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Abstract Using an exponential model for the variation in
energy with respect to the number of electrons it is shown
that, within the model, the hardness, softness, electrophilicity
and other global parameters connected to higher order deriv-
atives follow an equalization principle after a molecule is
formed from two separated species. Two generalizations of
the model are also discussed, one of which presents disconti-
nuity of the chemical potential at integer values of N.

Keywords Energy of atoms . Equalization rules . Derivative
discontinuity

In the density functional chemical reactivity theory [1–6] the
electronic chemical potential [7] has an important meaning,
being identified, in some approximations, as the negative of
the electronegativity as defined many years ago by Mulliken
[8]. Higher order derivatives of the energy with respect to
the number of electrons have also been subject to chemical
interpretation [9–13]. The electronic chemical potential,

μ ¼ @E

@N

� �
v

; ð1Þ

like the macroscopic chemical potential of thermodynamics,
has the property of equalization. This means that electrons
flow from regions of high chemical potential to regions of low
chemical potential until the chemical potential of the whole
system equalizes. This very appealing similarity with the
macroscopic chemical potential of thermodynamics has, how-
ever, a profound complexity because of the discontinuity of

the electronic chemical potential at integer number of elec-
trons [14–23]. To advance in the chemical interpretation one
has to resort to empirical models. Very recently, Chattaraj et al.
[24] proposed a similar equalization principle for electrophi-
licity. One of the purposes of this work is to show that this
result comes directly from using the exponential model.
Hence, a simple model based on the geometric mean principle
of chemical potential equalization will be discussed. It can be
considered as an extension of the model presented years ago
by Parr and Bartolotti [25], which has been discussed recently
with numerical examples by Chattaraj et al. [24]. Later, some
possible refinement of the model to include discontinuity of
the chemical potential will be discussed.

When atoms A and B come together before charge trans-
fer occurs, both of them are in a valence state [26] with
chemical potential μ0

A and μ0
B, numbers of electrons N0

A, N
0
B,

and external potentials v0AðrÞ, v0BðrÞ which do not necessarily
correspond with the values for atoms A and B completely
isolated in the universe. The model presented here addresses
the question of what are the values of μA;μB , NA;NB after
charge transfer occurs. Our model is based on the exponen-
tial dependence of the energy with respect to the number of
electrons as proposed by Parr and Bartolotti [25],

EðNÞ ¼ Ce�a N�Zð Þ þ D ð2Þ
in such a way that,

μ ¼ μ0e�aðN�ZÞ ð3Þ
where μ00−αC, i.e., the chemical potential of the species
before the charge transfer occurs. Although α is not a univer-
sal constant, it was found to fall within a “narrow” range (α0
2.15±0.59).

Combining both equations

EðNÞ ¼ E N0ð Þ � μ0

a
e�a N�Zð Þ � 1

� �
ð4Þ
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where E(N0) is the energy of the neutral atom. Now, suppose
the charge transfer is allowed to occur and some amount of
charge ΔN flows from A to B or vice versa. The energy of
the new composite quasimolecule will be

EAB ΔNð Þ ¼ EA NA þΔNð Þ þ EB NB �ΔNð Þ
¼ EA N0ð Þ þ EB N0ð Þ � μ0

A
a e�a ΔNð Þ � 1
� �

� μ0
B
a ea ΔNð Þ � 1
� � ð5Þ

which attains a minimum with respect to electron transfer
when the number of electrons transferred from B to A is

ΔN* ¼ � 1

2a
ln

μ0
B

μ0
A

� �
ð6Þ

Introducing Eq. (6) into Eq. (3) one finds that the chem-
ical potential of atoms A and B after charge transfer are
equalized to the geometric mean

μA ΔN*
� � ¼ μB ΔN*

� � ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
μ0
Aμ

0
B

q
ð7Þ

This geometric mean equalization principle was postulat-
ed by Sanderson [27] decades ago.

Higher derivatives of the energy with respect to the
number of electrons are readily found. For instance, the
hardness [28–30] is given by

η ¼ @2E

@N2
¼ �aμ0e�a N�Zð Þ; ð8Þ

which, after charge transfer, and using the ΔN of Eq. (6)
obtained at first order, also becomes equalized

ηA ΔN*
� � ¼ ηB ΔN*

� � ¼
ffiffiffiffiffiffiffiffiffiffi
η0Aη

0
B

q
: ð9Þ

In general, the k-th derivative

@kE

@Nk
¼ �1ð Þkþ1ak�1μ0e�a N�Zð Þ ð10Þ

is equalized after charge transfer.
Interesting, the electrophilicity as introduced by Parr et

al. [31] is

w ¼ μ2

η
; ð11Þ

which is, in this model, equal to the negative of the chemical
potential divided by the constant α,w ¼ � μ

a and, after charge
transfer, it becomes also equalized in a geometric mean:

wA ΔN*
� � ¼ wA ΔN*

� � ¼
ffiffiffiffiffiffiffiffiffiffiffi
w0
Aw

0
B

q
ð12Þ

This latter equation was proposed by Chattaraj et al. [24]
assuming the validity of the equalization of the chemical
potential and the hardness. They found reasonable numeri-
cal evidence to justify this equalization principle.

Note also that the equalization is easily generalized to a
polyatomic system,

μABC...Pð ÞP ¼
YP
i¼A

μ0
i ; ð13Þ

provided that the energy of all the participating atoms
presents the same fall-off. To assume, however, that the
exponential factor α is the same for all atoms has some
unsuitable consequences. The higher derivatives of the en-
ergy with respect to the number of electrons converge only
if 0<α<1, which seems to contradict the value found by
Parr and Bartolotti (α02.15±0.59) [25]. This might suggest
that (1) the model is suitable only for low order derivatives,
or (2) the parameter cannot be considered universal and a
different parameter must be assigned for each species. The
last possibility will be now discussed.

In the more general case, each atom has a characteristic
decaying parameter, α, and the chemical potential as a
function of the number of electrons will be given by

μA ¼ μ0
Ae

�aA NA�ZAð Þ:
μB ¼ μ0

Be
�aB NB�ZBð Þ ð14Þ

Then, the energy of the quasimolecule AB after charge
transfer will be

EABðΔNÞ ¼ EA NA þΔNð Þ þ EB NB �ΔNð Þ
¼ EA N0ð Þ þ EB N0ð Þ � μ0

A
aA

e�aA ΔNð Þ þ 1
� �

� μ0
B

aB
eaB ΔNð Þ þ 1
� �

;

ð15Þ

which attains a minimum with respect to the electron trans-
fer when the number of electrons transferred is

ΔN* ¼ �
ln

μ0
B

μ0
A

� �
aA þ aB

ð16Þ

In the equilibrium, the chemical potential of A, B and AB
equalize. In contrast to the previous case, the chemical
potential of the composed system does not become exactly
the geometric mean of the chemical potentials of the isolated
species,

μA ΔN*
� � ¼ μB ΔN*

� � ¼
ffiffiffiffiffiffiffiffiffiffiffi
μ0
Aμ

0
B

q μ0
B

μ0
A

� �1
2
aA�aB
aAþaB

: ð17Þ

Similar relations can be obtained for hardness and
electrophilicity.

Summarizing, it has been demonstrated that the exponen-
tial model for the dependence of the energy of an atom or
molecule as a function of the number of electrons allows a
general geometric mean equalization principle to be derived
for most of the global reactivity parameters commonly used
in the density functional theory of chemical reactivity [3, 32,
33]. The equalization of chemical potential after charge
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transfer is a well-known matter [25, 34–39]. The equal-
ization of hardness has some troubles because of poor
definition of local hardness [11, 39–46]. Depending on
the definition, the local hardness could be a constant [39].
The equalization of electrophilicity should means that
there is no chemical meaning in local electrophilicity. As
pointed out by Chattaraj et al. [24], as an electrophile
interacts with a nucleophile its electrophilicity is reduced
because of charge transfer, and the opposite happens to
the nucleophile. Hence, it seems reasonable to expect a
final equalization [47].

Energy as an exponential decaying function of the
number of electrons is a very reasonable assumption
and, in many respects, more reasonable than the quadrat-
ic model [29, 48]. It is a monotonically decaying convex
function that can also, in a limited manner, explain the
electron saturation of the atomic or molecular species. It
is known that an atom cannot be stable with more than
one negative charge [48]. However, the quadratic model
has been the model most used because it accounts for the
negative of the chemical potential, the Mulliken’s defini-
tion of electronegativity, and gives very simple formulas
for hardness and other local parameters, which is not the
case for the exponential model where the value of the
parameter α remains as a free variable that is very
probably different for each atomic or molecular species.
However, both models and the variant presented here
suffer from not including the discontinuity of the chem-
ical potential at integer number of electrons. Here, we
propose a new modification of the exponential model
that presents a discontinuity in the chemical potential.

Define the energy as a function of the number of elec-
trons as

EðNÞ ¼ ce�aðNÞ N�Zð Þ þ d ð17Þ

with α(N) defined as

aðxÞ ¼ PM
i¼0

aicAi
ðxÞ; M � N ; ai 2 R ð18Þ

Ai are open intervals between (i, i+1) with i an integer,
and

cAðxÞ ¼ 1 if x 2 A
h 6¼ 1 otherwise

	
ð19Þ

with h a constant. In general, the constant is undefined and it
is not necessary to know its value. For example, consider the
energy of a neutral atom and its first two cations

E N ¼ Zð Þ ¼ cþ d
E N ¼ Z � 1ð Þ ¼ ce−bZ þ d
E N ¼ Z � 2ð Þ ¼ ce−bZ�1 þ d

ð20Þ

with βz0hαz. Hence, the constants to be found are the βN
with N an integer. Now, the chemical potential will be given
by

μðNÞ ¼ @EðNÞ
@N

¼ �caðNÞe�aðNÞ N�Zð Þ

� c N � Zð Þa0 N � Zð Þe�aðNÞ N�Zð Þ

ð21Þ
where α′(N) is the derivative of the function α, and is given
by

a0ðNÞ ¼ 0 if N 2 A
undefined otherwise

	
ð22Þ

Hence, the chemical potential is

μðNÞ ¼ �caNe�aN N�Zð Þ if N 2 A
undefined otherwise

	
ð23Þ

and it is discontinuous at integer values of N. Further studies
of the model are necessary to find the best way to fit the
parameters and to evaluate the consequences regarding
chemical interpretations. Figure 1 shows the piecewise ex-
ponential model of Eq. (17) for the oxygen atom.

To conclude, it is important to note the comments made
by von Szentpaly last year [49] in respect to Chattaraj’s
work [24]. His main arguments against calling the “principle
of X equalization” (X 0 electronegativity, hardness or elec-
trophilicity) is the lack of universality. It is unfair to place
the uncertainty principle of Heisenberg and electrophilicity
equalization at the same level. In fact, we have shown here
that they are valid only under the very simple exponential
model in its simpler form. In this work, we called them
“principles” just because it is the generalized language, but
in a more rigorous way they should be called “rules”.
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Fig. 1 Absolute value of the energy of oxygen as a function of the
number of electrons, N. Dots Experimental values, continuous line
piecewise exponential model of Eq. (17), dashed line best fit of single
exponential model of Eq. (2) (α00.35). The values of energy are
relative to the energy of the neutral atom
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