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a b s t r a c t

This work deals with some typographical mistakes into the above-referenced paper.
Although they do not affect the main results, it is necessary to make due corrections.

We affirm that the results and conclusions obtained are correct and the errors have no
further implications in the aforementioned paper.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of this presentation is to correct several minor typographical mistakes that crept into the article by González-
Olivares et al. [1].

Although those typos do not affect the main results, they may, unfortunately, lead to a misunderstanding of the results
obtained.

It should be stressed that errors appear in both the statements and proofs of Theorems 4 and 7. For this reason,we provide
the corresponding corrections for an adequate understanding of these aspects of the aforementioned theorems.

2. The correction

The statement of Theorem 4 in [1] (page 2935) has typos in the inequalities for S. It must be replaced by the following
one:

Theorem 1. (Theorem 4 in [1]) Let us assume that (u∗, vs) ∈ W s (M, 0) and (u∗, vu) ∈ W u (1, 0), where vs and vu are functions
of the parameters A, E, S and M. Let us further assume that vs

≥ vu.
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(a) If A > −3E2+2EM+2E−M
2E−M−1 , then the trace is negative and the equilibrium Qe is a local attractor.

(a1) If S >
(−3E2−2EA+2E+A)

2

4(1−E)(A+E)
, then Qe is an attracting focus.

(a2) If S <
(−3E2−2EA+2E+A)

2

4(1−E)(A+E)
, then Qe is an attracting node.

(b) If A < −3E2+2EM+2E−M
2E−M−1 , then the trace is positive and the equilibrium Qe is a repellor.

(b1) If S >
(−3E2−2EA+2E+A)

2

4(1−E)(A+E)
, then Qe is an unstable focus surrounded by a stable limit cycle.

(b2) If S <
(−3E2−2EA+2E+A)

2

4(1−E)(A+E)
, then Qe is an unstable node and the limit cycle disappears. In this last case, the singularity

(0, 0) is globally asymptotically stable.

(c) If A =
−3E2+2EM+2E−M

2E−M−1 < 1, then trDYν(E, ve ) = 0 and the equilibrium point is a weak focus of order 1 [2].

An analogous second typo appears in the statement of Theorem 7 in [1] (page 2936) in the expressions for S. It must be
replaced by the following correction:

Theorem 2. (Theorem 7 in [1]) Let (u, vs) ∈ W s (0, 0) be the stable manifold of O and (u, vu) ∈ W u (1, 0) be the unstable
manifold of Q1.

7.1 Assuming that vs > vu we obtain that:

(a) If A > 2E−3E2
2E−1 , the singularity Qe is a local attractor.

(a1) If S >
(3E2+2EA−2E−A)

2

4(1−E)(A+E)
, the point Qe is an attracting focus.

(a2) If S <
(3E2+2EA−2E−A)

2

4(1−E)(A+E)
, the point Qe is an attracting node.

(b) If A < 2E−3E2
2E−1 , the singularity Qe is a repellor.

(b1) If S >
(−3E2−2EA+2E+A)

2

4(1−E)(A+E)
, then Qe is an unstable focus surrounded by a stable limit cycle.

(b2) If S <
(−3E2−2EA+2E+A)

2

4(1−E)(A+E)
, then Qe is an unstable node and the limit cycle disappears. In this last case the singularity

(0, 0) is globally asymptotically stable.

(c) If A =
2E−3E2
2E−1 and S > 1

4
(3E2+2EA−2E−A)

2

(1−E)(A+E)
, Qe is a weak focus of order 1.

7.2 If vs < vu, then the point Qe is a repellor, the limit cycle disappears and the origin is globally asymptotically stable; then,
a heteroclinic curve is obtained, joining Qe with (0, 0).

In the appendix slight changes in some expressions must be incorporated.
In the proof of Theorem 4 (page 2940) the mistakes appear in the coefficient of y2, in both vector fields Z̄η and Z̆η;

moreover, the expressions for A in (b) and the second Lyapunov quantity L2 is badly written; the correct proof is:

Proof of Theorem 4. For the point Qe, the Jacobian matrix is

D Yη ( E, ve) =


E

−3E2

− 2EA + 2EM + 2E + AM + A − M


−E
S(1 − E)(E − M)(A + E) 0


.

Hence

detDYν (E, ve) = SE(1 − E)(E − M)(A + E) > 0

and

trDYν (E, ve) = E

−3E2

− 2EA + 2EM + 2E + AM + A − M

,

and the behavior of ( E, ve) is determined by

T = (−2E + M + 1) A − 3E2
+ 2EM + 2E − M.

We have that:
(a) trDYη ( E, ve) < 0 if and only if A > −3E2+2EM+2E−M

2E−M−1 (T < 0) and the singularity Qe is a local attractor.

(b) trDYη ( E, ve) > 0 if and only if A < −3E2+2EM+2E−M
2E−M−1 and Qe is a repellor, and by the Poincaré–Bendixson theorem

at least one limit cycle surrounding the point ( E, ve) exists; the trajectories under the separatrix determined byW s (M, 0)
tend to this limit cycle.
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When vs
= vu, the limit cycle collapses with the heteroclinic that joins the two saddle points.

(c) trDYη ( E, ve) = 0 if and only if A =
−3E2+2EM+2E−M

2E−M−1 < 1.
To determine the weakness of Qe we employ the translation to the origin given by

u → U + E and v → V + ve, with ve =
(1 − E)2(E − M)2

2E − M − 1
,

obtaining the system

Zη :


dU
dτ

= ((1 − U − E)(U + E − M)(A + U + E) − (V + ve)) (U + E)

dV
dτ

= SU (V + ve) .

The Jordan form associated with D Zη (0, 0) is

J =


α −H
H α


with α = trD Zη (0, 0) = 0 and H = detD Zη (0, 0), where

H2
= SE

(1 − E)2(E − M)2

2E − M − 1

and the matrix for the change of variables [3] is

N =


Z11 − α −H

Z21 0


=

 0 −H
H2

E
0


.

Then the vector field Zη becomes

Z̄η :



dx
dτ

= −Hy − HSxy

dy
dτ

=

Hx −
H2

E
xy +

H

1 − 3E + 3E2

− 3EM + M2
+ M


E

2E − M − 1
y2

−H2 1 − 4E + 5E2
− 4EM + M2

+ M
2E − M − 1

y3 + H3y4.

Carrying out a time rescaling given by T = Hτ , we have the canonical system

Z̆η :



dx
dT

= −y − Sxy

dy
dT

=

x −
H
E
xy +


1 − 3E + 3E2

− 3EM + M2
+ M


E

2E − M − 1
y2

−H
1 − 4E + 5E2

− 4EM + M2
+ M

2E − M − 1
y3 + H2y4.

Using the Mathematica software [4] to calculate the focal values for the vector field Z̆η , the second Lyapunov quantity [2]
is given by

L2 = −


2 − 9E + 12E2

+ 2M − 9EM + 2M2

H

8 (2E − M − 1)
= −

H
8 (2E − M − 1)

f (M, E),

where L2 < 0, since

f (M, E) = 2 − 9E + 12E2
+ 2M − 9EM + 2M2 > 0

for all E, such that

1 + M
2

< E <
1
3


M + 1 +


M2 − M + 1


.

Thus, Qe is a weak focus of order 1 and system (3) has a unique limit cycle. �

The unique error in the proof of Theorem 7 is in the expression for the second Lyapunov quantity L2. The correct proof of
Theorem 7 (page 2941) is:
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Proof of Theorem 7. For the point Qe, the Jacobian matrix is

D Yη ( E, ve) =


−4E3

+ 3E2(1 − A) + 2AE − ve −E
Sve 0


with ve =

(1−E)2E2

2E−1 . As ve > 0, then det D Yη ( E, ve) > 0 and the nature of Qe depends on

trD Yη ( E, ve) = −A(2E − 1) + E (2 − 3E) .

Qe has the same nature as the equivalent point in system (3), that is:
If A > 2E−3E2

2E−1 , the singularity Qe is an attractor.

If A < 2E−3E2
2E−1 , the singularity Qe is a repellor surrounded by a limit cycle (the Poincaré–Bendixson theorem), when

vs > vu.
If A =

2E−3E2
2E−1 , the singularity Qe is a weak focus.

Using the Mathematica software [4] we obtain that the second Lyapunov quantity [2] is L2 = −
(2−9E+12E2)H

8(2E−1) , with

H2
= SE (1−E)2E2

2E−1 , which is clearly negative for E > 1
2 . For the system (3), the uniqueness of the limit cycle, when it exists, is

assured.
This limit cycle increased when the parameters changed until it intersected the heteroclinic joining Q1 and O.
When E → 0, the point Qe is a repellor node. The heteroclinic that joined the saddle points Q1 and O is broken (also

disappearing the limit cycle); then, the origin Owill be globally asymptotically stable. �

3. Conclusions

Despite the typographical mistakes in the statements and proofs of Theorems 4 and 7, the properties of system (3) (page
2933) are not altered; as a consequence, the results for system (2) (page 2932) are correct.

Therefore, the modified Rosenzweig–MacArthur model considering a new factor in the prey growth rate describing an
Allee effect has interesting and varied dynamics, as was shown in [1].
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