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We explore the nontrivial behavior of a particular city traffic model due to its minimalistic
representation of basic city traffic dynamics. The chaotic behavior is studied through the
supertrack functions, an approach that in some cases exposes more information than usual
methods. In particular, we explore a parameter region that may be related to the high sen-
sitivity of traffic flow and eventually could lead to traffic jams. First, we describe analyti-
cally a period adding region, that has a universal critical exponent of a = 1. Second, we
analyze a chaotic crisis giving rise to an inverse supertrack cascade with a period scaling
of a � 0:49. This cascade seems to be universal when approaching to the chaotic behavior,
but in general it depends on the braking and accelerating capabilities of the vehicles.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

City traffic has many interesting features [1–6], some of them are of social and economical relevance [7], and display com-
plex dynamics and emergent phenomena [8–10]. This complex behavior has been studied using many different approaches,
going from statistical and cellular automaton, to hydrodynamical and mean field models [11–14]. In spite of much effort in
trying to understand traffic networks, there remain many interesting problems, ranging from unexpected phenomena [15],
chaotic behavior [1], self-organization [16], etc.

In this work we deepen our study of the city traffic model proposed previously in Ref. [1], which displays nontrivial
dynamics and chaos, due to the finite acceleration and braking capacities of the vehicles. The appearance of chaos and non-
trivial dynamics in such a minimal model of city traffic strongly suggests that chaotic behavior should be at the root of many
common complex macroscopic traffic states. The nontrivial behavior in this model arises even in the non chaotic region, due
to the non-smooth nature of the drivers’ behavior, with well defined bounds as shown in Ref. [17]. In what follows we will
denote the ratio of the minimum traveling time to the traffic light period by X, the minimum traveling time is the elapsed
time between traffic lights at maximum speed. Therefore, the chaotic behavior that is observed for X < 1 occurs for a range
of parameters that is relevant for city traffic, through a period doubling bifurcation [1] that requires a ratio of braking and
accelerating capacities greater than three. However, the nontrivial transitions such as the chaotic collision of the attractor
with an upper velocity threshold which leads to a threshold crisis at Xth, produce an inverse supertrack cascade for
X < Xtc , a period doubling bifurcation for Xtc < X < 1, and the period adding bifurcation for X > 1, that results when the
attractor collides with the lower velocity threshold, have not been analyzed in detail. To achieve our aim of characterizing
these nontrivial transitions and the chaotic behavior of the model we will make use of the supertracks functions approach
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(STF) [18–21]. In this approach we take a critical point of the map (a super-stable point in R! R maps), which in our case
corresponds to a point where the gradient of the map is zero, and observe the behavior of this point as a function of a control
parameter.
2. The model

The model consists of a single car traveling through a sequence of traffic lights [1]. Traffic lights can be either in green or
red. The car can be in one of four possible states: (a) at rest at the position of a traffic light, (b) with constant acceleration aþ
until its velocity reaches the cruising speed vmax, (c) with constant speed vmax, or (d) with negative acceleration �a� until it
stops or accelerates again. The dynamics may be summarized as,
dv
dt
¼

aþHðvmax � vÞ if accelerating;
�a�HðvÞ if braking;

�
ð1Þ
where H is the Heaviside step function.
Decisions for braking are taken at a minimum breaking distance xd ¼ v2

max=ð2a�Þ of the next traffic light. If the car is at rest
at a traffic light in red, it accelerates as soon as the light changes to green, until it reaches vmax. In this model, the distance
between traffic lights is always larger than v2

max=ð2aþÞ, so the car always reaches the maximum possible velocity before the
next light. When the car is at a distance xd from the next traffic light, it brakes if the light is red, and continues if it is green. If
light changes from red to green before the car stops completely, the car accelerates again. With the definition taken for xd, the
car is always able to stop if it sees a red light, and if so, it is at rest in the traffic light position, until the next green light. This
model generates a two dimensional map that evolves the time and speed of the car has at the nth traffic light, namely ðvn; tnÞ,
to the time and speed of the car at the ðnþ 1Þth traffic light, namely ðvnþ1; tnþ1Þ.

To decide whether the nth traffic light is green or red at a given time t, the function sinðxn t þ /nÞ is chosen, so that the
light is green if sinðxn t þ /nÞ > 0 and red if sinðxn t þ /nÞ 6 0. In the present study we will take xn ¼ x ¼ 2p=T for simplic-
ity, where T is the period of the traffic lights. Let us also define the variable nn by,
2pnn ¼ x tn þ /n mod 2p;
which represents the signal phase. With these definitions we can construct the evolution map
vnþ1

nnþ1

� �
¼ MP

vn

nn

� �
;

where P represents the parameters of the system. More details of the model, including the explicit map between consecu-
tive traffic lights, can be found in Ref. [1].

Regarding the phase shift /n, we could introduce several control strategies as shown in Ref. [2], where we studied in some
detail the case where all traffic lights are synchronized /n ¼ 0 and the case of a propagating green signal (green wave) for
which D/n ¼ �xn=vwave, where xn is the position of the nth traffic light. But as was shown there, the basic dynamical features
are the same. In both cases we find critical parameters values around which the dynamics changes abruptly as if the system
were undergoing a phase transition. In view of this qualitative equivalence, we will restrict our study to a synchronized sce-
nario, with /n ¼ 0 and Ln ¼ L where L is the distance between traffic lights. Under these conditions it is easier to follow the
details, and define the critical parameter Tc ¼ L=vmax and the adimensional frequency X ¼ Tc=T . We also define the adimen-
sional braking and accelerating capabilities as A� ¼ a�L=v2

max and aþL=v2
max, so P ¼ ðX;Aþ;A�Þ.
3. Dynamical features

In Fig. 1 we show the bifurcation diagrams associated with the dynamics described above. In this particular case we used
aþ ¼ 2 m/s2, a� ¼ 6 m/s2, vmax ¼ 14 m/s, and L ¼ 200 m, hence, Aþ � 2:04 and A� � 6:12. For comparison, we also take
a� ¼ 10 m/s2 which results in A� � 10:20, and a second set aþ ¼ 3 m/s2, a� ¼ 11 m/s2 and a� ¼ 13 m/s2 which results in
Aþ � 3:06, A� � 11:22 and A� � 13:26.

If we look at Fig. 1(a), we may believe that the system undergoes a period-2 orbit in the range X 2 ð1:0;1:1Þ, in which the
vehicle stops at every other traffic light and goes freely in the next. However Fig. 1(b) reveals a complex pattern, as a con-
sequence of the fact that this is a two dimensional map. A detailed study of this region [2] shows that the vehicle, after stop-
ping at some traffic light, goes freely the next p traffic lights. We will see below that this is a period adding situation. To
estimate p, we note that the driver arrives at the next signal a small time dt ¼ Tc � 2p=x > 0 after the signal turns green.
Then this delay becomes 2dt at the third light, and so on. The journey will continue until the green window is exhausted.
The total number of signals, p, the driver will cross without stopping can be approximated by pdt � p=x, which leads to
p � 1
2

1
X� 1

; ð2Þ
from where it follows that p� 1 when X � 1.



Fig. 1. Bifurcation diagrams for (a,c) the velocity at the nth traffic light and (b,d) for the phase at the nth light, for two sets of Aþ and A� . In (a,b) we show
ðAþ;A�Þ � ð2:04;6:12Þ in blue and ðAþ;A�Þ � ð2:04;10:20Þ in red, and in (c,d) we show ðAþ;A�Þ � ð3:06;11:22Þ in blue and ðAþ;A�Þ � ð3:06;13:26Þ in red.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Therefore, when the green light is exhausted, we reach the state ðv ; nÞ ¼ ð0;0Þ in which the car must stay with zero veloc-
ity at the traffic light until the next green light. Hence, it becomes convenient to define the supertracks functions (STF), de-
fined by the mth iteration of the point ðv ; nÞ ¼ ð0;0Þ, namely, Mm

X ð0;0Þ. This STF will prove useful and help us understand the
dynamics of this map. Let us note that the point ðv; nÞ ¼ ð0;0Þ is interesting because it represents the situation in which the
car is stopped completely at the traffic light, and has to wait until the next green light, which generates a periodic orbit. We
also define the period of the supertracks (PST), which is defined as the smallest p integer such that Mp

Xð0;0Þ ¼ ð0;0Þ.
In Fig. 2 we display the normalized v component of the STFs of order 10–50 in the range (0,1), and the period p of the

orbit, hence PST, as a function of X. This figure shows the STFs (bottom curves) associated with the velocity, from which
it is immediately apparent that the dynamic is more complex than the period-2 orbit suggested by Fig. 1(a). The vertical lines
occur exactly when the STF of period p transitions from v ¼ 0! 1. The bottom curves in this figure imply a dynamics that
changes progressively while the system approaches the critical point Xc ¼ 1, being an accumulation point. A closer exami-
nation of the asymptotic behavior of vn, around a particular p, related to the vertical lines (which represent dynamical
jumps), results in the upper curve, which is a typical period adding behavior [22], and can be found with or without chaos
in many contexts [23–25]. The number lnðpÞ in this curve represents the number of times the vehicle arrives to the traffic
light with vmax while approaching the critical value Xc ¼ 1 (at the next traffic light the vehicle is stopped and the cycle re-
peats). Notice, that the period can be found by counting the number of traffic lights the vehicle is able to transverse before
stopping, i.e., reaches the state ðv ; nÞ ¼ ð0;0Þ. The jumps in p are of one unit and correspond exactly with the changes in the
STFs. This behavior arises from a time difference between the traffic light period and the travel time between consecutive
Fig. 2. Supertracks functions of order 10 to 50 associated with the velocity (bottom curves), and the period adding curve calculated numerically (dotted
lines) and analytically with Eq. (5) (thick lines) and Eq. (2) (dashed lines). We also compare for A� � 6:12 (blue) and A� � 10:20 (red). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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lights, and is responsible for the critical behavior observed close to X � 1 [2]. Therefore, in this context, the period adding
phenomenon arises from the competition between two time scales, which are, the travel time between lights (vehicle)
and traffic lights period (the system with which the vehicle interacts). Following closely the periodic orbit in this region
makes it possible to derive a better approximation to Eq. (2).

In the region X > 1, we observe a periodic motion of period much longer that T. First, let us note that the travel time be-
tween decision points when undergoing a p-period is Tc and that the mobile stops when sinðx tpÞ changes sign from positive
to negative for some p. Next, let us assume this long periodic motion can be represented by sinðKpþ /Þ, where 2p=K is the
period of this p-oscillation, p is the number of decision points the mobile surpasses and / is an initial phase. We will show
below that / depends on aþ and a� and could be relevant for small p. As shown in Fig. 3, both functions intersect providing a
method for the calculation of K.

Note now that this p-oscillation is a solution of €wþK2w ¼ 0. Then, solving for K, we obtain,
Fig. 3.
a p-per
K ¼

ffiffiffiffiffiffiffiffi
�

€w
w

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w�2 � 16w�1 þ 30w0 � 16w1 þ w2

12w0

s
; ð3Þ
where we have approximated the second order derivative €w by a five points finite difference. Since the traffic light signal
approximates very well our p-period at tp, we can write wðtpÞ � sinð2pX tpÞ. After using some trigonometric identities on
Eq. (3), we obtain,
K �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15� 16 cosð2pXÞ þ cosð4pXÞ

6

r
ð4Þ
and find a value of p such that, Kpþ / ¼ p. We obtain,
p ¼ ðp� /Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

15� 16 cosð2pXÞ þ cosð4pXÞ

s& ’
; ð5Þ
where,
/ ¼ 2p 1þ 1
2

1
Aþ
� 1

A�

� �� �
mod2p
and d. . .e is the ceiling function, which was included after comparing with the numerical solution, as well as our ansatz for /.
This function is also plotted in Fig. 2, from which we note that Eq. (5) follows with great precision the period adding behav-
ior. Finally, let us show that the critical behavior of Eq. (5) is the same of Eq. (2) when T ! Tc from the left (X > 1). First, note
that / ¼ 0 when a� ! �1, or equivalently, the elapsed time for braking and accelerating is negligible compared to the time
travelled at a velocity vmax as X! 1. Now,
p � p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

15� 16 cosð2pXÞ þ cosð4pXÞ

s

� p 1
2pðX� 1Þ þ

2
45

p3ðX� 1Þ3 � 1
63

p5ðX� 1Þ5 þ O ðX� 1Þ7
� 	� �

� 1
2

1
X� 1

;

Intersection points for the traffic light signal and the representation for the p-period. The thin line corresponds to the traffic light and the thick line to
iod. Here, X � 1:02. Vertical dashed lines correspond to kTc for given k 2 N.
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where we expanded in a Taylor series around X � 1. We can now see that this is the result suggested by the less precise
argument before Eq. (2).

In Fig. 4 we show a zoom of Fig. 1(a) for X < 1, and we can see a crisis around Xtc � 0:875 for A� � 6:12, where the chaotic
attractor collides with the state ðv ; nÞ ¼ ð0;0Þ as we decrease X, which means that the mobile needs to wait until the next
green light. This is not a boundary crisis as the attractor is not able to go to another basin, due to the restriction v P 0. Fur-
thermore, the STFs seem to follow the asymptotic behavior of the dynamics, which means that for a given set of parameters,
we could write explicit polynomials in X that will follow analytically the asymptotic behavior of the mobile in this region,
i.e., for X < Xtc the asymptotic dynamics is bounded by the STFs, with the dynamics of stop-and-wait described above. Note
that this behavior is different to the case X > 1. This figure also suggests an interesting relation between chaos with the
spread and slope of STFs. Note that the STFs with high slope are associated with complex dynamics, in this way the derivative
of STFs may be used to search for non trivial dynamics in a two dimensional map. This suggestion is enforced by Fig. 5, where
we compare a region of complex behavior with a set of STFs. As is readily apparent there is a close correlation between high
slope STFs and a complicated motion. The closely packed STFs, corresponding to almost vertical lines in Fig. 5(b), are similar
to those related to the period adding phenomena in Fig. 2, for which a jump is associated with a drastic dynamical change.
The difference in the pre-crisis region is its frequency. In the period adding region, the discontinuities in STFs are isolated
events as described approximately by Eq. (5), however, in this pre-crisis dynamics we see the emergence of regions where
STFs with high slope accumulate, giving rise to a highly unstable dynamics due to very frequent (possibly continuous) and
drastic dynamical changes. However, these orbits are not chaotic in the asymptotic sense, as we will show next, giving rise to
a new complex dynamics as far as we know. Therefore, since STFs delimit the regions where orbits exist, sudden changes in
these boundaries make the orbits very complex, without chaos.

For X < Xtc � 0:875 (for A� � 6:12) we see a particular non chaotic orbit of large period p, that can be characterized by the
given STFs. Hence, we have a periodic orbit that starts at ðv; nÞ ¼ ð0;0Þ and returns to the same state after p iterations. It is
important to mention that if we were trying to calculate a numerical Lyapunov exponent, we could obtain a positive value
when the p is large, however the orbit is periodic. It is interesting to note that the transition from the chaotic behavior to
these periodic orbits seems to occur continuously in the following sense.

In Fig. 6(a) we show the length of the periodic orbits X < Xtc in the range X 2 ð0:8748;0:8750Þ, which is equivalent to the
period of the supertracks (PST), as we approach Xtc . This calculation can be done by starting at ðt0;v0Þ ¼ ð0;0Þ and counting
the iterations it takes to return to the same state. If we repeat this analysis in the chaotic region we will obtain, of course, an
infinite PST, which provides a method to determine Xtc with a large enough accuracy. We observe an inverse supertrack cas-
cade, in which the PST has a scaling that goes as
Fig. 4.
image a
PST � X�Xtcj j�a:
In the case of A� � 6:12, shown in Fig. 6(a), the scaling is a � 0:47. The same analysis is repeated for A� � 10:20 in
Fig. 6(b), giving a scaling described by the index a � 0:50. Hence, this cascade seems to be universal very close to Xth, how-
ever, it depends on the braking and accelerating capabilities of the vehicles much farther. It is important to note that this non
trivial behavior is not completely equivalent to that found in the period adding region, although, both are possible due to the
imposed thresholds that produce the super-stable point ðv ; nÞ ¼ ð0;0Þ.
Bifurcation diagrams for the signal phase at the nth light, with some of their associated STFs (from order 7th to 15th, color online). In (a) the attractor
nd (b) the STFs. The thick dashed line corresponds to Xtc � 0:875.



Fig. 5. Pre-crisis dynamics. (a) The attractors for X < Xtc and (b) the associated STFs of order 30 to 58. The dashed line corresponds to Xtc .

Fig. 6. Length of the orbit, represented by the number of traffic lights between full stops. Note the seemingly random pattern and the overall scaling
behavior.
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We can now see that the STFs provide us with an understanding of the origin of this chaotic crisis, and the behavior before
and after that. This transition is a consequence of the rules the drivers must follow and that are included in this model, as
represented by the threshold values. When the chaotic attractor collides with the state ðv ; nÞ ¼ ð0;0Þ, it produces an inverse
supertrack cascade in which the period of the supertracks decreases with distance from the crisis. Note also that this crisis is
not a standard boundary crisis, nor a standard internal crisis, nor a chaotic merging crisis. For X > Xtc, in the chaotic attrac-
tor, there is a clear intermittency close to the STFs, which survives into the chaotic attractor, as shown in Fig. 7. It seems as if
we were unraveling the periodic orbits of a non-attracting chaotic set (inside the chaotic attractor) as we decrease X from
Xtc.

As an illustration, in Fig. 7(a) we show the region where the crisis occurs and two colliding STFs of orders 1 and 23. Of
course STFs of higher order also collide in this range. Since STFs are boundaries for chaotic motion, the tangent collision, force



Fig. 7. Bifurcation diagram that clearly shows the intermittent behavior close to the STFs, which are projected into the chaotic regime X > Xtc .

Fig. 8. Phase portrait ðv ; nÞ of 2 trajectories for A� � 6:12, (a,b) and A� � 10:20, (c,d). In (b) and (d) we show a trajectory in the chaotic attractor. For each
figure we plot 500 trajectory points and the lines connecting them give an idea of the path followed. The orbit length in (a) is 14 and in (c) 13.
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a collapse in the phase space, generating the conditions for the first full stop (Fig. 7(b)). The collision shown in Fig. 7(b) is
responsible for the largest periodic window in the figure, which has period 22.

Finally, in Fig. 8 we show the phase portrait in ðv; nÞ space, of these periodic trajectories that appear for X < Xtc , as we
approach Xtc. This is done for two values of the braking capability, A� � 6:12 and A� � 10:20. For both of them, we have ta-
ken a sample path of 500 orbit points. In this figure we note the increased range for nn when A� � 10:20, which is consistent
with the enlarged chaotic attractor found for this parameter and illustrates how these orbits go from a periodic behavior to a
chaotic one as suggested by Fig. 6. We can see that these long periodic orbits were unstable periodic orbits that were part of
the chaotic attractors and now are forced to a stable periodic behavior by the thresholds.
4. Conclusions

Although STFs are not widely used, they can provide interesting information about the dynamics, specially for non-
smooth maps like the city traffic model we have analyzed in this manuscript. In our map, the STFs represent periodic orbits
that can describe the asymptotic behavior during the period adding bifurcation that appears for X > 1, and before the chaotic
crisis for X < Xtc . We can observe a very complicated behavior that can be described by an inverse supertrack cascade rep-
resented by a divergent length of the periodic orbits as we approach X! Xtc , in which case the orbit period becomes infinite,
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and we enter into the chaotic attractor generated by the period doubling bifurcation as X decreases from X ¼ 1. This tran-
sition is a consequence of the rules the drivers must follow and that are included in this model, as represented by the thresh-
old values. It is not one of the standard crisis (e.g., boundary, internal, or chaos merging), and as such, it deserves further
attention, which will be done elsewhere.
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