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theory, we study the existence and uniqueness of the periodic solutions of integro-
differential equations with bounded and unbounded delays.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The importance of the dichotomy theory of a linear differential system

x′(t) = A(t)x (1)

in the study of qualitative properties of solutions of general differential equations is known. The most used types of
dichotomies are the ordinary dichotomy and the exponential dichotomy, see [1–7]. They allow us to characterize the
bounded solutions of the non-homogeneous linear differential system

x′(t) = A(t)x+ f (t). (2)

A remarkable solution of system (2) is given by

x(t) =
∫
∞

−∞

G(t, s)f (s)ds, (3)

where G(t, s) is a Green matrix. For example, if f (t) ∈ L1(R) and (1) has an ordinary dichotomy, i.e. |G(t, s)| ≤ c , where c is
a constant, for all t, s ∈ R, then x(·) is a bounded solution.
If f is a bounded function onR, then x is a bounded solution of (2) if, for example, system (1) has an exponential dichotomy,

i.e. |G(t, s)| ≤ ce−α|t−s|, for t, s ∈ R and α > 0. Really, a sufficient condition is

sup
t∈R

∫
∞

−∞

|G(t, s)| ds = µ <∞ (4)
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i.e. the integrability of the dichotomy. This is the only condition that allows us to obtain important uniqueness facts such
as: the trivial solution is the unique bounded solution of the linear system (1) and x, given by (3), is the unique bounded
solution of the non-homogeneous linear system (2). Moreover, if in addition G(t, t) is bounded for t ∈ R, then the projection
matrix defining Green’s matrix G is also unique. Finally, when A is periodic, G(t, t) is also periodic and x, given by (3), is the
unique periodic solution of the non-homogeneous linear system (2). See Propositions 1–5 in Section 2. All this will allow us
to establish the existence and uniqueness of periodic solutions of general integro-differential delayed systems

y′(t) = A(t)y(t)+ F (t, yt , y((−∞, t])) , (5)

where F is a general functional including yt as bounded delay and y((−∞, t]) denoting a functional with unbounded delay,
particularly, cases as (7)–(9) below. See Burton [8–11], Corduneanu [4–6,12–15]. The existence of periodic solutions of
functional differential equations has been extensively studied in theory and in practice (for example, see [8,9,16–21] and
the references cited therein), but few papers have considered integrable dichotomies.
In nonlinear Volterra equations with infinite delay, the existence of periodic solutions has been extensively developed

by Burton and others under the boundedness or stability conditions (see [8,9]). The introduction of special Banach spaces as
BC (−∞, ρ] (see Section 3) combined with Lyapunov function (functional) and fixed point theory have allowed us to obtain
sufficient conditions which guarantee the existence of periodic solutions of general infinite delay systems

y′(t) = f (t, yt). (6)

Several works are treated on all these advances, Burton [8–11], Corduneanu [4,5], Fink [6], Hale–Verduyn [7], Gopalsamy
[12], Lakshmikantham, Sivasundaram and Kaymakçalan [22],Yoshizawa [14,15], etc. In the theory of boundary value
problems for systems of functional differential equations, the modern level is determined by the work of Kiguradze and
Puza [23–26], summarized in the interestingmonograph [23]. They directly consider the positivity and negativity of Green’s
matrices.
Also, the integro-differential equations

y′(t) = A(t)y(t)+
∫ t

−∞

C(t, s)y(s)ds+ f (t) (7)

have been successively studied and sufficient conditions which guarantee the existence of periodic solution of system (7)
are obtained. As an example, Chen [27] consider a kind of integro-differential equation with infinite delay

y′(t) = A(t)y(t)+
∫ t

−∞

C(t, s)y(s)ds+ g(t, y(t))+ f (t) (8)

and using exponential dichotomy and fixed point theorem, discusses the existence, uniqueness and stability of periodic
solutions of (8). Besides its theoretical interest, the study of these problems has great importance in applications. For
these reasons the theory of integro-differential equations with delay has drawn the attention of several authors (see, for
example, [8–11,27,4,6,12,16,28,17–20,29–31,21]).
In the present paper, we consider a general system (5) including

F(t, yt , y((−∞, t])) =
∫ t

−∞

C(t, s, y(s))ds+
l∑
i=1

gi(t, y(t − τi(t)))+ f (t, y(t)). (9)

Recently, in the interesting paper [32], Agarwal et al. reduce a general system of nonlinear integro-differential equations
to a system of ordinary differential equations. A Floquet theory and exponential stability results are obtained. This opens a
new manner to use our technique.
The rest of the paper is organized as follows. In the next section, some definitions and preliminary results are introduced.

We show some interesting properties about integrable dichotomies. Any integrable (h, k)-dichotomy is applicable. Section 3
is devoted to establishing some criteria for the existence and uniqueness of periodic solutions of system (5). Integrable
dichotomy and Krasnoselskii’s Theorem A below are fundamental to obtain the main results.
Now, we state a fixed point theorem due to Krasnoselskii [10,11].

Theorem A. Let S be a closed, bounded convex, non-empty subset of a Banach space E. Suppose that Γ1 and Γ2 map S into E and
that (i) Γ1x + Γ2y ∈ S for all x, y ∈ S (ii) Γ1 is completely continuous on S and (iii) Γ2 is a contraction on S. Then, there exists
z ∈ S such that Γ1z + Γ2z = z.

2. Integrable dichotomy and periodicity

Let Cn, Rn denote the sets of complex and real n-vectors, and |x| any convenient norm for x ∈ Cn, also let C = C1, R = R1
and R+ = (0,∞).
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Now, we recall (see [1,33,34,23,35–39]), the notions of integrable dichotomy and (h, k)-dichotomy for linear nonau-
tonomous ordinary differential equations. A solution matrix Φ(t) of system (1) is said to be a fundamental matrix, if
Φ(0) = I . We define a Green matrix G = GP as:

G(t, s) =
{
Φ(t)PΦ−1(s), for t ≥ s
−Φ(t)(I − P)Φ−1(s), for s > t,

(10)

where P is a projection matrix.

Definition 1. System (1) is said to have an integrable dichotomy, if there exist a projection P andµ > 0 such that its Green
matrix G = GP satisfies:

sup
t∈R

∫
∞

−∞

|G(t, s)| ds = µ. (11)

As examples of integrable dichotomies, we have the integrable (h, k)-dichotomies.

Definition 2. Let h, k : R → R+ be two positive continuous functions. The linear system (1) is said to possess an (h, k)-
dichotomy, if there are a projection matrix P and a positive constant c such that its Green matrix G = GP satisfies:

|G(t, s)| ≤ gh,k(t, s), t, s ∈ R,

where

gh,k(t, s) =
{
c h(t)h(s)−1, if t ≥ s,
c k(s)k(t)−1, if t ≤ s

and h(t)−1 denotes 1/h(t).

Definition 3. We say that the (h, k)-dichotomy is integrable if there exists µh,k > 0 such that

sup
t∈R

∫
∞

−∞

gh,k(t, s)ds = µh,k.

Definition 4. The system (1) is said to have a h-dichotomy, if it has a (h, h)-dichotomy and a (h, k)-dichotomy is said to
fulfill a compensation law if there exists a positive constant Ch,k such that

h(t)h(s)−1 ≤ Ch,kk(s)k(t)−1, t ≥ s.

Our main condition on the linear system (1) will be:
(D) System (1) possesses an integrable dichotomy with projection P for whichΦ(t)PΦ−1(t) is bounded.

Remark 1. Clearly, a system having a (h, k)-dichotomy with compensation law is a system with a h-dichotomy. Obviously,
the case h(t) = e−βt , k(t) = e−αt , α, β > 0 constants, yields an exponential dichotomy, but (h, k)-dichotomic systems
are more general than these ones. If system (1) has an integrable (h, k)-dichotomy, then condition (D) is satisfied. Even if
the projection P is the identity, the exponential stability does not follow from the integrable dichotomy. See, for example
[2, page 73;12,30]. Exponential and ordinary dichotomy can be characterized in terms of the bounded solutions,with respect
to some admissible Banach spaces. See for example [1,9,2,3]. The big generality of an integrable dichotomy does not allow
this.

However, the functions h and k have an exponential domination:

Lemma 1. Let ϕ : R→ (0,∞) and ψ : R→ (0,∞) be two locally integrable functions, satisfying for µ > 0 constant

ϕ(t)
∫ t

−∞

ϕ(s)−1ds ≤ µ, t ∈ R, (12)

ψ(t)
∫
∞

t
ψ(s)−1ds ≤ µ, t ∈ R. (13)

Then for any t0 ∈ R, ϕ(t) ≤ ce−µ
−1t , t ≥ t0, and ψ(t) ≤ c eµ

−1t for t ≤ t0, where c > 0.

Proof. If u(t) =
∫ t
−∞

ϕ(s)−1ds then u′ = ϕ−1 ≥ µ−1u by (12). So, u(t) ≥ u(t0)eµ
−1(t−t0) for t ≥ t0. Therefore ϕ(t)

≤ µu(t)−1 ≤ µu(t0)−1e−µ
−1(t−t0). To solve (13), let v(t) =

∫
∞

t ψ(s)−1ds. We have v ≤ −µv′, i.e.(veµ
−1t)′ ≥ 0 or

v(t0)− v(t)eµ
−1(t−t0) ≤ 0. By (13), ψ(t) ≤ µv(t0)−1eµ

−1(t−t0) for t ≤ t0. �
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Corollary 1. For every integrable (h, k)-dichotomy, there exist constants M, α > 0 such that h(t) ≤ Me−αt , for all t ≥ 0 and
k(t)−1 ≤ Meαt , for all t ≤ 0.

Proposition 1. If system (1) has an integrable dichotomy, then x(t) = 0 is the unique bounded solution of system (1).

Proof. Define B0 ⊂ Cn to be the set of initial conditions ξ ∈ Cn pertaining to bounded solutions of Eq. (1). Assume first that
(I − P)ξ 6= 0. Define φ(t)−1 = |Φ(t)(I − P)ξ |, by using (I − P)2 = I − P we may write∫

∞

t
φ(s)Φ(t)(I − P)ξds =

∫
∞

t
Φ(t)(I − P)Φ−1(s)Φ(s)(I − P)ξφ(s)ds.

So that upon taking norms and using the integrability of the dichotomy, we have∫
∞

t
φ(s)ds ≤ µφ(t), uniformly in t.

Then lim infs∈[t,∞) φ(s) = 0, which means that |Φ(t)(I − P)ξ |must be unbounded.
Now if we assume that Pξ 6= 0, then defining φ(t)−1 = |Φ(t)Pξ |, we perform the same procedure, with the integral

over the interval (−∞, t] ;we conclude that lim infs∈(−∞,t] φ(s) = 0, which means |Φ(t)Pξ |must be unbounded. Thus the
only possibility for boundedness of the solutions of system (1) is that B0 = {0} i.e., x(t) = 0. �

Proposition 2. If the homogeneous system (1) possesses an integrable dichotomy, then system (2) has exactly one bounded
solution which can be represented by (3).

Proof. Let x be given by (3). Since |x(t)| ≤ µ supt∈R |f (t)|, x(t) is a bounded solution of (2). If there exists another bounded
solution x1(t) of (2), obviously, x(t) − x1(t) is a bounded solution of the homogeneous linear system (1). By Proposition 1,
x(t) ≡ x1(t). The uniqueness of the bounded solution of (2) is proved. �

Proposition 3. If the linear system (1) satisfies condition (D), then the projector P is unique, i.e., P is decided uniquely by the
integrable dichotomy.

Proof. Firstly, prove that for an integrable dichotomy we have that for every t0 ∈ R:

|Φ(t)P| is bounded for t ≥ t0 and |Φ(t)(I − P)| is bounded for t ≤ t0. (14)

Let ϕ(t) = |Φ(t)P|. We have∫ t

−∞

Φ(t)Pϕ(s)−1ds =
∫ t

−∞

Φ(t)PΦ−1(s)Φ(s)Pϕ(s)−1ds.

If follows from (11) that
∫ t
−∞

ϕ(t)ϕ(s)−1ds ≤ µ. By (11), ψ(t) = |Φ(t)P| similarly satisfies
∫
∞

t ψ(t)ψ(s)−1ds ≤ µ. So,
Lemma 1 implies (14). Now assume that there exists another projector P̃ satisfying the integrability condition (11), i.e.,∫ t

−∞

∣∣∣Φ(t)P̃Φ−1(s)∣∣∣ ds+ ∫ ∞
t

∣∣∣Φ(t)(I − P̃)Φ−1(s)∣∣∣ ds ≤ µ̃.
Similarly to the above discussion, there exists a constant M̃ > 0 such that

|Φ(t)P̃| ≤ M̃, for all t ≥ 0, |Φ(t)(I − P̃)| ≤ M̃, for all t ≤ 0. (15)

Take any ξ ∈ Cn, for t ≥ 0, it follows from (14) that

|Φ(t)P(I − P̃)ξ | = |Φ(t)PΦ−1(0)Φ(0)(I − P̃)ξ |

≤ |Φ(t)PΦ−1(0)||Φ(0)(I − P̃)ξ |

≤ M|(I − P̃)ξ |, (t ≥ 0), (16)

whereM is constant. On the other hand, for t ≤ 0, it follows from (15) and (D) that

|Φ(t)P(I − P̃)ξ | = |Φ(t)PΦ−1(t)Φ(t)(I − P̃)Φ−1(0)Φ(0)(I − P̃)ξ |

≤ |Φ(t)PΦ−1(t)||Φ(t)(I − P̃)Φ−1(0)||Φ(0)(I − P̃)ξ |

≤ M|(I − P̃)ξ |, (t ≤ 0). (17)

It follows from (16) and (17) that for any ξ ∈ Cn, x(t) = Φ(t)P(I − P̃)ξ is the bounded solution of system (1). By Propo-
sition 1, we have P(I − P̃)ξ = 0, which implies P = PP̃ . Similarly to the above discussion, we also have (I − P)P̃ = 0,
i.e., P̃ = PP̃ . Therefore, P = PP̃ = P̃ . This shows that the projection P is unique. �
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Consider the system (2), where A(t) is a T -periodic matrix function and f (t) is a T -periodic bounded function.
The bounded matrixΦ(t)PΦ−1(t) is periodic if A(·) is so.

Proposition 4. Let the linear system (1) satisfy condition (D). If we further assume that A(t + T ) = A(t), thenΦ(t)PΦ−1(t) is
also a T-periodic function.

Proof. By the periodicity, we note that Φ(t + T ) is also a solution matrix of (1). Then, Φ(t + T ) = Φ(t)C = Φ(t)Φ(T ),
since Φ(0) = I . Note that P̃ = Φ(T )PΦ−1(T ) is also a projection. Since Φ(t)P̃Φ−1(s) = Φ(t + T )PΦ−1(s + T ), the
dichotomy is also integrable with P̃ . By Proposition 3, the projection P is unique. Thus, Φ(T )PΦ−1(T ) = P . Therefore,
Φ(t + T )PΦ−1(t + T ) = Φ(t)PΦ−1(t),i.e.,Φ(t)PΦ−1(t) is T -periodic function. �

Proposition 5. Let the conditions in Proposition 4 hold and further assume that f is T -periodic. Then system (2) has exactly one
T-periodic solution, which can be represented as (3).

Proof. By Proposition 4, it is not difficult to check that x(t), given by (3), is a T -periodic solution. Then, by Proposition 2,
Proposition 5 is proved immediately. �

3. Existence and uniqueness of periodic solutions

We will study the existence and uniqueness of periodic solutions of distributed and discrete delays of the form

y′(t) = A(t)y(t)+ F1(t, yt)+ F2(t, yt), (18)

where F1 involves unbounded delays and F2 bounded delays. For us, (18) has a form as (9), specifically

F1(t, yt) =
∫ t

−∞

c(t, s, y(s))ds and F2(t, y(t), yt) = g(t, y(t), y(t − r(t))). (19)

For this, a natural vectorial space for the initial conditions is

BC(−∞, t0] =
{
ϕ : (−∞, t0] → Cn|ϕ is a bounded continuous function

}
with the supremum norm ‖ϕ‖ = supt∈(−∞,t0] |ϕ(t)| .
Consider A = A(t) as a continuous matrix on R, g : R× Cn× Cn → Cn and c : R× R× Cn → Cn are continuous functions.
Moreover, we will refer to the following specific conditions.
(D) The linear system (1) possesses an integrable dichotomy (11) such thatΦ(t)PΦ−1(t) is bounded for t ∈ R.
(P) A(t + T ) = A(t), r(t + T ) = r(t), and for x, y ∈ Cn fixed, g(t + T , x, y) = g(t, x, y), c(t + T , s+ T , y) = c(t, s, y).
Lipschitz conditions:
(L1) For t, s ∈ R and y1, y2 ∈ Cn, there exists a function λ : R× R→ [0,∞) such that

|c(t, s, y1)− c(t, s, y2)| ≤ λ(t, s) |y1 − y2|

and supt∈R
∫ t
−∞

λ(t, s)ds = L1, L1 < µ−1.

(L2) For any t ∈ [0, T ], x1, x2, y1, y2 ∈ Cn, there is a positive constant L2 such that

|g(t, x1, y1)− g(t, x2, y2)| ≤ L2 (|x1 − x2| + |y1 − y2|) , 2L2 < µ−1.

Continuity conditions:
(C1) F1 is a continuous functional, say: let r > 0, t, s ∈ R and y1, y2 ∈ Cn,|yi| ≤ r . For any ε > 0, there exist δ > 0 and

γ : R× R→ [0,∞) function such that |y1 − y2| < δ implies

|c(t, s, y1)− c(t, s, y2)| ≤ εγ (t, s), t, s ∈ R,

where ϑ = supt∈R
∫ t
−∞

γ (t, s)ds <∞.
(C2) g : R× Cn × Cn → Cn is a continuous function.
Invariance conditions:
(I1) For every r > 0, t, s ∈ R, |y| ≤ r , there exist λ, γ : R2 → [0,∞) functions and positive constants c1, ϑ1 with

c1 < µ−1 for which

|c(t, s, y)| ≤ λ(t, s) |y| + γ (t, s),

where supt∈R
∫ t
−∞

λ(t, s)ds = c1, supt∈R
∫ t
−∞

γ (t, s)ds = ϑ1.
(I2) For every r > 0, there exist positive constants c2, ϑ2 with 2c2 < µ−1 for which
|g(t, x, y)| ≤ c2 (|x| + |y|)+ ϑ2, for every |x| , |y| ≤ r, r > 0, and t ∈ R.
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Consider the operator

(Γ y) (t) =
∫
∞

−∞

G(t, s)F1(s, y(s))ds+
∫
∞

−∞

G(t, s)F2(s, y(s))ds

=: (Γ1y) (t)+ (Γ2y) (t), (20)

where F = F1 + F2 is defined by (20) and, for example, F1 satisfies conditions (D), (P), (L1) and F2 satisfies conditions (C2),
(I2).
Using Krasnoselskii’s Theorem A, we will prove:

Theorem 1. Let assumptions (D),(P),(L1),(C2),(I2) hold. Assume that L1 + 2c2 < µ−1. Then system (18) has at least one T-
periodic solution.

By the symmetry of the conditions, we will obtain as Theorem 1:

Theorem 2. 2L2+ c1 < µ−1 and if (D),(P),(L2),(C1) and (I1) are fulfilled, then system (18) has at least one T-periodic solution.

LetB = {y : R→ Cn|y(t) is T − periodic continuous function}, the Banach spacewith the supremumnorm ‖y‖ = supt∈[0,T ]
|y(t)|.
We will prove Theorem 1 establishing some lemmas. Clearly, Γ1,Γ2 : B→ B.
Firstly, we have that Γ1 is a contraction, where Γ1 is given by (20).

Lemma 2. Under conditions (D),(P),(L1), Γ1 : B→ B, given by (20), is a contraction mapping.

Proof. By conditions (D) and (P), using Proposition 5, y ∈ B implies that Γ1y ∈ B. We shall prove that Γ1 is a contraction
mapping in B. For y1, y2 ∈ B, by conditions (L1)

|F1(t, y1)− F2(t, y2)| ≤
∫ t

−∞

λ(t, s) |y1(s)− y2(s)| ds

and

|Γ1y1(t)− Γ1y2(t)| ≤ L1 ‖y1 − y2‖
∫
∞

−∞

|G(t, s)| ds ≤ µL1 ‖y1 − y2‖ .

Then, as µL1 < 1, Γ1 is a contraction mapping. �

Similarly, Γ2 given by (20), may be also a contraction operator.

Lemma 3. Under conditions (D),(P),(L2), Γ2 : B→ B, given by (19), is a contraction mapping.

Let BN = B(0,N) ⊂ B be the closed ball centered at 0 ∈ B with radius N and also let CN = {x ∈ Cn| |x| ≤ N}. Now, we
will demonstrate that Γ1 : BN → BN is a compact operator for some N ∈ N.

Lemma 4. Condition (I1) implies that there is N ∈ N big enough such that Γ1 : BN → BN .

Proof. Suppose that for any n ∈ N, there exists yn ∈ Bn such that ‖Γ1(yn)‖ > n. By condition (I1) there exists N ∈ N
sufficiently large such that if n ≥ N , then |F1(t,yn)|n ≤ c1 +

ϑ1
n < µ−1 and

|Γ1yn(t)|
n

≤
1
n

∫
∞

−∞

|G(t, s)| |F1(s, yn)| ds < µ

(
c1 +

ϑ1

n

)
< 1.

So, limn→∞ sup
|Γ1yn(t)|
n < 1, contradicting ‖Γ1yn‖ > n. Thus, there exists N ∈ N such that Γ1 : BN → BN . �

Similarly, for Γ2 we have:

Lemma 5. Condition (I2) implies that there exists N ∈ N big enough such that Γ2 : BN → BN .

Lemma 6. Under condition (I1), Γ1BN is a relatively compact set of B.

Proof. Since Γ1BN ⊂ BN , {Γ1y|y ∈ BN} is bounded in B. Moreover, A(t) and, by (I1), F1(t, y) are bounded respectively on
[0, T ] and on [0, T ]× BN .
Then dΓ1y(t)dt is bounded on [0, T ]× BN , since

dΓ1y(t)
dt = A(t)Γ1y(t)+ F1(t, y).

Therefore {Γ1y|y ∈ BN} is equicontinuous. Thus, the conclusion follows from the Ascoli theorem. �

In a similar way, for Γ2 we obtain.
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Lemma 7. Under condition (I2), Γ2BN is a relatively compact set of B.

Finally, we prove the continuity of the operators.

Lemma 8. Condition (C1) implies that Γ1 : BN → BN is continuous.

Proof. The function c(t, s, y) is uniformly continuous on [0, T ] × [0, T ] × CN and by the periodicity in t, c is uniformly
continuous on R × CN . Thus, for any ε > 0, there exists δ = δ(ε) > 0 such that yi ∈ BN , ‖y1 − y2‖ ≤ δ implies
|F1(t, y1)− F1(t, y2)| ≤ ε1 = ε

µϑ
for t ∈ R. Then ‖Γ1y1 − Γ1y2‖ ≤ ε. In fact, by (C1), |c(t, s, y1)− c(t, s, y2)| ≤ ε1γ (t, s) if

|y1 − y2| < δ and then

|Γ1(t, y1)− Γ1(t, y2)| ≤ ε1µ
∫ t

−∞

γ (t, s)ds ≤ ε1µϑ = ε. �

In a similar way:

Lemma 9. The condition (C2) implies that Γ2 : BN → BN is a continuous map.

Finally, we prove Theorem 1:
Let N be big enough such that µ(L1 + 2c2) + (ϑ1 + ϑ2)N−1 < 1 and let S = BN the ball, which may be obtained from

Lemma 4.We have for x, y ∈ S,Γ1x+Γ2y ∈ S. By Lemma 2,Γ1 is a contractionmapping. By Lemmas 6 and 8,Γ2 is completely
continuous. Using Theorem A, the proof of Theorem 1 is complete.
The proof of Theorem 2 is absolutely analogous.
As a direct consequence of the method, the contraction principle of Banach and Schauder’s theorem imply respectively:

Theorem 3. µ(L1+2L2) < 1 and (D),(P),(L1) and (L2) are fulfilled, then there exists a unique T-periodic solution of system (20).

Theorem 4. If µ(c1 + 2c2) < 1 and (D),(P),(Ci) and (Ii) i = 1, 2 hold, then there exist at least a T-periodic solution of sys-
tem (20).

4. Conclusions

The general results obtained are based on three general points: (1) a general type of dichotomy, namely, the integrable
dichotomies satisfying thatΦ(t)PΦ−1(t) is bounded. Any integrable (h, k)-dichotomy, and hence an exponential dichotomy,
belongs to this important class of dichotomies. (2) The general conditions of the functional terms which allow an easy
verification, applications to many cases and several extensions. General systems (9) may be studied. (3) The general fixed
point theorem is used. Krasnoselskii’s Theorem A includes Banach and Schauder’s fixed point theorems, implying very
natural and important results. So, Theorems 1–4 represent tangible situations showing the feasibility of our results.
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