| 0.0307721    | 223.094  | -223.094 | 222.599  | 222.599     | $-2.54 \cdot 10^{-12}$ | $6.14 \cdot 10^{-13}$  |

Tabla 83: Valores Propios de la Matriz M' para algunos valores de r entre a y b considerando  $C_o = 3 \cdot 10^{-8} \ [\text{C}^2 V N^{-1} m^{-1}] \ y \ \text{P}_o = 1.5 \cdot 10^5 \ [\text{Pa}]$ 

| <i>r</i> [m] |          |          | Valo     | res Propio | S                      |                        |
|--------------|----------|----------|----------|------------|------------------------|------------------------|
| 0.0211611    | -177925  | 177924   | -177924  | 177924     | -597.03                | -597.03                |
| 0.0311011    | 596.528  | -596.528 | 596.03   | 596.03     | $-6.42 \cdot 10^{-11}$ | $2.30 \cdot 10^{-11}$  |
| 0.0300037    | -163802  | 163801   | -163801  | 163801     | -592.865               | -592.865               |
| 0.0322237    | 592.363  | -592.363 | 591.865  | 591.865    | $3.28 \cdot 10^{-11}$  | $3.53 \cdot 10^{-12}$  |
| 0.0333863    | -144968  | -144967  | 144967   | 144967     | -538.955               | -538.955               |
| 0.0332802    | 538.453  | -538.453 | 537.955  | 537.955    | $5.30 \cdot 10^{-11}$  | $-4.15 \cdot 10^{-11}$ |
| 0.03/3/88    | -122255  | 122254   | 122254   | -122254    | -494.979               | -494.979               |
| 0.0343400    | 494.476  | -494.476 | 493.979  | 493.979    | $-1.26 \cdot 10^{-11}$ | $1.18 \cdot 10^{-11}$  |
| 0.025/112    | -96851.5 | -96850.5 | 96850.5  | 96850.5    | -440.615               | -440.615               |
| 0.0354115    | 440.112  | -440.112 | 439.615  | 439.615    | $1.25 \cdot 10^{-11}$  | $-5.62 \cdot 10^{-12}$ |
| 0.0364730    | -70329.4 | 70328.4  | -70328.4 | 70328.4    | -375.543               | -375.543               |
| 0.0304739    | 375.04   | -375.04  | 374.543  | 374.543    | $1.38 \cdot 10^{-11}$  | $-1.66 \cdot 10^{-12}$ |
| 0.0375364    | -44683.6 | -44682.6 | 44682.6  | 44682.6    | -299.441               | -299.441               |
|              | 298.937  | -298.937 | 298.441  | 298.441    | $1.17 \cdot 10^{-11}$  | $-9.41 \cdot 10^{-12}$ |
| 0.0295000    | -22364.3 | 22363.3  | -22363.3 | 22363.3    | -211.987               | -211.987               |
| 0.00000000   | 211.482  | -211.482 | 210.987  | 210.987    | $-6.08 \cdot 10^{-12}$ | $-1.85 \cdot 10^{-12}$ |

Tabla 84: Valores Propios de la Matriz M' para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-8} \ [\text{C}^2 V N^{-1} m^{-1}] \ y \ \text{P}_o = 5 \cdot 10^4 \ [\text{Pa}]$ 

| r [m]     |          |          | Valo     | res Propio | s                      |                        |
|-----------|----------|----------|----------|------------|------------------------|------------------------|
| 0.0962997 | -232263  | 232262   | -232262  | 232262     | -682.061               | -682.061               |
| 0.0203227 | 681.559  | -681.559 | 681.061  | 681.061    | $-6.16 \cdot 10^{-12}$ | $-2.61 \cdot 10^{-13}$ |
| 0.0276610 | -254352  | 254351   | -254351  | 254351     | -713.733               | -713.733               |
| 0.0270019 | 713.231  | -713.231 | 712.733  | 712.733    | $7.99 \cdot 10^{-11}$  | $2.17 \cdot 10^{-11}$  |
| 0.0200011 | -261190  | -261189  | 261189   | 261189     | -723.258               | -723.258               |
| 0.0290011 | 722.756  | -722.756 | 722.258  | 722.258    | $-6.69 \cdot 10^{-11}$ | $1.30 \cdot 10^{-11}$  |
| 0 0202402 | -251386  | 251385   | 251385   | -251385    | -709.562               | -709.562               |
| 0.0303403 | 709.061  | -709.061 | 708.562  | 708.562    | $-9.08 \cdot 10^{-11}$ | $3.68 \cdot 10^{-11}$  |
| 0.0216705 | -225172  | 225171   | -225171  | 225171     | -671.575               | -671.575               |
| 0.0310795 | 671.073  | -671.073 | 670.575  | 670.575    | $-6.58 \cdot 10^{-11}$ | $-4.49 \cdot 10^{-11}$ |
| 0.0220188 | -184665  | -184664  | 184664   | 184664     | -608.223               | -608.223               |
| 0.0330188 | 607.722  | -607.722 | 607.223  | 607.223    | $3.63 \cdot 10^{-11}$  | $1.05 \cdot 10^{-11}$  |
| 0.0242590 | -134129  | -134128  | 134128   | 134128     | -518.435               | -518.435               |
| 0.0343580 | 517.933  | -517.933 | 517.435  | 517.435    | $5.29 \cdot 10^{-11}$  | $-2.64 \cdot 10^{-11}$ |
| 0.0256079 | -80256.3 | 80255.3  | -80255.3 | 80255.3    | -401.138               | -401.138               |
| 0.0550972 | 400.635  | -400.635 | 400.138  | 400.138    | $2.98 \cdot 10^{-11}$  | $-1.47 \cdot 10^{-11}$ |

Tabla 85: Valores Propios de la Matriz M' para algunos valores de r entre a y b considerando  $C_o = 5 \cdot 10^{-8} \ [\text{C}^2 V N^{-1} m^{-1}] \ y \ \text{P}_o = 1 \cdot 10^5 \ [\text{Pa}]$ 

| r [m]     | Valores Propios |          |         |         |                        |                        |  |  |  |  |
|-----------|-----------------|----------|---------|---------|------------------------|------------------------|--|--|--|--|
| 0.0282155 | -324534         | 324533   | 324533  | -324533 | -806.146               | -806.146               |  |  |  |  |
|           | 805.645         | -805.645 | 805.146 | 805.146 | $5.87 \cdot 10^{-11}$  | $2.69 \cdot 10^{-11}$  |  |  |  |  |
| 0.0294375 | -325324         | 325323   | -325323 | 325323  | -807.127               | -807.127               |  |  |  |  |
|           | 806.625         | -806.625 | 806.127 | 806.127 | $7.93 \cdot 10^{-11}$  | $-2.25 \cdot 10^{-11}$ |  |  |  |  |
| 0.0306595 | -310459         | 310458   | 310458  | -310458 | -788.483               | -788.483               |  |  |  |  |
|           | 787.981         | -787.981 | 787.483 | 787.483 | $3.76 \cdot 10^{-11}$  | $5.74 \cdot 10^{-12}$  |  |  |  |  |
| 0.0318815 | -280426         | -280425  | 280425  | 280425  | -749.4                 | -749.4                 |  |  |  |  |
|           | 748.898         | -748.898 | 748.4   | 748.4   | $-6.75 \cdot 10^{-11}$ | $-2.04 \cdot 10^{-12}$ |  |  |  |  |
| 0.0331035 | -237060         | -237059  | 237059  | 237059  | -689.063               | -689.063               |  |  |  |  |
|           | 688.561         | -688.561 | 688.063 | 688.063 | $4.56 \cdot 10^{-11}$  | $1.82 \cdot 10^{-11}$  |  |  |  |  |
| 0.0242256 | -183714         | -183713  | 183713  | 183713  | -606.657               | -606.657               |  |  |  |  |
| 0.0343230 | 606.155         | -606.155 | 605.657 | 605.657 | $-8.66 \cdot 10^{-11}$ | $-6.65 \cdot 10^{-12}$ |  |  |  |  |
| 0.0355476 | -125435         | -125434  | 125434  | 125434  | -501.368               | -501.368               |  |  |  |  |
|           | 500.866         | -500.866 | 500.368 | 500.368 | $2.25 \cdot 10^{-11}$  | $-1.26 \cdot 10^{-11}$ |  |  |  |  |
| 0.0367696 | -69148.6        | -69147.6 | 69147.6 | 69147.6 | -372.381               | -372.381               |  |  |  |  |
|           | 371.878         | -371.878 | 371.381 | 371.381 | $3.41 \cdot 10^{-27}$  | 0                      |  |  |  |  |

| Tabla    | 86:    | Valores          | Propios        | de la              | Matriz         | $\mathbb{M}'$ | para | algunos | valores | de $r$ | • entre | a y | b consid | erando |
|----------|--------|------------------|----------------|--------------------|----------------|---------------|------|---------|---------|--------|---------|-----|----------|--------|
| $C_o = $ | 5 · 1( | $0^{-8} [C^2 V]$ | $N^{-1}m^{-1}$ | $^{1}$ ] $y P_{a}$ | $_{0} = 1.5$ · | $10^{5}$      | [Pa] |         |         |        |         |     |          |        |

| r [m]     | Valores Propios |          |         |         |                        |                        |  |  |  |  |
|-----------|-----------------|----------|---------|---------|------------------------|------------------------|--|--|--|--|
| 0.0311568 | -493967         | 493966   | -493966 | 493966  | -994.448               | -994.448               |  |  |  |  |
|           | 993.947         | -993.947 | 993.448 | 993.448 | $-1.32 \cdot 10^{-10}$ | $-3.74 \cdot 10^{-11}$ |  |  |  |  |
| 0.0322196 | -454798         | 454797   | -454797 | 454797  | -954.227               | -954.227               |  |  |  |  |
|           | 953.726         | -953.726 | 953.227 | 953.227 | $-3.22 \cdot 10^{-11}$ | $2.20 \cdot 10^{-11}$  |  |  |  |  |
| 0.0332824 | -402539         | -402538  | 402538  | 402538  | -897.76                | -897.76                |  |  |  |  |
|           | 897.259         | -897.259 | 896.76  | 896.76  | $1.90 \cdot 10^{-10}$  | $-2.62 \cdot 10^{-12}$ |  |  |  |  |
| 0.0343451 | -339499         | 339498   | -339498 | 339498  | -824.512               | -824.512               |  |  |  |  |
|           | 824.01          | -824.01  | 823.512 | 823.512 | $1.52 \cdot 10^{-10}$  | $-7.27 \cdot 10^{-11}$ |  |  |  |  |
| 0.0254070 | -268972         | 268971   | -268971 | 268971  | -733.946               | -733.946               |  |  |  |  |
| 0.0554079 | 733.445         | -733.445 | 732.946 | 732.946 | $-5.95 \cdot 10^{-11}$ | $-8.64 \cdot 10^{-12}$ |  |  |  |  |
| 0.0264707 | -195330         | -195329  | 195329  | 195329  | -625.527               | -625.527               |  |  |  |  |
| 0.0304101 | 625.025         | -625.025 | 624.527 | 624.527 | $5.35 \cdot 10^{-11}$  | $3.37 \cdot 10^{-11}$  |  |  |  |  |
| 0.0375334 | -124112         | 124111   | -124111 | 124111  | -498.719               | -498.719               |  |  |  |  |
|           | 498.217         | -498.217 | 497.719 | 497.719 | $-2.33 \cdot 10^{-11}$ | $5.77 \cdot 10^{-12}$  |  |  |  |  |
| 0.0385962 | -62124          | 62123    | 62123   | -62123  | -352.986               | -352.986               |  |  |  |  |
|           | 352.483         | -352.483 | 351.986 | 351.986 | $1.05 \cdot 10^{-11}$  | $-6.88 \cdot 10^{-14}$ |  |  |  |  |

### 6.7. Comentarios

Los resultados obtenidos en los diferentes problemas consideran las deformaciones finales para cada geometría, además del estudio de los valores propios de las matrices  $\mathbb{M}$  y  $\mathbb{M}'$  para diferentes valores dados en cada caso.

### 6.7.1. Deformación en un Medio Semi-Infinito Plano

Se calculó  $\lambda$  y  $E_2$  para diferentes valores de  $E_o$  y se logró observar que a medida que el Campo Eléctrico externo  $E_o$  aumenta pasa lo mismo con el Campo Eléctrico uniforme  $E_2$ , pero la magnitud del parámetro  $\lambda$  disminuye. Se logró apreciar que la magnitud del Campo Eléctrico uniforme  $E_2$  es mayor para la primera función de Energía Libre que para la segunda considerando los mismos valores de  $E_o$ , pero los parámetros  $\lambda$  no se diferencian significativamente entre cada tipo de función de energía, lo que implica que su deformación es aproximadamente la misma en cada caso.

El parámetro  $\lambda$  es menor a 1 lo que implica que existe una acortamiento en la dirección 1 y un alargamiento en la dirección 2 como se observa en la figura 13, donde la línea normal simboliza el medio semi-infinito plano antes de la presencia del Campo Eléctrico y la línea punteada simboliza el medio semi-infinito plano ya deformado por la presencia del Campo Eléctrico. Además se logra apreciar que la magnitud del parámetro  $\lambda$  se acerca cada vez más a 1 cuando el Campo Eléctrico externo disminuye, lo que indica que la deformación aumenta en presencia de dicho campo.



Figura 13: Espacio semi-infinito deformado

Como se observa en las tabla 4 los valores propios de la matriz  $\mathbb{M}$  para  $E_o$  entre  $10^2$  y  $10^4$ son positivos, a excepción de unos pocos números que resultaron ser negativos pero que su rango no supera los  $10^{-4}$ . Es por eso que se puede asumir dichos números iguales a cero lo que implicaría que los valores propios para  $E_o$  entre  $10^2$  y  $10^4$  presentan una configuración estable. En cambio en las tablas 5 y 7 - 8 los valores propios de la matriz  $\mathbb{M}$  y  $\mathbb{M}'$  para cada valor diferente de  $E_o$  no presentan el mismo signo, lo que implica que su configuración está en equilibrio neutro.

#### 6.7.2. Deformación de un Tubo Cilíndrico

Se calcularon los radios finales internos y externos,  $a ext{ y } b$ , para diferentes valores de  $C_o ext{ y } P_o$ , y valores fijos de los radios iniciales interno y externo,  $A ext{ y } B$ . Se logró apreciar que a medida que la presión interna  $P_o$  aumenta en el tubo cilíndrico la deformación que se presenta es mayor, pero no pasa lo mismo con la constante  $C_o$  que disminuye a medida que aumenta la deformación del cuerpo.

La deformación presentada en el tubo cilíndrico es de tipo radial y es muy pequeña para una presión interna  $P_o$  de  $10^4$  pero muy grande para una presión interna  $P_o$  de  $10^5$ , como se presenta en las tablas 9 y 29. Además comparando esta deformación con la presentada para diferentes valores de la constante  $C_o$  se puede observar que la diferencia entre las deformaciones del tubo cilíndrico son mayores variando  $P_o$  que variando  $C_o$ .

Es importante destacar que en las tablas 9 y 29 los valores de los radios finales para cada valor de  $C_o$  y  $P_o$  en ambos problemas es el mismo, lo que implica que la deformación es la misma considerando la primera o segunda función de energía libre.

Todos los valores de los radios finales,  $a \ge b$ , en cada problema fueron mayores a los radios iniciales,  $A \ge B$  respectivamente; lo que implica que el tubo cilíndrico presentó una inflación como se observa en la figura 14.



Figura 14: Tubo Cilíndrico deformado

Para cada uno de los radios finales presentados en las tablas 9 y 29 se consideraron 8 valores diferentes de r entre a y b, y se obtuvo las matrices  $\mathbb{M}$  y  $\mathbb{M}'$ . Para cada matriz se calcularon los valores propios de estas como se observa en las tablas 10 - 27 y 30 - 47, y se logró observar que para cada caso los valores propios no presentaron el mismo signo, lo que implica que la configuración del tubo cilíndrico está en equilibrio neutro.

#### 6.7.3. Deformación de una Esfera Hueca bajo Presión Interna

Se calcularon los radios finales internos y externos,  $a \ y \ b$ , para diferentes valores de  $C_o \ y \ P_o$ , y valores fijos de los radios iniciales interno y externo,  $A \ y \ B$ . Se logró apreciar que a medida que la presión interna  $P_o$  aumenta en el cuerpo esférico la deformación que se presenta es mayor, pero no pasa lo mismo con la constante  $C_o$  que disminuye a medida que aumenta la deformación del cuerpo.

La deformación presentada en el cuerpo esférico es de tipo radial y es muy pequeña para una presión interna  $P_o$  de 5 ·10<sup>4</sup> pero muy grande para una presión interna  $P_o$  de 1.5 ·10<sup>5</sup>, como se presenta en las tablas 48 y 68. Además comparando esta deformación con la presentada para diferentes valores de la constante  $C_o$  se puede observar que la diferencia entre las deformaciones del cuerpo esférico son mayores variando  $P_o$  que variando  $C_o$ .

Es importante destacar que comparando las tablas 48 y 68 se aprecia los radios finales para cada valor de  $C_o$  y  $P_o$  en el cuerpo esférico bajo la presencia de la segunda función de Energía Libre son mayores a los observados en presencia de la primera función de Energía Libre, lo que implica que la deformación es mayor para la segunda función.

Bajo el efecto de la presión y del Campo Eléctrico la esfera sufrió un inflado tal como se presenta de forma esquemática en la figura 15.



Figura 15: Cuerpo Esférico deformado

Para cada uno de los radios finales presentados en las tablas 48 y 68 se consideraron 8 valores diferentes de r entre a y b, y se obtuvo la matriz  $\mathbb{M}$  y  $\mathbb{M}'$ . Para cada matriz se calcularon los valores propios de estas como se observa en las tablas 49 - 66 y 69 - 86, y se logró observar que para cada caso los valores propios no presentaron el mismo signo, lo que implica que la configuración del cuerpo esférico está en equilibrio neutro al igual que el caso anterior.

# CAPÍTULO 7

# Conclusiones

En el presente trabajo se estudió el comportamiento de la segunda variación para tres problemas de valor de frontera con diferentes geometrías y vectores de Campo Eléctrico. La segunda variación, y en particular su signo, se usó como criterio para predecir la aparición de inestabilidades electro-elásticas en los diferentes cuerpos.

Por medio de los resultados se observa que se pueden obtener grandes deformaciones elásticas bajo el efecto de un Campo Eléctrico externo. Es importante considerar la dirección y magnitud del Campo Eléctrico aplicado para los diferentes tipos de geometrías, ya que gracias a estos se pudieron estudiar los diferentes problemas.

Los resultados obtenidos en el medio semi-infinito plano indican que existe una pequeña expansión del cuerpo en la dirección perpendicular al plano debido al Campo Eléctrico uniforme actuando en la misma dirección de la deformación. Para ambas funciones de Energía Libre ocupadas en esta geometría el tipo y magnitud de deformación fueron casi iguales, lo que implica que la deformación en el medio semi-infinito plano no depende en gran medida de las funciones de Energía Libre estudiadas, esto debido a que para las deformaciones presentes, las energías de deformación no presentan diferencias para el comportamiento del cuerpo.

Además los resultados obtenidos en el tubo cilíndrico indican que existe una expansión de los radios del cuerpo debido a la presencia del Campo Eléctrico radial. La magnitud de las deformaciones observadas dependen principalmente de la presión interna del tubo cilíndrico, ya que los radios finales son mayores para una presión interna mayor. Para ambas funciones de Energía Libre ocupadas en esta geometría el tipo y magnitud de deformación fueron casi iguales considerando los mismos valores de las constantes, lo que implica que la deformación en el tubo cilíndrico no depende en gran medida de las funciones de Energía Libre estudiadas, si no mas bien de la presión interna.

En cambio los resultados obtenidos en el cuerpo esférico indican que existe una expansión de los radios del cuerpo debido a la presencia del Campo Eléctrico radial. La magnitud de las deformaciones observadas dependen principalmente de la presión interna del cuerpo esférico, ya que los radios finales son mayores para una presión interna mayor. En la segunda función de Energía Libre la deformación del cuerpo fue mayor en comparación con la obtenida para la primera función de Energía Libre considerando los mismos valores de las constantes, lo que implica que la deformación en el cuerpo esférico depende de las funciones de Energía Libre estudiadas y además de la presión interna.

En todos los casos estudiados no se pudo determinar si la configuración era estable o inestable, si no mas bien se encontraban en una situación de equilibrio neutro. Debido a esto se puede cuestionar el método de la segunda variación  $\delta^2 \Pi$  para la cual se debió calcular una gran cantidad

de valores propios y estudiar sus signos, los cuales nunca fueron todos positivos ni todos negativos para una misma matriz, lo que era muy difícil de obtener.

Todo este estudio demostró que que este método no tiene validez alguna para determinar la existencia de inestabilidad elástica en un cuerpo.

# Bibliografía

- [1] R. Bustamante, A. and J. Merodio, "On weak formulations and their second variation in nonlinear electroelasticity", Mechanics Research Communications, vol. 46, pp. 15-19, 2012.
- [2] A. Dorfmann and R. Ogden, "Nonlinear electroelastic Deformations", Journal of Elasticity, pp. 1-29, 2006. 10.1007/s10659-005-9028-y.
- [3] G. Bossis, C. Abbo, S. Cutillas, C. Lacis and C. Métayer, "Electroactive and Electrostructured Elastomers", Int. J. Modern Phys. B, pp. 564-573, 2001.
- [4] Z. Varga, G. Filipcsei, and M. Zrinyi, "Smart composites with controlled anisotropy", Polymer, vol. 46, no. 18, pp. 7779 - 7787, 2005. Stimuli Responsive Polymers, IUPAC MACRO 2004.
- [5] R. Pelrine, R. Kornbluh, Q. Pei and J. Joseph, "High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%", Science, pp. 836-839, 2000. 10.1126/science.287.5454.836.
- [6] A. O'Halloran, F. O'Malley and P. McHugh, "A review on dielectric elastomer actuators, technology, applications and challenges", Journal of Applied Physics, pp. 104, 2008. 10.1063/1.2981642.
- [7] A. Dorfmann and R. Ogden, "Nonlinear electroelasticity", Acta Mechanica, vol. 174, pp. 167-183, 2005. 10.1007/s00707-004-0202-2.
- [8] R. Bustamante, A. Dorfmann and R. Ogden, "Nonlinear electroelastostatics: a variational framework", Z. angew. Math. Phys., vol. 60, pp. 154-177, 2009. 10.1007/s00033-007-7145-0.
- [9] A. J. M. Spencer, "Theory of invariants. In: Continuum physics", Academic Press, vol. 1, pp. 239-353, 1971.
- [10] R. Bustamante, J. Merodio, "On weak formulations and their second variation in nonlinear electroelasticity", Mechanics Research Communications, vol. 46, pp. 15-19, 2012.
- [11] R. Díaz-Calleja, P. Llovera-Segovia, J. Dominguez, M. Carsí and A. Quijano, "Theoretical modelling and experimental results of electromechanical actuation of an elastomer", Journal of Applied Physics, pp. 1-10, 2013. 10.1088/0022-3727/46/23/235305.
- [12] R. Bustamante, "Mecánica de Medios Continuos", Apuntes de Curso, 2012.