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We introduce a novel concept of surface bound states in the continuum, i.e., surface modes embedded

into the linear spectral band of a discrete lattice. We suggest an efficient method for creating such surface

modes and the local bounded potential necessary to support the embedded modes. We demonstrate that the

surface embedded modes are structurally stable, and the position of their eigenvalues inside the spectral

band can be tuned continuously by adding weak nonlinearity.
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Soon after the emergence of quantum mechanics,
von Neumann and Wigner suggested [1] that certain po-
tentials could support spatially localized states within the
continuum spectrum, i.e., bound states with energies above
the potential barriers. Since 1929, when this remarkable
proposal was published, the bound states in the continuum
have been regarded as a mathematical curiosity, even
though such potentials were suggested to occur in certain
atomic and molecular systems [2,3]. Subsequent experi-
ments with semiconductor heterostructures provided the
direct observation of electronic bound states above a
potential well localized by Bragg reflections [4].

In addition to the physics of electronic structures and
quantum dot systems, this topic attracted a lot of attention
in optics [5–7], where it was very recently shown that the
optical bound states can be generated in an optical wave-
guide array by decoupling from the continuum by virtue of
symmetry only [8].

In this Letter, we extend the pioneering concept of
von Neumann and Wigner [1] into two novel directions.
First, we demonstrate that the bound states can exist in
systems of a semi-infinite extent as surface bound states in
the continuum. We suggest and implement a novel method
for creating square-integrable, discrete surface modes em-
bedded into a linear spectrum. Such surface modes can be
regarded as a novel type of localized surface Tamm-like
states with energies in the continuum (i.e., ‘‘embedded
Tamm modes’’). Second, we study the properties of such
embedded states in the presence of nonlinearity and dem-
onstrate that the mode location inside the band can be
tuned continuously by changing the mode amplitude.
Importantly, our modes appear in entirely asymmetric
systems and therefore, cannot be reduced by any means
to the bound states in infinite systems analyzed before
where the decoupling from the continuum occurs due to
the symmetry conditions.

We consider a semi-infinite, one-dimensional linear lat-
tice, in the presence of a site energy distribution f�ng

(Fig. 1). In optics, this could correspond to a set of weakly
coupled optical waveguides [8], each of them characterized
by a propagation constant �n and centered at xn ¼ na. In
the coupled-mode approach, we expand the electric field
Eðx; zÞ as a superposition of the fundamental modes cen-
tered at each waveguide, Eðx; zÞ ¼ P

nCnðzÞ�ðx� naÞ,
where �ðxÞ is the waveguide mode. We pose CnðzÞ ¼
Cn expði�zÞ. After inserting this into the paraxial wave
equation, one obtains the stationary equations for the
mode amplitudes

ð��þ �nÞCn þ VðCnþ1 þ Cn�1Þ ¼ 0; n > 1; (1)

and the similar equation for the edge waveguide,

ð��þ �1ÞC1 þ VC2 ¼ 0; n ¼ 1: (2)

From these equations, we can formally express

�n ¼

8>>>><
>>>>:

�� V

�
C2

C1

�
if n ¼ 1;

�� V

�
Cnþ1

Cn
þ Cn�1

Cn

�
if n > 1:

(3)
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FIG. 1 (color online). Example of the site energy distribution
(grey bars) and its associated surface bound state (solid curve)
with energy inside the continuum spectrum.
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For a homogeneous system, we take �n ¼ 0, and

Cn ¼ sinðknÞ and � ¼ 2V cosðkÞ: (4)

For �n � 0, and in the spirit of the concept of
von Neumann and Wigner [1], we look for a localized
surface mode in the shape of a modulated wave of the form

Cn ¼ sinðnkÞfn (5)

where fn ! 0 for n ! 1, in order to realize a localized
state. After inserting this ansatz into (1), we obtain

�n¼

8>>><
>>>:

��2Vðf2=f1ÞcosðkÞ ifn¼1

��Vfðfnþ1=fnÞ½cosðkÞþsinðkÞcotðknÞ�
þðfn�1=fnÞ½cosðkÞ�sinðkÞcotðknÞ�g ifn>1;

(6)

and we have limn!1�n ¼ 0, provided that
limn!1ðfnþ1=fnÞ ¼ 1.

Let us take

fnþ1

fn
¼ ð1� �nÞ (7)

where �n < 1. From this, we can solve formally for fn:

fn ¼ Yn�1

m¼1

ð1� �mÞ (8)

which can be rewritten as

fn ¼ exp

�Xn�1

m¼1

logð1� �mÞ
�
: (9)

In the limit n ! 1, and using that �m < 1, we can
approximate this by

f1 � exp

�
� X1

m¼1

�m

�
(10)

where, we want f1 ! 0. This implies
P1

m¼1 �m ¼ 1. A
good trial function for �n is

�n ¼ 1ffiffiffi
n

p sin2ðnkÞsin2½ðnþ 1Þk�: (11)

The presence of the sine terms is not accidental; we need
them to counteract the presence of the two cotðnkÞ terms in
(6) that may otherwise lead to possible divergences. In this
way, we get a smoother site energy distribution. A use-
ful parameter to quantify the degree of localization of a
state, is its participation ratio R, defined by, R �
ðPnjCnj2Þ2=

P
njCnj4. For localized modes, R � 1 while

for extended states R � N, where N is the number of sites
in the lattice.

Figure 2 shows results for a lattice of N ¼ 533 sites,
using the trial function (11) and k ¼ 0:56. The mode
approaches zero slowly but surely. The asymptotic decay
of the envelope at large n values can be estimated, using the

Euler-Maclaurin formula, to be Cn � sinðknÞ�
expð��ðkÞ ffiffiffi

n
p Þ, with �ðkÞ ¼ ½2þ cosð2kÞ�=4. Figure 2

also shows the site energy distribution �n and participation
ratio R of all modes inside the band (outside the band, there
are 10 ‘‘impurity’’ localized states), and we see that our
candidate for the embedded mode (with eigenvalue � ¼
1:695) has the lowest of them all, R � 3. The next higher R
value is � 85. Figure 3 shows the states inside the band
that are closest in energy to the embedded state. The
embedded state is the only state inside the band whose
amplitude decreases to zero at large distance from the
surface (n ¼ 1), while all the rest of the band states are
extended.
Next, we proceed to check the structural stability of the

embedded mode. That is, whether the mode is stable
against perturbations caused, for instance by errors in the
form of the site energy distribution (refraction index dis-
tribution in optics). This can happen during an attempt to
reproduce experimentally the embedded mode. We took a
lattice of 333 sites and examined two cases: First, the
energy site distribution f�ng is replaced with another �n !
�n þ �n, where �n is a random number taken from a
uniform random distribution whose width is proportional
to the �n at a given site. For instance, we took �n 2
½�0:1j�oldn j; 0:1j�oldn j�. The old and new energy site distri-
bution look nearly the same, and as a result, the old given
�, just shifts a little bit. The number of states outside the
band does not change and we still have an embedded mode,
surrounded by extended modes, as in Fig. 3. Next, we try a
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FIG. 2. (a) Discrete envelope function fn vs n. (b) Ratio of the
envelope functions at the neighboring sites. (c) Embedded mode
profile. (d) Close up of the panel (c). (e) Site energy distribution
and (f) participation ratio of all eigenvectors of the linear modes.
(k ¼ 0:56, N ¼ 533).
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more drastic perturbation, where �n is now drawn from a
uniform random distribution which does not depend on site
position: �newn ¼ �oldn þ �n where, � 2 ½�0:1; 0:1�. We see
in this case that, even though the �n becomes significantly
distorted far from the boundary, the embedded state, with
eigenvalue 1.892 08 survives, with a different eigenvalue
1.851 74. Whether the new eigenvalue is smaller or larger
than the original one, depends on the random realization.
Figure 4 shows the old and new site energy distribution,
while Fig. 5 shows the new band states surrounding the
new embedded mode. The spatial profiles of all of them
maintain their extended nature, save for a small tendency
towards localization, in agreement with Anderson local-
ization theory. As long as the disorder is small and
Anderson’s localization length is much larger than the
dimensions of the lattice, the localized embedded state is
well defined.

We can then conclude that the embedded state is struc-
turally stable against small perturbations.
Finally, we address the issue of possible tunability of the

embedded state. Starting from a given embedded mode �,
we would like to be able to change its position inside the
band, without altering the original site energy distribution.
An attractive way to do this, accessible in optics, is by
introducing a small amount of nonlinearity into the system.
A similar approach has been explored recently for the
tuning of localized modes in photonic-crystal waveguides
with side-coupled symmetric defects [9].
For Kerr nonlinearity, all state eigenvalues will be

shifted by the amount �jCnj2. For extended states, the
effect will be negligible, and the only state that can be
affected, is the localized one. In the presence of a nonlinear
response, the discrete equations (1) and (2) become:

ð��þ�nþ�jCnj2ÞCnþVðCnþ1þCn�1Þ ¼ 0; n> 1;

(12)

and the equation for the edge waveguide

ð��þ �1 þ �jC1j2ÞC1 þ VC2 ¼ 0; n ¼ 1; (13)

where � ¼ 1ð�1Þ denotes attractive (or repulsive) nonline-
arity. At this point, it is useful to make the change of

variables �n ¼ Cn=
ffiffiffiffi
P

p
, where P ¼ P

njCnj2 is the total
power. The effective nonlinearity parameter is now � ¼
�P, and the�n are normalized to unity:

P
nj�nj2 ¼ 1. The

idea is to start from the linear embedded state with given
eigenvector � at � ¼ 0. Then, we gradually increase or
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FIG. 3. States in the spectrum band that are the closest in
energy to the embedded mode (middle panel) (N ¼ 333,
k ¼ 0:33).
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FIG. 4. Original (left) and randomly perturbed (right) site
energy distribution (N ¼ 333, k ¼ 0:33).
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FIG. 5. Perturbed states in the continuum spectrum band that
are the closest in energy to the embedded mode (left middle
panel) (N ¼ 333, k ¼ 0:33).

PRL 108, 070401 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

17 FEBRUARY 2012

070401-3



decrease � and follow the evolution of its eigenvalue and
spatial profile, by solving Eqs. (12) and (13) in a self-
consistent manner.

Results from this procedure are shown in Fig. 6. We see
that the eigenvalue of the embedded state can indeed be
tuned to occur at any value inside the band, by means of a
small amount of focussing or defocussing nonlinearity. The
embedded state profile does not change perceptibly during
this process, as expected from the above discussion.

The procedure described above for one-dimensional
semi-infinite discrete lattices could be generalized to
higher dimensions. The simplest of such cases is a semi-
infinite square lattice where the surface modes can exist
near the edges and corners of a large square lattice. There,
and given the separability of the Hamiltonian that gives rise
to the evolution equations, the spatial profile of the em-
bedded mode can be written as Cn;m ¼ �n�m, where

�n ¼ sinðnkxÞfxn and �m ¼ sinðmkyÞfym, where the enve-

lope functions fxn and fyn are the same. The eigenvalue of
the embedded mode is � ¼ �x þ �y and the energy site

distribution is simply �n;m ¼ �n þ �m, each is given by the
appropriate modification of Eq. (6).

In summary, we have suggested and studied a novel type
of bound states localized at the edge of a semi-infinite
discrete lattice with the eigenvalues embedded in the con-
tinuous spectrum. We have demonstrated a procedure to
generate square-integrable, surface localized modes
embedded in the continuum, as well as the site energy
distributions needed to produce such modes. We have
shown that these new embedded modes are structurally
stable, and their location inside the band can be tuned by
weak nonlinearity. We believe the ideas demonstrated here
may be useful in other fields, including atomic systems,
quantum-confined structures, as well as a variety of pho-
tonic and phononic structures where such bound states may
appear through cancellation of radiation in waveguides
with side-coupled defects.
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FIG. 6. Eigenvalue of the embedded surface mode as a func-
tion of the scaled nonlinearity strength � ¼ �P, for N ¼ 133
and k ¼ 0:33. Black circle marks the position of the embedded
eigenvalue in the absence of nonlinearity.

PRL 108, 070401 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

17 FEBRUARY 2012

070401-4

http://dx.doi.org/10.1063/1.1727380
http://dx.doi.org/10.1103/PhysRevA.10.1122
http://dx.doi.org/10.1103/PhysRevA.10.1122
http://dx.doi.org/10.1103/PhysRevA.10.1109
http://dx.doi.org/10.1103/PhysRevA.10.1109
http://dx.doi.org/10.1103/PhysRevA.11.446
http://dx.doi.org/10.1103/PhysRevA.11.446
http://dx.doi.org/10.1103/PhysRevA.12.2237
http://dx.doi.org/10.1038/358565a0
http://dx.doi.org/10.1103/PhysRevLett.100.183902
http://dx.doi.org/10.1103/PhysRevLett.100.183902
http://dx.doi.org/10.1103/PhysRevB.78.075105
http://dx.doi.org/10.1103/PhysRevB.78.075105
http://dx.doi.org/10.1103/PhysRevLett.102.167404
http://dx.doi.org/10.1103/PhysRevLett.107.183901
http://dx.doi.org/10.1103/PhysRevLett.107.183901
http://dx.doi.org/10.1103/PhysRevB.80.115308
http://dx.doi.org/10.1103/PhysRevB.80.115308
http://dx.doi.org/10.1103/PhysRevB.81.115128
http://dx.doi.org/10.1103/PhysRevB.81.115128

