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Abstract

In this work, the nuclear reactivity indices of density functional theory have been generalized to the spin polarized case and their
relationship to electron spin polarized indices has been established. In particular, the spin polarized version of the nuclear Fukui function
has been proposed and a finite difference approximation has been used to evaluate it. Applications to a series of triatomic molecules
demonstrate the ability of the new functions to predict the geometrical changes due to a change in the spin multiplicity. The main
equations in the different ensembles have also been presented.

PACS: 31.10. + z; 31.15.Ar; 31.15.Ew
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1. Introduction

Density functional theory (DFT) has become a useful
mathematical framework for the development of a chemi-
cal reactivity theory [1]. Based upon the Hohenberg–Kohn
theorems [2], it uses the electron density qð~rÞ as the basic
variable instead of the wave function. In this context, a
number of response functions measuring the change of
some system property due to a perturbation in some vari-
able have been defined. One of the advantage of this math-
ematical model is its thermodynamics like structure, which
permits to identify the different ensembles characterized by
different independent variables and which are related
through Legendre transformations [3].

Global electronic response quantities, such as the elec-
tronic chemical potential l [4], the chemical hardness g
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[5], and the chemical softness S, represent global responses
of the system to global perturbations:

l ¼ oE
oN

� �
vð~rÞ
;

g ¼ ol
oN

� �
vð~rÞ
;

S ¼ oN
ol

� �
vð~rÞ
;

ð1Þ

where N is the number of electrons and the derivatives are
done at constant external potential vð~rÞ. These indices have
been found to be useful tools in the thermodynamic
description of global electronic chemical reactivity [6].
Local electronic descriptors, such as the electron density
qð~rÞ, the local softness sð~rÞ [7], and the Fukui function
f ð~rÞ [8,9], represent local responses to global perturbations
on the system:
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qð~rÞ ¼ oE
ovð~rÞ

� �
N

;

sð~rÞ ¼ oqð~rÞ
ol

� �
N

¼ Sf ð~rÞ;

f ð~rÞ ¼ oqð~rÞ
oN

� �
vð~rÞ
¼ ol

ovð~rÞ

� �
N

.

ð2Þ

The Fukui function, introduced by Parr and Yang [8],
translates into DFT the frontier molecular orbital theory
concepts of Fukui et al. [10] representing the system sen-
sitivity to a perturbation in vð~rÞ. Due to the discontinuity
of the electron density with respect to N, left hand Fukui
function f �ð~rÞ, measuring reactivity to an electrophilic re-
agent, and right hand Fukui function f þð~rÞ, measuring
reactivity to a nucleophilic reagent, are defined. The appli-
cation and generalization of those concepts to a great
variety of systems have been recently reviewed [11]. How-
ever, to complete the picture of a chemical reaction it is
necessary to know what are the changes in the nuclei
movement. The change of the external potential in free
molecules is mapped to changes in nuclear configuration,
the principal variable in a chemical reaction [12].
Although the electronic density determines all ground
state properties of a molecular system, the response of
the nuclei to a perturbation in N remains unknown, and
a response kernel is needed to translate electron density
changes in external potential changes. Cohen et al. [13]
introduced an alternative to this problem defining the
nuclear Fukui function (NFF) as the change of the
Helmann–Feynman [14] force on the nucleus a due to a
perturbation in the number of electrons at a constant
external potential [15–17]

~/a ¼
o~F a

oN

 !
vð~rÞ

. ð3Þ

Note that ~/a is a vectorial function, which does not mea-
sure the magnitude of the perturbation in the external po-
tential dvð~rÞ, but measures the magnitude of the early state
of this perturbation. Using Maxwell relations, Baekelandt
showed that the nuclear Fukui function can be interpreted
as the configurational contribution to the change in the
chemical potential [18]

~/a ¼
o~F a

oN

 !
vð~rÞ

¼ � dl

d~Ra

� �
N

; ð4Þ

where ~Ra designates the position of the nucleus a. In addi-
tion to nuclear Fukui function (NFF), Cohen et al. [13,15]
defined the nuclear softness ~Sa as the product of the NFF
with the global electronic softness and defined the nuclear
softness kernel ~S

N

a in analogy with the electronic counter-
part. Similarly, De Proft et al. [19] introduced the nuclear
hardness kernel and established important relations among
electronic and nuclear reactivity index in the four ensem-
bles of the DFT:
~S
N

a ¼ S~/a;

~S
N

a ð~rÞ ¼
d~F a

duð~rÞ

 !
;

gN
a ð~rÞ ¼

duð~rÞ
d~F a

� �
;

uð~rÞ ¼ vð~rÞ � l.

ð5Þ

Further relationships among electronic and nuclear indexes
[18,20–22] have been developed.

The goal of this work is to generalize the nuclear reactiv-
ity index to the spin polarized case and to establish the cor-
responding relations among nuclear and electronic spin
polarized quantities. The spin polarized version of the elec-
tronic descriptors has been developed by Galván et al. [23]
where they derived expressions for the spin generalized
electronic Fukui functions:

fNN ¼
oqð~rÞ
oN

� �
Ns;vð~rÞ;Bð~rÞ

;

fSN ¼
oqsð~rÞ
oN

� �
Ns;vð~rÞ;Bð~rÞ

;

fNS ¼
oqð~rÞ
oNs

� �
N ;vð~rÞ;Bð~rÞ

;

fSS ¼
oqsð~rÞ
oN s

� �
N ;vð~rÞ;Bð~rÞ

;

ð6Þ

where NS = Na � Nb and Bð~rÞ is an homogeneous magnetic
field in the z direction. They are the electronic reactivity
descriptors for chemical processes where the spin polariza-
tion plays an important role, and they have been applied to
a variety of situations [24].

2. Spin polarized nuclear reactivity indices

When a molecular system is in the presence of a homo-
geneous magnetic field in the z-direction, Bð~rÞ, the energy
functional adopts the following form:

E N ;N s; vð~rÞ;Bð~rÞ½ � ¼ F ½q; qs� þ
Z

qð~rÞvð~rÞd~r

� lB

Z
qsð~rÞBð~rÞd~r. ð7Þ

Hence, the logical definitions of the spin polarized nuclear
Fukui functions are

~/
N

a ¼
o~F a

oN

 !
Ns;vð~rÞ;Bð~rÞ

ð8Þ

and

~/
s

a ¼
o~F a

oNs

 !
N ;vð~rÞ;Bð~rÞ

; ð9Þ

where ~F a is the force on the atom a which can be calculated
by applying the Helmann–Feynman theorem
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~F a ¼ �Za
d

d~Ra

Z
qð~rÞ
j~r �~Raj

d~r þ Za
d

d~Ra

X
b

Zb

j~Ra �~Rbj
. ð10Þ

Therefore, ~/
N

a is a measure of the changes in the forces act-
ing on atom a when the number of electrons changes at
constant spin polarization, external potential and magnetic
field. ~/

s

a is a measure of the changes in the forces acting on
atom a when the spin polarization change at constant total
number of electrons, external potential and magnetic field.

Since VNN is independent of N and Ns

~/
N

a ¼
o~F a

oN

 !
Ns;vð~rÞ;Bð~rÞ

¼ � olN

o~Ra

� �
Ns;vð~rÞ;Bð~rÞ

; ð11Þ

~/
s

a ¼
o~F a

oN s

 !
N ;vð~rÞ;Bð~rÞ

¼ � ols

o~Ra

� �
N ;vð~rÞ;Bð~rÞ

; ð12Þ

where lN and ls are the electronic and spin potential,
respectively [23].

Using Eq. (10) for the force, the new nuclear Fukui
functions can be written as

o~F a

oN

 !
Ns;vð~rÞ;Bð~rÞ

¼ �Za
d

d~Ra

Z oqð~rÞ
oN

� �
Ns;vð~rÞ;Bð~rÞ

j~r �~Raj
d~r;

~/
N

a ¼ �Za

Z
fNN ð~rÞð~r � RaÞ
j~r �~Raj3

d~r;

ð13Þ

similarly

o~F a

oNs

 !
N ;vð~rÞ;Bð~rÞ

¼ �Za
d

d~Ra

Z oqð~rÞ
oNs

� �
N ;vð~rÞ;Bð~rÞ

j~r �~Raj
d~r;

~/
S

a ¼ �Za

Z
fNSð~rÞð~r � RaÞ
j~r �~Raj3

d~r;

ð14Þ

where fi,j (i, j = N,S) are the generalized Fukui functions of
Eq. (6). Eqs. (13) and (14) show the direct relation between
electronic and nuclear indices in the spin polarized context,
namely, the ~/

N

a and ~/
S

a are the electrostatic forces on the
atom a induced by charge distributions equal to
fNN ð~rÞ and f NSð~rÞ, respectively.

Additionally, it can be shown that the nuclear Fukui
functions are the configurational components of the changes
in electronic and spin potentials (see Appendix A). Thus

dlN ¼ gNN dN þ gNS dN s�
X

a

~/
N

a d~Ra�lB

Z
fNSdBð~rÞ; ð15Þ

dlS ¼ gSN dN þ gSS dN s�
X

a

~/
S

ad~Ra�lB

Z
fSSdBð~rÞ. ð16Þ

In Appendix A, further relationships between electronic
and nuclear reactivity indices will be explored.
3. Spin nuclear Fukui function

In order to elucidate the physical significance of the
spin nuclear Fukui function (SNFF), the function was
calculated for a series of triatomic molecules in their singlet
and triplet spin states. The set has been chosen trying to
cover all the possible cases including drastic changes from
linear to angular geometry due to a change in the spin
multiplicity. All calculations were performed using the
B3LYP density functional method combined with a
6-31++G(d,p) basis set. In the case of molecules contain-
ing iodine atom, a pseudopotential with its corresponding
basis set (LANL2DZ) [25] has been used. This basis set
has been augmented with a set of d polarization functions
(LANL2DZ*) with an exponent of 0.29.

Given the discontinuity of the Fukui functions with re-
spect to the number of electrons, in analogy with the elec-
tronic Fukui function, three SNFFs can be introduced,
namely, ~/

sþ
a ;

~/
s�
a and ~/

s0

a . A finite difference approxima-
tion was adopted, which gives for the perturbation from
singlet to triplet state

~/
sþ
a ¼

o~F a

dN s

 !
v;B;N

¼
~F aðtripletÞ �~F aðsingletÞ

2
ð17Þ

and for the perturbation from triplet to singlet state

~/
s�
a ¼

o~F a

dN s

 !
v;B;N

¼
~F aðsingletÞ �~F aðtripletÞ

2
. ð18Þ

In the first case, the forces are calculated in the equilibrium
geometry of the singlet state, and in the second one in the
equilibrium geometry of the triplet state. It is convenient to
transform the SNFF from Cartesian coordinates � to inter-
nal ones R through the transformation R = W�, where W is
the non-square matrix of transformation from cartesian to
internal coordinates [26]. For triatomic molecules (ACB)
there are three internal coordinates: AC bond, CB bond
and h molecular angle, which yield three SNFFs

~/
s

AC ¼
o~F AC

dNs

 !
v;B;N

; ð19Þ

~/
s

CB ¼
o~F CB

dNs

 !
v;B;N

; ð20Þ

~/
s

h ¼
o~F h

dN s

 !
v;B;N

. ð21Þ

Tables 1 and 2 display the results obtained for ~/
sþ

and ~/
s�

.
In the tables, the changes in bond length and molecular an-
gle have also been presented. With the exception of mole-
cules containing fluorine atom and asymmetric molecules,
all the studied systems present a bond shortening and angle
opening when its spin moment is raised from singlet to trip-
let. This may be interpreted in terms of the Berlin�s division
of molecular space in binding and antibinding regions [27].
The density rearrangement due to spin polarization implies
a charge transfer from anti-binding regions to binding
ones, which increases the charge density in the molecular
bonds and may be traduced in a bond length shortening.
The factor which should be responsible for the opening



Table 1
Spin nuclear Fukui function Us+ (in a.u.) and bond (in Å) and bent angle changes from singlet to triplet spin configuration

ABC UþAC UþCB Uþh DAC DCB Dh

BrCBr �0.00461 �0.00461 0.03255 �0.030 �0.030 19.24
BrCl �0.00444 �0.00813 0.03158 �0.067 �0.068 21.32
ClCBr �0.00363 �0.00506 0.03462 �0.043 �0.069 18.80
ClCCl �0.00401 �0.00401 0.03769 �0.049 �0.049 18.31
FCF 0.01395 0.01395 0.04715 0.013 0.013 14.76
FCCl 0.01085 �0.00404 0.03862 0.017 �0.066 16.69
HCCl �0.00564 �0.00042 0.03138 �0.027 �0.041 24.71
HCF �0.00642 0.00920 0.03220 �0.034 0.001 19.69
HCCl �0.00542 �0.00359 0.02998 �0.028 �0.057 27.21
ICl �0.00660 �0.00660 0.03117 �0.112 �0.112 60.08
HCH �0.00542 �0.00542 0.03405 �0.033 �0.033 33.80
BeCBe 0.01398 0.01398 0.00005 0.110 0.110 �137.40

Table 2
Spin nuclear Fukui function Us� (in a.u.) and bond (in Å) and bent angle changes from triplet to singlet spin configuration

ABC U�AC U�CB U�h DAC DCB Dh

BrCBr �0.00724 �0.00724 0.03908 0.030 0.030 �19.24
BrCl �0.00406 �0.00755 0.03637 0.067 0.068 �21.32
ClCBr �0.00535 �0.00775 0.04161 0.043 0.069 �18.80
ClCCl �0.00576 �0.00575 0.04486 0.049 0.049 �18.31
FCF 0.00901 0.00901 0.05497 �0.013 �0.013 �14.76
FCCl 0.00708 0.00708 0.04896 �0.017 0.066 �16.69
HCCl �0.00409 �0.00409 0.02801 0.027 0.041 �24.71
HCF �0.00850 �0.00850 0.04308 0.034 �0.001 �19.69
HCl �0.00422 �0.00049 0.03038 0.028 0.057 �27.21
ICl �0.01873 �0.01873 0.00002 0.112 0.112 �60.08
HCH �0.00264 �0.00264 0.00272 0.033 0.033 �33.80
BeCBe – – – – – –

C. Cárdenas et al.
of the angle is the spin density distribution. In fact, in the
case of CBr2 and CCl2 molecules, the spin density is more
concentrated on the halogen atoms than on the carbon
ones which implies a repulsive interaction of the atoms at
both sides. This behavior is predicted by the nuclear spin
Fukui function ~/

sþ
and ~/

s�
. Negative values of the ~/

sþ

function associated to bonds, i.e., ~/
sþ
AC and ~/

sþ
CB, imply that

the bond length should decrease when the spin moment
change from singlet to triplet. At the same time a negative
value of ~/

s�
predicts the bond lengthening when the spin

moment is changed from triplet to singlet. This interpreta-
tion agrees very well with the structural changes observed
in the compounds under consideration when the spin mo-
ment is changed. It is worth noting that the bent angle
opening is in agreement with the positive values observed
for ~/

sþ
h and ~/

s�
h . In the case of asymmetric molecules as

ClCBr, HCCl, BrCl and HCl, the same conclusions can
be deduced.

On the contrary, for CF2 the change of spin moment im-
plies a charge transfer from binding to anti-binding regions
which in this case are situated in the halogen atoms. Thus,
we observe a lengthening of the bonds. The opening of the
bent angle is weak in comparison with the other molecules
because the spin density is more concentrated in the carbon
atom than in the fluorine one. Here, also the predictions of
the spin nuclear functions are in agreement with the struc-
tural changes. Indeed, the observation of a positive value of
~/

sþ
means a lengthening of the bonds when the spin is
changed from singlet to triplet, while the same sign of
~/

s�
predicts a shortening of the bonds from triplet to sin-

glet state.
In the case of asymmetric molecules containing a fluo-

rine atom, as HCF and FCCl, the structural perturbations
are different in both sides of the system, a shortening of the
C–Cl and C–H bonds and a lengthening of the C–F bond
when the spin moment is changed from singlet to triplet.
The prediction of the spin nuclear Fukui function is in
agreement with these findings.

The case of CBe2 should be considered as a special one.
In fact, in the singlet ground state the molecule is linear,
but when spin multiplicity is increased, the molecule tends
to break the bonds. This fact can be explained by the spin
nuclear Fukui function. In the singlet state of CBe2, ~/

sþ
CB is

positive and presents a high value compared to the other
studied molecules, which indicates that the change of spin
multiplicity yields to a significative increase of bond length,
and the very small ~/

sþ
(virtually 0) indicates that the bent

angle is only slightly reduced with the change of the spin
multiplicity. An increasing of bond length without reduc-
tion of the bent angle implies molecular dissociation.

The geometry changes of the CH2 and BeH2 molecules
can be studied to the light of the Walsh diagrams [28].
For CH2, the ground state is the triplet with a configuration
(2a1)2(1b2)2(3a1)1(1b1)1 and its first singlet excited state has
the configuration (2a1)2(1b2)2(3a1)2. The molecular orbital
of symmetry 3a1 is stabilized in energy when the bent angle
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is diminished, while the molecular orbital of symmetry 1b1

remains unchanged in energy when the bent angle is chan-
ged. For that reason, and assuming that the minimization
of the sum of the valence electron orbital energies should
determine the geometry, when the spin multiplicity is chan-
ged from triplet to singlet in CH2, the bent angle should be
diminished. This is in accordance with the prediction of the
SNFF. For BeH2, the ground term is the singlet of the con-
figuration (2a1)2(1b2)2, and its first triplet excited state has
the configuration (2a1)2(1b2)1(3a1)1. The orbital energy of
molecular orbital 1b2 rapidly increases as the molecule is
bent, whereas the molecular orbital 3a1 is stabilized. In con-
sequence, the BeH2 will be bent in the triplet state, whereas
it is linear in the singlet state.

4. Concluding remarks

The nuclear Fukui function has been generalized to the
spin polarized version of the reactivity descriptors model of
density functional theory. The thermodynamics like struc-
ture of the model has been preserved and the main equa-
tions in the different ensembles have also been exposed.
A numerical approximation to calculate the spin nuclear
Fukui functions has been developed and results for a series
of triatomic molecules have been discussed. It has been
found that the new developed functions are capable of pre-
dicting the geometrical changes due to a change in the spin
multiplicity.
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Appendix A. Spin polarized nuclear reactivity in four

ensembles of the DFT

A.1. Canonical ensemble

In analogy with Eq. (5), we can write the spin polarized
version of generalized potential, nuclear softness kernel
and nuclear hardness

usð~rÞ ¼ vð~rÞ � Bð~rÞ � lN � lS ; ðA:1Þ

~S
N ;s

a ð~rÞ ¼
d~F a

dusð~rÞ
; ðA:2Þ

~gN ;s
a ð~rÞ ¼

dusð~rÞ
d~F a

. ðA:3Þ
This leads to

d~F a ¼
Z

d~F a

dusð~rÞ
dusð~rÞd~r ¼ �

Z
~S

N ;s

a ð~rÞdusð~rÞd~r; ðA:4Þ

and given that ~ga
N ;sð~rÞ exists

dusð~rÞ ¼
X

a

dusð~rÞ
d~F a

d~F a ¼ �
X

a

gN ;s
a ð~rÞd~F a. ðA:5Þ

In the canonical ensemble, the variation of the generalized
potential in terms of the basic variables ½N ;Ns; vð~rÞ;Bð~rÞ� is
given by

�dusð~rÞ ¼ gNN dN þ gSN dN þ gNS dNs þ gSS dNs

�
Z

dð~r �~r0Þdvð~r0Þd~r0 �
Z

dð~r �~r0ÞdBð~r0Þd~r0

þ
Z

fNN ð~rÞdvð~rÞd~r þ
Z

fNSð~rÞdvð~rÞd~r

þ
Z

fSN ð~rÞdBð~rÞd~r þ
Z

fSSð~rÞdBð~rÞd~r; ðA:6Þ

where gi,j (i, j = N,S) are the spin polarized hardnesses [23].
Now, the variation of the force on atom a in terms of the
basic variables takes the following form:

d~F a ¼
o~F a

oN

 !
Ns;v;B

dN þ o~F a

oN s

 !
N ;v;B

dNs þ
Z

d~F a

dvð~rÞ

 !
N ;Ns;B

� dvð~rÞd~r þ
Z

d~F a

dBð~rÞ

 !
N ;Ns;v

dBð~rÞd~r. ðA:7Þ

Introducing Eq. (A.6) into Eq. (A.4) and comparing with
Eq. (A.7) leads to:

~/
N

a ¼
Z
~Sa

N ;sð~rÞðgNN þ gSN Þd~r; ðA:8Þ

~/
s

a ¼
Z
~Sa

N ;sð~rÞðgNS þ gSSÞd~r; ðA:9Þ

o~F a

dvð~r0Þ

 !
N ;Ns;B

¼ ~Sa
N ;sðfNN ð~r0Þ þ fNSð~r0ÞÞ � ~Sa

N ;sð~r0Þ; ðA:10Þ

d~F a

dBð~r0Þ

 !
N ;Ns;v

¼ ~Sa
N ;s½fSN ð~r0Þ þ fSSð~r0Þ� � ~Sa

N ;sð~r0Þ; ðA:11Þ

where ~Sa
N ;s ¼

R
~Sa

N ;sð~rÞd~r.
On the other hand, replacing d~F a in (A.5) and compar-

ing with dusð~rÞ, we obtainX
a
~ga

N ;sð~rÞ~/
N

a ¼ ðgNN þ gSN Þ; ðA:12ÞX
a
~ga

N ;sð~rÞ~/
s

a ¼ ðgNS þ gSSÞ; ðA:13Þ
X

a
~ga

N ;sð~rÞ d~F a

dvð~r0Þ

" #
N ;Ns;B

d~r0 ¼ fNN ð~r0Þ þ f ð~r0ÞNS � dð~r �~r0Þ;

ðA:14Þ
X

a
~ga

N ;sð~rÞ d~F a

dBð~r0Þ

" #
N ;Ns;v

d~r0 ¼ fSN ð~r0Þ þ f ð~r0ÞSS � dð~r �~r0Þ.

ðA:15Þ
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Additionally, in the canonical ensemble we have
lN ¼ l½N ;Ns; vð~rÞ;Bð~rÞ�, so that

dlN ¼gNN dN þ gNS dNs þ
Z

fNN ð~rÞdvð~rÞ � lB

Z
fNSdBð~rÞ;

ðA:16Þ

dlS ¼gNS dN S þ gSS dNs þ
Z

fNSð~rÞdvð~rÞ � lB

Z
fSSdBð~rÞ;

ðA:17Þ
but the explicit dependence of vð~rÞ on~Ra allows to write for
process at constant Z

�
X

a

~/
N

a d~Ra ¼
Z

fNN ð~rÞdvð~rÞd~r. ðA:18Þ

Thus

dlN ¼ gNN dN þ gNS dNs �
X

a

~/
N

a d~Ra � lB

Z
fNSdBð~rÞ.

ðA:19Þ
Similarly

�
X

a

~/
S

ad~Ra ¼
Z

fNSð~rÞdvð~rÞd~r ðA:20Þ

and

dlS ¼ gNS dNS þ gSS dN s �
X

a

~/
S

ad~Ra � lB

Z
fSSdBð~rÞ.

ðA:21Þ
Eqs. (A.19) and (A.21) reinforce the fact that nuclear
Fukui functions are the configurational components of
the changes in electronic and spin potentials.

Furthermore, replacing Eq. (A.12) in Eq. (A.8), we
obtain an interesting inverse relationship between nuclear
hardness and softness kernelsZ

~Sa
N ;sð~rÞ~gN ;S

b ð~rÞd~r ¼ dab. ðA:22Þ
A.2. Grand canonical ensemble [lN ; ls; v(~r);B(~r)]

In the grand canonical ensemble, the variation of the
force on atom a is given by

d~F a ¼
o~F a

olN

 !
ls;v;B

dlN þ
o~F a

ols

 !
lN ;v;B

dls

þ
Z

d~F a

dvð~rÞ

 !
lN ;ls;B

dvð~rÞd~r

þ
Z

d~F a

dBð~rÞ

 !
lN ;ls;v

dBð~rÞd~r. ðA:23Þ

Since the four basic variables of the ensemble are
independent

dusð~rÞ ¼ �dlN � dls þ dvð~rÞ � dBð~rÞ

¼ �dlN � dls þ
Z

dð~r �~r0Þdvð~r0Þd~r0

�
Z

dð~r �~r0ÞdBð~r0Þd~r0. ðA:24Þ
Putting Eq. (A.24) into (A.4) and comparing with Eq.
(A.23) yields

o~F a

olN

 !
ls;v;B

¼ o~F a

ols

 !
lN ;v;B

¼ ~Sa
N ;s
; ðA:25Þ

d~F a

dvð~rÞ ¼
d~F a

dBð~rÞ ¼
~Sa

N ;sð~rÞ. ðA:26Þ

On the other hand, replacing d~F a in Eq. (A.5) and comparing
with dus(r) and using Eqs. (A.25) and (A.26) one obtainsX

a
~gN ;s

a ð~rÞ~S
N ;s

a ¼ 1; ðA:27ÞX
a
~gN ;s

a ð~rÞ~S
N ;s

a ð~r
0Þ ¼ dð~r �~r0Þ. ðA:28Þ

These equations also show that nuclear hardness and soft-
ness are inverse quantities.

A.3. The isomorphic ensemble L[N ;N s; rN (~r); rs(~r)]

The Legendre transform of the variables vð~rÞ and Bð~rÞ
in the canonical ensemble leads to the isomorphic ensemble

L ¼ E � qð~rÞvð~rÞ þ lbqsð~rÞBð~rÞ. ðA:29Þ

With the aim that qð~rÞ; ðqsÞ and NðNsÞ become indepen-
dent variables, we can write down the isomorphic ensemble
in terms of shape factor for qð~rÞ and qsð~rÞ
L½N ;Ns; rN ð~rÞ; rsð~rÞ�. ðA:30Þ
In this ensemble, the variation of the force takes the follow-
ing form:

d~F a ¼
o~F a

oN

 !
Ns;rN ;rs

dN þ o~F a

oN s

 !
N ;rN ;rs

dNs

þ
Z

d~F a

drN ð~rÞ

 !
N ;Ns;rs

drN ð~rÞd~r

þ
Z

d~F a

drsð~rÞ

 !
N ;Ns;rN

drsð~rÞd~r; ðA:31Þ

and the differential of generalized potential

dusð~rÞ ¼
ousð~rÞ
oN

� �
Ns;rN ;rs

dN þ ousð~rÞ
oNs

� �
N ;rN ;rs

dNs

þ
Z

dusð~rÞ
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� �
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þ
Z

dusð~rÞ
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� �
N ;Ns;rN

drsð~r0Þd~r0. ðA:32Þ

In analogy with De Proft et al. [29], we can define local
hardnesses

gN ð~rÞ ¼
ousð~rÞ
oN

� �
Ns;rN ;rs

;

gsð~rÞ ¼
ousð~rÞ
oNs

� �
N ;rN ;rs

.

ðA:33Þ
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Thus

dusð~rÞ ¼ gN ð~rÞdN þ gsð~rÞdN s

þ
Z

dusð~rÞ
drN ð~r0Þ

� �
N ;Ns;rs

drN ð~r0Þd~r0

þ
Z

dusð~rÞ
drsð~r0Þ

� �
N ;Ns;rN

drsð~r0Þd~r0 ðA:34Þ

and proceeding in the same way the following equations
can be obtained:

o~F a

oN

 !
Ns;rN ;rs

¼ �
Z
~S

N ;s

a ð~rÞgN ð~rÞd~r; ðA:35Þ

o~F a

oNs

 !
N ;rN ;rs

¼ �
Z
~S

N ;s

a ð~rÞgsð~rÞd~r; ðA:36Þ

d~F a
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Z
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N ;s
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d~r0; ðA:37Þ

d~F a
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Z
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N ;s

a ð~rÞ
dusð~rÞ
drsð~r0Þ

� �
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d~r0; ðA:38Þ

and

�
X

a

~ga
N ;sð~rÞ o~F a

oN

 !
Ns;rN ;rs

¼ gN ð~rÞ; ðA:39Þ

�
X

a

~ga
N ;sð~rÞ o~F a

oN s

 !
N ;rN ;rs

¼ gsð~rÞ. ðA:40Þ

Replacing (A.31) into (A.5) and equalizing the
drN ð~rÞ and drsð~rÞ coefficients, we obtain

�
X

a

~gN ;s
a ð~rÞ

d~F a

drN ð~r0Þ

 !
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� �
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; ðA:41Þ

�
X
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� �
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. ðA:42Þ
A.4. The grand isomorphic ensemble L[N ;N s; rN (~r); rs(~r)]

In this case, the variations of the force and generalized
potential can be written as

d~F a ¼
o~F a
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and
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Since

lN ¼
dE

dqð~rÞ
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ðA:46Þ

and using the fact that dF = 0 for process at fixed q and qs
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On the other hand
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and the following equations can be derived:
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ðA:49Þ
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ðA:51Þ
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