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Abstract. The magnetosphere is a multi-scale spatio-temporal complex dynamical system. Self-

organization is a possible solution to the seemingly contradicting observation of the repeatable and co-

herent substorm phenomena with underlying complex behavior in the plasma sheet. Self-organization,

through spatio-temporal chaos, emerges naturally in a plasma physics model with sporadic dissipation.

Keywords: self-organization, space plasmas, magnetospheric dynamics

1. Introduction

There is mounting evidence that plasmas can demonstrate very complex behavior,
that includes multi-scale dynamics, emergence and self-organization, phase tran-
sitions, turbulence, spatio-temporal chaos, etc. (Lu, 1995; Carreras et al., 1996;
Biskamp, 2000).

In the magnetosphere, there are two seemingly contradicting observations:
(a) the magnetotail plasma sheet appears to be a dynamic and turbulent region
(Borovsky et al., 1997; Ohtani et al., 1998), and (b) the substorm cycle seems
coherent and repeatable with identifiable distinct phases (Baker et al., 1999) and
predictable geomagnetic indices (Vassiliadis et al., 1995; Valdivia et al., 1996,
1999).

We suggest that these seemingly contradicting statements may be reconciled
by proposing that the plasma sheet is driven into a non-equilibrium self-organized
(SO) “global” state (Chang, 1999), as suggested initially by Chang (1992), that is
characterized by critical behavior with scale invariant events, self-similar spatial
structure, and multi-fractal topology. This paradigm is in sharp contrast to the stan-
dard picture of plasma sheet transport with laminar earthward flow in a well-ordered
magnetic field. Instead they are more consistent with the presence of elementary
transport events, probably bursty bulk flows (Baumjohan et al., 1990; Angelopoulos
et al., 1992), that are accelerated in local reconnection regions (see Figure 1a).

There is mounting evidence that such a SO state occurs in the magnetosphere.
Consolini (1997) found a power-law distribution of burst strength in the AL index.
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Figure 1. (a) Conceptual view of the complex magnetosphere. (b) AL time series.

Figure 2. (a) The energy release distribution for the proxy AL2. (b) ξp .

For the 2 years of the AL index shown in Figure 1b, let us use AL2 as a rough proxy
for the energy dissipation rate. Obviously, this is not correct, for we do not have
the conductivity nor the effective area of dissipation. Still, we computed the event
distribution of the energy dissipated �E , when AL2 > (50 nT )2 (see Figure 2a).
If we assume P(�E | α) = �E−α/ζ (α), with ζ (α) as the Riemann zeta function,
and apply a Bayesian argument to the measured sequence, we estimate α ∼ 1.35
from the maximum of (Goldstein et al., 2004)

P(α | (�E)) ∼ �i P(�Ei | α) = e−α
∑N

i ln(�Ei )−Nζ (α)

independently of the binning process (we assume a smooth prior P(α)). A nonlinear
exponent ξp with p, in the structure function

〈 | AL2(t + τ ) − AL2(t) | p〉 ∼ τ ξp

is also a good indication of the intermittent multi-fractal dissipation in the spatio-
temporal system, as suggested by Figure 2b.

Given that we are dealing with a complex spatio-temporal system, the analysis
of the single time series representation suggest just the possibility of a SO state.
An analysis of the spatio-temporal ionospheric energy dissipation from Polar UVI
images also found power-law distributions (Lui et al., 2000; Uritsky et al., 2003).
For the case of actual measurements in the tail, we can mention the work of An-
gelopoulos et al. (1999) that studied the nature of the intermittent properties of the
BBFs. More detailed arguments in favor of this SO state can be found in Klimas et
al. (2000) and Valdivia et al. (2005).
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If the plasma sheet is in a SO state, then understanding self-organization may
be the key to understand the substorm evolution. Even though the SO state is a
dynamical state in nature with a superimposed unpredictable behavior, its “global”
structure is inevitable and repeatable (this is true of sandpile systems as well (Bak
et al., 1987)). Thus, we are led to study substorm phenomena as an ensemble of
multi-scale dissipation and flow burst events in the turbulent plasma sheet under
the assumption that it can reach a global SO state (see Figure 1a).

2. Modeling

We go beyond sandpile analogues (e.g., Takalo et al., 1999) to develop plasma
physics models that evolve naturally into a SO state. Take(

∂μ

∂t
+ U j∂μ

∂x j

)
= −μ∇ × U

μ

(
∂U
∂t

+ U j∂U
∂x j

)
= J × B − ∇ P + ν∇2U(

∂ P

∂t
+ U j∂ P

∂x j

)
= −γ P∇ · U + (γ − 1)J · (E + U × B) − ∇Q

∂B
∂t

= −∇ × E

E + U × B = ηJ + α1J × B + α2

∂J
∂t

+ α3∇Pe + · · · (1)

For now let α1 = α2 = α3 = 0, ∇Q = 0, and B = ∇ × A. Klimas et al. (2000)
and Valdivia et al. (2003) derived from the plasma equations, but using anomalous
localized dissipation, a continuous 1D model of magnetic annihilation that displays
self-similar event behavior, reminiscent of a SO state. Indeed, simplifying A =
Ay(z, t)ŷ we obtain

∂ Ay

∂t
= η

∂2 Ay

∂z2
+ S(z, t), J = −∂2 Ay

∂z2
(2)

with S = (U × B)y , which provides the starting point to simulate a SO state by
incorporating the localized dissipation (Lu, 1995)

dη

dt
= (q(J ) − η)

τ
, q(J ) =

[
ηmax | J | > Jc

ηmin | J | < β Jc
(3)

with a hysteretic trigger function q having two states. At a given position, q will
transition from q = ηmin to q = ηmax when | J | > Jc, but will not transition to the
low state q = ηmin until | J | < β Jc (β < 1). This 1D model displays self-similar
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Figure 3. (a) The 2D geometry. (b) The 2D current density J at a given time. β = 0.9.

behavior through spatio-temporal chaos for a range of conditions (Klimas et al.,
2000; Valdivia et al., 2005).

As explained in Valdivia et al. (2003, 2005), this model represents the dynamics
of magnetic field in the diffusion region of the magnetotail. As we add the plasma
evolution in a 2D model, given by Equation (1) but including the dynamical η, we
found that the annihilated magnetic energy is transferred to the plasma in an inter-
mittent manner, generating bursts through a J × B force at the localized dissipation
regions (see Valdivia et al., 2005 for details). Figure 3b displays the evolution of
Equation (1) in 2D at some particular time t . The geometry of the system, repre-
sented in Figure 3a, is similar to that of Ugai and Tsuda (1977) with a symmetric
system at both x = 0 and z = 0, and an imposed constant inflow z-velocity Uz,o

and magnetic field Bx,o at z = ±Lz . We have outgoing conditions at x = ±Lx (see
Valdivia et al., 2003, 2005, for more details). We can already see from Figure 3 that
even though we have strong underlying turbulence, there is a well-defined global
state that permits the dissipation and transport of energy through the system, but in
a bursty fashion (see also Klimas et al., 2004). This picture is very reminiscent of
the behavior expected by Antonova et al. (1999).

Even though we are treating the plasma sheet as a magnetofluid, the spatially-
dependent η brings the necessary intermittent dissipation that is not present in
regular MHD. We use this nonlinear resistivity in an attempt to characterize some
of the complex microphysics behavior, with q acting like a physical current driven
instability (Papadopoulos et al., 1985) with a threshold Jc that is higher than the
value required to maintain the instability. Indeed, Chang et al. (2004) review a
physical microscopic behavior that may produce hysteresis as a spatio-temporal
coarse-grained dissipation. Here, we are concerned with the event statistics of the
collective effects of many such interacting instability sites, derived from observa-
tions and data analysis, in a complementary manner to microphysics. Furthermore,
the introduction of the hysteretic loop is crucial in the generation of the loading–
unloading mechanism that produces intermittent behavior, and is present in virtually
all SO models including sandpiles. If we take β = 1, then η relaxes very quickly
after q is turned on, hence we destroy loading–unloading cycle. If we make β � 1,
we give more time for ηmin to smooth the spatial profile of A during the driving
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Figure 4. (a) F(t). (b) Event distribution of energy dissipated.

time, favoring a quasi-periodic evolution (Valdivia et al., 2005). It is important to
stress that hysteresis is a natural phenomena that appears even in the simplest of
systems, e.g., the constantly driven pendulum (Ott, 1993) which can be used as a
starting point for a simulation of the charge dynamics in a slowly varying magnetic
field. Before tackling this 2D model (to be published elsewhere), we propose to
go back to the 1D model, which is more manageable and study its spatio-temporal
chaos and multi-scale behavior.

As an illustration, let Us take −L ≤ z ≤ L , with L = 20, �x = 0.1, S(z) =
S0 cos(π z/2L), Jc = 0.04, ηmax = 5 (normalized to c2LVa/4π ), Va a reference
Alfven’s speed, τ = 1, and J = 0 at the boundaries. The dissipation rate F(t) =∫

η(x, t)J (x, t)2dx is shown in Figure 4a for S0 = 0.001, β = 0.9, and ηmin = 0.
In Figure 4b, we computed the event distribution of energy dissipated, in which an
event is defined for F > Fmin = 10−5. Using the technique discussed earlier, we
estimated a power-law index of α ≈ 0.6. Clearly, if S0 < Jcηmin or S0 > Jcηmax, we
can have a steady-state solution. The bifurcation diagram with S0 depends strongly
on ηmin, ηmax, and β, and is illustrated in Figure 5:

1. For Jcηmin < S0 < Sp, we can have a quasi-periodic situation (see Valdivia et al.,
2005 for an example using β = 0.5). This regime depends on the ratio ηmin/ηmax

and β (Tangri et al., 2003).
2. For Sp < S0 < Sc, we have a SO state, with a well-defined global Bx and intermittent

dissipation with self-similar statistics. As S0 → Sc, the duration of loading and
unloading cycles become the same. The time duration distribution follows a power-
law with α ≈ 1.4 and suggests an explanation for the distribution of BBFs observed
by Angelopoulos et al. (1999).

Figure 5. The phase diagram with S0.
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Figure 6. Singularity analysis of (a) F(t) and (b) ηJ 2 in space, at three instances.

3. For Sc < S0 < Jcηmax, we have a chaotic behavior but without the loading–
unloading cycle, as the separation tends to zero as S0 → Sc.

4. For S0 > Jcηmax, the system responds directly to the driver. It is important not to
over extrapolate, but the transition at S0 ∼ Jcηmax seems like a first-order phase
transition, and may explain the observation of Sitnov et al. (2000) and Uritsky et
al. (2002).

Whether each of these behaviors is actually displayed by the magnetosphere remains
to be determined, but it is suggestive to mention the following: (1) saw-tooth-like
oscillations, (2) turbulent self-similar evolution, (3) directly driven state, and (4)
steady magnetospheric convection.

A singularity analysis of F is shown in Figure 6a for the time series of Figure 4a.
We note that there is a clear multi-fractal behavior, and that it is strikingly similar
to Figure 2b. The singularity analysis can also be applied to the spatial dependence
of the dissipation ηJ 2, as illustrated in Figure 6b at three different instants during
the same dissipation event.

3. Conclusions and Outlook

In the magnetosphere, the robust SO state is a possible solution to the seemingly
contradicting observations of the repeatable and coherent substorm phenomena with
underlying complex behavior in the plasma sheet. This work suggests that hysteresis
may have an important role in the self-similar behavior of the magnetotail. Even
though the exact details of the microphysics (ballooning, cross-field current, variant
of tearing, etc.) may not be accounted by the simple parameterization, it is expected
that the statistical behavior of complex distributed systems is more a property of
their SO state than the details of the physical processes that allow such state. This is
a general characteristic of systems that are close to criticality where many systems
belong to the same universality class, suggesting that it is probable that the statistics
of substorms, pseudobreakups, and even the evolution of the growth and expansion
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phases are unrelated to the details of the dissipation process (Shay et al., 1998) other
than the dissipation allowed for the establishment of a SO state. Even though, the 2D
model is clearly a more appealing description of the intermittent dissipation in the
magnetotail, the 1D model is more manageable and permits a more comprehensive
study of the parameter space. Furthermore, some of the parameters of the model
may be estimated from actual measurements, e.g., plasma sheet eddy diffusion
coefficient (Borovsky et al., 1997).

The intriguing spatio-temporal multi-fractal chaotic behavior of the 1D model
needs to be characterized in detail. For now, it is interesting to note that the system
described by Equation (3) can be discretized as an n = L/�x ≥ 1 dimensional
system (the local instability size becomes a fourth relevant parameter). For n = 1,
we have a simple nonlinear oscillator, and as we increase n, the system can become
spatio-temporal chaotic through a nonstandard transition (Ott, 1993) that needs
to be studied in detail. Finally, the bifurcation diagram will become even more
interesting as the driver S(t) is made stochastic.
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