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a b s t r a c t

We propose a model of competition of n species in a chemostat, with constant input of
some species. Wemainly emphasize the case that can lead to coexistence in the chemostat
in a non-trivial way, i.e., where the n−1 less competitive species are in the input.We prove
that if the inputs satisfy a constraint, the coexistence between the species is obtained in the
formof a globally asymptotically stable (GAS) positive equilibrium,while aGAS equilibrium
without the dominant species is achieved if the constraint is not satisfied. This work is
round upwith a thorough study of all the situations that can arisewhen having an arbitrary
number of species in the chemostat inputs; this always results in a GAS equilibrium that
either does or does not encompass one of the species that is not present in the input.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The chemostat is a continuous bioreactor with constant volume V , which is used to grow microorganisms for
experimental and industrial purposes. We will consider the special case where the chemostat contains n species of
microorganisms that are in competition for a single limiting substrate. Considering that the substrate is pumped into the
chemostat at rate F > 0 with concentration sin > 0 and the mixing of substrate/biomass is pumped out of the chemostat at
the same rate, the relationship between the species and the limiting substrate in a homogeneous liquidmedium is described
by the ODE system [1]:ṡ = D(sin − s) −

n−
i=1

γ −1
i fi(s)xi

ẋi = xifi(s) − Dxi, i = 1, . . . , n
(1.1)

where s ∈ R+ and xi ∈ R+ denote the substrate concentration and the biomass density of the ith species of microorganisms,
D = F/V is the dilution rate, the functions fi(s) represent the per capita growth rate of the ith species and γi > 0 is a yield
constant related to the conversion rate of substrate into new biomass.We assume that fi:R+ → R+,D and sin are such that:

(C1) The functions fi are continuously differentiable, increasing and fi(0) = 0.
(C2) The equation fi(s) = D has one solution λi ∈ (0, sin) for all i = 1, . . . , n.
(C3) The species xi are labeled so that:

0 < λn < λn−1 < · · · < λ1 < sin.
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The asymptotic behavior of (1.1) is described by the Competitive exclusion principle [2,1].

Proposition 1 (Competitive Exclusion Principle, [1]). Assume that (C1)–(C3) are satisfied with xn(0) > 0. Then, the solutions of
system (1.1) satisfy:

lim
t→+∞

(s(t), x1(t), . . . , xn−1(t), xn(t)) = (λn, 0, . . . , 0, γn[sin − λn]).

That is, the n-th species is the sole successful competitor since it requires the smallest substrate concentration λn to have
a growth rate equivalent to the dilution rate D, while the other species cannot compete successfully and disappear in the
long term. Observe that (C3) implies that, in absence of the originally successful competitor, the (n − 1)-th species will
become the only surviving species.

In this text, we will call xn the dominant or the superior competitor. It is worth noting that this species is not intrinsically
dominating the others; this dominant character is related to the choice of D: one species could be successful for one value of
D and another one for another value of D. In this paper, D and sin are fixed a priori; there is therefore no problem in terming
one species the dominant species. The other species will be termed inferior.

An asymptotic behavior opposite to the extinction is the uniform persistence:

Definition 1 ([1]). The i-th species is uniformly persistent if there exists a constant δi > 0 independent of the initial
conditions of (1.1) such that:

xi(0) > 0 ⇒ lim inf
t→+∞

xi(t) > δi.

In spite of the competitive exclusion having been verified experimentally [3–5], the uniform persistence is observed in
several ecosystems. This duality has stimulated a considerable amount of work in order to be explained [6,7]. In this context,
we can distinguish several approaches:

(a) Time variable inputs: models where sin, D or γi becomes time variable functions. Indeed γi becomes a time variable
function in [8,9]. D is a periodic function in [10–12] and sin is a periodic function in [13,14,12].

(b) Inputs as function of the state variables: models where D becomes a function of the state variables (called a feedback in
the framework of control theory) as in [15–17] (all of them in a two-dimensional framework) and [18,19] in a three-
dimensional framework.

(c) Heterogeneity of the liquid medium, which was described by using either PDE (see [20–23]) or gradostat equations
(see [24,25] and references therein).

(d) Other approaches: as crowding effects [26], flocculation [27],multi-substrate feeding [20,28], impulsive input of substrate
concentration [29–31], intra-specific competition [32].

As far as we know, there exists few approaches leading to the coexistence of n ≥ 3 species (as a stable equilibrium)
with constant inputs. In order to tackle that problem, we will propose a modified chemostat model, which receives an input
concentration x0j (j = 1, . . . , n − 1) for one of each inferior competitor. It will be interesting to point out that, though the
introduced species are guaranteed to survive in the chemostat at equilibrium, this strategy does not ensure directly the
coexistence of all the species. Indeed, we will prove that there exists a coexistence threshold ensuring the coexistence of all
species; above the threshold, the dominant competitor is washed-out of the chemostat. As far as we are aware, this problem
has not been previously studied and its proof uses polytopic Lyapunov functions, which have been recently introduced in
the literature [33] (for other Lyapunov stability approaches involving piecewise continuous and/or differentiable functions,
see [34–36]). Building on the result thatwe obtain for this chemostatwith n−1 biomass inputs,wewill explore the behaviors
that occur when only introducing n− k different biomass densities in the input (for k > 1) and show that only the strongest
of the k biomasses that are absent in the input can potentially survive at equilibrium (if there is no superior biomass in
the input).

The paper is organized as follows. Section 2 presents our model of competition between n species with n−1 inputs, with
an equilibrium study and the statement of the two main theorems. Section 3 presents some qualitative properties of the
solutions: boundedness, uniform persistence of the inferior competitors, and asymptotic behavior in absence of the superior
competitor.

The proof of coexistence of all species (Theorem 1) is given in Section 4: it goes through a proof of persistence of all
competitors, a stability analysis on the mass-balance manifold and is concluded by an ω-limit set study for the full system
that proves global asymptotic stability of the positive equilibrium. Theorem 2, that describes when extinction takes place in
that situation, is proved in Section 5. Finally, these results are used to characterize the general behavior when the number
of inputs is different from n − 1 in Section 6. Finally, some illustrative examples are shown in Section 7 before discussions
in Section 8.

2. Statement of the model, equilibria and main results

The classical competitive exclusion (Proposition 1) implies that the first n − 1 species cannot survive in the long term.
In order to counter that phenomenon, we propose a model where a fixed concentration x0i > 0 (i = 1, . . . , n − 1) of the
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inferior species is introduced continuously in the chemostat in order to make its uniform persistence possible. The model
becomes:

ṡ = D[s0 − s] −

n−
i=1

γ −1
i fi(s)xi,

ẋj = xjfj(s) + D[x0j − xj], j = 1, . . . , n − 1
ẋn = xnfn(s) − Dxn,

(2.1)

where s ∈ R+, x ∈ Rn
+
, and s0 > 0 and x0j > 0 (j = 1, . . . , n − 1) are constants. For convenience, we will then define sin as:

sin = s0 +

n−1−
i=1

γ −1
i x0i . (2.2)

In order to state the main results of this paper, we first need to identify the equilibria that can occur in (2.1). The number
of equilibria that can occur as well as their stability depend on a condition that will be central in this paper.
Coexistence condition

n−1−
i=1

γ −1
i Dx0i

D − fi(λn)
< sin − λn. (2.3)

This condition can therefore always be satisfied by taking these inputs small enough (under the assumption thatλn < s0).
Indeed, this becomes more clear by using (2.2) and rewriting (2.3) as follows:

λn +

n−1−
i=1

γ −1
i Dx0i fi(λn)

D − fi(λn)
< s0.

In the sequel, we will use the expression ‘‘the coexistence condition is strictly not satisfied’’ to state that
∑n−1

i=1
γ −1
i Dx0i

D−fi(λn)
>

sin − λn.
Depending on this condition, there can be either one or two equilibria, which are detailed in the following lemma

(the easy proof is given in the next section).

Lemma 1. Assume that (C1)–(C3) are satisfied, then:

(i) System (2.1) has a unique equilibrium in ∂Rn+1
+ :

Ē = (s̄, x̄1, . . . , x̄n−1, 0) ∈ ∂Rn+1
+

with x̄i defined by:

x̄i =
Dx0i

D − fi(s̄)
with i = 1, . . . , n − 1, (2.4)

and s̄ ∈ (0, λn−1) is the unique fixed point of Gn: [0, λn−1) → R+ given by:

Gn(s) = sin −

n−1−
j=1

γ −1
j Dx0j

D − fj(s)
. (2.5)

In addition, s̄ ∈ (λn, λn−1) when (2.3) is satisfied and s̄ ∈ (0, λn) when it is strictly not satisfied.
(ii) System (2.1) has an equilibrium in Int Rn+1

+ if and only if (2.3) holds; this equilibrium is unique and is defined as

E∗
= (λn, x∗

1, . . . , x
∗

n) ∈ Int Rn+1
+

with x∗

i defined by:

x∗

i =
Dx0i

D − fi(λn)
for i = 1, . . . , n − 1, (2.6)

x∗

n = γn{sin − λn − (γ −1
1 x∗

1 + · · · + γ −1
n−1x

∗

n−1)}. (2.7)

(iii) If the equality.

n−1−
i=1

γ −1
i Dx0i

D − fi(λn)
= sin − λn (2.8)

is satisfied, then Ē = E∗
= (λn, x∗

1, . . . , x
∗

n−1, 0).
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Two facts can be drawn from this proof. The first one is that Condition (2.3) simply is a condition of existence of a positive
equilibrium based on the positiveness of x∗

n . The second one is that, based on the expression (2.6) of the x∗

i , Condition (2.3)
can be rewritten as

n−1−
i=1

γ −1
i x∗

i < sin − λn. (2.9)

The asymptotic behavior of (2.1) will be summarized in the following results.

Theorem 1 (Coexistence of n Species). Assume that (C1)–(C3) are satisfied. If the Coexistence Condition (2.3) is satisfied then
Ē and E∗ defined in Lemma 1 are the two equilibria of (2.1) in Rn+1

+ , and all solutions of (2.1) with initial condition in Rn+1
+

satisfying xn(0) > 0 converge to the stable equilibrium E∗ while convergence takes place to Ē if xn(0) = 0.

Theorem 2 (Extinction of Superior Competitor). Assume that (C1)–(C3) are satisfied. If the Coexistence Condition (2.3) is strictly
not satisfied then Ē defined in Lemma 1 is a globally asymptotically stable equilibrium of (2.1) in Rn+1

+ .

These results ensure that convergence to an equilibrium always takes place, and give a necessary and sufficient condition
for coexistence of all species at the equilibrium. Condition (2.3) ensures that, as long as the dominant species is present at
the onset, coexistence of all species is achieved through a globally asymptotically stable positive equilibrium. Whenever
the positive equilibrium exists it is stable; as soon as it disappears, stability is transferred to the lone equilibrium on the
boundary. Theorem 2 indicates that it is not enough to introduce the inferior species in the medium to ensure coexistence;
one must make sure that their density is not too high which could wash-out the dominant species.

3. Fundamental properties of (2.1)

In this section, we will give, after the proof concerning the equilibria, two results that are instrumental in the proofs of
Theorems 1 and 2 but are not specific to one or the other situation: the boundedness of the solutions and the persistence of
the inferior species. Also, we will detail what occurs on the lone invariant face of Rn+1

+ , the face where xn = 0 (and s, xi ≥ 0
for i ∈ {1, . . . , n− 1}); the faces where xn > 0 and some other xi = 0 are not invariant and the aforementioned persistence
result ensures that they are not critical in the study of the model.
Proof of Lemma 1. Assumptions (C2)–(C3) imply that ẋn = 0 if s = λn < sin and/or xn = 0. The two equilibria will be
generated by assuming one or the other.
Proof of statement (i). We assume that xn = 0. Notice that ẋi = 0 (for i = 1, . . . , n − 1) and ṡ +

∑n−1
i=1 γ −1

i ẋi = 0 if and only
if s and xi satisfy the equations

xi =
Dx0i

D − fi(s)
for i = 1, . . . , n − 1, and

n−1−
i=1

γ −1
i D(x0i − xi) + D(s0 − s) − γ −1

n fn(s)xn = 0.

By noting that xn = 0, coupling these equations and using (2.2), it follows that s must be a fixed point of Gn(·) defined
in (2.5). Analyzing (2.5), we notice that (C1) implies that Gn(·) is continuous and strictly decreasing in [0, λn−1). Conse-
quently, the existence of the unique fixed point s̄ ∈ (0, λn−1) follows from the inequalities:

Gn(0) = s0 > 0 and lim
s→λ−

n−1

Gn(s) = −∞. (3.1)

Evaluating Gn(λn) then yields

Gn(λn) = sin −

n−1−
j=1

γ −1
j Dx0j

D − fj(λn)

and we can conclude that if (2.3) is satisfied then Gn(λn) > λn. This fact, combined with (3.1) implies that s̄ ∈ (λn, λn−1).
Similarly, if (2.3) strictly does not hold it follows that Gn(λn) < λn and it can be deduced that s̄ ∈ (0, λn).
Proof of statement (ii). We assume that s = λn. Hence, for all i = 1, . . . , n − 1, ẋi = 0 if and only if xi = x∗

i . Observe that
(C2)–(C3) imply that x∗

i > 0 (i = 1, . . . , n − 1).
Furthermore, it follows from ṡ +

∑n
i=1 γ −1

i ẋi/D = 0 at equilibrium that:

[s0 − s∗] +

n−1−
i=1

γ −1
i [x0i − x∗

i ] − γ −1
n x∗

n = 0.

By using s∗ = λn combined with (2.2) and isolating x∗
n , (2.7) is obtained. Its positiveness is verified by substituting x∗

i
from (2.6) into (2.7) and using (2.3).



586 G. Robledo et al. / Nonlinear Analysis: Real World Applications 13 (2012) 582–598

Proof of statement (iii). The proof is straightforward and is left for the reader. �

3.1. Boundedness of solutions

We first recall a classical mass-balance result for chemostats with identical removal rate for all species and the substrate:

Lemma 2. The solutions of (2.1) converge (when t → +∞) to the set:

Υ =


(s, x1, . . . , xn) ∈ Rn+1

+
: s +

n−
i=1

γ −1
i xi = sin


.

Proof. By using the change of variables

v = s +

n−
i=1

γ −1
i xi, (3.2)

combined with (2.1)–(2.2), it follows that v satisfies:

v̇ = −Dv + Dsin (3.3)

and the lemma follows. �

This lemma allows us to prove stability through the analysis of dynamics on the asymptotic manifold where v = sin,
followed by some ω-limit set argument that leads to a stability result for the system in the whole state-space. Also, it shows
boundedness of the solutions:

Remark 1. A consequence of Lemma2 is the existence of a positively invariant compact setΩ ⊂ Rn+1
+ such that any solution

of (2.1) enters Ω in finite time and stays inside Ω for all subsequent times.

3.2. Uniform persistence of the inferior species

Since they are constantly fed into the chemostat and since the only processes they are involved into are growth and
removal at the same rate they are fed, the persistence of the inferior species is to be expected. In the following proof, we
show that their density eventually becomes asymptotically larger than x0i .

Lemma 3. Species i (for i = 1, . . . , n − 1) is uniformly persistent.

Proof. It is straightforward from model (2.1) that ẋi ≥ D(x0i − xi) with xi(0) > 0. By comparison results, it follows that
lim inft→+∞ xi(t) ≥ x0i and the lemma follows. �

3.3. Asymptotic behavior in absence of dominant competitor

We have just shown that the inferior competitors would be persistent and the main question that Theorems 1 and 2
answer concerns the evolution of xn. As a preamble to the proofs of these theorems, it is useful to study what is happening
in the absence of xn whose density, since xn is not fed into the chemostat, stays equal to 0 if xn(0) = 0. Observe that the
restriction of (2.1) to the set of initial conditions

Γn = {(s, x1, . . . , xn) ∈ Rn+1
+

: s ≥ 0, xi ≥ 0 (i ≤ n − 1) and xn = 0} (3.4)

leads to the subsystem:ṡ = D[s0 − s] −

n−1−
i=1

γ −1
i fi(s)xi,

ẋj = xjfj(s) + D[x0j − xj], j = 1, . . . , n − 1,
(3.5)

with, s(0), xj(0) ≥ 0.
In addition, by using (3.2), system (3.5) becomes:

v̇ = Dsin − Dv

ẋj = xjfj


v −

n−1−
i=1

γ −1
i xi


+ D[x0j − xj], j = 1, . . . , n − 1, (3.6)

with xj(0) ≥ 0 and v(0) −
∑n−1

i=1 γ −1
i xi(0) = s(0) ≥ 0.



G. Robledo et al. / Nonlinear Analysis: Real World Applications 13 (2012) 582–598 587

Fig. 1. Illustration of level sets of the polytopic Lyapunov function V (x) for n = 2. This function is continuous and non-differentiable at the angles and has
a minimum value at the equilibrium.

Hence, by Lemma 2, the asymptotic behavior of (3.6) can be described by:

ẋj = xjfj


sin −

n−1−
i=1

γ −1
i xi


+ D[x0j − xj], j = 1, . . . , n − 1 (3.7)

with initial conditions in the compact set

Dn−1 =


(x1, . . . , xn−1) ∈ Rn−1

+
:
n−1−
i=1

γ −1
i xi ≤ sin


.

Lemma 4. The point x̄ = (x̄1, . . . , x̄n−1), with x̄i defined by (2.4), is a GAS stable equilibrium of (3.7) with respect to all initial
conditions in Dn−1.

Proof. Let x = (x1, . . . , xn−1) be a solution of (3.7) and notice that Dn−1 is positively invariant under the semiflow defined
by system (3.7).

Let us define the function S:Dn−1 → R as follows:

S(x) =

n−1−
i=1

γ −1
i (xi − x̄i).

Furthermore, let us define the functions (for i = 1, . . . , n − 1):

S+

i (xi) = max{γ −1
i (xi − x̄i), 0}, and S−

i (xi) = max{γ −1
i (x̄i − xi), 0},

which allow for the definitions of:

S+(x) =

n−1−
i=1

S+

i (xi) ≥ 0 and S−(x) =

n−1−
i=1

S−

i (xi) ≥ 0.

It is straightforward to verify that S(x) = S+(x) − S−(x). In addition, by using the definition of S(x) we have that

sin −

n−1−
i=1

γ −1
i xi = sin −

n−1−
i=1

γ −1
i x̄i − S(x) = s̄ − S(x) (3.8)

the last equality coming from v̄ = sin when studying (3.7).
Let us define the function V :Dn−1 → R+ as follows:

V (x) = max{S+(x), S−(x)}.

Notice that V is continuous, positive for all x ∈ Dn \ x̄ and V (x̄) = 0 as shown in [33]. Note that though the definition of the
Lyapunov function looks intricate, it yields a function whose level sets are simple polytopes (see Fig. 1).

Because of the composite structure of V , the stability analysis will be separated in several cases:
Case (a) S+(x) ≥ S−(x). In this region, we have that S(x) ≥ 0 and V (x) = S+(x). Equality (3.8) then implies:

ẋi = xifi(s̄ − S(x)) + Dx0i − Dxi for any i = 1, . . . , n − 1.
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Notice that for any i such that

xi(t) > x̄i =
Dx0i

D − fi(s̄)
,

we have that Dx0i − Dxi(t) < −xi(t)fi(s̄) so that ẋi becomes

ẋi(t) < xi(t){fi(s̄ − S(x(t))) − fi(s̄)} ≤ 0 (3.9)

where the last equality comes from S(x(t)) ≥ 0 combined with (C1) and we can conclude that the map t → S+

i (xi(t)) =

γ −1
i (xi − x̄i) is decreasing.
Hence, we have proved that if xi(t) > x̄i, then xi contributes a decreasing term to V (x(t)). On the other hand, if xi(t) < x̄i,

then xi does not contribute to V (x(t)) since S−

i (xi(t)) = 0. If xi(t) = x̄i, a reasoning similar to the one we just held shows
that ẋi ≤ 0, so that S+

i (xi(t)) stays constant at 0 also.
Observe that there exists at least one index i satisfying xi(t) > x̄i. Indeed, otherwise we would have S+(x(t)) = 0

and, since S(x(t)) = S+(x(t)) − S−(x(t)) ≥ 0, it follows that S−(x(t)) = 0, which implies that x(t) = x̄ because
S+(x) = S−(x) = 0 imposes that there is no term larger/shorter than x̄i. In consequence, it follows that if V (x) = S+(x(t))
and x(t) ≠ x̄, the map

t → S+(x(t)) =

n−1−
i=1

S+

i (xi(t))

is decreasing because there is always some i such that xi > x̄i.
Case (b) S+(x) ≤ S−(x). By following the lines of the previous case, it can be proved that in this region, the composite map

t → S−(x(t)) =

n−1−
i=1

S−

i (xi(t))

is decreasing as long as x(t) ≠ x̄.
Summing up these two cases, the map

t → V (x(t)) = max{S+(x(t)), S−(x(t))}

is always decreasing when x(t) ≠ x̄ and the lemma follows by using Lyapunov’s Theorem. �

Remark 2. This function has been also employed (see [33]) to prove the global asymptotical stability of a positive
equilibrium in a model of intra-specific competition in a chemostat.

Remark 3. We have just shown asymptotic stability of sin for the v̇ dynamics (3.3) in Lemma 2 and of (x̄1, . . . , x̄n−1) for the
ẋ dynamics (3.7) in Lemma 4. Hence, by Theorem 3.2 from [37] it follows that (sin, x̄1, . . . , x̄n−1) is a locally asymptotically
stable (LAS) equilibrium of (3.6).

Proposition 2 (Asymptotic Behavior in Absence of Superior Competitor). The point Ē = (s̄, x̄1, . . . , x̄n−1, 0) is a globally
asymptotically stable equilibrium of system (2.1) with respect to all initial conditions in the set Γn defined in (3.4).

Proof. We will prove an equivalent statement: the global stability of the equilibrium Ēn
v = (sin, x̄1, . . . , x̄n−1) of (3.6): let

(v0, x0) ∈ R+ × Rn−1
+ an initial condition of (3.6) satisfying v0 −

∑n−1
i=1 γ −1

i x0i ≥ 0. Denote by φt(v0, x0) the corresponding
semiflow (3.5). The ω-limit set of (v0, x0) is defined by:

ω(v0, x0) =


(ṽ, x̃) ∈ R+ × Rn−1

+
: ∃tn → +∞ lim

n→+∞
φtn(v0, x0) = (ṽ, x̃)


.

This ω-limit set is non empty because the trajectories are bounded. Given any (ṽ, x̃) ∈ ω(v0, x0), Lemma 2 implies that
ṽ = sin and by using invariance of ω(v0, x0) it follows that φt(sin, x̃) ∈ ω(v0, x0) for any t ≥ 0.

In addition, we have that the x component of φt(sin, x̃) ∈ ω(v0, x0) is a solution of (3.7) with initial condition x(0) = x̃.
By letting t → +∞, it follows by Lemma 4 that Ēn

v ∈ ω(v0, x0) and in consequence, there exists a divergent sequence {tk}k
such that φtk(v0, x0) converges toward Ēn

v .
Finally, by Remark 3 we know that Ēn

v is also LAS stable, which implies that after some finite time tk, the orbit φtk enters
the basin of attraction of Ēn

v and the proposition follows. �

Through this proposition,wehave shownwhat occurswhen xn(0) = 0 bothwhen the Coexistence Condition (2.3) is satisfied
and when it is not. In the (s, x) space, solutions converge to the equilibrium Ē. The proofs of both main theorems will now
require separate paths that we will lead in the following two sections.
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4. Proof of Theorem 1: coexistence of all competitors

We have already proved the part of Theorem 1 pertaining to initial conditions xn(0) = 0 (Proposition 2), and will now
consider xn(0) > 0. The proof of coexistence will require several steps. We will first show that the dominant competitor is
uniformly persistent if Condition (2.3) is satisfied (we already knew it for the other competitors). We will then show global
asymptotic stability on the manifold v = sin and conclude the proof by interconnecting the v and x dynamics.

4.1. Uniform persistence of all competitors

Proposition 3. If Condition (2.3) holds, system (2.1) is uniformly persistent.

Proof. By Lemma 3, we know that species j is uniformly persistent (j = 1, . . . , n − 1). Hence, we have to prove that the
n-th species is uniformly persistent.

By using Remark 1, we onlywill consider initial conditions inΩ ⊂ Rn+1
+ and construct the functional P:Ω → R+ defined

by P(s, x) = P(s, x1, . . . , xn) = xn. Notice that P(·) satisfies:

Ṗ = Ψ (s, x1, . . . , xn)P, with Ψ (s, x1, . . . , xn) = fn(s) − D.

In addition, notice that:
P(s, x) > 0 if (s, x) ∈ Ω \ Γn
P(s, x) = 0 if (s, x) ∈ Γn,

with Γn defined in (3.4) the face of the positive orthant corresponding to xn = 0.
Observe that P(·) is an average Lyapunov functional defined in the compact setΩ (see Appendix for details). Furthermore,

(2.3) and statement (i) from Lemma 1 imply that s̄ ∈ (λn, λn−1). This fact combined with (C1) and D = fn(λn), implies

Ψ (Ē) = fn(s̄) − D > fn(λn) − D = 0,

and the result follows by applying Proposition 4 from Appendix. �

4.2. Stability on the manifold v = sin

By using (3.2), system (2.1) becomes:

v̇ = Dsin − Dv

ẋj = xjfj


v −

n−
i=1

γ −1
i xi


+ D[x0j − xj], j = 1, . . . , n − 1

ẋn = xnfn


v −

n−
i=1

γ −1
i xi


− Dxn

(4.1)

with xj(0) ≥ 0 and v(0) −
∑n

i=1 γ −1
i xi(0) = s(0) ≥ 0.

Lemma 2 states that its asymptotic behavior is described by
ẋj = xjfj


sin −

n−
i=1

γ −1
i xi


+ D[x0j − xj], j = 1, . . . , n − 1

ẋn = xnfn


sin −

n−
i=1

γ −1
i xi


− Dxn,

(4.2)

with initial conditions in the compact set

Dn =


(x1, . . . , xn) ∈ Rn

+
:

n−
i=1

γ −1
i xi ≤ sin


.

We now show convergence to the equilibrium of the solution on the manifold v = sin.

Lemma 5. If Condition (2.3) is satisfied, then x∗
= (x∗

1, . . . , x
∗
n) is a globally asymptotically stable equilibrium of (4.2) with

respect to all initial conditions in

Kn = {(x1, . . . , xn) ∈ Dn: xn > 0}.
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Proof. Wewill apply an adapted version of LaSalle’s invariance principle (see Appendix) to system (4.2) in the compact set
Dn. Let x = (x1, . . . , xn) be a solution of (4.2). Now, we define the function U:Dn → R:

U(x) =

n−
i=1

γ −1
i (xi − x∗

i )

and the functions (with i = 1, . . . , n):

U+

i (xi) = max{γ −1
i (xi − x∗

i ), 0} and U−

i (xi) = max{γ −1
i (x∗

i − xi), 0},

which allow for the definitions of

U+(x) =

n−
i=1

U+

i (xi) ≥ 0 and U−(x) =

n−
i=1

U−

i (xi) ≥ 0

then U(x) = U+(x) − U−(x). Notice that by definition of U(x), we have:

sin −

n−
j=1

γ −1
j xj = sin −

n−
j=1

γ −1
j x∗

j − U(x) = λn − U(x), (4.3)

where the last equality comes from the fact that sin = v∗
= s∗ +

∑n
j=1 γ −1

j x∗

j = λn +
∑n

j=1 γ −1
j x∗

j .
Let us define the function V :Dn → R+ as follows

V (x) = max(U+(x),U−(x)).

V is continuous, positive for all x ∈ Dn \ x∗ and V (x∗) = 0. Because of the composite structure of V , the stability analysis
will be separated in several cases:
Case (a) U+(x) > U−(x). We have that U(x) > 0 and V (x) = U+(x). As it was done in Lemma 4, if xi > x∗

i , then the map
t → U+

i (xi(t)) = γ −1
i (xi − x̄i) is decreasing by using (4.3), for all i ∈ {1, . . . , n − 1}:

ẋi = xifi(λn − U(x)) + D[x0i − xi] < xi(fi(λn − U(x)) − fi(λn)) < 0, (4.4)

the first inequality coming from xi(t) > x∗

i =
Dx0i

D−fi(λn)
and the second one frompositiveness ofU(x) andmonotonicity of fi(·).

Similarly, since U(x(t)) > 0, it follows from (C1)–(C2) that, when xn > x∗
n

ẋn = xnfn


sin −

n−
i=1

γ −1
i xi


− Dxn = xn{fn(λn − U(x)) − fn(λn)} < 0, (4.5)

the map t → U+
n (xn(t)) is decreasing when xn(t) > x∗

n .
We have then shown that, for any i ∈ {1, . . . , n}, if xi(t) > x∗

i , it contributes a decreasing term to V (x(t)). As in
Proposition 2, when xi ≤ x∗

i , it does not contribute to the evolution of V (x(t)). Since U+(x) > U−(x) ≥ 0, there exists
some i such that xi(t) > x∗

i so that V (x(t)) is decreasing along the solutions of (4.2) when U+(x) > U−(x).
Case (b) U+(x) < U−(x). By following the lines of the previous case, it can be proved that the map t → U−(x(t)) is
decreasing. Inequalities (4.4) and (4.5) here change sign because U(x) < 0 and xi < x∗

i and xn < x∗
n:

ẋi = xifi(λn − U(x)) + D[x0i − xi] > xi(fi(λn − U(x)) − fi(λn)) ≥ 0

ẋn = xnfn


sin −

n−
i=1

γ −1
i xi


− Dxn = xn{fn(λn − U(x)) − fn(λn)} ≥ 0.

Notice that we have ẋn ≥ 0 instead of >0 only because of the situation where xn = 0. We then have that, when
U−(x) > U+(x), V (x) is always decreasing along the solutions of (4.2), except when, simultaneously, xn = 0, no other
xi is smaller than x∗

i , and U−(x) > U+(x), that is in the set

Zn = {x ∈ Dn | xn = 0, xi ≥ x∗

i i = 1, . . . , n − 1 and U−(x) > U+(x)}. (4.6)

Case (c) U+(x) = U−(x). By (4.3) combined with U(x) = 0, we can deduce that the solution x(t) satisfies

ẋi(t) = xi(t)fi(λn) + D[x0i − xi(t)], i = 1, . . . , n − 1, (4.7)

which is negative when xi > x∗

i as it was shown in (4.4) and positive when xi < x∗

i so that, in these situations, xi contributes
a decreasing term to V (x).

In the case i = n, the solution x(t) satisfies

ẋn(t) = xn(t)fn(λn) − Dxn(t) = 0, (4.8)
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and this case is different from the others. If xn < x∗
n and all other xi ≥ x∗

i (with U(x) = 0), xn is the only one to contribute to
U−(x) for which we will not be able to show that it is decreasing.

In that line of thought, let us define the sets:

Σ = {(x1, . . . , xn) ∈ Dn:U(x) = 0}.
Σ−

n = {(x1, . . . , xn) ∈ Dn:U(x) = 0, and xi ≥ x∗

i i = 1, . . . , n − 1}.

Σ+

n = {(x1, . . . , xn) ∈ Dn:U(x) = 0, and xi ≤ x∗

i i = 1, . . . , n − 1}.

Since U(x) = 0 and xi ≥ x∗

i for i = 1, . . . , n − 1 in Σ−
n , we obviously have xn ≤ x∗

n in Σ−
n (resp. xn ≥ x∗

n in Σ+
n ).

These sets are the only critical cases when U+(x) = U−(x) since, if x(t) ∈ Σ \ (Σ+
n ∪ Σ−

n ), there exists two indices j and
k (both ≤ n− 1) such that xj > x∗

j and xk < x∗

k . Following the lines of Cases (a) and (b), we have that U+(x(t)) and U−(x(t))
are decreasing, which implies that t → V (x(t)) is decreasing.

If x(t) ∈ Σ−
n \ {x∗

}, there exists i ∈ {1, . . . , n − 1} such that xi(t) > x∗

i (and we have that xn(t) < x∗
n). Indeed, otherwise

we have that xi(t) = x∗

i for all i = 1, . . . , n − 1 which, combined with U(x(t)) = 0, implies that xn(t) = x∗
n obtaining a

contradiction. In consequence, for the i such that xi(t) > x∗

i , it follows that ẋi(t) < 0 and the map

t → U+(x(t))

is decreasing, whereas the map

t → U−(x(t))

which is equivalent to t → γ −1
n (x∗

n − xn(t)) is constant. A similar reasoning can be held for x(t) ∈ Σ+
n \ {x∗

}.
Application of LaSalle’s principle. In consequence, the map t → V (x(t)) is decreasing for all values of x ∈ Dn except,
potentially, for either x ∈ (Σ+

n ∪ Σ−
n ), which contains x∗ or x ∈ Zn. By LaSalle’s invariance principle (see Appendix), it

follows that every solution of (4.2) is convergent to the largest invariant setM ⊆ (Σ+
n ∪ Σ−

n ∪ Zn).
Now, wewill verify thatM ⊆ {x∗

}∪cl(Zn): let us consider some x ∈ Σ−
n \{x∗

}. We have seen that, for that x, themap t →

U+(x(t)) is decreasing while t → U−(x(t)) stays constant. As a consequence, the map t → U(x) = U+(x(t)) − U−(x(t))
is decreasing for that x. We then have that U(x(t)) becomes negative so that the solution leaves (Σ+

n ∪ Σ−
n ). This means

that, in this case, x(t) leaves (Σ+
n ∪ Σ−

n ∪ Zn) so that the chosen x can therefore not belong to M , except potentially if the
initial condition belonged to the closure of Zn; in this latter situation, and since (Σ+

n ∪ Σ−
n ) ∩ Zn = ∅, the solution could

instantaneously enter Zn.
A similar reasoning follows for any point x ∈ Σ+

n \ {x∗
}: the largest invariant subset of (Σ+

n ∪ Σ−
n ∪ Zn) is contained in

{x∗
} ∪ cl(Zn) and all solutions of (4.2) converge either to x∗ or to xn = 0.
The proof finish by noting that, as we only consider initial conditions in Kn and xn is persistent (Proposition 3), any

solution with initial condition in Kn converges to x∗, which is asymptotically stable because V is locally a Lyapunov
function. �

Remark 4. We have just shown asymptotic stability of sin for the v̇ dynamics (3.3) in Lemma 2 and of x∗ for the ẋ dynamics
(4.2) in Lemma5.Hence, by Theorem3.2 from [37] it follows that (sin, x∗

1, . . . , x
∗
n) is a LAS equilibriumof (4.1)whenCondition

(2.3) is satisfied.

4.3. Stability for the full system

In this subsection, no new theorem statement is needed, we simply conclude the proof of Theorem 1.
Wewill, however, prove an equivalent statement: the global stability of the equilibrium E∗

v = (sin, x∗

1, . . . , x
∗
n) of (4.1): let

(v0, x0) ∈ R+ × Rn
+
an initial condition of (4.1) with x0n > 0 and v0 −

∑n
i=1 γ −1

i x0i ≥ 0. Denote by φt(v0, x0) its associated
semiflow, the ω-limit set of (v0, x0) is defined by:

ω(v0, x0) = {(ṽ, x̃) ∈ R+ × Rn
+
: ∃tn → +∞ lim

n→+∞
φtn(v0, x0) = (ṽ, x̃)}.

Given any (ṽ, x̃) ∈ ω(v0, x0), Lemma 2 implies that ω(v0, x0) is non empty, and ṽ = sin; by using invariance of ω(v0, x0)
it follows that φt(sin, x̃) ∈ ω(v0, x0) for any t ≥ 0. We point out that the set

Γ̃n =


(v, x1, . . . , xn) ∈ Rn+1

+
: xn = 0 and v −

n−
i=1

γ −1
i xi ≥ 0


is also invariant under the semiflow. Nevertheless, the persistence of the species (see Proposition 3) implies that Γ̃n cannot
be attractive. Hence, we have that:

ω(v0, x0) ∩ Γ̃n = ∅.

In addition, we have that the x component of φt(sin, x̃) ∈ ω(v0, x0) is a solution of (4.2) with initial condition x(0) = x̃.
By letting t → +∞, it follows by Lemma 5 that E∗

v ∈ ω(v0, x0) and in consequence, there exists a divergent sequence {tk}k
such that φtk(v0, x0) converges toward E∗

v .
Finally, by Remark 4 we know that E∗

v is also LAS stable, which implies that in a finite time tk, the orbit φtk(v0, x0) enters
the basin of attraction of E∗

v and the Theorem follows.
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5. Proof of Theorem 2: extinction of the dominant competitor

We nowwant to show that we have global asymptotic stability of Ē. We therefore will follow the path of Lemma 5 in the
following lemma

Lemma 6. If Condition (2.3) is strictly not satisfied, then x̄ = (x̄1, . . . , x̄n−1, 0) is a GAS equilibrium of (4.2) with respect to all
initial conditions in Dn.

Proof. The proof is identical to that of Lemma 5 through the construction of a function U(x) =
∑n

i=1 γ −1
i (xi − x̄i) where

we define x̄n = 0. The definitions of the U±

i (x), U±(x) and V (x) functions follow and the analysis is unchanged compared to
that of the previous proof. There are however two small differences:

• The set Zn defined in (4.6) is empty because x∗
n is here replaced by 0 and the last two inequalities in the definition of Zn

are not compatible.
• Σ−

n reduces to the equilibrium x̄ and does not come into play in the LaSalle part of the proof.

These two differences have no fundamental implication in the flow of the proof; they only simplify it. All solutions then
converge to x̄, which is asymptotically stable because V (x) locally is a Lyapunov function. �

We will now prove an equivalent statement to Theorem 2: the global stability of the unique non-negative equilibrium
(uniqueness is ensured by Lemma 1) Ēv = (sin, x̄1, . . . , x̄n−1, 0) of (4.1): let (v0, x0) ∈ R+ × Rn

+
an initial condition of (4.1)

with v0 −
∑n

i=1 γ −1
i x0i ≥ 0. Denote by φt(v0, x0) the semiflow defined by (4.1). The ω-limit set of (v0, x0) is defined by:

ω(v0, x0) = {(ṽ, x̃) ∈ R+ × Rn
+
: ∃tn → +∞ lim

n→+∞
φtn(v0, x0) = (ṽ, x̃)}.

Given any (ṽ, x̃) ∈ ω(v0, x0), Lemma 2 implies that ω(v0, x0) ≠ ∅ and ṽ = sin; by invariance of ω(v0, x0) it follows that
φt(sin, x̃) ∈ ω(v0, x0) for any t ≥ 0.

In addition, we have that the x component of φt(sin, x̃) ∈ ω(v0, x0) ∈ Γn is a solution of (3.7) with initial condition
x(0) = x̃. By letting t → +∞, it follows by Lemma 4 that Ēv ∈ ω(v0, x0) and in consequence, there exists a divergent
sequence {tk}k such that φtk(v0, x0) converges toward Ēv .

Finally, as before, we know that Ēv is also locally asymptotically stable through the use of Lemma 2 and Lemma 6. This
implies that, after some finite time tk, the orbit φtk enters the basin of attraction of Ēv and the Theorem follows.

6. An arbitrary number of species in the input

Up to now, we have focused our attention on a very particular situation: the case where the n − 1 inferior species, and
only them, are fed into the system. In this section, we will consider three extensions of that result: the cases where

• all species are fed into the system;
• n − 1 species, including the dominant one, are fed into the system;
• n − k species (with k > 1) are fed into the system.

6.1. All species are in the input flow

In fact, no new theorem needs to be proved here. The result has already been given in Proposition 2. When considering
the system in absence of the dominant species, we have just studied the system where all species are fed into the system.
To summarize Proposition 2, there is a single equilibrium which is globally asymptotically stable in Rn

+
. Persistence was

obviously trivial, as we had done in Lemma 3; the result of Proposition 2 only adds the global asymptotic stability.

6.2. Only one inferior species is not in the input flow

This case can easily be handled through an equilibria study. If species m < n is the only one not in the input flow, its
dynamics are

ẋm = xmfm(s) − Dxm
which can be at equilibrium either if xm = 0 or s = λm. In the former case, a single equilibrium in the form Ēm =

(s̄, x̄1, . . . , x̄m−1, 0, x̄m+1, . . . , x̄n) arises in exactly the same manner as in Lemma 1. When considering s = λm, it suffices to
consider the ẋn dynamics

ẋn = xnfn(s) − Dxn + Dx0n
At s = λm > λn, the sum of the first two terms is already non negative, so that ẋn > 0. Species xn can therefore not be at
equilibrium with s = λm. There is therefore a single equilibrium in the present case, the one where xm is washed-out. It is
not surprising since xm was already not able to compete with xn when xn was not fed into the system; there is no way xm
could survive with this additional advantage to xn.
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We then have the following theorem

Theorem 3. Assume that (C1)–(C3) are satisfied, then system
ṡ = D[s0 − s] −

n−
i=1

γ −1
i fi(s)xi,

ẋj = xjfj(s) + D[x0j − xj], j = 1, . . . ,m − 1,m + 1, . . . , n
ẋm = xmfm(s) − Dxm, m ≠ n,

(6.1)

with s(0), xj(0), xm(0) ≥ 0, has a GAS single equilibrium Ēm ∈ ∂Rn+1
+ defined by

Ēm = (s̄, x̄1, . . . , x̄m−1, 0, x̄m+1, . . . , x̄n) with x̄j =
Dx0j

D − fj(s̄)
for j ≠ m

and s̄ ∈ (0, λn) is the unique fixed point of the map Gm: [0, λn) → R:

Gm(s) = sin −

n−
j=1,j≠m

γ −1
j Dx0j

D − fj(s)
.

No additional proof needs to be given since it follows exactly in the footsteps of the proof of Theorem 2.

6.3. Only n − k species are in the input flow

We have already proved the result for k = 0 and k = 1 and the result is classical for k = n, where there is no biomass
input. We are only left with the proof in the case where 2 ≤ k ≤ n − 1. We can write the system that we will study as
follows:

ṡ = D[s0 − s] −

n−
i=1

γ −1
i fi(s)xi,

ẋj = xjfj(s) + D[x0j − xj], j ∈ F

ẋj = xjfj(s) − Dxj, j ∉ F

(6.2)

with s(0), xj(0) ≥ 0 and where F is the set of indices of the species that are fed into the system (the cardinal of F is n − k
with 0 ≤ k ≤ n). We can then define the equilibria as follows.

Let L be the largest index contained in F ; if L < n (or, equivalently, n ∉ F ) then, for any i > L, xi is not fed into the
system and we potentially have an equilibrium E∗i

= (s∗i, x∗i) in the form

s∗i = λi and x∗i
=



x∗i
j =

Dx0j
D − fj(λi)

for j ∈ F

x∗i
i = γi


sin − λi −

−
j∈F

γ −1
j x∗i

j


x∗i
j = 0 otherwise.

Note that, since i > j for all j ∈ F , all x∗i
j with j ∈ F are positive. The only question is whether x∗i

i is positive, which requires
that −

j∈F

γ −1
j Dx0j

D − fj(λi)
< sin − λi.

Note that the left-hand-side of this inequality is an increasing function ofλi while the right-hand-side is a decreasing function
of λi. We can then conclude that, provided L < n, the set of equilibria of the type E∗i is either empty or contains at least E∗n.
The condition of existence of at least one equilibrium of this kind is therefore the condition of existence of E∗n.
E∗n Existence condition.

n ∉ F and
−
j∈F

γ −1
j Dx0j

D − fj(λn)
< sin − λn. (6.3)
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As we have seen in the previous subsection, we cannot build an equilibrium having xi > 0 for i ∉ F and i < L because
we would have ẋL > 0. The only remaining equilibrium is therefore Ē = (s̄, x̄) built as in Lemma 1

x̄ =

x̄j =
Dx0j

D − fj(s̄)
for j ∈ F

x̄j = 0 for j ∉ F

with s̄ the only fixed point of

GF (s) = sin −

−
j∈F

γ −1
j Dx0j

D − fj(s)
. (6.4)

Note that, as was done previously, GF (λn) = sin −
∑

j∈F

γ −1
j Dx0j

D−fj(λn)
< λn if the E∗n Existence Condition (6.3) is not satisfied,

so that s̄ < λn in that case (and vice-versa if (6.3) is satisfied).
We then have the following result.

Theorem 4. Assume that (C1)–(C3) are satisfied. If the E∗n Existence Condition (6.3) is satisfied then all solutions of (6.2) with
initial condition in Rn+1

+ satisfying xn(0) > 0 converge to the stable equilibrium E∗n. If the E∗n Existence Condition is strictly not
satisfied, the equilibrium Ē is GAS in Rn+1

+ .

Proof. We will use a proof by induction. Suppose that the result is valid for n − 1 and prove it for n (the result is obviously
valid for n = 1).

Assuming that Condition (6.3) is satisfied, we have equilibrium Ē and p equilibria in the form E∗i (with 0 < p ≤ n − L
where L is the largest index of F ): E∗n, E∗n−1, . . . , E∗n−p+1. Of these equilibria, only E∗n has xn > 0. We will first show
persistence of xn, which will prevent convergence to the face where xn = 0. For that, we will do as in Proposition 3: we only
will consider initial conditions in the compact setΩ ⊂ Rn+1

+ defined after Lemma2 and construct the functional P:Ω → R+

defined by P(s, x) = xn such that

Ṗ = Ψ (s, x1, . . . , xn)P, with Ψ (s, x1, . . . , xn) = fn(s) − D.

The induction hypothesis indicates that all initial conditions such that xn(0) = 0 lead to solutions converging to one of the
equilibria within this face, that is Ē or E∗n−1, . . . , E∗n−p+1. Also we have

Ψ (Ē) = fn(s̄) − D > 0 and Ψ (E∗i) = fn(λi) − D > 0.

Proposition 4 then implies that the species xn is uniformly persistent, so that if solutions converge, they need to do so toward
E∗n. Since the persistence of all species that are fed into the chemostat is trivial, the persistence of all species that appear in
E∗n is shown.

The continuation of the proof is then identical to that of Lemma 5 through the study ofmodel (6.2) on themanifoldwhere
s +

∑n
j=1 γ −1

j xj = sin, and is not given for the sake of brevity. �

This proofs rounds up the results of this paper. We have shown that the presence of biomass in the inputs results in a
globally asymptotically stable equilibrium, independently of the situation.

7. Numerical example

Let us consider the system
ṡ = D[s0 − s] −

3−
i=1

γ −1
i f1(s)xi

ẋ1 = x1f1(s) + Dx01 − Dx1
ẋ2 = x2f2(s) + Dx02 − Dx2
ẋ3 = x3f3(s) − Dx3,

(7.1)

with parameters (mg ,h and l denote milligrams, hour and liters respectively):

D = 0.2[l/h], sin = 2[mg/l], γ1 = 10, γ2 = 2 and γ3 = 0.5. (7.2)

The functions fi are of type Michaelis–Menten [1]:

f1(s) =
1.6[1/h]s

0.2
mg

l


+ s

, f2(s) =
1.4[1/h]s

0.03
mg

l


+ s

and f3(s) =
0.9[1/h]s

0.002
mg

l


+ s

, (7.3)

which realistic parameters (see e.g. [38,39]), leading to the values:

λ1 = 0.028571, λ2 = 0.005 and λ3 = 0.00057143

and it follows that condition (C3) is satisfied.
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Fig. 2. Results for (7.1) with parameters (7.2), functions (7.3) and inputs (7.4): first species (left), second species (right).

Fig. 3. Third species of (7.1) with parameters (7.2), functions (7.3) and inputs (7.4).

Fig. 4. Results for (7.1) with parameters (7.2), functions (7.3) and inputs (7.5): first species (left), second species (right).

If we consider the inputs

s0 = 1.4, x01 = 1 and x02 = 1, (7.4)

it can be checked that:

1.9994 = sin − λ2 >
γ −1
1 Dx01

D − f1(λ3)
+

γ −1
2 Dx02

D − f2(λ3)
= 0.6778

and condition (2.3) is verified. Hence, by Theorem 1 there exists a globally attractive positive equilibrium (x∗

1, x
∗

2, x
∗

3) =

(1.0235, 1.1507, 0.66). The Figs. 2 and 3 shows a numerical example with initial conditions (0.001, 0.1, 0.1, 0.1).
Now, let us consider the inputs

s0 = 0.005, x01 = 3.7 and x02 = 3.25, (7.5)

it can be checked that condition (2.3) is not verified since

1.9994 = sin − λ2 <
γ −1
1 Dx01

D − f1(λ3)
+

γ −1
2 Dx02

D − f2(λ3)
= 2.0174.

Theorem 2 implies the existence of a globally stable equilibrium (s̄, x̄1, x̄2, 0). Figs. 4 and 5 shows a numerical example
with initial conditions (0.001, 0.1, 0.1, 0.1).
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Fig. 5. Third species in (7.1) with parameters (7.2), functions (7.3) and inputs (7.5).

We check that the dominant species goes to extinction, because of the larger values of inputs of other species. It can be
seen as a way of controlling the dominant species by acting on the inputs of the inferior ones.

8. Discussion

We considered a chemostat model with n species competing for a single limiting substrate. Two questions were
considered: how can we ensure coexistence of all species through the presence of biomass in the input and what are the
consequences of the presence of this biomass on the stability of the system.

We answered the first question by showing that it was necessary to have at least the presence of the n−1 inferior species
in the inputs, but that this was no guarantee for complete coexistence. Indeed, if the densities in the input are too high, the
inferior biomasses consume too much substrate for the superior biomass to survive. This is the meaning of the Coexistence
Condition (2.3). The strength of our result is that the latter condition is a necessary and sufficient condition for coexistence:
if it is verified, all species coexist, if not, the superior species is washed-out of the chemostat which settles at a substrate
level which is lower than the break-even concentration of all species, the inferior species being maintained only through
the input and a little growth.

An alternative interpretation could be consider (2.1) as a perturbation of the classical model (1.1) by a vector ∆ =

D(x01, . . . , x
0
n−1, 0)

T
∈ Rn

+
. Theorems 1–2 then show that small perturbations promote biodiversity while larger ones might

not be as beneficial. This is a classical result in theoretical ecology [40].
Alternatively, our result offers a way of practically leading the dominant species to extinction in a community without

input of this species: it suffices, starting from a coexistence situation with some inputs, to increase slowly the inputs of the
inferior species; above some threshold given by our condition (2.3), the dominant species will be asymptotically eliminated,
which in practice leads to effective suppression in finite time. The return to the initial inputs is then possible, the dominant
species being now absent from the chemostat.

Finally, in all situations of Theorems 1–4, the stable equilibrium was the one corresponding to the smallest value of the
substrate: this was obviously valid when there was a single equilibrium but we have also seen that, if several equilibria
were present, only the one having s = λn (smaller than all other λi and smaller than s̄ in that case) was stable. This is in
line with the classical competitive exclusion and other results concerning competition of Droop species [41] or competition
between amix of generalizedMonod, Droop and Contois species [42]. The parallel with the latter paper extends beyond this
observation since at most one unperturbed generalized Monod species can survive in the chemostat with all species that
are fed into the system (current paper) and with some of the Contois species [42].
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Appendix

A.1. Average Lyapunov functions and uniform persistence

Definition 2 (See [43]). Let φt be a semiflow defined in a compactmetric space (X, d) and letΓ a closed and invariant subset
of X . An application P: X → R+ is an average Lyapunov function if the following properties are satisfied:

P(u) > 0 for u ∈ X \ Γ and P(u) = 0 for u ∈ Γ . (A.1)

Ṗ = Ψ (u)P with Ψ : X → R continuous. (A.2)
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Proposition 4 (See [43]). Let P an Average Lyapunov function and let

Λ = {ri ∈ Γ :φt(ri) = ri for any t ∈ R}.

If φt(u) → ri when t → +∞ and Ψ (ri) > 0 for any u ∈ Γ and ri ∈ Λ, then Γ is a repeller, that means ω(x) ∉ Γ for any
x ∈ X \ Γ .

A.2. LaSalle invariance principle

Consider the ODE system:

ẋ = f (x) (A.3)

where f :D ⊂ Rn
→ Rn is such that its associated semiflow is well defined.

The LaSalle invariance principle is employed for studying the stability properties of (A.3) and its extension to the
piecewise differentiable case has been suggested in several works (see e.g., [44]). We present a result for the sake of
completeness:

Proposition 5 (Invariance Principle). Let K ⊂ D be a compact set that is positively invariant under the semiflow defined by
(A.3). Let V :D ⊆ D → R be a continuous function such that t → V (φt(q0)) is non-increasing when q0 ∈ D . Let E be the set
of all the points in K such that V (φt(·)) is constant. Let M be the largest invariant set in E. Then, every solution starting in K
approaches M as t → +∞.

Proof. Note that V (·) is bounded onK . We can deduce that themap t → V (φt(q0)) is non-increasing and lowerly bounded
and the following limit is well defined:

lim
t→+∞

V (φt(q0)) = a. (A.4)

In addition, for any p ∈ ω(q0), there exists a divergent sequence {tn} such thatφtn(q0) → pwhen n → +∞. By continuity
of V (·) and using (A.4), it follows that

lim
n→+∞

V (φtn(q0)) = V (p) = a

and we can conclude that V (·) is constant in the ω-limit set ω(q0). Thus,

ω(q0) ⊂ M ⊂ E ⊂ K.

The result follows since any positive orbit approaches its ω-limit at t = +∞. �
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