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Reversible unfolding of dimeric phosphofructokinase-2 from Escherichia coli
reveals a dominant role of inter-subunit contacts for stability
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Escherichia coli phosphofructokinase-2 (Pfk-2) is a homodimer whose subunits consist of a large
domain and an additional b-sheet that provides the interfacial contacts between the subunits, cre-
ating a b-barrel flattened-like structure with the adjacent subunit’s b-sheet. To determine how the
structural organization of Pfk-2 determines its stability, the reversible unfolding of the enzyme
was characterized under equilibrium conditions by enzymatic activity, circular dichroism, fluores-
cence and hydrodynamic measurements. Pfk-2 undergoes a cooperative unfolding/dissociation pro-
cess with the accumulation of an expanded and unstructured monomeric intermediate with a
marginal stability and a large solvent accessibility with respect to the native dimer.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction These values indicate that in both cases the conserved a/b/a
Phosphofructokinase-2 (Pfk-2) from Escherichia coli is a member
of the ribokinase superfamily, a group of sugar and vitamins ki-
nases formed by a common a/b/a domain [1]. In sugar and sugar
phosphates kinases, such as ribokinase [2], tagatose-6-P kinase
[3], 2-keto-3-deoxygluconate kinase [4] and Pfk-2 [5], there is an
additional structure that forms a lid for the active site. This struc-
ture is a four stranded b-sheet inserted non-sequentially near the
N-terminal end of the conserved a/b/a domain. On the other hand,
vitamins and small molecules kinases are mainly formed by the
conserved a/b/a domain since their structures lack the additional
b-sheet structure [6]. Pyridoxal kinases correspond to such kind
of kinases and have been characterized as active monomers [7],
although a dimer can be observed in the protein crystal [8,9].
The guanidine hydrochloride (GdnHCl) induced unfolding of
pyridoxal kinase from human and sheep brain, was reported as a
two-state reversible equilibrium with calculated stability
values of 1.2 kcal mol�1 [10] and 1.55 kcal mol�1 [11] respectively.
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domain behaves as single cooperative unit exhibiting a marginal
stability. However, in the case of sugar and sugar phosphate
kinases, such as E. coli Pfk-2, is not known how the b-sheet
insertion cooperates to bring about the stability of the native
structure.

Light scattering and gel filtration analyses [12,13] have shown
that E. coli Pfk-2 is primarily a dimer in solution, which quaternary
structure is required for enzymatic activity [12,14]. As shown by its
crystal structure (PDB ID code 3CQD), each subunit can be divided
in two parts: the conserved a/b/a domain and the additional
b-sheet structural element that protrudes from it. In Pfk-2 and in
close family homologues, the additional b-sheet structure works
as lid for the active site and also creates the interaction surface be-
tween the subunits, forming an intertwined interface denominated
b-clasp [8]. Thus, Pfk-2 seems to be stabilized by two domains: the
b-clasp interface and the conserved a/b/a domain that accounts for
the mayor part of the intermolecular contacts of each subunit. In
this kind of dimers both domains are separated by the active site,
which is mainly self-contained in each subunit [8].

The GdnHCl unfolding of Pfk-2 was recently studied in order to
obtain information regarding the structure of the separated
subunits [14]. The dissociation of the enzyme originates a semi
structured monomer with an expanded volume. However, a
thermodynamic analysis of the unfolded transitions has not been
explored in detail. In this work, we describe the reversible effect
of GdnHCl on the dissociation and unfolding of Pfk-2 following
lsevier B.V. All rights reserved.
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enzymatic activity, intrinsic tryptophan fluorescence and circular
dichroism. Moreover, the hydrodynamic properties Pfk-2 were fol-
lowed by size exclusion chromatography and dynamic light scat-
tering measurements. The simplest model to describe the global
unfolding of Pfk-2 is a three-state unfolding reaction N2 M 2I M 2U,
characterized by a semi-unstructured monomeric intermediate
with an expanded volume. The energetic parameters extracted
from the three-state unfolding model, indicate that the inter-sub-
unit contact between the four-stranded b-sheets extra domain
confers the global stability to Pfk-2 since the isolated subunits
present a reduced stability with respect to the native dimer. Taken
together the physical characteristics of the monomeric intermedi-
ate and its stability, is postulated that the conserved a/b/a domain
and the b-sheet insertion are thermodynamically coupled in the di-
meric structure of Pfk-2.
2. Materials and methods

2.1. Pfk-2 purification and storage

E. coli Pfk-2 was purified and stored as described by Cabrera
et al. [15]. Previous to the unfolding or refolding experiments,
the storage buffer was changed to the standard buffer (50 mM Tris
pH 7.8, 5 mM MgCl2 and 10 mM dithiotreitol (DTT)) by using a Hi-
Trap desalting column (Amersham Biosciences, Uppsala, Sweden),
before a 3 h dialysis in the same buffer. The enzyme was concen-
trated by using a centricon-60 concentrator (Amicon, Berverly,
USA). Protein concentration was determined by the Bradford assay
(Bio-Rad) and is expressed in terms of the monomer concentration.

2.2. Pfk-2 unfolding and refolding

For the refolding experiments, the enzyme was first exposed to
3 M GdnHCl (Pierce, molecular biology grade) for at least 5 h at
20 �C. Under this condition Pfk-2 was completely unfolded, as indi-
cated by its catalytic activity, circular dichroism spectroscopy (CD)
and intrinsic fluorescence measurements. The refolding curve was
obtained diluting the unfolded enzyme to several GdnHCl concen-
trations in the standard buffer. Under these conditions equilibrium
was achieved after 5 h of incubation at 20 �C. The unfolding curves
were constructed by diluting native Pfk-2 to several GdnHCl concen-
trations. In this case equilibrium was obtained after 48 h at 20 �C.
GdnHCl concentrations were prepared as described by Pace [16].

2.3. Enzyme assays

Phosphofructokinase enzymatic activity was measured spectro-
photometrically by a coupled assay as described by Babul [17]. The
activity assay began by dilution of a 1 ll aliquot containing the en-
zyme and GdnHCl into 700 ll of assay mixture. Since this proce-
dure implies the dilution of GdnHCl, renaturation should be
expected. To determine the renaturation yield of Pfk-2 during the
enzymatic assay, the enzyme was unfolded with GdnHCl and re-
folded into the assay mixture to bring about a protein concentra-
tions of 0.004 lM (the protein concentration used in the coupled
assay). Under these conditions, substrates were added at several
times after refolding was initiated and the enzymatic activity
was followed. The activity was only about 3% with respect to that
measured with samples that were not previously denatured.

2.4. Intrinsic and ANS fluorescence

Measurements were done in a Perkin–Elmer LS 50 spectrofluo-
rimeter. Protein samples at several GdnHCl concentrations were
excited at 295 nm to limit the fluorescence to the single trypto-
phan per monomer of Pfk-2 (Trp-88). The emission spectra were
recorded from 300 to 480 nm using emission and excitation slits
of 5 nm. Stock 8-anilino-1-naphthalene sulfonic acid (ANS) solu-
tions (Molecular Probes, Eugene, USA) were prepared in methanol
and its concentration was determined using a e of 7800 M�1 cm�1

at 372 nm. The Pfk-2 samples refolded and unfolded at different
GdnHCl concentrations contained 80 lM ANS. The mixture was
incubated for 48 h in the dark. Samples prepared in this way were
excited at 380 nm and the emission recorded from 400 to 580 nm.

2.5. Circular dichroism spectroscopy

Far UV CD spectra were acquired in a Jasco J600 dichrograph,
employing 1 mm cell. Each spectrum resulted from the accumula-
tion of three scans (bandwidth 1 mm, scan rate 20 nm min�1) be-
tween 210 and 260 nm (the high absorbance of 5–10 mM DTT
did not allow to record spectra below 210 nm).

2.6. Size exclusion chromatography

Size exclusion chromatography (SEC) equilibrium experiments
were performed using a Water Breeze HPLC system equipped with
a Bio-Rad exclusion column (Bio-Sil SEC 250 gel filtration,
300 � 7.8 mm). The column was equilibrated with 60 ml of the
mobile phase containing 0.2 M KCl in standard buffer with the
same GdnHCl concentration of that of the sample to be injected.
Calibration was performed by using the proteins provided by the
manufacturer of the column (Vitamin B-12, 1.35 kDa, 8.5 Å Stokes
radius (Rs); horse myoglobin, 17 kDa, 19 Å Rs; chicken ovalbumin,
44 kDa, 30.5 Å Rs; bovine gamma globulin, 158 kDa, 41.8 Å Rs; and
bovine thyroglobulin 670 kDa, 85 Å Rs). Protein elution volumes
were converted to Rs values using the linear relationship obtained
with the molecular-mass markers). The column temperature was
adjusted with a water jacket at 20 �C. Protein elution was followed
at 220 and 280 nm. The concentration of the injected protein ran-
ged between 2 and 20 lM.

2.7. Dynamic light scattering experiments

The Stokes radius (Rs) of Pfk-2 in 50 mM Tris buffer pH 8, 5 mM
MgCl2, 10 mM DTT incubated at different GdnHCl concentrations
for 24 h at 20 �C, was determined by dynamic light scattering
(DLS) using a DynaPro MSTC014 (Protein Solutions, Lakewood,
NJ, USA) at a protein concentration of 14 lM. All solutions were
centrifuged at 13 600�g for 30 min prior to data collection. The
protein concentration of the samples was measured before and
after these treatments and no significant loss of sample was ob-
served. Data were acquired by accumulation of 18 readings of 5 s
with detector sensitivity set to 80%. The particle size distribution
was calculated by using the ‘regularization’ method provided with
the DYNAMICS software, supplied with the instrument. The resid-
ual scattering intensity (intensity scattered by the protein without
solvent contribution) was also determined.

2.8. Data analysis

CD unfolding curves were analyzed according to a three-sate
model:

N2 ()
K1

2l ()
K2

2U

where N2 represents the native state dimer, I is a monomeric inter-
mediate and U, is the unfolded polypeptide.

The changes in the Gibbs energy expressed in the unfolding
sense of the reaction for the intermediate unfolding (DG2) and
the native dimer unfolding (DG1) are defined as DG2 = �RT ln K2
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and DG1 = �RT ln K1 respectively, were R is the gas constant in
kcal mol�1 K�1 and T is the temperature in Kelvin degrees. The
change in free energy is assumed to be a linear function of denatur-
ant molar concentration (D):

DG1 ¼ DGo
1 þm1D

DG2 ¼ DGo
2 þm2D

where DGo
ðxÞ is the free energy change extrapolated to zero denatur-

ant concentration and m1 and m2 are the free energy dependence of
the denaturant concentration for the native dimer (DGo

1, m1) and the
intermediate (DGo

2, m2) respectively. The fraction of unfolded state
(fu), intermediate state (fi) and native state (fn) are related to the
equilibrium constant K1 and K2 by:

fu ¼
K1K2 �ð1þ K2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ K2Þ2 þ 8Pt=K1

q� �

4Pt
ð1Þ

fi ¼ fu=K2 ð2Þ
fn ¼ 1� fi � fu ð3Þ

where Pt is the total protein concentration in terms of monomers.
The observed signal (yobs) was assumed to be dependent on the

population of species according to yobs = yufu + yifi + ynfn, where yu,
yi and yn are the specific signals of the unfolded, intermediate and
native protein, respectively. The dependence of the baseline signal
for the unfolded and native species with the denaturant concentra-
tion was incorporated in the calculation procedure. The energetic
parameters obtained from enzymatic activity and intrinsic fluores-
cence measurements were calculated by fitting the data to a single
transition according to a N2 M 2I model as established by Apiyo
et al. [18].

3. Results

3.1. Folding pathway of Pfk-2 under equilibrium conditions

The GdnHCl-induced unfolding of Pfk-2 was followed by CD,
intrinsic fluorescence and enzymatic activity measurements
(Fig. 1). Since the activity recovery after refolding was found to
be at least 90% in the full range of GdnHCl concentrations (inset,
Fig. 1C), we assume that the irreversible formation of aggregates
is not a preferred reaction pathway under our experimental condi-
tions. Two clear transitions separated by a wide plateau are seen
Gdn
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Fig. 1. Unfolding and refolding of Pfk-2. (A) Relative changes of ellipticity at 222 nm. (B)
the GdnHCl concentration. The empty and filled symbols correspond to the refolding a
N2 M 2I M 2U (A), and N2 M 2I (B, C) unfolding models from which the thermodynamic p
emission spectra, respectively, of the (—) native, (–�–�–) refolded and (. . .) unfolded Pfk-
(indicated in the figure) upon dilution to 0.1 M. Spectra and activity measurements wer
when the secondary structure changes due to unfolding are moni-
tored by CD (Fig. 1A), suggesting the presence of an intermediate
state near to 0.5 M GdnHCl. The first transition occurs from 0.15
to 0.4 M GdnHCl with a middle point about 0.23 M at a protein
concentration of 5 lM. This transition accounts for the 70% of the
overall difference between the CD signal of native and unfolded
protein observed at 220 nm. The second transition occurs between
0.8 and 2.8 M GdnHCl, and ends with the total unfolding of the en-
zyme as judged by the CD spectrum of Pfk-2 at 3 M GdnHCl (inset,
Fig. 1A).

Conversely, the unfolding curves followed by the two other
independent structural probes, intrinsic fluorescence (Fig. 1B)
and enzymatic activity (Fig. 1C), show only one transition which
is superposable with the first CD transition, but failed to reproduce
the second transition observed from 0.8 to 2.8 M GdnHCl. Conse-
quently, the intermediate accumulated around 0.5 M GdnHCl is
characterized by a residual secondary structure, lack of enzymatic
activity and a non-native environment of Trp-88. The refolding
curves obtained by dilution of the unfolded Pfk-2 from 3 M GdnHCl
show a good superposition with the unfolding curves described
above (Fig. 1A–C). Accordingly, the fluorescence and CD spectra ob-
tained for the native protein were almost completely recovered
after refolding of Pfk-2 to 0.1 M GdnHCl (insets, Fig. 1) indicating
that the unfolding of dimeric Pfk-2 is a fully reversible process.

To test if the first transition observed with the loss of secondary
structure represents a concerted unfolding and dissociation steps,
the equilibrium unfolding transitions were assayed using several
protein concentrations. As shown in the inset of Fig. 2, the unfold-
ing transitions followed by enzymatic activity and intrinsic fluores-
cence shifted their guanidine hydrochloride concentration at the
middle of the observed property change (Cm) values to higher con-
centrations of GdnHCl upon increasing the protein concentration.
The first transition detected by CD was also shifted to elevated con-
centrations of GdnHCl with increasing protein concentrations. The
second CD transition (Cm � 1.5 M GdnHCl) seems not to be af-
fected by the protein concentration (Fig 2).

Therefore, we can conclude that the simplest model to describe
the global unfolding of Pfk-2 is a three-state unfolding reaction
with a monomeric intermediate: N2 M 2I M 2U. Table 1 shows
the energetic parameters obtained by fitting the CD data to this
model by the procedure described under Section 2. The change of
free energy associated with the N2 M 2I step, DGo

2, was
12.2 ± 0.9 kcal mol�1 and that corresponding to I M U step, DGo
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was �2.4 kcal mol�1. Similar values were obtained for the N2 M 2I
step from fluorescence and enzymatic activity measurement
(11.9 ± 0.2 and 12.1 ± 0.6 kcal mol�1, respectively). These results
Table 1
Thermodynamic parameters calculated from the unfolding of Pfk-2 at pH 7.8 and
20 �C.

Enzimatic
activitya

Tryptophan
fluorescencea

Circular
dichroismb

N2 M 2I N2 M 2I N2 M 2I I M U

DGo (kcal mol�1) 12.1 ± 0.6 11.9 ± 0.2 12.2 ± 0.9 2.4
�m (kcal mol�1 M�1) 19.6 ± 2.2 19.5 ± 0.5 17 ± 2.8 1.66

a Analyzed in terms of a two state (dimer to monomer) transition. Error values
correspond to three or more independent measurements.

b Analyzed in terms of a three state transition with a monomeric intermediate.
Error values correspond to three or more independent measurements.
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The simulation was performed using the same protein concentration as in the ANS expe
indicate that the global change of the free energy between the na-
tive dimer and the unfolded monomer is about 17 kcal mol�1

(DGo
2 þ 2DGo

2), with the unfolding and dissociation step (N2 M I)
contributing with 70% of the overall free energy change. The m-val-
ues obtained for the N2 M 2I and I M U steps were �17 ± 2 and
1.7 kcal mol�1 M�1, respectively. Since the empiric m-value is re-
lated to the difference in accessible surface area between two
states [19], our results indicate that 90% of the total change in
accessible surface area between the native and unfolded state oc-
curs in the first step of unfolding, N2 M 2I.

As demonstrated from the early studies of Daniel and Weber
[20] the quantum yield of ANS suffers an increment and its emis-
sion maximum shifts to the blue when it binds to solvent exposed
hydrophobic regions in proteins. Fig. 3A shows the variation of the
ANS emission maximum of and its emission area as function of the
GdnHCl concentration. The ANS emission area shows an asymmet-
rical bell-shape dependence with the chaotropic agent concentra-
tion, which was superimposable for the refolding and unfolding
curves. This behavior resembles the fractional population of the
monomeric intermediate (Fig. 3B) calculated from Eqs. (1–3), indi-
cating that the intermediate detected by CD presents a solvent ex-
posed hydrophobic patch observed as an increment of the ANS
emission area. However, it is clear from Fig. 3A that the variation
of the emission maximum does not follow the variation of the
ANS emission area. As is observed from 0.5 to 1.8 M GdnHCl, the
emission maximum value of ANS stays constant at 460 nm and in-
creases to 510 nm at 3 M, with small changes in its emission area.
This behavior suggests the presence of additional intermediate
species, different from the one inferred from the CD and the ANS
fluorescence area measurements, which could accumulate at high-
er GdnHCl concentrations.

3.2. Hydrodynamic characterization of the intermediate obtained in
presence of GdnHCl

SEC and DLS measurements were used to determine the Rs of
the native, intermediate and unfolded species in the unfolding
pathway of Pfk-2. Fig. 4A shows the elution profile of Pfk-2 ob-
tained at different GdnHCl concentrations after injecting a 50 ll
sample of the protein onto a column equilibrated at the same
GdnHCl concentration. The calculated Rs of Pfk-2 at 0 M GdnHCl
was 34.9 Å according to SEC (Fig. 4A) and 36.5 Å according to
DLS measurements (Fig. 5). The elution volume of Pfk-2 increases,
as a single peak, in the short interval before the first transition (see
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2058 M. Baez, J. Babul / FEBS Letters 583 (2009) 2054–2060
Fig. 4A). For simplicity, we will refer to this species as peak I. How-
ever, as indicated by the shaded area that covers the pre-transition
zone (Fig. 5), the elution volume increment was not correlated
with a decrease of the Rs measured by DLS, suggesting that peak
I is not a product of the dissociation of dimeric Pfk-2. This is
consistent with the effect of protein concentration on the equilib-
rium unfolding curves obtained by enzymatic activity and spectro-
scopic measurements, which indicates that the transition between
dimer and monomers does not occur at GdnHCl concentrations
lower than 0.15 M. Therefore, the elution volume increment
obtained by SEC at the pre-transition region could be due to
anomalous protein–matrix interactions and not to a dissociation
event.

Coincident with the first transition region (CD signal between
0.15 and 0.5 M GdnHCl) emerges a new peak (peak II) with a Rs
higher than peak I, as indicated by its lower elution volume
(Fig. 4A). The population of peak II increases from 0.15 to 0.5 M
GdnHCl and seems to predominate at 0.5 M, condition under which
the maximum accumulation of the equilibrium intermediate is ob-
tained (Fig. 3). Since unfolding and dissociation of Pfk-2 (N2 M 2I)
occurs within this range of GdnHCl concentrations, we tested if
the relative equilibrium population of both species could be mod-
ified by injecting samples of different protein concentrations into
the column (Fig. 4B). With column and samples equilibrated at
0.3 M GdnHCl, the population of peak I increases over peak II upon
increasing the protein concentration from 1 to 18 lM Pfk-2. On the
other hand, at 0.15 M GdnHCl a proportional increment the area of
peak I is observed without changes in the elution volume, support-
ing the fact that peak I corresponds to a dimer and peak II corre-
sponds to the monomeric intermediate (data not shown). Some
chromatograms show minor additional peaks at low elution vol-
umes which could correspond to Pfk-2 aggregates (Fig. 4, panels
at 0, 2.5, and 3 M GdnHCl); however, the presence of these species
was not reproducible.

An increment in Rs from 36.1 ± 0.8 to 37.8 ± 0.8 Å is observed by
DLS measurements (Fig. 5) at the same GdnHCl concentration
interval in which dissociation occurs. In agreement with the DLS
measurements, the elution volume difference between Peak I and
II corresponds to a calculated Rs difference of �2.5 Å. Since the un-
folded state contributes marginally to the total population species
at 0.5 M (Fig. 3), the value obtained by DLS at 0.5 M of GdnHCl
could correspond to the Rs of the monomeric intermediate.

As expected, the complete unfolding of the intermediate pro-
duces a decrement in the elution volume of peak II (as a single
peak) and an increment of the Rs from �38 to 50 ± 2 Å, as mea-
sured by SEC and DLS, respectively (Fig. 5). Coincident with our
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observations, the calculated Rs of a completely unfolded 33 kDa
polypeptide is 53 Å [21].

4. Discussion

4.1. Intersubunit interactions are determinant for the stability of Pfk-2

A three-state unfolding mechanism for Pfk-2, N2 M 2I M 2U,
was inferred from equilibrium conditions where ‘‘I” is a highly
populated monomer characterized by residual secondary structure
and an expanded volume. The N2 M 2I transition involves the con-
certed loss of enzymatic activity, native environment around Trp-
88 residue and about 70% of the native secondary structure, as
indicated by the coincidence in the energetic parameters extracted
from these structural probes (Table 1).

The structural properties of the monomeric intermediate sug-
gest that it does not fit into the classic molten globule description
[22,23]. In agreement with the significant loss of secondary struc-
ture, the Rs of the monomeric intermediate (38 Å) is about 13 Å
higher than that predicted for a compact monomer of 33 kDa
[21]. Indeed, the difference between the observed and calculated
Rs of this intermediate goes beyond the reported 15% increment
for polypeptides in the molten globule configuration [24]. The
unstructured character of this monomeric intermediate is also re-
flected by the m-value of the transition. Theory holds that m-values
should be approximately proportional to the amount of new sur-
face area, DA(Adenatured � Anative), exposed upon unfolding of the
native state [25]. Using an empiric approximation [19], m-values
ranging from 16.4 to 18.4 kcal mol�1 M�1 can be approximated
for complete unfolding of Pfk-2. Since the experimental m-values
for N2 M 2I and I M U steps were 17 ± 3 kcal mol�1 M�1 and
1.7 kcal�1 mol�1 M�1, the monomeric intermediate seems highly
hydrated, although the variation of the ANS fluorescence area indi-
cates that a hydrophobic patch remains in its structure. Such kind
of properties corresponds to the so called pre-molten globule
[26,27].

Homologous members of Pfk-2, like ribokinase, tagatose-6-P ki-
nase, and fructokinase, are homodimers stabilized by an interface
created by an orthogonal packing of four-stranded beta-sheets,
the b-clasp. This topology reassembles a flatten b-barrel stabilized
by a bimolecular hydrophobic core [2]. Since, interfaces that mimic
a compact domain suffer concerted unfolding/dissociation
reactions [28–30] it seems unlikely that the isolated subunits of
Pfk-2 preserve the conformation observed in the context of its di-
meric structure. However, the physical characteristics of the mono-
meric intermediate described above, together with the large
m-value associated with its formation, suggest that a portion of
the protein, larger than the polypeptide chain that conforms the
b-clasp interface, could unfold cooperatively with the dissociation
of the Pfk-2 subunits. Therefore, the b-clasp interface and an
important portion of the conserved a/b/a domain of each subunit
could be considered as a single cooperative unit, where the stabil-
ity of both domains influences each other. To perform a detail
study of the effects of neighbouring domains, one has to study
the domain in isolation as well as in the two domain protein
[31–33]. Isolation of both domains in Pfk-2 and related kinases is
troubled since the b-sheet structure is inserted discontinuously
into the primary sequence of the a/b/a domain.
4.2. Comparison between the equilibrium unfolding pathway of Pfk-2
with other members of the of the ribokinase superfamily

Few stability studies have been performed with the ribokinase
superfamily members and hence little is known about the presence
of equilibrium intermediates that could be correlated with the
structural determinants of the conserved a/b/a fold. Mammalian
pyridoxal kinases have been characterized as active monomers
[7] mainly composed by the a/b/a domain since the additional b-
sheet is replaced by a small loop that covers the ATP binding site
[8,9]. Despite of the marginal percentage of identity between the
sequence of pyridoxal kinase and homologues of Pfk-2, the en-
zymes present a good structural superposition when their con-
served a/b/a domains are overlapped [8]. In contrast with the
N2 M 2I M 2U equilibrium unfolding mechanism proposed here
for Pfk-2, pyridoxal kinase from human [10] and sheep [11] have
been reported to unfold through a single transition (N M U), with
associated stability values of 2.4 and 1.2 kcal mol�1 and m-values
of 2.4 and 1.2 kcal mol�1 M�1, respectively. However, besides the
reduced stability, the reported m-values obtained for the N M U
transitions are lower than those expected for the full a/b/a domain
unfolding of pyridoxal kinase (expected m-values are about
8.1 kcal mol�1 M�1 [19]). This observation was not discussed in
the original works, but would indicate the presence of hidden
intermediate(s) in the equilibrium unfolding pathway of pyridoxal
kinase. Interestingly, the monomeric intermediate of Pfk-2 shows a
stability of 2.6 kcal mol�1 and a m-value of 1.4 kcal mol�1 M�1 with
respect to the unfolded state, but it is not known if this intermedi-
ate has a structural counterpart in the equilibrium unfolding path-
way of pyridoxal kinase.

Acknowledgements

This work was supported by a grant from the Comisión Nacional
de Investigación Científica y Tecnológica, FONDECYT 1050818,
Chile. M.B. was supported by Facultad de Ciencias, Universidad
de Chile and partially by FONDECYT. We acknowledge the helpful
advice of Patricio Rodríguez at the initial stages of this work. We
thank Ricardo Cabrera for helpful discussions and for performing
the light scattering experiments. The light scattering measure-
ments were performed at the Laboratorio de Cristalografía, Institu-
to de Física de São Carlos, Universidad de São Paulo, Brazil.

References

[1] Murzin, A.G., Brenner, S.E., Hubbard, T. and Chothia, C. (1995) SCOP: a
structural classification of proteins database for the investigation of sequences
and structures. J. Mol. Biol. 247, 536–540.

[2] Sigrell, J.A., Cameron, A.D., Jones, T.A. and Mowbray, S.L. (1998) Structure of
Escherichia coli ribokinase in complex with ribose and dinucleotide
determined to 1.8 Å resolution: insights into a new family of kinase
structures. Structure 6, 183–193.

[3] Miallau, L., Hunter, W.N., McSweeney, S.M. and Leonard, G.A. (2007) Structures
of Staphylococcus aureus D-tagatose-6-phosphate kinase implicate domain
motions in specificity and mechanism. J. Biol. Chem. 282, 19948–19957.

[4] Ohshima, N., Inagaki, E., Yasuike, K., Takio, K. and Tahirov, T.H. (2004)
Structure of thermus thermophilus 2-keto-3-deoxygluconate kinase: evidence
for recognition of an open chain substrate. J. Mol. Biol. 340, 477–489.

[5] Cabrera, R., Ambrosio, A.L., Garratt, R.C., Guixé, V. and Babul, J. (2008)
Crystallographic structure of phosphofructokinase-2 from Escherichia coli in
complex with two ATP molecules. Implications for substrate inhibition. J. Mol.
Biol. 383, 588–602.

[6] Zhang, Y., Dougherty, M., Downs, D.M. and Ealick, S.E. (2004) Crystal structure
of an aminoimidazole riboside kinase from Salmonella enterica: implications
for the evolution of the ribokinase superfamily. Structure 12, 1809–1821.

[7] Kwok, F., Scholz, G. and Churchich, J.E. (1987) Brain pyridoxal kinase
dissociation of the dimeric structure and catalytic activity of the monomeric
species. Eur. J. Biochem. 168, 577–583.

[8] Li, M.H., Kwok, F., Chang, W.R., Lau, C.K., Zhang, J.P., Lo, S.C., Jiang, T. and Liang,
D.C. (2002) Crystal structure of brain pyridoxal kinase, a novel member of the
ribokinase superfamily. J. Biol. Chem. 277, 46385–46390.

[9] Safo, M.K., Musayev, F.N., di Salvo, M.L., Hunt, S., Claude, J.B. and Schirch, V.
(2006) Crystal structure of pyridoxal kinase from the Escherichia coli pdxK
gene: implications for the classification of pyridoxal kinases. J. Bacteriol. 188,
4542–4552.

[10] Lee, H.S., Moon, B.J., Choi, S.Y. and Kwon, O.S. (2000) Human pyridoxal kinase:
overexpression and properties of the recombinant enzyme. Mol. Cell 10, 452–
459.

[11] Pineda, T. and Churchich, J.E. (1993) Reversible unfolding of pyridoxal kinase.
J. Biol. Chem. 268, 20218–20222.



2060 M. Baez, J. Babul / FEBS Letters 583 (2009) 2054–2060
[12] Caniuguir, A., Cabrera, R., Baez, M., Vásquez, C.C., Babul, J. and Guixé, V. (2005)
Role of Cys-295 on subunit interactions and allosteric regulation of
phosphofructokinase-2 from Escherichia coli. FEBS Lett. 579, 2313–2318.

[13] Baez, M., Merino, F., Astorga, G. and Babul, J. (2008) Uncoupling the MgATP-
induced inhibition and aggregation of Escherichia coli phosphofructokinase-2
by C-terminal mutations. FEBS Lett. 582, 1907–1912.

[14] Baez, M., Cabrera, R., Guixé, V. and Babul, J. (2007) Unfolding pathway of the
dimeric and tetrameric forms of phosphofructokinase-2 from Escherichia coli.
Biochemistry 46, 6141–6148.

[15] Cabrera, R., Fischer, H., Trapani, S., Craievich, A.F., Garratt, R.C., Guixé, V. and
Babul, J. (2003) Domain motions and quaternary packing of
phosphofructokinase-2 from Escherichia coli studied by small angle X-ray
scattering and homology modeling. J Biol. Chem. 278, 12913–12919.

[16] Pace, C.N. (1986) in: Enzyme Structure, Part L (Hirs, C.H.W. and Timasheff, S.N.,
Eds.), pp. 266–280, Academic Press Inc.

[17] Babul, J. (1978) Phosphofructokinases from Escherichia coli. Purification and
characterization of the nonallosteric isozyme. J. Biol. Chem. 253, 4350–4355.

[18] Apiyo, D., Jones, K., Guidry, J. and Wittung-Stafshede, P. (2001) Equilibrium
unfolding of dimeric desulfoferrodoxin involves a monomeric intermediate:
iron cofactors dissociate after polypeptide unfolding. Biochemistry 40, 4940–
4948.

[19] Myers, J.K., Pace, C.N. and Scholtz, J.M. (1995) Denaturant m values and heat
capacity changes: relation to changes in accessible surface areas of protein
unfolding. Protein Sci. 4, 2138–2148.

[20] Daniel, E. and Weber, G. (1966) Cooperative effects in binding by bovine
serum albumin. I. The binding of 1-anilino-8-naphthalenesulfonate.
Fluorimetric titrations. Biochemistry 5, 1893–1900.

[21] Uversky, V.N. (1993) Use of fast protein size-exclusion liquid chromatography
to study the unfolding of proteins which denature through the molten globule.
Biochemistry 32, 13288–13298.
[22] Kuwajima, K. (1989) The molten globule state as a clue for understanding the
folding and cooperativity of globular-protein structure. Proteins 6, 87–103.

[23] Arai, M. and Kuwajima, K. (2000) Role of the molten globule state in protein
folding. Adv. Protein Chem. 53, 209–282.

[24] Uversky, V.N. (2002) Natively unfolded proteins: a point where biology waits
for physics. Protein Sci. 11, 739–756.

[25] Schellman, J.A. (1978) Solvent denaturation. Biopolymers 17, 1305–1322.
[26] Uversky, V.N. and Ptitsyn, O.B. (1996) Further evidence on the equilibrium

‘‘pre-molten globule state”: four-state guanidinium chloride-induced
unfolding of carbonic anhydrase B at low temperature. J. Mol. Biol. 255,
215–228.

[27] Uversky, V.N. and Fink, A.L. (2002) The chicken-egg scenario of protein folding
revisited. FEBS Lett. 515, 79–83.

[28] Tsai, C.J. and Nussinov, R. (1997) Hydrophobic folding units at protein-protein
interfaces: implications to protein folding and to protein-protein association.
Protein Sci. 6, 1426–1437.

[29] Tsai, C.J., Xu, D. and Nussinov, R. (1997) Structural motifs at protein-protein
interfaces: protein cores versus two-state and three-state model complexes.
Protein Sci. 6, 1793–1805.

[30] Larsen, T.A., Olson, A.J. and Goodsell, D.S. (1998) Morphology of protein–
protein interfaces. Structure 6, 421–427.

[31] Batey, S., Randles, L.G., Steward, A. and Clarke, J. (2005) Cooperative folding in
a multi-domain protein. J. Mol. Biol. 349, 1045–1059.

[32] Batey, S. and Clarke, J. (2006) Apparent cooperativity in the folding of
multidomain proteins depends on the relative rates of folding of the
constituent domains. Proc. Natl. Acad. Sci. USA 103, 18113–18118.

[33] Han, J.H., Batey, S., Nickson, A.A., Teichmann, S.A. and Clarke, J. (2007) The
folding and evolution of multidomain proteins. Nat. Rev. Mol. Cell Biol. 8, 319–
330.


	Reversible unfolding of dimeric phosphofructokinase-2 from Escherichia coli reveals a dominant role of inter-subunit contacts for stability
	Introduction
	Materials and methods
	Pfk-2 purification and storage
	Pfk-2 unfolding and refolding
	Enzyme assays
	Intrinsic and ANS fluorescence
	Circular dichroism spectroscopy
	Size exclusion chromatography
	Dynamic light scattering experiments
	Data analysis

	Results
	Folding pathway of Pfk-2 under equilibrium conditions
	Hydrodynamic characterization of the intermediate obtained in presence of GdnHCl

	Discussion
	Intersubunit interactions are determinant for the stability of Pfk-2
	Comparison between the equilibrium unfolding pathway of Pfk-2 with other members of the of the ribokinase superfamily

	Acknowledgements
	References


