
Physica A 393 (2014) 391–403

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Option pricing, stochastic volatility, singular dynamics and
constrained path integrals
Mauricio Contreras a,∗, Sergio A. Hojman b,c,d

a Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Chile
b Departamento de Ciencias, Facultad de Artes Liberales, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
c Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
d Centro de Recursos Educativos Avanzados, CREA, Santiago, Chile

h i g h l i g h t s
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a b s t r a c t

Stochastic volatility models have been widely studied and used in the financial world. The
Heston model (Heston, 1993) [7] is one of the best known models to deal with this issue.
These stochastic volatility models are characterized by the fact that they explicitly depend
on a correlation parameter ρ which relates the two Brownian motions that drive the
stochastic dynamics associated to the volatility and the underlying asset. Solutions to the
Heston model in the context of option pricing, using a path integral approach, are found in
Lemmens et al. (2008) [21] while in Baaquie (2007,1997) [12,13] propagators for different
stochastic volatility models are constructed. In all previous cases, the propagator is not
defined for extreme cases ρ = ±1. It is therefore necessary to obtain a solution for these
extreme cases and also to understand the origin of the divergence of the propagator. In this
paper we study in detail a general class of stochastic volatility models for extreme values
ρ = ±1 and show that in these two cases, the associated classical dynamics corresponds to
a system with second class constraints, which must be dealt with using Dirac’s method for
constrained systems (Dirac, 1958,1967) [22,23] in order to properly obtain the propagator
in the form of a EuclideanHamiltonian path integral (Henneaux and Teitelboim, 1992) [25].
After integrating over momenta, one gets an Euclidean Lagrangian path integral without
constraints, which in the case of the Heston model corresponds to a path integral of a
repulsive radial harmonic oscillator. In all the cases studied, the price of the underlying
asset is completely determined by one of the second class constraints in terms of volatility
and plays no active role in the path integral.
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1. Introduction

The Black–Scholes model [1,2], one of the cornerstones of current financial theory, assumes by default that market
volatility is constant. But the analysis of the actual economically-financial data implies, as a matter of fact, that volatility
varies en time [2]. As Fisher Black himself remarked:

‘‘Suppose we use the standard deviation of possible future returns on a stock as ameasure of its volatility. Is it reasonable
to take that volatility as a constant over time? I think not’’.

To address this problem in the context of the Black–Scholes standard model, the concept of smile has been developed
[2–5]. In this approach, the volatility smile as a function of the underlying asset price is determined from the empirical data.
Other more sophisticated models that try to capture the variation in volatility are stochastic volatility models [2,6]. Here it
is assumed that the market volatility behaves as a random variable determined by a Brownian motion. This movement is
different from a second Brownian motion that dictates the dynamics of the underlying asset in the Black–Scholes model.
The correlation between both movements is parameterized by the correlation coefficient ρ. This fact, together with the
hypothesis of no arbitrage and a self financing portfolio, imply that the option price satisfies a partial differential equation
in two spatial dimensions (corresponding to the option price and the value of the volatility) and one time variable. The
equation has a potential term similar to that of a quantum particle in the presence of an external electromagnetic field.
Different stochastic models can be constructed depending on the shape of the potential term. The best known ones are the
Heston model, the Hull andWhite model and the model of Ornstein–Uhlenbeck [2,7,8]. Other variations of these stochastic
volatility models include incorporating a ‘‘jump diffusion’’ term, which gives rise to integro-differential equations [9] for the
price of the option.

Furthermore, in recent years path integrals techniques have been increasingly applied to obtain solutions of the
Black–Scholes equation [10–16] while numerical techniques are presented in Refs. [17–20]. In the context of stochastic
volatility models, in Ref. [21] the propagator has been calculated for the Heston model via path integrals, obtaining closed
form solutions for the price of the option. This result depends on the value of the correlation coefficient ρ and the proposed
solution is indeterminate for extreme cases where ρ = ±1. The same behaviour appears in Refs. [12,13] where propagators
for different stochastic volatility models are constructed. So, it is then interesting to study in detail what happens to the
propagator when the correlation coefficient takes its extreme values ρ = ±1.

This article shows that, when looking at stochastic volatility models as Euclidean quantum mechanical systems, the
classicalmechanics underlying the bidimensional Schrödinger equation atρ = ±1, is a systemwith constraints, reminiscent
of an optimal control problem. Due to the presence of links, it is necessary to resort to the Dirac method [22–24] for the
correct description of this constrained system, both in the classical and the quantum levels. Applying Dirac method shows
that the links are second class and the propagator must be calculated in terms of a Hamiltonian path integral with second
class constraints [25].

2. Stochastic volatility models

Stochastic volatility models are used to evaluate options prices and generalizes the Black–Scholes model to the non
constant volatility case. Between the different plethora of models, the best know are the Heston model [7], the CEV model
[26,27], the SBR volatility model [28], the GARCH model [29], the 3/2 model, the Hull and White model [8] and the Chen
model [30]. Some stochastic volatility models are even capable to capture some important statistical properties of real
markets, called stylized facts, such as the autocorrelation and leverage effect [31–34].

To account this stylized facts for the real financial data, empirical analysis implies that |ρ| must be of the order of 0.5
[31,32]. Although, from a statistical point of view, the extreme case ρ = ±1 is not realized in the real world, these values
can be satisfied for ‘‘outliers’’ events in the sense of Ref. [35], and from a structural perspective, is necessary understand the
behaviour of the stochastic volatility models for the full range of its parameters values.

In ordermake contact with results for ρ ≠ ±1 studied in literature [21,12,13], we consider first a wide class of stochastic
models that are related to the Hestonmodel, but ourmethods and analysis can be applied to an arbitrary stochastic volatility
model. So, we consider a class of stochastic volatility models that are characterized by the following stochastic differential
equations associated [3,2] to the underlying price S(t) and the volatility v(t) respectively

dS = µ(S, t)dt +
√
vSdW1 (1)

dv = α(S, v, t)dt + σβ(S, v, t)
√
vdW2 (2)

where it is assumed that the Brownian motions dW1 and dW2 have a correlation factor given by

⟨dW1 dW2⟩ = ρ. (3)

These equations, together with the assumption of no-arbitrage and using a self financing portfolio constructed from the
underlying asset and options, imply [3,2] the following equation for the option price U(S, v, t)

∂U
∂t

+
1
2
vS2

∂2U
∂S2

+ ρσvβS
∂2U
∂S∂v

+
1
2
σ 2β2v

∂2U
∂v2

+ r

S
∂U
∂S

− U


+ (α − φβ
√
v)
∂U
∂v

= 0 (4)
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where the function φ = φ(S, v, t) is called the ‘‘market price of risk’’. Asmentioned in Ref. [3] one can use a risk neutral drift
α in (1) and all dependence in φ disappears in (4). In fact, in all examples presented at the end of this paper it is assumed
that φ = 0, but the analysis is performed in general and can be accommodate a non trivial φ function.

Under the change of variables

x = ln S. (5)

Eq. (4) may be written in the (x, v, t) space as

∂U
∂t

+
1
2
v
∂2U
∂x2

+ ρσvβ
∂2U
∂x∂v

+
1
2
σ 2β2v

∂2U
∂v2

+


r −

1
2
v


∂U
∂x

− rU + (α − φβ
√
v)
∂U
∂v

= 0. (6)

The Heston model corresponds to the special case where α(x, v, t) = −λ0(v − v0), φ = 0, β = 1 where λ0 is a constant.
The propagator of Eq. (6) for the Heston model has been obtained in Ref. [21] and it is well defined for −1 < ρ < 1. For
ρ = ±1 the propagator diverges, so it is interesting to explore what happens in these limiting cases. The same is true in the
results presented in Refs. [12,13], where the propagator for a class of stochastic volatility is analysed. In fact, for the case
where ρ → ±1 the propagator integrand of both models tend to a Dirac delta function, which means that the propagator
tends to 1 in this limit.

In this article we study the propagator of Eq. (6) for the case where the correlation coefficient ρ takes its extreme values
ρ = ±1 for a wide stochastic volatility model class, that is, for arbitrary functions α(x, v, t), φ(x, v, t) and β(x, v, t). To this
end, we first define the wave function Ψ by

Ψ (x, v, t) = U(x, v, t)er(T−t) (7)

in such a way that the Ψ dynamics is given by

∂Ψ

∂t
+

1
2
v
∂2Ψ

∂x2
+ ρσvβ

∂2Ψ

∂x∂v
+

1
2
σ 2β2v

∂2Ψ

∂v2
+


r −

1
2
v


∂Ψ

∂x
+ (α − φβ

√
v)
∂Ψ

∂v
= 0. (8)

Note that Eq. (8) can be interpreted as a Schrödinger type equation in Euclidean time

ĤΨ (x, v, t) =
∂Ψ (x, v, t)

∂t
(9)

where the Hamiltonian operator is given by

Ĥ = −
1
2
v
∂2

∂x2
− ρσvβ

∂2

∂x∂v
−

1
2
σ 2β2v

∂2

∂v2
−


r −

1
2
v


∂

∂x
− (α − φβ

√
v)
∂

∂v
(10)

so one can write the propagator for Eq. (9) in terms of path integrals in a way which is analogous to the quantum mechan-
ical description. We will work directly in Euclidean time, so we need to make some considerations about the Euclidean
formalism.

3. Euclidean framework

In this section the analysis for the path integral and classical dynamics associated to the Eq. (9) is done in the Euclidean
time.

3.1. Euclidean path integral

Consider the Euclidean Schrödinger type equation

Ĥ|Ψ (t)⟩ =
∂|Ψ (t)⟩
∂t

(11)

where Ĥ is a time independentHamiltonian. The solution of this equation, for a final condition |Ψ (T )⟩ = |Φ0⟩ is (see Ref. [12]
for details)

|Ψ (t)⟩ = e−Ĥ(T−t)
|Φ0⟩. (12)

The wave function can be written as

Ψ (x, t) =


K(x, x′, T − t)Φ0(x′)dx′ (13)

where the propagator

Z = K(x, x′, τ ) = ⟨x|e−Ĥτ
|x′

⟩ (14)
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and τ = T − t is the forward time. By dividing the time τ in N time steps of length ϵ = τ/N the propagator can be written
as

Z = ⟨x|e−Ĥϵe−Ĥϵ . . . e−Ĥϵ
|x′

⟩ (15)

by inserting the identity operators

Î =


|x⟩⟨x|dx (16)

Î =


|px⟩⟨px|

dpx
2π

(17)

the propagator is

Z =

N−1
i=1


dxi

N
j=1


dpj
2π

⟨x|e−Ĥϵ
|pN⟩⟨pN |xN−1⟩ . . . ⟨x2|e−Ĥϵ

|p2⟩⟨p2|x1⟩⟨x1|e−Ĥϵ
|p1⟩⟨p1|x′

⟩ (18)

but using the fact that

⟨p|x⟩ = e−ipx (19)

⟨x|p⟩ = eipx (20)

⟨x|e−Ĥϵ
|p⟩ = e−H(x,p)ϵ

⟨x|p⟩ (21)

where H(x, p) is the classical Hamiltonian associated to the Hamiltonian operator Ĥ through the relation

⟨x|Ĥ|p⟩ = H(x, p)⟨x|p⟩ (22)

so the propagator is

Z =

N−1
i=1


dxi

N
j=1


dpj
2π

e−H(xN ,pN )ϵ+ipN (xN−xN−1) . . . e−H(x2,p2)ϵ+ip2(x2−x1) e−H(x1,p1)ϵ+ip1(x1−x0) (23)

where xN = x and x0 = x′. So finally

Z =

N−1
i=1


dxi

N
j=1


dpj
2π

e
N

k=1


ipk

(xk−xk−1)
ϵ −H(xk,pk)


ϵ (24)

or in the limit ϵ → 0

Z =


Dx


Dpx eS[x,px] (25)

where

S[x, px] =


(ipxẋ − H(x, px))dτ (26)

is the Euclidean classical action and ẋmeans time derivative respect to τ . For a time dependent Hamiltonian, Eq. (25) is still
valid, for details see for example [36].

3.2. Euclidean classical Hamiltonian equations

The classical Euclidean Hamiltonian equations can be deduced by imposing that the classical trajectories optimize the
classical action:

δS = S[x + δx, px + δpx] − S[x, px] = 0 (27)

but

S[x + δx, px + δpx] =


[i(px + δpx)(ẋ + δẋ)− H(x + δx, px + δpx)]dτ . (28)

By expanding the Hamiltonian and assuming that the extremes of trajectories are fixed, one gets

S[x + δx, px + δpx] = S[x, px] +

 
iẋ −

∂H(x, px)
∂px


δpxdτ +

 
−iṗx −

∂H(x, px)
∂x


δxdτ + · · · (29)



M. Contreras, S.A. Hojman / Physica A 393 (2014) 391–403 395

hence

δS =

 
iẋ −

∂H(x, px)
∂px


δpxdτ +

 
−iṗx −

∂H(x, px)
∂x


δxdτ + · · · (30)

so the classical Hamiltonian equations in Euclidean time reads

iẋ =
∂H(x, px)
∂px

, (31)

iṗx = −
∂H(x, px)
∂x

. (32)

In n dimensions, the Poisson Brackets may be defined by

{A(x, p), B(x, p)} ≡


i


∂A(x, p)
∂xi

∂B(x, p)
∂pi

−
∂B(x, p)
∂xi

∂A(x, p)
∂pi


, (33)

to rewrite Hamilton’s equations in the form

iẋj = {xj,H}, (34)
iṗk = {pk,H}. (35)

4. Euclidean classical Hamiltonian dynamics for stochastic volatility models

The Hamiltonian operator, acting on a wavefunction Ψ , for a generic stochastic volatility model is

ĤΨ = −
1
2
v
∂2Ψ

∂x2
− ρσvβ

∂2Ψ

∂x∂v
−

1
2
σ 2β2v

∂2Ψ

∂v2
−


r −

1
2
v


∂Ψ

∂x
− (α − φβ

√
v)
∂Ψ

∂v
(36)

and in this case

⟨px pv|x v⟩ = e−ipxx−ipvv (37)

⟨x v|px pv⟩ = eipxx+ipvv (38)

⟨x v|Ĥ|px pv⟩ = H(x, v, px, pv)eipxx+ipvv (39)

where H(x, v, px, pv) is the classical Hamiltonian

H(x, v, px, pv) =
1
2
vp2x + ρσvβpxpv +

1
2
σ 2β2vp2v − Ax(v)px − Av(x, v, τ )pv (40)

where the functions Ax and Av are defined by

Ax(v) = iĀx(v) = i

r −

1
2
v


(41)

Av(x, v, τ ) = iĀv(x, v, τ ) = i(α(x, v, τ )− φ(x, v, τ )β(x, v, τ )
√
v) (42)

and are similar to a vector electromagnetic potentials in two spatial dimensions. Here and in the rest of the paper, Ax(v)
and Av(x, v, τ )will denote imaginary potentials whereas Āx(v) and Āv(x, v, τ )will denote real ones. The classical Euclidean
Hamiltonian equations in this case are

iẋ =
∂H
∂px

iṗx = −
∂H
∂x

(43)

iv̇ =
∂H
∂pv

iṗv = −
∂H
∂v
. (44)

For the classical Hamiltonian (40), the Euclidean Hamiltonian equations read

iẋ = vpx + ρσvβpv − Ax (45)

iv̇ = ρσβvpx + σ 2vβ2pv − Av (46)

iṗx =
∂Av
∂x

pv (47)

iṗv = −
1
2
p2x − ρσpxpv −

1
2
σ 2p2v +

∂Ax

∂v
px +

∂Av
∂v

pv. (48)
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The first two Hamiltonian equations may be written as
iẋ + Ax
iv̇ + Av


= M


px
pv


=


v ρσvβ

ρσvβ σ 2vβ2


px
pv


note that determinant of the matrixM is

det(M) = σ 2v2β2(1 − ρ2) (49)

which vanishes for ρ = ±1, which means that momenta cannot be expressed in terms of velocities, which is similar to a
well known fact for singular Lagrangian systems. Note that for ρ = ±1 the classical Hamiltonian reduces to

H±
=

1
2
v(px ± σβpv)2 − Axpx − Avpv. (50)

5. Euclidean classical Lagrangian singular dynamics

For ρ = ±1 the velocities may be expressed in terms of momenta by
iẋ + Ax
iv̇ + Av


=


v ±σvβ

±σvβ σ 2vβ2


px
pv


so that velocities are constrained by

(iẋ + Ax)∓
(iv̇ + Av)
σβ

= 0, (51)

which is the same as

(ẋ + Āx)∓
(v̇ + Āv)
σβ

= 0. (52)

Define the Euclidean Lagrangian by

L±
= iẋpx + iv̇pv − H± (53)

one get

L±
=
(iẋ + Ax)

2

2v
= −

(ẋ + Āx)
2

2v
(54)

subject to the real constraint (52). In this way, the Lagrangian theory associated to the singular HamiltonianH± is equivalent
to an optimal control problem [24], where the state variables (x, v) are subject to a Lanchester equation given by constraint
(52).

One can now apply Dirac’s method [22,23] to construct the Hamiltonian formalism associated to the Lagrangian theory.
One must consider the Lagrangian with constraints

L̃±
=
(iẋ + Ax)

2

2v
+ λ


(iẋ + Ax)∓

(iv̇ + Av)
σβ


(55)

and the definition of the canonical momenta in Euclidean time are

ipx =
∂ L̃±

∂ ẋ
= i

(iẋ + Ax)

v
+ iλ (56)

ipv =
∂ L̃±

∂v̇
= ∓i

λ

σβ
(57)

ipλ =
∂ L̃±

∂λ̇
= 0. (58)

The above equations imply the existence of two constraints for the Euclidean canonical momenta

Φ±

1 = pv ±
λ

σβ
≃ 0 (59)

Φ2 = pλ ≃ 0. (60)
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The Dirac’s extended Hamiltonian is given by

H±

ext = ipxẋ + ipv v̇ + ipλλ̇− L̃±
+ µ1Φ

±

1 + µ2Φ2 (61)

H±

ext = ipxẋ + ipv v̇ + ipλλ̇−
(iẋ + Ax)

2

2v
− λ


(iẋ + Ax)∓

(iv̇ + Av)
σβ


+ µ1


pv ±

λ

σβ


+ µ2[pλ] (62)

which written in terms of the momenta turns out to be

H±

ext =
1
2
v(px ± σβpv)2 − Axpx − Avpv + µ1


pv ±

λ

σβ


+ µ2[pλ]. (63)

The (time evolution) consistency of the constraints imply

iΦ̇±

1 = {Φ±

1 ,H
±

ext} = 0 (64)

iΦ̇2 = {Φ2,H±

ext} = 0 (65)

which yield

−
∂H±

ext

∂v
±


λ

σ

∂

∂x


1
β


(v(px ± σβpv)− Ax)+

λ

σ

∂

∂v


1
β


(v(px ± σβpv)(±σβ)− Av + µ1)+

1
σβ

µ2


= 0 (66)

∓
1
σβ

µ1 = 0. (67)

If σβ ≠ 0 then the Lagrangemultipliersµ1,µ2 may be solved for using the last two equations and the consistency equations
generate no new constraints. There are only two primary constraints. The Poisson bracket for the two primary constraints
Φ1 andΦ2 turns out to be

{Φ±

1 ,Φ2} = ±
1
σβ

(68)

so that the Dirac matrix is invertible when σβ ≠ 0, a condition that is necessary to ensure the existence of propagation, as
discussed later. Then the two constraintsΦ±

1 andΦ2 are second class and can be eliminated by using Dirac brackets. So, one
can setΦ±

1 andΦ2 strongly equal to zero, that is,

Φ±

1 = pv ±
λ

σβ
= 0 (69)

Φ2 = pλ = 0 (70)

so the extended Hamiltonian can be written as

H±

ext = H± (71)

which coincides with the original expression (50). Thus, the Euclidean Lagrangian and Hamiltonian theories are equivalent.

6. Constrained Euclidean path integral

The Euclidean path integral for systems with second class constraints is given in phase space by Ref. [25]

Z±
=


DxDvDλ

Dpx
2π

Dpv
2π

Dpλ
2π


det(C)δ(Φ±

1 )δ(Φ2) exp(S±
[x, v, λ, px, pv, pλ]) (72)

where C is the Dirac’s matrix constructed out of second class constraints according to

C = (Cij) = {Φi,Φj} (73)

and

S±
[x, v, λ, px, pv, pλ] =


[iẋpx + iv̇pv + iλ̇pλ − H±(x, v, λ, px, pv, pλ)]dτ (74)

is the Hamiltonian action. In our case, Dirac’s matrix is

C =


C11 C12
C21 C22


=


{Φ±

1 ,Φ
±

1 } {Φ±

1 ,Φ2}

{Φ2,Φ
±

1 } {Φ2,Φ2}


=

 0 ±
1
σβ

∓
1
σβ

0


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therefore,

det(C) =
1

σ 2β2
(75)

so

Z±
=


DxDvDλ

Dpx
2π

Dpv
2π

Dpλ
2π

1
σβ

δ


pv ±

λ

σβ


δ(pλ) exp(S±

[x, v, λ, px, pv, pλ]) (76)

where

S±
[x, v, λ, px, pv, pλ] =

 
ipxẋ + ipv v̇ + ipλλ̇−

1
2
v(px ± σβpv)2 + Axpx + Avpv


dτ . (77)

Integration on pλ yields

Z±
=


DxDvDλ

Dpx
2π

Dpv
2π

1
2π

1
σβ

δ


pv ±

λ

σβ


× exp

 
ipxẋ + ipv v̇ −

1
2
v(px ∓ σβpv)2 + Axpx + Avpv


dτ


(78)

whereas integration on pv gives rise to

Z±
=


DxDvDλ

Dpx
2π

1
(2π)2

1
σβ

exp
 

ipxẋ ∓
λ

σβ
iv̇ −

1
2
v(px − λ)2 + Axpx ∓

λAv
σβ


dτ

. (79)

The integrand in the exponential of the action may be rewritten as

−
v

2


px +


λ+

(iẋ + Ax)

v

2
+
(iẋ + Ax)

2

2v
+ λ


(iẋ + Ax)∓

(iv̇ + Av)
σβ


(80)

so that integrating on px one gets

Z±
=


DxDvDλ

1
(2π)3

1
σβ


2π
vdτ

exp
 

(iẋ + Ax)
2

2v


+ λ


(iẋ + Ax)∓

(iv̇ + Av)
σβ


dτ

. (81)

If instead of the imaginary potential A = iĀ one uses the real Ā, the propagator reads

Z±
=


DxDvDλ

1
(2π)3

1
σβ


2π
vdτ

exp
 

−
(ẋ + Āx)

2

2v


+ iλ


(ẋ + Āx)∓

(v̇ + Āv)
σβ


dτ

. (82)

Integration on λ yields

Z±
=


DxDv

1
(2π)3

1
σβ


2π
vdτ

δ


(ẋ + Āx)∓

(v̇ + Āv)
σβ


exp


−
(ẋ + Āx)

2

2v
dτ

. (83)

Finally integrating on x yields

Z±
=


Dv

1
(2π)3

1
σβ


2π
vdτ

exp


−


(v̇ + Āv)2

2vσ 2β2
dτ

. (84)

In this last expression, functions β and Āv must be evaluated in x = x(τ ) = xv(τ ), where xv(τ ) is the solution to the
inhomogeneous equation

ẋ = −Āx(v)±
v̇ + Āv(x, v, τ )
σβ(x, v, τ )

(85)

that is, in (84), Āv and β are given by

Āv = Āv(xv(τ ), v, τ ) (86)
β = β(xv(τ ), v, τ ). (87)

The change of variables

u(τ ) = 2

v(τ) (88)
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in Eq. (84), leads us to the propagator written in terms of the variable u according to

Z±
=

1
(2π)2


Du


1

2πdτ


1

σβ(u, τ )

2

exp


−


1
2


1

σβ(u, τ )

2 
u̇ +

2Āu(u, τ )
u

2
dτ


(89)

where

Āu(u, τ ) = α


x u2

4
(τ ),

u2

4
, τ


− φ


x u2

4
(τ ),

u2

4
, τ


β


x u2

4
(τ ),

u2

4
, τ


u
2

(90)

and

β(u, τ ) = β


x u2

4
(τ ),

u2

4
, τ


. (91)

When β does not depend explicitly on time (β = β(u)), one can change variables by

θ = F(u) =


1

σβ(u)
du (92)

so that

θ̇ =
u̇

σβ(u)
(93)

and the propagator expressed in terms of the new variables θ reads

Z±
=

1
(2π)2


Dθ


1

2πdt
exp


−


1
2
[θ̇ + V (θ)]2dt


(94)

where V (θ)may be obtained from

V (θ) =
2Āu(u)
σβ(u)u

(95)

evaluated at u = u(θ) = F−1(θ)where F−1(θ) is defined by expression (92). Specific examples of applications of the latter
form of the propagator are presented in the next section.

7. Some special cases

In this section we discuss special cases such as

7.1. Free particle

Consider the stochastic equation for volatility given by

dv = σ
√
vdW2 (96)

in such a way that α(x, v, t) = 0, β(x, v, t) = 1 and take φ(x, v, t) = 0. The vector potential Av = 0, which implies that
Au = 0 and from Eq. (95) one gets V (θ) = 0. Here β(x, u, t) = 1 and therefore the propagator, in this case, is

Z =
1

(2π)2


Dθ


1

2πdt
exp


−


1
2
θ̇2dt


(97)

which is the unit mass free particle propagator in quantum mechanics or the diffusion equation propagator

∂ψ(u, t)
∂t

= D
∂2ψ(u, t)
∂u2

(98)

with diffusion constant D =
1
2 .
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7.2. Heston model

For the Heston model the stochastic equation for volatility is

dv = −λ0(v − v0)dt + σ
√
vdW2 (99)

take α(x, v, t) = −λ0(v − v0), β(x, v, t) = 1 and φ(x, v, t) = 0, with constant λ0. The vector potential Av is a function
linear in the volatility

Av(x, v, t) = −λ0(v − v0) (100)

or, written in terms of Au(u, t)

Au(u, t) = −λ0


u2

4
− v0


(101)

with

β(x, u, t) = 1. (102)

The change of variables (92) is, in this case,

θ =


du
σ

=
u
σ

(103)

and its inverse relation

u = σθ. (104)

The potential V (θ) is, in this case,

V (θ) =
−2λ0(u2/4 − v0)

σu


u=σθ

= −
λ0θ

2
+

2λ0v0
σ 2θ

(105)

so that the propagator reads

Z =
1

(2π)2


Dθ


1

2πdt
exp


−


1
2


θ̇ −

λ0θ

2
+

2λ0v0
σ 2θ

2
dt


(106)

which, up to total derivatives, is equivalent to

Z =
1

(2π)2


Dθ


1

2πdt
exp


−

 
1
2
θ̇2 +

λ20

8
θ2 +

2λ20v
2
0

σ 4θ2


dt


(107)

which corresponds to the Euclidean path integral for a repulsive radial harmonic oscillator with angular momentum
l = 2λ0v0

σ 2 .

7.3. Hull & White model

For the Hull & White model, the stochastic equation for volatility is

dv = a(b − v)dt + σvdW2 (108)

so take α(x, v, t) = a(b − v), β(x, v, t) =
√
v and φ(x, v, t) = 0. Therefore,

Au(u, t) = a

b −

u2

4


(109)

and

β(u, t) =
u
2
. (110)

The change of variables (92) is

θ =


2du
σu

=
1
σ

ln u2 (111)

or its inverse relation

u = e
σθ
2 . (112)
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The potential V (θ) in this case, is

V (θ) =


4ab
σu2

−
a
σ


u=e

σθ
2

=
4ab
σ

e−σθ
−

a
σ

(113)

so the propagator reads

Z =
1

(2π)2


Dθ


1

2πdt
exp


−


1
2


θ̇ +

4ab
σ

e−σθ
−

a
σ

2
dt


. (114)

7.4. 3/2 model

For this model, the stochastic equation for volatility is

dv = (av − bv2)dt + σv3/2dW2 (115)

take α(x, v, t) = (av − bv2), β(x, v, t) = v and φ = 0, as always, then the vector potential is

Au(u, t) =


a
u2

4
− b

u4

16


(116)

and

β(u, t) =
u2

4
. (117)

The change of variables (92) is

θ =


4du
σu2

=
−4
σu

(118)

or its inverse relation

u =
−4
σθ
. (119)

The potential V (θ) is

V (θ) =


2a
σu

−
2bu
4σ


u= −4

σθ

= −
aθ
2

+
2b
σ 2θ

(120)

and the propagator turns out to be

Z =
1

(2π)2


Dθ


1

2πdt
exp


−


1
2


θ̇ −

aθ
2

+
2b
σ 2θ

2
dt


(121)

which is identical to the Heston model propagator with λ0 = a and λ0v0 = b.

7.5. Baaquie α model

In this model, the stochastic equation for volatility is [12]

dv = (λ0 + µ0v)dt + σvαdW2 (122)

take α(x, v, t) = (λ0 + µ0v), β(x, v, t) = vα−1/2 and φ = 0. The vector potential is

Au(u, t) =


λ0 + µ0

u2

4


(123)

and

β(u, t) =

u
2

2α−1
. (124)

The change of variables (92) is

θ =


22α−1du
σu2α−1

=
22α−1u2−2α

σ(2 − 2α)
(125)



402 M. Contreras, S.A. Hojman / Physica A 393 (2014) 391–403

or its inverse relation

u = 2[σθ(1 − α)]
1

2(1−α) . (126)

The potential V (θ) in this case is

V (θ) = λ0 σ
1
α−1 [θ(1 − α)]

α
α−1 + µ0(1 − α)θ (127)

and the propagator reads

Z =
1

(2π)2


Dθ


1

2πdt
exp


−


1
2

[θ̇ + λ0 σ
1
α−1 [θ(1 − α)]

α
α−1 + µ0(1 − α)θ ]2dt


(128)

which for α =
1
2 is the same as the Heston model propagator with λ0 → λ0v0 and µ0 → −λ0.

8. Conclusions and further research

Thus, stochastic volatility models with ρ = ±1 viewed from the standpoint of a physical system is a constrained sys-
tem. The constraints happen to be second class according to Dirac’s classification. For proper evaluation of the propagator
of this singular case, one must resort to a constrained Hamiltonian path integral which resembles those used in gauge the-
ories in particle physics. Once the momenta path integral are performed, one gets an unconstrained effective Lagrangian
path integral. The effective Lagrangian, in the case of the Heston model, may be associated to a repulsive radial oscillator
Lagrangian.

In all cases, the price of the underlying asset is completely determined by one of the second class constraints in terms of
volatility and plays no active role in the path integral. Obviously, the propagator for these special values of the correlation
parameter cannot be obtained as a limiting case from the propagator for ρ ≠ ±1.

In forthcoming articles will show that the appearance of second class constraints for ρ = ±1 is a universal property of all
stochastic volatility models given by the general form of the differential stochastic system (1), (2). We will explore whether
the propagator for themodels studied in this paper can be computed in a closed form or numerically, andwill use the results
to obtain the price of a call or put, for each case. It is also interesting to develop in the future a semi-classical approximation
for these systems, to obtain approximate expressions for the propagators and for the option prices.
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