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1 Introduction

Differential equations with piecewise constant arguments (briefly DEPCA)
arise in an attempt to extend the theory of functional differential equations
with continuous arguments to differential equations with discontinuous argu-
ments. This task is of considerable applied interest since DEPCA include,
as particular cases, impulsive and loaded equations of control theory and are
similar to those found in some biomedical models. The study of such equations

dx(t)

dt
= f(t, x(t), x(γ(t))), γ(t) = [t] or γ(t) = 2

[
t + 1

2

]
, (1.1)

where [·] signifies the greatest integer function, has been initiated by Wiener
[29], Cooke and Wiener [12], and Shah and Wiener [27] in the 80’s; and has
been developed by many authors [1]-[6],[11]-[15],[20],[22],[27]-[29],[32],[35]. Ap-
plications of DEPCA are discussed in [28]. DEPCA usually describes hybrid
dynamical systems (a combination of continuous and discrete) and so combine
properties of both differential and difference equations. Over the years, great
attention has been paid to the study of the existence of periodic solutions of
this type of equations. For specific references (see [1],[5],[6],[11]).

Let Z, N, R and C be the set of all integers, natural, real and complex
numbers, respectively. Fix two real sequences ti, γi, i ∈ Z, such that ti <

ti+1, ti ≤ γi ≤ ti+1 for all i ∈ Z, ti → ±∞ as i → ±∞. Let γ : R → R

be a step function given by γ(t) = γi for t ∈ Ii = [ti, ti+1) and consider the
DEPCA (1.1) with this general γ. In this case we speak of DEPCA of general
type, in short DEPCAG. With the general delay case: γi = ti this concept was
introduced by M. A. Akhmet [2] in 2007 and in several other papers [3]-[6].

Differential equations alternately of retarded and advanced type can occur
in many problems of economy, biology and physics, because differential equa-
tions of this type are much more suitable than delay differential equations for
an adequate treatment of dynamic phenomena. The concept of delay is related
to a memory of system, the past events are important for the present current
behavior (see for example [8],[17],[19],[23],[33]), and the concept of advance is
related to potential future events which can be known at the current present
time which could be useful for decision making. The study of various prob-
lems for differential equations alternately of retarded and advanced type with
piecewise constant arguments can be found in many works, we cite for example
[1],[13],[16],[25],[27].

The existence of periodic solutions of ordinary differential equations has
been discussed extensively in theory and in practice (for example, see [9],[10],[21],
[23],[24],[31],[33],[34] and the references cited therein), but there are few papers
considering discontinuous deviations in differential perturbed equations.
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In 2008, Akhmet et al. [5] obtained some sufficient conditions for the
existence and uniqueness of periodic solutions for the following system,

x′(t) = A(t)x(t) + h(t) + µg(t, x(t), x(γ(t)), µ), (1.2)

where A : R → Rn×n, h : R → R, g : R × Rn × Rn × I → Rn are continuous
functions, γ(t) = ti if ti ≤ t < ti+1 and µ is a small parameter belonging to an
interval I ⊂ R with 0 ∈ I. See also Akhmet et al. [6], where other important
results on periodic solutions are obtained.

In an interesting paper, Xia et al. [32], using exponential dichotomy and
contraction mapping principle, obtained some sufficient conditions for the ex-
istence and uniqueness of almost periodic solutions of general inhomogeneous
DEPCA of the form

y′(t) = A(t)y(t) + B(t)y([t]) + h(t) + µg(t,y(t),y([t]), µ), t ∈ R, (1.3)

and the very general nonlinear DEPCA

y′(t) = f(t, y(t), y([t])) + µg(t,y(t),y([t]), µ), t ∈ R, (1.4)

where A, B : R → Rq×q, h : R → Rq, f : R×Rq ×Rq → Rq, g : R×Rq ×Rq ×
I → Rq are continuous functions and µ is a small parameter belonging to an
interval I ⊂ R with 0 ∈ I.

The main purpose of this paper is to establish some simple criteria for the
existence of periodic solutions of quasilinear differential systems with piecewise
constant argument of generalized type:

y′(t) = A(t)y(t) + f(t, y(t), y(γ(t))), (1.5)

where t ∈ R, y ∈ Cp, A(t) is a p × p matrix for p ∈ N, f(t, x, y) is a p

dimensional vector and f is continuous in the first argument.
In this paper, the estimates of solutions have been obtained by a new

Gronwall’s inequality. Under certain conditions on the nonlinearity f , several
sufficient conditions for the existence and uniqueness of periodic (or harmonic)
and subharmonic solutions of (1.5) are obtained by using Poincaré operator
and fixed point theory. The conditions can be checked easily.

The following assumptions for equation (1.5) will be necessary throughout
the paper:

(P) There exists ω > 0 such that:

1) A(t) and f(t, y1, y2) are periodic functions in t with a period ω, for all
t ≥ τ .
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2) There exists l ∈ N, for which the sequences {ti}
j

i=1, {γi}
j

i=1, j ≤ ∞,
satisfy the (ω, l) condition, that is

ti+l = ti + ω, γi+l = γi + ω, for i ∈ {1, ..., j} with j < ∞. (1.6)

(N) The homogeneous equation

y′(t) = A(t)y(t) (1.7)

does not admit any nontrivial ω-periodic solution.

(L) f : [τ,∞) × C
p × C

p → C
p is a continuous function such that

|f(t, x1, y1) − f(t, x2, y2)| ≤ η1(t)|x1 − x2| + η2(t)|y1 − y2| (1.8)

for t ∈ R, xi, yi ∈ Cp, i = 1, 2, ηi : R → [0,∞), i = 1, 2, are locally
integrable functions and f(t, 0, 0) is a continuous function.

(UC) The solution y(t) = y(t, τ, ξ) is the unique solution of (1.5) such that
y(τ) = ξ and it depends continuously on ξ.

(H1) f(t, y1, y2) = o(|y1|+ |y2|) if |y1|+ |y2| → ∞, uniformly in t ∈ [τ, τ + ω].

(H2) f(t, y1, y2) = o(|y1| + |y2|) if |y1| + |y2| → 0, uniformly in t ∈ [τ, τ + ω].

Suppose that f satisfies the Lipschitz condition (L). Even if f(t, 0, 0) ≡
0, then neither (H1) nor (H2) is necessarily satisfied. On the other hand,
conditions (H1) or (H2) hold for functions f which are not of Lipschitz type.
Moreover, although ηi, i = 1, 2, are bounded, they determine a better precision
than to replace them by its bounds (see (2.15) below as example).

The rest of this paper is organized as follows. In the next section, some
definitions and lemmas which will be used to prove our main results, are in-
troduced. Section 3 is devoted to prove our main results for systems (1.5). We
end this paper with applications to population models as Lasota-Wazewska,
Nicholson or logistic type to show the feasibility of our results. For exam-
ple, some new and interesting sufficient conditions are obtained to guarantee
the existence of a positive periodic solution in Lasota-Wazewska model with
DEPCAG

y′(t) = −δ(t)y(t) + p(t)e−y(γ(t)), t ≥ 0,

where y(t) is the number of red blood cells at time t and δ(t), p(t) are positive
ω-periodic functions, {ti}i∈{1,..,j} and {γi}i∈{1,..,j} satisfy the property (ω, l).
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2 Existence and Uniqueness of the Solutions

First, we prove the existence and uniqueness of solutions of (1.5). A natural
extension of the original definition of a solution of DEPCA[1],[11]-[15],[20],[27]-
[29],[32],[35] allows us to define a solution of DEPCAG for our general case.
Let J ⊂ R be a real interval such that {ti}

j

i=1 ⊆ J , j ≤ ∞.

Definition 1 A function y is a solution of DEPCAG (1.5) in an interval
J ⊂ R if

i) y is continuous on J.

ii) The derivative y′(t) exists at each point t ∈ J with the possible exception
of the points ti ∈ J, i ∈ {1, .., j}, where the one-side derivatives exist.

iii) Equation (1.5) is satisfied for y on each interval (ti, ti+1) , i ∈ {1, .., j},
and it holds for the right derivative at the points ti, i ∈ {1, .., j} .

Uniqueness, continuity and estimates of the solutions of DEPCAG (1.5)
will follow from a DEPCAG integral inequality of Gronwall type. See [22].

For every t ∈ R, let i = i(t) ∈ Z be the unique integer such that t ∈ Ii =
[ti, ti+1).

Lemma 2.1 Let u, ηi : J → [0,∞) i = 1, 2 be three continuous functions and
α be a nonnegative real constant. Suppose that for all t ≥ τ the inequality

u(t) ≤ α +

∫ t

τ

[η1(s)u(s) + η2(s)u(γ(s))]ds (2.1)

holds. Assume

vi =

∫ γi

ti

[
η2(s)e

R γi
s

η1(κ)dκ
]
ds ≤ v := sup

i∈N

vi < 1. (2.2)

Then for t ≥ τ ,

u(t) ≤ α exp

(∫ t

τ

η1(s)ds +
1

1 − v

∫ t

τ

[
η2(s)e

R γ(s)
ti(s)

η1(κ)dκ
]

ds

)
, (2.3)

u(γ(t)) ≤
α

1 − v
exp

(∫ γ(t)

τ

η1(s)ds +
1

1 − v

∫ ti(t)

τ

[
η2(s)e

R γ(s)
ti(s)

η1(κ)dκ
]

ds

)
,

(2.4)
and

u(γi) ≤
1

1 − v
u(ti) exp

(∫ γi

ti

η1(s)ds

)
. (2.5)
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Proof. Call v(t) the right member of (2.1). So u(τ) ≤ v(τ) = α, u ≤ v, v is
a piecewise differentiable and nondecreasing function. By (2.1), it satisfies

v′(t) ≤ η1(t)v(t) + η1(t)v(γ(t)).

Multiply both sides of the previous relation by exp
(
−
∫ t

r
η1(s)ds

)
, to obtain

(v′(t) − η1(t)v(t))

(
exp

(
−

∫ t

r

η1(s)ds

))
≤ (η2(t)v(γ(t)))

(
exp

(
−

∫ t

r

η1(s)ds

))
.

(2.6)
Integrating (2.6) we have for r, t ∈ Ii, i ∈ N:

v(t)

(
exp

(
−

∫ t

r

η1(s)ds

))
−v(r) ≤

∫ t

r

(η2(s)v(γ(s)))

(
exp

(
−

∫ s

r

η1(κ)dκ

))
ds.

(2.7)
With t = γi and r = ti in (2.7) for t ∈ [ti, γi], we get

v(γi) ≤ v(ti)

(
exp

(∫ γi

ti

η1(s)ds

))
+v(γi)

∫ γi

ti

(η2(s))

(
exp

(∫ γi

s

η1(κ)dκ

))
ds

and, by (2.2), estimate (2.5) follows. Then, for t ∈ Ii, we obtain

v(t)

(
exp

(
−

∫ t

ti

η1(s)ds

))

≤v(ti) +

∫ t

ti

η2(s)v(γ(s))

(
exp

(
−

∫ s

ti

η1(κ)dκ

))
ds

≤v(ti) +

(
1

1 − v

)∫ t

ti

[
η2(s)v(ti)

(
exp

(∫ γi

ti

η1(κ)dκ −

∫ s

ti

η1(κ)dκ

))]
ds

≤v(ti) +

(
1

1 − v

)∫ t

ti

[(
η2(s) exp

(∫ γi

ti

η1(κ)dκ

))(
v(s) exp

(
−

∫ s

ti

η1(κ)dκ

))]
ds,

because v is a nondecreasing function.
Now, we can apply the classical Gronwall’s Lemma and to get:

v(t) exp

(
−

∫ t

ti

η1(s)ds

)
≤ v(ti) exp

{(
1

1 − v

)∫ t

ti

[
η2(s) exp

(∫ γi

ti

η1(κ)dκ

)]
ds

}

for t ∈ Ii. By the continuity of v, we have:

v(ti+1) ≤ v(ti) exp

{(∫ ti+1

ti

η1(s)ds

)

+

(
1

1 − v

)∫ ti+1

ti

[
η2(s) exp

(∫ γi

ti

η1(κ)dκ

)]
ds

}
.

(2.8)
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From (2.5) and (2.8), recursively we obtain (2.3) and (2.4). The proof is
complete.

Remark 1 This DEPCAG inequality of Gronwall type seems to be new. Lemma
2.1 extends Lemma 1 [22], since (2.2) is weaker than

∫ γi

ti
(η1(s) + η2(s))ds ≤

v < 1.

Corollary 2.1 Let α and λ be nonnegative real constants and u : J → [0,∞)
be a continuous function. Suppose that for all t ≥ τ the inequality

u(t) ≤ α +

∫ t

τ

λ [u(s) + u(γ(s))] ds (2.9)

holds. Assume
λ(γi − ti) ≤ v̂ < ln 2. (2.10)

Then for t ≥ τ ,

u(t) ≤ αeλṽ(t−τ), ṽ =
2

2 − exp(v̂)
. (2.11)

Akhmet et al. [6] have an analogue of Gronwall-Bellman Lemma. Let
‖v‖t = max

s∈[tj ,t]
|v(s)| and χ(t) = max{t, γ(t)}.

Lemma 2.2 [6] Let u(t) be continuous, η1(t) and η2(t) nonnegative piecewise
continuous scalar functions defined for t ≥ tj. Suppose that α is a nonnegative
real constant and that u(t) satisfies the inequality

|u(t)| ≤ α +

∫ t

tj

[η1(s)|u(s)| + η2(s)|u(γ(s))|] ds

for t ≥ tj. Then the inequality

‖u‖χ(t) ≤ α exp

(∫ χ(t)

tj

[η1(s) + η2(s)]ds

)
(2.12)

is satisfied for t ≥ tj.

Remark 2 Consider the linear DEPCA with constant coefficients a = 0.2,
b = 0.5

u′(t) = au(t) + bu (γ(t)) , γ(t) = 2[ t+1
2

],

which is equivalent to

u(t) = α +

∫ t

τ

[au(s) + bu (γ(s))]ds, t ∈ [τ,∞). (2.13)
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Then, we have

u(t) = α
λ̂ (t − γ(t))

λ̂ (τ − γ(τ))

(
λ̂ (1)

λ̂ (−1)

)i(t)−i(τ)

, (2.14)

where λ̂(t) = e0.2t + 5
2
(e0.2t − 1).

Let τ = 1 and t ∈ [1, 2]. In this particular case, we have γ(t) = γ(τ) = 2 and
(2.14) implies

u(t) =
α

λ̂ (−1)
λ̂ (t − 2) .

As λ̂(t) is a nondecreasing function, we have

max
t∈[1,2]

u(t) = α
λ̂ (0)

λ̂ (−1)
≈ 2.7355α.

However, according to (2.12) in Lemma 2.2, the solutions u of (2.13) satisfy

max
t∈[1,2]

|u(t)| ≤ α exp

(∫ 2

1

[0.2 + 0.5]ds

)
≈ 2.01375α.

So, we can conclude that the DEPCAG inequality of Gronwall type in [6] is
not true.
Note that if now we apply Lemma 1 [22] to equation (2.13), we obtain

max
t∈[1,2]

|u(t)| ≤ α exp

(∫ 2

1

[
0.2 +

0.5

1 −
∫ 2

1
[0.2 + 0.5]ds

]
ds

)
≈ 6.4667α

and if we apply Lemma 2.1, we get

max
t∈[1,2]

|u(t)| ≤ α exp

(∫ 2

1

[
0.2 +

0.5

1 −
∫ 2

1
[0.5e

R 2
k

0.2dt]dk
e

R 2
1

0.2du

]
ds

)
≈ 4.796α.

Then, these two DEPCAG inequalities of Gronwall type are true and Lemma
2.1 has not only a weaker condition than Lemma 1 [22], but also has a better
estimate.

Now let us see an estimate of the solution of DEPCAG (1.5).

The following notation is needed in the paper. Let Φ(t) be a funda-
mental solution of (1.7) and Φ(t, s) = Φ(t)Φ−1(s), t, s ∈ J . Denote cΦ =

max
t,s∈[τ,τ+ω]

|Φ(t, s)|
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Lemma 2.3 Suppose that condition (L) holds and let yi(·) = y(·, τ, ξi), i = 1, 2
be solutions of DEPCAG (1.5). Assume

ς := cΦ

∫ τ+ω

τ

[η1(s) + η2(s)]ds < 1. (2.15)

Then for t ∈ [τ, τ + ω], we have the following estimation:

||y1 − y2|| ≤

(
cΦ

1 − ς

)
|ξ1 − ξ2| . (2.16)

Proof. For DEPCAG variation of constants formula, the solution yi(t, τ, ξi),
i = 1, 2 of Eq.(1.5) satisfies

yi(t, τ, ξi) = Φ(t, τ)ξi +

∫ t

τ

Φ(t, s)f(s, yi(s), yi(γ(s)))ds, (2.17)

where Φ(t, τ) = Φ(t)Φ−1(τ). Then,

|y1(t) − y2(t)|

≤ |Φ(t, τ)| |ξ1 − ξ2| +

∫ t

τ

|Φ(t, s)| |f(s, y1(s), y1(γ(s))) − f(s, y2(s), y2(γ(s)))| ds

≤ cΦ |ξ1 − ξ2| + cΦ

∫ t

τ

[η1(s) |y1(s) − y2(s)| + η2(s) |y1(γ(s)) − y2(γ(s))|] ds.

Then,

max
t∈[τ,τ+ω]

|y1(t) − y2(t)| ≤ cΦ |ξ1 − ξ2|

+

(
cΦ

∫ τ+ω

τ

[η1(s) + η2(s)]ds

)
max

t∈[τ,τ+ω]
|y1(t) − y2(t)| .

By (2.15), we have (2.16).
As in [22], we obtain:

Proposition 2.1 Let (τ, ξ) ∈ J × Cp. The function y(·) = y(·, τ, ξ) is a
solution on J of the DEPCAG (1.5) in the sense of Definition 1 if and only if
it is a solution of the integral equation

y(t) = Φ(t, τ)ξ +

∫ t

τ

Φ(t, s)f(s, y(s), y(γ(s)))ds, t ≥ τ. (2.18)

Moreover, if Hypothesis (L) and
∫ γi

ti
max

t∈[ti,γi]
|Φ(t, s)|(η1(s) + η2(s))ds < 1 hold,

then for every (τ, ξ) ∈ J × Cp, there exists a unique solution y(·) = y(·, τ, ξ)
with y(τ) = ξ in the sense of Definition 1.
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Remark 3 Recently, in [3]-[4], Akhmet obtained fundamental results about
the variation of constants formula, existence and uniqueness of solutions of
the perturbed system (1.5). He did not consider in special form the advanced
and delayed intervals Ii = [ti, γi] ∪ [γi, ti+1) (See [22],[25]). The advanced
intervals determine the better precision to find the contraction condition and
it is not necessary to study estimate of solutions of (1.5) with the maxima
norm for all intervals Ii as Akhmet’s approach. Then, Akhmet’s existence
and uniqueness result for the perturbed system (1.5) is obtained under stronger
conditions than ours. Akhmet had many difficulties since he did not have a
global Gronwall-type lemma as Lemma 2.1 or Lemma 1 [22].

Lemma 2.4 Suppose that conditions (P) and (L)(or (UC)) hold. Then, a
solution y(·) = y(·, τ, ξ) of DEPCAG (1.5) is ω-periodic if and only if y(τ +
ω) = y(τ).

Proof. If y(t, τ, ξ) is ω-periodic, then y(τ + ω) = y(τ) is obviously satisfied.
Suppose that y(τ + ω) = y(τ) holds. Let κ(t) = y(t + ω) on J . Then,
y(τ +ω) = y(τ) can be written as κ(τ) = y(τ). (P2) implies γ(t+ω) = γ(t)+ω

for all t ∈ J . Hence, κ(t) is a solution of DEPCAG (1.5). By the uniqueness
of solutions, we have κ(t) = y(t) on J . The lemma is proved.

To prove some existence criteria for ω-periodic solutions of Equation (1.5)
we use the Banach’s fixed point theorem and Brouwer’s fixed point theorem.

Theorem A (Banach’s fixed point theorem [9]): Let F be a complete
metric space and f : F → F is a contraction operator. Then there is a unique
x ∈ F with f(x) = x.

Theorem B (Brouwer’s fixed point theorem [7,9]): Let B be a closed
ball in Rn. Any continuous function h : B → B has a fixed point.

3 Main Results

For ω > 0, define Pω = {φ ∈ C(R, R) : φ(t + ω) = φ(t)}, where C(R, R) is the
space of all real valued continuous functions. Then Pω is a Banach space when
it is endowed with the supremum norm

‖y‖ = sup
t∈R

|y(t)| = sup
t∈[τ,τ+ω]

|y(t)| .

Suppose that condition (N) holds. If y(t, τ, ξ) is the unique solution of
DEPCAG (1.5) such that y(τ) = ξ, we define the Poincaré’s operator P :

EJQTDE, 2010 No. 46, p. 10



Cp → Cp such that
Pξ = D (y(τ + ω, τ, ξ)− Cξ) , (3.1)

where C = Φ(τ + ω, τ), D = (I − C)−1. The condition (N) implies that D

exists.

Lemma 3.1 Under conditions (P), (L)(or (UC)) and (N) we have that the
operator P has a fixed point ξ if and only if y(·) = y(·, τ, ξ) is ω-periodic.

Proof. If Pξ = ξ, then y(τ+ω, τ, ξ)−Cξ = D−1ξ, i.e., y(τ+ω, τ, ξ) = ξ = y(τ).
By Lemma 2.4, the conclusion is proved.

Applying the Banach’s fixed point theorem we have:

Theorem 3.1 Suppose that the conditions (N), (P), (L) and (2.15) hold and
let

cΦς

1 − ς
|D| < 1, (3.2)

where ς is defined in (2.15). Then, the DEPCAG (1.5) has only one ω-periodic
solution.

Proof. By Proposition 2.1, we obtain

y(t) = Φ(t, τ)ξ +

∫ t

τ

Φ(t, s)f(s, y(s), y(γ(s)))ds, t ≥ τ,

where τ ∈ J , y(τ) = ξ. Therefore

y(τ + ω, τ, ξ)− Cξ =

∫ τ+ω

τ

Φ(τ + ω, s)f(s, y(s), y(γ(s)))ds.

Let ξ1, ξ2 two initial conditions, then by (3.1), we obtain

|Pξ1 − Pξ2| = |D (y1(τ + ω, τ, ξ1) − y2(τ + ω, τ, ξ2)) − DC (ξ1 − ξ2)|

≤ |D|

∫ τ+ω

τ

|Φ(τ + ω, s)| |f(s, y1(s), y1(γ(s))) − f(s, y2(s), y2(γ(s)))| ds

≤ cΦ |D|

∫ τ+ω

τ

[η1(s) |y1(s) − y2(s)| + η2(s) |y1(γ(s)) − y2(γ(s))|] ds

≤

(
cΦ |D|

∫ τ+ω

τ

[η1(s) + η2(s)] ds

)
max

t∈[τ,τ+ω]
|y1(t) − y2(t)| .

By Lemma 2.3, we get

|Pξ1 − Pξ2| ≤

(
cΦς|D|

1 − ς

)
|ξ1 − ξ2| , (3.3)
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where ς is defined in (2.15). This proves that the operator P is a continuous
function. By the Banach’s fixed point theorem, there is a unique fixed point
ξ∗: Pξ∗ = ξ∗, and the corresponding solution y(t) = y(t, τ, ξ∗) is ω-periodic,
i.e., the equation (1.5) has only one ω-periodic solution.

Corollary 3.1 Suppose that the conditions (N), (P) and (L), with η1 = η2 =
L constant, hold. Assume

2cΦLω < 1 and
2cΦLω|D|

1 − 2cΦLω
< 1.

Then, the DEPCAG (1.5) has only one ω-periodic solution.

If (L) holds, then, by Lemma 2.3, y(t, τ, ξ) depends continuously on ξ.
However, this continuity follows from other conditions as the local Lipschitz
condition or smoothness conditions of the function f , etc. Therefore, from
now on, we use the condition (UC).

Theorem 3.2 Suppose that the conditions (N), (P), (UC) and (H1) hold.
Then the DEPCAG (1.5) has an ω-periodic solution.

Proof. If y(t, τ, ξ) is the solution of (1.5), then it follows from the varia-
tion of constants formula that y(t, τ, ξ) satisfies for all ξ ∈ Cp the integral
equation (2.17). Let λ ∈ (0, 1) be arbitrary such that λcΦθ < ln2, where
θ := max

i∈N

(γi − ti). Because of (H1), there exists some βλ > 0 so that

|f(t, y1, y2)| ≤ βλ + λ (|y1| + |y2|) , for all t ∈ [τ, τ + ω] , y1, y2 ∈ C
p. (3.4)

Thus from (2.17) and (3.4) it follows that for t ∈ [τ, τ + ω],

|y(t, τ, ξ)| ≤ |Φ(t, τ)| |ξ| +

∫ t

τ

|Φ(t, s)| |f(s, y(s), y(γ(s)))| ds

≤ |Φ(t, τ)| |ξ| + cΦ

∫ t

τ

[βλ + λ (|y(s)| + |y(γ(s))|)] ds

≤ cΦ |ξ| + cΦβλω + cΦ

∫ t

τ

λ (|y(s)| + |y(γ(s))|) ds.

Hence by Corollary 2.1 of DEPCAG Gronwall’s inequality we get for t ∈
[τ, τ + ω],

|y(t, τ, ξ)| ≤ cΦ (|ξ| + βλω) eκ, κ =
2λcΦω

2 − exp(λcΦθ)
. (3.5)

EJQTDE, 2010 No. 46, p. 12



Therefore we obtain, again based on (2.17) and (3.5), that

|y(t, τ, ξ)− Φ(t, τ)ξ| ≤ cΦ

∫ t

τ

λ (|y(s)| + |y(γ(s))|) ds

≤ cΦ

∫ t

τ

2λcΦ (|ξ| + βλω) eκds

≤ 2λc2
Φωeκ |ξ| + 2λc2

Φβλω
2eκ.

Hence

lim sup
|ξ|→∞

|y(t, τ, ξ)− Φ(t, τ)ξ|

|ξ|
≤ 2λc2

Φωeκ

uniformly in t ∈ [τ, τ + ω]. It follows from the arbitrary choice of λ ∈ (0, 1)
that

y(t, τ, ξ)− Φ(t, τ)ξ = o(|ξ|) as |ξ| → ∞ (3.6)

uniformly in t ∈ [τ, τ + ω].
By condition (UC), the Poincaré operator

Pξ = (I − Φ(τ + ω, τ))−1 (y(τ + ω, τ, ξ)− Φ(τ + ω, τ)ξ)

is continuous. Moreover, from (3.6) we get that

P (ξ) = o(|ξ|) as |ξ| → ∞.

Consequently, there exists a ρ > 0 such that

|P (ξ)| ≤ ρ +
|ξ|

2
, ∀ξ ∈ C

p.

Therefore, P maps the closed ball B̄[0, 2ρ] into itself, by Brouwer’s fixed point
theorem it has a fixed point ξ∗, Pξ∗ = ξ∗, and the corresponding solution y(t) =
y(t, τ, ξ∗) is ω-periodic, i.e., the equation (1.5) has an ω-periodic solution.

Theorem 3.3 Suppose that the conditions (N), (P), (UC) and (H2) hold.
Then the DEPCAG (1.5) has an ω-periodic solution.

Proof. Let ε ∈ (0, 1) be arbitrary such that εcΦθ < ln2, where θ := max
i∈N

(γi − ti).

Because of (H2), there exists some δ > 0 so that

|f(t, y1, y2)| ≤ ε(|y1| + |y2|), (3.7)

for t ∈ [τ, τ + ω], |y1| + |y2| ≤ δ. Thus from (2.17) it follows that for |ξ| small
enough there is t∗ such that for t ∈ [τ, t∗)

|y(t, τ, ξ)| ≤ |Φ(t, τ)| |ξ| +

∫ t

τ

|Φ(t, s)| |f(s, y(s), y(γ(s)))| ds

≤ cΦ |ξ| + εcΦ

∫ t

τ

(|y(s)| + |y(γ(s))|) ds.
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Hence by DEPCAG Gronwall’s inequality for t ∈ [τ, t∗], we get

|y(t, τ, ξ)| ≤ cΦ |ξ| eϑ, ϑ =
2εcΦω

2 − exp(εcΦθ)
. (3.8)

So, choosing |ξ| small enough, we obtain |y(t∗)|+ |y(γ(t∗))| ≤ δ. Then (3.8) is
true for t ∈ [τ, τ + ω].
Now, using the same technique in the proof of Theorem 3.2, we can conclude

y(t, τ, ξ) − Φ(t, τ)ξ = o(|ξ|) as |ξ| → 0

uniformly in t ∈ [τ, τ + ω], and the equation (1.5) has an ω-periodic solution.

Remark 4 Suppose that (P1) is satisfied by ω = ω1 and (P2) by ω = ω2,
if ω2

ω1
is a rational number, then both (P1) and (P2) are simultaneously sat-

isfied by ω = l.c.m. {ω1, ω2}, where l.c.m.{ω1, ω2} denotes the least common
multiple between ω1 and ω2. In the general case it is possible that there exist
three possible periods: ω1 for {ti}, {γi}, ω2 for A and ω3 for f , if ωi

ωj
is a

rational number for all i, j = 1, 2, 3. So, in this situation our results insure
the existence of an ω-periodic solution with ω = l.c.m. {ω1, ω2, ω3}. Therefore
the above results insure the existence of ω-periodic solutions of the DEPCAG
(1.5). These solutions are called subharmonic solutions. See section 4.

4 Applications and Examples

In order to illustrate some features of our main results, in this section, we
apply the criteria established above to some mathematical models arising in
biology, which have been widely explored in the literature.

These mathematical models were investigated by Lasota-Wazewska, Gur-
ney and Richards, which are well-known models in hematopoiesis and popula-
tion dynamics. We extend these models to anticipatory models.

The mathematical biologist Robert Rosen introduced the concept of antic-
ipatory systems in 1985,defining anticipatory systems as systems that contain
a representation of the system itself. The internal representations can be used
by the system for the anticipation because the system’s parameters can be var-
ied and recombined within the system. A biological system can use this degree
of freedom for anticipatory adaptation, that is, by making a selection in the
present among its possible representations in a next (phenotypical) exhibition.

The study of anticipatory systems requires a model that is sufficiently com-
plex to accommodate representations of the system within the system under
study. These systems no longer model an external world, but they entertain
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internal representations of their relevant environments in terms of the ranges of
possible further developments. In other words, the possibility of anticipation
in systems can be considered as a consequence of the complexity of the analyt-
ical model. This additional complexity is found by using the time dimension
not as a (historical) given, but as another degree of freedom available to the
system.

In our modeling of population dynamics, anticipation means a qualitative
kind of prediction enriched by the active moment of decisions made at present
real time. Moreover, it seems that complex factors which are not necessarily
subjective can be considered as a reason of an anticipation.

We propose, for the first time apparently, to consider equations of the
alternately advanced and retarded generalized type, which can represent an-
ticipatory models.
1. In 1976, Wazewska and Lasota [30] proposed a mathematical model

y′(t) = −δy(t) + pe−γy(t−τ), t ≥ 0

to describe the survival of red blood cells in an animal; here, y(t) denotes the
number of red blood cells at time t, δ > 0 is the probability of death of a
red blood cell, p and γ are positive constants related to the production of red
blood cells per unit time, and τ is the time required to produce a red blood
cell.

We consider the anticipatory Lasota-Wazewska model with DEPCAG as
follows:

y′(t) = −δ(t)y(t) + p(t)e−y(γ(t)), t ≥ 0, (4.1)

where y(t) is the number of red blood cells at time t and δ(t), p(t) are positive
ω-periodic functions, {ti}i∈{1,..,j} and {γi}i∈{1,..,j} satisfy the property (ω, l).
We note that if the initial number of red blood cells y(0) > 0 Eq.(4.1) has a
positive solution. Indeed, it is easy to verify that for every t ∈ J ,

y(t) = e−
R t

0
δ(s)dsy(0) + e

−y(γi(0))−
R t

ti(0)+1
δ(s)ds

(∫ ti(0)+1

0

e−
R

ti(0)+1
s δ(s)dκp(s)ds

)

+
∑j=i(t)−1

j=i(0)+1

[

e
−y(γj)−

R t

tj+1
δ(s)ds

(∫ tj+1

tj

e−
R tj+1

s δ(κ)dκp(s)ds

)]

+ e−y(γ(t))

(∫ t

ti(t)

e−
R t

s
δ(s)dκp(s)ds

)

.

So, the solution y of DEPCAG (4.1) has to be positive. Note that if δ(t) is a
positive ω-periodic function, then the condition (N) is satisfied and thus, using
the same technique in the proof of Theorem 3.1 we have:
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Theorem 4.1 Suppose that δ(t), p(t) are positive ω-periodic functions, {ti}i∈{1,..,j}

and {γi}i∈{1,..,j} satisfy the property (ω, l) and assume that

cΦ

∫ τ+ω

τ

p(s)ds < 1 and
cΦ

∫ τ+ω

τ
p(s)ds

1 − cΦ

∫ τ+ω

τ
p(s)ds

|D| < 1

hold, where cΦ =
exp(

R τ+ω

τ
δ(s)ds)

exp(
R τ+ω

τ
δ(s)ds)−1

and |D| = 1

exp(
R τ+ω

τ
δ(s)ds)−1

. Then the DE-

PCAG (4.1) has a unique positive ω-periodic solution.

As the function f(t, y2) = p(t)e−y2 satisfies (H1), using the same technique
of Theorem 3.2, we have:

Theorem 4.2 Suppose that δ(t), p(t) are positive ω-periodic functions, {ti}i∈{1,..,j}

and {γi}i∈{1,..,j} satisfy the property (ω, l), then the DEPCAG (4.1) has a pos-
itive ω-periodic solution.

Remark 5 Let {ti} , {γi} fulfill property (ω1, l), δ(t) is ω2-periodic and p(t) is
ω3-periodic. Therefore, as there is not the same frequency between δ(t), p(t)
and (ω1, l), consider ω0 = l.c.m. {ω1, ω2, ω3} if ωi

ωj
is a rational number for all

i, j = 1, 2, 3. Replace ω by ω0, and applying Theorem 4.1, we obtain the exis-
tence of a unique positive ω0-periodic, i.e., a subharmonic solution of Eq.(4.1).
This holds in each of our Theorems.

2. In 1980, Gurney et al.[18] proposed a mathematical model

y′(t) = −δy(t) + Py(t− τ)e−ay(t−τ),

to describe the dynamics of Nicholson’s blowflies. Here, y(t) is the size of the
population at time t, P is the maximum per capita daily egg production, 1

a
is

the size at which the population reproduces at its maximum rate, δ is the per
capita daily adult death rate, and τ is the generation time.

Nicholson’s blowflies model belongs to a class of biological systems and it
has attracted more attention because of its extensively realistic significance,
its greater details and discrete analogues.

We consider a class of the anticipatory Nicholson’s blowflies model with
DEPCAG as follows:

y′(t) = −δ(t)y(t) + p(t)y(γ(t))e−β(t)y(γ(t)), t ≥ 0, (4.2)

where δ(t), p(t), β(t) are positive ω-periodic functions, {ti}i∈{1,..,j} and {γi}i∈{1,..,j}

satisfy the property (ω, l). Again a solution y of DEPCAG (4.2) is a positive
solution if y(0) > 0.

As the function f(t, y2) = p(t)y2e
−β(t)y2 satisfies (H1), using the same tech-

nique in the proof of Theorem 3.2, we have:
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Theorem 4.3 Suppose that δ(t), p(t), β(t) are positive ω-periodic functions,
{ti}i∈{1,..,j} and {γi}i∈{1,..,j} satisfy the property (ω, l), then the DEPCAG (4.2)
has a positive ω-periodic solution.

3. In 1959, Richards [26] proposed a mathematical model

y′(t) = y(t)

(
a −

(
y(t)

K

)k
)

, t, k ≥ 0

to describe the growth of a single individual or the growth of identical individ-
uals, where, a, K, k are positive constants. This equation is the original model
proposed by Richards [26], also known as the Gilpin–Ayala model.

We consider a class of the anticipatory Gilpin-Ayala model with DEPCAG
as follows:

y′(t) = y(t)

(
a(t) −

(
y(γ(t))

b(t)

)k
)

, t ≥ 0, (4.3)

where a(t), b(t), are positive ω-periodic functions, k > 0 {ti}i∈{1,..,j} and {γi}i∈{1,..,j}

satisfy the property (ω, l). This solution of DEPCAG (4.3) is a positive solu-
tion if y(0) > 0.

As the function f(t, y1, y2) = y1

(
y2

b(t)

)k

satisfies (H2), by Theorem 3.3, we

have:

Theorem 4.4 Suppose that a(t), b(t) are positive ω-periodic functions, k > 0
and {ti}i∈{1,..,j} and {γi}i∈{1,..,j} satisfy the property (ω, l), then the DEPCAG
(4.3) has a positive ω-periodic solution.

Remark 6 If k = 1, Eq.(4.3) is a generalized logistic model with DEPCAG.
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