
503COSMELLI ET AL. Biol Res 40, 2007, 503-515
Biol Res 40: 503-515, 2007 BR
Programming Paradigms and Mind Metaphors:
Convergence and Cross-fertilization in the Study of
Cognition

DIEGO COSMELLI1, JORGE SOTO-ANDRADE2 and ERIC TANTER3

1 Laboratorio de Neurociencias, Facultad de Ciencias Sociales, Escuela de Psicología, and Laboratorio de
Ciencias Cognitivas, Departamento de Psiquiatría, Escuela de Medicina, Pontificia Universidad Católica de
Chile, Santiago, Chile. E-Mail: dcosmelli@uc.cl
2 Mathematics Department, Faculty of Sciences, Universidad de Chile, Santiago, Chile. Email:
sotoandr@uchile.cl
3 PLEIAD Lab, Computer Science Department (DCC), Universidad de Chile, Santiago, Chile. Email:
etanter@dcc.uchile.cl

ABSTRACT
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abstractions. Our aim is to explore possibilities of cross-fertilization, at both conceptual and empirical levels,
towards the understanding of what cognition and cognitive systems might be.
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What does an essay on programming
paradigms have to do with the study of the
brain, nervous systems and cognition? One
straightforward answer would be that
through the development of ever more
complex programs and sophisticated
computational systems one could expect
producing proper models of system such as
neurons, neural networks, brains and
ultimately nervous systems. While this is
indeed an important part, it is obviously not
the only case, as the computation-biology
interface is an active research domain.
Notable developments include, but are not
limited to, modeling living beings (Varela
et al. ,  1974) and their sub-processes
(Fernandez-Ballester & Serrano,2006),
genetic algorithms (Burtsev & Turchin,
2006), cellular automata (Wolfram, 1984),
robotics (Steels & Brooks, 1995)], artificial
intelligence and intelligent agent-design
[McDermott, 2007; Sun & Franklin, 2007),
neuronal-prosthetics (Fromherz, 2006),
large-scale modeling of nervous systems

(http: / /bluebrain.epfl.ch/),  machine
consciousness (Aleksander, 2005),
computational correlates of consciousness
(Cleeremans, 2005), and so on.

The motivation of this paper is to
navigate in the less-explored relation
between biological theory and
programming paradigms (OOPSLA 2006,
2006), with the aim of highlighting a series
of converging ideas. We will argue that in
the interphase of these two domains resides
an important metaphorical pool to deal with
some basic questions regarding
understanding and modeling systems which
can make sense of their current situation.

It is no news that software development
faces a challenge with the explosion of
highly extended, pervasive, and ultra-large
scale computational systems (The Software
Engineering Institute (SEI), 2006). The
proliferation of mobile devices and highly
interconnected systems in the face of
multiple users in changing conditions
represents a radically dynamic context.
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Because programming paradigms and
languages deal with the nature of and
interaction among computational entities –
and by extension with the interactions
between computational systems and human
beings–, research in these areas deals in a
very concrete manner with the question of
making sense out of a context of interaction
or a certain environmental situation; a
challenge that resembles the general issue
of cognition.

The brain and the nervous system have
historically been recognized as playing a
fundamental role in supporting what we
understand as cognitive capacities
(Ashby,1952; Maturana, 1970b; Kandel &
Jessell ,  2000). As living beings
incorporated nervous systems into their
repertoire of biological tools, autonomous
movement and perception made its full-
fledged appearance, and with it ,  the
enormous cognitive possibilit ies of
sensorimotor animated beings. However,
understanding how this role is played in the
context of the living animal is far from
clear. The question for the mechanisms of
human and animal cognition, of how such
systems appear to be able to establish
meaningful points of view in an apparently
objective world, is a challenge that has been
called the “holy grail” of contemporary
science (Dennett, 1991; Niedermeyer,
2005).

Drawing on an  analogy  between
programming paradigms and biology could
be considered far-fetched: meaning for a
software agent has nothing to do with
meaning for a rabbit. In other words, a mere
as-if would have no use in explanatory
attempts at a given problem. We wish to
take stance against such argument.
Throughout history, technological
metaphors have been one of the main
explanatory bases for the understanding of
natural phenomena (Freeman, personal
communication). Similarly, natural systems
serve systematically as models for
technological development. Even more than
through deductive reasoning, it is through
metaphors and analogies that insight often
comes to be, usually for the benefit of many
sides of the problem. Metaphors do not
simply enable illustrative comparisons but

can act as powerful cognitive tools (Soto-
Andrade, 2007). While we do not pretend to
answer the question of cognition or
meaning we do contend that, on this rather
thorny issue, the search for cross-
fertilization is not only necessary and
beneficial in theory, but already at work
and worth taking into account seriously.

We will begin with the question of
defining cognition as a way of setting a
common conceptual background. To this
end we will review three well-known
approaches to this problem, namely
cognitivism, connectionism and
embodiment. We will follow with a brief
survey of the history of programming
paradigm research, with special attention to
the underlying process of abstraction. We
will then present some examples of
convergence between the development of
programming paradigms and some themes
in biologically-oriented approaches to
cognition. We will  argue that these
examples suggest relevant lines for cross-
fertilization between disciplines. We end
with a brief conclusion and round-up.

FROM COMPUTATIONAL COGNITIVISM TO

EMBODIMENT: THE PROBLEM OF COGNITION

What is cognition? or to be more precise,
what do we understand by cognition so that
a cognitive system can be defined or
distinguished in some operative way? It is
obvious that dealing with this question is
not trivial. Ramifications into almost any
domain of human study can be found1, so
no simple answer will do. The following
brief discussion in terms of different
paradigms is therefore intended only as a
working ground (see also Varela et al.,
1997; Dupuy, 1999; Cisek, 1999;
Thompson, 2007).

Cognitivism: into the inner workings

For classical cognitivism cognition consists
essentially in the manipulation of discrete
symbolic representational entities,

1 Think of the number of disciplines that converge in the
so-called Cognitive Sciences.
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according to predefined rules. The
quintessential theoretical account within
this tradition is the Computational Theory
of Mind. It is claimed that the mind is
literally a digital computer,  so that
cognition is equivalent to computation2.
From here numerous metaphors are
available and play an important role in
guiding further experiments and
theorization: when we perceive and act we
receive information from a world, process it
and respond according to a sets of rules of
evaluation, matching, decision making, etc;
memory is a storage of something; attention
is a matter of administering limited
processing resources; consciousness, access
to a widespread broadcast message (Baars,
2002). Accounting for  felt  meaning
(Gendlin, 1997), as we human beings live it
through, has always been a difficult task
within this paradigm3. Nevertheless, it is
noteworthy that a computational automated
email response system built on the global
workspace hypothesis (which implements
basic computational cognitivist
assumptions) could be capable of passing a
(naive) Turing test (Sun & Franklin, 2007).

Delocalizing the process: connectionism

Through the study of complex natural and
artificial systems, in particular model
neural networks, the notion of distributed,
non-localized, systemic processes has
become well known (Prigogine & Nicolis,
1989). From self-organization in liquid
media to social insects, the core idea is that
through a set of local rules among simple
components a global property obtains4.
Such so-called emergent property pertains
to the totality and is not localized in any
subsystem of it (Shewmon, 2001).

In connectionist and related neo-
connectionist approaches (Feldman &
Ballard, 1982), properties of the system are

delocalized, depending crucially on
interactions (connections) among parts. The
paradigmatic example is a neural network
which through interconnected simple units
(model neurons) is said to recognize
complex patterns, discriminate, learn and so
on. In addition to already adopting and
profiting from cognitive, intentional
terminology for the description of such
systems, connectionism opens the place for
novel metaphorical tools that work the
other way. Symbolic entities can free
themselves from discreteness, and cognition
can be understood as a distributed,
historical and interdependent process.
Numerous approaches benefit some way or
another from the conceptual tools that are
available within this framework (Clark,
1997), including the one presented in
section below. Cognition is now the
dynamic emergence of coherent global
states that are reached, upon a given
environmental situation, through distributed
cooperative interaction rather than through
central, sequential processing. Importantly,
in such systems, for global behavior to
persist ,  the behavior of the parts is
constrained reducing their degrees of
freedom (i.e. ‘enslavement’ Haken,1983)5.

In flesh and blood: the embodied mind

Embodied, enactive, and situated cognition
approaches are in a way a mixture of
heritages from cybernetics, biology and
philosophy and take a more radical
naturalistic perspective on cognition (Varela
et al., 1997; Thompson, 2007; Noe, 2004;
Clark, 1997; Cosmelli & Thompson, In
Press). For embodiment6, cognitive systems
are systems that bring forth a contextually
valid (ecological) world of meaning. This

2 Under a given technical definition of what computation
and a computer is ( [Horst (Fall 2005 Edition); Putnam
(1975); Fodor (1979)].

3 Interested readers might wish to see for example John
Searle’s Chinese Room argument [Searle (1980)] and
the discussion in [Thompson (1997)].

4 The actual mechanism of this  obtaining  is  not
necessarily understood.

5 In line with Cisek (1999), we would tend to see
connectionism in this sense as a sophisticated variant
of the more classical computational cognitivism:
symbols are now simply dynamical and distributed
representations,  but  which nevertheless are
manipulated according to rules such as synaptic
weights. However, we single it out because it opens the
way to the notion of emergent distributed processes
which have played an important role in both computer
science [Bonabeau et al. (1999)] and neurobiology
[Freeman (1999); Gelder (1998)]

6 Used here as a synonym of all three terms above.
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happens through a history of structural
coupling between systems that actively
maintain a self-asserted identity with an
(only) partially predictable environment.

Living systems and living organization is
the paradigmatic cognitive system under this
perspective (Maturana, 1970a; Maturana &
Varela, 1973; Varela, 1979)7. For the
embodied approaches, the self-sustained
body and the always present life-death
tension is precedent to any symbol
manipulation and foundational of any value
whatsoever. Cognition is therefore
endogenously motivated, exploratory and
necessarily risky (Jonas, (2001(1979). In
general, embodiment considers meaning as
contextual, perspectival, and a matter of
staying alive here and now: the world makes
sense to me because whatever comes from it,
I still have to stay alive. In other words, that
which is not the system, i.e. the world, is
now of the system’s vital concern. While the
intuitive appeal of this approach is
considerable, operationalizations into actual
experimental settings are still lacking.

A qualification: Hard and soft notions of
cognition

The study of cognition is undoubtedly an
open question. It appears that meaning,
sense making and knowledge are at the
heart of it, yet defining these three concepts
is again a huge challenge we do not mean to
attempt. One aspect does need to be pointed
out,  however. From an embodiment
perspective, cognition is usually understood
as dependent on physically being there, ‘in
flesh and blood’, and any virtual model can
only highlight structural determinants but
not become or produce a cognitive agent.
Alternatively, this phenomenon could be
exhibited by synthetic virtual entities of
some kind as long as certain conditions are
fulfilled. Here we rejoin a long-standing
debate in Artificial Intelligence and
Artificial Life (Varela & Bourgine, 1992;
McDermott, 2007; Steward & Mossio,

(n.d.); Thompson, 2004). We will suspend
for the moment the question of whether a
synthetic virtual or physical model will be
cognizant in the sense of being able to
experience a shared world of meaning
(Varela et al., 1997).

We invite the reader to keep in mind the
different approaches to cognition that we
have sketched above as we turn in the
following to revise programming paradigm
research development. This will set the
stage for discussing the three lines of
convergence we propose can be relevant to
both the way further programming
paradigms are developed and how mind and
cognitive systems are understood.

PROGRAMMING ABSTRACTIONS: FROM

PROCEDURES TO AMBIENT ACTORS

Abstraction in programming language has
been the driving force behind research in
programming paradigms (Hayes, 2003): the
definition of a set of basic concepts and
their rules of composition and interaction.
For instance, in functional programming, a
program is built up of functions calling
other functions and returning values, pretty
much like mathematical functions. On
another trend, logic programming promotes
the decomposition of a problem into a set of
logic facts and rules, and uses inference as
a means to compose these pieces together.
In a procedural programming language, a
program is made up of a set of data
structures manipulated by procedures that
can affect the state of the system as defined
by the data structures. An object-oriented
programming language adopts yet another
means of structuring programs, as discussed
later on.

The recurrent problems in the software
industry have always pushed researchers to
study new abstractions and paradigms for
programming, with objectives such as
conciseness of written code,
understandability, extensibility, reusability,
maintainability, etc. The ever-increasing and
widespread use of information technology
continuously brings new challenges and new
degrees of complexity for software
development. This pressure calls for new

7 In this sense it is a rather strong framework as it
equates cognition with a given way of being rather than
an internal or external process of some kind, as was the
case for the previous approaches.
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paradigms addressing limitations of the
established ones. Interestingly, as the level
of abstraction rises, the degrees of freedom
of the programmer get more and more
restricted, because behind abstractions are a
set of rules enforced by the language
processor. But these very rules are in fact the
enablers of abstractions, which make it
possible for programs to address more and
more complex tasks in a practical way. We
now illustrate the interest of abstraction at
the level of the programming language by
giving a brief overview of the evolution of
abstractions. We will start from procedural
programming and work our way to the very
recent paradigm of ambient-oriented
programming, a paradigm that aims at
addressing the challenging context of
programming applications for a multitude of
lightweight mobile devices carried by
mobile users facing varying connectivity due
to network limitations (Dedecker et al.,
2006), resulting in a highly dynamic network
topology.

The illustration of the power of
programming language abstractions that
follows is at best partial and incomplete:
one cannot resume forty years of research
in programming languages that briefly. Our
aim is demonstrating in a concise manner
that there are fundamental gains in tackling
a given problem with a programming
paradigm that integrates the appropriate
abstractions, rather than building ad-hoc
abstractions without adopting a paradigm
shift.

Step 1: From Procedures to Objects

In traditional procedural programming
languages, like C, Fortran, Pascal, and the
like, a program is structured as a set of data
structures on the one hand, which represent
the state of the program, and procedures on
the other. Procedures are composed by
invoking each other and possibly returning
values after performing some computation,
which may depend on and affect the data
structures.

History has shown that the separation of
data structures and procedures is
unfortunate because there is an inherent
need for consistency between both (Hayes,

(2003). For instance, the procedure that
draws shapes on the screen is coupled with
the types and representation of shape
structures; updates to one imply updates to
the other.

In the early 1970s, building upon his
education as a biologist, Turing-award
winner Alan Kay and colleagues came up
with a fundamentally new abstraction for
programming, using a clear inspiration from
cells in living organisms: objects (Kay,
1993). In object-oriented programming, an
executing program is made up of self-
contained capsules, called objects, which
provide a number of well-defined services
available to the outside world, and
encapsulate their own internal state and
actual implementation of the services they
provide (Fig. 1). Objects only communicate
by sending messages to each other.

From a conservative viewpoint, this is
nothing more than just packing data
structures and procedures in the same units,
and this model can be implemented using a
procedural language. Yes, it is true that this
is “just” such a packing, but precisely, it is
nothing less. This paradigm shift then gave
rise to a number of what could be called
accidental abstractions, such as classes –
describing the common structure and
behavior of a set of similar objects–,
inheritance –defining classes as incremental
variations and extensions of more basic,
abstract definitions–, polymorphism –the
possibility to manipulate different types of
objects uniformly–, etc.

Figure 1: An object provides a set of services
and encapsulates i ts internal state and
implementation details.
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All these accidental abstractions are, as a
matter of fact, very hard to implement using
a procedural language. The shift at the
programming language level therefore
brings new abstractions at a cost zero for
the programmer; it is the implementor of
the language processor that bears the
increase of complexity. Programmers can
then enjoy a convenient dedicated syntax to
concisely define objects (Fig. 2), without
necessarily knowing how an object-oriented
program is reduced to a set of machine code
instructions.

Later on, as experience with these
abstractions and mechanisms grows,
higher-level programming idioms and
patterns appear (Gamma et al., 1994). A
typical industrial business application today
easily has several hundreds of thousands
objects dwelling within and makes heavy
use of object-oriented idioms and patterns.

Step 2: From Objects to Actors

A further level of abstraction based on
objects is the model of actors, also known as
active objects (Agha, 1986; Briot et al.,
1998). This model appeared as a response to
the problem of managing  concurrent
activities, in an object-oriented program.

Concurrency refers to the (at least simulated)
simultaneous execution of different flows of
computation within a program. In the
traditional model of concurrency, objects are
passive entities, and activity is driven by
threads of control (Fig. 3) Birrell, 1989). A
classic manner of explaining this model is
that of bees (threads) flying around and
visiting flowers (objects). This kind of
concurrency model is easy to understand
provided there are very few threads, or that
the coordination between activities is kept to
a strict minimum. However, as soon as some
coordination between concurrent activities is
needed, managing this kind of concurrency
is a nightmare. Concurrent programming is
notorious for its intricacies and it is very
common that most computer science
graduates do not get even a simple
concurrency problem right. The thread-based
concurrency model clearly diverges from the
biological metaphor of cells: cells are not
passive entities that wait for some thread of
control to activate them and then stop
meanwhile they exchange some chemicals
with the outside world.

The actor model comes as an abstraction
whereby threads and objects are not separate
anymore. Instead, an actor is an active object
with its own activity. The activity of an actor
consists of processing the messages it
receives from the outside world, in addition
to its own goals, if any (much like we deal
with our mail every day while pursuing some
objectives of our own). Here an important
shift has taken place: a first degree of
functional autonomy, going beyond the
previous passive encapsulation, is at work.
The use of “actor” metaphor to refer to such
constructs is illustrative of this fact. Indeed,
one of the most important determinants of
recognizing agenthood is the inference of
inner purpose as a consequence of
apparently self-initiated actions on the
environment (Frith & Frith, 2007).

An actor language gives the linguistic
means to define such active objects, the
way they have to handle the messages they
receive and emit their own, as well as their
own pro-activity. Again, all the complexity
entailed by the actor abstraction (i.e.
synchronization matters) are handled by the
language processor, not the programmer.

Figure 2: An object-oriented programming
language offers dedicated syntax for
conveniently defining objects, their state (p, s)
and behavior (scale, moveTo, draw).
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Step 3: From Actors to Ambient Actors

Considering the peculiarities of the
modern computing infrastructure, which is
made up of a variety of mobile devices held
by mobile users, a number of strong
challenges come up for software
development: how to deal with a highly-
dynamic topology, disconnections, failures,
and volatility of resources? Here again, one
can build up an ad-hoc solution whenever
needed, but at which cost? Ambient-oriented
programming (AmOP) (Dedecker et al.,
2005) proposes to consider these issues as
recurrent and complex enough to address
them appropriately at the language level.

Another model has therefore been
proposed, called the ambient actor model,
which complements the above actor model
with several characteristics. First and
foremost, an ambient actor cannot be blind
to its environment, which is dynamically
changing: it needs to be able to sense and
adapt to the ambient. To this end, an
ambient actor explicitly states what services
it provides to other actors in the ambient,
and what services it requires from the
ambient. It is also able to know which
required services are bound in the current
ambient, and when they are not bound
anymore (e.g. because an actor was running
on a machine that moved away). Similarly,

Figure 3: Thread-based concurrency with objects: each thread of activity traverses objects
following the flow of computation.

Figure 4: Actor-based concurrency: each actor has its own activity, communication between actors
is asynchronous.
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in order to rollback some actions upon
failure, an ambient actor has access to its
communication history (Fig. 5).

following subsections present three
examples.

On Computability,  Abstractions and
Reduction

From a computability point of view, most
programming languages are equivalent in the
sense that they are Turing-complete, that is
to say, they can all express the same
computations (Brainerd & Landweber,
1974). Therefore, the abstractions embraced
by a given programming language are, in
the end, of no use in terms of computational
power. It is true that eventually, a program
in a high-level language is interpreted
(possibly after being compiled) by a device
or program, called a language processor,
that is at most equivalent in computational
power to a Turing machine.

However, the theoretical argument of
Turing equivalence does not take practical
considerations into account (nor does it
claim to), such as efficiency, difficulty, or
time needed to address a particular problem
with a given set of abstractions. Software
programming is an engineering discipline,
and as such must respond to criteria of
feasibility. If it is true that even very huge
software used today  could  have been
programmed in assembly language or
directly in machine code; however it is not
so in practice.

Figure 5: An ambient actor is an actor extended
with a number of mailboxes: four are used to
give access to the communication history
(pending messages, processed messages,
messages to send, sent messages); four are used
to sense the environment (required services,
provided services,  services joined, and
disjoined).

A very notable feature of an AmOP
language like AmbientTalk (Dedecker et
al., 2006), is the provision of a when
construct (Fig. 6). This construct makes it
possible to easily specify that when some
condition is fulfilled (e.g. by the ambient),
some action should be done. Programming
languages typically do not have such a
construct, rather they have an if construct.
Although a when construct does not make it
possible to compute something that is
impossible to do without it, it does make it
possible for a non-specialist to express such
a statement. Manually implementing an
equivalent of the when construct requires
an in-depth knowledge of concurrency
management, in order to avoid any subtle
issue that would lead to program errors, and
would be much less convenient to use.

CONVERGING METAPHORS

Apart from the evident inspiration on
cells, actors and agents, there are a number
of not so obvious lines of convergence
between programming paradigm research
and the study of mind and cognition. The

Figure 6: Ambient actors in a programming
language: specific syntax is there to declare a
required service, what to do when it becomes
available and not, to ask for an ambient
reference, and to specify actions to perform
when a result becomes available.
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Now what happens in biological
systems? From an orthodox physicalist
perspective biology is a sub-ensemble of
physics. This means that one should be able
to reduce every biological phenomenon to
physical laws (which do not need to be
limited to the ones we know now) (Kim,
2000). One could be inclined, drawing from
the previous discussion, to distinguish
theoretical and practical reducibility: as you
try to program (and therefore understand) a
pervasive computing system using only
assembler, imagine trying to study the
nervous system of a relatively simple
organism in terms of atomic interactions. In
other words, while reduction might be
possible in theory, this does not mean it is
practical when trying to understand the
workings of composite complex systems as
these. Two important factors that might
play a role in this being the case are, on the
one hand, the nature of the relations
established within such systems, and on the
other, the casual efficacy of the systems’
organization, whether it is abstraction in
programming or organismic in biology (for
a convergent idea see (Abbott, submitted).
The latter is further discussed in the next
subsection.

Keeping here to the nature of the
relations established in complex systems,
one could argue that the above question is
close to the problem of statistical
mechanics where a macroscopic coherent
behavior emerges from microscopic random
interactions. The only difference would
reside in how much more numerous and
diverse its ‘parts’ are so that our
understanding of it is hampered only by
resolving power. Indeed, mathematical
models are quite successful in predicting
the behavior of, say, a volume of a gas
based on microscopic effects. However,
what makes the difference is that both in
nervous systems and pervasive computing
systems, the degree of interaction and long-
range interrelation is radically different.
This is notoriously exemplified in the
appearance of effective causal loops (what
you see/request is dependent on how you
move/provide and how you move/provide is
dependent on what you see/request). These
elements of circularity and self reference

are absent in the gas or mechanical systems,
but seem essential for the emergence of
behaviors that are considered cognitive
(Bell, 1999; Thompson & Varela, 2001).

Domains of Interaction and Regional
Ontologies

Living systems sustain a (paradoxically)
insubstantial identity in time. How they do
so is an open question, but it appears that
maintaining global identity depends to
some extent on restricting the behavioral
possibilities of the parts (Haken, 1983;
Thompson, 2007). The degrees of freedom
of the ensemble of macromolecules in the
most humble bacteria is astronomical.
Maintaining organization through the
continuous change in components entails a
reduction of degrees of freedom of the
constituents (a paradigmatic phenomenon in
highly interconnected complex systems, see
section “Delocalizing the process:
connectionism”). Importantly, as long as
the system has to be kept organized by
itself, a domain of behavioral interaction
(i.e. of viability) for the ensuing whole will
exist (Maturana & Varela, 1973). In this
sense, biological organization is causally
effective in the appearance of a world to be
known.

Self-organization through enslavement is
therefore at the basis of the appearance of
what we will call regional ontologies.
Regional ontologies, in a general sense, are
domains of meaning which depend on the
particular organization of the making-sense
system8. In biology it is common to find
such domains, or cognitive horizons, across
multiple levels. The ‘world’ of a cell is not
commensurable with that of the entire
animal it is part of, however interdependent
they might be. Nevertheless, both ‘worlds’
share the structural feature of  being
relevant for the cell or the animal. As
stressed in the embodied perspectives both

8 This notion of regional ontologies is comparable to the
notion of cognitive domains [Maturana & Varela
(1973); Varela et al. (1997)], and similar to the
Gibsonian approach [Gibson (1979)]. By stressing both
the “regional” and the “ontological” we wish to
highlight i ts  local  validity and world-enactive
structure.



COSMELLI ET AL. Biol Res 40, 2007, 503-515512

units can be considered as establishing a
domain of concern due to their particular
organization and situation. They make sense
of the environment they encounter. In a
very concrete way, they constitute a
perspective in the world9.

As we have seen, a similar process
happens in programming paradigms
research through abstractions. Abstractions
constrain the degrees of freedom of
computational entities, upon which certain
rules are imposed. Most importantly,
successive abstractions through objects,
actors, etc. enable successive domains of
practical competence that were previously
impossible, from a practitioner’s
perspective. Although such domains of
interaction are stil l  far from being
meanningful in the strong sense described
above, several very explicit primitives are
recognizable: Object-oriented programming
(Figure 1) enables a simple encapsulation
of data and behavior that already facilitates
collective functional interaction, but is
radically passive; actors and active objects
(Figure 4) incorporate an activity into the
objects, and a certain level of self-motivated
action in addition to processing requests
and offering services; ambient actors
(Figure 5) push further towards autonomous
behavior by adapting to given environments
through basic ‘sensing’10.

What this suggests is that abstractions in
programming paradigms have similar
consequences to those of different
organizations in biological, natural systems;

they bring forth quasi-cognitive domains
that are structurally  coupled  to the
implementation of the abstraction.

Evolutionary Dynamics

As we have seen, both in natural and
computational systems, a certain
organization is to be actively maintained in
the face of dynamical environmental
challenge. As both environments realize
some level of reproduction (generations) of
parent organizations, both systems are
candidates for evolutionary dynamics.

We have seen how, in the rapid and
unpredictable unfolding of the
computational environment, abstractions
accomplish efficient solutions. In many
cases these are local, specific solutions to
problems that arise precisely because of
recently acquired possibilit ies of
interaction. The latter are, in turn,
dependent on previous abstractions, and so
on. Moreover, abstractions usually have as
a consequence novel possibilities that were
not pursued when attempting to solve the
initial problem. This is strongly reminiscent
of an evolutionary drift (Maturana &
Varela, 1984; Maturana & Mpodozis,
2000).

The evolutionary setting in programming
paradigm research is obviously not that of
organisms in natural ecological contexts.
Yet it is notable that in the very short
existence of the discipline of programming
paradigms, already a trend towards
increasing autonomy is clearly evident
(section “Programming abstractions: from
procedures to ambient actors”). Because of
the nature of the problem posed to the
programmer, this suggests, conversely, that
autonomous organization might be an apt
solution to the problem of dealing and
making sense out of unpredictable, highly
interactive contexts in effective ways. This
necessarily falls back on our
conceptualization of cognitive systems
lending a ‘plausibility’ support to the main
underlying assumption of embodied and
enactive approaches to cognition (see
section “In flesh and blood: the embodied
mind”). Under this perspective the
workings of the nervous system (or any

9 The same goes for different animals. While we have a
three-pigment visual system, the pigeon has a four-
pigment based one [Thompson et al. (1992)]. It is not
as if pigeons see more colors, it is rather that their
color world probably has a different meaning for them
than it has for us. This is, at least in part, because four
dimensions are needed to specify their color spaces
(while only three are needed for human beings, namely
hue, saturation and brightness). Regional ontologies
are not mappable unto one another, even if overlapping
exists (which is obviously the case since actual
experiments on the pigeon visual system can be done
by human beings).

10 Interestingly, the capacity to deal with the notion of
‘when’ in these software agents can also be seen as a
primitive of a flexible, dynamical temporality going
beyond the dichotomous ‘if’. It is notable that the
philosophical phenomenological tradition considers
temporality to be fundamentally constitutive of
meaningful experience (Cosmelli & Thompson, 2007).
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subsystem) has to be understood first and
foremost in terms of how it enables, or
facilitates, autonomous behavior and not as
how it captures a pre-given world, as
several researchers have insistently pointed
out (Maturana, 1970b; Steels & Brooks,
1995; Varela, 1979; Thompson, 2007).

CONCLUSIONS AND PERSPECTIVES

The guiding metaphorical relation we have
developed links abstractions in
programming paradigms and organization
in natural, biological systems. The three
examples we have put forth are intended to
illustrate this convergence.

But what difference could this
convergence make to our conceptualization
of cognitive systems? Or in other words, in
what sense could this rapprochement help
us in advancing our understanding of what
cognition might be? We believe there are
both theoretical and empirical consequences
of the exercise.

The first  example (section “On
computability, abstractions and reduction”)
supports the idea that theoretical reduction
to bits and pieces is not the only way of
understanding something, and that this
might be particularly important for
cognitive systems. As programming
paradigms show, sometimes it might be
necessary to go in the other direction so
that system-level behavior and organization
is brought into focus. If this is evident for
modestly complex structures such as
pervasive computing systems, one could
contend that it will be all the more critical
when the myriad of effective causal loops
present in living beings is considered.
Importantly, i t  is through causal
sensorimotor loops that perception seems to
be sustained in such systems (Noe, 2004).

On a more implementation-related level,
the question of degrees of freedom
reduction seems quite pertinent. Systems
abound, from lasers to tribes, where the
degrees of freedom of the components are
restricted for the consistency of the whole.
What is interesting is that in programming
paradigms this takes place through
abstractions which, as we have seen, enable

novel possibilities of interaction. This is
one of the main tenets of biological
systems, whereby alternative organizations
bring forth the notorious variety of
cognitive horizons found in nature. This
issue is strongly interrelated with the last
example where we pointed out the apparent
evolutionary dynamics in programming
paradigms. It  is obviously only the
beginning of this discipline, so time will
tell.  Yet, given the type of situation
programmers and programs have to cope
with, this ‘natural’ tendency towards
autonomy might be relevant to consider as a
matter of fact.

Computational cognitivism has deeply
permeated our way of thinking about what
it is to perceive and act on-and in-a world;
conceptualization in terms of input of
information, processing, encoding, storing,
retrieving and output of responses is
commonplace when dealing with cognitive
systems. But computation is much more
than computational cognitivism as the
development of programming paradigms
shows. Fishing in the metaphorical pool,
what seems to come out is how certain type
of organizations make novel behavioral
domains available. This suggests a
plausible path to the emergence of
meaningful worlds and therefore, cognition.
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