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Abstract: We consider the 2D Landau Hamiltonian H perturbed by a random alloy-type
potential, and investigate the Lifshitz tails, i.e. the asymptotic behavior of the correspond-
ing integrated density of states (IDS) near the edges in the spectrum of H. If a given edge
coincides with a Landau level, we obtain different asymptotic formulae for power-like,
exponential sub-Gaussian, and super-Gaussian decay of the one-site potential. If the edge
is away from the Landau levels, we impose a rational-flux assumption on the magnetic
field, consider compactly supported one-site potentials, and formulate a theorem which
is analogous to a result obtained by the first author and T. Wolff in [25] for the case of a
vanishing magnetic field.

1. Introduction

Let
Hy = Ho(b) := (—=iV — A)?> — b (1.1

be the unperturbed Landau Hamiltonian, essentially self-adjoint on C§° (R?). Here A =
(—%, %) is the magnetic potential, and b > 0 is the constant scalar magnetic field.
It is well-known that if b > 0, then the spectrum o (Hy) of the operator Hy(b) consists
of the so-called Landau levels 2bq, g € Z,, and each Landau level is an eigenvalue
of infinite multiplicity. If » = 0, then Hy = —A, and o (Hp) = [0, 0o) is absolutely
continuous. Next, we introduce a random Z?-ergodic alloy-type electric potential

V) = Vo) == D> wyulx—y), xeR”.
yeZ?

Our general assumptions concerning the potential V,, are the following ones:
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e H;j: The single-site potential u satisfies the estimates
0 <u(x) < Co(l+|x)~*, xeR? (1.2)

with some s > 2 and Cy > 0. Moreover, there exists an open non-empty set A C R?
and a constant C; > O such that u(x) > C; forx € A.
e Hj: The coupling constants {wV}yeZZ are non-trivial, almost surely bounded i. i. d.

random variables.

Evidently, these two assumptions entail

M := ess-sup sup |V, (x)] < oo. (1.3)

a) xeR?

On the domain of Hy define the operator H = H,, := Hy(b) + V,,. The integrated
density of states (IDS) for the operator H is defined as a non-decreasing left-continuous
function NV, : R — [0, co) which almost surely satisfies

/Rgo(E)dNb(E) = lim_ R72Tr (1a,@(H)1a,), Yo € CPMR).  (14)

Here and in the sequel 1 denotes the characteristic function of the set O, and Ag :=

(—g, g)z. By the Pastur-Shubin formula (see e.g. [36, Sect. 2] or [11, Cor. 3.3]) we
have

/Rq)(E)dJ\/b(E) = E(Tr (1a,0(H)1,,)), Vo € CP®), (1.5)

where E denotes the mathematical expectation. Moreover, there exists a set ¥ C R such
that o (H,,) = ¥ almost surely, and supp dA}, = . The aim of the present article is to
study the asymptotic behavior of A}, near the edges of X. It is well known that, for many
random models, this behavior is characterized by a very fast decay which goes under
the name of “Lifshitz tails”. It was studied extensively in the absence of magnetic field
(see e.g. [31, 15]), and also in the presence of magnetic field for other types of disorder
(see [2,6, 12,7, 13]).

2. Main Results

In order to fix the picture of the almost sure spectrum o (H,,), we assume b > 0, and
make the following two additional hypotheses:

e Hj: The support of the random variables w,,, y € Z2, consists of the interval [w_, w4]
with w_ < wy and w_w, < 0.

o Hy: We have M, — M_ < 2b where =M := ess-sup,, sup, gz (£V,(x)).

Assumptions H; — Hy imply M_M, < 0. Moreover, the union U;O:O[qu +M_,2bg +

M. ] which contains ¥, is disjoint. Introduce the bounded Z>-periodic potential

W(x) = Z u(x —y), xeR?
yeZ?
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and on the domain of Hy define the operators H* := Hy + w+ W. It is easy to see that

o(H™) S UZ[2bg + M_,2bql, o (H") S U2[2bq, 2bg + M.],

and
oc(HT)N[2bg +M_,2bgl # 0, o(H")N[2bq,2bg+M.] #0, Vq € Z,.
Set
E; :=inf{o(H™)N[2bg + M_,2bql}, E; :=sup{o(H") N[2bq,2bq + M,]}.
Following the argument in [16] (see also [31, Theorem 5.35]), we easily find that
% = U lE, . E}1,

Le. ¥ is represented as a disjoint union of compact intervals, and each interval [E ", E;]
contains exactly one Landau level 2bq, g € Z,.

In the following theorems we describe the behavior of the integrated density of states
N near E; . q € Z,; its behavior near E; could be analyzed in a completely analogous
manner.

Our first theorem concerns the case where E;” = 2bq, q € Z,. This is the case if

and only if w_ = 0; in this case, the random variables w,,, y € 72, are non-negative.

Theorem 2.1. Let b > 0 and Assumptions Hy — Hy hold. Suppose that o— = 0, and
that

P(wo < E) ~CE*, E O, (2.1
for some C > 0 and k > 0. Fix the Landau level 2bq = E . q¢€ Ly.

i) Assume that C— (1 + |x|)~* < u(x) < C+(1+|x|)~%, x € R2, for some 3 > 2, and
C, > C_ > 0. Then we have

. In|In (N, (2bg + E) — Np(2bq))| 2
lim = — . (2.2)
ELO InE w—2
.. o—CilxlP o C—lxf 2
ii) Assume o = ulx) < X € R7, B € (0,2], Cy = C_ > 0. Then we
have
In|l 2bg + E) — 2b 2
lim n|In (N, (2bg + E) — Ny (2bq))| 142 2.3)
ELO In|Iln E| B

1 er2: jr—xgl<e) x |2
C.

—c_
< u(x) < “— forsome C, > C_ > 0, xo € R2, and

iii) Assume
& > 0. Then there exists § > 0 such that
In|l 2bg + E) — 2b
1+6§Iiminfn|n(Nb( q + E) — Np(2bq)|
ELO In|Iln E|
In|1 2bg + E) — 2b
< limsup n|In (N, (2bg + E) — Nj(2bq)| <2
ELO 1n|1nE|

(2.4)
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The proof of Theorem 2.1 is contained in Sects. 3-5. In Sect. 3 we construct a peri-
odic approximation of the IDS N}, which plays a crucial role in this proof. The upper
bounds of the IDS needed for the proof of Theorem 2.1 are obtained in Sect. 4, and the
corresponding lower bounds are deduced in Sect. 5.

Remarks. 1) In the first and second part of Theorem 2.1 we consider one-site potentials u
respectively of power-like or exponential sub-Gaussian decay at infinity, and obtain the
values of the so-called Lifshitz exponents. Note however that in the case of power-like
decay of u the double logarithm of N, (2bg + E) — Np(2bq) is asymptotically pro-
portional to In E (see (2.2)), while in the case of exponentially decaying u this double
logarithm is asymptotically proportional to In | In E| (see (2.3)); in both cases the Lifshitz
exponent is defined as the corresponding proportionality factor. In the third part of the
theorem which deals with one-site potentials u of super-Gaussian decay, we obtain only
upper and lower bounds of the Lifshitz exponent. It is natural to conjecture that the value
of this exponent is 2, i.e. that the upper bound in (2.4) reveals the correct asymptotic
behavior.

ii) In the case of a vanishing magnetic field, the Lifshitz asymptotics for random
Schrodinger operator with repulsive random alloy-type potentials has been known since
long ago (see [17]). To the authors’ best knowledge the Lifshitz asymptotics for the Lan-
dau Hamiltonian with non-zero magnetic field, perturbed by a positive random alloy-type
potential, is considered for the first time in the present article. However, it is appropriate
to mention here the related results concerning the Landau Hamiltonian with repulsive
random Poisson potential. In [2] the Lifshitz asymptotics in the case of a power-like
decay of the one-site potential u, was investigated. The case of a compact support of u
was considered in [6]. The results for the case of a compact support of u were essentially
used in [12] and [7] (see also [13]), in order to study the problem in the case of an
exponential decay of u.

Our second theorem concerns the case where E° < 2bq, g € Z,. This is the case if
and only if w_ < 0. In order to handle this case, we need some facts from the magnetic
Floquet-Bloch theory. Let I' := ¢1Z @ g2Z with g; > 0, j = 1, 2. Introduce the tori

Tr :=R¥T, T::=R¥»TI*, (2.5)

where I'* := 27 gI_IZ D2mg, 17, s the lattice dual to T". Denote by Or and OF. the fun-
damental domains of Tr and T7}. respectively. Let W : R? — Rbe a-periodic bounded
real-valued function. On the domain of Hy define the operator Hyy := Hp+ V. Assume
that the scalar magnetic field b > 0 satisfies the integer-flux condition with respect to the
lattice ', i.e. that bg1 g> € 2w Z,. Fix § € T}.. Denote by ho(0) the self-adjoint operator

generated in L%(Or) by the closure of the non-negative quadratic form
/ iV +A—0)f|?dx
Or
defined originally on the set
f =80, 18€C®), (@) =gl). x eR% y Ty,
where 7y, y € RR?, is the magnetic translation given by

(tyg)(x) 1= e TP T g(x +y), xeR% (2.6)
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with x Ay := x1y2 —x2y1. Note that the integer-flux condition implies that the operators
7y, ¥ € I', commute with each other, as well as with operators i 5 — a +Aj,j=12(see
Xj

(1.1)), and hence with Hy and Hyy. In the case b = 0, the domain of the operator A is
isomorphic to the Sobolev space H? (Tp), but if b > 0, this is not the case even under
the integer-flux assumption since /¢ acts on U (1)-sections rather than on functions over
Tt (see e.g [30, Subsect. 2.2]). On the domain of & define the operator

hw(6) == ho(8) + W, 6 € T5. 2.7)

Set
Ho ::/ @ ho(0)do, Hyy ::/ @ hyw(0)do. (2.8)
r Or

It is well-known (see e.g [10, 35 or 30, Subsect. 2.4]) that the operators Hy and Hyy
are unitarily equivalent to the operators Hy and Hyy respectively. More precisely, we
have Hy = U*HoU and Hyy = U*HU, where U: L>(R?) — L*(Or x O}) is the
unitary Gelfand-type operator defined by

Uf)(x;0) = Z e 0 (g, f)(x), xeOr, HeTh (29

J/ Vo IT*

Evidently foreach & € T, the spectrum of the operator 1)y, (6) is purely discrete. Denote
by {E j (9)}7021 the non-decreasing sequence of its eigenvalues. Let £ € R. Set

J(E) = {j € N; there exists 6 € T such that E;(9) = E}

Evidently, for each E € R the set J(E) is finite. If £ € R is an end of an open gap
in o (Hop + W), then we will call it an edge in o (Hy + VV). We will call the edge E in
o (Ho+ W) simple if #J (E) = 1. Moreover, we will call the edge E non-degenerate if
for each j € J(E) the number of points 6 € T}. such that E;(f) = E is finite, and at
each of these points the extremum of E; is non-degenerate.

Assume at first that » = 0. Then Hy = —A, and we will consider the general
d-dimensional situation; the simple and non-degenerate edges in o (—A+W) are defined
exactly as in the two-dimensional case. If W : RY — R is a bounded periodic function,
it is well-known that:

e The spectrum of —A + )V is absolutely continuous (see e.g. [33, Theorems XIII.90,
XII1.100]). In particular, no Floquet eigenvalue E; : ?I‘l’i — R, j € N, is constant.

e Ifd =1, all the edges in o (—A + W) are simple and non-degenerate (see e.g. [33,
Theorem XIII.89]).

e For d > 1 the bottom of the spectrum of —A + )V is a simple and non-degenerate
edge (see [19]).

e Ford > 1, the edges of o (—A + W) generically are simple (see [24]).

Despite the widely spread belief that generically the higher edges in o (—A +)V) should
also be non-degenerate in the multi-dimensional case d > 1, there are no rigorous results
in support of this conjecture.

Let us go back to the investigation of the Lifshitz tails for the operator —A + V,,. It
follows from the general results of [16] that E~ (respectively, E*) is an upper (respec-
tively, lower) end of an open gap in o (—A +V,,) if and only if it is an upper (respectively,
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lower) end of an open gap in the spectrum of —A + w_W (respectively, —A + w;W).
For definiteness, let us consider the case of an upper end E~. The asymptotic behavior
of the IDS AVy(E) as E | E~ has been investigated in [28, 29] in the case d = 1, and in
[18]inthe case d > 1 and E~ = inf o (—A + w_ W). Note that the proofs of the results
of [28, 29 and 18], essentially rely on the non-degeneracy of E~. Later, the Lifshitz
tails for the operator —A + V,, near the edge E~ were investigated in [21] under the
assumptions that d > 1, E~ > info(—A + w_W), and that E~ is a non-degenerate
edge in the spectrum of —A + w_ W; due to the last assumption these results are con-
ditional. However, it turned out possible to lift the non-degeneracy assumption in the
two-dimensional case considered in [25]. First, it was shown in [25, Theorem 0.1] that
for any single-site potential u satisfying assumption H;, we have

. In|In (No(E™ + E) — No(E7))|
lim sup <

0
EL0 InE

without any additional assumption on E~. If, moreover, the support of u is compact,
and the probability P(wp — w— < E) admits a power-like decay as E | 0, it follows
from [25, Theorem 0.2] that there exists o > 0 such that
lim In|In (No(E~™ + E) — Np(E7))| .
ELO InE B

(2.10)

under the unique generic hypothesis that E~ is a simple edge. Note that the absolute
continuity of o (—A + w_W) plays a crucial role in the proofs of the results of [25].

Assume now that the scalar magnetic field b > 0 satisfies the rational flux condition
b € 27 Q. More precisely, we assume that b/27 is equal to the irreducible fraction p/r,
p € N, r € N. Then b satisfies the integer-flux assumption with respect, say, to the
lattice I' = rZ @ Z, and the operator H ™ is unitarily equivalent to H,_w. As in the
non-magnetic case, in order to investigate the Lifshitz asymptotics as E | E, of Np(E),
we need some information about the character of £ as an edge in the spectrum of H ™.
For example, if we assume that £~ is a simple edge, and the corresponding Floquet
band does not shrink into a point, we can repeat almost word by word the argument of
the proof of [25, Theorem 0.2], and obtain the following

Theorem 2.2. Let b > 0, b € 27 Q, and Assumptions Hi—Hy hold. Assume that the
support of u is compact, w— < 0, and P(wp—w—_ < E) ~ CE*, E | 0, for some C > 0
and k > 0. Fix q € Z,. Suppose E is a simple edge in the spectrum of the operator
H™, and that the function Ej, j € J(E), is not identically constant. Then there exists
o > 0 such that

~ In|ln (Nh(E,; +E)— Nb(E;)N
m = -

2.11
ELO InE ( )

Remarks. 1) It is believed that under the rational-flux assumption the Floquet eigen-
values E;, j € N, for the operator H~ generically are not constant. Note that this
property may hold only generically due to the obvious counterexample where u = 14,
H™ = Hp+w_, and for all j € N the Floquet eigenvalue E; is identically equal to
2b(j — 1) + w—. Also, in contrast to the non-magnetic case, we do not know whether
the edges in the spectrum of H~ generically are simple.

ii) The definition of the constant « in (2.11) is completely analogous to the one in
(2.10) which concerns the non-magnetic case. This definition involving the concepts of
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Newton polygon, Newton diagram, and Newton decay exponent, is not trivial, and can
be found in the original work [25], or in [22, Subsect. 4.2.8].

3. Periodic Approximation

Pick @ > 0 such that % € N.Set L := (2n + 1)a/2, n € N, and define the random
2L72-periodic potential

VP (x) = Vo (x) i= Z (Volay ) (x+y), x€ R2.
ye2L7?

On the domain of Hy define the operator HP®' = H,l,)’e,f) = Hp + V,ﬁ & - For brevity set
Top =Ty 72, T3, = ']I‘;LZ2 (see (2.5)). Note that the square Ay is the fundamental
domain of the torus T»; , while A; ; = A, -1 is the fundamental domain of T; .- As
in (2.7), on the domain of 4 define the operator

h(@) = hP*"(0) := ho(0) + VP, 0 € T3,
and by analogy with (2.8) set
HPE = / @ hP"(0)d6.
Aj
As above, the operators Hy and HP®" are unitarily equivalent to the operators H and
HP' respectively. Set

NP(E) = NRo(E) = (271)_2/ N(E; h**"(9))d#, E eR. (3.1)
A3

Here and in the sequel, if T is a self-adjoint operator with purely discrete spectrum, then
N (E; T) denotes the number of the eigenvalues of T less than E € R, and counted with
the multiplicities. The function N'P*" plays the role of IDS for the operator HP*' since,
similarly to (1.4) and (1.5), we have

/ @(E)YdNP'(E) = Rlim R72Tr (1a,9(HP)14,)
R — 00

almost surely, and

E (/ go(E)deer(E)) =E (Tr (15,0(H?)1y,)), (3.2)
R
for any ¢ € C3°(R) (see e.g. the proof of [21, Theorem 5.1] where however the case of
a vanishing magnetic field is considered).

Theorem 3.1. Assume that Hypotheses Hy and Hy hold. Let g € Z, n > 0. Then there
exist v > 0 and Eo > 0 such that for E € (0, Eg] and n > E~" we have

—-n

E (NP(2bg + E/2) — NP (2bg — E/2))—e©
< E (NP"(2bg +2E) — NP (2bg — 2E)) +e ©

< Njy(2bq + E) — N,(2bg — E)
- (3.3)



F. Klopp, G. Raikov

The main technical steps of the proof of Theorem 3.1 which is the central result of this
section, are contained in Lemmas 3.1 and 3.2 below.

Lemma 3.1. Ler Q = § € L®(R?), X := Hy + 0, D(X) = D(Hy). Then there exists
€ = €(b) > 0 such that for each a, B € 72 and 7 € C\o (X) we have

b+1 1
X-2! <2 (1 + —) e~ en@la=pl, 3.4)
where xo = 1p+a0 @ € 72, 1(z) = 1(z; b, Q) = % |l - llus denotes the

Hilbert-Schmidt norm, and | Q|so := || Oll Lo r2)-
Proof. We will apply the ideas of the proof of [20, Prop. 4.1]. For £ € R? set
Xe = Xe 5 = (iV+A—i)>+ Q=X —2if - (iV+A) + £
Evidently,
Xe—z=(X—2) (1 + (X - (|§|2 —2iE - (iV+ A))) . (3.5)

Let us estimate the norm of the operator (X —z) ! (|$ |2 —2i& - (iV + A)) appearing at
the right-hand side of (3.5). We have

(X —2) 7 EP] < 1&1Pdist(z, o (X)),
(X —2)712ig - GV + A)||

<2(Ho+ D)7 iV+A)-E -~ (X -2 (Q—z— D(Ho+1)T'(V+A) -£|

1
201+ —
: (+n(z))|§|

with

C C(b) |(Hy + 1)_1('V +A)| ((2q + l)b)l/Z
- = = sup —2 =77
’ l qe%)+ 2bg + 1

Choose € € (0, ﬁ) and & € R? suchthat |€| = €n(z). Then, by the above estimates,
we have

10X =27 (1612 = 2i - iV +A)) || = () dist(z. 0 (X)) ™! +2Ce (1 + L) n(2)
n(z)

< e2n(2) +2Ce(1 +n(z)) < €2 +4Ce < 3/4, (3.6)

since the resolvent identity implies 7(z) < 1. Therefore, the operator X¢ —z is invertible,
and

XX =2 ' xp = (€75 Xa) xa(Xe —2) ' xp (57 xp) - (3.7
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Moreover, (3.5) and (3.6) imply

Ixe(Xe —2) " xplns < 41X — 20" xgllus
<4(Ho+ D 'xg = (X —2)7'(Q —z— D(Ho+ 1) ' xpllns
< 4ll(Ho+ D " xpllus(1+ (X —2)"HQ —z— D) < 4l(Ho + 1D xpllus

1
1+—). 3.8
X( +n(z)) G:8)

Finally, applying the diamagnetic inequality for Hilbert-Schmidt operators (see e.g. [1]),
we get
I(Ho+ D)™ xpllns < (Ho + D™ (Ho + b+ D[ lI(Ho+b+ D™ xplns
<I(Ho+ D~ (Ho+b+ DIII(=A+ D" xllus
2bg +b +1 b+1

= = (=A+D7! = —. 3.9

The combination of (3.7), (3.8), and (3.9) yields

_ 2b+1) g, 1
X—z)! < S 14+ —).
||XO(( Z) X,B”HS — 7T1/2 e Y](Z)

Choosing £ = en(z)ﬁ, we get (3.4). O
Lemma 3.2. Assume that Hypotheses Hy and Hy hold. Then there exists a constant
C > 1 such that for any ¢ € Cg°(R), and anyn € N, | € N, we have

}E (/Rgo(E)d/\/},(E)—/R(p(E)deer(E))'

(x| + C)l+5d]—¢(x)‘ . (3.10)

< Cn—leCllogl sup —;
X

xeR, 0<j<I+5

Proof. We will follow the general lines of the proof of [23, Lemma 2.1]. Due to the fact
that we consider only the two-dimensional case, and an alloy-type potential which is
almost surely bounded, the argument here is somewhat simpler than the one in [23]. By
(1.5) and (3.2) we have

E ( /R @(E)dNy(E) — /R w(E)dNPef(m) =E (Tr (1o, (9(H) — 9(H?))1y,)).

Next, we introduce a representation of the operator ¢(H) — ¢(HP®") by the Helffer-
Sjostrand formula (see e.g. [4, Chap. 8]). Let ¢ be an almost analytic extension of the
function ¢ € C3°(R) appearing in (3.10). We recall that ¢ possesses the following
properties:

1. If Im z = 0, then ¢(z) = ¢(2).

2. supp @ C {x+iy e C; |y| < 1}.

3.ogeS{x+iyeC; |yl < 1}).

4. The family of functions x +— %—‘;(x +iy)|[y|™™, |y] € (0, 1), is bounded in S(R) for
any m € Z;.
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Such extensions exist for ¢ € S(R) (see [27, 4, Chapt. 8]), and there exists a constant
C > 1 such that forany m > 0, > 0, 8 > 0, we have

9P _ 0 ,
x"‘m (|)’| ma—(g(xﬂy))'

sup  sup
0<[y|<l xeR
ﬁ/
< Cmlogm+aloga+f+l sup sup x“/d (p(/x) (3.11)
B <m+B+2, o’ <a xeR dxP

Then the Helffer-Sjostrand formula yields
E (Tr (1a,(9(H) — ¢(HP)1y,))

1 99
- —E (Tr (/C 8—‘5@) (1Al ((H (P - z)—l) 1A1) dxdy))
_lg (Tr (/ %5 (1A, (H — 2)~ (VP — V)(HPe — z)_llA]) dxdy)). (3.12)
T c 0%

Next, we will show that 15, (H — z) " (VP — V) (HPT — z)_llA1 is a trace-class
operator for z € C\R, and almost surely

M+ 1)2 M +z] + 12
1y (H = 27 (VP — vy (P — 5 e < 0 D) (1+ N )

2 [Im z|
(3.13)

where ||.||Tr denotes the trace-class norm. Evidently,
1A, (H = 2)7 (VP — V)(HP — 2)7 1y, Il

< s, (Ho + D)™ 3 1 (VP — W) (Ho + D)(H — 2) " I (Ho + D) (HP — 2)7 1.
(3.14)

2
By (3.9) we have |[15,(Hy + 1)’1||%S < (b;';) . Moreover, almost surely ||VP —
V|| < 2M. Finally, it is easy to check that both norms |[(Hy + 1)(H — 271 and
|(Ho + 1)(HP®" — z)~!|| are almost surely bounded from above by 1 + Mﬂfl;l, so that

(3.13) follows from (3.14). Taking into account estimate (3.13) and Properties 2, 3, and
4 of the almost analytic continuation ¢, we find that (3.12) implies

E (Tr (1A1(§0(H) —@(HP))1y4,))

= _/ —(Z)E Tr 1A1(H—z)*1(vper— V)(Hper—z)*llm))dxdy. (3.15)

Our next goal is to obtain a precise estimate (see (3.19) below) on the decay rate as
n — oo of

E(Tr (1a,(H = 97 (VP = V)™ = 571y, ))
with z € C\ R and |Im z| < 1. Evidently,
E (Tr (1A1 (H — 2)~ 1 (VP — v)(HPeT — z)*llAl))

=Y B (ta (-0 v v - o) 1)),

aeZ?,|a|oo>na
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where |a|oo 1= max;—y 2 ||, since VP = V on Ay, and therefore x (VP —V) =0
if || < na. Hence, bearing in mind estimates (1.3) and (3.4), we easily find that

B (Tr (1a,(H = 7' (VPF = V)(HPT — )71y, )) |

= > E(o =9 VP = VIHE™ = 7 ol

aeZ?,|ot)oo>na

=oMD" E (It = 97 xelluslxe P = 27 ollns)

aeZ?,|a|oo>na

M +1)2 M +2\? 2
MO (M S e (- 2 56
2 [y x|+ M+2

aeZ?,|a|0o>na

for every z = x +iy with 0 < |y| < 1. Using the summation formula for a geomet-
ric series, and some elementary estimates, we conclude that there exists a constant C
depending only on € such that

2ela|ly| x|+ M +2 aenly|
Z expl——) < |(1+C—— Jexp| ——— ),
5 [x|+M+2 [y x|+ M+2
a€Z?,|d|oo>na

(3.17)

provided that 0 < |y| < 1. Putting together (3.16) and (3.17), we find that there exists
a constant C = C(M, b, €, a) such that

\]E (Tr (1A1<H —2) (VP — V) (HP - ZY”AI))‘

3
§C(|x|+c) exp (-“E”M). (3.18)
[yl lx[+C
Writing

(|x|+c:)3 ( a€n|y|) _,(|x|+C)3+l(a6n|y|)l ( aenlyl)
exp (——— ) = (aen) exp (- 220
[yl |x|+C [yl |x|+C |x|+C
with / € N, and bearing in mind the elementary inequality et < { /e)l ,t>0,leN,
we find that (3.18) implies

‘E (Tr (1A1<H —2) 7 (VP — V) (HP - ZY”AI)))

C 3+
< Clace)'n™ (M%) Jlogl | eN. (3.19)
y

Combining (3.19) and (3.15), we get
|E (Tr (1, (@(H) — @(HP))14,)) |

C
< —/(|x|+C)—2dx (ace)'nle! 1! sup sup (|x| + €)1y 7D
T JR O<|y|<lxeR

X , leN. (3.20)

o
2 (x+iy)
a4z

Applying estimate (3.11) on almost analytic extensions, we find that (3.20) entails
(3.10). O
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Now we are in position to prove Theorem 3.1. Let ¢, € C;°(R) be a non-nega-
tive Gevrey-class function with Gevrey exponent ¢ > 1, such that fR p+(t)dt = 1,

supp ¢+ C [—%, %] Set @, = 1[ * ¢4. Then @, is Gevrey-class func-

2bg— 3 2bq+3E |
tion with Gevrey exponent 0. Moreover,

12bg—E2pgrE1(t) < @4(t) < 1ppg—2E,26g42E1(F), t €R.
Therefore,
Niy(2bq + E) — Ny (2bq — E) < E (NP (2bg + 2E) — NP (2bq — 2E))
E (/ D, (1)dNp (1) —/ d>+(t)d/\/1’”(t))‘ ) (3.21)
R R

+

Applying Lemma 3.2 and the standard estimates on the derivatives of Gevrey-class
functions, we get

‘E (/ CI>+(t)dNb(t)—/ d>+(t)d/\/Per(t))
R R

with C independent of n, and /. Optimizing the r.h.s. of (3.22) with respect to [, we get

’E ( / DL (1)dN (1) — / <I>+(t)d/\fper(t))
R R

for sufficiently large n. Picking n > 0, and choosing v > (0 + C)nandn > E~V, we

find that
‘IE ( / & (1)d Ny (1) — / <I>+(r)d/\ff’“(t))
R R

for sufficiently small £ > 0. Now the combination of (3.21) and (3.23) yields the
upper bound in (3.3). The proof of the first inequality in (3.3) is quite similar, so that
we will just outline it. Let ¢ € C3°(IR) be a non-negative Gevrey-class function with
Gevrey exponent ¢ > 1, such that fR o+(t)dt = 1, and suppgp; C [—%, %] Set

P, :=1 3E s£7 *@+. Then @_ is Gevrey-class function with Gevrey exponent
2bq— 3 ,2bg+

<cnl1+5°), 1eN, (3.22)

<exp (—(g + C)nl/(9+c))

<e BT (3.23)

0. Similarly to (3.21) we have
E (NP (2bg + E/2) — NP*"(2bg — E/2))

/ E (QD_(t)dNb(t) - / <I>_(t)d./\/per(t))'
R R
< Nj,(2bq + E) — Njp(2bg — E). (3.24)

Arguing as in the proof of (3.23), we obtain

V IE(dD(t)dNb(t)—/ d_(t)d er(t))
R R

which combined with (3.24) yields the lower bound in (3.3). Thus, the proof of Theorem
3.1 is now complete. O

Further, we introduce a reduced IDS p, related to a fixed Landau level 2bq, g € Z,.
It is well-known that for every fixed 6 € T3, we have o (h(6)) = U;io {2bg}, and

—Fn
<e £
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dim Ker (h(0) — 2bq) = 2bL2/7r for each g € Z, (see [5]). Denote by p,(9) :
L%(Aa1) — L%(Asp) the orthogonal projection onto Ker (h(6) —2bg), and by r,(0) =
Tq,n,0(0) the operator p, (0) V,E iﬁ P4 (0) defined and self-adjoint on the finite-dimensional

Hilbert space p, (9)L>(AzL). Set
pq(E) = pq,n,w(E) = (277)_2/ N(E; rq,n,w(e))dey E eR. (3.25)
A3

By analogy with (3.1), we call the function p, , . the IDS for the operator R, =
Rynw = fASL ®ry,n,0d0 defined and self-adjoint on Pqu(AzL X A;L) where P, :=
fA;L @®py(0)db. Note that R, = P, VPIP,.

Denote by P,, g € Z,, the orthogonal projection onto Ker(Hy — 2bq). Evidently,

P, = UP,U*. As mentioned in the Introduction, rank P, = oo for every g € Z,.
Moreover, the functions

q! b (j—q+1)/2 . G—q)
ej(x) =ejq(x) = (=i)? ﬂ—]' (E) (x1 +ix2)/_qu] a

b
) (§|x|2) i ez, (3.26)

form the so-called angular-momentum orthogonal basis of PqL2(R2), q € Zy (see [8]
or [3, Sect. 9]). Here

q . ;
L (S) = Z . , s c R, g€ Z+’ je Z+’
q
[=max{0,q—j} (J—g+Dli(g—-D! I

are the generalized Laguerre polynomials. For further references we give here several
estimates concerning the functions e; . If ¢ € Z, j > 1, and § > 0, we have

L{™P (g = j*e* (3.27)

(see [14, Eq. (4.2)]). On the other hand, there exists jy > ¢ such that j > jo implies

(=), 02 1 . 2
L™ P &) = o (5) (G —q)™ (3.28)

if &€ € [0, 1/2] (see [32, Eq. (3.6)]). Moreover, for j € Z, and g € Z we have

1 *
i (x) = ————(a")¢y ,(x), x eR, 3.29
jg (%) q!(2b)‘1( Ylep q(x) (3.29)
where
d d 0
a* i =—i— A —i|l-i— —A) = —2ieb|z‘2/4—e_b‘zlz/4, Z:i=x1+1ixp,
0x1 0x2 9z

(3.30)
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is the creation operator (see e.g. [3, Sect. 9]). Evidently, a* commutes with the magnetic
translation operators t,, y € 2L7? (see (2.6)). Finally, the projection P,, ¢ € Z,,
admits the integral kernel

b b b
Ky p(x,x") = Z_e*l%xm v, (§|x — x/|2) . x,x eR? (3.31)
T

where W, (§) := L;O) (5)3_5/2, & € R. Since P, is an orthogonal projection in L?*(R?)
we have || Pyl 2r2)— 22y = 1. Using the facts that P, = UP,U* and P, :=
/ AL @ py(0)do, as well as the explicit expressions (2.9) for the unitary operator U,

and (3.31) for the integral kernel of P, g € Z,., we easily find that the projection p (9),
6 e T%, , admits an explicit kernel in the form

b
Kqp(x, x":0) = 2_6'9(x —X) p—iFXAX
T
b S
X E v, (5|X —x +o(|2 10 gl 7 (XA i baiws o x e Aoy, (3.32)
ae2L7?

Lemma 3.3. Let the assumptions of Theorem 3.1 hold. Suppose, moreover, that the
random variables w,, y € 72, are non-negative.

a) For each cqy € (1 + %, oo) there exists Eqg € (0, 2b) such that for each E € (0, Eyp),

0 € T3, , almost surely
N(E;ro(0)) < N(E; h(0)) < N(coE; ro(9)). (3.33)

b) Assume Hy, i.e. 2b > M. Then for each c| € (O, 1-— %), ) € (1 + %, oo), there
exists Eg € (0,2b) such that for each E € (0, Ey), 0 € T5,, and g > 1, almost
surely

N(c1E;rg(0)) = N(2bg + E; h(8)) — N(2bg; h(0)) = N(c2E;r4(0)). (3.34)

Proof. Inorder to simplify the notations we will omit the explicit dependence of the oper-
ators h, ho, py, and r4, on 6 € TI‘;L. Moreover, we set Dy := p,;D(h) = pqu(AzL),
and C; := (1 — py)D(h). At first we prove (3.33). The minimax principle implies

N(E; h) = N(E; pohpoip,) = N(E; ro),
which coincides with the lower bound in (3.33). On the other hand, the operator inequal-
ity
h = po(ho+ (1 = 8)VP) po+ (1 — po)(ho + (1 — 8~ HVP) (1 — pg), 8 € (0, 1),
(3.35)
combined with the minimax principle, entails
N(E;h) < N(E; po(ho + (1 = 8)VP) pop,)

+N(E; (1 — po)(ho + (1 — 8~ H VPN (1 — po)ic,)
< N1 =87 E;ro) + N(E+ MG — 1); (1 — po)ho(1 — po)icy)-
(3.36)
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Choose M(8~! — 1) < 2b, and, hence, ¢cp := (1 —8)~! > 1+ %, and E € (0,2b —
M~ = 1)). Since

inf o ((1 — po)ho(1 — po)ic,) = 2b,

we find that the second term on the r.h.s. of (3.36) vanishes, and N(E; h) < N(coE; rg)
which coincides with the upper bound in (3.33).

Nextwe assume g > 1and M < 2b, and prove (3.34). Note forany E € (0,2b— M)
we have

N@2bg; h) = N(2bqg — Ey; h).
Pick again § € (%, 0) sothatcy := (1—8)"" > 1+ %. Then the operator inequality

h= py(ho+(1 = 8)VP")py + (1 = pg)(ho+ (1 =8~ HVPN(A = py), 8€ (0, 1),
analogous to (3.35), yields
NQ2bg + E;h) < N(2bq + E; py(ho + (1 — 8)Vper)pq|Dq)
+N(2bg + E; (1 — pg)(ho + (1 =8~ HVP(1 = py)ic,)
< N(c2E;rg) + NQbq + E+ M@~ —1); (1 — ppho(l — py)ic,)-
On the other hand, the minimax principle implies

N@2bg — E1;h) = N(2bg — Ey; (1 — pg)h(1 — pg)ic,)
= NQ@2bg — E1 — M; (1 — pg)ho(1 — pg)ic,)-

Thus we get

N@2bg+E; h) — N2bqg — E1; h) < N(c2E;1g)
+N(2bg + E+ M6~ — 1); (1 — pg)ho(1 — Pgic,)
~NQ@bq — Ey — M; (1 = pho(1 = py)ic,). (3.37)

It is easy to check that
2bg —E; — M >2b(g—1), 2bg+E+M©E ' —1) <2(q+ )b,
provided that E € (0,2b — M(8~' — 1)). Since
o ((1 = pgho(1 = pg)ic,) N (2(g — 1)b,2(qg + D)b) = ¥,

we find that the the r.h.s. of (3.37) is equal to N (c2 E; 1), thus getting the upper bound
in (3.34).
Finally, we prove the lower bound in (3.34). Pick ¢ € (%%’ oo), and, hence

ca=0+0""e (O, %) Bearing in mind the operator inequality

h < pglho+ (1L + VP py + (1 — p)(ho+ (1 +¢ " HVP (1 — py),
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and applying the minimax principle, we obtain
NQ@2bq + E; h) = N(2bq + E; pg(ho+ (1 +)VP) pg 5 )
+N@bg + E; (1= p)(ho+ (1 +EHVPN (A = py)ic,)

> N(c1Eirg) + N@bg + E — M@+ 1: (1= ppho(1 = py)ic,).

On the other hand, since VP > 0, the minimax principle directly implies
N(2bg — Ey:h) < N@bg — Ey: ho) = N(2bg — Ex: (1 = pho(1 — py)ic,)-
Combining the above estimates, we get
NQ@bg+E;h) — NQ2bg — E1;h) = N(c1E; ry)

—|N@bg+E =M@ +1); (1 = ppho(1 — pg)ic,)

~N(@bg — Ey: (1 = ppho(1 = py)ic,)| (338)
Since
2q—1)b <2bg+E — M@ ' +1) <2(qg+1)b, 2(q—1)b < 2bg — E1 < 2(q+1)b,

provided that £ € (0,2b + M(;“_l + 1)), we find that the r.h.s of (3.38) is equal to
N(c1 E; ry) which entails the lower bound in (3.34). O

Integrating (3.33) and (3.34) with respect to 6 and w, and combining the results with
(3.3), we obtain the following

Corollary 3.1. Assume that the hypotheses of Theorem 3.1 hold. Let g € Zy, n > 0. If

q > 1, assume M < 2b. Then there exist v = v(n) > 0, d; € (0, 1), d» € (1, 00), and

Eo > 0, such that for each E € (0, Eg) and n > E™", we have

E (pg.no(di E)) — e " < Ny(@bg + E) = Np(2bq) < E (pgn,0(d2E)) + ",
(3.39)

4. Proof of Theorem 2.1: Upper Bounds of the IDS

In this section we obtain the upper bounds of N, (2bg + E) — N, (2bg) necessary for
the proof of Theorem 2.1.

Theorem 4.1. Assume that Hy — Hy hold, that almost surely w, > 0, y € 72, and 2.1)
is valid. Fix the Landau level 2bq, q € Z,.

i) Assume that u(x) > C(1+ |x|)~%, x € R?, for some » > 2, and C > 0. Then we

have
lm inf In]ln W (Zb‘f 1; f:') —M@ba))| - 2 > (4.1)
ii) Assume u(x) > Ce_cmﬂ, X e Rz,for some B > 0, C > 0. Then we have
lim jng I N0 + E) Z No @by, 2 (4.2)

ELO In|ln E|
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iii) Assume u(x) > Cli, g2 |x_yy|<¢) JOr some C > 0, xg € R?, and & > 0. Then there
exists § > 0 such that we have

In|l 2bqg + E) — 2b
lim inf n|In (N, (2bg + E) — N, (2bg)| Sl
ELO In|In E|

8. (4.3)

Fix@ € T3, .Denoteby A;(0), j = 1, ..., rankry , ,,(6), the eigenvalues of the operator
Tq.n,0(0) enumerated in non-decreasing order. Then (3.25) implies

1
E (pq,n,w(E)) = W/A* E(N(E; rq,n,w(e))de
2L

rank rg pn,,(0)

1
T @n) /A > P(;6) < E)do (4.4)
2L

J=1

with E € R. Since the potential V is almost surely bounded, we have rank r ;, ,(6) <
rank p, (6) = 2bL%/7. Therefore, (4.4) entails

2

E (og.n,0(E)) < 73 P(rg,n,(0) has an eigenvalue less than E)d6. (4.5)
A3

In order to estimate the probability in (4.5), we need the following

Lemma 4.1. Assume that, for n ~ E™", the operator rq p ,(8) has an eigenvalue less
than E. Set L := (2n + 1)a/2. Pick E small and | large such that L >> 1. Decompose
Aoy = Uy cuz2nng, (y + Agy). Fix C > 1 sufficiently large and m = m(L, ) such that

1
Ebl2 <m <ChL?, (4.6)

l 2
E (Z) - Ce—b12/2+m ln(Cblz/m). (4.7

Then, there exists y € 217> N A>y and a non-identically vanishing function € L*(R?)
in the span of {€; 4}o<j<m. the functions e; , being defined in (3.26), such that

(VX ) < 2E(Y, ¥, (4.3)
where V) (x) = VI (x +y), and (-, ) == fAzz |- |%dx.

Proof. Consider ¢ € Ran p,(0) a normalized eigenfunction of the operator r ;, ,,(8)
corresponding to an eigenvalue smaller than E. Then we have

(Vop, 0)L < E{p, 9)L. 4.9)

Whenever necessary, we extend ¢ by magnetic periodicity (i.e. the periodicity with
respect to the magnetic translations) to the whole plane R?. Note that

p(x) = ¢(x;0) = /A Kq.p(x.x: 0)p(x)dx' = /]R LTI (e 2 ) ds!
2L
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with x € Ay (see (3.31) and (3.32) for the definition of K, 5 and K, ; respectively).
Evidently, ¢ € L°°(R?), and since it is normalized in LZ(A»; ), we have

172
el g2y = sup (/ I’Cq,h(x,x';9)|2dx/)
Ao

xXeArL
) 1/2
< sup / > Y —x'+a) | dx <C, (4.10)
XehaL AaL ae2L7?
where
5 b b
U, (y) = — W, [ =1vI*)], R?, 4.11
¢ 2:1‘ q(2|y|) Y€ 4.11)

and C depends on ¢ and b but is independent of n and 6.
Fix C| > 1 large to be chosen later on. Consider the sets

1 [1\?
Li=1y €2Z*N Aay; / |<p(x)|2dxz—(—) / lp(x)[2dx |,
y+A Ci \L Aop

1 [1\?
Lo =1y e€Z?NAy; / lp(x)[Pdx < — (—) / lp(x)[2dx | .
y+Ay Ci \L Aop,

The sets £_ and L partition 272N Ay
Fix C; > 1 large. Let us now prove that for some y € L., one has

[ wwlewPdx < GE [ lpwoids, (4.12)
y+A y+A2
Indeed, if this were not the case, then (4.9) would yield
—E Y. / lp()Pdx< ) ( / Vo () lp(x)*dx — E / |<p<x>|2dx)
yel_ YA yel_ y+A y+Ay
=53 (E [ weeorar - [ v£”(x>|¢<x)|2dx)
vels y+A2 y+A2
=EG-DY [ P (4.13)
vely y+Ao
On the other hand, the definition of £_ yields
/ () Pdx = Z/ () Pdx + Z/ lp(x)[Pdx
Aap yel Jv+iu yel, v+iu
2 1 1y 2
<> lpPde+ — > | 7 | (x)|*dx
eL, v+ U er. Aar,
=<

1
S [ webdre o [ lewPas.
el Yy I J Ay
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Plugging this into (4.13), we get

E 2 1 2
- lp()|"dx = E(Co — 1) {1 - — / lp(x)|"dx (4.14)
Ci Jay G Aop

which is clearly impossible if we choose (C; — 1)(C; — 1) > 1.
So from now on we assume that (C» — 1)(C; — 1) > 1. Hence, we can find y €
2172 N A,y such that one has

/ VI (0o (0)Pdx < CE / o ()P,
y+Ay y+Ao

/ lo(0)Pdx = 1(1)2/ o) 1%d
eX)|7dx > — | — ox)|"dx.
y+Ay Ci \L Aop

Shifting the variables in the integrals above by y, we may assume y = 0 if we replace
per 4
w by Vg . Thus we get

/ V2 (0)e(x)|*dx SC2E/ lo(x) dx,
Ay Ay

/|<)|2d>1(l)2/ lp(x)|*d
px Xz =\ @(x X.
Ay Ci \L y+AoL

Due to the magnetic periodicity of ¢, we have

/ lp(x)[dx = / lo(x)|*dx
y+AoL Ao

which yields

/ Vo () |p(0)|2dx < CzE/ lo(x)[*dx, (4.15)
Ay Ay

2
/ |w(x>|2dxzi(i) / lp(x)%dx. (4.16)
Aoy G \L Aop

Letus now show that roughly the same estimates hold true for ¢ replaced by a function
Ve Pqu(Rz). Set ¢ := P, x_egp where eg(x) := e x € R?, and x_ denotes the
characteristic function of the set {x € RZ; |x|oo < L}. Note that o —egyr = eg Py x+e09,
where x, is the characteristic function of the set {x € R?; |x|o > L}. Let us estimate
the L?(A»z)-norm of the function ¢ — 2g. We have

2

lo =2yl =l — eV l7a,,) = / ’ /R K (e x) (e ™ p(xdx' | dx
Aop

< sup lp(x)?

x'eR2

X / / / \i'q (x — x/)‘i’q x = X" e (X e (xdx'dx" dx,
Aop JR2 JR2
“4.17)
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the function \f/q being defined in (4.11). Bearing in mind estimate (4.10), and taking

into account the Gaussian decay of W at infinity, we easily find that (4.17) implies the
existence of a constant C > 0 such that for sufficiently large L we have
lo — eyl < e /¢

As @ is normalized in L2(A2L), this implies that, for sufficiently small E,

1 _ _
IVl = Sliele and lle - &yl <e Ly, (4.18)

As VB is uniformly bounded, it follows from our choice for L and [ and estimate (4.18)
that, for E sufficiently small,

2 1 l ? 2 — 12
Y )|7dx = — | — lp(x)|*dx — Cllg —epyrliy,
Aoy Cl L Ao

> L (1)2/ [ (x)|2dx
- él L Aop 7

/ VI (O)lp(o)Pdx + Cllp — a2 < GE [ [ (odx.
Ay Ay

/ VI () [ () Pdlx
Ay

Hence, we obtain inequalities (4.15)—(4.16) with ¢ replaced by ¥ € P, L? (Rz). Now,
wewritey = 3, a;e; (see(3.26)). Using the fact that {e} j>0 is an orthogonal family
on any disk centered at O (this is due to the rotational symmetry), we compute

[y (x)|*d 5/ [y ) Pdx = | A|2/ le; (x)*dx, (4.19)
/Azt e ! lx|=v21 v * z “ lx|=v21 o *

j=0
and
/ ¥ () dx > / W) Pdx = laj|? / lej(x))%dx.  (4.20)
st wl=L = NE
Fix m > 1 and decompose ¥ = v + ¥, where

m

1//0=Zajej, Y — Z aje;. 4.21)

j=0 j=m+l

Our next goal is to estimate the ratio

2
f\x|<«/§l |ej’q(x)| dx
jix|<L Iej,q(x)|2dx ’
where [, m, and L satisfy (4.6) with suitable C, under the hypotheses that /, and hence m
and L are sufficiently large. Passing to polar coordinates (r, 0), and then changing the
2
variable s = bzil. in both the numerator and the denominator of (4.22), we find that

j=m+l, (4.22)

2 . . P
JievaleiqgPds [T emsU—gi—a L 770 (js)2ds 4.23)
f|x|<L lej.q(x)|*dx fObLZ/(zj) e‘s(/_‘I)s</'_‘1Lf{j7q)(js)2ds. .
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Employing estimates (3.27) and (3.28), we get
2 foblz/.i =01 g

bI2fj  —s(j—q)j—q 7 U= : N2 ;
e s/74L s)°ds
g G <C(“”(j] )

27027 ) : i = N (i ’
fObL /2)) e—s(]—q)sj—qL((IJ q)(js)st f()é(j) =) ds

(4.24)

where

f(s):=Ins—s, s>0,

and
1o 2
N if j<bL",
6(1)_[—%2 if j>bL2

Note that the function f is increasing on the interval (0, 1). Since j > m+ 1, and C, the

constant in (4.6), is greater than one, we have 2°- j < 1. Therefore,

2

bl=/j 2
/ im0 fwgg < P g-orers, 4.25)
0 J

On the other hand, using a second-order Taylor expansion of f, we get

1
£5) > fle()) +° (eg” 5o s € (/2. €0,
Consequently,

() )
/” e(ij)f(s)dsz/ej =070 gg > €D =i, (426
0 (N2 2

Putting together (4.24)-(4.26), we obtain

Sty lej.q(01Pdx < cl 2b1? ( j )
Jixjen lejq@OPdx je(i) \U—q

a2 N\ jrexp (—bz2+ jln(zf”]ﬂ)) if j<bL?
<C@)——\|— 2 222 L ’ (4.27)
jeH \j—q exp(—bl +jin (2 ) if j>bL2

Now, using the computations (4.19) and (4.20) done for v, as well as (4.6), we obtain

/A |1ﬂm(.x)|2d.x S Ce—b12/2+mln(Cb12/2m)/ |w(x)|2dx
21

Aar

P
<q (%) efblz/2+mln(Cb12/m)/ WwPdx.  (4.28)
Ay

2q

exp ((j — @) (f(BI*/j) — fe(j) +1)
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Plugging this into (4.15) — (4.16) for v, and using the uniform boundedness of V,,,
we get that

L 2
/ Vo ()10 (6)Pdlx < C2E+C(—) oD 4m (D2 2m) / Wo()2dx,
Ay [ Ay

2
2/ o) [2dx > 1 (L) _ g blP+mIn(ChI2/2m) / v () P
Ay Cl L Aop

Taking (4.7) into consideration, this completes the proof of Lemma 4.1. 0O

Let us now complete the proof of Theorem 4.1. Assume at first the hypotheses of its
first part. In particular, suppose that u(x) > C(1 + |x|)~*, x € RR2, with some » > 2,
and C > 0.Pickn > 2/(3r—2), and vp > max {ﬁ, v} where v = v(n) is the number

defined in Corollary 3.1. Finally, fix an arbitrary 5 > s and set

1
n~E™, L=Qn+0)a/2, |=E 732, m~E 72,

Then the numbers m, [, and L, satisfy (4.6) — (4.7) provided that £ > 0 is sufficiently
small. Further, for any yp € 2172 N A,y we have

ARTESS wy/

lyl<i Az

u(x — )|y (x)Pdx > C%z—” > wy/ ¥ () dx

lyl<l Ax
(4.29)

with C3 > 0 independent of # and E. Hence, the probability that there exists y €
2172 N A,y and a non-identically vanishing function ¥ in the span of {e;}o<;<» such
that (4.8) be satisfied, is not greater than the probability that

172> w0, < GEF 2 = GGE=2 . (4.30)
lyl=<i

Applying a standard large-deviation estimate (see e.g. [15, Subsect. 8.4] or [22, Sect.
3.2]), we easily find that the probability that (4.30) holds, is bounded by

' = 2 Py
exp (C4l2 InP(wg < C3E +'-2 )) = exp (C4E%/—2 InP(wg < C3E #'-2 ))

with C4 independent of & and E > 0 small enough. Applying our hypothesis that
P(wyp < E) ~ CE*, E | 0, with C > 0 and « > 0, we find that for any >’ > s,
0 e T; 1» and sufficiently small £ > 0, we have

2
P(r4,1,0(0) has an eigenvalue less than E) < exp (—C5Em | In E|) 4.31)

with C5 > 0 independent of # and E. Putting together (3.39), (4.5) and (4.31), and
taking into account that area A5, = 72L 72, we get

b 2
Ny (2bg + E) = Ny(2bq) < - exp (—CsEu’—Z |In E|) +exp(—E)
T
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which implies

. In | In N, (2bg + E) — N (2bq)| 2
lim inf >
ELO |In E| »w =2

for any >’ > s Letting 5 | s, we get (4.1).
Assume now the hypotheses of Theorem 4.1 ii). In particular, we suppose that u(x) >

Ce‘cmﬂ, x € R?,C > 0,8 > 0. Put By = max {1, 2/B}. Pick an arbitrary 8’ > $ and
set

I=|WmEM', m~|mEP.

Then (4.6)—(4.7) are satisfied provided that £ > 0 is sufficiently small, and similarly to
(4.29), for any yg € 2172 N A,y we have

VIO, Y = *‘6”3 > o, / | (x) 2dx

lyl<t 7N

with C¢ > 0 independent of 6 and E. Arguing as in the derivation of (4.31), we get
P(ry.n.0(0) has an eigenvalue less than E) < exp (—c7| In E/*2/8 1n | In E|) (4.32)

with C7 > 0 independent of 6 and E. As in the previous case, we put together (3.39),
(4.5) and (4.31), and obtain the estimate

b ,
Ny(2bg + E) = Np(2bg) = 5 exp (—c7| In £/'*2/8' 1n | In E|) +exp(—E™M)
T

which implies

In|l 2bg + E) — 2b 2
lim inf n|In (N, (2bg + E) — N;,(2bg))| 142
EL0 In|In E| B’

for any B’ > B. Letting 8/ | B, we get (4.2).

Finally, let us assume the hypotheses of Theorem 4.1 iii). In particular, we assume that
u(x) = Clj,cpe. y withsome C > 0,x¢ € R?,ande > 0.Dueto Ty HoTyy = Ho
and Ty, 1y g2,y — xol<e)Trg = l{xeR2 x| <¢} We can assume without loss of generahty that
xo = 0. Our first goal 1s to estimate from below the ratio

|x— x0|<e

Jieeyize 1P () P

R, = Rymy = (4.33)
T ey [P0 Pdx
where
q
Pn(x) := D cjejq(x), x €R?, (4.34)
j=0

with 0 # ¢ = (co, 1, ..., cn) € C™.
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Lemmad4.2. Let ¢ € Zy. Let n(s) = Z(j‘:o cjsj, s € R. Moreover, let p € Zy,
p € (0, 00). Then we have

li[(r')z e~ @+ pata+D) PP (p+ 1) o
o )@+ DI+ pD (p+2g + 1)@

P p+l
< / r(s)Pe s ds < g+ 101+ p1 2 el (4.35)
0 P
where ¢ 1= (cp, c1,...,¢q) € C9*' and |e]? = |col* + -+ + |cq|2.

Proof. Let Mbethe (q+1) x (g+1) positive-definite matrix with entries | sIHkEP =S g,
j,k=0,1,...,q. Then we have

0
/ [(5))?e*sPds = (Me, ¢) < [IM]le].
0

Further, M = fop E(s)ds, where £(s), s € (0, p), is the rank-one matrix with entries

sitke=sgP j k=0,1,...,q. Obviously,

€@ =

q
Zﬂf eUsP < Jg+1(1+sDe ™ sP, s €(0,p),
j=0

and

p P r+lq q
M < /0 1€ ds < g+ /0 <1+s4)e—xs”dss\/q+1%,

+1
which yields the upper bound in (4.35). Next, we have

det./\/l 2 P 2
le|” < / | (s)|“e*sPds. (4.36)
M4 0
Further,
e~ P det M < det M, (4.37)
where M is the (¢ + 1) x (¢ + 1)-matrix with entries J sitrrds = fj;—r:ll, jok =
0,1,...,¢q,and
det M = p(q+p+1)("+l)Aq, (4.38)

where A; = A,(p) is the determinant of the (g + 1) x (g + 1)-matrix with entries
(j+k+p+ 1)_1, Jj,k=0,1,...,q.On the other hand, it is easy to check that

n? 1
(q) Aqflv q 2 1’ pzor A():

2+ DN (pHqr+1)2 p+l

Hence, forg > 1 and p > 0,

A

o)’
(p+2q +1ath? =

Putting together (4.36)—(4.39) and using the upper bound in (4.35), we obtain the cor-
responding lower bound. O

Ay (4.39)

In the following proposition we obtain the needed lower bound of ratio (4.33).
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Proposition 4.1. There exists a constant C > 0 such that for sufficiently large m and I,
ratio (4.33) satisfies the estimates

R, > ¢ Cminl (4.40)
for each linear combination Py, of the form (4.34).

Proof. Evidently,

/ (P () Pl = / P + ) Pdx = / &, Pu) (O, (441)
[x—yl|<e |x|<e |x|<e

/ (P (0)Pdlx < / PP

Ix|=v2I lx—y|<2v2I

_ / (P x4 y)Pddx = / [t P ()2, 4.42)
|x| <2421

|x|<2+/21

the magnetic translation operator 7,, being defined in (2.6). Using the fact that T, com-
mutes with the creation operator a* (see (3.30)), we easily find that (3.29) implies

m
(Ty P) (x) = zgj (@) (Z./g;ze—bmzm) 7 4.43)
j=0
where z = x| +ixp, { = —lj’(yl — iy2), and the coefficients ¢;, j =0, 1, ..., m, may

depend on y, b and ¢ but are independent of x € R?. Applying (3.26) and (3.29), we
get

m m o k
Zéj(a*)q (zje“e*bmz/“) =>> {—' (a*)4 (zi+ke*bIZ\2/4)

j=0 k=0

o KE /42 e qz(“’ LI b1z /2) (4.44)

with 6J~, j=0,1,...,m, independent of x € R2. By [9, Eq.(8.977.2)] we have

oo
D" (ke o) (blz]?
Z gk' L;j+k q)(b|Z|2/2) — e{ZLL(IJ q) T —¢z), (4.45)
k=0 ’
while the Taylor expansion formula entails
. blz|2 9 . . \s dsL(j—q)
LY q)( Iz —Cz) ZZ( E'Z) i ®) ’ (4.46)
2 =0 S dé |E:b\l|2/2
and [9, Eq.(8.971.3)] yields
(—q)
d°L i
dLqg @) _ DL e, seRr (4.47)

des
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Combining (4.43)—(4.47), we find that

Ty Pu)(x) = €5¥Pp(x), x € R?, (4.48)
where
5 DA 2 N sy U= 12
’Pm(x) — e [z]7/ ch z HZ]‘HiquJ*_;‘ q (b|Z| /2)
j=0  s=0
5 m+q
= ¢ PPN =g, 4 (bI2?/2), (4.49)
p=0
and ¢, 4, p =0, ...,m +q, are polynomials of degree not exceeding ¢; moreover, if

p < g, then the minimal possible degree of the non-zero monomial terms in ¢, 4, is

g — p. Bearing in mind that |¢¢?|? = ¢*7 and |y| < “/751, we find that there exists a
constant C such that for sufficiently large / we have

R, > e IR, (4.50)
where

Jixjze 1P () 2dx

R = 4 ’
le\fZﬁl [P (x)|2dx

(4.51)

the functions Py, being defined in (4.49). Passing to the polar coordinates (r, 8) in R2,
after that changing the variable s = br?/2, and taking into account the rotational sym-
metry, we find that for each R > 0 we have

2 (2\PT [P
/ [P ()] 2dx = B (E) / Sp_qe_s|¢p,q(s)|2ds
[x|<R 0

p=0
" . rp
= Z/ sl’e—x|r1,,,q(s)|2ds+2/ sPe |1, 4 (5)[%ds; (4.52)
=00 170

if ¢ = 0, then the second term in the last line of (4.52) should be set equal to zero. Here

p=bR2. T, 00) = (3) $pag.g). p = 0....om Ty = 2 (2) Fs7P
Gg—p,.q(s), p =1, ..., q.Note that the degree of the polynomials I1, , does not exceed
g, and the the degree of the polynomials IT, , does not exceed g — p. Bearing in mind

(4.52) and applying Lemma 4.2, we easily deduce the existence of a constant C > 0
such that for sufficiently large m and [ we have

Ié > e—lenl,

which combined with (4.50) yields (4.40). O
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Next, we pick an arbitrary n and v = v(7n), the number defined in Corollary 3.1.
Further, we choose ¢ > 1 and § € (0, 1/2) so that ¢ (1 —§) > 1 +2v, and set

log E
[ =|mEP? SHogEl ) o4 1yay2. (4.53)
log|log E|
Then, for E sufficiently small, (4.6) —(4.7) are satisfied. Further, we impose the additional
condition that p := % < 1, where C is the constant in (4.40), which is compatible

with the conditions on ¢ and é formulated above. Now, the probability that there exists
y € 2172 N A,z and a non identically vanishing function ¥ in the span of {e;}o<j<m
such that (4.8) be satisfied, is not greater than the probability that

17> o, <IPE" = E' M InEP.
lyl=l

Arguing as in the derivation of (4.31) and (4.32), we conclude that for any 6§ € T}, we
have

P(r4,m,» has an eigenvalue less than E)

<exp (Cgl2 log P(wo < E'™#|In E|5)) <exp (—C9| In E|™* In|In E|)(4.54)

with positive Cg and Co independent of 6 and E > 0 small enough. Combining the
upper bound in (3.39), (4.5), and (4.54), we get (4.3).
This completes the proof of the upper bounds in Theorem 2.1.

5. Proof of Theorem 2.1: Lower Bounds of the IDS

In this section we get the lower bounds of N}, (2bg + E) — Nj,(2bg) needed for the proof
of Theorem 2.1.

Theorem 5.1. Assume that Hy —Hy hold, that almost surely w, > 0, y € 72, and 2.1)
is valid. Fix the Landau level 2bq, q € Z..

i) We have
In|l 2bg + E) — 2b 2
lim inf n|In (Np(2bg + E) — N, (2bq))| < ’ 5.1)
ELO |In E| w—2
where ¢ is the constant in (1.2).
ii) Let u(x) < e_cmﬂ, X e Rz,for some C > 0 and B € (0, 2]. Then we have
1 2bg + E) — 2b
lim sup n (Ni(2bg + 1)+2 No(2bq) > -5 (5.2)
EL0 |In E|1+2/8 C
if B € (0,2), and
1 2bg + E) — 2b 2 1
lim jnf LNe @b + E) — No@bq)) (2 1) (5.3)
EL0 |In E|2 b C
if B = 2. Therefore,
In|l 2bg + E) — 2b
lim sup PN Mo @ba + B) = No@bal _ 5 (5.4)

ELO 1n|1nE|
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Note that the combination of Theorem 4.1 with Theorem 5.1 completes the proof of
Theorem 2.1.

Let us prove now Theorem 5.1. Pick > % in the case of its first part, or an arbi-
trary n > 0 in the case of its second part. As above, setn ~ E~V, where v = v() is the
number defined in Corollary 3.1, and L = (2n+ 1)a /2. Bearing in mind the lower bound
in (3.39), and (4.4), we conclude that it suffices to estimate from below the quantity

1

E (Pq,n,w(E)) = W

/ E(N(E; rg,n,0(0))d0
A3

rank 74 n.w(0)

= Q7)2 / Z P(A,;(0) < E)do
2L

j=1
> 2n) 2 /A P(%1(0) < E)do. (5.5)
2L

Fix an arbitrary 6 € T7, . Evidently, P(A;(9) < E) is equal to the probability that there
exists a non-zero function f € Ranry (@) such that

/ Vo)l £ (x: 0)Pdx < E / 1 (x: ). (5.6)
Arp Arp
Further, pick the trial function
p:0) = > (G (x), x ey, 0eTj. (5.7)
ye2L7?

where

—blz[?/4

P(x) = @q(x) :=7% Z=x1+ixy, Z=2Xx1—ix). (5.8)

Since the function ¢, is proportional to ep 4 (see (3.26)), we have ¢ € Ranry , ., (0).
Therefore, the probability that there exists a non-zero function f € Ranr, , (6) such
that (5.6) holds, is not less than the probability that

/ Vo) lo(x; 0)?dx < E / lo(x; 0)]dx. (5.9)
Arr Aop

Lemma 5.1. Let the function ¢ be defined as in (5.7) — (5.8). Then there exist Lo > 0
and ¢ > 0 independent of 0 such that L > L implies

/ lp(x; 0)2dx > ci. (5.10)
Aap

Proof. We have ¢ = ¢ + ¢oo Where

—iOx

po(x;0) = e "7 p(x), (.11

Pox:0) = D e E(1,6)(x). (5.12)
y€2LZ2, y#0
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Note that

SUP [0 (x: 0)] < Ge L’ (5.13)

xeArp

with ¢ independent of L and 6. Further,

1
/ o(x; 0)dx = 5/ oo (x; 0)2dx —2/ (oo (x: 0)Pdlx
Aop Arp Aar

v

1 -
E/Rz 15(x)[2dx — 8GL2e~¢L?, (5.14)

q
Taking into account that [y |¢%dx = 2= (3) ¢!, we find that (5.14) implies (5.10).
]

By assumption we have

u(x) < Cuv(x), C>0, xeR? (5.15)
where v(x) := (1 + |x])~* in the case of Theorem 5.1 i), and v(x) := e~ C in the
case of Theorem 5.1 ii). Since w,, > 0, inequality (5.9) will follow from

S o [ ot pletio)fdr < k. (5.16)
Aop

yeZ?

where ¢, = ¢;C~ L, C being the constant in (5.15), and c; being the constant in (5.10).
Next, we write

> wy/ v(x — p)lp(x; 0)*dx

yeZ?

<2> wy/ v(x = P)lgo(x; O)Pdx +2 > wy/ v(x — )lpeo(x; 0)]7dx,
Aop Ao

yeZ? yezZ?
(5.17)

where ¢ and ¢, are defined in (5.11) and (5.12) respectively.

Lemma 5.2. Fix g € Z,.
i) Let 3¢ > 0, b > 0. Then there exists a constant ¢’ > 0 such that for each y € IRZ,
L >0, and6 € T}, , we have

(1+]x — y) ™" lgo(x; 0)]7dx < ¢/(1+ |y~ (5.18)
Aot
ii)Let B € (0,2], b >0, C > 0.If B € (0,2), set by := C. If B = 2, set by 1= 3525
Then for each by < by there exists a constant ¢” > 0 such that for each y € R?, L > 0,
and 6 € T3, , we have

/ e CF Y 1o (x; ) Pdx < eV (5.19)
Aor
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We omit the proof since estimates (5.18)—(5.19) follow from standard simple facts con-
cerning the asymptotics at infinity of the convolutions of functions admitting power-like
or exponential decay, with the derivatives of Gaussian functions. In the case of power-
like decay, results of this type can be found in [34, Theorem 24.1], and in the case of an
exponential decay similar results are contained in [12, Lemma 3.5].

Using Lemma 5.2, we find that under the hypotheses of Theorem 5.1 i) we have

2 Z @y /AzL v(x — P)lpo(x; 0)*dx < c3 Z w,(1+y)™%, (5.20)

yez? yeZ?

while under the hypotheses of Theorem 5.1 ii) for each b < by we have

2y a)y/ (= Plgoe: O)Pdx <3 > w,e I, (5.21)
yeZ? AaL yeZ?
where c3 is independent of L and 6. Further, for both parts of Theorem 5.1 we have
23 0y [ vt = Pl )P dx < st (522)
yeZ? Aar

where ¢4 is independent of L and 6, and ¢ is the constant in (5.13). Since L ~ E~",
v > 0, we have

O F — cyL2e L > %E (5.23)

for sufficiently small £ > 0. Combining (5.17) with (5.20)—(5.23), and setting c5 =
c2/(2c3), we find that (5.16) will follow from the inequality

> wyes(L+y) " < sE. (5.24)
yeZ?
in the case of Theorem 5.1 i), or from the inequality
> wye I < 5E. by < by, (5.25)
yeZ?

in the case of Theorem 5.1 ii). Now pick / > 0 and write

Dloy+ly)F s D e+ D eyl (5.26)

yez? yeZ?, |y|<i yeZ?, |y|>1
~bilylf ~bilyl?
Z wye < wy + wye . 5.27)
yez? yez?, ly|<l yeZ?, ly|>1

Evidently, for each > € (2, ) and b, < b there exists a constant cg > 0 such that

> wyly T <l (5.28)
yeZ?, |y|>1
Z a),,e_bllylﬁ < c6e_b2lﬂ. (5.29)

yeZ?, ly|>1
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Fix [ and ¢7 € (0, c¢5) such that
RS9 (5.30)
C6
in the case of Theorem 5.1 i), or
e_bzlﬁ 65—
C6

in the case of Theorem 5.1 ii). Putting together (5.26) - (5.31), we conclude that (5.24),
or, respectively, (5.25) will follow from the inequality

Z wy < c71E, (5.32)
yeZ?, |y|<l

E (5.31)

provided that [ satisfies (5.30) or, respectively, (5.31). Set
N() =ty € 225 |y <1},
so that we have
N({) = wl?(1+0o(1)), | — oc. (5.33)

Evidently, the probability that (5.32) holds, is not less than the probability that w, <
c7E/N (1) for each y € Z? such that |y| < [. Since the random variables w, are identi-
cally distributed and independent, the last probability is equal to P(wy < c7E/N ()N D,
Combining the above inequalities, and using the lower bound in (3.39), we get

area A%
Ni(2bg + E) — Np(2bg) > ——3%
(2m)
where [ is chosen to satisfy (5.30) with an arbitrary ¢ € (2, 5) in the case of Theorem
5.11), or to satisfy (5.31) with an arbitrary fixed b, < by in the case of Theorem 5.1 ii).

Putting together (5.34), (2.1), (5.30), and (5.33), we get

) In|In (N, (2bg + E) — Np(2bq))| 2
lim sup =
EL0 [In E| w =2

P(wy < c7E/NO)YND — e E7" | (5.34)

for any s € (2, ») such that n > % Letting 5 1 s, we get (5.1).
Similarly, putting together (5.34), (2.1), (5.31), and (5.33), we get

.. In(Np(2bg + E) — Np(2bq)) TK
lim inf ; > ——
EL0 |In E|'*7 ba

for any by < by. Letting

1 .

Lif Be(0,2),
b2Tb0:[CbC .

b2C if ,322,

we get (5.2)—(5.3).
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