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Abstract The blood–brain barrier (BBB) is often affected
in several neurodegenerative disorders, such as Alzheimer's
disease (AD). Integrity and proper functionality of the
neurovascular unit are recognized to be critical for mainte-
nance of the BBB. Research has traditionally focused on
structural integrity more than functionality, and BBB alter-
ation has usually been explained more as a consequence than a
cause. However, ongoing evidence suggests that at the early
stages, the BBB of a diseased brain often shows distinct
expression patterns of specific carriers such as members of
the ATP-binding cassette (ABC) transport protein family,
which alter BBB traffic. In AD, amyloid-β (Aβ) deposits
are a pathological hallmark and, as recently highlighted by
Cramer et al. (2012), Aβ clearance is quite fundamental and is
a less studied approach. Current knowledge suggests that
BBB traffic plays a more important role than previously
believed and that pharmacological modulation of the BBB
may offer new therapeutic alternatives for AD. Recent inves-
tigations carried out in our laboratory indicate that peroxisome
proliferator-activated receptor (PPAR) agonists are able to
prevent Aβ-induced neurotoxicity in hippocampal neurons
and cognitive impairment in a double transgenic mouse model
of AD. However, even when enough literature about PPAR
agonists and neurodegenerative disorders is available, the

problem of how they exert their functions and help to prevent
and rescue Aβ-induced neurotoxicity is poorly understood. In
this review, along with highlighting the main features of the
BBB and its role in AD, wewill discuss information regarding
the modulation of BBB components, including the possible
role of PPAR agonists as BBB traffic modulators.
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General Considerations

The concept of a blood–brain barrier (BBB) was proposed
by Lewandoswsky in 1900 [1] and originates from the
observation of the lack of pharmacological activity of sev-
eral compounds when administered systemically into the
blood but with a critical impact when injected directly into
the cerebrospinal fluid (CSF) [1, 2]. Further experimental
evidence of the BBB's existence was provided a few years
later by Goldman [3, 4] who demonstrated that Trypan Blue
dye neither stained the brain nor the spinal cord when
administered through the bloodstream; however, it stained
these structures readily when administered into the CSF. No
functional explanation was agreed and while some scientists
proposed the transport across cell membranes, others
suggested that the absence of Trypan Blue staining was
due to the dye's inability to cross the permeable membrane
of brain capillaries [5, 6]. The controversy was solved later
by Reese and Karnovsky [7] and subsequently by
Brightman and Reese [8] who, through the use of hydro-
philic compounds, particularly horseradish peroxidase,
demonstrated that polar solutes were unable to cross the
BBB because of occluding tight junctions (TJ) established
between adjacent endothelial brain cells.

Three barriers are recognized as part of the brain's isolating
system that allows for maintenance of brain homeostasis:
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(1) the BBB, (2) the blood–CSF barrier, and (3) the arachnoid
epithelium [9, 10]. The BBB formation begins during embry-
onic development as a consequence of the close relationship
established between blood vessels and neuroectodermal cells
[11]. From the subarachnoid space, the pial arteries, the main
blood vessels of the brain, project the intracerebral arteries to
the brain, which in turn, ramify to ultimately form the brain
capillaries [12]. The neurovascular unit is considered to be the
minimal functional unit of the BBB, and three cellular sub-
types can be identified: (1) vascular, composed of endothelial
cells, pericytes, and vascular smooth muscular cells; (2) glial,

composed of astrocytes, microglia, and oligodendroglia; and
(3) neurons [11, 12] (Fig. 1). When mature, the BBB is a
highly specialized structure where brain capillaries comprise a
single endothelial cell connected with itself and with neighbor
cells through occluding TJ and through nonoccluding
adherens junctions (AJ) [13, 14], each of these comprised of
a set of specific proteins. This primary structure is surrounded
by pericytes, which are in direct contact with astrocyte end-
feet [11, 14, 15]. The BBB functions not only as a barrier
limiting the entrance of several substances into the brain [14]
but also as a permeable structure that is able to ensure oxygen

Fig. 1 Main components of the BBB. The BBB is a complex structure
composed of several cell types and characterized by distinct expression
patterns of different transport and adhesion proteins. The combination
of these components allows the BBB to exhibit low paracellular
permeability and critically determinant cellular transport. The diagram
represents a brief description of the structure of the BBB. At the brain
capillaries, a monocellular layer of endothelial cells constitutes the
basis of the barrier. Each endothelial cell encircles the lumen of the
capillary and seals it, through establishment of TJ and AJ at the ends of

the cell as well as with the adjacent cells. The endothelial wall is
closely surrounded by pericytes, constituting an additional cellular
layer of the BBB. Finally, astrocyte end-feet processes attach to the
barrier forming an additional cellular envelope. Despite some of the
most important BBB transport systems included in the diagram (ABC
ATP-binding cassette, LRP low-density lipoprotein receptor-related
protein, RAGE receptor for advanced glycation end products) shown
only to be expressed by endothelial cells, several of these transporters
are also expressed by the other cellular components of the BBB
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and glucose delivery to brain tissue as well as removal of
different metabolic end products, which helps to maintain
brain homeostasis [16]. Additionally, correct functionality of
the BBB is critical for neurons mainly because of the precise
balance of ion gradients required to allow for electrical com-
munication between them [11].

Blood–Brain Barrier Carrier System

BBB traffic can be separated into a low permeable
paracellular component, including the TJ and AJ, and a
cellular component, composed mainly of endothelial cells
expressing several specific carriers [17]. Only small lipid-
soluble molecules are allowed to cross the BBB freely [15].

Low Paracellular Permeability

The seal between endothelial cells depends on TJ and AJ,
and forces molecules to undergo transcellular transport [16].
Physically, from the lumen of brain capillaries, TJ are the
first intercellular seal followed by AJ, as a combined unit.

Tight Junctions

Molecular components of TJ (Table 1) can be divided into
membrane and cytoplasmic proteins [16, 17]. Occludin [17,
18], claudins [17–19], the endothelial cell-selective adhesion
molecules [20], and the junctional adhesion molecule-A [21,
22] constitutes the first group and are responsible for cell–cell
anchorage. In the second group, acting as the scaffold proteins

that link membrane proteins to the actin cytoskeleton [16, 17],
we found the following: zonula occludens (ZO) protein-1,
protein-2, and protein-3 [23–25], containing a PDZ domain;
and non-PDZ proteins, such as cingulin [16] and the junction-
associated coiled-coil protein (JACOP)/paracingulin [16, 26].

Adherens Junctions

AJ are also responsible for cell–cell adhesion and critical func-
tions have been described for it, such as contact inhibition during
vascular growth and remodeling, cell polarity initiation, and
being fundamental for TJ formation [16, 17]. The main proteins
of AJ are VE-cadherin [27], an armadillo protein, and platelet
endothelial cell adhesion molecule 1 (PECAM-1) and they are
usually linked to the catenin protein family [17] (Table 1).

Blood–Brain Barrier Transport

The transport across the BBB is highly specialized and de-
pends on the expression of several transporters by the endo-
thelial cells, which allow bidirectional traffic in order to
maintain brain homeostasis (Table 2). Different authors have
used diverse criteria to classify these transporters [16, 17, 28].

Glucose transporter 1 (GLUT1), monocarboxylate trans-
porter 1 (MCT1), L1, and y+ amino acid transporters, ex-
citatory acidic amino acid transporters (EAAT-1, EAAT-2,
and EAAT-3), constitute the first group of transporters in
charge of nutrients, several energy source molecules, lactate,
and amino acids into and out of the brain [17, 28]. It is
important to mention that EAATs determine the removal of
glutamate from the brain, playing a critical role in the
prevention of glutamate-induced excitotoxicity [29]. Anoth-
er important group of BBB transporters is composed of the
adenosine triphosphate (ATP)-binding cassette (ABC) efflux
transporters, particularly ABCB1 (P-glycoprotein) [30]; the
multidrug resistance proteins (MRP or ABCC), such as
MRP-1, MRP-4, MRP-5, and MRP-6 [16]; and the breast
cancer resistance protein (BCRP or ABCG2) [31]. More-
over, endothelial protein C receptor (EPCR), insulin receptor
(IR), transferrin receptor (TFR), low-density lipoprotein
receptor-related protein 1 (LRP1), peptide transport system
(PTS-1, PTS-2, and PTS-3), and PTS4-vasopressin V1a re-
ceptor (V1AR) are specialized transporters for peptides [17,
28, 32, 33]. As mentioned, the electrical properties of brain
networks are provided by a precise ion balance achieved and
maintained through a whole range of ion transporters. The
sodium pump (Na+/K+-ATPase), sodium–potassium–2
chloride (Na+/K+/2Cl−), sodium–hydrogen exchanger
(Na+/H+), sodium–calcium (Na+/Ca++), and chloride–bicar-
bonate exchanger (Cl−/HCO3

−) are the representativemembers
of ion transporters present in the BBB [34–36].

Additionally, the BBB possesses enriched lipidmicrodomains
(lipid rafts), composed of caveolae, which exert further

Table 1 Main molecular components of tight and adherens junctions

Tight junction

Claudins

Occludins

Junctional adhesion molecule A (JAM-A)

Endothelial cell-selective adhesion molecule
(ESMA)

Zonula occludens

Calcium-dependent serine protein kinase
(CASK)

Cingulin

Multi-PDZ protein 1 (MUPP1)

Membrane-associated guanylate kinase
(MAGI)

Adherens junction

Vascular-endothelial cadherin (VE-cadherin)

Platelet endothelial cell adhesion molecule
(PECAM-1)

Catenin (α, β, χ)
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regulation of BBB traffic [37]. Furthermore, several receptors
have been described to be associated with caveolar mem-
branes, such as insulin and the receptor for advanced
glycation end products (RAGE) [30]. Moreover, even when
the BBB constitutes a physical barrier that allows for the
exchange of a wide range of substances in and out of the brain
through specific transporters, enzymatic activity has also been
described for each cellular component of the BBB, offering
additional metabolic protection against potentially neurotoxic
compounds that could cross the BBB [32].

Available Cellular Blood–Brain Barrier Models

Even when the main objective of the present review is not
directly related with this particular issue, some words should
be mentioned about this important matter. The current avail-
able BBB models can be divided into two groups: nonhuman
and human-derived, and both can be further divided, according
to the origin of the blood vessels, into noncerebral or cerebral
endothelial models [16]. Despite several available nonhuman
(noncerebral and cerebral) as well as human (noncerebral) cell
models, such as MDCK, HUVEC, RBE4, GP8, GPNT, or
primary cultures, it is important to mention that only a few of
these retain the main characteristics of the BBB [16]. RBE4,
GP8, GPNT, b.End3, and primary cultures of brain endothelial
cells express most of the efflux/influx carriers as well as
junctional proteins, but we must also remember in this case
that these are murine models of the BBB and that, even by
giving us an initial understanding of the complexity of the
BBB, are quite far from indicating how the human BBB

functions [16, 38–41]. Considering the critical role that the
BBB carrier system plays in Alzheimer's disease (AD) patho-
genesis, it is of most importance to have a more reliable model
of the human BBB that expresses as many components as
possible, to understand its main characteristics.

The hCMEC/D3 cells, described by Weksler et al. [42],
are considered to be one of the most significant models for
BBB studies, mainly because they correspond to a cerebral
vessel human-derived BBB model that expresses the main
characteristics of the human BBB [10, 42]. Additionally,
considering the high complexity of the BBB, due to the
interaction of several cell types, cocultures with glial cells
and pericytes have emerged as more complete and complex
models to study BBB properties [10, 16].

The selection of the appropriate model is critical when struc-
tural and physiological properties of the BBB are assessed,
particularly in AD, not only because the integrity of the “barrier”
is highly important but also because of the expression patterns of
the several carriers involved in amyloid-β (Aβ) clearance.

Blood–Brain Barrier and Neurodegenerative Disorders

Despite the known existence of the BBB for more than a
century, only in the last few decades have significant efforts
been made in order to understand the real impact of the role
of the BBB on several neurodegenerative disorders. Of
course, each of these disorders has its own etiology and
particular hallmarks; however, the health or integrity of the
BBB has often been shown to be compromised, and the

Table 2 BBB transporter
system GLUT1 Glucose

MCT1 Lactate

L1 Essential amino acids

y+ Cationic amino acids

XG− Elimination of acidic amino acids

N Elimination of nitrogen rich amino acids

ASC Elimination of non-essential amio acids

LNAA Elimination of essential amino acids

EAAT Elimination of excitatory amino acids

N Nitrogen-rich amino acids

Na+/K+/ATPase Ions
Cl−/HCO3−

Na+, K+/2Cl−

H+/Na+

ATP-binding cassette (ABCB1, ABCC, ABCG2) Peptides
Endothelial protein C receptor (EPCR)

Insulin receptor (IR)

Low-density lipoprotein receptor-related protein (LRP)

Peptide transport system (PTS)
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severity of changes observed usually relates to the progres-
sion of the disease [17, 30, 43].

Several authors have analyzed the particularities of the
BBB in different disorders, such as epilepsy [44, 45], multiple
sclerosis [46], AD, Parkinson's disease, and Huntington's
disease [17, 30, 31], among others, and have found an altered
function of TJs, AJs, or in the carrier transport system that
controls the BBB traffic, such as occludins, claudins,
cadherins, EAAT, MCT1, and GLUT1.

Blood–Brain Barrier and Alzheimer's Disease

AD is an age-associated neurodegenerative disorder charac-
terized by progressive memory and cognitive impairment
that eventually leads to death [47, 48]. Clinically, AD pro-
gression reflects gradual neurodegeneration with a compro-
mise of short-term memory at the beginning of the disease
followed by long-term memory loss [49]. Brain atrophy and
gradual loss of neurons, mainly in the hippocampus (HC),
frontal cortex (FC) and limbic areas, together with extracel-
lular accumulation of Aβ plaques and intraneuronal forma-
tion of neurofibrillary tangles (NFT), composed of
hyperphosphorylated aggregates of microtubule-associated
protein tau, are pathologic hallmarks of AD [48–50]. In AD
patients, whether in the familial or in the sporadic form,
increased levels of Aβ are usual and considered to be the
basis of the pathologic changes observed during AD pro-
gression [51]. When Aβ accumulates around blood vessels,
it leads to neurovascular dysfunction and cerebral amyloid
angiopathy [17]. Indeed, several changes take place in the
cerebral blood vessels of AD patients, including loss of
vascular density, decreased luminal diameter of vessels
and capillaries, and thickness of vessels walls [52]. Howev-
er, even when the relationship between Aβ accumulation
and BBB damage seems evident, it is important to consider
that increased levels of Aβ in the brain interstitial fluid
depends not only on the production rate but also on the
clearance rate from the brain. In fact, the recently published
work of Cramer et al. [53] suggested the critical role of Aβ
clearance in AD and the importance of considering Aβ-
related transporters as targets in future AD therapies.

Compromised Transporters in Alzheimer's Disease

As a key hallmark of AD, the proper excretion of Aβ from
the brain, preventing its neurotoxic accumulation, depends
on an appropriate transport through the BBB (Fig. 1).

LRP1 and LRP2

LRP are widely expressed by several cell types, including
neurons, and constitute the main Aβ clearance system of the

brain [54, 55]. LRP1-associated Aβ clearance requires Aβ
binding to specific proteins, such as apolipoprotein E
(ApoE), apolipoprotein J (ApoJ), and α2-macroglobulin.
ApoE, the main apolipoprotein of the brain, binds to Aβ
forming a complex, which is the substrate of LRP1 [56–60].
In the same way, LRP2 needs the clusterin (or ApoJ)–Aβ
complex in order to remove Aβ [56, 61, 62]. In fact, several
studies have evaluated how decreased gene expression of
LRP1 and/or LRP2 leads to an increased risk of AD [59, 61,
63, 64]. Moreover, it has been demonstrated that LRP as
well as neprilysin, the main brain Aβ-degrading enzyme,
are target genes of the Aβ precursor protein (APP) intracel-
lular domain (AICD), a small peptide derived from APP γ-
secretase processing [65, 66].

ApoE

Several authors have reported the critical role of isoform
variations of ApoE or ApoJ on Aβ clearance and BBB
integrity [58, 61, 62, 67]. Furthermore, specific ApoE
isoform 4 (ApoE4) is related with decreased Aβ clearance
from the brain and constitutes a recognized genetic risk
factor for AD development. On the other hand, ApoE
isoform 2 (ApoE2) has shown to act as a protective factor,
reducing the risk of developing AD [54, 68–70]. This point
suggests that further therapies based on increased expres-
sion of chaperone proteins, such as ApoE, should be care-
fully studied and the genetic pull of each single patient
must be considered in order to properly offer low-risk
therapies.

ABC

ABCB1 (P-gp) is one of the most important members of the
ABC transporters and its expression is often altered in AD [60,
71]. Mainly related with drug transport across the BBB [16], it
is also related to Aβ clearance. Indeed, it has been observed
that ABCB1 polymorphisms are associatedwith increased Aβ
levels [71]. Additionally, it has been demonstrated that
neuroinflammation, often present in several neurodegenera-
tive disorders, also interferes with Aβ traffic through mecha-
nisms that involve main carrier systems found in the BBB,
such as ABCB1 [72, 73]. Despite some doubts regarding the
real impact of altered ABCB1 function in AD pathogenesis
[74], different studies have focused on the identification of
different compounds that are able to rescue or enhance BBB
traffic through ABCB1modulation [60, 75]. Additional mem-
bers of the ABC family have also been described as being
related to Aβ efflux across the BBB, such as ABCC1 [76],
ABCG2 (BCRP), and ABCG4 [31].

However, considering that the above-mentioned trans-
porters work as required to remove Aβ from the brain once
it reaches the luminal space of the brain microvessels, the
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Aβ must be eliminated in order to prevent influx to the
brain. In fact, it has been demonstrated that peripheral in-
jections of Aβ leads to increased Aβ brain levels and to the
amyloid-associated pathology. Moreover, the link between
hepatic failure and increased Aβ brain levels has also been
established suggesting that a poor systemic excretion of Aβ
contributes to brain amyloidosis [77–80]. In fact, it has
recently been demonstrated that increasing liver LRP recep-
tor expression is a valid strategy in order to favor circulating
Aβ elimination and that it is possible to target distant organs
in order to promote brain and systemic Aβ clearance [80].
RAGE has been described as the main carrier related to Aβ
brain influx and this association, RAGE–Aβ, leads to sev-
eral pathologic changes not only in the brain but also at the
BBB affecting its permeability through several mechanisms
that also include TJ alterations [81, 82] (Table 3).

Peroxisome Proliferator-activated Receptors

Despite the fact that peroxisome proliferator-activated re-
ceptors (PPARs) have been known for a long time [83], the
recent work of Cramer et al. [53] has redirected the attention
to this nuclear receptor subgroup as a key target in AD
therapy. Indeed, PPARs have already been suggested as
potential targets for AD therapies [84–88].

Nuclear receptors are a class of transcription factors that
sense both the extra- and the intracellular environment [89,
90]. PPARs correspond to a type 2 nuclear receptor charac-
terized by the formation of heterodimers with the retinoid X
receptor (RXR) [89]. The PPAR-RXR receptor, when
inactivated, forms complexes with corepressor proteins
and its activation induces transcriptional regulation of target
genes through direct binding to the DNA peroxisome
proliferator response elements (PPREs) [90, 91]. Addition-
ally, it has been described that PPAR-RXR activation leads
to interactions with different cell signaling transduction
pathways, such as the MAPK, PI3K/Akt, and Wnt

pathways, inducing posttranslational events [89]. However,
the mechanisms of action as well as the interactions with
different cell signaling pathways remain to be fully eluci-
dated [92].

Three different mammalian PPARs have been identified:
PPARα, PPARβ/δ, and PPARγ with dissimilar distribution
among different tissues [84, 91]. “PPARα is highly
expressed in several tissues. PPARβ/δ is an APC-regulated
target of nonsteroidal antiinflammatory drugs, and PPARγ
participates in biological pathways of intense basic and
clinical interest” [84]. Although all PPARs have been de-
scribed in the adult and developing brain [93], PPARγ is the
most studied isoform and has showed the most promising
neuroprotective effects in various models of neurodegener-
ative disorders [84, 91, 92].

Peroxisome Proliferator-activated Receptors
and Alzheimer's Disease

Experimental data have pointed out that insulin-sensitizing
thiazolidinedione (TZD) drugs, such as troglitazone (TGZ)
and rosiglitazone (RGZ), which are known PPARγ agonists
and primarily used to treat type II diabetes, are able to delay
Alzheimer's development and promote cell survival through
PPARγ activation [84, 94]. PPARγ activity related to oxi-
dative stress response is well documented and direct
prooxidant as well as antioxidant activity have been de-
scribed [50, 95]. However, interaction with several antioxi-
dant and antiinflammatory regulatory pathways, such as
nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB), nuclear factor erythroid 2-related factor
(NRF2), or the Wnt/β-catenin pathway, have also been
noted [96]. In the same way, Fuenzalida et al. [86] have
proposed that PPARγ also upregulates Bcl-2, an
antiapoptotic protein and a Wnt target gene [97], in addition
to traditional survival pathways, such as MAPK or Akt,
preventing neural degeneration and increasing mitochondri-
al stability.

Recently, Cramer et al. [53] demonstrated that Aβ clear-
ance can be enhanced through ApoE increased expression as
well as its transporter proteins, ABCA1 and ABCG1, by the
activation with the RXR agonist, bexarotene. Moreover, the
bexarotene treatment was able to reverse the Aβ-induced
neurotoxicity, improving mice behavior. Despite the impact
derived from Cramer's work and the expectation of a suc-
cessful therapy against AD, there are some questions that
need to be answered. Although this finding offers a reliable
mechanism of increased Aβ clearance from the brain medi-
ated by ApoE expression modulation [98], it poorly explains
all the benefits observed in the treated mice. Furthermore,
the behavioral improvement suggests that additional under-
lying mechanisms, including the potential interactions of

Table 3 Compromised BBB transporters in AD

LRP 1 Reduced expression

ApoE allele ε4 Alters Aβ clearance by LRP1

LRP2 Reduced expression

ABC transporters

ABCB1 Polymorphisms and reduced
expressionABCC1

ABCG2

ABCG4

Receptor for advanced glycation
end products (RAGE)

Increased influx of Aβ into
the brain
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PPARγ:RXR and LXR:RXR heterodimers with cell signal-
ing pathways related to neuron and synaptic recovery, such
as Wnt, might play a critical role in the effects observed with
the RXR agonist. Even when some authors have tried to
explain the full range of effects observed by a stimulation of
nuclear receptor agonist treatments, they are focused on the
reduction in Aβ levels due to increased glial activity or
increased chaperone protein expression [99, 100] and as of
yet nothing has been described to explain the potential
effects of PPARs on the Aβ toxicity-derived effects or on
the BBB. Indeed, as mentioned previously and as has been
pointed out by other authors, the effects observed in
Cramer's research suggest the involvement of the BBB
Aβ–efflux system [76].

Peroxisome Proliferator-activated Receptors
and the Blood–Brain Barrier

Our laboratory has been working with PPAR agonists for
several years [84, 86, 97] and more recently, we have
published a study using two different PPAR agonists: 4-
phenylbutyric acid (4-PB), a PPARγ agonist, and WY
14,643 (WY), a PPARα agonist, assessing the effects of
these drugs in a double transgenic mouse model of AD
[88]. We have found that both drugs are able to improve
the cognitive impairment and alleviate the main pathological
changes observed in this murine model, even when it has
been suggested that WY cannot cross the BBB [101]. This
result has prompted us to consider the possibility that part of
the effects observed with the PPAR agonists are due to a
direct effect of the drug on one or more components of the
neurovascular unit, which leads to an increased Aβ clear-
ance, and that its activation serves to alleviate or prevent the
cerebral amyloid angiopathy. To our knowledge, all the
information available regarding AD and PPAR effects are
centered on neurons and astrocytes and not even one article
was found directed at assessing the implications of PPAR
activation on the BBB. The following lines constitute an
attempt to relate what is known about the PPARs mecha-
nisms of action and how their activation could induce a wide
range of effects on the BBB, acting through the different
cellular components of the neurovascular unit.

Peroxisome Proliferator-activated Receptors
and Blood–Brain Barrier Amyloid-β Clearance

We have previously mentioned that the level of amyloidosis
depends on the balance between production and excretion of
Aβ from the brain and how the excretion also depends on
the binding of Aβ with additional proteins, such as ApoE,
which will serve as a substrate of BBB transporters for the
final elimination of Aβ from the brain. The studies of

Cramer et al. [53] and Mandrekar-Colucci et al. [100] have
highlighted the importance of the Aβ clearance in AD,
including binding proteins and the contribution of the glial
components to this process. However, this explains only
one-half of the problem and does not consider the role of
the neurovascular unit in the Aβ clearance process. Even
more, it does not take into account the rescue function that
must take place in order to induce the cognitive and behav-
ioral improvements observed.

Several authors have indicated that PPAR activation (α,
β/δ, γ) is able to induce changes in the BBB, protecting
the brain as well as the BBB itself under different negative
stimuli. PPARα activation has been related to an increased
expression of ABCG2 [102] and with protection against
deprivation stimuli in BBB models [103]. On the other
hand, the PPARβ/δ effects on the BBB are poorly studied
but its overexpression has been related to increased protec-
tion during cerebral ischemia [104] and also with Aβ
burden decrease in AD murine models [105]. PPARγ are
the most studied subgroup of PPARs but only a few studies
have focused on BBB changes due to PPARγ activation
[106–110]. However, even when it is possible to infer that
PPARγ activation leads to increased ABCA1 and ABCG1
levels [53], no studies have examined the changes in the
expression of BBB transporters after PPARγ activation.

From our point of view, the increased Aβ clearance must
also be due to an increased expression of specialized trans-
porters at the endothelial level. However, the absence of
information regarding this issue induces the underestimation
of PPAR agonist effects on the BBB and AD.

Peroxisome Proliferator-activated Receptors
and Blood–Brain Barrier Protection and Stabilization

It has been well noted that one of the mechanisms involved
in Aβ neurotoxicity is mediated by oxidative stress [50,
111–113] and through induction of mitochondrial dysfunc-
tion that further leads to oxidative damage by an increased
production of reactive oxygen species (ROS) [114–116].
Indeed, from these observations, it has been proposed that
enhancing the cellular antioxidant mechanism could prevent
neurodegeneration [50, 86, 117, 118]. Considering the struc-
ture of the neurovascular unit, the increased Aβ-induced
oxidative stress, and the concomitant mitochondrial dys-
function that enhance the production of ROS, it might be
that the basis of the cerebral amyloid angiopathy and capil-
lary disruption is due to the inability of endothelial cells,
pericytes, and/or astrocytes to properly respond to the in-
creasing levels of ROS, leading to oxidative damage of the
BBB (Fig. 2).

Additionally, the tasks carried out at the BBB are high-
energy demanding [11] and the Aβ-induced mitochondrial
dysfunction might also have an impact on the energy

444 Mol Neurobiol (2013) 48:438–451



balance of the different components of the neurovascular
unit, altering the traffic across the BBB and perhaps also
affecting the ability to maintain the brain environment,
necessary to ensure electrical communication between
neurons. PPAR activation by several PPAR agonists has
proven to reduce oxidative damage through the reduction
of ROS production in several tissues, including the brain,
liver, and blood vessels, among others, due to the inter-
action of PPARs with antiinflammatory pathways such as
NF-κB and NRF2, the reduction of COX-2 expression or
the interaction with antiapoptotic pathways such as Bcl-2
[85, 86, 96, 119–122]. Additionally, we have recently
found that PPAR agonist treatment also increases catalase
activity in the brain of an AD mouse model [88],
suggesting an enhancement of the antioxidant capacity
mediated by PPAR activation. It is possible to hypothe-
size that astrocytes, pericytes, and endothelial cells are
able to respond in a similar way as has been observed
for other cell types, including highly specialized cells

such as neurons, controlling the surrounding environment
and limiting the oxidative damage. Additionally, if the
oxidative insult is controlled, functional rescue occurs as
observed in Cramer's work [53] as well as in our re-
search [88]. Also, in the latter case, the available infor-
mation seems to suggest a ROS-mediated crosstalk
between PPARs and proliferative/prosurvival pathways,
such as the Wnt signaling pathway [123]. In fact, several
authors have proposed that β-catenin-Tcf/Lef binding, a
key step of the Wnt signaling pathway, can be modulated
under oxidative stress and redirected to FoxO, inducing
cell senescence and the release of proapoptotic signals
[124, 125].

On the other hand, it has been described that targeting
PPARs leads to the activation of the PPARγ coactivator
1-α (PGC1α) transcription factor, which has been related
with several proteins linked to mitochondrial biogenesis
and respiration, leading to higher mitochondrial density
in neurons as well as increased activity of several

Fig. 2 Aβ/ROS-based BBB
failure. It is well known that
one of the main mechanisms
involved in the Aβ-induced
neurotoxicity is through
increased oxidative stress
derived by an increased
production of reactive oxygen
species (ROS). The present
model suggests that an
increased level of ROS might
exert the same toxic effects at
the BBB, disrupting the normal
structure of the barrier, and
altering the functionality of this
critical structure. Moreover, it is
well recognized that this event
happens early in the
development of AD and
suggests that the altered
function of the BBB could
accelerate the progress of the
pathology and might contribute
to Aβ decreased clearance
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antioxidant enzymes, such as SOD-1, SOD-2, CAT, and
GPx [126, 127]. Moreover, PGC1α has become an in-
teresting target in Huntington's disease due to the impact
that this cofactor has on mitochondrial stabilization [128,
129]. Furthermore, our recent studies [88, 130] offer further
support to the importance of Aβ peripheral clearance, as
proposed by Nishitsuji et al. [58] and Sutcliffe et al. [79],
due to the increased peroxisomal activity reported in the
liver of 4-PB- and WY-treated mice and also allow us to
hypothesize that PPAR activation, through different ago-
nists, may lead to PGC1α-increased expression at the BBB.
In fact, according to our results [88], part of the benefits
observed after PPAR agonist (4-PB and WY) treatment
should be related to a direct effect on the BBB components.
Moreover, WY is a PPARα agonist that seems unable to
cross the BBB. If we consider that PGC1α can also be
activated as a consequence of the PPARα activation [131],
this hypothesis could explain an additional mechanism that
accounts for the wide range of effects observed after PPAR
agonist treatment (Fig. 3).

Final Considerations

Even when the importance of the BBB is out of discussion,
there is an absence of information on the impact that several
potential drugs may exert on the BBB. Recently, the work of
Cramer et al. [53] has astonished the scientific community
because of the possibility of having a novel and effective
therapy against AD. However, some voices have called for
calm and have reminded us that in the past, several therapies
have promised a lot but when transferred to real patients,
have failed [98, 132]. Indeed, potent PPARγ agonists, such
as RGZ and pioglitazone [122], have shown impressive
results in different AD models, but when transferred to
patients have proven to be little effective. Well, maybe part
of the problem involves the BBB and perhaps the lack of
knowledge about what roles are played by the BBB in
neurodegenerative disorder therapies have lead us once
again to failure. Nuclear receptors, and particularly the
PPARs family, are a quite complex group of receptors in-
volved in several cellular physiological mechanisms and

Fig. 3 RXR/PPAR-based therapy model. According to current infor-
mation as well as our recent results, it is possible to hypothesize a more
complex mechanism of action of an RXR/PPAR-based therapy. Be-
yond the ApoE increased expression due to pharmacologic RXR:
PPARγ dimer stimulation, additional underlying effects might be oc-
curring. It is well noticed that PPAR agonist enhances antioxidant
defenses through increased expression of several antioxidant enzymes,
such as catalase (CAT), superoxide dysmutase (SOD), and glutation
peroxidase (GPx). Despite the contribution to attenuate the oxidative

status of the cell, it is important to highlight the effects on cell signaling
derived from ROS levels. The Wnt signaling pathway, a proliferative
prosurvival pathway, is inhibited in the presence of high levels of ROS
by diverting β-catenin from TCF/Lef to the FoxO pathway. Moreover,
PPARs have been described to be able to activate PPARγ coactivator
1α (PGC-1α), a transcription coactivator related to mitochondrial
dynamics and biogenesis, which could further account for mitochon-
drial stabilization enhancing efficient ROS management as well as
reducing mitochondrial ROS production
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which effects are quite far to be fully addressed [122].
Perhaps the systemic administration of PPARs agonists
leads to the BBB partial recovery and to an improved
BBB trafficking, which in turn, might reduce the ability of
the agonists to enter into the brain. Unfortunately, there is a
lack of studies focused on BBB recovery related with
PPARs agonists administration. We believe that the knowl-
edge derived from this kind of studies will help to under-
stand why several drugs fail when transferred from in vitro
or in vivo neurodegenerative disease models to real patients.
Scientific progress has allowed us to develop more complex
BBB models than before [133], offering the possibility to
answer some of the questions regarding the structure and
function of the BBB. Moreover, new technologies, such as
nanotechnology, have already shown promising results re-
garding drug delivery to the brain, suggesting that in the
future, critical advances will be made in this field [134].

Nuclear receptors and particularly PPARs have become
promising targets in several neurodegenerative disorders.
The expectation for a novel AD therapy is higher than ever,
but several questions about the mechanism of action and the
potentialities of such a treatment must be answered in order
to be certain of risks and benefits derived from PPAR
activation. Some of these questions certainly involve the
BBB structure and function. We have tried to briefly intro-
duce, considering the available information about the mech-
anisms of action of PPARs, how its activation could also
induce beneficial effects in the BBB and explain the im-
provements observed after PPAR agonist treatments in AD
mouse models.
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