Double $\pi-\pi$ stacking in 2-[(E)-(3,5-dimethyl-isoxazol-4-yl)diazenyl]benzoic acid

Luis Alvarez-Thon, ${ }^{\text {a }}$ * Carlos Bustos, ${ }^{\text {b }}$ Eduardo Schott, ${ }^{\text {b }}$ Christian Sanchez ${ }^{b}$ and Andres Ibañez ${ }^{\text {c }}$
${ }^{\text {a }}$ Departamento de Química, Universidad Andrés Bello, Santiago de Chile, Chile,
${ }^{\mathbf{b}}$ Departamento de Química, Universidad Austral de Chile, Valdivia, Chile, and ${ }^{\text {c }}$ CIMAT, Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago de Chile, Chile

Correspondence e-mail:
quaternionic@gmail.com

Molecules of the title compound, $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$, are linked into zigzag chains by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. The crystal structure is further stabilized by $\pi-\pi$ stacking interactions.

Comment

In the past few years, synthesis of isoxazole-related compounds has been the subject of many investigations due to the versatility of their properties. Some uses or properties are anti-inflammatory, analgesic and ulcerogenic (Daidone et al., 1999), antimicrobial and antifungal (Bhatt et al., 1998), inhibition of cyclooxygenase-2 (Talley, 1999; Talley et al., 2000), anticancer activity (Li et al., 2003), selective agonist of dopamine D4 receptors (Rowley et al., 1996) and antagonist of GABA (Frolund et al., 2002).

(I)

A perspective view of the title compound is shown in Fig. 1. The dihedral angle between the mean planes formed by the two rings is $25.20(15)^{\circ}$. The bond lengths of the isoxazole ring (Table 1) are in very good agreement with the usual values for isoxazoles (Allen et al., 1987).

Zigzag chains, which run in the [010] direction (Fig. 2), are formed via an intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond. The structure is further stabilized by $\pi-\pi$ stacking interactions. The isoxazole ring at (x, y, z) shows two stacking interactions: with the benzene ring at $\left(\frac{1}{2}+x, \frac{1}{2}-y, 1-z\right)$, with a distance of 3.9343 (18) \AA between the ring centroids, and with that at $\left(-\frac{1}{2}+x, \frac{1}{2}-y, 1-z\right)$, with a distance between the ring centroids of 3.6700 (18) A. Columns are formed along the a axis via these $\pi-\pi$ stacking interactions (Fig. 3).

Figure 1
A view of the molecule of (I), with displacement ellipsoids drawn at the 50% probability level and H atoms drawn as circles of arbitrary size.

Experimental

In a 100 ml round-bottomed flask were mixed 2-[(2Z)-2-(1-methyl-3oxobutylidene)hydrazino]benzoic acid (0.005 mol), ethanol (25 ml), glacial acetic acid (2 ml) and hydroxylamine hydrochloride $(0.005 \mathrm{~mol}, 0.35 \mathrm{~g})$. The mixture was then stirred and heated under reflux for 18 h . After cooling to room temperature, $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$ was added, allowing the precipitation of an abundant quantity of orange solid. The product was collected by suction, washed twice with $\mathrm{H}_{2} \mathrm{O}$ and dried under vacuum at 313 K . The crude compound was recrystallized by diffusion of n-hexane into a concentrated solution in n-hexane/chloroform (1:3 v / v).

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M_{r}=245.24$
Orthorhombic, $P_{2} 2_{1} 2_{1} 2_{1}$
$a=7.3550(10) \AA \AA$
$b=11.6182(15) \AA$
$c=13.6335(17) \AA$
$V=1165.0(3) \AA^{3}$
$Z=4$
$D_{x}=1.398 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker CCD area-detector diffractometer
φ and ω scans
Absorption correction: none 8600 measured reflections 1569 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.074$
$S=0.91$
1569 reflections
165 parameters

Mo $K \alpha$ radiation
Cell parameters from 999 reflections
$\theta=2.3-27.9^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Polyhedron, orange
$0.26 \times 0.20 \times 0.18 \mathrm{~mm}$

945 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.073$
$\theta_{\text {max }}=27.9^{\circ}$
$h=-9 \rightarrow 9$
$k=-14 \rightarrow 15$
$l=-17 \rightarrow 17$

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0217 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.019$ 。
$\Delta \rho_{\text {max }}=0.14 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.10 \mathrm{e}^{-3}$

Part of the crystal structure, showing the formation of a zigzag chain along [010]. The dashed lines represent hydrogen bonds. H atoms not involved in hydrogen bonds have been omitted. [Symmetry code: (\#) $-x$, $\frac{1}{2}+y, \frac{3}{2}-z$.]

Figure 3
View approximately along the [100] direction, showing the $\pi-\pi$ stacking. H atoms have been omitted.

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

O3-N3	$1.424(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.418(4)$
O3-C11	$1.352(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.347(3)$
$\mathrm{N} 3-\mathrm{C} 9$	$1.301(3)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.254(3)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1$	$113.0(2)$	$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 10$	$113.2(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 10$	$176.6(2)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N}^{\mathrm{i}}$	0.82	1.94	$2.735(3)$	163

Symmetry code: (i) $-x, y+\frac{1}{2},-z+\frac{3}{2}$.

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with aromatic $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$, methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$. The methyl groups were allowed to rotate but not to tip. In the absence of significant anomalous dispersion effects, Friedel pairs were merged prior to final refinement.

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2000); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-PC (Sheldrick, 1994); software used to prepare material for publication: PLATON (Spek, 2003).

The authors greatly acknowledge the financial support received from the Dirección de Investigación y Desarrollo, DID-UACh, of the Universidad Austral de Chile (grant S

2004-03). The authors also thank CIMAT for permission to use the diffractometer and CCD detector.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bhatt, A. H., Parekh, H. H. \& Parikh, A. R. (1998). Heterocycl. Commun. 4, 361-366.
Bruker (2000). SAINT-NT. Version 6.02a. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SMART-NT. Version 5.624. Bruker AXS Inc., Madison, Wisconsin, USA.
Daidone, G., Raffa, D., Maggio, B., Plescia, F., Cutuli, V. M. C., Mangano, N. G. \& Caruso, A. (1999). Arch. Pharm. Pharm. Med. Chem. 332, 50-54.
Frolund, B., Jorgensen, A. T., Tagmose, L., Stensbol, T. B., Vestergaard, H. T., Engblom, C., Kristiansen, U., Sanchez, C., Krogsgaard-Larsen, P. \& Liljefors, T. (2002). J. Med. Chem. 45, 2454-2468.
Li, W.-T., Hwang, D.-R., Chen, C.-P., Shen, C.-W., Huang, C.-L., Chen, T.-W., Lin, C.-H., Chang, Y.-L., Chang, Y.-Y., Lo, Y.-K., Tseng, H.-Y., Lin, C.-C. Song, J.-S., Chen, H.-C., Chen, S.-J., Wu, S.-H. \& Chen, C.-T. (2003). J. Med. Chem. 46, 1706-1715.
Rowley, M., Broughton, H. B., Collins, I., Baker, R., Emms, F., Marwood, R., Patel, S. \& Ragan, C. I. (1996). J. Med. Chem. 39, 1943-1945.
Sheldrick, G. M. (1994). SHELXTL-PC. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Talley, J. (1999). J. Prog. Med. Chem. 13, 201-234.
Talley, J. J., Brown, D. L., Carter, J. S., Graneto, M. J., Koboldt, C. M., Masferrer, J. L., Perkins, W. E., Rogers, R. S., Shaffer, A. F., Zhang, Y. Y., Zweifel, B. S. \& Seibert, K. (2000). J. Med. Chem. 43, 775-777.

