
ORIGINAL PAPER

In pursuit of negative Fukui functions: examples
where the highest occupied molecular orbital fails
to dominate the chemical reactivity
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Abstract In our quest to explore molecules with chemically
significant regions where the Fukui function is negative, we
explored reactions where the frontier orbital that indicates
the sites for electrophilic attack is not the highest occupied
molecular orbital. The highest occupied molecular orbital
(HOMO) controls the location of the regions where the
Fukui function is negative, supporting the postulate that
negative values of the Fukui function are associated with
orbital relaxation effects and nodal surfaces of the frontier
orbitals. Significant negative values for the condensed Fukui
function, however, were not observed.
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Motivation

When an electron is removed from a molecule, does the
probability of observing an electron decrease everywhere?
This is always true in the frozen molecular orbital approx-
imation, and one might expect it to be true more generally.
But there is abundant evidence, including some from highly
accurate calculations [1, 2], that this is not true. Orbital
relaxation can cause the electron density to increase in some
molecular regions upon ionization [1–7].

The first detailed explanation for this phenomenon was
given for the neon atom [1]. When one removes an electron
from neon, it comes from the 2p orbital. In the frozen orbital
approximation, removing an electron does not affect the
electron density at the nucleus. Removing the electron also
deshields the electrons in the 1s and 2s orbitals (and also the
other 2p orbitals). Therefore, once orbital relaxation is
allowed, the remaining occupied orbitals contract towards
the nucleus. The contraction of the 1s and 2s orbitals toward
the nucleus increases the electron density at the nucleus.
Therefore, removing an electron from neon causes the elec-
tron density near the nucleus to increase, not decrease. In
fact, near the nucleus, the electron density of Ne+6 is greater
than the electron density of Ne. This is because removing
the 2p electrons from Ne does not affect electron density at
the nucleus (in the frozen orbital approximation) but relax-
ation of the 1s and 2s orbitals increases electron density at
the nucleus.

Orbital relaxation is rarely qualitatively important in
chemistry, but there are exceptions [4, 8–11]. When orbital
relaxation is very important, the highest occupied molecular
orbital (HOMO) may not indicate the most favorable sites
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for electrophilic attack, i.e., strong orbital relaxation effects are
associated with failure of the frontier orbital approximation.
One advantage of using the density functional theory (DFT)
approach to chemical reactivity (often called conceptual DFT
or chemical DFT) [12–19] is that the fundamental indicator of
orbital-guided electronic attack in DFT-based reactivity theory,
the Fukui function [20–22], already includes the contributions
of electron correlation and orbital relaxation [23, 24].

The Fukui function is the generalization of the frontier
molecular orbital (FMO) concept to DFT [22, 23]; it is defined
as the best (i.e., minimum energy or maximum hardness) way
to change the electron density of an N electron system when
one adds ( f þ rð Þ ) or removes ( f � rð Þ ) an electron [25, 26].
Because of the derivative discontinuity of the electronic ener-
gy and the electron density at integer numbers of electrons
[27–29], the Fukui functions for adding and subtracting elec-
trons are different [22, 30]. The Fukui function is negative
when removing (adding) an electron to a molecule causes the
electron density to increase (decrease).

We are interested in molecules with substantial negative
Fukui functions because this is the signature of redox induced
electron transfer (RIET) [4, 31–34]. In RIET, oxidizing a
molecule (removing electrons) causes one of the atoms or
functional groups in the molecule to be reduced (to gain
electrons). (The reverse reaction will also show RIET: reduc-
ing the molecule causes one of the atoms to be oxidized.) In
order to see RIET, the Fukui function needs to be so negative
that the atomic charge decreases by about one electron when
an electron is removed from a molecule. (That is, the atomic
charges will become more negative or less positive. The
condensed Fukui function [35–40] is therefore negative.)

Since negative values of the condensed Fukui function
occur only when orbital relaxation is significant, we decided
to examine molecules where the HOMO does not control
the susceptibility of the molecule to electrophilic attack
[41–43]. Other molecules of this type have been shown to
have significant effects from orbital relaxation [8, 10].
While we have focused our attention on the Fukui function,

there are other reactivity indicators that may be more appro-
priate when electrophilic attack on a molecule reactivity is not
controlled by the HOMO [44–46].

Methods

All calculations were performed using the B3LYP functional
[47–50] and the 6–31G(d) basis set using the Gaussian 2003
quantum chemistry program [51]. The Fukui function was
computed using the finite difference between the electron
density from the optimized molecular geometry and the elec-
tron density from a single-point calculation on the (N−1)-
electron system at the geometry of the N-electron molecule
[22],

f � rð Þ � @ρ rð Þ
@N

� �
v rð Þ

� ρN rð Þ � ρN�1 rð Þ ð1Þ

Although this formula is exact for the exact density func-
tional, it is only approximately true for B3LYP [21, 29]. In

Fig. 1 a Molecular structure of guanidine. b The −10–5 isosurface of
f � rð Þ (opaque silver surface) traces the nodal regions of the highest
occupied molecular orbital (HOMO) (translucent colored lobes, with
different colors for different phases)

Fig. 2 a Molecular structure of the acetal anion. b The −10–5 isosur-
face of f � rð Þ (opaque silver surface) traces the nodal regions of the
HOMO (translucent colored lobes, with different colors for different
phases)

Fig. 3 a Molecular structure of the isopropoxide anion. b The −10–5

isosurface of f � rð Þ (opaque silver surface) traces the nodal regions of
the HOMO (translucent colored lobes, with different colors for different
phases)
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previous work, it was found that B3LYP and configuration
interaction calculations give similar results for investigating
Fukui functions [2]. NPA [52] and CHELPG [53] population
analyses on these calculations revealed no negative condensed
Fukui functions.

Results

Figures 1, 2, 3, and 4 plot the HOMO and the −10–5 isosurface
of f � rð Þ for guanidine (Fig. 1), acetal (Fig. 2), isopropoxide
(Fig. 3), and phenoxide (Fig. 4). Guanidine is a neutral mol-
ecule that was mentioned in reference [43]; the other mole-
cules are anions and were studied in reference [42]. The
figures show the lobes of the HOMO; the Fukui function is
negative inside the opaque silver surface. Chemdraw struc-
tures of these molecules are given in Fig. 5. Electrophilic
attack occurs preferentially on the NH group of guanidine,
and the oxygen atoms in acetal, isopropoxide, and phenoxide.
Phenoxide is also subject to electrophilic aromatic substation
at the ortho and para positions.

Note that the negative regions of the Fukui function are
localized in the nodal planes of the HOMO: the negative-
Fukui-function-regions look like a silvery paste that is being
squeezed out of the gaps between the positive and negative
lobes of the HOMO. This supports the previously proposed
explanation for why negative Fukui functions occur. Reducing
the occupation number of the HOMO decreases the electron

density everywhere except the nodal surfaces of the HOMO.
After the HOMO has been vacated, the lower-lying occupied
orbitals (which do not have the same nodal surfaces as the
HOMO due to Wintner’s theorem [54]) are less shielded from
the nuclei, and contract. This causes the electron density to
increase near atomic nuclei and in the binding regions between
nuclei. In most regions, the initial decrease in density (from
reducing the occupation of the HOMO) is larger than the
subsequent increase in density (from orbital relaxation). But
near the nodal surfaces of the HOMO, the initial decrease in
electron density was negligible and the density-increase due to
orbital relaxation is dominant. In these regions, removing an
electron causes the electron density to increase and f � rð Þ < 0.

Conclusion

This paper is part of our quest to discover molecules that
undergo redox induced electron transfer (RIET) [32], where
oxidizing the molecule causes one of the atoms or functional
groups in the molecule to be reduced. We reasoned that
molecules that were susceptible to electrophilic attack at a
location contrary to the predictions of FMO theory might be
good candidates for this because such behavior usually
indicates either that there are other orbitals (HOMO-1,
HOMO-2, etc.) that are also accessible energetically or that
orbital relaxation is important. Both effects are believed to
be favorable for RIET, but we did not observe RIET in any of
the molecules we studied. This could be because these reac-
tions are charge controlled (cf. refs [44, 55–57].) or because
RIET is very rare. We expect it is the latter. In a future studywe
will examine molecules that are proposed to be interesting
electronic materials; such substances are perhaps better candi-
dates for RIET (E. Echegaray et al., manuscript in preparation).

We did confirm that regions the Fukui function from
below, f � rð Þ , seems to have negative values only in the
regions near the nodal surfaces in the HOMO. This supports
previous explanations of why removing electrons from a
molecule can cause the electron density to increase in some
places [1]. Previous computational evidence for this hypoth-
esis was limited to atoms and small linear molecules [1, 2].
The increase in electron density along the nodal surfaces of
the HOMO upon electron removal provides concrete visual

Fig. 4 a Molecular structure of the phenoxide anion. b The −10–5

isosurface of f � rð Þ (opaque silver surface) traces the nodal regions of
the HOMO (translucent colored lobes, with different colors for different
phases)

Fig. 5 Structures of the molecules considered in this paper, labeled by figure number. 1 Guanidine, 2 acetal, 3 isopropoxide anion, 4 phenoxide anion
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evidence for the importance of orbital relaxation in molec-
ular electronic structure theory.
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