Iron supply determines apical/basolateral membrane distribution of intestinal iron transporters DMT1 and ferroportin 1
Marco T. Núñez, Victoria Tapia, Alejandro Rojas, Pabla Aguirre, Francisco Gómez and Francisco Nualart

doi:10.1152/ajpcell.00168.2009

You might find this additional information useful...

Supplemental material for this article can be found at:
http://ajpcell.physiology.org/cgi/content/full/ajpcell.00168.2009/DC1

This article cites 47 articles, 22 of which you can access free at:
http://ajpcell.physiology.org/cgi/content/full/298/3/C477#BIBL

Updated information and services including high-resolution figures, can be found at:
http://ajpcell.physiology.org/cgi/content/full/298/3/C477

Additional material and information about AJP - Cell Physiology can be found at:
http://www.the-aps.org/publications/ajpcell

This information is current as of June 10, 2010.
Iron supply determines apical/basolateral membrane distribution of intestinal iron transporters DMT1 and ferroportin 1

Marco T. Núñez,1,2 Victoria Tapia,1,2 Alejandro Rojas,2 Pablа Aguirre,2 Francisco Gómez,1,2 and Francisco Nualart3

1Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; 2Cell Dynamics and Biotechnology Institute, Santiago, Chile; 3Department of Cell Biology, Faculty of Biological Sciences, Santiago, Chile and Department of Cell Biology, Universidad de Concepción, Concepción, Chile

Submitted 20 April 2009; accepted in final form 2 December 2009

Iron supply determines apical/basolateral membrane distribution of intestinal iron transporters DMT1 and ferroportin 1. Am J Physiol Cell Physiol 298: C477–C485, 2010. First published December 9, 2009; doi:10.1152/ajpcell.00168.2009.—Intestinal iron absorption comprises the coordinated activity of the influx transporter divalent metal transporter 1 (DMT1) and the efflux transporter ferroportin (FPN). In this work, we studied the movement of DMT1 and FPN between cellular compartments as a function of iron supply. In rat duodenum, iron gavage resulted in the relocation of DMT1 to basal domains and the internalization of basolateral FPN. Considerable FPN was also found in apical domains. In Caco-2 cells, the apical-to-basal movement of cyan fluorescent protein-tagged DMT1 was complete 90 min after the addition of iron. Steady-state membrane localization studies in Caco-2 cells revealed that iron status determined the apical/basal membrane distribution of DMT1 and FPN. In agreement with the membrane distribution of the transporters, 55Fe flux experiments revealed inward and outward iron fluxes at both membrane domains. Antisense oligonucleotides targeted to DMT1 or FPN inhibited basolateral iron uptake and apical iron efflux, respectively, indicating the participation of DMT1 and FPN in these fluxes. The fluxes were regulated by the iron supply; increased iron reduced apical uptake and basal efflux and increased basal uptake and apical efflux. These findings suggest a novel mechanism of regulation of intestinal iron absorption based on inward and outward fluxes at both membrane domains, and repositioning of DMT1 and FPN between membrane and intracellular compartments as a function of iron supply. This mechanism should be complementary to those based in the transcriptional or translational regulation of iron transport proteins. In the absence of a controlled excretion mechanism, iron levels in the body are regulated mainly by its passage through the duodenum. Traditionally, intestinal iron absorption is divided into three sequential steps: the uptake of iron from the intestinal lumen; an intracellular phase, in which iron binds to cytosolic components; and a transfer step, in which iron passes from the cells to the blood plasma. The uptake of iron from the lumen of the intestine is mediated by the Fe2+/H+ cotransporter divalent metal transporter 1 (DMT1) (19).

Once inside the enterocyte, iron integrates into a cytosolic pool of weakly bound iron called the labile iron pool (LIP) (16, 25). The nature of the LIP-binding counterpart is unknown, but it has been described to associate with low-molecular-weight substances such as phosphate, nucleotides, hydroxyl, amino, and sulfydryl groups (23, 36). From the LIP, iron distributes into ferritin and other iron-requiring proteins (15, 24). Iron exit from the enterocyte is mediated by the efflux transporter ferroportin (FPN), the only member of the SLC40 family of transporters and the first reported protein that mediates the exit of iron from cells (30).

Iron absorption based on inward and outward fluxes at both membrane domains. Antisense oligonucleotides targeted to DMT1 or FPN inhibited basolateral iron uptake and apical iron efflux, respectively, indicating the participation of DMT1 and FPN in these fluxes. The fluxes were regulated by the iron supply; increased iron reduced apical uptake and basal efflux and increased basal uptake and apical efflux. These findings suggest a novel mechanism of regulation of intestinal iron absorption based on inward and outward fluxes at both membrane domains, and repositioning of DMT1 and FPN between membrane and intracellular compartments as a function of iron supply. This mechanism should be complementary to those based in the transcriptional or translational regulation of iron transport proteins.

IN THE ABSENCE OF A CONTROLLED EXCRETION MECHANISM, iron levels in the body are regulated mainly by its passage through the duodenum. Traditionally, intestinal iron absorption is divided into three sequential steps: the uptake of iron from the intestinal lumen; an intracellular phase, in which iron binds to cytosolic components; and a transfer step, in which iron passes from the cells to the blood plasma. The uptake of iron from the lumen of the intestine is mediated by the Fe2+/H+ cotransporter divalent metal transporter 1 (DMT1) (19).

Once inside the enterocyte, iron integrates into a cytosolic pool of weakly bound iron called the labile iron pool (LIP) (16, 25). The nature of the LIP-binding counterpart is unknown, but it has been described to associate with low-molecular-weight substances such as phosphate, nucleotides, hydroxyl, amino, and sulfydryl groups (23, 36). From the LIP, iron distributes into ferritin and other iron-requiring proteins (15, 24). Iron exit from the enterocyte is mediated by the efflux transporter ferroportin (FPN), the only member of the SLC40 family of transporters and the first reported protein that mediates the exit of iron from cells (30).

Regulation of intestinal iron absorption on the basis of body stores is mediated by hepcidin, a small peptide whose secretion by the liver is regulated by anemia, hypoxia, and the level of circulating iron (33). Following hepcidin treatment of intestinal cell lines, DMT1 levels are reduced (10, 31), whereas it induces a temporary decrease of FPN protein in macrophages (12). Following a hemolytic stimulus, a 3-day delay was noted before a significant decrease in circulating hepcidin was observed, and a further 24 h were necessary to observe increased duodenal expression of DMT1, duodenal cytochrome b ferrireductase, and FPN (17). Thus, the adaptive response to an iron challenge mediated by hepcidin is slow. A faster adaptive response is known as the mucosal block. The mucosal block phenomenon describes the ability of an initial dose of ingested iron to block absorption of a second dose given 2–4 h later (35, 40, 41). Given the short period of time involved in the blocking process, a change in hepcidin gene expression cannot explain the mucosal block. The intestinal epithelium probably has a complementary form of regulation based on the iron content of the intestinal lumen or, more likely, the intestinal cells (3, 43). The mucosal block process has received scant attention despite its potential relevance as a mechanism to impede absorption of large amounts of iron from a large ingestion. Recent works have described two possible mechanisms that could be involved in the mucosal block. Three hours after oral administration of iron, reductions in mRNA and protein expression of both DMT1 and DcytB were noted. These changes, associated with decreased activity of iron regulatory proteins, were reported as possible causes of the mucosal block phenomenon (18). In another report, it was observed that iron given to fasting rats induced internalization of DMT1 from the apical membrane to intracellular compartment(s), followed by a decrease in DMT1 protein 6 h after dietary iron supplementation (47). Thus, subtraction of DMT1 from the apical membrane may underlie the mucosal block phenomenon.

Classically, DMT1 is ascribed to the apical membrane, whereas FPN is located in the basolateral membrane (14, 38). Nevertheless, there is scant but convincing evidence that FPN (26, 44) and DMT1 (6) are located in both the apical and basolateral domains. In iron-starved rats and Caco-2 cells, DMT1 shows a marked brush border distribution, but iron feeding promotes a fast (10–400 min) internalization of DMT1

Address for reprint requests and other correspondence: M. T. Núñez, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile (e-mail: mnunez@uchile.cl).

http://www.ajpcell.org 0363-6143/10 $8.00 Copyright © 2010 the American Physiological Society C477
into the apical cytoplasm (28, 29). This redistribution was interpreted as evidence of a process in which vesicles containing DMT1-iron could fuse with and pass the iron to vesicles containing apo-transferrin (28, 29). Nevertheless, the possibility of a regulatory mechanism that involves the movement of transporters in response to iron was left open.

Under the hypothesis that iron fluxes in intestinal cells may be determined by the activity of import and export transporters at both the apical and basolateral membranes, we studied apical and basolateral localization of these transporters, the associated apical and basolateral iron fluxes, and their response to the iron status of the cells.

EXPERIMENTAL PROCEDURES

Cells. Human Caco-2 cells [HTB-37, American Type Culture Collection (ATCC), Rockville, MD] were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS, Invitrogen-Gibco Life Technologies). For biotinylation and 55Fe transport studies, cells were grown for 14–16 days in 12-mm diameter bicameral inserts (Corning-Costar). Before the start of the experiments, transepithelial resistance (TER) was measured to assess the integrity of the cell monolayer, and inserts with TER below 250 Ω cm−2 were discarded (3).

Antibodies. Anti-FPN is a mouse monoclonal antibody prepared by the Immunology Services Center, Faculty of Sciences, Universidad de Chile against the carboxyl-terminal sequence CGPDEKVTKEN QPNTSVV, the consensus motif for rat, mouse, and human FPN. In the past, we successfully used this polypeptide sequence for the preparation of a rabbit polyclonal antibody (2). In Western blot assays, the antibody recognized a band of 67 KDa molecular mass that was blocked when the antibody was coincubated with the immunogenic peptide (Fig. 1C). Pan-DMT1 is a rabbit polyclonal antibody that recognizes the amino-terminal sequence MVGLPEQKMSDDS VSGDH, present in all isoforms of human DMT1 (1). Rabbit polyclonal anti-glucose transporter 3 (Glut3) antibody was obtained from Abcam.

Positioning and movement of transporters in response to iron in rat duodenum. The positioning of DMT1 and FPN in rat duodenum cells was also determined before and after iron gavage by a modification of a described method (18). In brief, Sprague-Dawley rats were given an intragastric dose of iron (20 mg FeSO4 in 250 μl 0.01 N HCl) 2.5 h after dosing, and the duodenum was isolated and snap-frozen in OCT embedding compound (Tissue-Tek). Tissue was sectioned in a cryostat at −80°C until required. The treatment of animals complied with the Animal Care and Use guidelines of the Ethics Committee of the Faculty of Sciences, Universidad de Chile, and experiments were approved by the Ethics Committee.

Immunofluorescence detection of DMT1 and FPN in duodenum and Caco-2 cells was performed as described previously (31). Primary antibodies were detected with Alexa 546 goat anti-rabbit (DMT1) or Alexa 488 goat anti-mouse (FPN) (Invitrogen, Molecular Probes). Immunostaining was observed and photographed using a Zeiss LSM Meta confocal laser scanning microscope (Carl Zeiss, Göttingen, Germany).

Membrane biotinylation and Western blot analysis. The plasma membrane localization of DMT1 and FPN was studied by selective biotinylation of the apical and basolateral membranes of Caco-2 human intestinal epithelial cells (HTB-37, ATCC) as described previously (6, 48). Briefly, cells were incubated from the apical or the basolateral medium with 0.5 mg/ml N-hydroxysuccinimide-imino biotin (Pierce, Rockford, IL). Cellular extracts were prepared and precipitated with immobilized streptavidin (Pierce). The pellet was

Fig. 1. Distribution of divalent metal transporter 1 (DMT1) and ferroportin (FPN) into apical and basolateral domains and the effect of iron supplementation.

A: DMT1 localization (red) in the duodenum of fasting (control) and iron-stimulated (+Fe) rats 2.5 h after Fe gavage. Nuclear staining (blue, TOPRO) was included as a landmark. **B**: FPN localization (green) under fasting (control) and iron stimulation (+Fe) conditions as described above. Magnifications show FPN cell distribution under fasting (control) and iron stimulation (+Fe) conditions. Immunostaining without primary antibody gave no fluorescence signal (not shown). **C**: Western blot analysis of Pan-DMT1 and FPN from duodenum brush border membranes prepared either from fasting rats [control (C)] or from rats 2.5 h after iron gavage. Iron gavage induced a decrease in DMT1 of 47.1 ± 0.016; n = 3) and an increase in FPN of 17.7 ± 0.57% (P = 0.210; n = 4) when compared with the fasting situation (means ± SE, n = 3).

D: Western blot analysis of Pan-DMT1 and FPN from duodenum brush border membranes prepared either from fasting rats [control (C)] or from rats 2.5 h after iron gavage. Iron gavage induced a decrease in DMT1 of 47.1 ± 6.8% (P = 0.016; n = 3) and an increase in FPN of 17.7 ± 0.57% (P = 0.210; n = 4) when compared with the fasting situation (means ± SE, n = 3).
dissolved in SDS loading buffer and resolved by 10% SDS-PAGE. The proteins were then transferred to a nitrocellulose membrane for Western blot analysis of DMT1 and FPN, which was carried out as described previously (2). The immunoreactive bands were developed with a peroxidase-based SuperSignal chemiluminescence assay kit (Pierce) and quantified with the Quantity One software (Bio-Rad).

To study the positioning of transporters in response to iron, Caco-2 cells grown in polycarbonate cell culture inserts (Transwell, Corning-Costar) were preconditioned overnight with low-iron medium [DMEM, 10% low-iron FBS (43)] and were then incubated for 4 h with varied concentrations of Fe as FeCl₃-sodium nitroprusside (Fe-NTA; 1:2.2 mol:mol), after which DMT1 and FPN distribution was determined by biotinylation and Western blot analysis.

Real-time movement of DMT1 was determined using confocal microscopy by following the movement of DMT1(+IRE) tagged with cyan fluorescent protein (DMT1-CFP) in the carboxyl terminal. To this end, 14-day insert-grown Caco-2 cells were transfected with the construct pCDNA3-DMT1(+IRE)-CFP as described previously (5). Two days after transfection, the cells were preconditioned by overnight incubation in low-iron medium. The cells were then challenged with 20 μM ferrous ammonium sulfate (time 0), and 1-μm optical cuts in the apical-basolateral axis were obtained every 1 min for a 90-min period.

DMT1 was relatively fast, being completed within 60–90 min (Fig. 2). Iron induced a time-dependent movement of DMT1 to the basolateral domain, but considerable FPN was also observed in the apical domain (Fig. 1B). Coincubation with previous findings (2), in Caco-2 cells the monoclonal anti-FPN antibody used in this study recognized a band of 67 KDa molecular mass in Western blot analysis. Coincubation of the antibody with the peptide used as immunogen markedly decreased the intensity of the 67-KDa band (Fig. 1C). We then determined DMT1 and FPN abundance in microvilli membrane obtained from fasting (control, C) and iron-fed rats. Iron feeding induced a drastic decrease of the DMT1+IRE isoform present in the microvilli membrane, whereas FPN increased nonsignificantly (Fig. 1D). Predictably, both apical membrane events, diminution of DMT1 and increase of FPN, should result in decreased apical iron uptake and, possibly, decreased iron transfer into the basolateral milieu.

Next, we characterized the kinetics of DMT1 relocalization by time-lapse confocal microscopy using polarized Caco-2 cells. Cells were transfected with a construct coding for DMT1-CFP, and its cellular localization after the addition of iron was determined from time-lapse apical-to-basal galleries (Fig. 2). Iron induced a time-dependent movement of DMT1 from apical into basal domains (Fig. 2A). The relocalization of DMT1 was relatively fast, being completed within 60–90 min (Fig. 2B). Taken together, the above experiments indicate that iron feeding induces the sequestration of DMT1 from the apical membrane and of FPN from the basolateral membrane. These movements should substantially decrease intestinal iron absorption, as described after gavage of iron-deficient rats (18).

RESULTS

Effect of iron supplementation on apical/basolateral distribution of DMT1 and FPN. It is widely accepted that DMT1 transports iron from the intestinal lumen into the enterocyte, whereas FPN transports iron from the cell into the blood circulation. Nevertheless, recent evidence indicates the presence of FPN in the microvilli of the intestinal epithelium (44), an unlikely location considering the role of FPN as an iron efflux transporter. Similarly, overexpression of the hereditary hemochromatosis protein HFE induces redistribution of DMT1 to the basolateral membrane, a possible mechanism to down-regulate iron absorption (6). We expanded on these observations by studying the apical/basolateral location of DMT1 and FPN in rat duodenum in response to iron gavage. DMT1 and FPN localization was detected by immunofluorescence after 2.5 h of gavage (Fig. 1). DMT1 presented a marked apical distribution under control conditions, whereas iron induced a reduction of its membrane localization and an apparent decline in fluorescence intensity through the cytoplasm (Fig. 1A). In agreement with previous results (5, 44), FPN localized preferentially to the basolateral domain, but considerable FPN was also observed in the apical domain (Fig. 1B). Iron gavage induced a reduction of basolateral FPN without apparent effect on apical FPN (Fig. 1B). In concordance with previous findings (2), in Caco-2 cells the monoclonal anti-FPN antibody used in this study recognized a band of 67 KDa molecular mass in Western blot analysis. Coincubation of the antibody with the peptide used as immunogen markedly decreased the intensity of the 67-KDa band (Fig. 1C). We then determined DMT1 and FPN abundance in microvilli membrane obtained from fasting (control, C) and iron-fed rats. Iron feeding induced a drastic decrease of the DMT1+IRE isoform present in the microvilli membrane, whereas FPN increased nonsignificantly (Fig. 1D). Predictably, both apical membrane events, diminution of DMT1 and increase of FPN, should result in decreased apical iron uptake and, possibly, decreased iron transfer into the basolateral milieu.
tain the membrane distribution of DMT1 and FPN, we selectively biotinylated the apical and basolateral membranes, an extremely sensitive method for studying membrane protein topology. Caco-2 cells grown in Transwell inserts showed a well-polarized phenotype, which was evident by the presence of Glut3 in the apical membrane (20) and of transferrin receptor 1 (TfR1) in the basolateral membrane (6) (Fig. 3A). The membrane distribution of the transporters was found to be a function of iron supply. Cells were preconditioned for 4 h with 2, 10, or 30 μM Fe in the culture medium and then tested for DMT1 and FPN membrane distribution (Fig. 3B). Quantification of band density indicated that the membrane distribution of DMT1 (Fig. 3C) changed as a function of iron supply. A significant reduction in apical membrane DMT1 \((P < 0.05)\) was found between 2 μM Fe and both 10 and 30 μM Fe (Fig. 3C). Similarly, a significant increase in basolateral DMT1 \((P < 0.05)\) was found between 2 and 30 μM Fe (Fig. 3C). Changes in FPN distribution were more subtle. An increase in apical FPN and a decrease in basolateral FPN, which that did not reach significance \((P = 0.062\) and \(P = 0.066\), respectively), was apparent between 2 and 30 μM Fe (Fig. 3D). Thus, in Caco-2 cells, iron induced not only the relocalization of DMT1 to intracellular domains, but also induced its redistribution between the apical and basolateral membranes.

Apical and basolateral iron fluxes. To support a physiological function, the presence of DMT1 and FPN in the apical and basolateral membranes should be associated with corresponding inward and outward iron fluxes. To test for orthodox (apical uptake, basolateral efflux) and unorthodox (basolateral uptake, apical efflux) fluxes, iron uptake activity was determined in Caco-2 cells grown in bicameral inserts and challenged with 55Fe from either the apical or the basolateral chamber. Similarly, iron efflux into the apical or basal chamber was determined in cells previously loaded with the isotope (Fig. 4). Besides the acknowledged apical-to-cell (Fig. 4A) and cell-to-basolateral (Fig. 4D) iron fluxes, Caco-2 cells also showed basolateral-to-cell (Fig. 4B) and cell-to-apical (Fig. 4C) iron fluxes. Part of the observed basolateral 55Fe uptake could be due to endocytic uptake mediated by endogenous transferrin. This possibility was evaluated by depleting the cells of transferrin before the determination of 55Fe uptake. Transferrin depletion produced a consistent 1.4-fold increase in basolateral uptake (Fig. 4B, open circle). This increase could be due to a priming of the basal uptake system by the procedure used to deplete endogenous transferrin. The sum of these results points to the presence of functional iron transporters at both the apical and the basolateral membranes.

Fig. 2. Iron-induced apical-to-basal movement of DMT1 detected by fluorescence microscopy. A: Caco-2 cells expressing DMT1-cyan fluorescent protein (CFP) were challenged with 20 μM ferrous ammonium sulfate, and 20 apical-to-basal optical cuts of 1 μm were taken every 1 min before \((-2\) to 0 min) or after \((0–30\) min) the addition of iron (arrow). Changes in fluorescence are shown in the apical-basal axis of a group of two DMT1-CFP-expressing cells as a function of time. AP, apical; BL, basolateral. B: quantification of the changes in fluorescence of two DMT1-CFP-expressing cells (dark and light shaded lines) as a function of time \((0–90\) min), obtained at fixed distances of 4, 8, and 14 μm from the apical border. Shown is one of five similar experiments. AU, arbitrary units.
Effect of DMT1 and FPN antisense oligonucleotides on iron fluxes. To determine the participation of DMT1 and FPN in the iron fluxes reported above, we knocked down DMT1 and FPN by antisense methodology and determined the resulting iron fluxes (Fig. 5). Treatment with antisense ASDMT1, ASFPN6, and ASFPN8 oligonucleotides decreased the expression of DMT1 with ASDMT1 or FPN with ASFPN6 and ASFPN8, whereas ASFPN1 had no effect on FPN expression (Fig. 5A). In addition, apical (Fig. 5B) and basolateral (Fig. 5C) iron uptake were effectively inhibited by ASDMT1 (P < 0.05), indicating the participation of DMT1 in both apical and basolateral iron uptake. ASFPN1 oligonucleotide produced no changes in apical or basolateral iron uptake, whereas ASFPN6 and ASFPN8 oligonucleotides induced an apparent increase in apical and basolateral iron uptake (Fig. 5, B and C), a rather unexpected finding. These increases could be due to an increase in DMT1 expression secondary to a decrease in FPN expression, but this possibility is not supported by Western blot analysis (Fig. 5A). Most probably, the increased uptake observed with FPN antisense DNAs is due to increased retention of iron by the cells due to decreased iron efflux. As expected, ASDMT1, ASFPN6, and ASFPN8 inhibited both apical-to-basolateral (Fig. 5D) and basolateral-to-apical (Fig. 5E) trans-epithelial iron transport, whereas ASFPN1 did not have a significant effect. Inhibition of trans-epithelial iron transport by ASDMT1 treatment is explained by decreased uptake at the apical or the basolateral membrane, whereas decreased trans-epithelial transport generated by ASFPN6 and ASFPN8 is explained by decreased exit of 55Fe at both the apical and basolateral membranes. Together, the data strongly suggest that DMT1 and FPN are involved in the apical and the basolateral iron fluxes described here.

Dependence of iron fluxes on Fe concentration. Next, we examined whether preconditioning cells with various extracellular iron concentrations affected apical or basolateral fluxes (Fig. 6). As predicted by the membrane distribution of the transporters (Fig. 3), increasing extracellular iron resulted in a robust decrease in the apical uptake rate (Fig. 6A) and a decrease in the rate of transfer to the basolateral medium (Fig.

Fig. 3. Iron induces membrane relocalization of DMT1 and FPN. Caco-2 cells grown in bicameral inserts were biotinylated from the apical or basolateral medium. Biotin-containing proteins were selected by streptavidin-agarose binding, resolved by SDS-PAGE, and recognized with specific antibodies by Western blotting. A: membrane distribution of DMT1, FPN, glucose transporter 3 (Glut3; apical membrane marker), and transferrin receptor 1 (TfR1; basolateral membrane marker) under standard culture conditions (5 μM Fe). B: insert-grown cells were incubated for 4 h with varied iron concentrations before determination of DMT1 and FPN membrane distribution by biotinylation. A representative experiment is shown. C and D: densitometric analysis of the apical and basolateral distribution of DMT1 (C) and FPN (D) as a function of iron concentration. Values are means ± SE (n = 6). *P < 0.05.

Fig. 4. Iron fluxes in Caco-2 cells. A and B: apical and basolateral iron uptake. Insert-grown cells were tested with 5 μM 55Fe-ascorbate placed in the apical (A) or basolateral (B) medium. Empty circles in B correspond to basolateral iron uptake by cells previously depleted of transferrin. C and D: apical and basolateral iron efflux. Insert-grown cells were incubated for 24 h in regular medium supplemented with 1 μM 55Fe-ascorbate. Cells were thoroughly washed, and 55Fe efflux into the apical (C) or basolateral (D) medium was determined. Values are means ± SE of three experiments.
suggesting a regulatory process to avoid excessive absorption under iron-replete conditions. Interestingly, we found considerable iron uptake from the basolateral medium (Fig. 6B), but this uptake responded only marginally to the iron supplied in the preconditioning step. This activity increased 1.3-fold between 5 and 25 μM Fe, compared with a decrease of 1.9-fold in the apical uptake rate.

We also found substantial apical efflux activity that responded keenly to the iron concentration in the preconditioning step (Fig. 6C). With increasing iron, the apical iron efflux rate increased 8.6 times, accompanied by a 4.3-fold decrease in the basolateral efflux rate (Fig. 6D). The increase in apical efflux could be explained by the compounded effects of increased FPN and decreased DMT1 in this membrane domain.

The combined results of these experiments indicate the presence of a robust system for the regulation of iron absorption by Caco-2 cells; an increase in iron supply not only decreases apical uptake and basolateral efflux, but also increases apical efflux. The significance of the basolateral uptake activity described here is not clear, because free iron is not often found in the basolateral medium. Nevertheless, FPN-based basolateral activity could effect the recapture of freshly DMT1-effluxed iron.

DISCUSSION

Movement of transporters between the plasma membrane and intracellular domains is an important mechanism to regulate influx of ions and metabolites. Examples of this process are found in the transient receptor potential family of ion channels (8), the Glut4 transporter (13), neurotransmitter receptors (39), and aquaporin channels (34). Perhaps the most paradigmatic example of positional regulation is that of Glut4. In the basal state, Glut4 undergoes a slow cycling between the plasma membrane and intracellular compartments, with only a minor (5%) fraction of the total Glut4 protein pool localized to the plasma membrane. However, in response to insulin stimulation the rate of Glut4 exocytosis markedly increases so that
50% of the Glut4 proteins are relocated to the cell surface (21). Thus, the insertion or sequestration of a protein from the plasma membrane provides a fast and effective mechanism to regulate its function. In the frame of the experiments reported here, an increased iron offer seems to be a signal for a coordinated movement of DMT1 and FPN destined to decrease intestinal iron absorption.

We characterized the translocation of DMT1 and FPN between apical and basolateral domains as a function of iron supply in both rat duodenal intestine and polarized Caco-2 cells. Our findings reveal a novel mechanism by which intestinal cells regulate intestinal iron absorption through the repositioning of DMT1 and FPN in apical and basolateral membranes.

Besides its acknowledged location in the apical membrane, we found DMT1 in the basolateral membrane of Caco-2 cells and in basal domains of duodenal enterocytes. In retrospective, the finding of DMT1 in the basolateral membrane of Caco-2 cells or in the basal domains of enterocytes is not surprising, since DMT1 is needed for iron transport out of the endocytic vesicle during basolateral transferrin endocytosis (42).

Immunodetection evidenced FPN both at the apical and at the basolateral membranes, as well as strong staining of the cells in the lamina propria. At the basolateral membrane, FPN should be carrying its ascribed role of iron export transporter (30), but the presence of FPN in the apical membrane is intriguing. The presence of FPN in apical domains of absorbing enterocytes had been noticed previously (11, 44) although no functional role was ascribed to it. The results of this work support a putative role for apical FPN in a retrograde basal-to-apical iron flux in which non-transferrin-bound iron in the blood plasma is transported to the intestinal lumen.

The detection of FPN in cells of the lamina propria is interesting. It is possible that FPN fulfills a role in the passage of enterocyte-released iron into the blood circulation, since patients with ferroportin disease show a large iron accumulation in the cells of the lamina propria (9). Immunodetection of FPN in unfixed tissue also displayed labeling in the lamina propria, so it is improbable that labeling in this area was due to a fixation artifact (supplemental Fig. 1; supplemental data for this article can be found online at the American Journal of Physiology-Cell Physiology website).

Importantly, in Caco-2 cells, basolateral DMT1 and apical FPN emplacements were associated with concurrent iron fluxes, i.e., iron exit through the apical membrane and iron uptake from the basolateral milieu. Moreover, these fluxes were inhibited by antisense targeting of DMT1 or FPN, indicating that the fluxes were mediated, at least in part, by these transporters. The simplest interpretation of these findings is that Caco-2 cells have bidirectional iron fluxes at both the apical and basolateral membranes mediated by DMT1 and FPN.

We found that the relative abundance of DMT1 in the apical and basolateral membranes was a function of the iron content of the cells. Thus, under low-iron conditions, DMT1 was predominantly located in the apical membrane, whereas high-

Fig. 6. Dependence of iron fluxes on iron concentration. A and B: insert-grown cells were preconditioned for 24 h with culture medium containing 5, 10, 15, or 25 μM FeCl3-sodium nitrilotriacetate (Fe-NTA) and were then tested at different times for apical (A) and basolateral (B) 55Fe uptake. C and D: similarly, cells were preequilibrated for 24 h in culture medium containing 5, 10, 15, or 25 μM 55Fe before determination of 55Fe efflux from either the apical (C) or the basolateral (D) membranes. Graphs show initial rates of uptake or efflux of 55Fe as a function of the iron concentration in the preconditioning step. Initial rates were obtained from the corresponding kinetic curves shown in the insets. Values are means ± SE of three independent experiments.
iron conditions effected its repositioning to basal intracellular domains and the basolateral membrane. In agreement with other investigations (22, 47), we propose that the rapid withdrawal of DMT1 from the apical membrane accounts for the mucosal block phenomenon. Repositioning of DMT1 to basolateral domains was complete within 60–90 min after an iron challenge, a period similar to that reported for the mucosal block effect. A repositioning of DMT1 to the basolateral membrane is highly suggestive of a physiological response, because it could recapture iron exo-transported by FPN thus decreasing effective iron absorption.

Because rat duodenal epithelium also showed the presence of DMT1 and FPN in microvilli membranes, it is possible that the duodenal epithelium also has the potential for bidirectional fluxes at the apical and basolateral membranes. In this case, iron absorption from the intestinal lumen would be the result of a predominant iron inflow at the apical membrane and a predominant iron efflux at the basolateral membrane.

A considerable basolateral iron uptake activity was observed, which responded only marginally to the iron status of the cells. It is possible that, besides DMT1, an unidentified transport system not sensitive to iron status is contributing to basolateral iron uptake. Basolateral iron uptake is not expected to have a physiological function, since such an uptake needs non-transferrin-bound iron. Nevertheless, blood-to-lumen iron translocation could happen in the case of diseases where iron-binding capacity of transferrin is surpassed, such as β-thalassemia, hemoglobin E disease, and genetic hemochromatosis, in addition to the clinical condition of transfusional hemosiderosis (7, 27, 37). Under these conditions, plasma non-transferrin-bound iron, which can reach the micromolar range (7, 37, 46), could be safely transported to the intestinal lumen.

In summary, we found that DMT1 and FPN distribute to the apical and basolateral membranes of intestinal and Caco-2 cells as a function of the iron supply and iron status. The apical/basolateral positioning of DMT1 and FPN could be part of a fast physiological mechanism to avoid excessive iron absorption. It is possible that this movement is part of the mucosal block phenomenon, which precedes regulatory mechanisms of iron absorption based on gene expression. The discovery of a basolateral-to-apical transport process predicts a yet to be demonstrated system for the elimination of circulating non-transferrin-bound iron.

ACKNOWLEDGMENTS

The authors are grateful to Lorena Sarragoni for help with confocal microscopy. We thank Dr. Y. Israel for help in the selection of antisense nucleotide sequences.

GRANTS

This work was financed by Grant 1070840 from Fondo Nacional de Ciencia y Tecnología (FONDECYT), Chile, and a grant from the Millennium Scientific Initiative to the Millennium Institute of Cell Dynamic and Biotechnology.

DISCLOSURES

No conflicts of interest are declared by the author(s).

REFERENCES

40. Tapia V, Arredondo M, Nuñez MT. Regulation of Fe absorption by cultured intestinal epithelia (Caco-2) cell monolayers with varied Fe status. Am J Physiol Gastrointest Liver Physiol 271: G443–G447, 1996.

