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Abstract
The Lagrangian equations of motion for massive spinning test particles (tops)
moving on a gravitational background using general relativity are presented.
The paths followed by tops are nongeodesic. An exact solution for the motion of
tops on a Schwarzschild background which allows for superluminal propagation
of tops is studied. It is shown that the solution becomes relevant for particles
with small masses, such as neutrinos. This general result is used to calculate the
necessary condition to produce superluminal motion in part of the trajectory
of a small mass particle in a weak gravitational field. The condition for
superluminal motion establishes a relation between the mass, energy and total
angular momentum of the particle.

PACS numbers: 04.20.Cv, 04.20.Jb, 04.90.+e, 14.60.St, 14.60.Lm

1. Introduction

The well-known September 2011 OPERA neutrino experiment [1] has produced a myriad
of articles trying to explain or understand, prove or disprove the experimental results for
superluminal neutrino motion. One of the most important contributions to the understanding
of the problem is the Cohen–Glashow work [2].

Most of the papers are based on models which, by construction, ignore or neglect general
relativistic effects. Furthermore, even though the general relativistic aspects of the dynamics are
not considered, the arguments presented in these papers seem to tacitly assume that neutrinos
follow geodesics in the presence of gravitational fields.

It has been known for quite some time [3–6] that spinning massive test particles (tops)
follow nongeodesic paths when moving on gravitational fields.

Even though a recent communication seems to refute the fact that the original OPERA
experimental results do indeed describe the superluminal propagation of neutrinos, we believe
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that it is interesting to show that a consistent general relativistic model allows for the possibility
of the superluminal propagation of tops moving on gravitational backgrounds [5–7].

In this paper we discuss an exact solution for the equations describing the motion of a top
on a Schwarzschild background. A Lagrangian derivation for these nongeodesic equations of
motion obeyed by tops moving on a gravitational background was first obtained by Hojman
[5, 6] (using a formalism by Hanson and Regge [8] developed for flat spacetime) which is
outlined in the next section. We show that massive tops may reach superluminal velocities
provided that their particle mass m, energy E and total angular momentum magnitude j of the
orbit, satisfy a relation (which is explicitly derived in section 4).

Nongeodesic equations of motion for tops were first derived by Mathisson [3] and
Papapetrou [4] as limiting cases of rotating fluids moving in gravitational fields. On the
other hand, massless spinning particles do follow null geodesics as showed by Mashhoon [9]
who used the Mathisson–Papapetrou formalism for his derivation.

Loosely speaking, in the presence of gravitational fields, massive spinning particles (such
as neutrinos) follow nongeodesic paths [3–6], while photons move in null geodesics (in spite
of their spinning nature) because they are massless [9].

Even though the equivalence principle is sometimes interpreted as stating that test particles
in a gravitational field should follow geodesics, this interpretation is, strictly speaking, valid
only for spinless point test particles. Extended particles are, in general, subject to tidal forces
and follow, therefore, nongeodesic paths.

In the Lagrangian formulation of the motion of tops, the velocity uμ and the canonical
momentum Pμ vectors are, in general, not parallel. For the motion of tops in the presence
of electromagnetic and/or gravitational fields, the (square of the) mass m2(≡ PμPμ > 0)

is conserved implying that the momentum vector remains timelike along the motion.
Nevertheless, the velocity vector may become spacelike [5, 11, 8, 12].

The proper treatment of the (subtle but crucial) lack of parallelism between velocity
and momentum is best achieved with a Lagrangian formulation of the motion of tops,
because otherwise the canonical momentum cannot be appropriately defined. Furthermore,
the Mathisson–Papapetrou formulation gives rise to third-order equations of motion, while the
Lagrangian approach gives rise to second-order ones [5, 10].

It turns out that for suitable choices of initial conditions this nongeodesic motion can
accelerate tops (and neutrinos) beyond the speed of light.

Theoretical results involving superluminal propagation of massive spinning particles
and fields in interaction with electromagnetic or gravitational fields have been reported
previously in the literature by Velo and Zwanziger [11], Hanson and Regge [8], Hojman
[5] and Hojman and Regge [12], for instance, while experiments reporting hints of
superluminal neutrino propagation can be found in [13, 14], among others, and other results
reported in the MIT webpage on superluminal neutrinos (The Net Advance of Physics,
http://web.mit.edu/redingtn/www/netadv).

2. Motion of a relativistic top on a gravitational field

Consider a relativistic (spherical) top. Denote its position by a four-vector xμ while its
orientation is defined by an orthonormal tetrad e(α)

μ. A gravitational field is described as
usual in terms of the metric field gμν [5, 6]. The tetrad vectors satisfy

gμν e(α)
μ e(β)

ν ≡ η(αβ), (1)

with η(αβ)(= η(αβ)) given by

η(αβ) ≡ diag (+1,−1,−1,−1) (2)

2
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and have, therefore, six independent components (consistent with the number of parameters
of the Lorentz group).

The velocity vector uμ is defined in terms of an arbitrary parameter λ by

uμ ≡ dxμ

dλ
. (3)

Besides, the antisymmetric angular velocity tensor σμν is

σμν ≡ η(αβ)e(α)
μ De(β)

Dλ

ν

= − σ νμ, (4)

where the (covariant) derivative De(β)
ν/Dλ is defined in terms of the Christoffel symbols

�ν
ρτ , as usual, by

De(β)

Dλ
≡ de(β)

dλ
+ �ν

ρτ e(β)
ρ uτ . (5)

Note that general covariance may be achieved unambiguously at the level of the
Lagrangian formulation [5] because only first derivatives of the dynamical variables are
used in the construction of the Lagrangian. If implemented using the equations of motion,
terms proportional to the Riemann tensor may be missed, because (flat spacetime) second
partial derivatives commute while (curved spacetime) second-order covariant derivatives do
not commute and their commutator is proportional to the Riemann tensor. If no Lagrangian
theory for a system of special relativistic equations of motion is known, the introduction of
gravitational interactions cannot be unambiguously implemented.

The Lagrangian L = L(a1, a2, a3, a4) is constructed as an arbitrary function of four
invariants a1, a2, a3, a4 such that the action S = ∫

L dλ, be λ-reparametrization invariant;

L(a1, a2, a3, a4) = (a1)
1/2L(a2/a1, a3/(a1)

2, a4/(a1)
2) (6)

(the speed of light c is set equal to 1, at this time), where L is an arbitrary function of three
variables and a1 ≡ uμuμ, a2 ≡ σμνσμν = −tr(σ 2), a3 ≡ uασαβσβγ uγ , a4 ≡ det(σ ). Note
that this expression seems to require a1 to be positive. To be precise, the fact that a1 be positive
is not crucial in the formulation, as it will be proved later on (see equation (21)). One could
rewrite the expression for the Lagrangian as

L(a1, a2, a3, a4) = (a2)
1/2L1(a1/a2, a3/(a2)

2, a4/(a2)
2), (7)

for instance.
The conjugated momentum vector Pμ and antisymmetric spin tensor Sμν are defined by

Pμ ≡ ∂L

∂uμ
, (8)

Sμν ≡ ∂L

∂σμν
= −Sνμ. (9)

The equations of motion are obtained by considering the variation of the action S with
respect to (ten) independent variations δxμ and (the covariant generalization of) δθμν defined
by

δθμν ≡ η(αβ)e(α)
μδe(β)

ν = −δθνμ. (10)

The (nongeodesic) equations of motion turn out to be [5, 6]
DPμ

Dλ
= −1

2
Rμ

ναβuνSαβ (11)

and
DSμν

Dλ
= Sμλσλ

ν − σμλSλ
ν = Pμuν − uμPν . (12)

3
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These results hold for arbitrary L. The dynamical variables Pμ and Sμν may be interpreted
as the ten generators of the Poincaré group. In order to restrict the spin tensor to generate
rotations only, the Tulczyjew constraint [15]

SμνPν = 0, (13)

is usually imposed [5, 8]. It turns out that both the top mass m and its spin J are conserved
quantities (see appendix A);

m2 ≡ PμPμ, (14)

J2 ≡ 1
2 SμνSμν. (15)

Furthermore, if ξμ is a Killing vector, then

Cξ ≡ Pμξμ − 1
2 Sμνξμ;ν (16)

is a constant of motion [5, 6, 12].
The following gauge choices and ‘invariant relations’ (defined in appendix B)

x0 = λ = t, e(0)
μ = Pμ/m, (17)

may be implemented [8, 5, 6] to fix the arbitrary parameter λ and to restrict the (Lorentz
transformations) six degrees of freedom of the tetrad to three-dimensional rotations (for
details, see appendix B). The previous choices satisfy condition (14)

e(0)
μe(0)μ = PμPμ

m2
= η(00) = 1, (18)

and are consistent with constraint (13)
D (SμνPν )

Dλ
= 0

= (
Sμλσλ

ν − σμλSλ
ν
)
Pν + mSμν De(0)ν

Dλ

= mSμλσλ
νe(0)ν − mSμνσνλe(0)

λ = 0, (19)

where we have used the fact that
De(α)

μ

Dλ
= −σμ

λe(α)
λ, (20)

for any of the tetrad vectors, according to equations (1), (2) and (4).
The consistency of constraint (13) with the equations of motion (11) and (12) is guaranteed

by making use of the arbitrariness of Lagrangian L (or L1) in (6) (or (7)) by appropriately
constructing it. As a matter of fact, the Lagrangian [8]

L =
(

Aa1 − Ba2

2
+ 1

2

√
(Aa1 − Ba2)2 − 8B(Aa3 − 2Ba4)

)1/2

, (21)

gives rise to the equations of motion (11) and (12) and the Tulczyjew constraint (13) plus a
Regge trajectory defined by Bm2 −AJ2/2 = AB. Besides, it can be proved that this Lagrangian
is well defined for a1 � 0. Therefore, one may consider Lagrangian (21) as the starting point
of this theory.

In order to prove that (21) is a well-defined Lagrangian for any value of a1, define

D ≡ 1
2

√
(Aa1 − Ba2)2 + 16B2a4 − 8ABa3, (22)

such that the Lagrangian (21) now becomes

L =
(

Aa1 − Ba2

2
+ D

)1/2

. (23)

4
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In what follows we show that D � (Aa1 − Ba2)/2 which ensures that L is real for any value
of a1 under very general assumptions.

First, we can see that a4 is always non-negative because the determinant of an
antisymmetric matrix in an even dimensional space is a perfect square. The sign of a3 can be
found as follows. We have that

a3 ≡ uασαβσβγ uγ , (24)

may be rewritten as

a3 = − UαUα, (25)

with

Uα ≡ σαβuβ. (26)

Consider the momentum vector Pα which is always timelike (due to mass conservation).
We now show that Uα is a spacelike vector because it is orthogonal to Pα . The orthogonality
relation reads

PαUα = Pασα
βuβ = DPβ

Dλ
uβ = 0, (27)

where we have used (20) for eμ

(0)
= Pμ/m and the fact that uβ is orthogonal to DPβ/Dλ as it

can be easily seen from (11). Therefore, UαUα < 0, and then a3 is positive.
It is enough to choose AB < 0 to end the proof that the Lagrangian (21) is well defined

irrespective of the sign of a1. Even if AB � 0 there are regions where Lagrangian (21) is well
defined for a1 < 0, but for AB < 0, it is well defined everywhere.

3. Exact solution

The equatorial motion of a top in a Schwarzschild field background may be solved exactly.
The Schwarzschild line element is ds2 = gtt dt2 + grr dr2 + gθθ dθ2 + gφφ dφ2, where
gtt = c2(1 − 2r0/r), grr = −(1 − 2r0/r)−1, gθθ = −r2, gφφ = −r2 sin2 θ and 2r0 is the
Schwarzschild radius. From now on we reinsert explicitly c in all the expressions. The general
equations (11) and (12) were written in [5] along with (13), (14), (15), (16) and (17) for the
four Killing vectors of the Schwarzschild metric. In this paper, we restrict ourselves to the
motion in the plane defined by cos θ = 0. If the top is initially in that plane and θ̇ = 0, then it
remains in the equatorial plane [5], in which θ = π/2 and Pθ = 0. This reduction is possible
due to the fact that the direction of angular momentum is conserved, so two of the four Killing
vector conservation laws are used to restrict the motion to the equatorial plane.

It is convenient to define the dimensionless parameter

η = J2r0

m2c2r3
, (28)

where J = �/2 is the top’s spin (as well as the neutrino’s spin). Thus, the set of equations (11)–
(17) (including the two remaining Killing vector conservation laws, energy E and total angular
momentum magnitude j in addition to the conservation of mass and spin) may be solved exactly
to yield [5]

Pφ = − j ± EJ/(mc2)

1 − η
, (29)

Pt = E ∓ jJr0/(mr3)

1 − η
, (30)

5
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and, from PμPμ = m2c2, we obtain

Pr = ±
[

P2
t

c2
−

(
P2

φ

r2
+ m2c2

)(
1 − 2r0

r

)]1/2

. (31)

We can now solve for the velocities. To this end, we use two of the equations of motion (12).
In the plane defined by θ = π/2, these equations become

DStr

Dλ
= Pt ṙ − Pr

= SφrPφ

P2
t

DPt

Dλ
− DSφr

Dλ

Pφ

Pt
− Sφr

Pt

DPφ

Dλ
(32)

and
DStφ

Dλ
= Pt φ̇ − Pφ

= − SφrPr

P2
t

DPt

Dλ
+ DSφr

Dλ

Pr

Pt
+ Sφr

Pt

DPr

Dλ
, (33)

which may be solved for ṙ and φ̇. To perform this task, we use the equations of motion (11)
and (12), the relations between the spin and momentum [5]

Str = −SφrPφ

Pt
, (34)

Stφ = SφrPr

Pt
, (35)

which are consequences of constraint (13) and the condition

(Sφr)2 = J2 (Pt )
2

m2r2
, (36)

which is derived from equations (13), (14) and (15).
Taking these results into account, the velocities turn out to be

φ̇ = c2

r2

(
1 − 2r0

r

)(
2η + 1

η − 1

) (
Pφ

Pt

)
, (37)

ṙ = c2

(
1 − 2r0

r

) (
Pr

Pt

)
. (38)

Finally, we obtain

dφ

dr
=

(
2η + 1

η − 1

)(
Pφ

r2Pr

)
. (39)

It is worth noting that the three preceding expressions coincide with the usual results for
geodesic motion when J2 = 0 (and therefore η = 0). Once the solutions are spelled out, we
can find one of the main results of this work. From expressions (37) and (38), we find(

ds

cdt

)2

= gtt

c2
+ grr

(
ṙ

c

)2

+ gφφ

(
φ̇

c

)2

= m2

(Pt )2
(1 − �), (40)

where c2Pt = (1 − 2r0/r)−1Pt , and we define the superluminal parameter � as

� = 3η(2 + η)

m2c2r2(1 − η)2
(Pφ )2 > 0. (41)

6
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From (40), it is straightforward to realize that it is possible that ds2 < 0 for some of the
solutions, at least in part of the top’s trajectories. It is clear that the contribution of the �

parameter is important for small mass particles, such as neutrinos, because the � dependence
on the particle mass behaves as m−4.

In the next section we study the trajectory of small mass particles under the approximation
in which the top moves far away from the Schwarzschild horizon, i.e. for r � r0. We find the
conditions that the mass, energy and total angular momentum of the top must satisfy in order
to produce superluminal motion in a segment of its trajectory.

4. Superluminal motion for r � r0

The main purpose of this section is to show that there are some particle trajectories such that
� < 1 in part of the path and � > 1 in the rest of it. Knowing that J = �/2 is the spin of
the top, superluminal behavior imposes a condition on the mass m, the total energy E and the
total angular momentum j.

We look for a solution such that the particle is moving at distances r much larger than
the Schwarzschild radius of the black hole, r0/r � 1, i.e. we only consider the motion of the
particle in a weak gravitational field. Besides, to focus in regimes in which � is relevant, we
restrict ourselves to the case of a small mass particle, such that its total energy is larger than
its rest mass energy, E � mc2. Both assumptions imply that η � 1.

In the weak field and small mass approximations, taking the upper signs in the
preceding solutions (29) and (30), the momenta become Pφ = (1 + η) (− j + EJ/mc2),
Pt = (1 + η) (E − jJr0/mr3) and

Pr = ±
[

E2

c2
− 1

r2

(
j − EJ

mc2

)2
]1/2

. (42)

In order to study the particle motion, we assume that initially the particle approaches the
central body from infinity and it remains always at distances r � r0. Thus, the orbit of the
particle in the equatorial plane can be characterized by two values of r in the trajectory, rc

and rR. The first one is the value of the orbit’s radius in which the particle’s velocity reaches
the speed of light, i.e. the point in which � = 1. The second one is the return point of the
particle’s orbit, and it is defined as the point when its radial momentum vanishes, Pr = 0.

By imposing the condition � = 1, it is straightforward to obtain that the value of rc is
given by

rc =
[

6J2r0

m4c4

(
j − EJ

mc2

)2
]1/5

. (43)

On the other hand, we can calculate the return point for the particle’s trajectory rR solving
Pr = 0 from (42). We obtain

rR = c j

E

(
1 − JE

j mc2

)
. (44)

The particle reaches the speed of light in rc (because �(rc) = 1 and therefore ds2 = 0).
However, to have superluminal motion after that point requires that �(rR) > 1 (implying
ds2 < 0). Using equation (44) in (41) implies a condition that the mass, the energy and the
total angular momentum of the particle must fulfill

6J2E5r0 > m4c9

(
j − EJ

mc2

)3

. (45)

7
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The above expression shows the relation that m, E and j satisfy to achieve superluminal
motion. Note that the condition cannot be met by spinless particles. Knowing the energy of
the particle, it is possible to use (45) to estimate the mass and total angular momentum of the
particle if superluminal motion is ever detected.

Interestingly, one can prove that condition (45) is equivalent to rR < rc. This means
that when the particle has a ‘ballistic’ trajectory around the black hole, it can always be
superluminal in some part of its orbit, nearest to 2r0, for appropriate m, E and j. Clearly
its speed will not be constant along the trajectory, because in the first part of the trip, the
gravitational field speeds it up until it reaches rR, slowing it down afterward.

5. Conclusions

We present an exact solution to the nongeodesic equations of motion in a Schwarzschild
gravitational background that allows for superluminal propagation of massive spinning test
particles. The superluminal motion depends strongly on the inverse of the mass of the particle.
This is, of course, relevant for small mass particles such as neutrinos. We have shown that a
consistent general relativistic theory which allows for superluminal propagation is possible.

Furthermore, the superluminal propagation effect presented here can be achieved in weak
gravitational fields, as for example, on the surface of the Earth. In the presence of stronger
gravitational fields (which can be easily found in astrophysical context) this effect will be
much enhanced.

It is worthwhile mentioning that the aforementioned effect depends strongly on the fact
that we deal with small mass particles, as the relevant � parameter has an m−4 dependence,
and it is therefore very unlikely that superluminality could be detected for particles other than
neutrinos.

Finally, we would like to mention that the equation of motion (11) can be rigorously
generalized to include the gravitational self-force of the tops [16], showing that these
corrections also modify the geodesic paths. However, the new forces are proportional to
the particle mass and therefore their effects for small mass particles are negligible compared
with those presented in this work.
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Appendix A

The mass conservation law may be obtained as follows. Rewrite the velocity vector uν as

uν = 1

m2
(PμPμ)uν + 1

m2
(Pμuμ − Pμuμ)Pν

= 1

m2
(Pμuν − Pνuμ)Pμ + 1

m2
PμuμPν . (A.1)

We use the equation of motion for the spin tensor (12) to deal with the first term on the
right-hand side of the previous equation. Then

m2uν = Pμ

DSμν

Dλ
+ PμuμPν,

= − DPμ

Dλ
Sμν + PμuμPν, (A.2)

8
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where we have used the constraint SμνPμ = 0. We multiply by DλPν , and due to the fact that
DλPμSμνDλPν ≡ 0, we find

m2uν DPν

Dλ
= PμuμPν DPν

Dλ
. (A.3)

However, using the equation of motion for Pν , we find that uνDλPν = 0, and then we
obtain the condition

Pν DPν

Dλ
= 0, (A.4)

which implies that m2 is constant.

Appendix B

In this appendix we show how to implement the choices

e(0)
μ = Pμ/m. (B.1)

using a different approach to the one presented in [8].
Let us start by defining S̄(αβ) by

S̄(αβ) ≡ e(α)μSμνe(β)ν . (B.2)

It is a straightforward matter to realize that the six quantities S̄(αβ) are constants of motion,

DS̄(αβ)

Dλ
= 0, (B.3)

because of (12) and (20). We can now choose

S̄(0i) = 0, (B.4)

as three initial conditions which are, of course, preserved in time because of (B.3). Hanson
and Regge call these conditions ‘invariant relations’.

Conditions (B.4) imply that the vector e(0)μ is a null eigenvector of the spin matrix Sμν ,
i.e.

Sμνe(0)ν = 0. (B.5)

The spin matrix Sμν has an even rank (because it is antisymmetric). Due to the fact that
SμνPν = 0, its rank is not 4, so it must be 2 (otherwise it would be zero, rendering it trivial). If
its rank is 2, it must have two null eigenvectors, which are the momentum vector Pμ and the
Pauli Lubanski vector W μ ≡ 1

2εμναβSαβPν , as one can easily prove (see also [8]).
Therefore, the vector e(0)

μ may be expressed as a linear combination of the momentum
vector Pμ and the Pauli Lubanski vector W μ;

e(0)
μ = ρ

Pμ

m
+ τW μ. (B.6)

Hanson and Regge [8] construct the Hamiltonian theory of the top (pages 523 and
following of reference [8]) using Dirac’s method [17]. There they handle the Tulczyjew
constraint SμνPν = 0 by extracting its first class content �2 (in Dirac’s terminology) with

�2 ≡ 1
2εμναβSμνSαβ ≈ 0, (B.7)

where the sign ‘≈ 0’ is read ‘weakly equal to zero’. This means that the constraint �2

vanishes, but its Poisson bracket relations with some dynamical variables are different from
zero. Loosely speaking, Dirac’s method provides one way to mend this contradiction by
redefining the Poisson bracket relations. The new brackets are called Dirac brackets in his

9
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honor. The Dirac brackets of the constraints (with any dynamical variable) are identically
zero.

Due to the fact that �2 is first class, it generates gauge transformations [17]. Therefore
a gauge (associated with it) may be chosen. If the Poisson bracket of a dynamical variable A
with �2 is such that [A,�2] ≈ 0, then A is invariant under �2, i.e. is gauge invariant. So, in
order to choose a gauge associated with �2 one needs to find a variable B such that its Poisson
bracket with �2 be different from zero.

Use (B.6) to obtain ρ

ρ = e(0)
μ Pμ

m
, (B.8)

and consider the Poisson bracket relations, equations (3.11) of reference [8][
e(γ )

μ, Sαβ
] = e(γ )

αgμβ − e(γ )
βgμα (B.9)

or [
e(γ )

μ, Sαβ

] = e(γ )αδμ
β − e(γ )βδμ

α, (B.10)

(it is perhaps worth mentioning that there is a change in notation, the role of Hanson
and Regge’s �μ

ν matrix [8] is played by the tetrad vectors [5, 6] e(μ)
ν here). Now, it is

straightforward to realize that [ρ,�2] = 4e(0)μW μ �= 0 (if e(0)μW μ = 0, the proof ends here).
Squaring (B.6), one obtains

1 = ρ2 − τ 2m2J2. (B.11)

We may, therefore, choose the gauge

ρ = 1, (B.12)

which means that τ = 0, thus ending the proof.
The same result may be achieved by computing [τ,�2] and choosing the gauge τ = 0.
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