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Impurity modes and wave scattering in discrete chains
with nonlinear defect states
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Abstract

We study the properties of localized impurity modes and the transmission of plane waves across a general nonlinear impurity embe
infinite one-dimensional linear chain. Using the formalism of the lattice Green function, we obtain nonlinear equations for the bound sta
and the transmission coefficient, for a wide class of nonlinear impurities. We specialize to a saturable nonlinear impurity, obtaining clo
expressions for the bound state energy and transmission coefficient.
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1. Introduction

Impurities (or defects) are known to break the translatio
symmetry of physical systems leading to several novel feat
such as wave reflection, resonant scattering, and excitatio
impurity modes[1]. When the wave interaction with the defe
is attractive, it can lead to the energy trapping and localiza
in its vicinity, that occurs in the form of spatiallylocalized im-
purity modes.

When nonlinearity becomes important, it may lead to s
trapping and energy localization even in a perfect (or ho
geneous) system in the form of intrinsic localized modes[2].
When both nonlinearity and defects are present simultaneo
it is expected that competition between two different mec
nisms of energy localization (i.e., one, due to the self-ac
of nonlinearity, and the other one, due to localization indu
by defect) will lead to a complicated and somewhat nontri
physical picture of localized states and their stability.

In this Letter, we consider one of the examples of suc
competition, and analyze different types of localized impu
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in the framework of the generalized discrete nonlinear mo
In particular, being driven by the recent analysis of the wea
coupled arrays of optical waveguides in realistic physical s
tems[3], we apply our theory to the analysis of the effect
nonlinearity saturation on the existence, properties and sta
of nonlinear localized impurity modes.

The local character of nonlinearity [see Eq.(1) below] sug-
gests that in the case of attraction nonlinearity is impor
at the impurity site and the mode will be mainly localized
the defect decaying rapidly away from it. The local char
ter of nonlinearity suggests that idea that in the limit of stro
nonlinearity (and therefore, very localized excitation), one
approximate a typical nonlinear system by a linear one con
ing a small cluster of nonlinear sites, or even a single nonlin
impurity. The system thus simplified is amenable to exact m
ematical treatment, and the influence of other, potentially c
peting effects such as dimensionality, boundary effects, n
etc., can be more easily studied without losing the esse
physics.

For definiteness, we will work in a condensed-matter c
text, although the main results can be applied to other sys
as well (e.g., nonlinear optics), for which the main equation(1)
applies (see below). Thus, let us consider the propagatio
an electron along a one-dimensional tight-binding chain
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interacting strongly with a single vibrational degree of fre
dom at siten = 0. This oscillator is modelled either as a ha
monic[4] or anharmonic[5] classical Einstein oscillator. In th
limit when the oscillator vibration is completely correlated
“enslaved”) with the presence of the electron, it is possibl
solve formally for the oscillator’s displacement in terms of
electron’s probability amplitude and thus arrive to an effec
evolution equation for the electron, known as the discrete n
linear Schrödinger (DNLS) equation:

(1)i

(
dCn

dt

)
= −V (Cn+1 + Cn−1) + χδn,0f

(|Cn|2
)
Cn,

whereCn(t) is the probability amplitude for finding the excit
tion on thenth site at timet , V is the coupling parameter an
χ is the nonlinearity parameter. The specific form off (|Cn|2)
determines the nature of the nonlinear impurity in a phys
problem. For instance, whenf (|Cn|2) ∼ |Cn|β , one could be
dealing with a harmonic oscillator[4] (β = 2), or a “hard” an-
harmonic oscillator (β < 2) or a “soft” anharmonic oscillato
(β > 2) [5]. In the case of the harmonic vibrational impuri
it must be pointed out that, a fully quantum treatment reve
some departures from the behavior predicted by Eq.(1) in some
parameters regime[6].

2. Bound states

We normalize all energies to a half bandwidth, 2V and look
for stationary states:Cn(t) = exp(−iEt)Cn, obtaining

(2)ECn = −1

2
(Cn+1 + Cn−1) + γ δn,0f

(|Cn|2
)
Cn,

whereγ ≡ χ/2V . The dimensionless Hamiltonian that giv
rise to Eq.(2) is

(3)H = H0 + H1,

where

(4)H0 = −1

2

∑
n

(|n〉〈n + 1| + |n + 1〉〈n|),
(5)H1 = γf

(|C0|2
)|0〉〈0|,

where{|n〉} are the Wannier states. The dimensionless Gr
functionG = 1/(z − H) can be formally expanded as[7] G =
G(0) + G(0)H1G

(0) + G(0)H1G
(0)H1G

(0) + · · ·, whereG(0) is
the unperturbed (atγ = 0) Green function. The series can
resumed to all orders to yield

(6)Gmn = G(0)
mn + EG

(0)
m0G

(0)
0n

1− EG
(0)
00

,

where E ≡ γf (|C0|2), and Gmn ≡ 〈m|G|n〉. Now, we can-
not use Eq.(6) directly since we do not knowC0, but we
will determine it through an exact self-consistent proced
the energy of the bound state(s) is obtained form the pole
Gmn, i.e., by solving 1= EG

(0)
00 = γf (|C0|2)G(0)

00 (zb). On the
other hand, the bound state amplitudesCn are obtained form
the residues ofGmn at z = zb. In particular, at the impurity
-

l

s

n

:
f

site, |C0|2 = Res{G00(z)}z=zb
= −G

(0)
00

2
(zb)/G

′(0)
00 (zb). Insert-

ing this back into the bound state energy equation leads to

(7)
1

γ
= f

(
−G

(0)
00

2
(zb)

G
′(0)
00 (zb)

)
G

(0)
00 (zb).

Now we use the exact expression for the Green function for
one-dimensional infinite lattice,

G(0)
mn(z) = sgn(z)

1√
z2 − 1

[
z − sgn(z)

√
z2 − 1

]|n−m|
,

where sgn(z) = +1 (−1) for z > 0 (< 0). After replacing into
Eq.(7), we obtain the following nonlinear equation forzb:

(8)
1

γ
= f

(
−

√
z2
b − 1

|zb|

)
sgn(zb)√
z2
b − 1

.

We notice from Eq.(8), that the changeγ → −γ is equiva-
lent to reversing the sign of the bound state energy:zb → −zb.
On the other hand, from Eq.(1), it can be proven that th
changeγ → −γ (i.e., χ → −χ ) is equivalent to the chang
Cn → (−1)nC∗

n . Since we are interested in a localized state
side an infinite lattice, where theCn can be chosen as real, w
conclude that a change in sign of the nonlinearity param
reverses both the sign of the bound state energy and the “
gered” character of the bound state.

For each possible solutionzb(|zb| > 1) of Eq. (8), the as-
sociated bound state probability profile is obtained from
residues ofGmn(z) at z = zb as:

(9)|Cn|2 =
√

z2
b − 1

|zb|
[
zb − sgn(zb)

√
z2
b − 1

]2|n|
.

This describes an exponentially decreasing spatial probab
profile∼e−|n|/λ with localization length

λ = −1

2
log

∣∣∣zb − sgn(zb)

√
z2
b − 1

∣∣∣.
Let us now focus on the family of functions

(10)f
(|Cn|2

) = (
a + b|Cn|2

)d
,

with a, b > 0, which contains several physically relevant cas
For instance, fora = 0,b = 1= d , we obtainf (|Cn|2) = |Cn|2,
the standard cubic nonlinear impurity[8]. Fora = 0,b = 1,d =
β/2, we obtainf (|Cn|2) = |Cn|β , the generalized nonlinea
impurity, described in Ref.[9]. Fora = 1= b, d = −1, one ob-
tains the saturable impurity case, i.e.,f (|Cn|2) = 1/(1+|Cn|2)
[3]. After replacing Eq.(10) into (8), the bound state equatio
becomes

(11)
1

γ
=

(
a + b

√
z2
b − 1

|zb|

)d
sgn(zb)√
z2
b − 1

.

We distinguish two main cases:
(i) a = 0. In this case, we have

(12)
1 = bd

d

(
z2
b − 1

)(d−1)/2 sgn(zb).

γ |zb|
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The RHS of the equation above shows different behaviors
cording to whetherd is smaller or greater than one. Ifd < 1,
the RHS always diverges at|z| = 1 (the band edge) and d
creases monotonically with increasingz, implying a unique
solution for a bound state, for anyγ value. The cases discuss
in Refs.[8,9] fall in this category. Atd = 1, there is a unique
solution,zb = bγ , providedγ � 1/b. Whend > 1, the right-
hand side of Eq.(12) starts from zero, atz = 1, then raises
and reaches a maximum and decreases afterwards toward
as O(1/|z|) when z → ∞. Thus, there is a minimum valu
for the nonlinearity parameterγc, above which there are tw
bound states, and below which there are no bound state
preciselyγ = γc, there is a single bound state. From analysi
Eq. (12), one obtains a closed-form expression for this non
earity threshold:

(13)γc =
√

d − 1

bd

(
d

d − 1

)d/2

(d > 1).

Now, as nonlinearity is increased, one of the two states
proaches the continuum band (z = 1) while the other gets awa
from it. Since an increase inγ is equivalent to a decrease
site coupling, one would expect that the corresponding bo
state should decrease its localization length, which is ta
mount to drifting away from the continuum band. Therefo
we conclude that the state which, upon increasing nonlinea
approaches the band must beunstable, while the one that get
away from it must bestable.

(ii) a > 0. We notice that, atz = 1+ and also atz 
 1,
the right-hand side of Eq.(11) is dominated by the invers
square root of the second term, which would seem to im
a unique bound state solution, for all possible values ofa, b

andd . However, a closer look reveals the possibility of ad
tional intermediate solutions. Algebraic analysis of the RHS
Eq. (11) shows two important sub-regimes: ford < 1, there is
only one bound state solution, for anyγ value, while ford > 1,
we can have up to three bound states, depending on the
of the ratio(b/a). For (b/a) < (b/a)crit, there is a unique solu
tion, while for(b/a) > (b/a)crit, we can have up to three boun
states, for some nonlinearity parameter range. Following
same arguments shown in (i), we can show that only two
these states is stable while the third one is unstable. The cr
parameter(b/a)crit is given in closed form by

(14)

(
b

a

)
crit

= 3

2

√
3d

(d − 1)3/2
,

and the bound state energy associated with this interme
state iszb = √

3d/(1+ 2d) < d . It lies between 1+ at d = 1+
and

√
3/2= 1.22, at larged values.

2.1. Saturable impurity

We specialize now to the saturable impurity case, chara
ized bya = 1= b, d = −1. According to the discussion abov
in this case there is only one possible bound state for any im
rity strength. The equation forzb takes the form
c-
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Fig. 1. Saturable impurity case. Top: normalized bound state energy of satu
impurity as a function of the normalized impurity strength. Bottom: probab
at impurity site as a function of the normalized impurity strength. The cu
corresponding to the linear impurity case is also shown, for comparison.

(15)
1

γ
= zb

|zb|
√

z2
b − 1+ (z2

b − 1)

.

Eq.(15) is a cubic algebraic equation, with real solution,

zb(γ ) = −1− γ 2

6γ
+ 1+ 10γ 2 + γ 4

6γG1/3
+ G1/3

6γ
,

with G = −1+ 39γ 2 + 15γ 4 + γ 6

(16)+ 6
√

3|γ |
√

−1+ 11γ 2 + γ 4.

Fig. 1 shows the bound state energy as a function ofγ ,
as well as the probability at the impurity site,|C0(γ )|2 =√

z2
b(γ ) − 1/|zb(γ )|. Clearly, the growth of probability with

impurity strength is sub-linear. This suggests that our satur
impurity is somewhat equivalent to an effective linear imp
rity. This is easy to see, since at small nonlinearity,|C0|2 � 1,
implying an effective impurity Hamiltonian term of the for
γ |0〉〈0|; while at large nonlinearity value,|C0|2 ∼ 1, implying
an impurity term of the form(γ /2)|0〉〈0|. Thus, at small and
large nonlinearity, the impurity behaves as a linear impurity

OnFig. 2we display several bound states profiles for diff
ent impurity parameter values, going from small to large valu

3. Transmission across the impurity

We now consider the problem of computing the tra
mission of linear plane waves sent towards a single gen
nonlinear impurity of the formf (|C0|2)δn0. We setCn(t) =
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Fig. 2. Saturable impurity: bound state probability profiles for different val
of the impurity strength.

φn exp(−iEt) and takeφn of the form

(17)φn =
{

I exp(ikn) + R exp(−ikn), if n � −1,

T exp(ikn), if n � 0,

with I , R andT being the amplitude of the injected, reflect
and transmitted parts of the wave, respectively. After inser
this into Eq.(2) and after some algebra, we obtain a nonlin
equation for|T |2,

(18)|T |2 = |I |2
1+ (γ /sin(k))2f 2(|T |2) .

From Eq.(18) we immediately notice several general featur
|T |2 is even inγ andk; there are no resonances:|T |2 < |I |2;
an increase in impurity strengthγ always decreases|T |2. Most
interestingly, there is no bistability for anymonotonic f (x): this
can most easily seen by rewriting Eq.(18)as

(19)|I |2 = |T |2
(

1+
(

γ

sin(k)

)2

f 2(|T |2)
)

.

For a given input intensity|I |2, the right-hand side of Eq.(19)
is always monotonic in|T |2, for f (x) monotonic.

3.1. Saturable impurity

In this casef (x) = 1/(1+ x), and Eq.(18) can be cast as
cubic equation for the transmission coefficientt ≡ |T |2/|I |2,

(20)1= t

(
1+ (γ /sin(k))2

(1+ |I |2t)2

)
,

and a real solution fort can be written down, although is n
particularly illuminating. InFig. 3 we show two transmissio
plots: one for a fixed impurity parameterγ and variable injected
intensity |I | and the other, for a fixed incoming intensity|I |
and variable impurity strengthγ . As expected, an increase
injected intensity increases the transmission while an incr
in the impurity parameterγ decreases it. In the limitI → 0, we
g
r

:

e

Fig. 3. Plane wave transmission coefficient versus wave vector. Top: fixedγ = 1
and varying input intensity|I |. Bottom: fixed input intensity|I | = 1 and vary-
ing γ .

recover the well-known case of a linear impurity of strengthγ :
t → sin(k)2/(γ 2 + sin(k)2).

In conclusion, we have studied the properties of locali
impurity modes and the plane wave scattering in the fra
work of the generalized discrete nonlinear model. Using
formalism of lattice Green function, we have obtained non
ear equations for the bound state energy and the transmi
coefficient, for a wide class of nonlinear impurities. The
sults obtained are generic for a wide class of physical sys
where the main Eq.(1) is applicable. As an example, we ha
studied in detail the case of saturable nonlinearity that co
sponds to the recently analyzed arrays of weakly coupled
tical waveguides. We found that only a single bound stat
possible for any value of the impurity parameter. The tra
mission of plane waves across the saturable impurity show
bistability.
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