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Bounded dynamics in finite PT -symmetric magnetic metamaterials
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We examine thePT -symmetry-breaking transition for a magnetic metamaterial of a finite extent, modeled as an
array of coupled split-ring resonators in the equivalent circuit model approximation. Small-size arrays are solved
completely in closed form, while for arrays larger than N = 5 results were computed numerically for several
gain and loss spatial distributions. In all cases, it is found that the parameter stability window decreases rapidly
with the size of the array, until at N = 20 approximately it is not possible to support a stable PT -symmetric
phase.
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The study of PT -symmetric systems has attracted a lot of
attention during the past few years. In these systems, the effects
of loss and gain can balance each other and, as a result, give rise
to a bounded dynamics. These studies are based on the seminal
work of Bender and coworkers [1,2], who showed that non-
Hermitian Hamiltonians are capable of displaying a purely real
eigenvalue spectrum provided the system is symmetric with
respect to the combined operations of parity (P) and time-
reversal (T ) symmetry. For one-dimensional systems the PT
requirement leads to the condition that the imaginary part of the
potential term in the Hamiltonian be an odd function, while the
real part be even. The system thus described can experience a
spontaneous symmetry breaking from a PT -symmetric phase
(all eigenvalues real) to a broken phase (at least two complex
eigenvalues), as the gain and loss parameters are varied. To
date, numerous PT -symmetric systems have been explored in
several fields, from optics [3–7], electronic circuits [8], solid-
state and atomic physics [9,10], to magnetic metamaterials
[11], among others. ThePT -symmetry-breaking phenomenon
has been observed in several experiments [6,7,12].

Magnetic metamaterials, on the other hand, consist of arti-
ficial structures whose magnetic response can be tailored to a
certain extent. A common realization of such a system consists
of an array of metallic split-ring resonators (SRRs) coupled
inductively [13–15]. This type of system can feature negative
magnetic response in some frequency window, making them
attractive for use as a constituent in negative refraction index
materials [16]. A common problem with SRRs is the heavy
ohmmic and radiative losses. One possible solution is to endow
the SRRs with external gain, such as tunnel (Esaki) diodes
[17,18] to compensate for such losses.

In this work, we consider the PT -symmetry properties
of a SRR array endowed with gain and loss. In the case of
some one-dimensional coupled discrete systems, such as a
harmonic oscillator array, it has been observed that in the limit
of an infinite size array, the system belongs to the broken PT
phase, i.e., there are complex eigenvalues making the dynamics
unbounded [11,19]. Here we examine the case of short SRRs
arrays and determine the parameter window inside which the
system exhibits a bounded dynamics and how this window
decreases with the size of the system.

The model. Let us consider a very simple model of a
magnetic metamaterial consisting of a finite one-dimensional

array of SRRs including gain and loss terms. In the equivalent
circuit model approach [20], each SRR is equivalent to an
RCL circuit with inductance L, capacitance C, and gain and
loss Rn. The rings are inductively coupled through magnetic
dipole-dipole interactions. The capacitance is given explicitly
by C = εoεA/d, where ε0 is the permittivity of the vacuum, ε

is the linear permittivity, A is the area of the cross section of
the wire, and d is the size of the slit. The dynamics of charges
Qn and currents In are given by

dQn

dt
= In, (1)

L
dIn

dt
+ RnIn + Qn

C
= −M

(
dIn−1

dt
+ dIn+1

dt

)
, (2)

where M is the mutual inductance coefficient and where we
have assumed coupling to nearest neighbors only. We proceed
now to normalize Eq. (2) by defining a set of dimensionless
quantities: qn = Qn/Qc,in = In/Ic,τ = ωt,γn = RnCω, and
λ = M/L, where ω−2 = L C,Ic = Uc ω C, Qc = C Uc, with
Uc = d Ec, where Ec is a typical value for the electric field in
the slit.

In terms of these dimensionless quantities, the evolution
equations for the charge qn of the nth SRR become

d2

dτ 2
[qn + λ(qn+1 + qn−1)] + γn

d

dτ
qn + qn = 0, (3)

where λ is the magnetic interaction coefficient or coupling,
and γn positive (negative) denotes a ring with loss (gain). For
simplicity, in Eq. (3) we assume the absence of nonlinear
effects and the relative orientations of the SRRs is chosen
such that the electric coupling among SRRs can be neglected.
In order to satisfy the requirements for PT symmetry, the
spatial distributions of the gain and loss must be an odd
function in space [3], γ−n = −γn. In this work we focus on
binary-like systems with two gain and loss terms and thus
examine arrays of the form . . . −γ1,−γ2,−γ1,0,γ1,γ2,γ1, . . . ,
for arrays with an odd number of rings. For arrays with even
number of rings the distribution of gain and loss is of the
form . . . −γ1,−γ2,−γ1,γ1,γ2,γ1, . . . . This distinction is only
meaningful for small arrays and disappears for systems of
infinite size. Hereafter, and without loss of generality, we
focus on arrays with an odd number of sites (except for the

1539-3755/2014/89(3)/033201(4) 033201-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.89.033201


MARIO I. MOLINA PHYSICAL REVIEW E 89, 033201 (2014)

dimer case). Results for the case with an even number of sites
are similar. Since the values of γ1 and γ2 are arbitrary, the
gain and loss distribution thus introduced allows for many
interesting cases to be examined. In particular we focus
on three cases. The first one is γ1 = γ , γ2 = −γ , giving
rise to the distribution . . . γ,−γ,γ,−γ,0,γ,−γ,γ,−γ . . . .
The second one is γ1 = γ and γ2 = 0, which gives rise
to the distribution . . . 0,−γ,0,−γ,0,γ,0,γ,0, . . . . Another
interesting case is the one with γ1 = γ = γ2 that gives
. . . −γ,−γ,−γ,−γ,0,γ,γ,γ,γ . . . . For this last case, we will
see that in spite of the concentration of loss and gain on
opposite sides, the dynamics does possess a stability window
for finite arrays lengths.

Dimer case (N = 2). In this case, the only possible case is
γ,−γ . The dynamical equations read

d2

dτ 2
(q1 + λq2) + γ

d

dτ
q1 + q1 = 0, (4)

d2

dτ 2
(q2 + λq1) − γ

d

dτ
q2 + q2 = 0. (5)

We look for stationary modes q1,2(τ ) = q1,2 exp(i�τ ). This
leads to the equations

− �2(q1 + λq2) + iγ�q1 + q1 = 0, (6)

− �2(q2 + λq1) − iγ�q2 + q2 = 0. (7)

The condition of the vanishing of the determinant of this linear
system leads to a quadratic equation for �2, with solutions

� = ±
[

2 − γ 2 ±
√

γ 4 − 4γ 2 + 4λ2

2(1 − λ2)

]1/2

. (8)

We denote the four solutions as �++,�+−,�−+, and �−−.
The stable phase (unbroken PT symmetry) corresponds to
the cases where � is a real quantity. From straightforward
examination of Eq. (6), one concludes that the stability
window in γ -λ space is given by the area under the curve
γc =

√
2(1 − √

1 − λ2), for 0 < λ < 1. Outside γ = γc(λ),
the system is unstable. Figure 1 shows the stability region and
also the square frequencies as a function of the gain and loss
parameter. Due to symmetry considerations, only the positive
γ -λ sector needs to be explored.

From Eq. (4) [or Eq. (5)] and Eq. (6), it is easy to obtain
|q2/q1| = 1 and thus, q1 and q2 differ by a phase only. We
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FIG. 1. (Color online) Dimer array. Left: Stability region
(shaded) in gain and loss-coupling space. Right: Mode frequency
squared as a function of the gain and loss parameter for λ = 0.3.
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FIG. 2. (Color online) Dimer array. Mode phase as a function of
the gain and loss parameter. Solid: �++ mode. Dotted: �+− mode.
Short dash: �−− mode. Long dash: �−+ mode. (λ = 0.33).

have four branches for the phase, corresponding to each of the
four solutions. Figure 2 shows the phase of all solutions as a
function of the gain and loss parameter.

Trimer case (N = 3). Here the gain and loss distribution
has the form −γ,0,γ . The stationary state equations have the
form

− �2(q1 + λq2) + iγ�q1 + q1 = 0, (9)

− �2(q2 + λ(q2 + q3)) + q2 = 0, (10)

− �2(q3 + λq2) − iγ�q3 + q3 = 0, (11)

with eigenvalues

� = ±1, (12)

� = ±
[

2 − γ 2 ±
√

−4γ 2 + γ 4 + 8λ2

2 − 4λ2

]1/2

. (13)

The condition that all � be real leads to the conditions
λ < 1/

√
2 and γ < γc =

√
2 − √

4 − 8λ2. Figure 3 shows the
window of real eigenvalues in gain and loss coupling space.
It is qualitatively similar to the dimer case, but the allowed
coupling interval is smaller. The figure also shows the square
of the real frequency as a function of gain and loss, for a given
coupling value.

Pentamer case (N = 5). Here the gain and loss distri-
bution can have three possible forms: γ,−γ,0,γ,−γ , or
0,−γ,0,γ,0, or −γ,−γ,0,γ,+γ . We focus on the first case
since is more amenable to an exact form solution (numerical
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FIG. 3. (Color online) Trimer array. Left: Stability region
(shaded) in gain and loss coupling space. Right: Mode frequency
squared as a function of the gain and loss parameter, for λ = 0.3.

033201-2



BOUNDED DYNAMICS IN FINITE PT - . . . PHYSICAL REVIEW E 89, 033201 (2014)

results show that the other two cases display similar behavior).
The stationary state equations have the form

− �2(q1 + λq2) + iγ�q1 + q1 = 0, (14)

− �2(q2 + λ(q1 + q3)) − iγ�q2 + q2 = 0, (15)

− �2(q3 + λ(q2 + q4)) + q3 = 0, (16)

− �2(q4 + λ(q3 + q5)) + iγ�q4 + q4 = 0, (17)

− �2(q5 + λq4) − iγ�q5 + q5 = 0, (18)

with eigenvalues

� = ±1, (19)

� = ±
[

2 − γ 2 ±
√

−4γ 2 + γ 4 + 4λ2

2 − 2λ2

]1/2

, (20)

� = ±
[

2 − γ 2 ±
√

−4γ 2 + γ 4 + 12λ2

2 − 6λ2

]1/2

. (21)

The condition that all � be real leads to the conditions λ <

1/
√

3 and γ < γc =
√

2(1 −
√

1 − λ2). Figure 4 shows the
stability window in gain and loss coupling space, as well as
the square frequency as a function of gain and loss, for a
fixed coupling value. As we can see, the stability window is
substantially smaller than the one for the dimer and trimer
cases.

Short chains (N > 5). Let us consider now the case of finite
arrays, where the stationary-state equations are given by

−�2[qn + λ(qn+1 + qn−1)] + (1 + i�γn)qn = 0. (22)

The {γn} distribution we consider has the general form
. . . −γ1,−γ2,−γ1,0,γ1,γ2,γ1, . . . . We compute the relevant
eigenvalues numerically from the vanishing of the determinant
of linear system (22) and focus on the parameter values in gain
and loss coupling space where the eigenvalues are purely real,
thus denoting a bounded dynamical regime.

Case a. We start with the case γ1 = −γ2 ≡ γ that gives
rise to the distribution . . . ,−γ,+γ,−γ,O, + γ,−γ,+γ, . . . .
Some results are shown in Fig. 5. It is clear that as the size of the
array increases, the stability region shrinks, and it disappears
altogether around N = 20. This is consistent with a previous
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FIG. 4. (Color online) Pentamer array. Left: Stability region
(shaded) in gain and loss coupling space. Right: Mode frequency
squared as a function of the gain and loss parameter, for λ = 0.3.

N�7

0 0.4 0.9
0

0.5

1

1.5

Γ

N�9

0 0.4 0.9
0

0.5

1

1.5

N�11

0 0.4 0.9
0

0.5

1

1.5

Λ

Γ

N�17

0 0.4 0.9
0

0.5

1

1.5

Λ

FIG. 5. Stability regions (area under curve) in gain and loss
coupling space for several array lengths, for the case . . . ,−γ,

+γ, −γ, 0, +γ,−γ, +γ, . . . .

result [11] stating that in the infinity size limit, the dynamics
is always unstable (that is, the system belongs to the broken
PT phase).

Case b. Now we take γ2 → 0 and γ1 ≡ γ , that is, the distri-
bution . . . ,0,−γ,0,−γ,O, + γ,0, + γ,0, + γ,0, . . . . Notice
how the gain and loss portions are now separated and on each
side they are rather diluted. The stability phase diagrams for
this case (not shown) are qualitatively similar to the previous
case, although, for a given array size, the stability windows are
smaller.

Case c. Now we take γ2 = γ1 ≡ γ . The gain and loss dis-
tribution is . . . ,−γ,−γ,−γ,−γ,O,+γ,+γ,+γ,+γ, . . . Now
the gain and loss on each side are densely populated and
the resulting area of the stability windows (not shown) while
qualitatively similar to the previous cases, drop even faster.

Figure 6 shows a summary of the results obtained for the
size of the stability window as a function of the array length,
for the three cases considered. We clearly see that the stability
region decreases rather abruptly with N , and that for a given
N , we have area a < area b < area c, for N > 5.

The above results can be qualitatively explained by means
of a simple estimate of the time needed for magnetic energy to
transfer from one ring with gain to a neighboring ring, com-
pared to the time employed by the ring to accumulate energy.
For a large array, and in the absence of gain and loss effects, we
have the dispersion relation for the magnetoinductive waves:
�k = [1 − 2λ cos(k)]−1/2. The group velocity of these waves
will be vk = d�k/dk, that is,

vk = λ
sin(k)

[1 − 2λ cos(k)]3/2
. (23)

For a ring with gain, the amplitude grows in time as exp(γ τ );
therefore, in order for a wave with wave vector k to be stable, its
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FIG. 6. (Color online) Normalized size of area in gain and loss
coupling space with purely real eigenvalues as a function of array size
for the gain and loss distributions “a” (squares), “b” (circles), and “c”
(triangles).

velocity vk needs to be greater than the speed at which the ring
accumulates energy: vk > γ . In order for the whole system
to be stable, one needs this to hold for every k. In particular,
for the slowest modes, k � 1, one has for a periodic array,
k = π/(N − 1). This implies

γ <
λ

(N − 1)(1 − 2λ)3/2
, (24)

defining a critical gain and loss parameter value that decreases
steadily as 1/N as N increases. Thus, in the infinite lattice
limit, the system will always be in the broken PT phase. A

physical interpretation follows: In a large array there is no time
for the accumulated energy to be transferred away from one
gain site to neighboring sites, thus causing the instability.

Conclusions. We have examined finite, one-dimensional
PT -symmetric arrays of split-ring resonators, that constitute
the simplest model of a magnetic metamaterial, and have
focused on the conditions in parameter space where a PT -
symmetric phase is stable, i.e., all eigenvalues are real. The
dimer, trimer, and pentamer cases were solved in closed
form, while for larger but finite arrays, results were obtained
numerically. It was found that, for all gain and loss distributions
examined, the stability region in parameter space decreases
rapidly with an increase in system size, until it disappears
altogether at approximately N = 20. A simple argument
shows a general tendency of a coupled system to increase
its instability window as its size increases. This tendency
seems generic for gain and loss distributions based on two gain
and loss parameters and is consistent with recent results for
infinite discrete arrays [11,19]. We believe that the relatively
small size of the structures at which PT symmetry is broken,
together with the availability of negative resistance devices for
providing gain [18], greatly facilitates the experimental study
of this transition.

The study of the robustness of the results reported here
under the inclusion of effects such as the electric coupling
among the SRRs and nonlinear effects is under way and will
be reported elsewhere.
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