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Abstract

A modified version of the Møller-Plesset approach for obtaining the correlation
energy associated to a Hartree-Fock ground state is proposed. The method is tested
in a model of interacting fermions that allows for an exact solution. Using up to
third order terms improved results are obtained, even in the limit of loosely bound
particles.

The study of molecules and larger systems is seriously constrained by their
many body nature. Several approximation schemes have been devised over
the years, among which the Hartree-Fock (HF) method is one of the oldest
and most fruitful. Because it treats interactions in a mean field way particle
correlations are left out, however, a shortcoming that can limit severely the
validity of its results. One may improve over HF by treating correlations as a
perturbation. In the so-called Møller-Plesset method, a Rayleigh-Schrödinger
perturbative expansion that is naturally suggested by the same structure of
the HF solution[1,2,3,4] is adopted. This formalism reduces the correlation
energy to an infinite series in the perturbation, of which only the first few
terms need to be computed in practice. This scheme has been used for a long
time as a good starting point to study correlation effects in molecular systems.
However, this method is useful only if the perturbation series is rapidly conver-
gent, which is not always true[5]. Failures of the Møller-Plesset method have
been documented even for small molecules [5,6,7]. In this paper we present a
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variation of the Møller-Plesset approach that appears to give accurate results
in low order perturbation schemes even when particles are loosely bound, such
as in chemical bonds.

Consider the many-particles Hamiltonian

H =
∑

i

h(i) +
∑

i,j>i

v(i, j), (1)

where h(i) = h(ri) is the sum of the one-particle kinetic energy plus external
potential energy, and v(i, j) = v(ri, rj) is the two-particles interaction energy.
The HF approximation to the ground state of a system of identical fermions
leads to a variational wave function Φ in the form of a Slater determinant,
constructed with one-particle orbitals that satisfy the equations

[

h(i) +
∑

b

(Fb(i) −Kb(i))
]

φn(i) = ǫnφn(i), (2)

where Fb and Kb are the Coulomb and exchange operators, respectively. Here
and in what follows summation over indices a, b, c run over all occupied states,
while n runs over all possible states. The eigenvalues satisfy the relation

ǫn = 〈n|h|n〉 +
∑

b

〈nb‖nb〉, (3)

where

〈mn‖mn〉= 〈mn|mn〉 − 〈mn|nm〉, (4)

〈mn|pq〉=
∫

φm(1)∗φn(2)∗v(1, 2)φp(1)φq(2)d1d2. (5)

In the above expression 1 and 2 represent the one-electron variables of coor-
dinate and spin. The energy of the HF state is

EHF =
∑

a

〈a|h|a〉 +
1

2

∑

a,b

〈ab‖ab〉

=
∑

a

ǫa −
1

2

∑

a,b

〈ab‖ab〉, (6)

where to obtain (6) we have used Eq. (3). The operator

HHF =
∑

n

ǫnĉ†nĉn − 1

2

∑

a,b

〈ab‖ab〉 (7)

is then a natural choice for an effective HF hamiltonian, diagonal in the HF
orbitals and having as ground state the HF energy EHF . In Eq. (7) ĉ†n (ĉn) is the
creation (annihilation) operator of a particle in the state φn. This hamiltonian
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operator is the starting point to construct a perturbation expansion for the
correlation energy using as perturbation VHF = H−HHF [4].

A second choice for a hamiltonian is also possible, however. Equation (6) may
be written in the form,

EHF =
∑

a

(ǫa −
1

2

∑

b

〈ab‖ab〉), (8)

suggesting as an alternate hamiltonian

HMHF =
∑

n

(ǫn − 1

2

∑

b

〈nb‖nb〉)ĉ†nĉn, (9)

also diagonal in the HF orbitals. The correlation energy can again be described
in terms of a perturbation, this time of the form VMHF = H −HMHF . Note
that while Eq. (7) involves an overall constant, Eq. (9) substracts from each
single particle energy a different correction. Although both forms yield the
same ground state energy, the energy of excited states are different, affecting
the various orders contributions in a perturbation expansion. For instance, the
second order correction to the HF ground state energy has the form[4]

E(2) =
∑

Φ′

|〈Φ|H|Φ′〉|2
EHF − EΦ′

=
1

4

∑

abrs

|〈 ab‖ rs 〉|2
EHF − EΦ′

, (10)

where in the numerator we have used the fact that the excited state Φ′ is or-
thogonal to the ground state. This is the first finite correction in the Rayleigh-
Schrödinger perturbation expansion since for either choice of hamiltonian the
first order term vanishes. Only doubly excited states Φ′ = Φrs

ab (φa replaced by
φr and φb replaced by φs in the Slater determinant Φ, with ǫr, ǫs above the
Fermi energy) contribute[4]. The choice of hamiltonian affects the excitation
energies in the denominator, which have the form

EHF − EΦrs
ab

=











ǫa + ǫb − ǫr − ǫs, H0 = HHF

ǫ̃a + ǫ̃b − ǫ̃r − ǫ̃s, H0 = HMHF

, (11)

where ǫ̃n = ǫn − 1
2

∑

b〈nb‖nb〉 = 1
2
(ǫn + 〈n|h|n〉). Replacing in Eq. (10) both

forms clearly lead to different results. A similar analysis of the third and higher
order terms in the perturbation expansion yields again different results. For
example, in the third order correction, besides the change of denominators in
the standard Møller-Plesset expression[4], an additional term ∆E(3) appears,
which can be cast in the compact form, useful in computations,

∆E(3) = −E(2)

−1

4

∑

abrs

(hrr + hss − haa − hbb)|〈ab‖rs〉|2
(ǫ̃r + ǫ̃s − ǫ̃a − ǫ̃b)2

, (12)
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where hnn = 〈n|h|n〉. The first element of Eq. (12) cancels the second order
energy correction. However, the second element of Eq. (12) is also second order
in the interaction. Replacing Eqs. (10) and (11) in (12) and performing simple
operations ∆E(3) can be put in a form that reveals explicitly the third order
character of the correction.

Table 1
Ground state energies of a system of two harmonically confined spin 1/2 particles
interacting through a harmonic potential of strength k. Several approximations are
included: Hartree-Fock (HF), Møller-Plesset perturbation theory of orders n = 2, 3
(MPn), modified MPn (MMPn), as well as the exact values. Repulsive interactions
are represented by negative values of the elastic constant k.

k HF MP2 MP3 MMP2 MMP3 Exact

-0.25 1.732 1.655 1.836 1.702 1.710 1.707

-0.24 1.744 1.681 1.803 1.717 1.724 1.721

-0.22 1.766 1.725 1.784 1.745 1.750 1.748

-0.20 1.789 1.760 1.791 1.772 1.776 1.775

-0.18 1.811 1.791 1.808 1.798 1.801 1.800

-0.16 1.833 1.819 1.828 1.823 1.825 1.825

-0.09 1.908 1.905 1.906 1.905 1.906 1.906

-0.04 1.960 1.959 1.959 1.959 1.959 1.959

-0.01 1.990 1.990 1.990 1.990 1.990 1.990

0.00 2.000 2.000 2.000 2.000 2.000 2.000

0.04 2.040 2.039 2.039 2.039 2.039 2.039

0.16 2.154 2.150 2.149 2.149 2.149 2.149

0.36 2.332 2.319 2.314 2.316 2.313 2.311

0.64 2.561 2.534 2.522 2.525 2.516 2.510

1.00 2.829 2.784 2.762 2.767 2.749 2.732

In order to assess the convenience of either formulation for obtaining correc-
tions due to correlations we have solved a system of two spin-1/2 particles in a
harmonic potential, interacting through a harmonic force. The reason for the
choice is that this is an interacting system involving identical fermions that
may be solved exactly[8]. The Hamiltonian is

H =
1

2

(

−∆1 + r2
1

)

+
1

2

(

−∆2 + r2
2

)

+
1

2
k(r1 − r2)

2, (13)

4



where the coordinates and the energy are given in the oscillator units of the
confinement potential. The exact ground state energy is

E0 = 1 +
√

1 + 2k. (14)

The model contains the parameter k that allows the study of attractive (k > 0)
as well as repulsive (k < 0) interactions. Equation (14) shows that k = −0.5
is the lowest value for which a bound state exists.

We have solved the problem in two dimensions, using a basis of noninteracting
harmonic oscillators eigenfunctions

φnx,ny
(x, y) = ϕnx

(x)ϕny
(y), 0 ≤ nx + ny ≤ 5, (15)

where the ϕ(x) are the usual one-dimensional harmonic oscillator eigenfunc-
tions. The set (15) is an exact solution when k = 0. The HF solution is obtained
by solving the self-consistent-field equation for closed shell configurations[4].
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Fig. 1. Correlation energy for a system of two harmonically confined spin 1/2 par-
ticles interacting through a harmonic potential of strength k. The exact result is
included, as well as corrections up to second and third order for the Møller-Plesset
(MP) and modified Møller-Plesset (MMP) choices of zeroth-order hamiltonian.

Table 1 shows the ground state energy for the Hamiltonian (13) calculated us-
ing the standard Møller-Plesset perturbation theory of order n = 2, 3 (MPn),
and our modified form, MMPn. Figure 1 shows the exact correlation energy
Ecorr = EHF − E for different values of k, together with results obtained for
the two choices of HF hamiltonian, in second and third order of perturbation
theory. Notice that MMPn yields better results throughout. Notice also that
the usual MPn fails badly in both orders of approximation when the system
becomes more loosely bound, as k approaches the critical value -0.5. In fact,
convergence problems prevent solving the HF self-consistent equations for k

beyond -0.25. By contrast, MMPn continue to be good approximations even
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in this range of k. This strongly suggests that the modified perturbation the-
ory may be more suitable in treating outer shells of bound systems, such as
electrons participating in chemical bonds. Investigation of this ansatz is in
progress.

A well known feature of HF theory is that the many body ground state energy
is not the bare sum of energies of filled single particle orbitals. Interactions
are counted twice and this overestimation is corrected for by substracting
the constant explicit in Eq. (3). The remarkable improvement obtained over
the usual Møller-Plesset approach in our test example may be traced to the
fact that this latter method does not correct the single particle energies for
such effect. In fact, the energy denominator appearing in the perturbative
corrections to all orders in such case may grossly depart from the true two-
particle excitation energy that the numerator in the expression is weighting. By
contrast, in the method proposed here each self energy is corrected accordingly.
It is hoped that our results will stimulate the use of the proposed method
in situations where corrections to the Hartree-Fock approximations may be
necessary.
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