TERMINOS DE REFERENCIA PARA LAS INVESTIGACIONES EN
CLIMATOLOGIA

ORLANDO PEÑA ALVAREZ
Departamento de Geografía Universidad de Chile

ABSTRACT

The scientific condition of the Geography is analysed, as a function of the treatment of the climatic phenomena. Particularly, reference is made to the application of the general scientific method in geography and his importance in the solution of the society problems is established. By considering specifically the case of the Climatology, the researches are articulated with the paradigm on the gestation of environmental decisions and localization in complex systems. So, it is possible to explain the energetic and genetic double base of the climatic phenomena, behind which there is a serious attempt for a new definition of the discipline and her study object. By making references to the principles and processes of climatologic classification, allusion is made to the systemic character of the climate, and the corresponding justification and limitation are detached.

1. INTRODUCCION

Dos problemas fundamentales condicionan la opinión que se puede tener de las investigaciones hechas o en vías de realizarse en el ámbito de la Climatología. Por un lado, nos preocupa el carácter científico de tales investigaciones, es decir, su respeto a los principios, métodos y fines del quehacer científico en general. Por otro lado, es de vital interés establecer la relación que esas investigaciones climatológicas tienen respecto a la investigación geográfica total; en otros términos, buscamos reconocer y reafirmar si es necesario los nexos entre Geografía y Climatología. Mirados ambos problemas en conjunto, nuestra inquietud del momento desemboca, inevitablemente, en el análisis de la condición científica de la Geografía, en función del tratamiento que hace de los hechos del clima.

Dentro de este marco de referencia, varios son los aspectos particulares que han de abordarse: las exigencias que plantea el método general de la Ciencia a cualquier esfuerzo o proyecto de investigación; la posibilidad de aplicación que encierra toda investigación científica; la participación de la Climatología dentro del sistema fuertemente interconectado de la Ciencia Geográfica, y -finalmente- el recurso de la Climatología a otras ciencias auxiliares y afines, con apoyo en los más recientes hallazgos conceptuales y finalísticos que pueden aportarse.
2. EL METODO GENERAL DE LA CIENCIA Y EL CARACTER CIENTIFICO DE LA GEOGRAFIA (*)

La Ciencia es un estilo de pensamiento y acción (M. Bunge, 1969) que nos permite ordenar racionalmente la experiencia y, a través de ella, los eventos del mundo real.

La ordenación de la experiencia puede encuadrarse dentro de un esquema simple denominado del "plano-P" y del "campo-C" (ABLER et al., 1971). En síntesis, el esquema muestra cómo los eventos que cruzan la frontera sensorial (plano-P) y llegan a ser parte de nuestra experiencia, desencadenan un proceso de creciente abstracción y generalización dentro del campo-C que lleva a la producción de ideas, conceptos y megac太平念。La gran tarea de la Ciencia consiste, justamente, en la construcción de estructuras dentro del campo-C.

Si bien son más los rasgos comunes que los diferenciales al interior de la Ciencia, hay acuerdo entre varios autores para hacer una distinción entre ciencias formales y ciencias factuales. Las primeras estudian ideas y las segundas, hechos. Ciencias formales son la lógica y la matemática y ciencias factuales, las demás, incluida la Geografía. La ciencia formal es autosuficiente en cuanto a contenido y método de prueba, mientras que la ciencia factual depende del hecho para su contenido o significación, y de la experiencia para su convalidación (M. Bunge, 1969). En realidad, todo el cuerpo de la Ciencia contiene elementos de ciencia formal, por el entorno constante a las estructuras lógicas y matemáticas que practican las ciencias factuales. Siendo rigurosos, debemos convenir en que el paso del mundo empírico al idea-conceptual, que coincide con el paso de lo específico y único a lo abstracto y general, exige que cada ciencia factual se apoye en las ciencias formales. Operando en la zona límite entre ideas y conceptos, la Geografía -como las otras ciencias factuales incorpora en sus explicaciones, nociones desarrolladas por las ciencias formales. Como las estructuras matemáticas y lógicas pueden evaluarse sin referencia a las ideas sobre las cuales se aplican, aumenta enormemente nuestra capacidad de manipulación de tales ideas. Las ciencias formales son, pues, fundamentos esenciales de todas las ciencias factuales y no es posible operar eficientemente en éstas sin recurrir a aquéllas (ABLER et al., 1971).

El avance hacia la abstracción y la generalización coincide con los pasos de la explicación en Geografía, según han sido planteados por Harvey (1969), y con las etapas del método general de la Ciencia, procedimiento que -según M. Bunge (1969)- se aplica al ciclo entero de la investigación en el marco de cada problema de conocimiento.

De las varias descomposiciones del método científico en etapas sucesivas, hemos seleccionado la propuesta por Fitzgerald (1975) y que el autor presenta como un diagrama de flujos, referido específicamente al caso de la Ciencia.

(*) Partes sustanciales de este párrafo y el siguiente han sido tomadas de la comunicación de Peña y Romero, "Conceptos y métodos de la Nueva Geografía", presentada al 1er. Congreso de la Comisión Nacional de Geografía del IPGH, Concepción, 1977. Aprovecho de destacar aquí la importante ayuda que ha representado, en la redacción de este artículo, el constante intercambio de ideas sostenido con el colega H. Romero, de la Sede de Valparaíso de la Universidad de Chile, a quien agradecía su permanente espíritu de leal colaboración.
Geográfica, conteniendo como variante la denominada “aproximación metodológica tradicional”, orientada hacia ocurrencias únicas, sin generalización ni predicción posibles.

Cualquiera que sea el detalle de las etapas metodológicas, el proceso total se inicia en la formulación de los problemas a resolver por la vía de la investigación científica. En el sistema científico de ordenación del pensamiento, las preguntas son más importantes que las respuestas. De allí la conveniencia de desarrollar un agudo “sentido de los problemas” como parte esencial del entrenamiento de los científicos. En esta primera y delicada fase, la dirección principal la señalan las hipótesis concebidas como respuestas potenciales a las preguntas o problemas que se planteen.

Luego se encadenan las instancias de observación, descripción, definición, y medición, para pasar enseguida a la clasificación que constituye el primer paso que da el científico en su camino hacia la explicación. Aproximadamente en este nivel se completa la variante metodológica tradicional incorporada al diagrama de FITZGERALD (1975). Hasta aquí el interés ha estado centrado más bien en lo único, de donde deriva la falta de predictibilidad inherente a los estudios efectuados con estas limitaciones.

El método científico propiamente tal continúa con el análisis de datos seleccionados para descubrir orden en las relaciones entre distribuciones espaciales y, principalmente, con el sometimiento de las hipótesis originales a contrataciones duras, buscando probarlas o rechazarlas. Las hipótesis confirmadas adquieren carácter legaliforme o, a veces, el estatuto de leyes científicas, pasando a ser entonces las bases para investigaciones ulteriores.

En realidad, es discutible hablar de leyes científicas, especialmente en el caso de la Geografía. Más que afirmaciones determinísticas, se trata de aproximaciones estadísticas de muy alta probabilidad. Tales aproximaciones o “leyes” constituyen el cuerpo de las teorías y/o de los modelos que nos permiten alcanzar los objetivos de explicación, predictibilidad y aplicabilidad inherentes a todas las ciencias factuales. En este sentido, podemos definir a la Geografía como una ciencia concernida con el desarrollo racional y la comprobación de teorías explicativas y predictivas de la distribución espacial y la localización de diversas características sobre la superficie de la Tierra (YEATES, 1968).

Resumiendo, el empleo del método científico en Geografía obliga principalmente a la determinación precisa de los problemas a abordarse, a la formulación y a la comprobación estrictas de las hipótesis a investigarse y a la producción de leyes, teorías y modelos que expliquen adecuadamente la realidad espacial y permitan hacer predicciones y aplicaciones sobre ella.

En esta fase de nuestra exposición, procede dar cabida a la discusión del carácter nomotético o ideográfico de la Geografía, según los análisis hechos, entre otros autores, por SCHAEFER (1953), HARTSHORNE (1959) y W. BUNGE (1966). Schaefer afirma que “no hay leyes para lo único” y Hartshorne confirma, en cierta forma, tal afirmación cuando opone el término “nomotético”, referido a la búsqueda de leyes generales, a “ideográfico”, concerniente según sus planteamientos al estudio intensivo de casos individuales. De acuerdo a W. Bunge, Hartshorne confunde aquí caso único con caso individual, implicando este último generalidad y no unicidad. Cuando podemos construir teoría a propósito de algún fenómeno, éste es general. Pero, si no somos capaces de hacerlo, el fenómeno es único. Como no puede ser explicado, carece de sentido el tratar de generalizar y llegar, eventualmente, a la formulación de proposiciones
Informaciones Geográficas

Legitimations o de leves. De esta manera, la Geografía constituye una ciencia de lo generalizable; no es una disciplina peculiar con objetos únicos, porque ello contradice -en su esencia- la condición científica que la define.

3. La Geografía y los problemas de la sociedad

La ciencia nos provee de medios para determinar lo que está pasando en el mundo en que vivimos y para cambiarlo de acuerdo a nuestros propósitos. Se espera que los geógrafos puedan rectificar las incongruencias y disfuncionalidades espaciales existentes y desarrollen una acción preventiva contra posibles incompatibilidades espaciales en el futuro (ABLER et al., 1971). La demanda por actividades de diagnóstico, prescripción y prevención es idéntica para geógrafos y otros científicos y profesionales. La comunidad aspira a la conservación -si cabe- y al mejoramiento de la calidad general de la vida y en la consecución de este objetivo es fundamental la participación de la Geografía. De ese modo, como escribe W. BUNGE (1975), la Geografía es una materia de estudio claramente relacionada con la supervivencia.

El paradigma (*) de la gestación de las decisiones ambientales y de localización en sistemas complejos de BERRY (1972) confirma el rol de la Geografía y los geógrafos en la génesis de los procesos de conservación y, sobre todo, de cambios (evolutivos y revolucionarios) en los sistemas espaciales (ecosistemas o geosistemas). Estos procesos espaciales, denominados respectivamente, espacio, contingentes, formadores de espacios y transformadores de espacio, difieren entre sí porque los primeros proporcionan sistemas complejos con una poderosa capacidad de autoorganización que tiende a suprimir el cambio, mientras que los últimos insertan en dichos sistemas la capacidad de transformarse en estados nuevos y diferentes.

Coincidente con lo anterior, CHORLEY (1975) -al analizar críticamente el concepto de Geografía como ecología humana- plantea que los geógrafos tienen ante sí el problema de "modelar" sistemas que sean estables a corto plazo, bajo los efectos de mecanismos de retroalimentación negativa, y que, sin embargo, sean capaces a largo plazo de modificarse por acción de los mecanismos de retroalimentación positiva implicados en las tendencias económicas y sociales. Termina diciendo que parece claro que el geógrafo ha de moderar su preocupación por un modelo ecológico aplicado a la realidad espacial para favorecer, en cambio, la aplicación de un modelo de control del sistema ambiental, para que, así como el "designio divino" ha sido reemplazado por el "designio de la Naturaleza", éste -a su vez- sea substituido por el "designio del Hombre".

Observemos, junto con ANUCHIN (1975), que la decisión de los hombres de intervenir positivamente en el medio ambiente es una manifestación de la interpretación e interrelación de unos y otros componentes del geosistema. Los vínculos entre sociedad y naturaleza hacen aumentar la importancia del planteamiento geográfico general. La Humanidad ha llegado a un nivel crítico que reclama un cada vez mejor conocimiento del geosistema o geomedio, para evitar la rutina de las bases originales de la civilización y la desvalorización de las ventajas económicas de los actuales procesos de producción. La superespecialización y diferenciación al interior de la Geografía la han desacorado para enfrentar este desafío y han significado la pérdida de comprensión de la substancia real de la disciplina.

(*) Sobre el carácter y papel de los paradigmas en el desarrollo de las Ciencias, ver KUHN (1962).
mos de acuerdo en que el enfoque integrado de los recursos naturales no sólo incluye las variables geográfico-físicas y sus interrelaciones, sino que también comprende las variables geográfico-humanas en toda su diversidad. A través del enfoque y manejo integrado de los recursos naturales se persigue lograr el desarrollo más armónico de todos los elementos del medio ambiente. Damos, así, a la noción de medio ambiente una connotación mucho más dinámica que la que está implícita en las posturas preservacionistas de los eco-activistas contemporáneos y la rescatamos para su tratamiento científico por parte de los geógrafos.

Un criterio integracionista similar debe operar, también, en el estudio de las regiones geográficas. Nos preocupa, empero, el notorio desequilibrio de los contenidos que se reconocen en el hecho regional: predominan los contenidos geográfico-humanos, sin parar mientes en que los componentes geográfico-físicos son tan importantes como aquellos en la estructuración y funcionamiento del geosistema. Porque aquí se trata, nuevamente, de sistemas geográficos y este enfoque obliga a discernir la gama total de elementos o entidades constituyentes del sistema y de conexiones recíprocas que entre ellos se anudan.

Obrando según estos términos de referencia, ayudamos a reconstituir -en la práctica- la unidad esencial de la Geografía, trabajando en torno a problemas y no en parcelas incomunicadas, y la ponemos efectivamente al servicio del Hombre y la Sociedad.

4. CLIMATOLOGIA Y GEOGRAFIA

La proliferación de trabajos rotulados como "climatológicos", generados al margen de las exigencias y definiciones epistemológicas de la Geografía, ha hecho necesario recordar algunos rasgos fundamentales de esta ciencia. Trataremos, ahora, de proyectar dichos rasgos al campo de la Climatología, entendida como Geografía de los hechos climáticos o, simplemente, como Geografía del clima (la "Klimageographie" de BLÜTHGEN).

Comencemos analizando el modo de articulación que se establece entre el paradigma de la gestación de las decisiones ambientales y de localización en sistemas complejos (BERRY, 1972) y las investigaciones en Climatología. El modelo al que se conforma el paradigma considera que dicha gestación ocurre en un contexto locacional y ambiental que, para Berry, es el ecosistema. En el interactúan los organismos vivos y sus medios ambientes físico, biológico y cultural. Empleando una denominación más apropiada (de "geocosistema", por ejemplo), mantenemos -sin embargo- el carácter de sistema abierto asignado por MONTEIRO (1976) al espacio geográfico, con una estructura en la que los atributos y las relaciones de sus partes asumen una organización funcional.

En el desempeño de este sistema organizado funcionalmente, son vitales los insumos de energía que se incorporan por vía de los hechos climáticos, particularmente, los de tipo radiacional y dinámico-circulatorios. Ambas categorías de hechos climáticos constituyen, por tanto, materia de primera atención para las investigaciones climatológicas. Permiten, además, evaluar más correctamente el doble papel económico y ambiental de la intervención antropica cuando ocurre, por ejemplo, una sobrecarga en el aire de productos nocivos de origen humano que provocan el mal funcionamiento de los componentes ecológicos del sistema o cuando, por forestación desforestación o por implantación de grandes napas acuáticas artificiales, se alteran los balances locales de energía y humedad y la vasta trama de relaciones climáticas ligada a ellos.
HARE (1966) ha planteado su preocupación por aclarar el funcionamiento del clima como un elemento del ambiente. La “climatología ambiental” depende crecientemente del estudio de los procesos de intercambio: se deriva del análisis de parámetros simples como la temperatura o la humedad relativa hacia la medición de flujos y la transformación de la energía en la capa límite de la atmósfera. Budyko y Gerasimov en la URSS; Thornthwaite, Leetma y Terjung en USA, por citar sólo a algunos, forman parte de la pléyade de científicos que tratan de dar nueva base “energética” a la Climatología, haciéndola participar más activamente en el tratamiento integrado de los eventos geográficos y en los procesos de cambio del medio natural y humano.

La moderna Climatología, según TERJUNG (1976), debe ser comprendida en su tránsito a través de cinco niveles metodológicos que la van haciendo más sofisticada en sus aspectos filosóficos y la van llevando a grados superiores de integración. Los niveles corresponden, empezando por el más elemental, al inventario cualitativo y las asociaciones; las correlaciones estructurales cuantitativas (sistemas morfológicos); los procesos funcionales (sistemas de cascadas); los sistemas físicos de proceso-respuesta y los sistemas físico-humanos de proceso-respuesta. Las cascadas de energía, masa y momento del tercer nivel están relacionadas recíprocamente con los componentes morfológicos del segundo nivel, produciendo por resultado el sistema de proceso-respuesta llamado “clima”. Este sistema de proceso-respuesta que podría quedar restringido al cuarto nivel de carácter solamente físico, accede a la categoría más alta y más compleja cuando se agrega la acción humana que busca deliberadamente la optimización de los procesos o provoca disfunciones de modo inadvertido e indecedo. En el nivel superior se suelen recibir influencias de los sistemas socioeconómicos de toma de decisiones. Considerando estos antecedentes, se entiende que Terjung haya definido la Climatología como el análisis físico de las relaciones y acciones fundamentales del sistema de proceso-respuesta Tierra/Atmósfera con referencia al hombre y sus actividades.

Con la ayuda de estos planteamientos básicos, podemos intentar ahora una aproximación más rigurosa a las orientaciones, los métodos y las finalidades de la investigación climatológica.

Se trata de investigación científica de hechos que poseen expresión espacial. Buscamos el conocimiento y la comprensión de sus causas, porque allí reside el poder explicativo de la Climatología. Las causas o factores o controles de los hechos climáticos los encontramos en la radiación solar, en la estructura morfológica de la atmósfera y en las características de la superficie terrestre. El punto de vista genético es, pues, fundamental y permite la superación del estadio descriptivo y formal que singulariza a algunos trabajos “climáticos”. Estamos intentando, personalmente, aplicar esta perspectiva a las clasificaciones climáticas, a fin de substraerlas de la condición de simples manipulaciones de datos empírico-cuantitativos y analíticos, para transformarlas en adecuadas herramientas de explicación del origen y la disposición areal de algunos rasgos del espacio geográfico, útiles a eventuales proyectos de reordenación y mejor aprovechamiento del territorio.

La clasificación en Climatología, y en Geografía —en general—, consiste en el agrupamiento sistemático de los objetos en clases, sobre la base de sus propiedades e interrelaciones comunes. Es un proceso de simplificación ordenadora de hechos, cuyas características o atributos espaciales no espaciales permiten llegar al diseño de regiones uniformes en las que la varianza interna es menor que la varianza externa. Como apunta NAKAMURA (1975), los mismos
procedimientos lógicos de la clasificación conducen a la regionalización, aunque -en algunos casos- los resultados obtenidos de la clasificación no pueden ser transferidos a la regionalización. El mismo autor agrega que, así como una clasificación agrícola debe ser hecha sobre la base de las propiedades inherentes a la agricultura practicada, una clasificación climática ha de hacerse, no con ayuda de la vegetación o la agricultura, sino que exclusivamente en función de las características inherentes al clima.

Tratándose de una realidad compleja como la climática (lo que también ocurre -y con mayor razón- con la realidad geográfica total), en la que intervienen muchas variables, es necesario recurrir a técnicas de clasificación multivariada, como la matriz de índices de semejanza. En un intento aún incompleto de clasificación genética a escala regional, hemos empleado una matriz de datos geográficos en cuyo vector columna se han ubicado los elementos locacionales, mientras que en el vector fila se han consignado las características sustantivas o atributos que, en nuestro caso, se identifican con los factores o controles climáticos. La influencia que dichos factores o controles ejercen (o nó) en los “lugares” enumerados en el vector columna, se identifica según presencia (Sí = 1) o ausencia (Nó = 0) del atributo.

La matriz de índice de semejanza y el “árbol” que puede trazarse con su ayuda, serán usados en la agrupación de los elementos locacionales o “lugares”, comenzando por los más parecidos entre sí. Técnicas complementarias como el análisis de factores en componentes principales y el análisis de “cluster” (“racimo” o grupo) son también susceptibles de aplicación, una vez resuelto el problema de alimentación de la matriz con datos consistentes.

En el fondo, se trata de extrapolar a la Geografía del clima el mismo bagaje técnico y conceptual de la Geografía Regional, insistiendo en que la delimitación de regiones es, básicamente, un problema taxonómico. Los sistemas regionales son clasificaciones areales en las que se compatibilizan un mínimo de unicidad y un máximo de generalidad (ABLER et al., 1971), pudiendo considerarse que los sistemas climáticos regionales pertenecen a la categoría de sistemas regionales específicos definidos no sólo por la combinación de atributos intrínsecos, sino que también en virtud de la localización.

Hasta ahora, nos parece débil la integración de la dimensión espacial en los sistemas geográfico-físicos, incluidos los sistemas climáticos. NAKAMURA (1975) reconoció la posibilidad de “especializar” las variables climáticas incorporándolas a sistemas regionales de base dinámico-atmosférica en los cuales se distinguen subsistemas (subregionales) y unidades o entidades más pequeñas, debidamente jerarquizadas, interconectadas y organizadas funcionalmente. En esa dirección, delineamos en un trabajo anterior (PEÑA & ROMERO, 1976) el sistema climático del Pacífico Sudoriental centrado en la célula de alas presiones subtropicales que se localiza habitualmente entre 20 y 40°S y de 80 a 100° W, frente a las costas del norte y centro de Chile.

Posteriormente, hemos elaborado un esquema de ordenación de las condiciones climáticas chilenas en torno a tres grandes núcleos regionales de climas para cada uno de los cuales pueden distinguirse las respectivas periferias, zonas limítrofes y áreas transicionales (PEÑA & ROMERO, 1978). El esquema propuesto se alimenta con el producto de la clasificación genética de los climas chilenos planteadas antes por los mismos autores (PEÑA & ROMERO, 1977).
El rol fundamental de los factores en las clasificaciones genéticas de los climas y el papel de los aportes de energía y de los eventos dinámico-atmosféricos en el conjunto de tales factores satisfacen varias condiciones básicas del tratamiento sistemático de los hechos climáticos, que se agregan al ya mencionado reconocimiento de estructuras espaciales. El núcleo de cada subsistema climático regional y, por este conducto, el subsistema en su totalidad se retroalimentan constantemente gracias a los flujos energéticos y circulatorios (en algunos casos, también por acción antrópica). La máxima intensidad con que estas influencias se manifiestan en los núcleos o “cores” de los subsistemas se degrada o modifica, progresiva o abruptamente, según un patrón radial de carácter predominantemente horizontal o lateral. De ese modo, en las periferias o en las áreas limitrofes de cada subsistema se localizan condiciones climáticas que pueden interpretarse como transformaciones, más o menos rotundas, de aquellas situadas en los núcleos respectivos. Los procesos de cambio y/o difusión se rigen, al igual que las condiciones climáticas areales, por pautas propias del enfoque dinámico-sintético y genético de la Climatología.

Los núcleos o “cores” climáticos regionales se definen, en nuestro sistema, por ser la sede de la concentración preferencial de marcadas influencias anticyclonales (cáldas o frías) o ciclonales, según el caso. Las periferias y las áreas limitrofes correspondientes engloban tipos y subtipos climáticos caracterizados por rasgos de carácter anticyclonal o ciclónico, más o menos acentuados, en función de la mayor o menor distancia que las separan del núcleo y de la menor o mayor envergadura de los obstáculos interpuestos en las vías de dispersión de las influencias nucleares (efecto de “fricción”).

Estas y otras manifestaciones espaciales de los hechos climáticos pueden ser tratadas con los mismos criterios y herramientas que el conjunto de la Geografía está usando para reconocer y delimitar espacios geográficos. Después de todo, son solamente variantes de los problemas geométricos que tiene que afrontar permanentemente la Geografía en su condición de “ciencia del espacio”. La topología, el estudio de redes, la teoría de grafos, los patrones de difusión y el análisis de superficies de tendencia, por ejemplo, tendrán que ser, paulatinamente, incorporados al equipamiento técnico a emplearse en las investigaciones climatológicas, así como ahora se les usa -con creciente fuerza y rigurosidad en los estudios geográficos-sociales.

Se nos excusará el no referirnos a otros aspectos conceptuales y técnicos también necesarios de contemplar en las investigaciones del clima, como ocurre, por ejemplo, con el recurso a la percepción remota (especialmente bajo la forma de imágenes e información entregadas por los satélites meteorológicos u otras naves aéreas), o la utilización de instrumentos estadísticos de complejidad variable o la ratificación del clima como recurso natural. En verdad, todos estos aspectos están incorporados ya al bagaje normal de los investigadores climatólogos, existiendo sobre ellos una amplia base bibliográfica a la cual recurrir, si es menester.

De lo planteado con algún detalle en este trabajo, es posible obtener aún más provecho si se piensa que cubre, más o menos ampliamente, los ámbitos de los principios, medios y fines de la Climatología. Supone una orientación o re-orientación global del trabajo dentro de la disciplina, de modo de hacerla -como anotábamos al comienzo- más científica y más geográfica.
REFERENCIAS BIBLIOGRÁFICAS

BUNGE, M. 1969. La investigación científica; Ed. Ariel, Barcelona.

FITZGERALD, B. 1975. 'Developments in geographical method' (Science in Geography 1); Oxford University Press, London.

MONTEIRO, C. 1976. O clima e a organizacao do espaco no Estado de Sao Paulo: problemas e perspectivas; Instituto de Geografia, Universidade de Sao Paulo, Sao Paulo.

NAKAMURA, K. 1975. A subtropical anticyclone: a regional system; Geogr. Reports of Tokyo Metropolitan University, 10: 111 - 117.

PEÑA, O. & H. ROMERO 1976. Sistemas geográficos regionales en el Océano Pacífico Sudoriental; comun. al Seminario sobre Chile y sus islas oceánicas; Universidad de Chile / Santiago.

PEÑA, O. & H. ROMERO 1977. Los principios de clasificación genética de los climas aplicados al caso de Chile; comun. al Congreso de Geógrafos Latinoamericanistas; Paipa/Colombia.

PEÑA, O. & H. ROMERO 1978. Sistemas en Climatología (aplicación a una clasificación genética de los climas chilenos); Notas Geográficas, Valparaíso (en prensa).

SAA, R. 1976. Los recursos naturales renovables y la planificación regional; nacional; Junta Nacional de Planificación y Coordinación Económica de Ecuador y ONU, Quito.

