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h i g h l i g h t s

• We simulate a row of interacting cars using a cellular automaton model.
• The jammed state dynamics is analyzed in a sequence of synchronized traffic lights.
• Small density jammed states show the expected scaling laws close to the resonance.
• A stochastic resonance-like behavior is found when we include velocity perturbations.
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a b s t r a c t

We simulate traffic in a city by means of the evolution of a row of interacting cars,
using a cellular automaton model, in a sequence of traffic lights synchronized by a ‘‘green
wave’’. When our initial condition is a small density jammed state, its evolution shows
the expected scaling laws close to the synchronization resonance, with a uniform car
density along the street. However, for an initial large density jammed state, we observe
density variations along the streets,which results in the breakdownof the scaling laws. This
spatial disorder corresponds to a different attractor of the system. As we include velocity
perturbations in the dynamics of the cars, all these attractors converge to a statistically
equivalent system for all initial jammed densities. However, this emergent state shows
a stochastic resonance-like behavior in which the average traffic velocity increases with
respect to that of the systemwithout noise, for several initial jammed densities. This result
may help in the understanding of dynamics of traffic jams in cities.

© 2014 Elsevier B.V. All rights reserved.

Transport problems represent an interesting field due to its high social impact and its emergent properties [1–4]. Of
particular importance are traffic and pedestrian flows, that have been studied extensively in the past [5–10]. In these
systems, behaviors such as jamming transitions and chaos have been found to be common [11–13]. Here, we consider the
traffic in a city as represented by a number of interacting cars moving through a sequence of traffic lights, a system which
has many nontrivial features [14–21].

For example, Varas et al. [21] showed that the critical behavior found around the synchronization resonances [11] is
robust, not only with respect to the street length sequence, but also with respect to the car density for an unjammed initial
condition. The study of the systemwas characterized for two traffic light phase behaviors: (a) synchronized phases [14], and
(b) phases linked by a green wave [11]. Resonance occurs when (a) the traveling time between traffic signals is the same
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Fig. 1. Possible system state, with a car stopped at a traffic light with a long traffic jam ahead, in which case the car will not move, even if the signal is
green. A schematic representation of the state is shown in the lower part of the figure.

as the period of the signals in the synchronized phase strategy, and (b) when the average speed of the car is the same as
the green wave velocity in the green wave strategy. In this manuscript we will consider the green-wave synchronization
resonances, due to its popular applicability in cities. These resonances are the boundary between two different dynamics,
but as was shown numerically and analytically for a single car [11,21], the behavior close to the resonance does not depend
on the finite braking and accelerating capabilities of the cars. Recently, the very complex spatiotemporal phenomena
of self-organization that occur under green-wave propagation have been studied in detail using a discrete version of
the Kerner–Klenov stochastic three-phase microscopic model for large and small flow rates [22]. The complex behavior
determined some of the physical effects associated with green-wave propagation. However, that model does not stress
explicitly the coupling effect of the traffic light on the car flow, so that the dynamics close to the synchronization resonances
was not studied. In a series of published manuscripts, where we have considered the very fine details of the effect of the
traffic lights on the car evolution by including continuous accelerating and braking capacities, we have shown that close to
the synchronization resonance the car behavior does not depend on the intricacies of the acceleration [11,15]. Hence, the
purpose of present manuscript is to investigate how the dynamics close to the synchronization resonance changes as we
increase the initial number of interacting cars that jam the system. For that purpose we simulate the dynamics of a number
of cars by a simple cellular automaton (CA)model. A large number of CA variants have been proposed to simulate city traffic,
including many details of the car dynamics [5]. But, for the purpose of this work, we concentrate on a very simplified CA
model since, as mentioned above, the critical behavior close enough to the synchronization resonance should be more or
less insensitive to these details (e.g., finite braking and accelerating capabilities, etc. [11,14]).

We will show below that this deterministic CA model displays different behavior close to resonance, depending on the
initial jammed density. The different behaviors, representing different attractors of the system, are produced by the spatial
variation of the jammed density at each traffic light. As we introduce velocity perturbations in the system, we note that the
average velocity increases with respect to the system without velocity perturbations, in a type of stochastic resonance that
is produced by the time average homogenization of the spatial variation of the jammed density at each traffic light. This
stochastic resonance is similar, although not equal, to the standard stochastic resonance [23,24] observed in the amplifica-
tion of signals by noise [25], bi-stable nonlinear systems [26,27], climate transitions [28–30], biological systems [31,32], etc.

Following Ref. [21], we consider a street of length Ltot with Ns traffic lights. The length Ln between the nth and (n + 1)th
traffic light is divided in NLn = Ln/ℓ cells of length ℓ. The time it takes a car to move to the next cell, namely τ , is the
automaton evolution time step. A car will move to the next cell only (a) if no other car is stopped in the next cell; and (b) if
the current cell has a traffic light, it must be in green and the next two cellsmust be empty, so that the drivers avoid stopping
at the intersection at the following cell.

The only possible values for the velocity of the cars are vmax = ℓ/τ , which corresponds to one cell per time step, and 0.
We are also assuming that the cars cannot pass each other. Fig. 1 shows a schematic representation of a state of the system
at a particular time. Occupied cells are represented by a black block. An arrow over the cell boundary represents a traffic
light.

The switching of the nth traffic light, from green to red and vice-versa, is given by the periodic function fn(t) =

sin(ωnt + φn). When fn(t) > 0 the traffic light is green, and the cars at the intersection can move to the next unoccupied
cell. If fn(t) < 0 a red traffic light stops themotion of the vehicles approaching to it. Here,ωn represents the frequency of the
nth traffic light, although for simplicity we are considering that all traffic lights have the same period T , i.e. ωn = 2π/T ∀n.
For the case of the green wave strategy studied here, a green pulse propagates through the sequence of traffic lights with
velocity vwave, so that φn = −(ω/vwave)

n
j=0 Lj. We define α = vmax/vwave, to compare the green wave speed with the cars

maximum speed. If we take that (a) the distance between traffic lights is about L = 200 m, representative of the Alameda
Av. in Santiago, Chile; (b) the length of each cell is ℓ = 10 m; the cruising velocity is vmax = 10 m/s (36 km/h); then each
time step corresponds to τ = 1 s. Let us note that these values are consistent with the car having equal accelerating and
braking capabilities of a = v2

max/2ℓ = 5 m/s2. For the traffic light period we will use T = 60 s.
The dynamics described above corresponds to a nontrivial modification of the car model presented in Ref. [21] as we

consider an initial jammed situation that shows more complexity than the empty road analyzed in that reference. From
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Fig. 2. Averaged speed of the cars normalized to vmax for the full range of initial conditions JN ∈ [0, 20] as a function of α for L = 20ℓ. The thin line
corresponds to the JN ≤ NL/4 superimposed curves, and represents the resonant solution with ⟨v⟩/vmax = 1 at α = 1 studied in Ref. [21]. The dashed lines
correspond to NL/4 < JN < 3NL/4 with increasing JN values from top to bottom. The thick line corresponds to the superimposed 3NL/4 ≤ JN < NL curves.

Ref. [21] we know that the model is quite capable of describing a significant part of the essence of the emergent state
that appears in the traffic behavior for large car densities. Hence, even though this model may be simple at first sight, it
contains enough complexity to display a type of stochastic resonance capable of increasing the car throughput as velocity
perturbations are added to the system. As far as we know, this is a new result that may have important implications for
analyzing and controlling city traffic.

As an illustration, wewill consider a sequence ofNs = 100 equidistant traffic lights, separated by a distance Ln = L = 20ℓ
(200 m). For the purpose of reproducing an initial jammed state we consider the simplest possibility, namely, an initial
condition with a fixed number JN of cars stopped at each traffic light. Therefore, the initial traffic jam length is JN ∈ [0,NL],
such that if Jn = 0 we have an empty street, and for Jn = NL we have a street without empty cells. The cars enter the first
simulation cell at a rate 1/f , thatmeanswe inject cars every f time steps, unless the first cell is occupied.We are interested in
a jammed situation, so that wewill use f = 1 throughout, which implies that we inject a new car into the system every time
that an empty spot is available. To remove the transient behavior we let the system evolve for a time 104 T , and to compute
the statistics we follow the dynamics for an additional amount of time equal to 104 T . With these data, we compute the
average speed of the cars (total distance traveled divided by total travel time) between the 20th and the (Ns − 20)th traffic
light, where we are not considering the first and the last 20 traffic lights to avoid boundary effects. It is important to keep in
mind that for the given traffic light period T , a traffic light can evacuate at most T/4 = 15 cars during a green light period,
depending on the number of cars stopped at the following traffic light. The results are shown in Fig. 2, where the normalized
average speed is described as a function of the green wave speed parameter α = vmax/vwave.

As shown in Fig. 2, for a range of initial conditions, namely JN ≤ NL/4 = 5, the system converges to the already
known dynamics of cars with an empty initial condition (JN = 0). This situation has a resonant average normalized speed
⟨v⟩/vmax = 1 at α = 1, as was shown in Ref. [21]. In these softly jammed cases, the traffic jamwill dissolve after some time.
However, there exists initial conditions with JN > NL/4 > 5 for which the system saturates and it is unable to remove the
initial traffic jam. We observe an emergent phenomenon for 5 = NL/4 < JN < 3NL/4 = 15, where there exists a range
of α values in which the average speed is constant, i.e., the car behavior being independent of the green wave speed. This
jammed state has its own dynamics and cannot be altered by our control strategy by means of the traffic light phase. This
dynamics is expected since the road has a surplus of vehicles which cannot be evacuated due to the limited outflow. For
JN > 3NL/4 = 15, the constant average speed region described above disappears and all these initial conditions converge to
the same curve with a resonance at α ≈ 0.6 with ⟨v⟩/vmax ≈ 0.7 (true for JN ≥ 8). This behavior is quite robust (not shown
here) even as we include perturbations to the initial jam length JN . Furthermore, the three ranges of JN described above are
quite universal even for other values of L, to be analyzed elsewhere.

Let us note that a lower value of α at resonance is expected in a jammed situation, because at a given traffic light we have
to wait for the time required to evacuate the cars at the next traffic light before we canmake it through. This effect becomes
even more apparent in the increase of the average speed close to α ≈ −1 in Fig. 2, defining an effective anti-greenwave
strategy. Hence for some highly jammed situations, it may be convenient to apply an anti-greenwave strategy to increase
the traffic flow of the system.

We will now characterize some of the complexities of the emergent states (a range of constant ⟨v⟩/vmax as a function
of α) that appear in this system for NL/4 < JN < 3NL/4. Given that the number of cars flowing out of the system is T/4
per period, it leads us to the rate 1/4 cars per time step. Hence, the travel time of the cars between traffic lights, 1θ , grows
linearly with JN as 1θ = 4JNτ and is independent of L in this range, which leads us to the following relation,

⟨v⟩

vmax
=

τ

ℓ

L
1θ

=
NL

4JN
. (1)



68 F. Castillo et al. / Physica A 403 (2014) 65–70

Fig. 3. Traffic light jam number at each traffic light, Yn , for JN = 10 and α = 1.6, as a function of n (traffic light index). We also include the average traffic
light jam number at each traffic light for the velocity perturbation levels r = 0.01, 0.03 and 0.05 (see below).

Therefore, the average speed in this emergent state is inversely proportional to JN/NL, the initial traffic jam fraction. Let us
note that we can define the density as the number of cars divided by the street length in cell units, which results in the
fraction ρ = JN/NL and an average conserved current ρ⟨v⟩ = vmax/4.

Anotherway to characterize the behavior of the traffic jam that occurs in these regions, is to define the traffic jamnumber
Yn as the number of contiguous cars stopped at the nth traffic light at the moment it switches to green. It is important
to note that the maximum normalized length that a traffic light can evacuate, assuming an empty situation ahead, is
Y/L = T/4L = 15/20 = 0.75. Hence for JN > 2NL/5 = 8 there are values of α for which the system is completely
jammed, in the sense that traffic lights are not able to evacuate all the jammed cars during one light period. The spatial
dependence of the traffic jam number at each traffic light, given by Yn, with n as the traffic light index is shown in Fig. 3 for
JN = 10 and a fixed green wave speed α = 1.6. In this particular case Yn has an aperiodic spatial profile.

Hence, for JN < NL/4 the traffic is under-saturated and the initial jammed condition dissolves as time passes. For
JN > 3NL/4 the traffic is over saturated and there are much more cars trying to cross a traffic light than the ones exiting
from the next traffic light, so that all of the initial conditions converge to the same attractor. For NL/4 < JN < 3NL/4 there
is a range for α values in which the system is not fully saturated and it is unable to dissolve the initial jammed state, leading
to constant averaged travel time and averaged speed.

Realistic traffic situations involve a number of uncertain parameters, from city traffic infrastructure to driver’s
peculiarities. In order to cope with such a randomness we introduce the parameter r , which represents the probability
that a car does not move at a given time step, even when all other conditions are satisfied. For example, the case r = 0.01
corresponds to having a 1% probability of not advancing in the next time step.

The simulation was done with the same parameters as in Fig. 2, but for r = 0.01, 0.03, 0.05. The normalized average
speed for the full range of initial jammed conditions is shown in Fig. 4. For r = 0, the same curves as in Fig. 2 are obtained,
each curve corresponding to an initial jammed state. However, for a given nonzero value of r , all initial conditions yield
essentially the same curve. All the attractors for r = 0 now converge to a statistically equivalent state when r ≠ 0 for all
initial jam densities. We can still observe an emergent state with constant average speed for a range of α.

As shown in Ref. [21] the introduction of this noise changes the average velocity of an isolated car as vmax → vmax(1− r),
assuming an empty road aheadwithout cars or traffic lights. Thus, to compare the different curves produced by the different
results of r , we use this normalization for vmax in both axes of Fig. 4. The fact that the curves remain different for different
values of r , suggests that the resulting dynamics is a consequence of collective effects. By analyzing the car motion in the
emergent state, it is possible to see that it represents the dynamics of a traffic jam, with well defined pulses of about T/4
cars propagating with velocity vmax(1 − r), and in which a given pulse drops a number of cars at a given traffic light, and
picks up the cars left by the pulse propagating ahead at the next traffic light. The pulses are produced by the traffic lights,
but there is a range of α (0.5 ≤ α ≤ 1.0) values in which the average speed does not change with α, hence the traffic lights
just generate the pulses, but do not seem to affect the dynamics in other ways [21]. This resembles a classical gas, where
collisions establish and maintain an equilibrium state, but do not otherwise affect macroscopic thermodynamic quantities.

In Fig. 4 we notice a very counter intuitive effect of the velocity perturbations. We see that for a range of α values the
introduction of velocity perturbations increases the averaged speed relative to the case r = 0, when JN > 3NL/4, e.g., for the
emergent state discussed above. The velocity perturbations not only add stability to the system, but in some cases, improve
the car flow. To understand this behavior, we have included in Fig. 3 the average value of Yn for a given perturbation level.
We note that in general the number of cars stopped at a traffic light has a smooth spatial dependence with an average value
that is smaller than for the r = 0 case. For r = 0 there is a significant spatial variation, reaching sometimes a completely
jammed situation between traffic lights with Yn ∼ L, which is impossible to evacuate in just one traffic light. In essence
these traffic lights strongly inhibit the flow of cars through the system, acting as a clog. For the r > 0 case, now we have
an average value ⟨Yn⟩T ∼ T/4, so that in principle we could evacuate all the cars in one traffic light cycle if the next street
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Fig. 4. Averaged speed of the cars normalized by vmax for the full range of initial jammed conditions JN ∈ [0, 20] as a function of α. We show a comparison
between r = 0, r = 0.01, r = 0.03, and r = 0.05. The labels of the curves follow the description used in Fig. 2, with the dashed lines increasing in JN value
from top to bottom.

between lights were empty. Of course this does not occur, and in general not all cars are able to get to the next traffic light
in one light cycle as the next traffic light has cars waiting. This can be intuited by the variation of the average velocity with
r in Fig. 4.

Hence, this behavior is similar to a stochastic resonance in which the average traffic speed increases with respect to that
of the system without noise for some initial jammed densities, i.e., the noise is able to unjam the system, and increases
the average flow. The resonant behavior reduces the average number of cars at a given traffic light, partially liberating the
clog that inhibits the flow of cars through the system. This counter-intuitive result may be relevant in the understanding of
dynamics of traffic jams in cities. In this respect, it is important to realize that all models are restricted approximations of
the real city traffic dynamics, and each model has its own strength and range of validity. In the case of our CA model, we
expect it to be a good representation close to the synchronization resonance (e.g. vwave = vmax) where the flux is expected
to be controlled mainly by the traffic light and noise level, and not by the acceleration details. And it is precisely close to this
synchronization resonance where the stochastic resonance-like behavior occurs, as can be observed in Fig. 4. Hence, this
process may have practical implications for city traffic, and should be considered as more complexities are introduced into
the modeling and studies of city traffic.
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