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ABSTRACT: Microtubule-associated protein 1B is
the first MAP to be expressed during the development of
the nervous system. Several different approaches have
revealed that MAP1B function is associated with micro-
tubule and actin microfilament polymerization and dy-
namics. In recent years, the generation of molecular
models to inactivate MAP1B function in invertebrates
and mammals has sparked some controversy about the
real role of MAP1B. Despite discrepancies between some

studies, it is clear that MAP1B plays a principal role in
the development of the nervous system. In this article,
we summarize the evidence for MAP1B function in a
wide variety of cellular processes implicated in the
proper construction of the nervous system. We also
discuss the role of MAP1B in pathological processes.
© 2003 Wiley Periodicals, Inc. J Neurobiol 58: 48–59, 2004
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INTRODUCTION

One hundred years ago, pioneer neurobiologist San-
tiago Ramon y Cajal described how a neuroblast
differentiates into a neuron with a complicated mor-
phology characterized by the presence of a long cy-
toplasmic process, the axon, and several other cyto-
plasmic extensions known as dendrites (Ramon y
Cajal, 1904). Once these morphological changes are

achieved, the so-called mature neuron is able to in-
teract through synaptic contacts with other neurons or
with different tissues, making possible the function of
the specialized network known as the nervous system.
This network can be altered by lesions that affect
neuronal morphology. Unfortunately, it is still not
possible to repair most of these lesions that affect the
CNS.

In this article we will analyze the role of a group of
cytoskeletal proteins, namely the microtubule-associ-
ated proteins (MAPs), focusing in particular on the
participation of MAP1B in the development of neu-
ronal cytoplasmic extensions, and more briefly on the
making of synaptic contacts. Later on we will discuss
the role for MAP1B in the regeneration of damaged
neurons and its participation in some pathological
conditions.
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A model for the morphological transformation of
an immature neuroblast with a spherical form into a
mature highly polarized neuron with different cyto-
plasmic extensions (including one axon and several
dendrites) was proposed during the middles 80’s by
M. Kirschner and T. Mitchison (1986a,b). According
to these authors, cell polarization, including that of
neurons, was the consequence of a change in micro-
tubule dynamics limited to selected regions of the cell
(cell polarization by selective stabilization of micro-
tubules). They suggested that the morphological
change was, along with other factors, the consequence
of a change in microtubule dynamics in some neuro-
nal regions. In those regions, microtubules became
more stable, and as consequence, a cytoplasmic ex-
tension occurred in that region. Therefore, an impor-
tant factor influencing this extension is the existence
of a protein that acts as a microtubule stabilizer. In
fact, there are several such proteins present in neu-
rons, and they have been collectively termed micro-
tubule-associated proteins (MAPs). Of these neuronal
MAPs, the best studied are MAP1A, MAP1B, MAP2,
tau, doublecortin, and LIS1. Each of these proteins is
encoded by a single gene and the RNA transcripts
could be alternatively spliced into different isoforms.
This is the case for tau (Himmler, 1989), MAP2
(Papandrikopoulou et al., 1989; Langkopf et al.,
1994), and MAP1B (Kutschera et al., 1998). So far,
the existence of transcripts generated by alternative
splicing for MAP1A has not been reported.

However, the formation of axons and dendrites
requires the participation of a coordinated and com-
plex network of proteins that, in addition to MAP
function, includes other factors. For instance, neuro-
trophins (Meiri and Burdick, 1991), actin and some of
its associated proteins (Lanier and Gertler, 2000),
molecular motors like dynein (Phillis et al., 1996) or
CHO1/MKLP1 (Ferhat et al., 1998; Yu et al., 2000),
or other proteins that decrease (CRMP2) (Inagaki et
al., 2001; Fukata et al., 2002) or increase (stathmin/
SCG10) (Matsuo et al., 1998; Moreno et al., 1999)
microtubule instability could play a role in axonogen-
esis and dendrite arborization.

MAP1B

MAP1B was described by several independent groups
during the middle 80’s (Greene et al., 1983; Binder et
al., 1984; Bloom et al., 1985; Calvert and Anderton,
1985; Riederer et al., 1986). It is the first MAP to be
expressed during development of the nervous system
(Tucker et al., 1988, 1989). Soon after its discovery, a
smaller protein, termed light chain 1, (LC1) was

found to be associated with MAP1B (Kuznetsov et al.,
1986). MAP1B protein is encoded by a single gene
that expresses a precursor protein that in turn ex-
presses nine different exons (seven coding and two
noncoding ones). The presence of these two noncod-
ing exons has been shown to be responsible for the
generation of alternative isoforms of the protein.
These alternative isoforms of MAP1B lack the N-
terminal domain encoded by exons 1 to 3 (Kutschera
et al., 1998), but retain the functional domain of the
protein, because the tubulin binding site has been
mapped into exon 5. The protein containing the heavy
chain, or properly MAP1B, and also the LC1, is
encoded in a single mRNA that is further translated as
a polyprotein, which is finally proteolytically pro-
cessed giving rise to the functional MAP1B protein
(Hammarback et al., 1991). There is another protein,
LC3, that also binds to MAP1B, but it is codified by
a different gene (Mann and Hammarback, 1994,
1996). MAP1B expression is at least under homeo-
protein transcriptional control, by engrailed, in vivo,
although the participation of other transcriptional reg-
ulators cannot be ruled out (Montesinos et al., 2001).
The tubulin-binding domain on MAP1B is quite dif-
ferent from that found in MAP2, tau, and MAP4. It is
composed of several repeats of four amino acids con-
taining basic amino acidic residues (Noble et al.,
1989). The presence of these basic motifs confers on
MAP1A and MAP1B a different capability for bind-
ing and stabilizing microtubules in vitro (Vandecan-
delaere et al., 1996) and when expressed in eukaryotic
cell lines (Takemura et al., 1992). However, an im-
portant difference between MAP1B and other neuro-
nal MAPs, such as MAP2 and tau, is that its over-
expression does not induce microtubule bundling
even though its binds to microtubules and stabilizes
them (Takemura et al., 1992). It has recently been
suggested that light chains could be the bona fide
tubulin binding domain for both MAP1A and
MAP1B, and that heavy chains could act as regulatory
units for light-chain binding to microtubules (Togel et
al., 1998; Noiges et al., 2002). However, these results
have only been described in non-neuronal cells, and
so it is necessary to address the real physiological
significance of these interactions in neuronal cells.

MAP1B has been shown to be the first of the
neural MAPs to be expressed in neurons in situ (Crino
et al., 1997; Cheng et al., 1999). Because the expres-
sion of MAP1B is down-regulated during brain de-
velopment it was suggested that the protein could play
a major role during neuron morphological differenti-
ation, a role that disappears after neuron-neuron con-
tacts are formed (Diaz-Nido and Avila, 1989; Schoen-
feld et al., 1989).
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MAP1B PHOSPHORYLATION

The biochemical properties and subcellular distribu-
tion of MAP1B can be modified by post-translational
modifications, essentially protein phosphorylation,
which can affect both its distribution and functions.
Thus, phosphorylation of MAP1B can modify cross-
bridges with MTs in vitro (Sato-Yoshitake et al.,
1989). Additionally, MAP1B phosphorylation pat-
terns are modified during development (Diaz-Nido et
al., 1990, 1991; Fischer and Romano-Clarke, 1990;
Riederer et al., 1993; Ulloa et al., 1993; Black et al.,
1994; Riederer, 1995). Subsequently, it was shown
that MAP1B phosphorylation patterns found during
brain development could be reproduced in cell cul-
tures (Diaz-Nido et al., 1990; Black et al., 1994; Ulloa
et al., 1994). The study of MAP1B phosphorylation
has indicated the existence of at least two major
modes of MAP1B phosphorylation (Avila et al.,
1994). Mode I MAP1B phosphorylation induces an
important upward shift in the electrophoretic mobility
of the protein and may be catalyzed by proline-di-
rected protein kinases (such as gsk3 and cdk5) (Gar-
cia-Perez et al., 1998). By contrast, mode II MAP1B
phosphorylation does not modify its electrophoretic
mobility and is catalyzed by casein kinase II. The
presence of mode II has been shown to be essential for
proper neurite development (Diaz-Nido et al., 1988;
Ulloa et al., 1993; Avila et al., 1994). Phosphorylation
levels of MAP1B are controlled by an equilibrium
between the kinases and protein phosphatases. Mode
I phosphorylation is regulated by protein phospha-
tases PP2A and PP2B (Ulloa et al., 1993; Gong et al.,
2000), while mode II is regulated by PP1 and PP2A
(Ulloa et al., 1993). Both modes of phosphorylation
are independently regulated during brain development
and have different subcellular distributions in devel-
oping neurons. Mode I phosphorylation is mainly
present in the distal part of the axon, whereas mode II
is present in all subcellular domains of the neuron,
including the axon and the somatodendritic compart-
ments (Ulloa et al., 1994) [Fig. 1(A)]. The differential
behavior of both modes of phosphorylation suggests
that mode I can be used as a marker of axonal growth.
An explanation for such a role was suggested by
inhibiting gsk3, an enzyme responsible for mode I
phosphorylation in neuronal cell cultures. Thus, phys-
iological inhibition of Wnt7a gave rise to decreased
axonal length, alterations in the growth cone shape
and size, and, more importantly, to an imbalance in
the content of stable and dynamic microtubules (Lu-
cas et al., 1998). Similar results were obtained by
pharmacologically inhibiting the kinase with lithium

chloride (Goold et al., 1999). Both experiments
clearly suggest that as well as its role in the stabili-
zation of microtubules, MAP1B, and especially the
mode I phosphorylated form, is important for the
control of microtubule dynamics. Recently, it has
been confirmed by culturing hippocampal and dorsal
root ganglia neurons derived from a MAP1B hypo-
morph mouse line that, in the absence of MAP1B,
there is a decrease of tyrosinated microtubules in the
distal part of the axons, while there is a shift of
detyrosinated forms towards the distal part of the axon
and the growth cone (Gonzalez-Billault et al., 2001,
2002) [Fig. 1(B,C)]. Similar studies were conducted
in order to inactivate tau protein and then analyze the
effect of tau suppression on the dynamics of micro-
tubules in growing axons of cultured neurons. How-
ever, opposite to MAP1B results, acute inactivation of
tau protein in sympathetic neurons did not interfere
with axonal extension. Moreover, neurons effectively
depleted of tau were able to extend axons that resem-
ble those of control cells, and the axons contain nor-
mal-appearing microtubule arrays with normal dy-
namic behavior (Tint et al., 1998). The fact that
MAP1B loss-of-function can alter microtubule dy-
namics might have severe consequences for those
processes that depend on the dynamic properties of
microtubules. In an elegant experiment, it was shown
that microscale chromophore-assisted laser inactiva-
tion of phosphorylated MAP1B altered growth cone
turning behavior in cultures of neurons (Mack et al.,
2000). In such a way, MAP1B phosphorylated in
mode I may be responsible for the dynamic changes
occurring to a neuron in response to extracellular
environmental cues. In support of this, cdk5 has been
shown to be redistributed towards the axonal tips of
neuronal cells in the presence of the extracellular
matrix component, laminin. This redistribution is par-
alleled by an increase in mode I MAP1B phosphory-
lation, suggesting that MAP1B has an active role
linking extracellular cues with changes in cytoskele-
ton dynamics (Pigino et al., 1997). Additionally, this
increase of MAP1B phosphorylated by PDPKs was
reported to be dependent on a rise in the expression
pattern of a cdk5 activator, namely p35 (Paglini et al.,
1998). It has been recently shown that the participa-
tion of MAP1B phosphorylated in mode I in the
signaling cascades is responsible for radial and tan-
gential neural migration (Gonzalez-Billault et al., un-
published).

However, MAP1B can interact not only with mi-
crotubules but also with actin microfilaments mainly
in the growth cone, a highly dynamic neuronal actin
subcellular domain (Mansfield et al., 1991; Garcia
Rocha and Avila, 1995). Previous studies have shown
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Figure 1 MAP1B phosphorylated in mode I may control the dynamic properties of neuronal micro-
tubules. (A) Confocal micrograph of pyramidal hippocampal neurons in culture stained with an antibody
that recognizes MAP1B phosphorylated in mode I (left panel) and an antibody that recognizes MAP1B
phosphorylated in mode II (right panel). Observe the differential distribution of MAP1B. While MAP1B
phosphorylated in mode I is mainly present in the distal part of axon, that phosphorylated in mode II is
equally distributed in the axon and somatodendritic compartment. (B) MAP1B may contribute to the
control of the transition between tyrosinated (dynamic) and detyrosinated (stable) microtubules in a
mode-I-phosphorylation-dependent manner, by regulating either tubulin tyrosine ligase or tubulin car-
boxypeptidase. (C) MAP1B deficiency should thus be responsible for loss of the microtubule stability
gradient, thereby contributing to the inhibition of axonal growth.
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that MAP1B and, more specifically, the LC1 can bind
to actin filaments in vitro (Pedrotti et al., 1996), and to
stress fibers in vivo when it is ectopically expressed in
non-neuronal cells (Togel et al., 1998). The fact that
microtubules containing MAP1B penetrate into the
peripheral domain of the growth cone and interact
with actin filaments is evidence for the actin-binding
properties of MAP1B (Bush et al., 1996). Conse-
quently, the severe loss of function of MAP1B has
been shown to alter actin dynamics in a still unknown
manner, as shown by time-lapse video analyses of
peripheral neurons lacking MAP1B (Gonzalez-Bil-
lault et al., 2002b). However, very recently it has been
shown that neurons lacking MAP1B contain less ac-
tive rac-GTP, and that the binding of Tiam1, a GEF
protein controlling activity of rac1, to neuronal mi-
crotubules is also decreased (Rosso et al., unpublished
observations).

These observations may turn out to be very impor-
tant in light of previous studies showing that the
growth of microtubules in fibroblasts can produce
changes in the activity of GTPases such as rac1,
leading to actin polymerization and formation of the
lamellipodia (Waterman-Storer and Salmon, 1999;
Waterman-Storer et al., 1999).

Similar to what has been described for fibroblasts,
the growth of neuronal microtubules may increase
actin assembly in the growth cones (Rochlin et al.,
1999). Although the molecular mechanisms linking
microtubule and actin microfilament dynamics have
not yet been elucidated, it is tempting to suggest that
MAP1B may participate in these events. In the case of
microtubules, MAP1B could mediate the dynamics of
MTs through direct interaction with other proteins
controlling microtubule polymerization at the distal
tip of the axon. The interaction of MAP1B with some
known or as yet uncharacterized actin-associated pro-
teins and the regulation of small GTPases through
direct interaction or by modulating the action of GT-
Pase-associated proteins (GEFs/GAPs) could explain
the role of MAP1B in the control of actin dynamics.

ROLE OF MAP1B IN AXONOGENESIS

Several cell culture models using neuronlike cells,
such as PC12, have been used to study the effect of
the suppression of MAP1B. By using a specific anti-
sense oligonucleotide, it was found that in the absence
of MAP1B, there is no NGF-induced neurite out-
growth in PC12 cells, suggesting that this protein may
be required for neuritogenesis (Brugg et al., 1993).
Later on, it was indicated that MAP1B participation in
process formation appears to be dependent on the

substrate on which neurons are grown, being partic-
ularly prominent during laminin-enhanced axonal ex-
tension (DiTella et al., 1996). The generation of mo-
lecular genetic models of MAP1B inactivation has
further contributed to explain its role in neurite for-
mation. Thus, CNS and PNS neuronal cell cultures
derived from a MAP1B hypomorphous mouse line
gave raise to neurons bearing shorter axons than in
wild-type controls. In these cases, axonogenesis was
inhibited rather than impaired, suggesting that
MAP1B itself is not a determinant of neurite polarity,
and there is some compensational effect due to the
presence of another structural MAP (Gonzalez-Bil-
lault et al., 2001, 2002). Compensation effects on
MAP1B loss-of-function have indeed been de-
scribed. Hence, hippocampal cells lacking MAP1B
contained more MAP2 bound to their neuronal mi-
crotubules (Gonzalez-Billault et al., 2001). Further-
more, in recent years, two independent studies have
shown that MAP1B and MAP2 may have some
synergistic functions during laminin-enhanced neu-
rite outgrowth. These studies used combined gene-
targeting approaches to inactivate MAP1B and
MAP2 (Teng et al., 2001) and a gene-trapping
approach to inactivate the MAP1B gene in conjunc-
tion with MAP2 inhibition with antisense oligonu-
cleotides (Gonzalez-Billault et al., 2002a). Some
discrepancies between these two studies can be
explained by differences in the severity of MAP1B
inactivation in the two genetic ablation models
(Gonzalez-Billault and Avila, 2000). As for tau and
MAP1B redundancy, oligonucleotide inhibition of
tau expression combined with MAP1B suppression
in a hypomorph mutant line confirmed previous
studies suggesting that axonal elongation may be
dependent on tau or MAP1B according to the sub-
strate on which neurons are plated (DiTella et al.,
1996; Gonzalez-Billault et al., 2002a). However, it
is clear that neuritogenesis is at least inhibited in
the absence of MAP1B. Cell culture and mamma-
lian molecular genetic approaches are not the
unique demonstration of MAP1B function in neu-
rite outgrowth. Molecular genetic ablation of fut-
sch, a Drosophila MAP1B orthologue, indicated
that the protein is essential for both dendritic and
axonal development. Futsch protein expression was
described as being negatively regulated in non-
neuronal tissues, consistent with previously de-
scribed observations for mammalian MAP1B. Fur-
thermore, futsch is required for the proper
establishment of neuronal cytoskeleton and regu-
lates normal synaptic growth (Hummel et al., 2000;
Roos et al., 2000).

52 Gonzalez-Billault et al.



MOLECULAR GENETIC MODELS

More recently, up to four different types of mice
lacking MAP1B have been described. In one of these
strains, mice that are homozygous for the Map1b gene
die early during embryogenesis after blastocyst for-
mation (Edelmann et al., 1996), raising the possibility
that MAP1B is essential for neural development. In
these mutant strains, heterozygous animals display
severe neuronal defects that have not been reproduced
in any of the heterozygous animals derived from the
other three mutant models. Thus, the severity of the
phenotype of heterozygous animals described by
Edelman and colleagues is still a puzzling and unex-
plained issue.

In another strain, mutants reach adulthood and
exhibit minor defects such as hypogenesis of the optic
and sciatic nerve (Takei et al., 1997). The absence of
lethality was explained as a function of discrete
amounts of MAP1B expression in this hypomorphous
mutant (Takei et al., 1997).

An intermediate phenotype was described by a
third gene-targeting model. This mouse line was
shown to be truly null for MAP1B expression. Ho-
mozygous lethality and abnormal development of ner-
vous system were described (Meixner et al., 2000).

Finally, by using another molecular genetic ap-
proach, namely insertion of a gene trapping vector,
another hypomorphous model was generated
(Chowdhury et al., 1997; Gonzalez-Billault et al.,
2000). In this model, MAP1B-deficient mice die peri-
natally and have gross abnormalities in the structure
of their nervous system. The abnormalities were
found in all laminated structures of brain, including
the cerebral cortex, hippocampus, and cerebella, sug-
gesting that MAP1B may play a novel role in neuro-
nal migration and axonal guidance (Gonzalez-Billault
et al., 2000; Meixner et al., 2000). These effects were
confirmed in a genetic model designed to inactivate
both tau and MAP1B genes (Takei et al., 2000).
Although there are several known mechanisms that
control neuronal migration and axonal guidance, the
participation of MAP1B in these processes remains
elusive.

MAP1B AND NEURAL REGENERATION

As mentioned above, mode-I-phosphorylated MAP1B
is absent from many types of mature neurons, al-
though it remains high in those brain regions where
axonal growth persists into adulthood, such as olfac-
tory axons, retina, and some territories in the PNS.

Using these neural types, it was investigated whether
mode-I- phosphorylated MAP1B plays a role during
neuronal regeneration similar to that known to occur
during neuron development. Several observations
suggest that this could indeed be the case.

First, MAP1B was expressed during regeneration
of mouse retinal explants in a way clearly reminiscent
of that found during development (Bates et al., 1993).
Second, regeneration of cat trochlear motoneurons
proceeds with an increase of phosphorylated forms of
MAP1B, while MAP2 is clearly diminished. These
studies suggest that neuronal regeneration of CNS and
PNS axons may occur in a similar manner (Book et
al., 1996). Third, sciatic nerve regeneration also pro-
ceeds with an increase of phosphorylated MAP1B
recognized by a mode I phosphorylation antibody
(Bush et al., 1996a,b; Tonge et al., 1996; Soares et al.,
2002) with no variation in the other variants of
MAP1B phosphorylation (Ramon-Cueto and Avila,
1999). A comprehensive study dealing with the phos-
phorylation patterns of MAP1B in the adult rat ner-
vous system demonstrated that, in addition to a dif-
ferential subcellular localization for both modes of
phosphorylation, the presence of the slow-migrating
MAP1B isoforms in sites with a potential regenera-
tion ability was important (Ramon-Cueto and Avila,
1997). Fourth, phosphorylated MAP1B was increased
in the retina during regeneration of fish optic nerve,
during both development and regeneration of retinal
ganglion cells. These findings confirm that mode I
phosphorylation is maintained after development in
those regions with high neuronal plasticity (Vecino et
al., 1996, 1998; Vecino and Avila, 2001).

The mechanism by which MAP1B affects axon
regeneration is not clearly understood. Besides neu-
ronal expression, higher levels of MAP1B can be
found in oligodendrocytes, both in culture (Fischer et
al., 1990; Vouyiouklis and Brophy, 1993; Ulloa et al.,
1994) and in situ during active myelination (Wu et al.,
2001). Additionally, MAP1B has been found to be
highly expressed in Schwann cells during nerve re-
generation (Ma et al., 1999). The phosphorylation
pattern found in Schwann cells seems to be quite
different from that found in neurons during regener-
ation (Ma et al., 1999; Ramon-Cueto and Avila,
1999). MAP1B is absent from GFAP-positive astro-
cytes (Fischer et al., 1990). Another glial cell type
involved in neuronal regeneration is present in the
olfactory bulb. Thus, ensheathing glia has been shown
to promote axonal regeneration in the CNS in vitro
and in vivo (Ramon-Cueto et al., 2000). The presence
of MAP1B in these glial cells has been studied and the
results suggest that ensheathing glia have a differen-
tial expression pattern of MAP1B isoforms from other

MAP1B Function 53



glial cells types such as astrocytes, oligodendrocytes,
and Schwann cells (Gonzalez-Billault et al., unpub-
lished observations).

Some MAP1B isoforms and related proteins (e.g.,
claustrin) are known to be associated with the cell
membrane (Tanner et al., 2000). It has also been
shown that MAP1B binds to myelin-associated gly-
coprotein (MAG), a protein expressed in myelinating
oligodendrocytes and Schwann cells (Franzen et al.,
2001). Interestingly, MAG binding to MAP1B de-
pends on its phosphorylation state. Thus, it can bind
only to mode-I-phosphorylated MAP1B, a mode that
is specifically found in neurons, and not in the above-
mentioned glial cells (Franzen et al., 2001). It is not
known whether this interaction has any consequence
for the regulation of axon regeneration, although my-
elination problems have been described in at least two
molecular genetic models with an inactive Map1b
gene (Takei et al., 1997; Meixner et al., 1999). A
possible explanation to consider is that the MAG-
MAP1B interaction may provide a structural link be-
tween the periaxonal membrane of the myelin-form-
ing cell and the axonal cytoskeleton, thereby
contributing to the known capacity of myelin to affect
structure and stability of myelinated axons.

MAP1B FUNCTION IN PATHOLOGICAL
CONDITIONS

Although the participation of MAP1B in nervous
system pathologies occurring during normal devel-
opment or during genetic or sporadic neurodegen-
erative disorders has not been thoroughly analyzed,
there is some evidence pointing to a role for
MAP1B in such processes (Fig. 2). MAP1B phos-
phorylated in mode I, a mode that is prominent
during development, has been found to decorate
and colocalize with neurofibrillary tangles, a com-
mon hallmark for Alzheimer disease (Ulloa et al.,
1994). Concordant with this fact, it has very re-
cently been proposed that full length MAP1B could
act as an effector of cell death in neurodegenerative
disorders triggered by amyloid-� deposition, such
as Alzheimer disease (Uchida, 2002).

Another role for MAP1B in pathological condi-
tions is related to its interaction with gigaxonin, a
protein responsible for giant axonal neuropathy
(GAN), an autosomal recessive disorder character-
ized cytopathologically by cytoskeletal abnormal-
ity. The interaction between gigaxonin and MAP1B
can be verified through its LC1 subunit. Trans-
fected cells expressing both proteins enhanced the
microtubule stability required for long-distance ax-

onal transport (Ding et al., 2002). Interestingly, at
least two different mutations identified in GAN
patients (Bomont et al., 2000) led to loss of gig-
axonin-MAP1B interaction (Ding et al., 2002).

Deregulation of MAP1B expression could also
be related to the onset of pathological conditions.
Hence, a decrease of MAP1B staining in the inner
half of the molecular layer, especially in a portion
where Purkinje cells are absent, has been shown to
occur during human olivocerebellar degeneration
(OCD). This reduction of MAP1B staining suggests
that normal interaction of Purkinje cells and climb-
ing fibers could be vulnerable to nervous system
insults such as ischemia or hypoxia, and that retro-
grade transynaptic degeneration of the inferior oli-
vary nuclei could then be induced (Ohyu and
Takashima, 1998).

Finally, a Drosophila model for human Fragile
X syndrome (dFXR) has revealed that futsch may
be a target for dFXR translational regulation in the
Drosophila nervous system. The evidence pre-
sented in this study clearly demonstrates that dFXR
specifically binds to futsch mRNA, controlling fut-
sch protein levels (Zhang et al., 2001). Although
the interaction described here has not been shown
to occur in humans, we might expect similar results
to be found.

As mentioned above, the severe MAP1B deficien-
cies reported in the molecular genetic models pro-
duced aberrant organization in the CNS and PNS,
associated with failures in neuronal migration and
axonal guidance processes. Although the exact mo-
lecular contribution of MAP1B remains elusive, it is
reasonable to suggest that MAP1B may participate in
an as yet unknown human disorder related to neuronal
migration defects.

CONCLUSION

In this article, we have summarized the evidence
that implicates MAP1B participation in a wide va-
riety of normal and pathological processes occur-
ring during the development and aging of the ner-
vous system. Although the exact molecular
mechanisms for most of the processes described
here have not yet been fully elucidated, it is clear
that MAP1B function does have a principal role in
those processes. Cumulative evidence derived from
classic biochemistry experiments, histological anal-
yses, cell-culture approaches, and molecular genet-
ics in invertebrates and mammals suggests that by
controlling microtubule and actin dynamics,
MAP1B should be a critical point for axonal out-
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growth, neuronal migration, and axonal guidance.
Additionally, nervous system dysfunction may also
be related to changes in MAP1B expression and
function. Therefore, it is tempting to speculate that
by being the first MAP to be expressed in the
development of the nervous system, MAP1B could
control the settling and correct development of the
nervous system. Lessons from molecular genetic
models have taught us that functional redundancy
between MAPs does indeed exist, although not in a
complete fashion. We may look forward to the role
of MAP1B in the aforementioned process being
clarified in the near future, and we should expect
that its being the first to be expressed during the
development of the nervous system is not merely a
stochastic event.
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