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1 Introduction

One basic idea that has turned out to be fruitful in the presentation and rep-
resentation theory of classical groups is to look at higher rank groups as “non
commutative analogues” of related lower rank groups. A typical example is the
case of the symplectic similitude group GSp(2n, F ) in 2n variables over a field
F , which may be looked upon as a sort of GL(2) with coefficients in the full
matrix ring over F , that satisfy suitable commutation relations involving the
transpose map ∗. Here the symplectic multiplier appears as a ∗−analogue of the
classical 2× 2 determinant.

The rationale behind this viewpoint is to extend to higher rank groups, meth-
ods that have been successful for lower rank groups. In particular, finding new
presentations for higher rank classical groups by looking for non commutative
versions of well known presentations for lower rank ones. Then these presenta-
tions may be used to construct remarkable linear representations for the higher
rank groups, like (generalized) Weil representations, for instance.

In the case of our example above, recall that construction and decomposi-
tion of Weil representations associated to quadratic forms affords a uniform and
universal solution to the problem of constructing all complex irreducible linear
representations of the group GL(2, F ), F a finite field [10]. This method extends
as well to the case of a local field (with the exception of the residual charac-
teristic 2 in the non-archimedean case [7]). These Weil representations may be
constructed in an elementary way with the help of a presentation of GL(2, F )
derived from its Bruhat decomposition, with generators for the Borel subgroup
and the Weyl element ω. Now, it can be shown [10] that this presentation carries
over to GSp(2n, F ), looked upon as a ”non commutative” GL(2), affording a
presentation much simpler than the one found by Dickson at the turn of the
century [1]. Then we can construct Weil representations by giving the linear

1Both authors were partially supported by Fondecyt grant
1060517. The first author was also partially supported by P. Uni-
versidad Católica de Valparáıso.
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operators associated to the generators and checking the corresponding relations
[10], an approach going back to P. Cartier.

This suggests to undertake a systematic study of non commutative general-
izations of the classical groups, in the “tamely non commutative case” of a ring
with involution as coefficient ring, with the aim of finding Bruhat - like presen-
tations for them, to begin with. Recalling that our motivation stems from the
coincidence of the classical 2 by 2 determinant with the multiplier associated to
a non-degenerate antisymmetric binary form, a natural generalization for us is
to consider any non-degenerate ε− hermitian form H with respect to a given
(anti-) involution ∗ on the base ring A. Here the sign ε = ±1 takes care simulta-
neously of the hermitian and anti hermitian case. In all cases we have then the
corresponding unitary similitude monoid MUε∗ (H) and its central ε−symmetric
valued unitary multiplier µH , but we will concentrate on the unitary similitude
group GUε∗ (H), the group of invertible elements in MUε∗ (H). In the rank 2 case,
the multiplier µH will afford a non commutative ∗ and ε−analogue of the deter-
minant on suitable 2 by 2 matrices with coefficients in the involutive ring A. In
this way, both even rank orthogonal and symplectic groups appear as particular
cases of a general construction, based on forms over rings with involution in the
sense of [2].

This construction gives back the classical linear groups, in various guises, for
semi-simple A, but affords also other groups, for a non-semisimple ring A. The
latter case is illustrated in [3] where A is taken to be a truncated polynomial
ring over a finite field, a modular analogue of an algebra of k-jets in one variable,
endowed with the canonical involution X 7→ −X.

As said before, we are specially interested in the case of an ε - hermitian
form of rank 2, because its unitary similitude group appears as a sort of non
commutative involutive ε - analogue of the classical GL(2, F ). If we are able to
extend the classical presentation of GL(2, F ) based on its Bruhat decomposition
(see [8]) to our involutive ε - analogues GLε∗(2, A) of GL(2, F ), we could try to
construct Weil representations for all these groups. As mentioned above, these
ideas were used already in [10] in the particular case A = M(n, F ), F a finite
field, the transpose involution and ε = −1, to obtain a uniform construction of
all irreducible complex representations of GSp(4, F ). Later, a Bruhat decompo-
sition was obtained in the case of an artinian involutive base ring A in [9] and
the classical presentation of GL(2, F ) was extended to the case of an artinian
simple involutive A in [8]. Recently they have been applied to the nilpotent case
(in the sense that the radical of the ring is nilpotent), see [3], with A a truncated
polynomial ring over a finite field endowed with a non trivial involution, where
an analogue of the classical presentation is obtained and a Weil representation
is constructed.

We recall that in the trivial involution case for the ring A = Z/pnZ a
Weil representation for SL(2, A) has been constructed by a different method
by Szechtman ([11]), who also solves the decomposition problem.

However this problem remains open for most of Weil representations so con-
structed, although their commuting algebras may be described as easily as in
the reductive pairs approach to Weil representations [4].
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It is a remarkable fact that an analogue of the classical Bruhat decomposition
still holds when the involutive base ring is a full matrix ring, with the transpose
as involution, as well as the ring Z with the trivial involution or a nilpotent
polynomial ring with the canonical involution. As described below the existence
of this sort of presentations seems to be closely related to the existence of a weak
non commutative analogue of the euclidean algorithm in the base involutive ring.

Notice also that we consider here only coefficient rings A that are “tamely”
non commutative, in the sense that non commutativity is “controlled” by an
(anti-) involution ∗: We have the relation (ab)∗ = b∗a∗, for all a, b ∈ A, which
reduces to commutativity in case the anti-involution ∗ is the identity

We remark that the anti-involution ∗ plays a role analogous to the universal
R−matrix that controls non-commutativity for quantum groups (more precisely,
non-cocommutativity for a Hopf algebra H or just a bialgebra A). Recall that a
bialgebra A is called quasi-cocommutative when it is endowed with a universal
R-matrix, which is an invertible element of A ⊗ A, equal to 1 ⊗ 1 in the co-
commutative case (see [6]). This explains to some extent the striking analogy
between our GL∗(2, A) group with its ∗ -determinant and the quantum group
GLq(2) with its q- determinant, described the way physicists do, as a ”group”
of matrices whose coefficients satisfy certain commutation relations.

In this note, after introducing in a general setting the aforementioned groups,
we specialize to the case of an ε - hermitian form of rank 2 to obtain non
commutative involutive ε determinants, and we show next how to recover this
notion exploiting Grassman’s approach to determinants in this case. Finally we
present various examples of our groups and give some categorical properties of
them.

We thank Phil Kutzko for the enriching conversations we had with him and
for encouraging us to pursue on these topics.

2 The unitary similitude group GU(H)

In this section we present a general setup for what we call generalized classi-
cal groups. We rapidly concentrate ourselves on the case of rank 2 to study
more closely involutive analogues of the general linear group and the special
general linear groups in dimension 2. We present also a notion of generalized
determinant for these groups.

The case of general dimension n will be considered elsewhere.

In what follows A will denote an involutive ring, with involution ∗.
We denote by Z (A) the center of A, and by Zs(A) the subset of its ∗ sym-

metric elements, i.e., the set of elements a ∈ Z(A) such that a∗ = a.
Furthermore, Zs (A)× will denote the group of ∗ symmetric, central, invert-

ible elements of A.
Rings with an involution form a category U whose objects are the pairs (A, ∗)

as above and the morphisms η : (A, ∗) → (B, ∗′) are homomorphisms of rings
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η : A→ B such that ∗′◦η = η◦∗. We will say that I is an ideal of the involutive
ring (A, ∗) if I is an ideal of the ring A such that y∗ ∈ I, for each y ∈ I. It
follows that the kernel of a homomorphism η of rings with involution is an ideal
in this sense.

Definition 1 An involutive (A,A)-bimodule is an (A,A)− bimodule V endowed
with an additive involutive endomorphism, denoted also ∗, such that

(avb)∗ = b∗v∗a∗

for every a, b ∈ A and v ∈ V.
We say that an involutive (A,A)-bimodule V is free if there is a family of

central symmetric elements in V that is simultaneously a basis for V as a left
A−module and as a right A−module. We will call such a basis a bi-basis. We
call central those elements v ∈ V such that av = va for all a ∈ A, and we call
symmetric those v ∈ V such that v∗ = v.

Notice that the involution ∗ of the bimodule V is antilinear as a map from
the left A− module V to the right A− module V and also as a map from the
right A− module V to the left A− module V .

Examples 1

i. The involutive ring A itself is a free involutive (A,A)-bimodule, via left
and right multiplication, the unit element 1 affording a bi-basis of A.

ii. More generally the direct sum of any family of copies of the free involutive
bimodule A is a free involutive (A,A)-bimodule.

iii. The set FA(X) of all finitely supported A−valued mappings defined on
a set X becomes in a natural way an involutive (A,A)− bimodule if we
define

(af)(x) = af(x)

(fa)(x) = f(x)a

f∗(x) = (f(x))∗

for all x ∈ X, f ∈ FA(X), a ∈ A.

The involutive bimodule FA(X) is also free, because it admits the bi-basis
consisting of all Dirac’s delta functions δx (x ∈ X), which take the value
1 at x ∈ X and vanish elsewhere. Notice that with the help of this bi-
basis we get immediately an isomorphism of involutive bimodules between
FA(X) and the direct sum

⊕
x∈X Ax where Ax = A for all x ∈ X.

Definition 2 A function H : V ×V → A is called a left ε-hermitian form if H
is biadditive, left linear in the first variable and such that H(y, x) = εH(x, y)∗

for all x, y ∈ V. Right ε-hermitian forms on V are defined analogously, so that
they are right linear in the first variable.
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We say that the left ε-hermitian form H is regular iff its image contains a
non left zero divisor of A, i. e. an element a ∈ A such that xa = 0 implies
x = 0, for x ∈ A.

We note that if g ∈ EndlA(V ) = Homl
A(V, V ) (g a left A-module homomor-

phism of V ), then
(H ◦ (g× g))(v, u) = H(g(v), g(u)) = εH(g(u), g(v))∗ = ε((H ◦ (g× g))(u, v))∗ ,
for all u, v ∈ V i.e., H ◦ (g × g) is also left ε-hermitian

Definition 3 The left unitary similitude monoid of a regular left ε-hermitian
form H is

MU l(H) = {g ∈ EndlA(V ) : H ◦ (g × g) = µgH, µg ∈ A}.
The mapping µ : g 7→ µg is called the (left) hermitian multiplier on MU l(H).
We define mutatis mutandis the right unitary similitude monoid MUr(H)

of a regular right ε-hermitian form H and the corresponding right hermitian
multiplier.

Remark 1 We notice here that since H(v, u) = εH(u, v)∗ and H(gu, gv) =
µgH(u, v) for all u, v ∈ V , applying the involution to this last equality we get
µgH(v, u) = H(v, u)µ∗g. If the form takes the value 1, and hence every possible
value, then µg ∈ Zs(A) (which is going to be the case below)

We observe also that the hermitian multiplier is well defined since H is
regular, and that

µfg = µfµg, µid = 1, so MU l(H) and MUr(H) are indeed (unitary)
monoids and the left and right hermitian multipliers are homomorphisms of
(unitary) monoids from MU l(H) and MUr(H), respectively, to Zs(A).

Remark 2 Notice that if H is regular left ε−hermitian, then H̃ defined by

H̃(u, v) = [H(u∗, v∗)]∗

for all u, v ∈ V, is regular right ε−hermitian. Moreover if g ∈ EndlA(V ) is such
that

H ◦ (g × g) = µgH

for µg ∈ Zs(A), then
H̃ ◦ (g̃ × g̃) = µgH̃

for g̃ = ∗ ◦ g ◦ ∗.
It follows that the map g 7→ g̃, which induces an isomorphisms of rings

from EndlA(V ) to EndrA(V ), restricts to an isomorphism Ψ of monoids from
MU l(H) to MUr(H̃) such that

µ̃ ◦Ψ = µ,

where µ̃ denotes the ε−hermitian multiplier associated to H̃
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3 Some matrix descriptions

3.1 Matrix description of left and right linear endomor-
phisms

We consider now the case where V is a free involutive (A,A)− bimodule of
dimension n, endowed with a fixed bi-basis e : e1, ..., en.

To any left or right linear endomorphism g of V we may associate its matrix
[g] = (gij)1≤i,j≤n = (gij) with respect to the bi-basis e, defined by

g(ej) =
∑
i

gjiei or g(ej) =
∑
i

eigij ,

respectively.
We will eventually write [g]l or [g]r, to avoid confusions, in case g is both

left and right linear
We recover then our endomorphism g as the left or right canonical linear

extension of its restriction to the bi-basis e, given by

g(v) =
∑
j

vjg(ej) =
∑
i,j

vjgjiei

or
g(v) =

∑
j

g(ej)vj =
∑
i,j

eigijvj

respectively, for v =
∑
j vjej =

∑
j ejvj .

On the other hand, we may associate to any n × n matrix c = (cij) a left
A−linear endomorphism g

(l)
c and a right A−linear endomorphism g

(r)
c of V ,

defined by

g(l)
c (v) =

∑
i,j

vjcjiei and g(r)
c (v) =

∑
i,j

eicijvj ,

for v =
∑
j vjej =

∑
j ejvj .

We have then
[g(l)
c ] = c = [g(r)

c ]

and also
g
(l)
[g] = g or g

(r)
[g] = g

according to our previous endomorphism g being left or right A−linear. So
the maps c 7→ g

(l)
c and c 7→ g

(r)
c afford isomorphisms from the full matrix ring

M(n,A) onto the rings EndlA(V ) and EndrA(V ) respectively. Moreover we have

(g(l)
c )e= g

(r)
c∗ and [g̃] = [g]∗

where we have extended the involution ∗ to an involutive anti-automorphism ∗
of the ring M(n,A)

by (cij)∗ = (c∗ji) and g̃ = ∗ ◦ g ◦ ∗ as introduced in section 2.
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3.2 Matrix description of ε−hermitian forms

Now we define the matrix [H] of the (left or right) ε−hermitian form H to be
the n× n matrix whose i, j entry is H(ei, ej).

Then we have [H]∗ = ε[H] and

H(u, v) =
∑
i,j

ui[H]ijv∗j or H(u, v) =
∑
i,j

v∗j [H]ijui

for u =
∑
i uiei =

∑
i eiui, v =

∑
i viei =

∑
i eivi, according to H being left

or right hermitian, respectively.
Conversely, suppose that you have a matrix M = (mij) such that M∗ = εM ,

i.e., such that m∗ji = εmij ; then we get a left ε−hermitian form H
(l)
M as well as

a right ε−hermitian form H
(r)
M by setting

H
(l)
M (u, v) =

∑
i,j

uimijv
∗
j

and
H

(r)
M (u, v) =

∑
i,j

v∗jmijui.

3.3 Matrix description of the unitary similitude monoid
MU(H) and of the unitary similitude group GU(H)

We can give now a convenient matrix description of the unitary similitude
monoid MU(H).

Proposition 1 With the notations introduced in the previous subsection, we
have

MU(H) = {q ∈Mn(A) : q[H]q∗ = µq[H], µq ∈ Zs(A)}.

We have again a triangle of isomorphisms between the right monoid, the left
monoid and the matrix monoid The correspondence g 7→ g∗ sends isomorphi-
cally the monoid MU l(H) onto the corresponding right monoid MUr(H)

Proof. Our description follows from the fact that

[H ◦ (g × g)] = [g][H][g]∗

for a left ε− hermitian form H and a left A− endomorphism g of V.

Definition 4 The unitary similitude group of an ε−hermitian form H is the
group of all invertible elements in the monoid MU(H). We will denote it by
GU(H).

Proposition 2 Assume that the ε−hermitian form H is non degenerate, i.e.
its matrix [H] is invertible in Mn(A). Then the unitary similitude group GU(H)
consists of all q ∈MU(H) that are invertible as matrices in Mn(A).
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Proof. Assume that g ∈ MU(H) is invertible in Mn(A). Then, since [H]
is invertible, the multiplier µg must also be invertible. Since

H(u, v) = H(gg−1u, gg−1v) = µgH(g−1u, g−1v), u, v ∈ V we get
H(g−1u, g−1v) = µ−1

g H(u, v)
from where it follows that
g−1 ∈MU(H).

Definition 5 In what follows, given an n× n ε−hermitian matrix K we set
MU(K) = MU(H) and GU(K) = GU(H)

where H denotes the left ε−hermitian form defined by the matrix K on the free
An−bimodule V = An ×An = (An)2 endowed with its canonical bi-basis.

4 Involutive analogues of The General Linear
Group and the Special General Linear Group
and the non commutative ε−determinant

We specialize now to the study of unitary similitude groups in the case of ε−
hermitian forms of rank 2. More precisely we consider the ε−hermitian form on

A2 defined by the matrix Jε =
(

0 1
ε1 0

)
, which we denote shortly by K in

what follows. Notice that K∗ = εK.
We look at the unitary monoid MU(K) associated to K as a non commuta-

tive (involutive) twisted analogue of the classical linear endomorphism monoid
ML(2, A) of A2 for commutative A.

Definition 6 We set MLε∗(2, A) = MU(K) and detε∗ = µ.
We call these objects the ∗ − ε− analogues of the rank 2 linear monoid

ML(2, A) and the ε−determinant of GL(2, A), respectively.

Remark 3 We could characterize MLε∗(2, A) as

MLε∗(2, A) = {g ∈M(2, A) : gKg∗K−1 ∈ Zs (A) I2},

and define then the non-commutative (involutive) ε−determinant detε∗ by

detε∗(g) = gKg∗K−1

Since detε∗ (g) is the multiplier µg of g, it is clear that it takes central sym-
metric values and that detε∗ (gh) = detε∗ (g) detε∗ (h), for all g, h ∈ MU(H).
Furthermore

Lemma 1 Let g ∈MLε∗(2, A). Then:
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1. If g is invertible as a 2 × 2 matrix, then also g−1, g∗ ∈ MLε∗(2, A) and
we have

detε∗ (g) = detε∗ (g∗)

2. If detε∗ (g) = detε∗ (g∗) ∈ Zs (A)× , then g is invertible

Proof. We give a direct proof of 2 (1 follows from above, or can be proved
as the corresponding statement of [9])

We have that detε∗ (g)K = gKg∗ and that detε∗ (g∗)K = g∗Kg. But µ =
detε∗ (g) = detε∗ (g∗) ∈ Zs (A)×. Using the fact that K−1 = K∗ = εK, we get
(εµ−1)Kg∗Kg = I2 = g(εµ−1)Kg∗K, from where our result.

We define now

Definition 7 Let GLε∗ (2, A) = GU(K), i. e. GLε∗ (2, A) is the group of all
invertible elements in the monoid MLε∗(2, A).

Proposition 3 The group GLε∗ (2, A) may be described in several equivalent
ways, as:

1. the set of all g ∈MLε∗(2, A) that are invertible as 2× 2 matrices ;

2. the set of all g ∈MLε∗(2, A) such that

detε∗ (g) = detε∗ (g∗) ∈ Zs (A)× ;

3. the set of all matrices g =
(
a b
c d

)
, a, b, c, d ∈ A such that

ab∗ = −εba∗, cd∗ = −εdc∗, a∗c = −εc∗a, b∗d = −εd∗b,
ad∗ + εbc∗ = a∗d+ εc∗b ∈ Zs (A)× .

Proof. This follows immediately from the previous lemma

Remark 4 Notice the analogy of the relations in 3. of Prop. 3. with the physi-
cist’s approach to quantum groups as groups of matrices whose coefficients sat-
isfy suitable q−commuting relations (like ab = qba for example)

The function detε∗ : GLε∗(2, A)→ Zs (A)× is clearly a group epimorphism.

Explicitly, if g =
(
a b
c d

)
, then

detε∗ (g) = ad∗ + εbc∗ = a∗d+ εc∗b.

Recall that we call detε∗ (g) the involutive (non commutative) ε-determinant
of g. Next, we consider the kernel of this epimorphism
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Definition 8 Let SLε∗ (2, A) the subgroup of GLε∗ (2, A) consisting of the ma-
trices of ε-determinant 1.

Remark 5 Notice that if the ring of coefficients is a field F and the involution
is the identity, then it follows that the above map sending a matrix g to ad+bc is
“determinant like”. The point is, of course, that this map is an homomorphism
on a small subgroup GL+

id(2, F ) of GL(2, F ), to wit the well known orthogonal
similitude group GO+(2, F ) of the hyperbolic quadratic form of rank 2

5 ε ∗ −euclidean rings

We will study in this section a notion on involutive rings that has its origin in the
integers Z, and that implies the existence of Bruhat generators for our matrix
groups SLε∗ (2, A) and GLε∗ (2, A), as it does in the classical case for SL(2,Z).

Definition 9 A unitary ring with involution ∗ is called a ε ∗ −euclidean ring
(or just ε−euclidean ring) if given a, c ∈ A such a∗c = −εc∗a and Aa+Ac = A,
then there is a finite sequence s0, s1, ..., sn−1 ∈ As = {s ∈ A : s∗ + εs = 0} and
r1, r2, ..., rn ∈ A, with rn ∈ A× such that

a = s0c+ r1
c = s1r1 + r2
.
.
.
rn−2 = sn−1rn−1 + rn

Remark 6 We should observe at this point that

1. If g =
(
a b
c d

)
belongs to SLε∗ (2, A) or GLε∗ (2, A), then a∗c = −εc∗a

and Aa+Ac = A

2. Z is an (−1)−euclidean ring (with ∗ = id)

We set ht =
(

t 0
0 t∗−1

)
(t ∈ A×), h

′

r =
(

1 0
0 r

)
(r ∈ Zs(A)×), ω =

ωε =
(

0 1
ε1 0

)
and us =

(
1 s
0 1

)
(s ∈ As)

We observe that ht, ω,us ∈ SLε∗ (2, A) and that h
′

r ∈ GLε∗ (2, A)

Lemma 2 Let g =
(
a b
c d

)
∈ SLε∗ (2, A) with c ∈ A×. Then

g = hεc∗−1uc∗aωuc−1d

10

Page 10 of 23Communications in Algebra

http:/mc.manuscriptcentral.com/lagb



Proof. By Proposition 3,
(
a b
c d

)
= htusωul if and only if

a = εts
b = t+ εtsl
c = εt∗

−1

d = εt∗
−1
l

These equations have solution t = εc∗
−1
, s = c∗a, l = c−1d

from which the result follows.

Proposition 4 Let A be an ε ∗ −euclidean ring. Then the elements ht, ω, us
generate the group SLε∗ (2, A)

Proof. If g =
(
a b
c d

)
∈ SLε∗ (2, A),

we noticed before that a∗c = −εc∗a and Aa+Ac = A. There is then a finite
sequence s0, s1, ..., sn−1 ∈ As and r1, r2, ..., rn ∈ A, with rn ∈ A× such that

a = s0c+ r1
c = s1r1 + r2
.
.
.
rn−2 = sn−1rn−1 + rn
Then(

1 −s0
0 1

)(
a b
c d

)
=
(
a− s0c b− s0d

c d

)
=
(
r1 b− s0d
c d

)
We have then(

0 1
ε1 0

)(
1 −s0
0 1

)(
a b
c d

)
=
(

0 1
ε1 0

)(
r1 b− s0d
c d

)
=
(

c d
εr1 ε(b− s0d)

)
We multiply now on the left this last matrix by(

0 1
ε1 0

)(
1 −εs1
0 1

)
to get(

εr1 ε(b− s0d)
εr2 ε(d− s1(b− s0d)

)
We continue with this process until we get in the position (2, 1) the element

rn. We apply lemma above to this matrix and we solve for
(
a b
c d

)
. From

this the result follows.
Now, the following corollary follows

Corollary 1 Let A be a ε−euclidean ring. Then the elements h′r, ht, ω, us gen-
erate the group GLε∗ (2, A)

Proposition 5 The above generators, called Bruhat generators, satisfy the fol-
lowing universal relations
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1. h′rh
′
r′ = hrr′ , htht′ = htt′ , ubub′ = ub+b′ , ω

2 = hε
2. h′rht = hth

′
r

3. h′rub = ubr−1h′r
4. htub = utbt∗ht
5. ωht = ht∗−1ω
6. hrh′rω = ωh′r
7. ωut−1ωu−εtωut−1 = h−εt

6 A Bruhat presentation for GLε
∗ (2, A) and SLε

∗ (2, A)

The results of this section generalize previous work of the authors on generators
of SL−∗ (2, A) and GL−∗ (2, A) (see [9]) and of the first author on a presentation
of SL−∗ (2, A) (see [8])

We assume now that A is a simple artinian ring. By Jacobson [5], we have
that: A is (isomorphic to) EndDV where V is a finite dimensional vector space
over a division ring D. If A has an involution, then D has an involution −,
and there exists a non-degenerate hermitian form <,> on V with respect to −
such that the involution coincides with the adjoint map, or D is a field, − is the
identity map and there exists an anti-symmetric form <,> on V such that the
involution coincides with the corresponding adjoint map.

We remark that we may as well assume that the form is antihermitian with
respect to an involution ∼ on D and that the involution on A coincides with
the adjoint map: Indeed, suppose that − is not the identity map of D. Then
there exists an element α ∈ D such that α 6= α. Let β = α− α. Then β = −β.
We may consider then a new form < x, y >1=< x, y > β together with an
involution ∼ on D given by (λ)∼ = β−1λβ. A computation shows that the
form < , >1 is sesquilinear. Furthermore, < , >1 is antihermitian with respect
to∼: (< x, y >1)∼ = (< x, y > β)∼ = (β)∼ (< x, y >)∼ = (β)∼ β−1< x, y >β =
−ββ−1 < y, x > β
= − < y, x > β = − < y, x >1

From here the result follows.
In [8] the first case i.e., the hermitian case was considered. Also the case

where the scalars constitute a field and the form is anti-symmetric was treated
in loc.cit.. So we will be interested mainly in the case where the form is anti-
hermitian.

Let V be a finite dimensional leftD-module, D a division ring with involution
−.

Let <,> be a non-degenerate sign-hermitian form with respect to −(here
sign is +1 or −1 according to the form being hermitian or anti-hermitian) , i.e.
<,>: V × V → D is bi-additive,

< v,w > = sign < w, v >,
< v,wa >=< v,w > a.

12
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Let F : V × V → D , be bi-additive, linear in the first variable, and such
that F (x, y) = F (y, x)

We are going to construct now an element s ∈ EndD(V ) , which depends on
F , such that s∗ = sign s(recall that the involution ∗ coincides with the adjoint
map of the form <,> on V ).

This construction will be used next for certain forms F .
Let then F be as above, and let <,> be a non-degenerate sign-hermitian

form with respect to −. If v1, ..., vn is a basis for V , then the forms < , vi >:
x 7→< x, vi > provide a basis for V ◦(the dual of V )

If v ∈ V, the form F ( , v) is an element of V ◦ (which is a right module) and
there exist αi ∈ D, 1 ≤ i ≤ n, so that F ( , v) =

∑
< , vi > αi.

Then F (v′, v) =
∑

< v′, vi > αi
=< v′,

∑
αivi >.

If we set s(v) =
∑
αivi, then we have that given v ∈ V there exists a unique

element s(v) ∈ V such that F (v′, v) =< v′, s(v) > for all v′ ∈ V . It is clear that
s is additive, also < v′, s(λv) >= F (v′, λv) = F (v′, v)λ =< v′, s(v) > λ =<
v′, λs(v) >, which proves that s ∈ EndD(V ).

Furthermore, < sign s(v′), v >= < v, s(v′) > = F (v, v′) = F (v′, v) =<
v′, s(v) > and then s∗ = sign s.

Proposition 6 (Transversality lemma).
Let V be as above. Let W < V . Then there exists s ∈ EndD(V ) such that
1)s∗ = sign s
2)The restriction of s to W is 1-1
3)Im s = s(W )
4)s(W ) ∩W⊥ = 0

Proof. Let T be a supplement of W,i.e., V = W ⊕ T
Let C be a non-degenerate hermitian pairing on W with respect to −.
Let F be the extension of C to an hermitian form on V given by F (w +

t, w′ + t′) = C(w,w′)
Let s be the element defined as above. Then F (v′, v) =< v′, s(v) >and

s∗ = sign s
Noting that ker s = T , we get 2) and 3). Finally, 4) follows from the fact

that if s(w) ∈W⊥, then
0 =< s(w), w′ >= F (w,w′) = C(w,w′) ∀w′ ∈W implies that w = 0

Now, the same argument used in [8] shows

Proposition 7 (Co-prime lemma). Let a, c ∈ A be such that a∗c = sign c∗a.
Then the following are equivalent

1) Aa+Ac = A
2) ker a ∩ ker c = (0)
3) There exits an element s ∈ A with s∗ = sign s such that a+ sc ∈ A×.

Corollary 2 Let A be as above. Then A is a ε−euclidean ring.
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Suppose now that we have a non degenerate hermitian form <,> on V
together with an involution − on D, and a non degenerate anti-hermitian form
[, ] on V together with an involution ∼ on D, so that ∗ is the adjoint map for
both forms. If a ∈ A is symmetric (anti-symmetric), we will show the existence
of an anti-symmetric (symmetric) element s ∈ A such that < av, v′ >= [v, sv′].
To this end, let us consider the function F (v, v′) =< av, v′ >. Then, by the
above construction, there exists an anti-symmetric (symmetric) element s such
that F (v, v′) = [v, sv′], i.e., such that < av, v′ >= [v, sv′]. From here the claim
follows.

We observe that the element a is invertible if and only if < a( ), > is non
degenerate, if and only if [ , s( )] is non degenerate, if and only if s is invertible.

We have in this way a correspondence a 7→ s = sa which is injective since
sa = sa′ implies < (a − a′)v, v′ >= 0 and then a − a′ = 0 because of the non
degeneracy of the form.

Also, the above correspondence is surjective since, by the above, given s
there is an a such that [sv′, v] = 〈v′, av〉 (reverting the roles of < , > and [ , ]).
From which 〈av, v′〉 = [v, av′] .

The above says then that there is a bijection between symmetric elements
and anti-symmetric elements that restricts to a bijection on invertible elements.

We will prove now that in fact the Bruhat generators together with the
universal relations listed in the above section define a presentation of the groups
GLε∗ (2, A) and SLε∗ (2, A), for A artinian simple, extending the results of [8]
(where the result was proved in the case of SL−∗ (2, A)).

Lemma 3 If F is a finite field of q elements, then |A
×∩As|
|As| > 1− q

q2−1

Proof. We have shown that there is a bijection between symmetric and anti-
symmetric elements that restricts to a bijection between invertible symmetric
and antisymmetric elements.

On the other hand the inequality of the lemma was proved to be true for
symmetric elements in lemma 11 of [8]. From this, the result follows.

Now, the above lemma was needed for symmetric elements to prove lemma
12 in [8] by a counting argument.

Since the lemma is now known to be true, mutatis mutandis, also for anti-
symmetric elements, lemma 12 of [8] shows

Lemma 4 Let A be a simple artinian ring with involution that is either infinite
or isomorphic to the full matrix ring over Fq with q > 3. Let a, b ∈ As be such
that a, b /∈ A×. Then there exists u ∈ A× ∩As such that a+ u, b+ εu−1 ∈ A×

Definition 10 Let H be the abstract group generated by the symbols h′r, ht, us, ω,
parametrized by r ∈ Zs(A)×, t ∈ A×, s ∈ As, subject to the relations

1. h′rh
′
r′ = hrr′ , htht′ = htt′ , ubub′ = ub+b′ , ω

2 = hε
2. h′rht = hth

′
r

3. h′rub = ubr−1h′r
4. htub = utbt∗ht
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5. ωht = ht∗−1ω
6. hrh′rω = ωh′r
7. ωut−1ωu−εtωut−1 = h−εt

Definition 11 Let G be the subgroup of GLε∗ (2, A) given by
∞
∪
j=0

(BωB)j (with

(BωB)0 = B), where B is the subgroup of GLε∗ (2, A) consisting of the upper
triangular matrices.

We have that B = EDN where E,D and N are the subgroups of GLε∗ (2, A)
defined as

E = {h′r : r ∈ Zs(A)×}, D = {ht : t ∈ A×}, N = {ua : a ∈ As}. Here ht =(
t 0
0 t∗−1

)
(t ∈ A×), h

′

r =
(

1 0
0 r

)
(r ∈ Zs(A)×), ω = ωε =

(
0 1
ε 0

)
and us =

(
1 s
0 1

)
(s ∈ As).Note that we use the same symbols ( ht, h

′

r, ω, us)

to denote the above matrices and the generators of H

Definition 12 The ω-length of an element g ∈ H is the minimal j such that
g ∈ (BωB)j (B = BH , the subgroup of H generated by the elements h′r,ht,us)).
We define in the same way the ω-length of an element of G

Proposition 8 We have G = GLε∗ (2, A).
Moreover, the length of an element of G is at most 2.

Proof. Let g =
(
a b
c d

)
∈ G. Suppose first that c = 0. Then g =

h′ad∗haua−1b

If c ∈ A×, let δ = det∗ g. Then g = h′δhεδc∗−1uδ−1c∗aωuc−1d

Finally, if c ∈ A−{A× ∪{0}} , let s ∈ As be such that a+ sδ−1c = y ∈ A×.
In this case we have g = h′δushεωhy∗−1uεy∗cωuy−1(b+sd)

Then the result follows.
It follows from the relations that satisfy the elements of H (relations that

also satisfy the corresponding elements of G) that (BωB)j = ED(NωN)j for
any j > 0, where E,D,N are the subgroups of H generated by, respectively,
the h′r, ht, us. Since the defining relations of H are also satisfied by the corre-
sponding elements in the group G, a similar situation holds in G.

Now, a computation shows

Lemma 5 In the group G we have
1. h′rhtuaωubωuc = 1⇒ r = 1, t = ε, a = −c, b = 0
2. 1 /∈ BωB
3. h′rhtua = 1⇒ r = t = 1, a = 0

There is a natural epimorphism ϕ : H → G. We will prove that in fact, ϕ
is an isomorphism. This gives then a presentation for the group G, that we call
Bruhat presentation of G.
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The key thing is to show that the elements of H have ω−length bounded by
2.

This is the content of the next proposition.

Proposition 9 Let H be the group defined above, where the parameters A of
the definition of H satisfy the hypothesis in lemma 4. Then every element of H
has length at most 2.

Proof. Let us consider an expression of the form g1g2z = g3z
′ where gi ∈

BωB∪{1} (i = 1, 2, 3) and z, z′ ∈ H are arbitrary. Using the defining relations
of H, this expression is equivalent to the expression

(�): ωuaωy = ubω
where y is certain element of H.
If at least one of the elements a or b is invertible, we can use the defining

relation
(�): ωut−1ωu−εtωut−1 = h−εt
to lower by one the number of ω in (�). We turn then to the case where a

and b are not invertible. We apply lemma 4 to get an element x ∈ A×∩As such
that b+ x and a+ εx−1 are invertible.

We multiply (�) by ux to get
ux+bω = uxωuaωy

= εω(ωuxω)uaωy
= εω(uεx−1εωhxuεx−1)uaωy
= ωuεx−1ωhxuεx−1+aωy
= ωuεx−1h−εx−1(ωua+εx−1ω)y
= ωuεx−1h−εx−1uε(a+εx−1)−1εωha+εx−1ue(a+εx−1)−1y

From which ωux+bω = uεx−1h−εx−1uε(a+εx−1)−1ωha+εx−1ue(a+εx−1)−1y
Now, we use once more (�) to get
εωue(x+b)−1hx+buε(x+b)−1 = uεx−1h−εx−1uε(a+εx−1)−1ωha+εx−1ue(a+εx−1)−1y
Again we were able to lower the by one the number of ω in a expression

equivalent to (�)
The result now follows by induction.
We are ready to prove

Theorem 1 With the hypothesis of lemma 4, the group G has a Bruhat pre-
sentation, i.e., G =< h′r, ht, us, ω : r ∈ Zs(A)×, t ∈ A×, s ∈ As,R} where R is
the set of relations

1. h′rh
′
r′ = hrr′ , htht′ = htt′ , ubub′ = ub+b′ , ω

2 = hε
2. h′rht = hth

′
r

3. h′rub = ubr−1h′r
4. htub = utbt∗ht
5. ωht = ht∗−1ω
6. hrh′rω = ωh′r
7. ωut−1ωu−εtωut−1 = h−εt
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Proof. Keeping the notations as above, we show that the natural epimor-
phism ϕ : H → G is an isomorphism.

By proposition 9, any element of H is of one of the forms
i. h′rhtua
ii. h′rhtuaωub
iii.h′rhtuaωubωuc
If we take an element in the kernel of ϕ, the result follows applying lemma

5

7 Rank 2 non commutative ε−exterior calculus

The classical homomorphism called determinant arises from the one dimension-
ality and functoriality of the n-th exterior power of an n-dimensional vector
space. We extend this, for n = 2, in the setting of function bimodules, to the
tamely non commutative case of a base ring with involution.
LetA be a ring with involution ∗ and let V be the free involutive (A,A)−bimodule
of all A valued functions on a finite set X (see Example 1.iii. in section 2 above).
Taking advantage of the involution, we may extend the classical formula for the
anti-symmetrization of the tensor product as follows.

Definition 13 If f, g ∈ V , then f ∧ g is the function on X ×X given by
(f ∧ g)(x, y) = f(x)∗g(y)− g(x)∗f(y), i.e. f ∧ g = f∗ ⊗ g − g∗ ⊗ f

The following properties are then readily verified.

Proposition 10 For f, g ∈ V, a ∈ A we have

i. g ∧ f = −f ∧ g

ii. f ∧ f = 0

iii. af ∧ g = f ∧ a∗g,

iv. If a = a∗ , then af ∧ f = 0

v. If a ∈ Zs(A), then af ∧ g = f ∧ ag = a(f ∧ g)

Remark 7 If we symmetrize instead of antisymmetrizing the tensor product,
i.e., if we set f Z g = f∗ ⊗ g + g∗ ⊗ f then it is not longer true that f Z f = 0,
but af Z f = 0 for every antisymmetric a

We will prove now that in the case of 2 × 2 matrices
(
a b
c d

)
, whose

coefficients satisfy suitable commutation relations, (af + bg) ∧ (cf + dg) is a
scalar multiple of f ∧ g. In the case of the product f Z g we have an analogous
result that provides a symmetric analogue of the classical determinant. To
embrace both the symmetric and antisymmetric cases, we define a general ε−
symmetric binary product fε which gives back ∧ for ε = −1 and Z for ε = 1.
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Definition 14 We set f fε g = f∗ ⊗ g + εg∗ ⊗ f and
f2
εV = {h : X ×X → A | h(y, x) = εh(x, y)∗}

In what follows we will write for short fε = f.

Then f f g is clearly ε-hermitian (with respect to ∗), i. e. f f g ∈ f2V, and
the following properties are readily verified.

Proposition 11 We have, for all a ∈ A, f, g ∈ V,
i. g f f = εf f g
ii. f f f = (1 + ε)f ⊗ f
iii. af f g = f f a∗g
iv. If a = −εa∗ , then af f f = f f af = 0
v. If a ∈ Zs(A), then af f g = f f ag = a(f f g)

7.1 Linear action of MLε
∗(2, A) in f2V

A matrix
(
a b
c d

)
∈ M (2, A) acts naturally on the left by right endomor-

phisms on the A-module f2
εV by (af + bg)f (cf + dg). It also acts on the right

through
(
a∗ c∗

b∗ d∗

)
by (a∗f + c∗g)f (b∗f + d∗g). Now,

(af + bg)f (cf + dg) = f f a∗cf + f f a∗dg + c∗bg f f + g f b∗dg.
If we ask for a∗c and b∗d to be ε-symmetric, then f f a∗cf = g f b∗dg = 0

and we get
(af + bg)f (cf + dg) = f f a∗dg + c∗bg f f = f f (a∗d+ εc∗b)g
If we impose now that a∗d+ εc∗b be central and symmetric, we obtain
(af + bg)f (cf + dg) = (a∗d+ εc∗b)(f f g).
Similarly, if we take ab∗ and cd∗ to be symmetric and ad∗+εbc∗ to be central

and symmetric we get
(a∗f + c∗g)f (b∗f + d∗g) = (ad∗ + εbc∗)(f f g)

It follows that the set of matrices
(
a b
c d

)
such that a∗c, b∗d, ab∗, cd∗ are

ε-symmetric and a∗d+εc∗b = ad∗+εbc∗ ∈ Zs (A), i.e., the monoid MLε∗ (2, A) ,
acts on f2

∗V by multiplication by a scalar (the ε-determinant) and that both
actions of matrices described before are equal.

So we see that we may construct in a self-contained and independent way
the monoid MLε∗ (2, A) and the ε−determinant. The key thing is to notice that
the monoid just “found” acts on the right and on the left on f2

εV by scalars.

8 Examples

We give several specific examples of rings with involution and also of groups
SLε∗ (2, A) and GLε∗ (2, A) for different choices of the involutive ring.

We will always denote by ∗ the corresponding involution of A
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1. Let A be a commutative ring, and let ∗ be the identity map.

Then, of course, GL−∗ (2, A) = GL (2, A) , if g =
(
a b
c d

)
then detε∗ (g) =

ad− bc, SL−∗ (2, A) = SL (2, A)

In particular,

- If m is a positive integer and A = Z/mZ, then
GL−∗ (2, A) = GL (2,Z/mZ)

On the other hand, if A is an integral domain of characteristic different
from 2, we have

GL+
∗ (2, A) =

{(
a 0
0 d

)
: ad 6= 0

}
∪
{(

0 b
c 0

)
: bc 6= 0

}
If g =

(
a 0
0 d

)
then detε∗ (g) = ad, and if g =

(
0 b
c 0

)
then detε∗ (g) = bc; and

SL+
∗ (2, A) =

{(
a 0
0 d

)
: ad = 1

}
∪
{(

0 b
c 0

)
: bc = 1

}
2. Let F be a field, A = M (n, F ) , ∗ the transposition of matrices.

In this case,

(a) SL−∗ (2, A) = Sp (2n, F ) , the corresponding symplectic group

(b) SL+
∗ (2, A) = O(n, n)(F ) the split orthogonal group

3. Let G be a finite group, F a field, A = F [G] , ∗ the involution on A defined
by g∗ = g−1

- An interesting case of this example of a ring with involution is the
modular case (see [3]):
If F [G] is not semi-simple, then our involution ring A does not reduce
to a direct sum of copies of full matrix rings.
Let F = Fq be the field of q = pn elements and G = Cm be the cyclic
group of m = pr elements.
Then, A ' Fq[x]� 〈xm〉
and the involution ∗ is given, by
x 7→ −x

1−x
In this case, as in the case of a simple artinian ring with involution
(see [8], [9]), the group SL−∗ (2, A) is the group defined by the pre-
sentation〈
ht =

(
t 0

t∗−1

)
, ul =

(
1 l
0 1

)
, ω =

(
0 1
−1 0

)
: ht, ul, ω satisfy R

〉
where R is the set of relations: htht′ = htt′, urul = ur+l, ω

2 = h−1 =
−1, htub = utbt∗ht, ωht = ht∗−1ω, ωut−1ωutωut−1 = ht
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4. Another interesting example of a ring with involution is given by A a Clif-
ford Algebra, in particular an exterior algebra with a suitable involution.

- For instance:
Let k be a field, and let V be a n-dimensional vector space over k.
Fix a basis e1, e2, . . . , en of V . Let A = ΛV be the exterior algebra
of V.
We can define several involutions on A by considering their action on
the given basis of V.
In order to do this, let us take I ⊂ {1, 2, . . . , n} with an even number
of elements; we partition the set I in pairs (i, j) , and define then ∗
by e∗i = ej and e∗j = ei for every such pair, and
e∗t = ±et for t ∈ {1, 2, . . . , n} − I.
Then, Z (A) = Λ0V ⊕ Λ2V ⊕ . . .⊕ Λ2[ n

2 ]V . For z ∈ Z (A) we write

z =
[ n
2 ]∑
i=0

z2i. We have

Z (A)× = {z ∈ Z (A) : z0 6= 0} .
Notice that the Grassmann algebra considered as a supercommuta-
tive algebra, i.e., endowed with its canonical Z/2Z grading, does not
afford an example of an involutive ring, if we take the involution to
be the identity Id on even elements and -Id on odd elements.

5. Let k be a finite field and let K be a quadratic extension of k.

Let A = K and let ∗ be the function defined by α∗ = F (α) , where F is
the Frobenius automorphism of K.

In this case, GL−∗ (2,K) = K×GL (2, k) ,and

SL−∗ (2,K) =
{
λd : λ ∈ K∗, d ∈ GL (2, k) , NK/k (λ) = 1

det d

}
If char(k) 6= 2 , let Im(K) = {α− α : α ∈ K}. Then

GL+
∗ (2,K) = K×

({(
1 i
j t

)
: i, j ∈ Im(K), t ∈ k, ij 6= t

}
∪{(

0 t
1 i

)
: i ∈ Im(K), t ∈ k, t 6= 0

})
SL+
∗ (2,K) ={
x

(
1 i
j t

)
: x ∈ K× i, j ∈ Im(K), t 6= ij,NK/k (x) = 1

t−ij

}
∪{

x

(
0 t
1 i

)
: x ∈ K× i ∈ Im(K), t ∈ k, t 6= 0, NK/k (x) = − 1

t

}

9 The additive category SL
Let A be the category of unitary rings with an involution, i.e.:
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the objects are the unitary rings with involution (A, ∗) and
the morphisms are the homomorphisms f of rings with identity such that

f(a∗) = f(a)∗.
Let G be the category of groups

Definition 15 We define three functors G = Gε,H = Hε,O = Oε from A to S
as follows:

1. The functor G

(a) For A an object of A, set G(A) = GLε∗(2, A) and

(b) If f : A→ B is a morphism in A, set G(f) : GLε∗(2, A)→ GLε∗(2, B)

by G(f)
[
a b
c d

]
=
[
f(a) f(b)
f(c) f(d)

]
2. The functor H :

(a) For A an object of A, set H(A) = SLε∗(2, A) and

(b) If f : A→ B is a morphism in A, set H(f) = G(f)

3. The functor O

(a) For A an object of A, set O(A) = A×s and

(b) If f : A→ B is a morphism in A, set O(f) = f

The following proposition is instrumental in working in the categories above:

Proposition 12 The ε∗-determinant induces a natural transformation between
the functors G and O

Proof. It suffices to notice that the diagram

GLε∗(2, A) detε∗−−→
A×s

↓ G(f) ↓ f

GLε∗(2, B) detε∗−−→
B×s

is commutative

Proposition 13 U is an additive category. Then if (A, ∗), (B, ∗′) ∈ U , we have
(A⊕B; ∗ ⊕ ∗′) ∈ U

Proof. straightforward

Definition 16 We denote by SL = SLε the category whose objects are the
groups SLε∗(2, A) where (A, ∗) ∈ U , and the morphisms are the group homomor-
phisms.
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Proposition 14 If (A1, ∗1) and (A2, ∗2) are objects of U , then SLε∗1(2, A1) ⊕
SLε∗2(2, A2) ' SLε∗(2, A1 ⊕A2), where ∗ = ∗1 ⊕ ∗2. It follows that the category
SL is an additive category

Proof. The function
([

a1 b1
c1 d1

]
,

[
a2 b2
c2 d2

])
7→
[
a1 + a2 b1 + b2
c1 + c2 d1 + d2

]
provides the desired isomorphism.
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