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We give a method to describe the quotient of the local Bruhat–
Tits tree TP for PGL2(K), where K is a global function
field, by certain subgroups of PGL2(K) of arithmetical signifi-
cance. In particular, we can compute the quotient of TP by an
arithmetic subgroup PGL2(A), where A = AP is the ring of
functions that are regular outside P , recursively for a place P
of any degree, when K is a rational function field. We achieve
this by proving that the infinite matrices whose coordinates
are the numbers of neighbors of a vertex in TP corresponding
to orders in a fixed isomorphism class commute for different
places P , using tools from the theory of representations of or-
ders. The latter result holds for every global function field K.
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1. Introduction

In the late seventies, J.-P. Serre and H. Bass showed that the structure of a group Γ

acting on a tree T can be recovered from the structure of the quotient graph Γ\T [17,
Ch. I]. This theory, now known as Bass–Serre Theory, was used to find generators of
certain arithmetic subgroups Γ of PGL2(K). [17, Ch. II] is mostly concerned with the
case Γ = ΓA = PGL2(A), for the ring A = AP of functions that are regular outside
a single place P , of a smooth irreducible curve X with field of functions K = K(X)

E-mail address: learenas@u.uchile.cl.
0021-8693/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jalgebra.2013.12.015

http://dx.doi.org/10.1016/j.jalgebra.2013.12.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:learenas@u.uchile.cl
http://dx.doi.org/10.1016/j.jalgebra.2013.12.015


L. Arenas-Carmona / Journal of Algebra 402 (2014) 258–279 259
and structure sheaf OX . Using this method, Serre generalized Nagao’s Theorem, which
expresses PGL2(F[t]), for any field F, as a free product with amalgamation [17, Ch. II,
Th. 6]. He gave the following structural result for these quotient graphs [17, Ch. II,
Th. 9]:

Theorem S. The graph ΓA\TP , where TP is the local Bruhat–Tits tree for the group
PGL2(K) at P , is obtained by attaching a finite number of cusps, or infinite half lines,
to a certain finite graph Y . The set of such cusps is indexed by the elements in the Picard
group Pic(A) = Pic(X)/〈P̄ 〉.

Serre also determined the explicit structure of the quotient graph in some specific ex-
amples [17, §II.2.4]. The proof of Theorem S relies heavily on the fact that the vertices of
TP are in correspondence with certain equivalence classes of vector bundles. A.W. Mason
has given a more elementary proof of these facts [8,9]. The latter author applied these
graphs to the study of the lowest index non-congruence subgroup of ΓA, in a series of
joint works with A. Schweitzer [10,11]. A few additional quotient graphs are described
in [12] and [16]. M. Papikian has studied the case where ΓA is replaced by the group
Γ = PGL1(D), where D is a maximal A-order in a quaternion division algebra A [13].
Note that Γ = ΓA when A = M2(K) and D = M2(A).

In this article we study family of quotient graphs that classify maximal X-orders on a
quaternion K-algebra A splitting at P . Since we use the theory of representation fields, we
limit ourselves, in all that follows, to curves X defined over a finite field F. These quotient
graphs are closely related to the graph Γ\TP studied by Serre, Mason, and Papikian. Let
G = GP be the conjugation stabilizer G = StabA∗(D), for a maximal A-order D. Note
that Γ = D∗K∗/K∗ is a normal subgroup of G, whence the group G/Γ acts on Γ\TP , and
G\TP is the quotient graph under this action (see Remark 1.6). We call CP (D) = G\TP

the classifying graph, or C-graph of D at P , while SP (D) = Γ\TP is called the S-graph
of D in this work. Note that Γ = PGL2(A) when D = M2(A). The S-graph can be
recovered from the C-graph when X is the projective line (cf. Example 8.3).

Recall that an X-order D on A is a locally free sheaf of OX -algebras whose generic
fiber is A [2,6]. Such an order is completely determined by the completion DQ at every
closed place Q ∈ X. Furthermore, the completion at any finite set of closed places can be
modified to define a new order. In particular, an A-order can be extended to an X-order
by choosing an arbitrary completion at P . An order is maximal if it is maximal at all
places. It follows that the set of maximal orders D with a fixed restriction D(U) = D

to the affine open subset U = X\{P} is in correspondence with the vertices of the local
Bruhat–Tits tree TP , and isomorphism classes of such orders are in correspondence with
the vertices of CP (D). In what follows we write CP (D) or SP (D) instead of CP (D) or
SP (D).

Recall that the set O of maximal X-orders in A can be split into spinor genera (cf.
Section 2). There exists an unramified abelian extension Σ/K of exponent 2, called the
spinor class field, that classifies spinor genera via an explicit distance function
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ρ : O×O → Gal(Σ/K),

i.e., D and D′ are in the same spinor genera if and only if ρ(D,D′) = IdΣ . Spinor
genera of A-orders are just isomorphism classes for any ring A = AS of S-integers, when
the automorphism group of A has strong approximation with respect to S. This is not
the case for X-orders, where by convention S = ∅. However, spinor genera still plays
an important role in the present setting. In fact, if B �→ |[B,Σ/K]| denotes the Artin
symbol on divisors, we have next result:

Theorem 1.1. Let D be a maximal X-order in a quaternion algebra A and let P be a
place splitting A. Let Σ be the spinor class field of maximal orders of A. Then, the set
of vertices in the C-graph CP (D) is in correspondence with the isomorphism classes in
two spinor genera of maximal X-orders, if the Artin symbol |[P,Σ/K]| is not trivial, and
one spinor genera otherwise. In the former case, each C-graph is bipartite.

It follows that the number of connected graphs that are needed to describe all iso-
morphism classes of maximal orders is either [Σ : K] or [Σ : K]/2. We call the disjoint
union of these graphs the full C-graph CP = CP (A). The full S-graph SP is defined
analogously.

When A ∼= M2(K), by a split maximal order we mean a conjugate of the sheaf:

DB =
(

OX LB

L−B OX

)
,

where B is an arbitrary divisor on X and LB is the invertible sheaf defined by

LB(U) =
{
f ∈ K

∣∣ div(f)|U + B|U � 0
}
.

The cusps in Serre’s work are explicitly described in terms of the vector bundles corre-
sponding to the orders DB for large enough values of |deg(B)| [17, Ch. II]. In this sense,
next theorem is a partial refinement of Serre’s result:

Theorem 1.2. In the full C-graph of M2(K) at P , the vertices corresponding to split
maximal orders are located in a finite disjoint union of infinite lines or half-lines. The
set of such lines is in correspondence with the pairs of the form {a,−a} in the quotient
group Pic(X)/〈P̄ 〉, where P̄ ∈ Pic(X) denotes the class of P . A split order DB is in the
line corresponding to {B̄ + 〈P̄ 〉,−B̄ + 〈P̄ 〉}. The half lines correspond to the elements of
order 1 or 2.

In the case of a matrix algebra, the spinor class field of maximal A-orders ΣU is
the maximal unramified exponent-2 abelian extension splitting P , and the Galois group
Gal(ΣU/K) is isomorphic to the maximal exponent-2 quotient of Pic(X)/〈P̄ 〉 (cf. Sec-
tion 2). The image of the cusp ΔB in [17, §II.2.3] is part of the line containing the order
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Fig. 1. Full C-graph for a degree 1 place in the projective line.

D2B , so it is always in the trivial component of the C-graph (cf. Section 3). As follows
from Theorem S, or more precisely from its natural extension to the full C-graph, the
rest of the graph is finite. In Section 5 we give a general formula for the valencies of
vertices in the S-graph, which allows us to compute valencies in the C-graph for all split
vertices. When X = P1 is the projective line, the following result can be used to recover
the S-graph from the C-graph (cf. Example 8.3):

Theorem 1.3. If X ∼= P1, A ∼= M2(K), and P is a place of odd degree, then CP is
isomorphic to SP and connected. When P has even degree, there are two connected
components in CP and every vertex of CP has exactly two pre-images in SP .

In particular, when deg(P ) = 1, then CP = SP is as shown in Fig. 1 [17, Ex. II.2.4.1].
The multiplicity MP (D,D′) of edges joining two particular vertices D and D′ can be

explicitly computed, at least for most split vertices, in terms of NP (D,D′), the number
of neighbors of D in TP that correspond to maximal orders isomorphic to D′. This is the
case for all vertices when X = P1 and A = M2(K) (cf. Section 6). In Section 7 we prove
the following commutativity law:

Theorem 1.4. Let X be a smooth curve over a finite field, and let A be a quaternion
algebra over K = K(X). Then, for any pair of maximal orders (D,D′′) and any pair
(P,Q) of prime divisors in X, we have

∑
D′

NP

(
D,D′)NQ

(
D′,D′′) =

∑
D′

NQ

(
D,D′)NP

(
D′,D′′),

where the sum extends over all isomorphism classes of maximal orders in A.

Note that both sums in the theorem are actually finite. In particular, when X = P1
and A = M2(K), then CP can be completely determined from the infinite matrix NP =
(NP (DiQ,DjQ))i,j∈N, where deg(Q) = 1. When P = Q, this matrix is the following (cf.
Section 6):

NQ = N1 :=

⎛
⎜⎜⎜⎜⎜⎝

0 p 0 0 · · ·
p + 1 0 p 0 · · ·

0 1 0 p · · ·
0 0 1 0 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ .

In this context, all matrices NP , when X = P1 and A = M2(K), are described by
Theorem 1.5 bellow. This allows us to compute CP , and therefore SP , for all P in this
case.
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Fig. 2. Two types of loops.

Theorem 1.5. For any place P in P1, the matrix NP = Ndeg(P ) depends only on the
degree of P , and can be computed by the recurrence relation

Nd = Nd
1 −

[d/2]∑
i=1

(
d

i

)
piNd−2i. (1)

Remark 1.6. Serre defined quotient graphs only for a group G acting without inversions
on a graph T [17, §I.3.1], where an inversion is a pair (g, y) where g ∈ G and y is an
edge of T such that gy in the opposite edge ȳ. However, as was noted by Serre himself,
on way around this problem is to replace the graph by its barycentric subdivision T 1.
When this is done, inversions appear in the quotient graph G\T as shown in Fig. 2(a),
where the symbol ∗ corresponds to a vertex of T 1 that is not a vertex of T . On the other
hand, loops not corresponding to any inversion appear in this quotient graph as shown
in Fig. 2(b). We denote all loops as in Fig. 4(b) in all that follows. Note, however that
loops of multiplicity one are always as in Fig. 2(a).

2. Orders and spinor genera

Recall that an X-lattice or X-bundle in a K-vector space V is a locally free subsheaf
of the constant sheaf V [6]. For any sheaf of groups Λ on X we let Λ(U) denote the group
of U -sections. In particular, Λ(X) is the F-vector space of global sections. An order D

in a K-algebra A is an X-lattice in A such that D(U) is a ring for any open subset U .
In particular, the structure sheaf OX is an X-order in K. In all that follows, we assume
that F is the whole constant field of K, i.e., OX(X) = F, as otherwise F can be replaced
with a larger field. We also let A be a central simple K-algebra. In this section we review
the basic facts about spinor genera and spinor class fields of orders. See [2] for details.

Let |X| be the set of closed points in X. Let A = AX be the adele ring of X, i.e., the
subring of

∏
P∈|X| KP of elements that are integral at almost all places. Let AA = A⊗KA

be the adelization of A. Both A and AA are given the adelic topology [18, §IV.1]. More
generally, for any finite dimensional K-vector space V , we can define the adelization
VA = V ⊗K A ∼= AdimKV endowed with the product topology. For any OX -lattice Λ,
the adelization ΛA =

∏
P∈|X| ΛP , is an open and compact subgroup of VA. In particular,

the ring of integral ideles OA = (OX)A is open and compact in A. Furthermore, every
open and compact OA-sub-modules of VA is the adelization of an X-lattice. For any
X-lattice Λ and any adelic element a ∈ (EndK(V ))A ∼= EndA(VA), the lattice L = aΛ is
the X-lattice defined by LA = aΛA.
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Since any two maximal X-orders are locally conjugate at all places, if we fix a maximal
X-order D, any other maximal X-order on A has the form D′ = aDa−1 for some adelic
element a ∈ A∗

A. In a more general theory it is said that two maximal X-orders are always
in the same genus [4]. Two maximal X-orders D and D′ are in the same spinor genus if a
can be chosen of the form a = bc, where b ∈ A and N(c) = 1A, while N : A∗

A → A∗ =: JX
is the reduced norm on adeles. When this holds we write D′ ∈ Spin(D). The spinor class
field is defined as the class field corresponding to the group K∗H(D) ⊆ JX , where

H(D) =
{
N(a)

∣∣ a ∈ A∗
A, aDa−1 = D

}
.

Let t �→ [t, Σ/K] denote the Artin map on ideles. The distance between the maxi-
mal X-orders D and D′ is the element ρ(D,D′) ∈ Gal(Σ/K) defined by ρ(D,D′) =
[N(a), Σ/K], for any adelic element a ∈ A∗

A satisfying D′ = aDa−1. Note that this
implies ρ(D,D′′) = ρ(D,D′)ρ(D′,D′′) for any triple (D,D′,D′′) of maximal X-orders.
Two such orders are in the same spinor genus if and only if their distance is trivial. The
spinor class field can be defined also for maximal S-orders for any finite subset S ⊆ |X|.
In fact, the spinor class field Σ′ = ΣS of S-orders, or equivalently, the spinor Σ′ = ΣU

of OX(U)-orders, for the affine set U = |X|\S, is the largest subfield of Σ splitting
completely at every place in S.

One important property of spinor genera is that they coincide with conjugacy classes
whenever strong approximation holds. In the context of X-orders, this implies that two
maximal orders are in the same spinor genus if and only if they are isomorphic (as
sheaves) on every affine subset U whose complement S has a place splitting A. More gen-
erally, for a given affine subset U satisfying this condition, two S-orders D(U) and D′(U)
are isomorphic if and only if the distance ρ(D,D′) is in the group 〈|[P,Σ/K]| | P ∈ S〉
(see [2, §2] or [3, §2]). In all that follows, we assume S = {P} for a fixed place P

splitting A, the place at infinity.
Let H be a suborder of a maximal X-order D, and let

H(D|H) =
{
N(a)

∣∣ a ∈ A∗
A, a−1HAa ⊆ DA

}
⊆ JX .

When the set K∗H(D|H) ⊆ JX is a group, or equivalently, the set

Φ =
{
ρ
(
D,D′) ∣∣ H ⊆ D′} ⊆ Gal(Σ/K)

is a group, then the class field F (H) = ΣΦ, corresponding to K∗H(D|H), is called the
representation field for H. The order H embeds into some order in Spin(D′) precisely
when ρ(D,D′) is trivial on F (H). The representation field is not always defined for
central simple algebras of arbitrary dimension, but this is indeed the case for quaternion
algebras [1]. When A is a quaternion algebra and H is the maximal X-order in a maximal
subfield L, then F (H) = L ∩Σ [2, §5, Cor. 2].
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Example 2.1. When A ∼= M2(K), then H(D) = JX ∩
∏

P∈|X| O∗
PK

∗2
P , so that Σ is the

largest unramified exponent-2 abelian extension of K. When X = P1, so that K = F(t),
then Σ = L(t) for the unique quadratic extension L of F. If H is the maximal order of
L(t), then F (H) = L(t).

Proof of Theorem 1.1. Consider the maximal affine subset U = X\{P}. The spinor class
field ΣU of maximal {P}-orders is the maximal subfield of Σ splitting completely at P .
In particular, ΣU = Σ if and only if P splits completely in Σ/K. Otherwise, we have
[Σ : ΣU ] = 2. If P in unramified for A, any two maximal order D and D′ are isomorphic
on U if and only if their distance ρ(D,D′) is trivial on ΣU . If this is the case, replacing D′

by a (global) conjugate it can be assumed that D(U) = D′(U) = D. The set of maximal
orders satisfying the last condition is in correspondence with the set of vertices of TP .
Two such orders, D and D′, are conjugate if and only if D′ = gDg−1 for some g ∈ G.

Let eP be an idele that is 1 outside of P and a uniformizing parameter πP at P . Note
that if D and D′ are neighbors in TP , their completions DP and D′

P have, in some basis,
the form

DP =
(
OP OP

OP OP

)
, D′

P =
(

OP π−1
P OP

πPOP OP

)
=

(
1 0
0 πP

)
DP

(
1 0
0 πP

)−1

(cf. [17, §II.1.1]). We conclude that ρ(D,D′) = [eP , Σ/K] = |[P,Σ/K]|. The result
follows. In particular, when |[P,Σ/K]| = idΣ , neighboring vertices are in different spinor
genera, so the graph is bipartite. �
3. Orders and vector bundles

In this section, notations are as in Section 2, except that we assume A = Mn(K). In
this case, any maximal X-order on A has the form D = bD0b

−1 where b ∈ A∗
A is a matrix

with adelic coefficients and D0 ∼= Mn(OX). Note that the adelization is D0A ∼= Mn(OA),
where OA

∼=
∏

P∈|X| OP is the ring of integral adeles (Section 2). In particular, D∗
0A is

the group of adelic matrices c satisfying cOn
X = On

X . It follows that D∗
A is the group of

all adelic matrices c satisfying cΛ = Λ, where Λ = bOn
X . Since the stabilizer of any order

DP in M2(KP ) is D∗
PK

∗
P , it follows that two X-lattices Λ1 and Λ2 correspond to the

same maximal order, if and only if Λ1 = dΛ2 for some d ∈ JX . Let div(d) denote the
divisor generated by d, i.e., L−div(d) = dOX . Note that every divisor is generated by an
idele in this sense, e.g., div(eP ) = P . Next result follows:

Proposition 3.1. There is a correspondence between conjugacy classes of maximal X-or-
ders in Mn(K) and isomorphism classes of X-lattices on Kn up to tensor product with
one dimensional X-lattices1 in K.

1 In other words, isomorphism classes of maximal X-orders correspond to isomorphism classes of n-dimen-
sional vector bundles up to tensor product with invertible bundles.
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Let DE = EndOX
(E) be the maximal order corresponding to the vector bundle E.

A finite algebra B acts faithfully as a ring of global endomorphisms of a vector bundle E

if and only if B embeds into the ring of global sections DE(X). Note that the split
maximal order DB defined in the introduction is the order DEB

corresponding to the
bundle EB = LB ⊕OX . More generally, the maximal order corresponding to the bundle
LB ⊕ LA = LA ⊗OX

(LB−A ⊕OX) is DB−A. Furthermore, a maximal X-order D = DE

is split if and only if any of the following equivalent conditions is satisfied:

1. The algebra F2 = F× F acts globally on E,
2. F2 embeds into the ring of global sections D(X).
3. The commutative order H = OX ×OX embeds into D.

It follows from [2, Cor. 5.6] that every spinor genera of maximal orders contain split
orders. In fact, if B = div(b), then DB = cD0c

−1 where c =
( 1 0

0 b

)
. In particular,

the corresponding distance element is ρ(D0,DB) = [b,Σ/K] ∈ Gal(Σ/K), and there-
fore ρ(DA,DB) = [a−1b,Σ/K] = |[B − A,Σ/K]|, if A = div(a). By Example 2.1, the
spinor genera Spin(DA) and Spin(DB) coincide if and only if the class B −A belongs to
2 Pic(X).

In general, if B ⊆ M2(K) is a finite F-algebra, the dimension dimFB can be arbitrarily
large. However, we have next result:

Proposition 3.2. Assume B = B′ ⊕ R is a finite F-algebra contained in Mn(K), where
B′ is semisimple and R is the radical of B. Then dimFB

′ = dimK(KB′), and the sum
KB′ + KR is direct.

Proof. If B =
⊕n

i=1 PiB, where P1, . . . , Pn are the minimal central idempotents of B,
then KB =

⊕n
i=1 PiKB. Therefore, we can assume that B′ is simple. If B′ = Mn(L)

where L/F is a finite extension, then KB′ is a quotient of K ⊗F B′ ∼= Mn(K ⊗F L).
Since F is the full constant field of K, the tensor product K ⊗F L is a field. It follows
that K ⊗F B′ is simple and therefore equals KB′. The last statement follows since the
two sided ideal generated by an arbitrary non-invertible element u in KB′ contains a
non-trivial idempotent, and therefore u cannot belong to KR. �
Corollary 3.3. For any maximal X-order D in M2(K), the semi-simple part of the ring
D(X) is isomorphic to an element in the set {F,F×F,L,M2(F)}, where L is the unique
quadratic extension of F. Only in the first two cases a non-trivial radical R can exist,
and in that case dimKKR = 1.

Example 3.4. The bundles E admitting an L-vector space structure are those satisfying
DE(X) ∼= L or DE(X) ∼= M2(F). By the Matrix Units Theorem [14, p. 30] we have that
D(X) ∼= M2(F) implies D ∼= M2(OX). Moreover, L embeds into DE(X) if and only if
HL = L⊗FOX embeds into DE . Note that HL is the maximal order of L = KL, and also
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the push-forward sheaf HL = f∗(OY ), where Y = X ×Spec(F) Spec(L) and f : Y → X is
the projection on the first coordinate. The extension L/K is unramified, whence L ⊆ Σ

(cf. Example 2.1). Let σ be the generator of Gal(L/K). Then by the definition of the
Artin map, |[B,L/K]| = σdeg(B) for any divisor B. Since F (HL) = Σ ∩ L = L [2, §5,
Cor. 2], the order HL embeds in, precisely, the spinor genera Φ satisfying any of the
following equivalent conditions:

1. For some (any) D ∈ Φ, we have ρ(D0,D)|L = IdL.
2. For some (any) D = cD0c

−1 ∈ Φ, the integer deg(div(N(c))) is even.
3. Φ contains an order of the form DB , where B is a divisor of even degree.

4. Split maximal orders

Next we study in greater detail the order DB defined in the introduction. Note that
if B = D + div(b), for any idele b, then DB = cDDc−1, where c =

( 1 0
0 b

)
. It follows that,

when B is a principal divisor, then DB
∼= D0 = M2(OX), and therefore, the ring of global

sections DB(X) is isomorphic to the matrix algebra M2(F). If B is not principal, then
LB and L−B cannot have a global section simultaneously. In fact, if div(f) +B � 0 and
div(g)−B � 0, then B = div(g) = div(f−1). We conclude that DB(X) ∼= (F×F)⊕L±Bu,
where u2 = 0. Observe that, since DB

∼= D−B , we can always assume L−B(X) = {0}
when B is not principal.

Proposition 4.1. Assume L−B(X) = L−D(X) = {0}. Any matrix U satisfying DB =
UDDU−1 has the form

(
a b
0 c

)
, in which case B is linearly equivalent to D, or

( 0 a
c 0

)
, in

which case B is linearly equivalent to −D.

Proof. Let U be as stated. If WB and WD denote the K-vector spaces spanned by DB(X)
and DD(X), respectively, then WB = UWDU−1. Let {Ei,j}i,j be the canonical basis of
the matrix algebra M2(K). There are two cases two be considered:

1. If LB(X) = {0}, then WB = WD = KE1,1 ⊕KE2,2 ⊕KE1,2.
2. If LB(X) = {0}, then WB = WD = KE1,1 ⊕KE2,2.

In the first case, U has the form
(
a b
0 c

)
. In particular we have

L−BE2,1 = E2,2DBE1,1 = E2,2
(
UDDU−1)E1,1 = a−1cL−DE2,1.

We conclude that B = D + div(ac−1), and therefore B and D are linearly equivalent.
In the second case U has either the form

(
a 0
0 c

)
, which is similar to the previous case, or

the form
( 0 a
c 0

)
, so that by a similar computation B = −D+div(ac−1), and B is linearly

equivalent to −D. �
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Fig. 3. Line (path) corresponding to {B̄ + 〈P̄ 〉,−B̄ + 〈P̄ 〉} ⊆ Pic(X)/〈P̄ 〉.

Fig. 4. Folded lines.

Proof of Theorem 1.2. Let e ∈ A be a non-trivial idempotent and let Z = Ke⊕K(1−e)
be the split semisimple commutative subalgebra generated by e. Let Z = OXe⊕OX(1−e)
be the unique maximal order in Z. By identifying the vector space K2 with Z, we
see that the only local lattices that are invariant under ZP are the fractional ideals
(πr

P e+πs
P (1−e))ZP , whence the corresponding maximal orders, the ones containing ZP ,

lie in a maximal path in the tree (or in the language of buildings, an apartment). We
conclude that the maximal orders in that path are split, and moreover, this path has the
form shown in Fig. 3. It follows from Proposition 4.1, that two orders in the path can be
conjugate if and only if the divisor classes B̄, P̄ ∈ Pic(X) satisfy B̄+NP̄ = ±(B̄+MP̄ ),
for some integers N and M . Since P has positive degree, only the equation with a negative
sign can have non-trivial solutions. In fact, this implies 2B̄ = (N + M)P̄ . Replacing B

by B + kP for some integer k if needed, we can assume (N +M) ∈ {0, 1}, whence either
2B̄ = 0 and B̄ is an element of order 2 in Pic0(X), or 2B̄ = P̄ , and in the latter case
the place P has even degree. �
Remark 4.2. Note that, when 2B̄ = 0 or 2B̄ = P̄ , the image of this line in the C-graph
has, respectively, one of the forms shown in Fig. 4. In the sequel, they will be called
folded lines of type (a) or (b), respectively.

5. Valencies in the S-graph

In all of this section, let F = Fp with p a prime power, and let d = deg(P ), so
that F(P ) = Fpd . Let R be the radical of D(X) and R̃ ⊆ R the kernel of the natural
map D(X) � Δ ⊆ DP /πPDP , for any local uniformizing parameter πP at P . The
conjugation-stabilizer in Γ of a vertex D is the group invertible elements D(X)∗, and its
action on the set of neighbors of D can be realized identifying Δ∗ with a subgroup of
GL2(F(P )), which acts naturally on the set of F(P )-points of the projective line P1 [17,
§II.1.1]. The number of orbits for all orders is given in Table 1. In this table, ε is 0 when
P has odd degree and 1 otherwise. We let r = dimF(R/R̃) � d. To prove these values
we compute, in each case, the number of elements in Δ∗ with any possible Jordan form.
Consider, for example, an order of Type I. The number of elements with the Jordan form
B =

(
b 1 ) for every fixed b ∈ F∗ is
0 b
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Table 1
Types of orders, and number of orbits in each case.

Type D(X) Number of orbits (valency)

I M2(F) 1 + pd−1−1
p2−1 + p

p+1 ε

II F + R pd−r + 1
III (F × F) + R 2 + pd−r−1

p−1

IV L pd+2pε+1
p+1

Table 2
Number of elements in Δ∗ with every Jordan form for different types of orders.

Jordan forms
(

b 1
0 b

) (
b 0
0 b

) (
b 0
0 c

)
NEV

Fixed points 1 pd + 1 2 2ε

I (p − 1)2(p + 1) p − 1 1
2 (p2 − 1)(p − 2)p 1

2 (p − 1)2p2

II (p − 1)(pr − 1) p − 1 0 0
III (p − 1)(pr − 1) p − 1 (p − 1)(p − 2)pr 0
IV 0 p − 1 0 (p − 1)p

|Δ∗|
|CΔ∗(B)| = (p2 − 1)(p2 − p)

(p− 1)p = (p + 1)(p− 1),

where CΔ∗(B) is the centralizer, while we have p− 1 possible values of the eigenvalue b.
The remaining values in Table 2 for Type I are computed analogously. Types II and III
are simpler since their elements are already in triangular form. When a radical R is
present, the off-diagonal element can be chosen among pr possibilities. In this table,
NEV stands for no eigenvalues on F. Orders of Type IV have only non-scalar elements
of this form. These elements have eigenvalues over the extension F(P ) if and only if
d = degP is even. Now the result follows by a straightforward application of Burnside’s
Counting Lemma [15, §26.10], according two which the number of orbits in an action is
the average number of fixed points for an element in the group.

Example 5.1. We can have vertices of valency 1 (or endpoints) only if d = 1, and in this
case they are exactly the maximal orders representing HL, as in Example 3.4 (compare
to [13, §5]).

Example 5.2. If A is a division algebra, there are no radicals, so in particular r = 0.
Furthermore, every vertex is of Type II or Type IV. We conclude that a vertex has
valency pd+2pε+1

p+1 if the corresponding maximal order represents HL and pd +1 otherwise
(compare to [13, §5]).

Example 5.3. When D = DB is split and deg(B) > 0, so that the elements of Δ are
upper triangular matrices, the orbit of the element 0 := [0; 1] ∈ P1(F(P )) corresponds
to the order DB−P , while DB+P corresponds to the orbit of the element ∞ := [1; 0].
Furthermore, πPL

B
P = L

B−P
P , whence r is the dimension of LB(X)/LB−P (X), i.e., r =

l(B)− l(B−P ) in the notations of [7, Ch. 8]. Note that when r = N , the corresponding
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Fig. 5. Lines and folded lines for the quotient graph in Example 5.6.

vertex has valency 2. By Riemann–Roch’s Theorem, this holds whenever deg(B) �
2g − 2 + d [17, §II.2.3, Lem. 6].

A vertex D in the C-graph CP is said to be unramified for the covering CP � SP

if it has the same valency than one (and therefore, every) vertex in its pre-image. For
unramified vertices, the valencies in the C-graph are the ones we have already computed.

Proposition 5.4. A split maximal order DB in M2(K) is unramified, unless the class of
the divisor B has order exactly 2 in the Picard group Pic(X).

Proof. Assume first that B is not principal and L−B(X) = {0}. Let U be a global
matrix satisfying UDBU

−1 = DB . By Proposition 4.1, we conclude that U =
(
a b
0 c

)
or

U =
( 0 a
c 0

)
. In the first case ac−1L−B = L−B , and therefore ac−1 ∈ F∗. Replacing U

by a scalar multiple if needed, we can assume a, c ∈ F∗. Then comparing the upper-left
coordinate of the identity UDBU

−1 = DB , we obtain OX + a−1bL−B = OX , and
therefore bL−B ⊂ OX . It follows that bOX ⊆ LB , whence b ∈ LB(X). We conclude that
U ∈ D(X)∗. In the second case B is linearly equivalent to −B by Proposition 4.1.

Assume now that B is principal, so DB(X) ∼= M2(F). Then any Global matrix U

satisfying UDBU
−1 = DB must, in particular, satisfy UDB(X)U−1 = DB(X). Since

DB(X) is simple, every automorphism of it is inner. It follows that U ∈ K∗DB(X)∗. �
Example 5.5. When 2B = div(f), we have UDBU

−1 = DB for U =
( 0 f

1 0

)
. In fact, by

the proof of Proposition 4.1, any matrix U ′ =
( 0 a
c 0

)
satisfying this condition is in the

coset
( 0 f

1 0

)
K∗DB(X)∗.

Example 5.6. Assume X is the projective curve defined by the equation y2z = x3 +
xz2 + z3, and let P = [0; 1; 0] be the point at infinity. Then Pic(X)/〈P̄ 〉 ∼= Pic0(X) is a
cyclic group with 4 elements generated by the class of either Q = [0; 1; 1] or R = [0;−1; 1],
while S = [1; 0; 1] has order 2. The C-graph has three lines corresponding to the sets
{0̄}, {S̄}, and {Q̄, R̄}. The first two lines are in the trivial component, since 0̄ and S̄ are
squares. By valency considerations, we conclude that the C-graph has the shape shown
in Fig. 5. In the figure, the symbol

⊙
represents an unknown portion of the graph. The

explicit description of SP (D0), given in [16, p. 87], shows that CP (D0) is as shown in
Fig. 6. In the notations of the reference, O and V1 are the images of the vertices o and
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Fig. 6. Actual form of CP (D0) in Example 5.6.

v(−1), respectively, while V2 is the image of both v(1) and v(∞). The ramified vertices
are O and DS−P , the latter being the image of v(0). The order O is of Type II with a
trivial radical, since o has valency 4 in the S-graph.

Proof of Theorem 1.3. Assume first that d = deg(P ) is odd. In particular ΣU = K (cf.
Section 2), whence CP is connected. We claim that G = Γ in this case. Let M be such
that MD0(U)M−1 = D0(U). The determinant of M has even valuation at every place
Q ∈ U , and therefore also on P , since principal divisors have degree 0. Since the Picard
group in this case is Pic(P1) ∼= Z, det(M) = g2a, for some g ∈ K∗ and a ∈ F∗. We
conclude that g−1M ∈ D0(U)∗, and the result follows.

Assume now that d = deg(P ) is even. In this case ΣU = Σ is a quadratic extension (cf.
Example 2.1), whence CP has two connected components. Then P is linearly equivalent
to some divisor of the form 2B. Let M be as above. It follows as in the previous paragraph
that det(M) ∈ hK∗2F∗ ∪ K∗2F∗, for any h ∈ K∗ with div(h) = P − 2B, whence we
conclude that |G/Γ | � 2.

Strong approximation for the group SLn(K) with respect to S = {P} guarantees the
existence of a matrix M ∈ G with det(M) ∈ hK∗2F∗, so equality follows. In fact, choose
any global matrix N with determinant in hK∗2F∗. There exists, at every place Q = P

a local matrix MQ ∈ GQ with det(MQ) = det(N). By strong approximation for SL2(K)
with respect to {P}, there exists a global matrix M ′ close enough to each NM−1

Q , so
that M = N−1M ′ ∈ G. This proves the claim. Furthermore, each orbit has exactly two
vertices by the proof of Proposition 5.4. �
Example 5.7. When A = M2(K), X ∼= P1, and d = degP is odd, these graphs are de-
scribed in [17, §II.2.4]. When d = 1, we have the graph described in Section 1 by valency
considerations alone. In particular, no other vertices exists. This proves Grothendieck–
Birkhoff Theorem [5, Th. 2.1] in the particular case of two dimensional vector bundles
over a finite field.

Example 5.8. Let X and A be as in the previous example. The C-graphs for d = 2 and
d = 4 are shown in Fig. 7. The double lines are deduced by valency considerations, this
cannot be done for all lines when d � 6. The line joining D2Q and D0 for d = 4 must be
there since both lines are in the same connected component. Note that existence of loops
on every component implies |G/Γ | = 2, thus giving another proof of Theorem 1.3. For ev-
ery even integer d, it can be proved using Theorem 1.5, and rather lengthy computations,
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Fig. 7. Two examples of full C-graphs.

that such loops actually exist in either component. This is immediate, however, for the
component containing a single-line loop, which corresponds to a folded line of type (b).

6. Multiplicities of edges

In this section, we show how the number of edges M = M(D,D′) can be computed in
terms of the number of neighbors N = N(D,D′) defined in Section 1. As before, we limit
ourselves to split vertices D = DB . In this case, the set of neighbors of D corresponding
to a given edge in SP (D) is in correspondence with an orbit of D(X)∗ on the projective
line P1(F(P )) (Section 5). As usual we identify the point [α; 1] in the projective line with
the finite element α ∈ F(P ), while we let ∞ = [1; 0]. Note that we can always assume
that P is not in the support of B. We do this in all that follows. The computation is
divided into three cases:

Case A: 2B̄ = 0. We can assume L−B(X) = {0}, so that global sections are upper
triangular matrices, or we can replace B by −B, which corresponds to replacing z by
1/z in the projective line. The orders in this case are unramified vertices for the cover
SP � CP (Proposition 5.4). In particular, CP is locally homeomorphic to SP at these
points, so it suffices to consider Δ∗-orbits as in Section 5. On P1(F(P )), an element(
a b
0 c

)
∈ Δ∗, acts as t �→ c−1(at + b). Note that a, c ∈ F∗, while b ∈ VB,P := {f(P ) |

f ∈ LB(X)}. Since f(P ) = 0 if and only if f ∈ LB−P (X), dimF(VB,P ) = r. The only
possible finite solutions of t = at + b, with a ∈ F∗, occur when t ∈ VB,P , and VB,P

is a single orbit, namely [0]. The point ∞ is fixed by the whole group. The class [0]
corresponds to DB−P and the class [∞] corresponds to DB+P .

Case B: 2B̄ = 0, but B̄ = 0. These vertices are similar, in the S-graph, to those in
case A, but they are ramified (cf. Example 5.5). In CP , they are endpoints of folded lines
of type (a). In this case, the radical is R = LB(X)E1,2 = 0. Let f be as in Example 5.5.
Conjugation by F =

( 0 f
)

induces the map x �→ f(P )/x on P1(F(P )). The orbits under
1 0
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Δ∗ have the form [t] = F∗t. It follows that the F -invariant orbits [λ] are given by the
solutions of f(P )/t = at for a ∈ F∗, or t2 = a−1f(P ).

There are several sub-cases to be considered here:

• When the characteristic char(F) is 2 or deg(P ) is odd, there is always a unique
invariant orbit corresponding to an X-order D1. In this case we can have D1 � DB+P

(case B1), or D1 ∼= DB+P (case B2).
• When char(F) = 2, deg(P ) is even, and f(P ) is not a square in F(P ), there are no

invariant orbits. This is case B3.
• When char(F) = 2, deg(P ) is even, and f(P ) is a square in F(P ), there are two

invariant orbits corresponding to D1 and D2. There are 4 different subcases.
– The X-orders D1 and D2 can be isomorphic, in which case they can be isomorphic

to DB+P (case B4), or not (case B5).
– The X-orders D1 and D2 can fail to be isomorphic, in which case there can be one

isomorphic to DB+P (case B6), or none (case B7).

Case C: B̄ = 0. In this case we can assume B = 0. Then DB is an unramified
vertex (Proposition 5.4). It suffices therefore to find the number of elements in each
orbit of Δ∗ ∼= PGL2(F) on P1(F(P )). Let L be the unique quadratic extension of F.
We know from the specific shape of the graphs for d = 1 and d = 2 (Section 1 and
Section 5, respectively), that PGL2(F) has one orbit on P1(F) and two orbits on P1(L).
We conclude that P1(L)\P1(F) is an orbit. Let D̂ be the maximal order corresponding
to this orbit. Since any equation of the type x = (ax+ b)/(cx+ d) has all its roots in L,
all elements outside L have trivial stabilizer. Let μ be such that L = F(μ). There are
three subcases:

• If P has odd degree, μ is not an F(P )-point of the projective plane. This is case C1.
• If P has even degree, the class [μ] corresponds to an order D̂. We can have D̂ ∼= DB+P

(case C2) or not (case C3).

Table 3 covers the number of neighbors corresponding to each edge, or equivalently
the number of elements in each orbit. Note that the number of elements in the orbit [∞]
is specified only when this orbit is different from [0]. A similar warning applies to [λ]
and [μ]. Table 4 allows us to compute the multiplicity M of an edge in terms of the
number N of neighbors of that type, in each case, assuming that we can identify the
exceptional orders D1, D2, D̂, or DB−P . The X-order DB−P is considered exceptional
to simplify the table. Certainly, DB−P

∼= DB+P except in case A. Observe that case B
is not needed when X = P1.

Note that, whenever p > 2, we can tell these formulas apart by congruence conditions
on N , except for cases B4 and B5, where the presence of two equal invariant orbits can
be mistaken by a single orbit. In actual computations, it is preferable avoiding these
vertices if at all possible.
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Table 3
Number of elements in each orbit.

Case [0] [∞] [λ] [μ] Other

A pr 1 – – (p − 1)pr

B 2 – (p − 1) – 2(p − 1)
C p + 1 – – p(p − 1) p(p2 − 1)

Table 4
M = M(DB, ∗) as a function of N = N(DB, ∗).

Case DB+P Exceptional if � DB+P Other

A 1 + N−1
(p−1)pr 1 + N−pr

(p−1)pr
N

(p−1)pr

B1 2 + N−(p−1)−2
2(p−1) – N

2(p−1)
B2 1 + N−2

2(p−1) 1 + N−(p−1)
2(p−1)

N
2(p−1)

B3 1 + N−2
2(p−1) – N

2(p−1)
B4 2 + N−2

2(p−1) – N
2(p−1)

B5 1 + N−2
2(p−1) 1 + N

2(p−1)
N

2(p−1)
B6 2 + N−(p−1)−2

2(p−1) 1 + N−(p−1)
2(p−1)

N
2(p−1)

B7 2 + N−2
2(p−1) 1 + N−(p−1)

2(p−1)
N

2(p−1)
C1 1 + N−(p+1)

p(p2−1) – N
p(p2−1)

C2 1 + N−(p+1)
p(p2−1) 1 + N−p(p−1)

p(p2−1)
N

p(p2−1)

C3 2 + N−(p2+1)
p(p2−1) – N

p(p2−1)

7. Representations

In this section we show how C-graphs can be used in the study of representation of
orders and conversely. Let H be an X-suborder of the maximal X-order D. In particular,
this implies that H(U) ⊆ D(U) for any open subset U ⊆ X. On the other hand, if H is an
X-order satisfying H(U) ⊆ D(U) for U = X\{P}, then H ⊆ D if and only if HP ⊆ DP .
For any effective divisor B we define the X-order H[B] = OX + L−BH. Representations
of orders relate to local Bruhat–Tits trees by the following fundamental result:

Proposition 7.1. Let P be a prime divisor of a global function field K = K(X). Let H be
an arbitrary X-order in A. Then H[tP ] is contained in a maximal X-order D if and only
if there exists a maximal X-order D′ containing H such that the natural distance δP in
the local Bruhat–Tits tree TP satisfies δP (D,D′) � t.

Proof. By an easy induction, it suffices to prove the case t = 1. Since H[P ] coincides
with H outside of P , the result follows from the remarks at the beginning of this section
if we proof the following result: Let π = πP be a uniformizing parameter at P . Then a
local order DP contains πHP if and only if either DP contains HP or DP has a neighbor
containing HP . This is proved in [4, Prop. 2.4]. Here we give an alternative proof:

Two local orders DP and D′
P are neighbors if and only if, up to a change of basis,

they have the form
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Fig. 8. SP (D0) for the curve in Example 7.3 [17, §II.2.4.4].

DP =
(
OP OP

OP OP

)
, D′

P =
(

OP π−1OP

πOP OP

)

(cf. [17, §II.1.1]) It follows that if HP is contained in DP , then πHP is contained in every
neighbor. Assume now that πHP is contained in DP as above, but HP is not contained in
DP . For any h ∈ HP , let φ(h) ∈ M2(F(P )) be the reduction of πh. The image V of φ is
a vector space over F(P ) and, since the elements of HP are integral over OP , V contains
only matrices with zero trace and determinant. Furthermore, some h ∈ HP is not in DP ,
so V is not trivial. It must contain a non-zero element which, by a change of basis, it can
be assumed to be

( 0 1
0 0

)
. If V contains any other element of trace 0, say

(
a b
c −a

)
then it

must contain
(

a b+x
c −a

)
for any x ∈ F(P ), and therefore the determinant −a2 − (b + x)c

must vanish identically, whence c = a = 0. We conclude that HP is contained in the
lattice

(
OP π−1OP

OP OP

)
, and it contains an element h whose upper-right coordinate is not

integer. Any such element with integral determinant is actually in the maximal order
D′

P =
(

OP π−1OP

πOP OP

)
, which is a neighbor of DP . If h′ ∈ HP has an integral upper-right

coordinate, the same conclusion follows by writing h′ = (h + h′) − h. �
Example 7.2. Let H = HL be as in Example 3.4 and Example 5.1, and let H′ =
H[3Q+4R+S], where Q,R, S are points of degrees 1, 2, 4, respectively. We define the in-
termediate orders H′′ = H[3Q], and H′′′ = H[3Q+4R]. Note that the only maximal order
containing a copy of H is D0 since it is the only vertex whose valency is 1 (cf. Exam-
ple 5.1). Then the diagrams in Section 1 and Section 5 show that H′′ is contained in DtQ

for t � 3, while H′′′ is contained in DtQ for t � 11, and finally H′ is contained in DtQ for
t � 15.

Example 7.3. Let X be the curve over F2 defined by the projective equation x2z+xz2 =
y3 + yz2 + z3, and let P = [1; 0; 0]. The only non-trivial symmetry of SP (D0) is the
transposition interchanging t1 and t2 in Fig. 8. We conclude that either CP = SP or
CP is obtained identifying these two vertices. The only vertices corresponding to split
maximal orders are the xi, whence they are the only orders representing H ∼= OX ×OX .
We conclude that the maximal order corresponding to t1 contains a copy of H[3P ], but
not H[2P ].

We say that H is optimally contained in D, if H ⊆ D, but H is not contained in D[B]

for any effective divisor B. Let H be an order of maximal rank, and let D be a maximal
order. The number of isomorphic copies of the order H optimally contained into the
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maximal order D is denoted I(D|H). The set of neighbors of D in CP is denoted VP (D).
We let NP (D,D′) be as in Section 1.

Proposition 7.4. Let H be an order of maximal rank such that HP is maximal. Let D be
a maximal order. Then the number I(D|H[P ]) is given by the formula:

I
(
D
∣∣H[P ]) =

∑
D′∈VP (D)

NP

(
D,D′)I(D′∣∣H).

Proof. It is immediate from Proposition 7.1 that H[P ] is optimally contained in a maximal
order D if and only if there exists a maximal order D′ optimally containing H such that
δP (D,D′) = 1. Assume this is the case. Since (H[P ])Q = HQ at every place Q = P , then
H is contained in the order D′ defined by the local conditions:

D′
Q =

{
DQ if Q = P

HQ if Q = P

∣∣∣∣∣ .
This order is maximal and coincide with D outside of P , whence it corresponds to a vertex
in the Bruhat–Tits tree. On the other hand, D′ must be a neighbor of D, since D′

P = HP

and DP contains H[P ]
P . Assume now that D′′ is a second neighbor containing H. Then D′′

coincide with D, and therefore also with D′, outside of P . Furthermore D′′
P ⊇ HP = D′

P ,
whence D′′ = D′. We conclude that H is contained in a unique P -neighbor of D and the
result follows. �
Proof of Theorem 1.4. If H = D′′ is a maximal order, then it follows from the preceding
proposition that I(D|H[P ]) = NP (D,H). By a second application of the same result, for
any pair of different places (P1, P2), we have

I
(
D
∣∣H[P1+P2]

)
=

∑
D′

NP1

(
D,D′)NP2

(
D′,H

)
,

where the sum extends over all maximal orders, but only a finite number of terms are
non-zero. As the left hand side of this equation is symmetric on P1 and P2, the result
follows. �
Proof of Theorem 1.5. Using the structure of cusps and case A of Table 3, we can see
that, for m big enough, the m-th column Cm and the m-th row Rm of Nd have the forms

Cm = ( 0 · · · 0 pd 0 · · · 0 1 0 · · · )t ,
Rm = ( 0 · · · 0 1 0 · · · 0 pd 0 · · · ) ,

where the first non-zero entry, in each case, is in the position m− d and the second one
in the position m + d. It follows by an easy induction that the matrices
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Nd
1 , and

[d/2]∑
i=0

(
d

i

)
piNd−2i,

coincide outside a finite set of coordinates. It follows that their difference B is finitely
supported, and commutes with N1. Eq. (1) is equivalent to B = 0. The result follows
if we prove that the only finitely supported matrix that commutes with N1 is the zero
matrix.

Let B =
(

A O1
O2 O3

)
, where A denotes a minimal finite square block, and each Oi is an

infinite block of 0’s. Then, if N1 =
(
C D
E F

)
is the analogous decomposition for N1, the

condition BN1 = N1B implies AD = 0 and EA = 0. Looking at the first column of AD

and the first row of EA we obtain the equations

A

⎛
⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
...
0
0

⎞
⎟⎟⎠ , ( 0 · · · 0 q )A = ( 0 · · · 0 0 ) ,

where q is either p or p+1. This implies that the last row and the last column of A are 0
and this contradicts the minimality of A. The result follows. �
Example 7.5. The first six of the matrices Ni are N1 and

N2 = N2
1 − 2pI, N3 = N3

1 − 3pN1, N4 = N4
1 − 4pN2

1 + 2p2I,

N5 = N5
1 − 5pN3

1 + 5p2N1, N6 = N6
1 − 6pN4

1 + 9p2N2
1 − 2p3I,

where I denotes the identity matrix.

8. Examples

Example 8.1. This example is a straightforward application of Proposition 7.1. Assume
X ∼= P1 and d = degP = 5. By valency considerations, and recalling that the C-graph
is bipartite in this case, it must be as shown in Fig. 9. The valencies in Table 1 give us
the following system:

c + e = 1, c + a = p2 + 1, a + b = p2 + p + 1, b + e = p + 1.

It follows that either (a, b, c, e) = (p2, p + 1, 1, 0) or (a, b, c, e) = (p2 + 1, p, 0, 1). Assume
the second solution. Let H = D

[P+R]
7Q , where R has degree 4. Define also H′ = D

[R]
7Q and

H′′ = D
[P ]
7Q . One application of Proposition 7.1 shows that the set of maximal X-orders

containing H′ is {D7Q,D3Q,D11Q}. Now, a second application of Proposition 7.1 shows
that the set of maximal X-orders containing H is

A = {D7Q,D3Q,D11Q,D2Q,D12Q,D8Q,D6Q,D16Q}.
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Fig. 9. The Full C-graph (or S-graph) when deg(P ) = 5 and X = P1.

Fig. 10. Configuration of lines in Example 8.2

If we use H′′ instead, we obtain the set A∪{D0}. As these sets are different, we conclude
that the second solution is inconsistent, and therefore (a, b, c, e) = (p2, p + 1, 1, 0).

Example 8.2. Let X and P be as in Example 5.6, and let Z be the degree-3 prime
divisor corresponding to the point [α;α; 1] ∈ XF27 , where α3 − α2 + α + 1 = 0. Then
div(x−y) = Z−3P , so Z is linearly equivalent to 3P . Two lines in the local graph at Z,
together with two edges with unknown multiplicities a and b, look as in Fig. 10. First
we compute a. We use the equation

NP (D0,DP )NZ(DP ,D4P ) = NZ(D0,D3P )NP (D3P ,D4P ),

corresponding to the pair (D0,D4P ). Note that all other terms are 0, since D5P has
valency 2 in TZ , while neither D0 nor D4P has other neighbors at P . This equation gives
NZ(D0,D3P ) = 4, since all other values are known. For instance, NZ(DP ,D4P ) = 1
since D4P corresponds to the orbit [∞] at DP . By Table 3, case C, the class [0] = [∞]
at D0 has 4 elements, so a = MZ(D0,D3P ) = 1.

Next we show that b = 0. Assume D2P and D3P are neighbors at Z. Then the equation
corresponding to the pair (D3P ,D3P ) reduces to

NP (D3P ,D2P )NZ(D2P ,D3P ) = NZ(D3P ,D2P )NP (D2P ,D3P ),

since D4P and D3P are not neighbors at Z. The extra edge for either D2P or D3P at Z

corresponds to an orbit of size 18, whence the equation gives 3 × 18 = 18 × 1. The
contradiction yields the conclusion.
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Fig. 11. The Full C-graph when deg(P ) = 6 and X = P1.

Fig. 12. The S-graph of D0 when deg(P ) = 6 and X = P1.

Example 8.3. When X = P1 and deg(P ) = 6, the multiplicities (Fig. 11) can be computed
one by one, as in the preceding example, or alternatively, we can use the matrix

N6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p5(p− 1) 0 p5(p− 1) 0 p5(p− 1) 0 p6 0 · · ·
0 p4(p2 − 1) 0 p4(p2 − 1) 0 p6 0 p6 · · ·

p3(p2 − 1) 0 p3(p2 − 1) 0 p5 0 0 0 · · ·
0 p2(p2 − 1) 0 p4 0 0 0 0 · · ·

p(p2 − 1) 0 p3 0 0 0 0 0 · · ·
0 p2 0 0 0 0 0 0 · · ·

p + 1 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that NP (D0,D0) ≡ p(p− 1) (mod p(p2 − 1)), whence the exceptional edge for D0
is in the loop. Recall that the S-graph is always bipartite, since Γ is contained in the
group GL(V )+ in the notations of [17, §II.1.3]. Note that the distance between the two
pre-images, xi and x′

i, of every vertex DiQ, is odd. In fact, the valuation of the element
M ∈ G, constructed at the end of the proof of Theorem 1.3, is odd, so it must satisfy
M(xi) = x′

i for every i. We conclude that the S-graph can be recovered as the unique
bipartite 2-to-1 cover of the C-graph (Fig. 12).
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